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Abstract

We argue that conditional on the existence of momentum, many other asset pricing
anomalies are not particularly anomalous. First, empirically, we show that the return
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some stocks than others, and that the momentum premium of a portfolio negatively
predicts the portfolio’s unconditional average return. Second, we rationalize this in a
standard model to which we add momentum; the intuition is that speculators prefer to
buy assets with a higher momentum premium, and bid up the prices of those assets.
Third, we find that for many asset pricing anomalies, the momentum premium of
the long leg is much lower than the momentum premium of the short leg. Thus,
according to our model, the long leg should earn higher unconditional average returns in
equilibrium, which “explains” the anomaly. Once accounting for this effect, the average
Fama French 3 factor α across 36 prominent anomalies falls by up to 47%. Finally,
we show that although the CAPM β is negatively related to the average unconditional
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1 Introduction

Cross-sectional asset pricing has been described as a zoo (Cochrane (2011), Feng et al.

(2019)), with hundreds of proposed factors or anomalies floating around, many perhaps data

mined or insignificant out of sample (Harvey et al. (2015), Hou et al. (2018)). We propose a

unified explanation for the high excess returns on a large set of anomalies; the explanation

relies on the existence of momentum.

Momentum, initially brought to the attention of academics by Levy (1967) and Jegadeesh

and Titman (1993), is the empirical observation that firms whose equity returns have been

particularly high (low) over the past year or so, continue to outperform (underperform)

over the next year or so. Momentum is one of the most well known, most studied, and

prevalent asset pricing anomalies. It is present in a variety of asset classes (Asness et al.

(2013)) and its performance does not appear to have disappeared after its discovery (McLean

and Pontiff (2016)). Various explanations for momentum have been proposed, from rational

Johnson (2002), Berk et al. (1999), Hou et al. (2015); to behavioral Barberis et al. (1998),

Grinblatt and Han (2005), Frazzini (2006); to institutional Lou (2012), Lou and Polk (2019);

to explanations based on liquidity and trading costs (Pastor and Stambaugh (2003), Sadka

(2006)). Momentum is often explained as mostly an under-reaction, with some longer term

over-reaction.

Our model is closest Hong and Stein (1999), who generate momentum through lim-

ited inattention and under-reaction. The main difference is that in our model, some assets

under-react by more than others. This leads to differences in the profitability of momen-

tum strategies across different types of assets. While our model endogenously generates

momentum, our goal is not to explain momentum, rather it is to show that conditional on

its existence, the high observed returns on many anomaly portfolios are to be expected.

Our main empirical finding is described below. We first sort firms into various port-

folios based on 36 prominent anomalies identified in the literature, with ten portfolios per

anomaly, plus ten industry portfolios for a total of 370 portfolios. For example, firms in

the bottom decile of the size distribution, or firms in the third decile of the operating prof-
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itability distribution are two such portfolios. Within each portfolio, we compute the return

from following a momentum strategy, that is buying past winners and selling past losers

only within this portfolio. Momentum profits are systematically different across portfolios.

For example, firms in the top idiosyncratic volatility decile persistently earn high momen-

tum returns, while firms in the bottom idiosyncratic volatility decile persistently earn low

momentum returns.

Our first key finding is that there is a strong negative relationship between a portfolio’s

momentum profits, and its average buy-and-hold return. That is, portfolios that tend to

systematically offer momentum trading opportunities (MTOs) and have high conditional

trading returns, such as high idiosyncratic volatility firms, tend to also have low unconditional

or buy-and-hold returns. Figure 2 illustrates this fact.

Our second key finding is that MTOs tend to be present in the short leg, that is the low

buy-and-hold return leg, of many anomalies. For example, high market-to-book, low cash

flow yield, high investment rate, low operating profitability, high idiosyncratic volatility,

and high distress firms all offer great MTOs – a momentum strategy within such firms

is very profitable. These are also firms which have low average buy-and-hold returns, as

identified by the anomaly literature. Thus, we identify a common feature across many

seemingly unrelated anomalies. We argue that when one sorts on some characteristic that

the literature has identified as leading to high (anomalous) returns, what one is actually

sorting on is MTOs. Controlling for the presence of MTOs, the average long-short anomaly

alpha is reduced by between 23% and 47%. Since, as argued by Harvey et al. (2015), McLean

and Pontiff (2016), and Hou et al. (2018), many anomaly alphas appear artificially high due

to in-sample data mining, our MTO effect potentially explains much more than 47% of the

anomaly performance.

Our third key finding is theoretical and underpins the first two. We show that if MTOs

are present in a set of firms, then these same firms should have lower average buy-and-

hold returns. Thus, through the lens of our model, any anomaly whose short leg offers

MTOs should have a positive return spread between its long and short legs. The model’s

intuition is that active, or speculative traders are more interested in firms which offer active
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trading opportunities, than those firms that do not. As a result, MTO firms have higher

unconditional prices and lower unconditional expected returns, despite offering high returns

for traders who follow an active (conditional) strategy.

To provide additional support for this mechanism, we identify times when there are few

momentum traders in the market, using the co-momentum measure of Lou and Polk (2019).

In these times, consistent with Lou and Polk (2019), momentum profits are highest since

there are few traders to arbitrage these profits away. On the other hand, these are times

when the buy-and-hold spread between high and low MTO firms is lowest because there

are few traders who push up the price of high-MTO assets. Thus, speculative momentum

traders are the ones responsible for the buy-and-hold spread between low- and high-MTO

assets.

The above findings argue that if any subset of firms, such as high market-to-book firms,

offers MTOs, then these firms should have lower expected returns. However, they do not

offer an explanation as to why high market-to-book firms should offer MTOs. Our fourth set

of results explores which characteristics make a firm more likely to offer MTOs. Our model

suggests that information about high MTO firms should be difficult to interpret, making

these firms hard to value.1 Empirically, high MTO firms tend to have less analyst coverage,

more analyst disagreement, more volatile fundamentals, more volatile stock returns, and

more autocorrelated stock returns. However, their most striking feature is their loading on

market risk. As shown in Figure 3, CAPM β almost perfectly lines up with a portfolio’s

average momentum return. This can potentially explain the failure of the CAPM; indeed,

in a regression of a portfolio’s average buy-and-hold return on its CAPM β, the slope turns

from negative to positive when we control for MTOs.

To our knowledge, we are the first to systematically link an anomaly’s excess return to

the momentum trading profits of the underlying firms. However, some of our results have

been documented in other papers individually. Avramov et al. (2007) and Garlappi and

1This is consistent with how much of the literature has thought about momentum. For example Daniel
and Titman (1999) write that the “momentum effect is likely to be strongest in those stocks whose valuations
require the interpretation of ambiguous information”.
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Yan (2011) show that momentum profits are stronger for highly distressed firms and firms

with low credit rating; the credit distress puzzle is that these firms also have anomalously

low returns. Daniel and Titman (1999) and Sagi and Seasholes (2007) show that momentum

profits are stronger for growth firms and high growth option firms; the value premium puzzle

is that these firms also have anomalously low returns. It has also been shown that momentum

profits are stronger in small and low analyst coverage firms (Hong et al. (2000)), high volume

firms (Lee and Swaminathan (2000)), and high revenue volatility firms (Sagi and Seasholes

(2007)).

Two other closely related papers are Hong and Sraer (2016) and Zhang (2019). Hong and

Sraer (2016) argue that disagreement is highest for high beta assets. In the presence of short

sale constraints, high disagreement implies that these assets will be overvalued, leading to

returns that are too low, which can explain the failure of the CAPM. In our model, it is also

the case that speculative behavior leads to prices that are too high, although we focus on

speculation through momentum and do not require short sale constraints. In our empirical

results, we find that high beta is one of the characteristics associated with high MTO and

therefore too low returns. Zhang (2019) studies the portfolio choices and trading behavior

of active versus passive institutions. He finds that the firms held by active institutions tend

to have low passive buy-and-hold returns, but that the institutions themselves do not earn

low returns. This is because such institutions follow active trading strategies and invest in

inefficiently priced firms which present trading opportunities. This is analogous to the high

MTO, low buy-and-hold firms that we focus on.

Finally, a number of papers have documented momentum profits in well diversified port-

folios, as opposed to individual assets. These papers on factor momentum include Grinblatt

and Moskowitz (2002), Avramov et al. (2017), Zaremba and Shemer (2018), and Arnott et al.

(2019), and Ehsani and Linnainmaa (2019). However, these results are fundamentally differ-

ent and orthogonal to our study. These studies find that well diversified portfolios that have

done well (poorly) in the past tend to continue doing well (poorly). This is an exact analog

to a firm level momentum strategy, but at the portfolio level. We study the profitability of a

firm level momentum strategy within a well diversified portfolio. Our MTO score measures
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whether a momentum strategy is profitable within a portfolio, and is unrelated to whether

this portfolio has done well in the past. For example, the value portfolio consistently has a

low MTO score, however in Avramov et al. (2017) it is sometimes a winner and sometimes

a loser, depending on whether it outperformed other anomalies over the previous year.

In the remainder of the paper, we present our empirical results in section 2, the model

follows in section 3, and section 4 concludes.

2 Empirical results

2.1 Data

Our empirical tests use data from various standard sources. We obtain information about

stock returns, trading volume, market capitalization, and the number of shares outstanding

from the Center for Research in Security Prices (CRSP) database. We collect accounting

related information from COMPUSTAT. We download returns on the risk-free rate, the

Fama-French size, value, and momentum factors from Kenneth French’s website.

Our test assets consist of 370 different portfolios of firms. We create these portfolios

by sorting firms according to various characteristics. Our purpose is to have a diverse

set of portfolios that capture different dimensions of cross-sectional variation in expected

returns. Table 1 presents the list of firm characteristics that we consider, and the return

spread between the long and short legs of each anomaly. Pooling together this large set

of portfolios, we want to assess how much of the cross-sectional variation in the expected

returns of these anomalies can be explained by our proposed mechanism.

We choose the sorting characteristics for forming portfolios based on the asset pricing

literature’s most prevalent anomalies. We start with the anomalies in Table 4 of Hou et al.

(2015), which they compute to be the only statistically significant ones in a list of nearly 80

anomalies.2 We augment these with all anomalies in Stambaugh et al. (2015) and in Fama

2There are a total of 35 anomalies on this list. We exclude Analyst Forecast Surprise because it does not
span the time period of the remainder of our data. For the other two announcement anomalies (Standard
Earning Surprise and Abnormal Announcement Return), Hou et al. (2015) list both the 6 month and 1

6



and French (2015) that are not already on this list. We also add size, as it is not on any

of the above lists. Finally, we add a set of industry portfolios based on the Fama-French 10

industry designation; these are not anomalies, but are a good, independent set of portfolios

for testing our explanation. This leads to 37 different characteristics.

For each characteristic, we form portfolios by sorting firms into deciles.3 This is how we

arrive at the total of 370 different portfolios. More specifically, based on each characteristic,

we sort firms into portfolios in June of year t from 1966 to 2017. When forming portfolios in

year t, we compute accounting characteristics based on the information available in December

of year t− 1. For market-based characteristics that only use information from the CRSP, we

measure them in June of year t. Firms in each portfolio are kept constant for the next twelve

months with four exceptions: earnings announcement return, consecutive earnings growth,

standardized unexpected earnings, and failure probabilities. These anomalies require high

rebalancing frequencies. For these anomalies, we re-sort twice a year: June and December.

We drop a firm from a portfolio in month t if it is delisted in month t− 1 or its price drops

below $1 in month t−1. Following Fama and French (1992), we form decile portfolios based

on NYSE cut-offs.

2.2 Two relevant measures of returns

For each portfolio of firms, we compute two different types of return series. The first type

of return is the value-weighted return of a portfolio in excess of risk-free rate from July of

year t to June of year t+ 1. We call this return the buy-and-hold return of a portfolio; this

buy-and-hold return is the subject of interest in most of the asset pricing literature.

The second type of return is relatively novel to the literature, it measures the profitability

month horizon as separate significant anomalies. We keep only the two 6 months horizon anomalies because
we do not want to put too much weight on any single anomaly and these announcement anomalies are highly
correlated. We also include only the most standard one (R11-1) of the four different momentum anomalies.
This is because our goal is to explain other anomalies conditional on the existence of momentum, not to
explain momentum.

3For industries, we do not sort into deciles. Rather, each of the 10 industries is a portfolio. For some of
the results, to be consistent with the way we report anomalies, we order industries based on their average
historical return.

7



of a momentum strategy within each portfolio. Since the momentum strategy is a conditional

strategy, this is a conditional, or active, return, rebalanced monthly. To compute this return,

we sort the firms in each portfolio into three terciles in the beginning of each month t based

on each firm’s past performance, which we measure as the cumulative return from month

t − 12 to t − 2. We then compute the value-weighted return in excess of risk-free rate for

firms in the top tercile, which we call the return of winners in a portfolio. Similarly, we

compute the value-weighted return in excess of risk-free rate for firms in the bottom tercile,

which we call the return of losers in a portfolio. We refer to the firms in the middle tercile as

neutral firms. The momentum return of a portfolio is the return of winners minus the return

of losers within that portfolio. Our main findings, presented below, is that the momentum

return of a portfolio can explain the portfolio’s risk-adjusted buy-and-hold return.

2.3 Summary Statistics

As shown in Table 2 Panel A, the average buy-and-hold return of these 370 portfolios is 0.59%

per month, with a Sharpe ratio of 0.42. In Panel B, the average return of winners minus

losers is 0.56% per month with a Sharpe ratio of 0.34. The difference between the two returns

is stark when looking at the CAPM or FF3 alphas, which are, respectively 0.03 and 0.00

for the average portfolio’s buy-and-hold return, but 0.63 and 0.78 for the average portfolio’s

momentum return. This is consistent with the prior literature on momentum, which finds

winners have higher returns than losers. Not surprisingly, the Fama-French-Carhart alpha

of the momentum return of the average portfolio is close to zero.

Table 2 also shows the cross-sectional variation in the average buy-and-hold return and

momentum return. Across the 370 portfolios, there is much more cross-sectional variation in

momentum returns than buy-and-hold returns. The the cross-sectional standard deviation

of average buy-and-hold returns, CAPM alphas, and FF3 alphas is, respectively, is 0.13%,

0.16%, and 0.16% per month, compared to 0.33%, 0.35%, and 0.36% for the momentum

return.
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2.4 Portfolio level results

This section documents our main findings. We show that the risk-adjusted buy-and-hold

return of a portfolio is negatively related with the portfolio’s average momentum return. In

other words, if it is especially profitable to implement a conditional momentum strategy for

a portfolio of firms, then that same portfolio is likely to have an especially low unconditional

or buy-and-hold return. Table 3 and Figure 2 present our main result.

In Panel A of Table 3, we run a cross-sectional regression of a portfolio’s average buy-and-

hold return on its average momentum return. The relationship is negative and significant,

with a t-statistic of -6.15. The slope of -0.14 implies that for every 1% increase in a portfolio’s

expected momentum return, its expected buy-and-hold return falls by 0.14%.

The results are stronger when we adjust the buy-and-hold return for risk, the t-statistics

are between -8.74 and -15.02 for regressions where the dependent variable is the Sharpe

ratio, or the CAPM, FF3, or FFC4 alpha. The R2 is high too, for example the momentum

return alone explains 41.6% of the cross-sectional variation in portfolio Sharpe ratios. We

redo this with controls (Panel B), and in sub-periods (Panels C and D), with the results

largely unchanged. The negative relationship between the momentum return, and various

risk adjusted measures of the buy-and-hold return are presented graphically in Figure 2.

For robustness, we also redo the main result but excluding all microcaps (firms in the

bottom 20% of the size distribution and those with stock prices below $5), or excluding the

financial crisis (July 2008 - June 2011), these results, presented in Appendix Tables A1 and

A2 are similar to those in Table 3. This suggests that our results are not driven by illiquid

firms or extreme events. Finally, we redo the above analysis but separately for each anomaly.

That is, we sort all firms into deciles based on each characteristic, and run a regression of

buy-and-hold alphas on momentum returns for each group of 10 portfolios. These results,

presented in Appendix Table A4, show that of the 36 different characteristics, the slope is

negative for 31, and significantly negative for 25.

A portfolio’s momentum profit can explain between 23% and 47% of the within anomaly

variation in alpha, this computation is described next. We construct a MTO adjusted alpha
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in the following way. We first run a cross-sectional regression of a portfolio’s average buy-and-

hold FF3 alpha on its average momentum return. The slope of this regression is ball = −0.23

if we use all 370 portfolios (Panel A of Table 3), and bextr = −0.41 if we use only the 74 most

extreme portfolios, that is the top and bottom deciles for each anomaly. We then define

a MTO adjusted alpha as the residual from this regression: αadj = α − b × RMOM . The

spread in the raw and in the adjusted alphas is reported in Table 4 for each anomaly. The

average anomaly has an alpha spread of 0.43% per month, this is both a simple average and

an average of absolute alphas because the top decile always has a higher return than the

bottom. Once adjusted for MTO, the average alpha spread falls from 0.43% to 0.32% (all)

or to 0.23% (extreme); the average absolute alpha spread falls from 0.43% to 0.33% (all) or

0.28% (extreme).

2.5 Firm level results

We next carry out a similar analysis, but at the firm level. For each firm, we compute a

momentum trading opportunities (MTO) score, which measures whether in the future, the

firm is likely to be a good investment for a momentum trader. To compute a firm’s MTO

score in June of year t, we first rank our 370 portfolios as listed in Table 1 based on each

portfolio’s average momentum return in the past 10 years. We define portfolios that are

ranked in the top 10 percentile as MTO portfolios. Then, for each firm, we define its MTO

score as the number of MTO portfolios it belongs to relative to total portfolios it belongs to.

Appendix Table A6 shows the correlations of the MTO score with various firm char-

acteristics. Consistent with the mechanism explained above, the MTO score is positively

correlated with high idiosyncratic volatility, high asset growth, high market-to-book, and

low gross profit – all characteristics associated with low average returns by various studies in

the anomaly literature. The MTO score is also positively correlated with the CAPM beta.

This helps explain the failure of the CAPM, since high CAPM beta firms should have high

returns, but empirically do not. Our model suggests that having a high MTO score pushes

these firms’ expected return down, and indeed, as is discussed below, once we control for the
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MTO score, the loading of the average return on CAPM beta becomes positive. The MTO

score is negatively associated with size, thus it does not help explain the size effect since

smaller firms typically have higher returns.

We first sort all firms into ten deciles based on their MTO score. Panel A of Table

5 shows the Fama-French 3 factor alpha, as well as the factor loadings for a momentum

trading strategy within each portfolio. As might be expected, the momentum strategy has a

Fama-French 3 factor alpha close to zero in low MTO score firms but an alpha of 1.45% per

month (4.57 t-stat) in high MTO score firms; the difference between the high and low MTO

portfolios is 1.38% per month with a t-statistic of 5.04. Panel B shows the buy-and-hold

alpha of the same portfolios. Consistent with the previous set of results, the buy-and-hold

alpha has the opposite pattern, with high MTO firms having a negative alpha of -0.69% per

month (-6.00 t-stat), compared to a positive 0.20% per month (3.32 t-stat) for low MTO

firms; the difference is 0.89% per month with a t-statistic of -6.07.

In Table 6 we run Fama and MacBeth (1973) cross-sectional regressions of a firm’s buy-

and-hold return on its MTO score. The first column is univariate, showing that MTO scores

are negatively related to buy-and-hold returns. The remaining columns show that controlling

for MTO reduces the magnitude of the other anomalies. The second and third columns show

a regression of buy-and-hold returns on just size, and on size and MTO score; the following

two columns show a regression of buy-and-hold returns on just book-to-market, and on book-

to-market and MTO score; in the following columns, we do the same for momentum, asset

growth, gross profit, idiosyncratic volatility, and CAPM beta. The final two columns show

multivariate regressions of buy-and-hold returns on all seven characteristics, and all seven

characteristics together with MTO score. The slope on book-to-market falls from 0.32 to

0.23 when the MTO score is added, the slope on asset growth falls from -0.54 to -0.39, the

slope on gross profit falls from 0.73 to 0.55, and the slope on idiosyncratic volatility falls

from -26.92 to -19.13, thus these anomalies become less strong.

On the other hand, the slope on CAPM beta turns from negative to positive (though

insignificant), suggesting that the CAPM works better when controlling for MTO. In a

multivariate regression that includes MTOs, the slope on CAPM beta has a positive t-
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statistic of 2.10. The intuition is similar to the other anomalies. As will be discussed in

Section 2.7, high MTO firms tend to also have high CAPM betas. This implies that the

average buy-and-hold returns of high beta firms are pushed down relative to what they would

be if they did not have MTOs. Once we control for MTOs, the positive relationship between

CAPM beta, risk, and return becomes apparent. Section 3.9 shows that the same is true in

the model. Because of the strong correlation between CAPM beta and MTOs, a regression

of expected return on beta leads to a negative slope, even though without MTOs, the slope

is positive and the CAPM works perfectly in the model.

As discussed earlier, the MTO score does not reduce the importance of size, thus, what-

ever is driving small firms to have high expected returns does not appear to be related to

MTOs.4. The MTO score also does not reduce the importance of momentum, nor should

it since in our model, momentum is the anomaly that drives all others. Appendix Table

A7 redoes the same analysis excluding micro stocks, the results do not change significantly,

suggesting that the results are not being driven by illiquid firms. Note that at the firm level,

MTO is likely a noisy measure of actual momentum trading opportunities. Any noise in

the MTO score should bias us towards finding no change in the coefficients on the various

anomaly characteristics at the firm level.

2.6 Persistence in a portfolio’s momentum return

In this section we show that MTOs are a persistent quantity associated with certain portfolio

characteristics. We then show that using this persistence, one could design a profitable

trading strategy.5 Panel A of Table 7 presents a pooled regression of the momentum return

of portfolio i in year t on the momentum return of portfolio i in years t − k through t − 1,

where k ∈ (1, 3, 5, 10, 15). Portfolios with high past momentum returns tend to continue

having high momentum returns. The effect becomes stronger as k rises, perhaps because

a longer horizon helps average out the year-to-year noise and provides a better signal of

4Several papers have come up with rational expectations for the size effect, for example Berk (1995) or
Carlson et al. (2004)

5Note that we already presented one profitable trading strategy based on firm level MTO score in Table
5.
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the portfolio’s true MTOs. For comparison, we carry out the same exercise but for the

buy-and-hold return in Panel B. There is little evidence of persistence.

Next, we split our sample into two. Using the 1966-1992 data, we compute each portfo-

lio’s average momentum return to identify portfolios with the strongest momentum trading

opportunities. We then compute the buy-and-hold return, Sharpe ratio, and alphas of each

portfolio for the 1992-2018 period. Table 8 shows that there is a strong negative relation-

ship between a portfolio’s MTOs in 1966-1992, and its risk adjusted buy-and-hold return in

1992-2018. For example, a 1% higher average momentum return in 1966-1992 is associated

with a 0.17 lower Sharpe ratio in 1992-2018. One could form a trading strategy by buying

and holding only those portfolios that had low MTOs in the previous period.

Finally, Table 9 presents a similar, but dynamic exercise. In June of each year, we sort all

370 portfolios based on their momentum return over the previous 10 years. We then compute

the return of a strategy that buys the lowest 37 MTO portfolios, and sells the highest 37

MTO portfolios. This strategy requires rebalancing every June. The CAPM, FF3, and FFC4

alphas of this strategy are 0.40%, 0.34%, and 0.28% per month, with t-statistics 4.39, 5.45,

and 4.54 respectively.

Such a strategy may or may not survive transaction costs. However, our goal is not

to identify a strategy that could be exploited by hedge funds. Rather, it is to show that

momentum trading creates price pressure, which leads to lower average returns for MTO

firms.

2.7 Determinants of a portfolio’s momentum return

Up to now, we have argued that any portfolio with high MTOs should have lower expected

returns. We have also argued that many of the anomalies identified by the asset pricing

literature can be explained, at least in part, by the presence of MTOs in the short leg of

the anomaly. However, so far, we have been silent on the fundamental reasons for why a

particular firm or characteristic might be associated with MTOs. We explore this question

here. Jumping ahead to our model, firms whose information is hard to interpret, or whose
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fundamentals are not revealed to all market participants at the same time, or over which there

is more disagreement have high MTOs. While the exact data analogs to the model are hard

to measure, we find that for both fundamentals and stock returns, MTO firms have fewer

analysts covering them, more dispersion in analyst forecasts, more volatility of fundamentals

and of stock returns, and higher loading on aggregate risk. Since it is reasonable to assume

that such firms would be harder to value, we interpret the data to be broadly consistent with

the model.

Before we explore the determinants of the MTO score, it is useful to conceptually separate

all firms into losers, neutral, and winners. Note that a firm with a high MTO score need not

currently be a great investment opportunity. High MTO score firms may be past winners,

in which case a momentum trader would want to buy them, or past losers, in which case a

momentum trader would want to short them. Alternately, if a high MTO firm had relatively

average returns over the past 12 months, it is neither a past winner or past loser, we call such

firms neutral firms. A currently neutral MTO firm will become an investment opportunity

for a momentum investor in the future, if it receives a series of positive returns. On the

other hand, a low MTO firm, whether winner, loser, or neutral, will never be an attractive

investment for a momentum investor. Formally, the loser, neutral, and winner firms are

defined as being in the bottom, middle, and top terciles of expected returns, conditional on

being in the portfolio.

We first consider measures of analyst coverage, presented in Table 10. As we move

from low MTO score to high MTO score quintile, the number of analysts covering a firm

monotonically declines. On the other hand, the dispersion in analyst forecasts, for both EPS

and long term EPS growth, monotonically rises. These results suggest that high MTO firms

are harder to value and are subject to more disagreement.

We next consider measures of fundamentals. We sort all firms into quintiles by their

MTO score and compute the volatility of quarterly net income growth, sales growth, asset

growth, gross profit, ROA, and EPS/Price. Table 11 shows that by any measure, MTO

firms have more volatile fundamentals. Appendix Table A8 shows that MTO firms also have

stronger loadings on aggregate GDP growth. Thus, based at least on these simple measures,
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MTO firms appear to have more fundamental risk.

Table 12 is similar to Table 11, but reports the volatility of stock returns rather than

fundamentals. This is done both at the portfolio level, where we compute the volatility of

the portfolios ranked by MTO, and at the individual firm level, where we use firms’ MTO

score to sort them into quintiles. As with fundamentals, MTO firms have more volatile stock

returns. Another interesting finding is that when firms are ranked by their loser, neutral,

or winner status (that is, based on past returns), volatility follows a U-shaped pattern,

highest for losers and winners and lowest for neutral firms. This pattern is behind the key

mechanism in our model, discussed in the next section. Interestingly, this U-shaped pattern

is prominently present only in stock returns, but far less so in fundamentals. Table 13 shows

that MTO firms also have far more autocorrelated returns. This is not surprising, since

momentum and positive autocorrelation are closely linked.

In Table 14, we regress a portfolio’s average momentum return on various portfolio char-

acteristics. The most striking result is the strong loading of the momentum return on the

portfolio’s market beta, this can be seen visually in Panel A of Figure 3. Thus, assets with

MTOs appear risky, at least according to the CAPM. Possibly this implies that those in-

vestors that trade these assets pay attention to CAPM risk in setting prices. Sections 2.5

and 3.9 discuss why this positive correlation helps explain the apparent empirical failure of

the CAPM. Additionally, MTOs are also positively related to the SMB beta, negatively to

the HML beta, and positively to idiosyncratic volatility.

As an additional robustness check, we also redid the main result using post-earnings

announcement drift (PEAD) return as the key sorting variables, rather than momentum

return. Table A3 in the Appendix shows that these results are largely similar to our main

result in Table 3. Assets with stronger PEAD tend to have lower risk-adjusted buy-and-hold

returns. This suggests that the key driving force is not necessarily momentum itself, but

under-reaction and the possibility for informed investors to profit.
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2.8 Relation to co-momentum

Lou and Polk (2019) identify times when there are many momentum traders in the market

using a variable they label as co-momentum.6 We use this as an independent test of our

mechanism. As we show below, when there are few momentum traders in the market, the

spread in momentum profit between high- and low-MTO assets is very high. This is the

key result in Lou and Polk (2019) who argue that in these times, there are too few traders

arbitraging away momentum profits. Conversely, when there are few momentum traders in

the market, the spread in buy-and-hold returns between low- and high-MTO assets is very

low. This is because there are too few momentum traders to push up the price of high-MTO

assets. As discussed in section 3.11, this is exactly what happens in our model.

These results are presented in Table 15 and Figure 4. Panel A in both the table and figure

present the momentum return of these portfolios. When co-momentum is low (blue line), the

spread between high and low MTO portfolios is largest, 1.10% per month, compared to only

0.37% per month when co-momentum is high (green line). Panel B in both the table and the

figure show the buy-and-hold CAPM alpha. When co-momentum is low, the spread between

high and low MTO portfolios is smallest (in magnitude), -0.17% per month, compared to

-0.59% per month when co-momentum is high. Panel C presents a similar result for the

Fama and French 3-factor alpha.

3 Model

Our model is similar to Hong and Stein (1999). Like in Hong and Stein (1999), who refer to

them as “newswatchers”, a fraction of investors observe imprecise and delayed information

about asset quality, but do not learn from prices. In Hong and Stein (1999), the remaining

investors are “momentum traders” who condition on historical price changes but are only

allowed to form simple, univariate strategies of the signal; Hong and Stein (1999) need such

6Lou and Polk (2019) define co-momentum as the correlation of stocks within the portfolios used for
momentum trading, that is, the correlation within the loser portfolio, and the correlation within the winner
portfolio. Their interpretation is that when there are many momentum traders, they buy all winner stocks,
increasing their correlations, and sell all loser stocks, decreasing their correlations.
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investors to have short term underreaction, and long term overreaction. Unlike Hong and

Stein (1999), our remaining investors are fully rational, risk-averse arbitrageurs, therefore

there is no long term overreaction in our model. The other important difference between

our model and Hong and Stein (1999) is that we have two types of assets which differ in the

way their information is revealed to the market. As a result, some assets in our model have

momentum trading opportunities (MTOs), and some do not.

3.1 Simple example

Before we describe the full model, it is useful to build intuition with a simple, partial equi-

librium example. Consider two assets, each with price 100, and each of which receives the

same positive news between t = 0 and t = 1. The first asset reacts fully to the news, its

price rises to 110 at t = 1, and then stays at 110 at t = 2, because no new information is

released. The second asset under-reacts to news, its price rises to 105 at t = 1 and then to

110 at t = 2. The situation after negative news is analogous, with the price of the first asset

falling to 90 and staying there, while the price of the second falling to 95, and then to 90.

This is pictured in Figure 1.

Now consider an investor who has a horizon of one period. At t = 0, the asset that

under-reacts appears more attractive, because it has the same expected return with a lower

volatility. Even if the investor has a longer horizon, she may prefer the under-reacting asset

because she can sell after negative news at t = 1, before realizing the full loss. In general

equilibrium, there must be demand for both assets. This implies that the under-reacting

asset should have a higher price and a lower return to compensate investors for bearing less

risk. The full model described below is dynamic and general equilibrium; assets are long

lived and prices clear markets conditional on demand from investors. However the basic

intuition remains the same. Investors find assets with momentum trading opportunities

more attractive, pushing up their prices and pushing down their returns.

17



3.2 Assets

There are n infinitely lived, risky assets available in fixed net supply of 1/n shares each.

There is also a risk free rate asset available in unlimited net supply with a constant interest

rate of rf .

Risky asset i’s dividend is Di
t = Xt + Y i

t + Zi
t where Xt is an iid, aggregate component,

which is common to all assets; Zi
t is an iid, asset specific (idiosyncratic) component; and

Y i
t = ρY i

t−1 + εit is a persistent, asset specific (idiosyncratic) component.

If all investors know Xt, Y
i
t , and Zi

t at the time that they are investing, then asset i’s

ex-dividend price P i
t may only be a function of Y i

t , since, conditional on Y i
t , all assets are

identical going forward. More generally, as will be explained below, some investors will have

an imprecise estimate of Y i
t . As a result, the equilibrium ex-dividend price will be a function

of more than just Y i
t , that is P i

t = Ψ(Y i
t , S

i
t) where Sit is a vector of relevant additional state

variables.

We define Qi
t+1 = P i

t+1+Di
t+1 to be the t+1 payout. At t, investors have a belief over Qi

t+1.

In particular, they have a belief about the n × 1 vector of expected payouts Υt = Et[Qt+1]

and the n× n variance-covariance matrix Σt, whose (i, j) entry is Σi,j
t = Cov[Qi

t+1, Q
j
t+1].

A fraction q of assets are ’high information’ assets, with the remainder being ’low in-

formation’ assets. Both high and low information assets have exactly the same dividend

process, described above. As will be discussed below, the only difference between the two is

how information about each asset’s persistent quality Y i
t becomes known to investors. This

will lead to the ’low information’ assets having MTOs, while the ’high information’ not.

3.3 Investors

There are many overlapping generations of investors and each generation lives for just two

periods. At t they receive a constant labor income endowment Π. They do not consume

at t but invest their entire endowment in a portfolio of risky assets with portfolio weights

wit and a risk free asset with weight 1 −
∑
wit. At t + 1 they sell their entire portfolio and

consume the proceeds of the sale. Thus, their only choice variable is the n × 1 vector of
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portfolio weights wt. The investors receive a return Rp
t+1 = (1−

∑
wit)(1 + rf ) +

∑
wit

Qi
t+1

P i
t

.

The investors have mean-variance utility, so that they solve the optimization problem

Ut = max
wt

Π×
(
Et[R

p
t+1]− 0.5γVt[R

p
t+1]
)

= Π×
(

1 + rf + max
wt

(w′tµt − 0.5γw′tΩtwt)

)
(1)

where wt is an n× 1 vector of risky asset portfolio weights, µt is an n× 1 vector of expected

excess returns whose ith entry is Υi
t/P

i
t − 1− rf , Ωt is an n× n variance-covariance matrix

whose (i, j)th entry is Σi,j
t /(P

i
tP

j
t ), and γ is approximately equal to relative risk aversion.7

It is well known that if unconstrained, the portfolio choice of these investors is wt = 1
γ
µ′tΩ

−1
t ,

and their shares demand is Πwt/P
i
t per capita.

There are two types of investors. At time t, informed investors know the Y i
t of every

asset, informed investors are a fraction p of the population.

Uninformed investors are identical to informed investors with one exception. Just like

the informed investors, for all high information assets, they know Y i
t at t. On the other

hand, for all low information assets, at t they know Y i
t−1 but not Y i

t .

We assume that both informed and uninformed investors know the true equilibrium pric-

ing function Ψ(y, s). They each use this function, and their belief about Y i
t+1 to construct ex-

pectations of next period’s payout and its variance covariance: Υi
t = Et[D

i
t+1 +Ψ(Y i

t+1, S
i
t+1)]

and Σi,j
t = Covt[D

i
t+1 + Ψ(Y i

t+1, S
i
t+1), Dj

t+1 + Ψ(Y j
t+1, S

j
t+1)]. Informed investors correctly be-

lieve that Y i
t+1 = ρY i

t + εit+1 and Di
t+1 = Xt+1 + (ρY i

t + εit+1) + Zi
t+1. For high information

assets, uninformed investors agree. However, for low information assets, uninformed in-

vestors do not know Y i
t and substitute Y i

t−1 instead, which they do know. Therefore, they

believe that Y i
t+1 = ρY i

t−1 + εit+1 and Di
t+1 = Xt+1 + (ρY i

t−1 + εit+1) + Zi
t+1.

Given this belief about Υt+1 and Σt+1, both investors choose their individual portfolio

wt as a function of observed prices. In particular, they construct the mean and variance

covariance of returns as µit = Υi
t+1/P

i
t and Ωi,j

t = Σi,j/(P i
tP

j
t ). From these they compute

their portfolio share wt = 1
γ
µ′tΩ

−1
t .

7Consider an exponential utility investor facing a portfolio problem with log normal returns:
maxEt[−e−ψWRt+1 ]. This investor’s absolute risk aversion is ψ and her relative risk aversion is approximately
Wψ. Using Stein’s lemma, it can be shown that this problem is equivalent to maxEt[Rt+1]−0.5WψVt[Rt+1].
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Since informed and uninformed investors disagree about the expected payout on some

assets, conditional on the same price they will also disagree on the return and will tend to

take opposing positions on such assets. Informed investors know all available t information

and their behavior is purely rational. In particular, since they know Y i
t , the price that clears

markets is always consistent with their pricing function P i
t = Ψ(Y i

t , S
i
t).

Uninformed investors know Y i
t−1 but not Y i

t for low information assets. If we allowed

them to learn from prices, as in Grossman and Stiglitz (1980), they could back out Y i
t from

prices, unless we introduced noise traders. Instead, for simplicity, we assume that they do

not learn for prices and they ’agree to disagree’ with informed investors, for example as in

Hong and Stein (1999) and Scheinkman and Xiong (2003). They form expectations about

Qt+1 by assuming that Y i
t = Y i

t−1, they then choose their portfolio demand wt similarly to

the high information investors.

When Y i
t = Y i

t−1, the price that clears markets is consistent with both the informed and

uninformed investors’ pricing function. However, when Y i
t 6= Y i

t−1, then the market clearing

price is not necessarily equal to the uninformed investors’ belief P i
t = Ψ(Y i

t , S
i
t) 6= Ψ(Y i

t−1, S
i
t).

In this sense, the uninformed investors are irrational. They believe that their pricing function

is correct at t+ 1. If the same pricing function is inconsistent with prices at t, they believe

that they have identified a good investment opportunity.

While this behavior is clearly suboptimal, we believe that this type of heuristic is rea-

sonable. Furthermore, on average, uninformed investors are correct because, on average

Yt = Yt−1. However, after a low information asset has received an unexpected negative (pos-

itive) shock to quality, which is observed by the informed but not the uninformed investors,

the uninformed investors believe that prices are too low (high). This behavior creates price

pressure in the opposite direction of informed investors’ trading, and leads to underreaction

and momentum, preventing prices from falling (rising) too much after a negative (positive)

shock to an asset’s quality. Eventually, as the low information’s asset quality is revealed, the

price further falls (rises) to its fully rational level.

In one version of the model, we also allow for long term investors. These investors own

a fraction pLT of the wealth, and they consume their returns each period, thus keeping their
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wealth constant. They do not rebalance, and own the same portfolio each period. They have

a belief about the payout’s unconditional mean and variance covariance matrix. Based on

this, they form a constant portfolio. Note that all low information assets look identical to

the investors, as do all high information assets, therefore the portfolio weight of every low

information asset is the same, as is the portfolio weight of every informed asset, but they

may not be equal to each other.

3.4 Equilibrium

The equilibrium consists of a pricing function Ψ(y, s) such that given this pricing function,

the aggregate demand for each risky asset, whose computation is described above, is equal

to the supply of each risky asset 1/n. Note that the risk free asset is in unlimited supply,

therefore we do not require the net bond demand to be zero.8

3.5 Calibration

The model is meant to qualitatively illustrate the channel, it is far too simple for its quan-

titative implications to be taken seriously. Nevertheless, we choose parameters that seem

consistent with the data.

The first set of parameters can be directly mapped to the data. The aggregate dividend

component X takes one of three values: (0.88, 1.00, 1.12) with equal probability. The asset

specific iid component Z takes one of three values: (−0.1, 0.0, 0.1) with equal probability.

The asset specific persistent component Y takes one of three values (−0.5, 0.0, 0.5) with a

transition probability matrix (0.88, 0.08, 0.04; 0.06, 0.88, 0.06; 0.04, 0.08, 0.88). As explained

in the appendix, these values are consistent with the dividends of U.S. industries from Ken

French’s website. We set the risk free rate to rf =3% to match the value weighed average

price-to-dividend ratio of these industries. We set the net worth to Π = E[D]/rf = 1/rf so

that the net demand for bonds is close to zero, on average.

8An alternative model could include the risk free rate as an additional equilibrium quantity, and this risk
free rate would clear the bond market. While this is possible, this would require for us to keep track of an
additional state variable, which complicates the solution procedure.
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We have less guidance from the data for the second set of parameters. In the baseline

model we set the number of assets n = 10. Because n is relatively small, the asset specific risk

is not fully diversified away in the aggregate. We do this because, as documented by Grinblatt

and Moskowitz (2002), and more recently Arnott et al. (2019) and Ehsani and Linnainmaa

(2019), momentum is prevalent in relatively well diversified portfolios, and once controlling

for portfolio momentum, firm level momentum becomes significantly less profitable, but not

vice versa.9 Thus, we interpret each asset as a well diversified portfolio formed on some

common characteristics, for example a particular industry. We set the fraction of informed

investors p = 0.50 and the fraction of high information assets q = 0.50. We set risk aversion

γ = 30 in order for the model to have a reasonably high Sharpe ratio; this risk aversion

is quite high because there is nothing else in this model to overcome the equity premium

puzzle. Below, we explore the sensitivity of our results to n, p, q, and γ.

3.6 Solution Method

We assume that the only additional relevant state variable is Sit = Y i
t−1. We follow Krussell

and Smith (1998) who argue that (Y i
t−1, Y

i
t ) is an approximately sufficient state space at t

for asset i if, when (Y i
t−1, Y

i
t ) is used to predict P i

t+1, the R2 is sufficiently high.

We start with a guess for the pricing function P i
t+1 = Ψ(Y i

t , Y
i
t+1). Conditional on this

guess and the law of motion for Y , we compute Υ(Y i
t ) = Et[P

i
t+1 + Di

t+1] and Σ(Y i
t , Y

j
t ) =

Covt[P
i
t+1 +Di

t+1, P
j
t+1 +Dj

t+1] for each i and j and for each investor type. Note that for the

low information assets, the uninformed investors use the same function Ψ, but do not know

Y i
t , and substitute Y i

t−1 instead.

Once these functions are computed, we simulate the economy for 1000 periods. Each

period, we choose a vector of prices P i
t to clear markets, given the net demand. Note that

the portfolio weight of informed investors is wI = 1
γ
(Υ(Yt)∗1−1

P )(1PΣ(Yt)
−11P ) where 1P is a

diagonal matrix with Pi along the diagonal. The portfolio weight of uninformed investors is

wU = 1
γ
(Υ(Ỹt)∗1−1

P )(1PΣ(Ỹt)
−11P ) where Ỹ i

t = Y i
t for high information assets and Ỹ i

t = Y i
t−1

9Another benefit of a smaller n is that the model takes far less time to solve.
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for low information assets. The net demand is Π(wIp+wU(1−p)1−1
P . To clear markets, each

period we compute the net demand for an initial set of prices, and then increase (decrease)

each asset’s price if its net demand is higher (lower) than the fixed share supply of 1/n per

asset.

Using the simulated prices, we compute an updated belief about the pricing function

P i
t = Ψ(Y i

t−1, Y
i
t ) and restart the process. We continue until the prices converge. The R2 of

actual prices relative to those predicted by the function Ψ is 0.999997.

3.7 The momentum effect

Our goal is not to explain momentum, rather we argue that if momentum exists, then it is

possible to explain other common anomalies. To do so, we build momentum into a standard

equilibrium model in the simplest way apparent to us. We conjecture that our main channel

would work in most models where momentum is present.

In the baseline model, the momentum strategy of buying assets with an above average

past return (winners), and selling assets with a below average past return (losers) leads

to an average return of 0.62% per period, with a volatility of 3.53%. For comparison, the

aggregate equity premium is 0.28%, with a volatility of 1.44%, and it is slightly negatively

correlated with the momentum strategy. The momentum strategy is concentrated among

low information assets: the strategy of buying low information winners and selling low

information losers leads to an average return of 1.13% with a volatility of 4.80%, doing the

same for high information assets leads to zero average return with a volatility of 3.95%. For

this reason, we also refer to low information assets as momentum trading opportunity (MTO)

assets. This result is similar to the data, shown in Panel A of Table 5, where momentum is

concentrated among high MTO firms, and is virtually non-existent among low MTO firms.

In the model, momentum is due to underreaction. Consider a low information asset in

the model which just received a positive quality shock (increase in Y ). Informed investors

observe this increase and correctly interpret that this asset’s present value of future dividends

increases. Uninformed investors do not observe the increase and incorrectly believe that the
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present value of future dividends is unchanged. Since uninformed investors cannot learn from

prices, the market clearing price is a weighted average of the two investors’ belief, which is

above the previous price, but below the correct present value of future dividends. The

following period the uninformed investors learn the true value of Y and the price rises again.

Thus, there is underreaction, continuation, and momentum. The same intuition works after

a negative quality shock, thus, there is continuation after both positive and negative price

movements. While the momentum effect is stronger when there are limits to arbitrage (n is

low or idiosyncratic volatility is high), it never fully goes away even as n→∞.10

3.8 The long-short effect

Our key result is that the average return on high information, low MTO assets is higher

than the average return on low information, MTO assets. As will be explained below, this

is due to excess demand for low information assets by speculative traders.

Recall that the momentum strategy is profitable only among low information, high MTO

assets. This includes MTO winners, MTO losers, as well as MTO neutral assets, which had

neither particularly high or low returns in the last period. The momentum strategy leads to

zero profits among high information assets or low MTO assets.

A strategy of buying a portfolio of low MTO (high information) assets and selling a

10Consider a problem with n uncorrelated assets, where both investor types agree that today’s price and
tomorrow’s price are both P and that the variance of the payout P + D is σ. However, they disagree on
the expected dividend: the informed investors believe it is D for all assets, while the uninformed, whose
proportion in the population is 1 − p, believe it is D + ε for all assets. The demand by the informed and

uninformed investors is, respectively, wF =
D
P −r

f

γσ/P 2 and wS =
D+ε
P −r

f

γσ/P 2 . The net demand is
D+ε(1−q)

P −rf

γσ/P 2 and

must equal to the supply 1/n. Rearranging and solving for P :

P (ε) =
D + (1− p)ε

rf

1 +
√

1− 4rfγσ/n
(D+(1−p)ε)2

2

 (2)

Next, consider what happens as n rises or σ falls. Conditional on ε, the price rises as lower risk makes
this a safer investment. On the other hand, the difference between the high and low ε price, P (ε) − P (0)
becomes smaller in magnitude. Thus, lower risk weakens the price effect of disagreement. However, the price

effect never fully goes away: lim
n→∞

P = D+(1−p)ε
rf

. Therefore, even with perfect diversification, the price is a

weighted average of both the informed and the uninformed investors’ beliefs, even if the uninformed investor
is wrong.
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portfolio of high MTO (low information) assets leads to an average return of 0.35%, with a

volatility of 2.80% and a slightly negative correlation with the aggregate return. Low MTO

assets have a higher return despite having a lower volatility of 1.85%, compared to 2.16%

for a portfolio of MTO assets. Recall that buying a portfolio of momentum assets, which

includes winners, losers, and neutral assets, is not what is usually referred to as a momentum

strategy, which buys winners and sells losers. In fact, in the model, the time series correlation

of a momentum strategy within the MTO assets, and the unconditional portfolio of MTO

assets is negative.

The above results are similar to the data. Tables 3, 5, and 6 all show that low-MTO

firms have higher average returns than high-MTO firms. Table 12 shows that high MTO

firms have more volatile returns.

To understand the intuition, suppose, counterfactually, that both hihg MTO (low in-

formation) and low MTO (high information) assets have the same unconditional expected

return. The informed and uninformed investors agree that low MTO (high information)

assets are fairly priced, as are the MTO (low information) neutral assets. However they

disagree about the high MTO (low information) winners and losers.

Consider the investment decision of an informed investor. She believes that high MTO

(low information) winners are underpriced, and high MTO (low information) losers are

overpriced. Therefore, the informed investor will first of all, wish to take long positions

in high MTO winners, and short positions in high MTO losers. Conversely, the uninformed

investor believes that high MTO winners are overpriced and that high MTO losers are

underpriced. The uninformed investor will first of all, wish to take long positions in high

MTO losers, and short positions in high MTO winners. Since both investors are endowed

with the same amount of wealth, these positions offset and do not lead to additional price

pressure for either high MTO (low information) or low MTO (high information) assets.

However, both investors are subject to limits to arbitrage, in particular, both are risk

averse and cannot perfectly diversify the asset specific risk because n is finite. Once their

risk capacity for mispriced assets is exhausted, they must choose the next best assets for

their portfolio. If the expected return on high MTO (low information) and low MTO (high
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information) assets is the same, then the next best assets are the high MTO neutral (low

information) assets. There are two closely related ways to understand this intuition. First,

high MTO neutral assets have the same expected return but lower volatility than the low

MTO (high information) assets. The individual volatility of high MTO neutral assets is

3.9%, compared to 9.1% for high MTO winners and losers, and 4.1% for low MTO assets.

Why do they have lower volatility? Because momentum is a return continuation and an

underreaction. Whether a high MTO neutral asset receives a positive or a negative shock

next period, its price will not move by as much as that of a low MTO asset which receives

the same shock. Second, high MTO neutral assets provide good future trading opportunities

for investors. If the asset receives a positive quality shock, the asset will be underpriced in

the future and the investor will continue to hold it, but if it receives a negative quality shock,

the investor will have a chance to get out before the price falls all the way to fundamental

value. Low MTO assets do not present such opportunities.

Since both low and high information investors have demand for MTO neutral assets,

there will be price pressure on such assets. The price of high MTO (low information) assets

will rise, and their expected return will fall, relative to low MTO (high information) assets.

This is our key result.

3.9 A more realistic model: matching the volatility pattern and

the failure of CAPM

Table 12 shows that in the data, as in our baseline model, high MTO assets have more volatile

stock returns than low MTO assets, and the volatility pattern within high MTO assets follows

a U-shaped pattern, highest for winners and losers, and lowest for neutral assets. However,

one unrealistic feature of the baseline model is that the stock return volatility of MTO neutral

assets is lower than that of low MTO assets in the model; Table 12 shows that in the data,

high MTO neutral assets have a higher stock return volatility than low MTO assets. We

believe that the reason for this difference is that, as shown in Table 11, high MTO assets

have higher fundamental volatility in the data, while in the baseline model, fundamental
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volatility is identical for all assets.

We extend the baseline model in one of three ways, all leading to higher fundamental

volatility of high MTO (low information) assets. We allow high MTO assets to have a

higher volatility of Y , a higher volatility of Z, or higher loading on X. All three make high

MTO assets fundamentally riskier, increasing their unconditional return and reducing the

unconditional return spread between low MTO and MTO assets. However, for each of the

three cases, it is not difficult to find parameter values such that, just as in the data, high

MTO neutral assets both have a higher volatility of returns than low MTO assets, and a

lower unconditional average return.

This extension also allows us to explicitly showcase why the CAPM fails. Consider the

model where high MTO assets have a higher loading on X, thus there is a perfect correlation

between β and MTO; Figure 3 shows that in the data this correlation is imperfect but quite

high. We set the loadings of dividends on X to be 0.5 for high information (low MTO)

assets and 4.0 for low information (hihg MTO) assets. This leads to equity return betas of

approximately 0.65 for low MTO and 1.38 for MTO assets. However, due to speculative price

pressure, the expected excess returns are higher for low MTO assets: 0.46% compared to

0.32% per period. This implies that the slope of the security market line (SML) is negative.

Consider an alternative model where the assets still differ in their loadings on X, however all

assets are high information assets (q = 0), so there is no momentum. In such a model, the

CAPM works perfectly, with the slope of the SML positive and exactly equal to the average

equity premium. Section 2.5 and Table 6 explain that in the data, controlling for MTO flips

the slope of the SML from negative to positive.

3.10 Parameter sensitivity

As long as there is momentum in our model, and there is heterogeneity in its strength across

assets, the key result of higher expected returns on high information (low MTO) assets is

present for every parameter combination we have tried. For momentum to exist, Y must

be persistent and both types of investors must exist 0 < p < 1. For heterogeneity, both
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types of assets must exist 0 < q < 1. However, depending on the parameters, it may be

quantitatively weaker or stronger.

The effect is stronger if Y is more persistent or more volatile, this is because the momen-

tum effect itself is stronger, leading to more disagreement, a stronger underreaction, and a

stronger advantage for MTO neutral assets. The effect is stronger when Z is more volatile,

or when we introduce a quadratic asset holding cost,11 this is because limits to arbitrage

are stronger. The effect is weaker when we increase the number of assets n or decrease risk

aversion γ, this is because limits to arbitrage are weaker. However, in all of these cases, the

magnitude of the effect remained roughly the same as the aggregate equity premium. The

effect is weaker if we decrease the fraction of low information investors because the momen-

tum effect is weaker. Finally, the effect is weaker if we introduce long horizon investors, who

base their holdings on an unconditional belief about the return properties of low and high

information assets. This is because long horizon investors cannot and do not time the mar-

ket, therefore, the high returns of low MTO (high information) assets look very attractive,

and this pushes up the price and pushes down the return of these assets.

3.11 Relation to co-momentum

We solve a version of the model where p = 0.05, that is there are far fewer informed investors.

This corresponds to times when few momentum traders are participating in markets, as

measured by low co-momentum in Lou and Polk (2019). With fewer momentum traders,

the momentum return is much higher. For all firms, it is 1.59% compared to 0.62% in the

baseline model; for high-MTO firms it is 3.01% compared to 1.13% in the baseline model.

Consistent with the empirical findings in Lou and Polk (2019), with fewer momentum traders,

these momentum profits are being left on the table. However, our key variable of interest,

the difference in average returns on high information, non-MTO assets compared to low

information, MTO assets is smaller than in the baseline model: 0.24% compared to 0.35%.

This is because with few momentum traders, there is little price pressure to push the price

11A quadratic holding cost λ
∑
w2
i where wi is each asset’s weight in the portfolio, is equivalent to an

increase of each asset’s volatility by λ.

28



of MTO assets up. As explained in section 2.8, this is exactly what we see in the data.

3.12 Discussion

In this section, we discuss some of the links between our model and the real world, as well

as some alternative explanations.

Our model implies that in order for the price pressure channel to exist, the horizon of

the momentum traders must be shorter than the horizon of momentum profits. Indeed, as

discussed above, adding long horizon investors to the model reduces the return difference

between low and high MTO assets. However, as long as some traders with short horizons

exist, the channel will not disappear. Since the horizon of momentum profit appears to

be between 6 and 18 months in the real world, it is reasonable to assume that there is a

significant number of traders with horizons shorter than this. Another feature of our model

is that the uninformed traders do not know the most recent fundamentals about assets

Yt, but do know which assets are low versus high MTO, and understand that high MTO

assets under-react. This is not a necessary assumption. Even if uninformed traders did

not understand that there are MTO differences across assets and simply allocated randomly

between neutral high MTO and low MTO assets, there would still be price pressure on high

MTO assets from the informed investors.

Our model is likely not the only one that can match the empirical observations in Section

2. For example, suppose that noise traders preferred certain types of assets, and noise trader

demand growth was positively autocorrelated. Then assets preferred by noise traders would

exhibit momentum, and their prices would be relatively too high, leading to low average

returns. However, this explanation is quite mechanical. The disposition effect has been

linked to momentum and is another potential explanation. For example, we could model

momentum driven by the disposition effect, as in Grinblatt and Han (2005), rather than by

slow release of information, as in Hong and Stein (1999). We conjecture that the difference in

returns between high and low MTO firms would exist in such a model because any investors

with non-prospect theory preferences would bid up high MTO assets just as they do in our
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model.

4 Conclusion

We document a new empirical finding. We define a portfolio as having high (low) momentum

trading opportunities (MTOs) if a momentum strategy on the portfolio’s underlying stocks

leads to relatively high (low) profits. We show that portfolios with high MTOs tend to have

low buy-and-hold returns. We solve a model with momentum traders which rationalizes this

finding, the intuition being that momentum traders push up prices and push down expected

returns of MTO assets. We then argue that this finding can explain up to 50% of the returns

on anomaly portfolios identified by the financial economics literature. This is because for

many anomalies, the short (low buy-and-hold return) leg tends to have high MTOs, and the

long (high buy-and-hold return) leg tends to have low MTOs.
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Figure 1: Simple model example

This figure plots a hypothetical price path for an asset that appropriately reacts compared
to an asset that under-reacts with a one period delay.
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Figure 2: Buy-and-Hold return versus Momentum return

This figure plots the relationship between buy-and-hold return and momentum return of a
portfolio. Each point in the scatter plot is a portfolio. Panel A shows the Sharpe ratio of
buy-and-hold return vs. the Sharpe ratio of momentum return. Panels B, C, and D show,
respectively, the CAPM, FF3, and FFC4 alphas vs. the average momentum return.
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Figure 3: CAPM beta and expected return

This figure plots the relationship between average momentum return and CAPM beta in
Panel A and the relationship between average buy-and-hold return and CAPM beta in
Panel B. The CAPM beta is measured as the market factor loading of the buy-and-hold
return of each portfolio in both panels. There are 370 observations on both panels,
corresponding to 370 portfolios. The sample period is from July 1966 to June 2018.
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Figure 4: CAPM beta and expected return

This figure plots the key quantities in the paper split by comomentum tercile. We sort our
370 portfolios into ten groups, based on their past momentum return (MTO). We also
classify each year as low, mid, or high co-momentum based on the June measure of
co-momentum for each year, where co-momentum is defined as in Lou and Polk (2019). We
compute the equal weighted average momentum return, and buy-and-hold return of each of
the ten portfolio groups, from July of the year, to June of the following year, conditional on
that year being low, mid, or high co-momentum. In Panel A, we plot the average
momentum return of the ten groups for each sub-sample period. Analogously, in Panel B
we plot the CAPM alpha, and in Panel C the FF3 alpha.
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Table 1: Test Assets

This table lists the characteristics that we use to sort firms into portfolios, as well as the
buy-and-hold alpha of the top minus bottom decile. Whenever possible, we use NYSE cut-
offs to form portfolios. We form portfolios in June of each year t and keep the portfolio
composition constant (except for delisting and penny stocks) from July of year t to June of
year t+ 1.
Anomaly Portfolios αCAPM t-stat αFF3 t-stat αFF4 t-stat
Size 10 -0.15 (-0.82) 0.11 (1.64) 0.13 (1.94)
Book-to-market 10 0.42 (2.30) -0.20 (-2.04) -0.19 (-1.92)
Composite issuance 10 -0.77 (-6.65) -0.61 (-6.08) -0.51 (-5.05)
Momentum 10 0.40 (1.79) 0.71 (3.44) 0.23 (1.25)
Net issuance 10 -0.81 (-7.27) -0.71 (-6.68) -0.64 (-5.92)
CAPM beta 10 -0.53 (-2.67) -0.45 (-2.70) -0.24 (-1.42)
Idiosyncratic volatility 10 -0.69 (-3.07) -0.69 (-4.76) -0.56 (-3.82)
Total volatility 10 -0.73 (-3.20) -0.65 (-3.97) -0.56 (-3.37)
Mispricing score 10 -0.82 (-5.94) -0.98 (-7.52) -0.68 (-5.76)
Earnings yield 10 0.76 (4.00) 0.42 (2.63) 0.35 (2.15)
Cash flow yield 10 0.66 (3.48) 0.30 (1.89) 0.23 (1.41)
Net payout yield 10 0.73 (4.48) 0.46 (3.67) 0.43 (3.34)
Ad. expense to market 10 0.57 (2.68) 0.07 (0.44) 0.18 (1.03)
ROA 10 0.37 (2.43) 0.55 (4.24) 0.46 (3.51)
Gross profitability 10 0.37 (2.45) 0.71 (5.84) 0.55 (4.59)
ROE 10 0.28 (1.68) 0.46 (3.38) 0.40 (2.85)
Asset growth 10 -0.57 (-4.47) -0.30 (-2.76) -0.21 (-1.89)
Investment to asset 10 -0.54 (-4.58) -0.35 (-3.20) -0.29 (-2.68)
Investment growth 10 -0.43 (-4.05) -0.27 (-2.74) -0.18 (-1.86)
Inventory change 10 -0.61 (-4.96) -0.44 (-3.77) -0.35 (-3.02)
Inventory growth 10 -0.47 (-4.19) -0.31 (-2.91) -0.21 (-1.98)
% operating accrual 10 -0.41 (-3.44) -0.40 (-3.31) -0.30 (-2.48)
Operating accrual 10 -0.37 (-3.11) -0.40 (-3.33) -0.36 (-2.95)
% total accrual 10 -0.43 (-3.51) -0.24 (-2.22) -0.27 (-2.50)
Net operating asset 10 -0.52 (-4.55) -0.47 (-4.18) -0.43 (-3.77)
Operating leverage 10 0.30 (1.96) 0.49 (3.59) 0.45 (3.20)
Change in P&I 10 -0.51 (-4.13) -0.27 (-2.53) -0.24 (-2.14)
O-score 10 -0.34 (-2.08) -0.50 (-3.75) -0.45 (-3.30)
Duration 10 -0.50 (-3.04) -0.04 (-0.35) 0.01 (0.12)
Org. capital to asset 10 0.51 (4.35) 0.44 (3.75) 0.31 (2.67)
R&D expense to market 10 0.08 (0.33) 0.04 (0.18) 0.05 (0.22)
Fama French 10 industry 10 0.47 (2.40) 0.69 (3.63) 0.45 (2.39)
Failure probability 10 -0.40 (-1.59) -0.99 (-5.37) -0.62 (-3.71)
SUE 10 0.26 (2.18) 0.35 (2.99) 0.16 (1.37)
Announcement return 10 0.14 (1.12) 0.22 (1.74) 0.02 (0.17)
Consecutive earning growth 10 0.05 (0.40) 0.26 (2.36) 0.12 (1.08)
Systematic volatility 10 -0.41 (-2.08) -0.41 (-2.05) -0.19 (-1.01)
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Table 2: Summary Statistics

This table reports various summary stats for the stock returns on the 370 portfolios in
our sample. We form portfolios in June of each year t and keep the portfolio composition
constant (except for delisting and penny stocks) from July of year t to June of year t + 1.
The buy-and-hold return is the value-weighted return of holding all firms in a portfolio and
rebalancing each July when the portfolio is formed. The momentum return is the return
on a long-short portfolio of past winners minus past losers within each portfolio, which is
rebalanced every month. Within each portfolio, past winners are portfolio firms in the top
1/3 of the cumulative return distribution from t− 12 to t− 2 for that portfolio, past losers
are firms in the bottom 1/3.
Portfolio Portfolios mean p50 sd min p25 p75 max

A: Buy-and-Hold return
Average 370 0.59 0.58 0.13 0.08 0.53 0.66 1.03
Sharpe ratio 370 0.42 0.43 0.10 0.04 0.37 0.48 0.68
CAPM alpha 370 0.03 0.06 0.16 -0.59 -0.03 0.12 0.40
FF3 alpha 370 0.00 0.03 0.16 -0.67 -0.05 0.10 0.35
Carhart alpha 370 0.02 0.04 0.13 -0.52 -0.03 0.09 0.31
Kurtosis 370 -0.41 -0.41 0.14 -0.91 -0.48 -0.32 0.29
Skewness 370 5.04 4.96 0.62 4.00 4.67 5.32 9.63
Idiosyncratic volatility 370 1.75 1.65 0.45 0.48 1.48 1.90 4.07

B: Momentum return
Average 370 0.56 0.49 0.33 -0.02 0.32 0.73 1.68
Sharpe ratio 370 0.34 0.32 0.18 -0.02 0.21 0.44 1.09
CAPM alpha 370 0.63 0.57 0.35 0.00 0.38 0.81 1.75
FF3 alpha 370 0.78 0.71 0.36 0.11 0.53 0.98 1.98
Carhart alpha 370 -0.02 -0.07 0.31 -0.68 -0.25 0.16 0.93
Kurtosis 370 -0.54 -0.52 0.35 -2.06 -0.75 -0.31 0.41
Skewness 370 7.62 7.15 2.41 4.22 5.90 8.53 21.91
Idiosyncratic volatility 370 5.40 5.36 0.68 2.99 4.96 5.85 7.44
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Table 3: Momentum profits and Buy-and-Hold returns

This table reports the cross-sectional relationship between a portfolio’s average buy-and-hold
return (with and without adjusting for risk) and average momentum return. Each observa-
tion corresponds to a portfolio. The y-variables are related to the buy-and-hold return of
a portfolio, they are: the average buy-and-hold return, its Sharpe ratio, its CAPM alpha,
its FF3 alpha, and its FFC4 alpha. The x-variable is the average return of a momentum
strategy within a portfolio. Panel A presents the baseline result. Panel B presents the same
result, but including the portfolio return’s kurtosis, skewness, and idiosyncratic volatility
as controls. Panels C and D present sub-sample analysis, for 1966-1992 and 1992-2018
respectively. All t-statistics, shown in parentheses, are based on robust standard errors of
White (1980).

RB&H SR αCAPM αFF3 αFFC4 RB&H SR αCAPM αFF3 αFFC4

A: Baseline result B: Full sample with controls
RMOM -0.14 -0.20 -0.31 -0.23 -0.20 -0.14 -0.18 -0.27 -0.19 -0.18

(-6.15) (-15.02) (-12.33) (-8.74) (-8.86) (-5.55) (-13.12) (-11.15) (-7.84) (-8.03)
Skewness 0.13 0.08 0.25 0.20 0.15

(1.82) (1.68) (3.20) (2.90) (2.84)
Kurtosis 0.03 0.02 0.04 -0.03 -0.02

(1.65) (1.57) (1.62) (-1.67) (-1.25)
Ivol 0.01 -0.03 -0.05 -0.07 -0.03

(0.58) (-2.57) (-2.32) (-3.07) (-1.72)
Obs. 370 370 370 370 370 370 370 370 370 370
Adj. R2 0.135 0.416 0.398 0.235 0.250 0.178 0.434 0.444 0.305 0.288

C: 1966-1992 sub-sample D: 1992-2018 sub-sample
RMOM -0.13 -0.13 -0.21 -0.12 -0.10 -0.09 -0.20 -0.32 -0.27 -0.26

(-5.24) (-9.31) (-8.64) (-4.39) (-4.29) (-3.28) (-10.24) (-9.43) (-8.39) (-9.51)
Obs. 370 370 370 370 370 370 370 370 370 370
Adj. R2 0.096 0.231 0.232 0.083 0.081 0.043 0.267 0.294 0.218 0.262
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Table 4: Adjusting anomaly alphas for momentum trading opportunities

The first four columns of this table, for each anomaly, show the average momentum return
RMOM and the buy-and-hold FF3 alpha αFF3

B&H of the two most extreme decile portfolios
(10 and 1). The next two columns present the difference or spread between the momentum
return of the top and the bottom deciles, and the buy-and-hold FF3 alpha spread between
top and bottom decile. The last two columns present the adjusted for MTOs alpha spread.
The adjustment is done in the following way. We regress a portfolio’s buy-and-hold FF3
alpha on its momentum return, either for just the 74 extreme portfolios (Extreme) or for
all 370 portfolios (All). The slopes of these regressions are, respectively b = −0.41 and
b = −0.23. We then define the adjusted alpha as αadj = α− b×RMOM .

Low B&H decile High B&H decile Low - High spread Adjusted spread
RMOM αFF3

B&H RMOM αFF3
B&H RMOM αFF3

B&H Extreme All
Operating leverage 0.87 -0.27 0.85 0.22 -0.03 0.49 0.48 0.49
SUE 0.36 -0.17 0.80 0.18 0.44 0.35 0.54 0.46
Ad. expense to market 0.83 -0.05 1.08 0.02 0.25 0.07 0.18 0.13
Mispricing score 1.36 -0.67 0.14 0.31 -1.23 0.98 0.48 0.70
Book-to-market 0.76 -0.09 1.18 0.10 0.42 0.20 0.37 0.29
CAPM beta 0.83 -0.31 0.13 0.14 -0.70 0.45 0.17 0.29
Cash flow yield 1.49 -0.30 0.42 0.00 -1.06 0.30 -0.14 0.05
Composite issuance 1.30 -0.36 0.43 0.25 -0.87 0.61 0.25 0.41
Earning announcement return 1.06 -0.18 0.87 0.04 -0.19 0.22 0.15 0.18
Duration 1.46 -0.17 0.77 -0.13 -0.69 0.04 -0.24 -0.12
Earnings yield 1.46 -0.35 0.77 0.07 -0.69 0.42 0.14 0.26
Failure probability 1.06 -0.66 0.69 0.32 -0.37 0.99 0.83 0.90
Gross profitability 0.85 -0.37 0.70 0.34 -0.16 0.71 0.64 0.67
Investment growth 1.24 -0.34 0.81 -0.07 -0.44 0.27 0.09 0.17
Fama French 10 industry 0.52 -0.47 0.45 0.22 -0.07 0.69 0.66 0.67
Asset growth 1.52 -0.27 0.67 0.04 -0.85 0.30 -0.05 0.10
Investment to asset 1.43 -0.23 0.74 0.11 -0.69 0.35 0.06 0.19
Inventory change 1.39 -0.23 0.80 0.21 -0.59 0.44 0.20 0.30
Inventory growth 1.27 -0.26 0.72 0.05 -0.55 0.31 0.08 0.18
Idiosyncratic volatility 1.33 -0.62 0.19 0.07 -1.14 0.69 0.22 0.43
Size 1.36 -0.08 0.24 0.03 -1.12 0.11 -0.35 -0.15
Momentum 1.10 -0.57 0.97 0.14 -0.13 0.71 0.66 0.68
Consecutive earning growth 0.23 -0.12 0.89 0.11 0.66 0.23 0.51 0.39
Net payout yield 1.26 -0.39 0.29 0.07 -0.97 0.46 0.06 0.24
Net operating asset 1.48 -0.40 0.64 0.07 -0.83 0.47 0.13 0.28
Operating accrual 1.29 -0.35 1.14 0.05 -0.14 0.40 0.34 0.37
Percentage operating accrual 1.08 -0.46 0.58 -0.06 -0.50 0.40 0.19 0.28
Org. capital to asset 1.37 -0.23 0.69 0.21 -0.68 0.44 0.16 0.28
O-score 1.68 -0.35 0.43 0.15 -1.24 0.50 -0.01 0.22
Change in P&I 1.55 -0.21 0.72 0.06 -0.83 0.27 -0.06 0.08
R&D expense to market 0.73 0.08 0.61 0.13 -0.12 0.05 0.00 0.02
ROA 1.18 -0.32 0.68 0.23 -0.50 0.55 0.34 0.43
ROE 1.30 -0.31 0.88 0.16 -0.42 0.46 0.29 0.37
Net issuance 1.13 -0.42 0.61 0.29 -0.52 0.71 0.50 0.59
Systematic volatility 1.01 -0.34 0.99 0.07 -0.03 0.41 0.40 0.40
Percentage total accrual 1.17 -0.26 0.97 -0.03 -0.20 0.24 0.15 0.19
Total volatility 1.40 -0.60 0.09 0.05 -1.31 0.65 0.11 0.35
Avg. 0.43 0.23 0.32
Avg. Abs. 0.43 0.28 0.33
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Table 5: Momentum profits and Buy-and-Hold returns at firm level: Portfolio sort

This table reports the abnormal return of firms sorted into deciles based on their MTO
score. To compute a firm’s MTO score in June of year t, we first rank our 370 portfolios as
listed in Table 1 based on each portfolio’s average momentum return in the past 10 years.
Then, for each firm, we define its MTO score as the number of top 10% MTO portfolios it
belongs to relative to total portfolios it belongs to. Panel A reports the FF3 alpha and the
corresponding factor loadings of the momentum returns of these deciles, where momentum
return is computed similarly as previous tables as the difference between winner return and
loser return within a decile. Panel B reports the FF3 alpha and the corresponding factor
loadings of the buy-and-hold returns of these deciles. The sample period of returns is from
July 1976 to June 2018. All t-statistics, shown in parentheses, are based on robust standard
errors of White (1980).

L 2 3 4 5 6 7 8 9 H H-L

A: Momentum return, Fama French 3 factor model

α 0.07 -0.05 0.17 0.58 0.73 0.63 0.98 1.24 1.08 1.45 1.38

(0.41) (-0.27) (0.91) (2.92) (3.35) (2.78) (4.15) (4.55) (3.84) (4.57) (5.04)

βMKT -0.04 -0.04 -0.02 -0.20 -0.17 -0.10 -0.14 -0.24 -0.19 -0.23 -0.19

(-1.00) (-0.91) (-0.42) (-4.32) (-3.37) (-1.77) (-2.49) (-3.65) (-2.78) (-3.06) (-2.90)

βHML -0.32 -0.22 -0.21 -0.46 -0.49 -0.30 -0.42 -0.61 -0.37 -0.50 -0.18

(-4.78) (-3.32) (-3.11) (-6.39) (-6.15) (-3.59) (-4.89) (-6.11) (-3.59) (-4.27) (-1.79)

βSMB -0.03 0.12 0.07 0.13 0.03 -0.04 0.18 0.22 0.01 -0.03 0.00

(-0.48) (1.94) (1.12) (1.88) (0.46) (-0.46) (2.22) (2.31) (0.10) (-0.27) (0.00)

Obs. 504 504 504 504 504 504 504 504 504 504 504

Adj. R2 0.039 0.030 0.020 0.095 0.074 0.021 0.060 0.089 0.027 0.038 0.013

B: Buy-and-Hold return, Fama French 3 factor model

α 0.20 0.21 0.19 0.03 -0.08 0.03 0.00 -0.12 -0.17 -0.69 -0.89

(3.32) (3.30) (2.63) (0.42) (-1.03) (0.44) (0.01) (-1.52) (-1.93) (-6.00) (-6.07)

βMKT 0.91 0.89 0.90 0.93 1.04 1.02 1.05 1.14 1.16 1.34 0.43

(62.74) (59.86) (53.09) (51.38) (58.37) (56.32) (65.34) (58.42) (54.96) (48.93) (12.31)

βHML 0.23 0.19 0.15 0.19 0.21 0.07 0.12 0.00 -0.18 -0.45 -0.68

(10.41) (8.24) (5.81) (7.02) (7.76) (2.59) (4.80) (0.15) (-5.59) (-10.72) (-12.70)

βSMB -0.20 -0.17 -0.14 -0.15 -0.15 -0.03 0.08 0.22 0.35 0.57 0.77

(-9.53) (-7.76) (-5.60) (-5.58) (-5.87) (-1.26) (3.42) (7.84) (11.46) (14.47) (15.27)

Obs. 504 504 504 504 504 504 504 504 504 504 504

Adj. R2 0.887 0.879 0.852 0.842 0.874 0.872 0.904 0.891 0.891 0.884 0.644
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Table 7: Persistence of momentum and buy-and-hold returns

This table reports the persistence of a portfolio’s momentum return in Panel A and
buy-and-hold return in Panel B. Each observation corresponds to a portfolio-year pair. In
Panel A, from July of year t to June of year t + 1, we compute the average momentum
return of a portfolio as the y-variable in all five columns. Then, we compute the average
momentum return over the past 1, 3, 5, 10, or 15 years as the x-variable in columns 1 to
5, respectively. We run Fama-MacBeth regressions and omit the constant in reporting.
We perform the procedures to buy-and-hold returns in Panel B. All t-statistics, shown in
parentheses, are based on Fama and MacBeth (1973) standard errors.

A: Persistence of Momentum B: Persistence of Buy-and-Hold
RMOM
t RB&H

t

RMOM
t−1 0.08 RB&H

t−1 0.02
(3.36) (0.36)

RMOM
t−3,t−1 0.22 RB&H

t−3,t−1 0.02
(4.56) (0.31)

RMOM
t−5,t−1 0.29 RB&H

t−5,t−1 -0.01
(4.87) (-0.12)

RMOM
t−10,t−1 0.40 RB&H

t−10,t−1 0.08
(4.64) (0.85)

RMOM
t−15,t−1 0.48 RB&H

t−15,t−1 0.05
(4.66) (0.37)

Obs. 18,538 17,798 17,058 15,208 13,358 18,538 17,798 17,058 15,208 13,358
Adj. R2 0.026 0.047 0.056 0.070 0.084 0.126 0.093 0.056 0.042 0.045

47



Table 8: Risk-adjusted buy-and-hold vs. momentum returns in an out-of-sample test

This table reports the cross-sectional relationship between a portfolio’s average buy-and-hold
return (with or without adjusting for risk) and its past average momentum return with or
without other control variables. Each observation corresponds to a portfolio. In both Panel
A and B, the y-variables are related to the buy-and-hold return of a portfolio. They are the
average, Sharpe ratio, CAPM alpha, FF3 alpha, and FFC4 alpha of buy-and-hold return
measured from July 1992 to June 2018 in columns 1 to 5 respectively. The x-variable in Panel
A is the average momentum return of a portfolio measured from July 1966 to June 1992. The
x-variables in Panel B are the average momentum return, the idiosyncratic volatility of the
buy-and-hold return (measured against the FF3 model), the skewness of the buy-and-hold
return, and the kurtosis of the buy-and-hold return measured from July 1966 to June 1992.
All t-statistics, shown in parentheses, are based on robust standard errors of White (1980).

RB&H SR αCAPM αFF3 αFFC4

A: No controls
RMom -0.06 -0.17 -0.25 -0.21 -0.18

(-2.66) (-10.36) (-9.27) (-7.49) (-7.41)
Obs. 370 370 370 370 370
Adj. R2 0.028 0.286 0.277 0.196 0.190

B: Controls
RMom -0.05 -0.14 -0.22 -0.18 -0.16

(-2.24) (-8.42) (-8.23) (-6.44) (-6.70)
Kurtosis 0.05 0.08 0.12 0.08 0.04

(1.48) (2.48) (2.34) (1.53) (0.93)
Skewness 0.03 0.02 0.03 0.01 0.01

(2.40) (2.03) (2.37) (0.54) (0.49)
Ivol 0.00 -0.07 -0.05 -0.07 -0.03

(0.00) (-3.71) (-1.39) (-1.90) (-1.06)
Obs. 370 370 370 370 370
Adj. R2 0.036 0.319 0.290 0.208 0.188
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Table 9: Trading strategy based on past momentum return

This table reports the abnormal returns of a trading strategy based on past average momentum returns of a portfolio. In June

of each year t, we sort our 370 portfolios into 10 groups based on each portfolio’s average momentum return measured over the

previous 10 years. The first three columns correspond to the low (bottom decile) group. The next three columns correspond

to the high (top decile) group. The final three columns correspond to the difference between high and low. From July of year

t to June of year t+ 1, we take the simple average of the buy-and-hold returns of the portfolios in each group and report their

CAPM alpha, FF3 alpha, and FFC4 alpha as well as corresponding factor loadings (e.g. market, value, size, and momentum).

The sample period for returns is from July 1976 to June 2018. All t-statistics, shown in parentheses, are based on robust

standard errors of White (1980).

Low MTO portfolios High MTO portfolios High minus Low
α 0.14 0.08 0.09 -0.26 -0.25 -0.19 -0.40 -0.34 -0.28

(3.75) (2.83) (3.05) (-4.01) (-5.75) (-4.46) (-4.39) (-5.45) (-4.54)
βMKT 0.89 0.93 0.93 1.22 1.15 1.13 0.33 0.22 0.21

(107.35) (136.93) (134.64) (82.87) (108.94) (112.20) (16.23) (14.99) (14.22)
βHML 0.16 0.16 -0.12 -0.15 -0.28 -0.31

(15.88) (15.10) (-7.35) (-9.44) (-12.64) (-13.69)
βSMB -0.06 -0.06 0.33 0.33 0.39 0.39

(-5.98) (-5.88) (21.49) (23.22) (18.22) (18.89)
βUMD -0.01 -0.08 -0.07

(-1.42) (-7.90) (-4.81)
Obs. 504 504 504 504 504 504 504 504 504
Adj. R2 0.958 0.975 0.975 0.932 0.969 0.972 0.343 0.702 0.714

Table 10: Analyst coverage

This table reports measures how MTO score is related to analyst coverage. We sort all firms
into five quintiles by MTO score. To compute a firm’s MTO score in June of year t, we first
rank our 360 portfolios as listed in Table 1 based on each portfolio’s average momentum
return in the past 10 years. Then, for each firm, we define its MTO score as the number of
top 10% MTO portfolios it belongs to relative to total portfolios it belongs to. Then, for each
MTO quintile, we compute the average number of analysts covering each firm, the standard
deviation of earnings per share scaled by price, and the standard deviation in long-term EPS
growth forecasts. Data on analyst forecasts is from I/B/E/S and sample period is from 1981
to 2018.

Low MTO 2 3 4 High MTO
Number of analysts 6.0 5.5 4.4 3.2 2.0
Vol of EPS/P 0.17% 0.21% 0.28% 0.48% 0.86%
Vol of ∆ EPS 3.0% 3.3% 3.7% 4.4% 6.0%

49



Table 11: Volatility of fundamentals

This table reports measures of volatility for several firm fundamentals across firms with
different MTO scores. To compute a firm’s MTO score in June of year t, we first rank our
370 portfolios as listed in Table 1 based on each portfolio’s average momentum return in
the past 10 years. Then, for each firm, we define its MTO score as the number of top 10%
MTO portfolios it belongs to relative to total portfolios it belongs to. We then sort all firms
into quintiles based on the MTO score, and report the average standard deviation across
all firms in a quintile. The above procedure was done for all firms in a portfolio, but we
also do this for just the losers, just the winners, and just the losers in a portfolio. The loser,
neutral, and winner firms are defined as being in the bottom, middle, and top terciles of
expected returns, conditional on being in the portfolio.

Low MTO 2 3 4 High MTO Low MTO 2 3 4 High MTO

Net Income growth Sales growth
All 2.40 2.58 2.90 3.69 4.99 0.35 0.28 0.31 0.41 0.77
Loser 3.02 3.21 3.61 4.58 5.98 0.39 0.28 0.31 0.40 0.78
Neutral 1.95 2.16 2.54 3.34 4.73 0.27 0.25 0.28 0.38 0.70
Winner 2.14 2.28 2.45 3.10 4.46 0.38 0.30 0.33 0.45 0.81

Asset growth Gross profit
All 0.28 0.24 0.26 0.32 0.53 0.07 0.07 0.07 0.08 0.10
Loser 0.27 0.23 0.23 0.28 0.44 0.07 0.07 0.07 0.08 0.10
Neutral 0.23 0.21 0.22 0.28 0.45 0.06 0.07 0.07 0.07 0.09
Winner 0.34 0.28 0.30 0.38 0.62 0.07 0.07 0.07 0.08 0.10

ROA EPS/Price
All 0.04 0.03 0.03 0.04 0.08 0.05 0.05 0.06 0.08 0.11
Loser 0.05 0.03 0.03 0.05 0.09 0.07 0.06 0.08 0.11 0.15
Neutral 0.02 0.02 0.02 0.03 0.08 0.03 0.04 0.05 0.06 0.10
Winner 0.04 0.02 0.03 0.03 0.08 0.04 0.03 0.04 0.05 0.08
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Table 12: Volatility of returns

This table shows the volatility of stock returns for firms and portfolios with different MTO
scores. At the portfolio level, we first compute the standard deviation of the returns of
each of the 370 portfolios, we also compute the standard deviation of the residual, after
controlling for the FF3 factors. We then sort portfolios into MTO quintiles based on
their average momentum return over their entire history. We report the average standard
deviation across all 74 portfolios in each quintile. At the firm level, for each firm we compute
an MTO score. To compute a firm’s MTO score in June of year t, we first rank our 370
portfolios as listed in Table 1 based on each portfolio’s average momentum return in the
past 10 years. Then, for each firm, we define its MTO score as the number of top 10%
MTO portfolios it belongs to relative to total portfolios it belongs to. We then sort all firms
into quintiles based on the MTO score, and report the average standard deviation of all
firms in a quintile. The above procedure was done for all firms in a portfolio, but we also
do this for just the losers, just the winners, and just the neutral firms in a portfolio. The
loser, neutral, and winner firms are defined as being in the bottom, middle, and top terciles
of expected returns, conditional on being in the portfolio.

Low MTO 2 3 4 High MTO Low MTO 2 3 4 High MTO

Portfolio level vol Firm level vol
All 16.4 17.1 17.7 19.0 22.8 44.6 45.0 45.5 66.6 83.1
Loser 23.0 23.9 25.2 26.0 30.3 52.2 43.3 49.6 83.3 93.1
Neutral 16.9 17.2 17.9 19.0 22.5 35.7 51.4 39.8 52.1 73.8
Winner 18.2 19.0 19.9 21.5 25.1 44.4 39.4 46.5 60.5 81.2

Portfolio level, residual vol Firm level, residual vol
All 5.7 5.8 6.1 6.6 7.8 30.9 41.8 40.8 61.5 78.5
Loser 12.5 13.2 13.8 13.8 16.4 32.5 38.0 44.4 77.8 80.8
Neutral 8.2 8.2 8.5 8.9 10.2 25.3 47.4 35.2 45.6 69.1
Winner 9.2 9.5 9.9 10.1 11.3 34.0 39.5 42.2 56.7 84.5
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Table 13: Autocorrelation of returns

This table shows the autocorrelation of stock returns with different MTO scores. To compute
a firm’s MTO score in June of year t, we first rank our 370 portfolios as listed in Table 1
based on each portfolio’s average momentum return in the past 10 years. Then, for each firm,
we define its MTO score as the number of top 10% MTO portfolios it belongs to relative to
total portfolios it belongs to. We then sort all firms into quintiles based on the MTO score.
For each quintile, we report the regression coefficient of regressing its value weighted return
on its one month lagged value weighted return.

Rt

Low Mom 2 3 4 High mom
Rt−1 0.01 0.03 0.09 0.10 0.13

(0.31) (0.75) (2.03) (2.32) (2.87)
Obs. 503 503 503 503 503
Adj. R2 -0.002 -0.001 0.006 0.009 0.014

Table 14: Determinants of momentum return portfolio characteristics

This table reports some of the characteristics that may explain the average momentum
return. Each observation corresponds to a portfolio. The y-variable in every column is the
average momentum return of a portfolio over the entire sample period from July 1966 to
June 2018. The x-variables are the estimated market, HML, SMB, and UMD betas of the
portfolio’s buy-and-hold return, the portfolio’s idiosyncratic volatility (controlling for the
FF3 factor model), and the buy-and-hold return’s skewness and kurtosis. All t-statistics,
shown in parentheses, are based on robust standard errors of White (1980).

Average Momentum Return
βMKT
B&H 1.71 1.00 1.07 1.60 0.79

(14.83) (5.21) (5.32) (13.49) (4.41)
βSMB
B&H 0.61 0.60 0.58

(7.77) (7.64) (7.43)
βHML
B&H -0.56 -0.55 -0.59

(-10.37) (-9.87) (-9.43)
βUMD
B&H 0.18

(0.93)
Ivol 0.09 0.12

(2.74) (4.32)
B&H skewness -0.21

(-2.31)
B&H kurtosis 0.02

(0.95)
Obs. 370 370 370 370 370
Adj. R2 0.544 0.595 0.595 0.554 0.617
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Table 15: Relation to co-momentum

This table reports the key quantities in the paper split by comomentum tercile. We sort our
370 portfolios into ten groups, based on their past momentum return (MTO). We also classify
each year as low, mid, or high co-momentum based on the June measure of co-momentum for
each year, where co-momentum is defined as in Lou and Polk (2019). We compute the equal
weighted average momentum return, and buy-and-hold return of each of the ten portfolio
groups, from July of the year, to June of the following year, conditional on that year being
low, mid, or high co-momentum. In Panel A, we report the average momentum return of the
top and bottom group of portfolios, as well as their difference, in each sub-sample period.
Analogously, in Panel B we report the CAPM alpha, and in Panel C the FF3 alpha.

Low MTO High MTO Difference
Average Momentum Return

Low Comomentum 0.55 1.65 1.10
(2.37) (5.51) (6.49)

Medium Comomenum 0.61 1.36 0.75
(2.28) (3.91) (4.70)

High Comomentum -0.12 0.25 0.37
(-0.33) (0.49) (1.49)

Buy-and-hold CAPM alpha
Low Comomentum 0.09 -0.08 -0.17

(1.63) (-0.91) (-1.30)
Medium Comomenum 0.07 -0.26 -0.33

(0.86) (-1.89) (-1.64)
High Comomentum 0.25 -0.34 -0.59

(4.18) (-3.07) (-4.07)
Buy-and-hold FF3 alpha

Low Comomentum 0.06 -0.11 -0.18
(1.43) (-1.72) (-1.79)

Medium Comomenum -0.05 -0.18 -0.14
(-0.83) (-2.80) (-1.46)

High Comomentum 0.18 -0.35 -0.53
(3.40) (-3.75) (-4.29)

53



A Appendix: creating anomaly portfolios

A.1 Size

At the end of June of each year t, we use NYSE breakpoints to sort stocks into deciles based

on their June-end market capitalization. Portfolio returns are the value-weighted return of

stocks in each decile from July of year t to June of year t+ 1.

A.2 Book-to-market

At the end of June of each year t, we use NYSE breakpoints to sort stocks into deciles based

on their book-to-market ratio, which is book equity for the fiscal year ending in calendar year

t− 1 divided by the market capitalization at the end of December of t− 1. Following Davis

et al. (2000), we measure book equity as stockholder’s equity, plus balance-sheet deferred

taxes and investment tax credit, minus the book value of preferred stock. If stockholders’

equity (COMPUSTAT item SEQ) is not available, we use common equity (COMPUSTAT

item CEQ) plus the par value of preferred stocks instead. If CEQ is not available, we use

total asset (COMPUSTAT item AT) minus total liabilities (COMPUSTAT item LT).

A.3 Composite issuance

Daniel and Titman (2006) show that stocks with more composte equity issuance underper-

form. We compute composite equity issuance as the difference between the growth rate in

market capitalization and cumulative stock return. At the end of June of each year t, we

measure the growth rate of market capitalization from the end of June in year t− 1 to June

in year t. We also measure the cumulative stock return from the end of June in year t− 1 to

June in year t. We sort stocks into deciles at the end of June of each year t based on their

composite equity issuance using NYSE breakpoints.
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A.4 Momentum

Jegadeesh and Titman (1993) find that stocks with high momentum have higher returns. At

the end of June of each year t, we measure each stock’s 11-month total return from June of

year t − 1 to May of year t as their momentum. We then sort stocks into deciles based on

the momentum using NYSE breakpoints. We require a stock to have at least six months of

non-missing returns during the period that we measure momentum.

A.5 Net issuance

Following Fama and French (2008), we measure a stock’s net issuance as the growth rate

of split-adjusted number of shares outstanding (CRSP item CSHO times adjustment factor

CFACSHR) from June of year t− 1 to June of year t. We then sort stocks into deciles based

on the net issuance at the end of June of year t using NYSE breakpoints.

A.6 CAPM beta

At the end of June of year t, we regress a stock’s excess monthly return on the excess

market return over the past five years. We require a stock to have at least 36 non-missing

observations in the past five years. We then sort stocks into deciles based on their estimated

market beta using NYSE breakpoints.

A.7 Idiosyncratic volatility

Ang et al. (2006) find that stocks that are highly volatile tend to have lower returns. At the

end of June of year t, we measure a stock’s idiosyncratic volatility as the residual volatility

from the Fama-French 3 factor model over the past three months using daily returns. We

then sort stocks into deciles based on their idiosyncratic volatility using NYSE breakpoints.

We require a stock to have at least 20 non-missing observations over the three-month period.
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A.8 Systematic volatility

Following Ang et al. (2006), we estimate a stock’s exposure to shocks to systematic volatility.

Specifically, we estimate the following equation using daily returns

rit = a+ βi,mktrmkt,t + βi,svol∆V XOt + εit (3)

where rmkt,t is market excess return and ∆V XOt is the daily change in the Chicago Board

Options Exchange S&P 100 volatility index (VXO). We estimate this equation for the three

month period before June of each year t. We then sort stocks into decile based on their βi,svol

using NYSE breakpoints at the end of June of each year t. Due to data limitation, our first

month of portfoilo return is in July 1986.

A.9 Total volatility

At the end of June of year t, we sort stocks into deciles based on their daily return volatility

measured over the past three months. We use NYSE breakpoints and require a stock to have

at least 20 non-missing observations over the three-month period.

A.10 Overpricing score

We sort stocks into deciles based on their overpricing score at the end of June of year t using

NYSE breakpoints. Overpricing score is created by Stambaugh et al. (2015), which is an

average of a stock’s characteristic score over 11 different anomalies.

A.11 Earnings yield

Following Hou et al. (2015), we measure earnings yield as income before extraordinary items

(COMPUSTAT item IB) for the fiscal year ending in year t− 1 divied by the market capi-

talization at the end of December of year t − 1. We then sort stocks into deciles based on

their earnings yield at the end of June of year t using NYSE breakpoints.
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A.12 Cash flow yield

Following Hou et al. (2015), we measure a stock’s cash flow as income before extraordinary

items (Compustat annual item IB), plus equity’s share of depreciation (item DP), plus de-

ferred taxes (if available, item TXDI). The equity’s share is defined as market capitalization

divided by total assets minus the book equity plus market capitalization. We then measure

cash flow yield as the ratio of cash flow to the stock’s December market capitalization. We

sort stocks into deciles based on their cash flow yield using NYSE breakpoints at the end of

June of year t.

A.13 Net payout yield

Following Hou et al. (2015), we measure a stock’s net payout as dividends on common stock

plus repurchases minus the sale of common and preferred stocks in the fiscal year ending in

year t − 1. We then divide net payout by the stock’s December-end market capitalization

as net payout yield. We sort stocks into deciles based on the net payout yield using NYSE

breakpoints at the end of June of year t.

A.14 Advertising expense to market

Following Hou et al. (2015), we measure a stock’s advertisement expense to its market

capitalization by dividing its advertising expenses (COMPUSTAT item XAD) for the fiscal

year ending in year t−1 by the stock’s market capitalization in December year t−1. We then

sort stocks into deciles based on their advertising expense to market using NYSE breakpoints

at the end of June of year t. Due to data limitations, our first portfolio return is in July

1973.

A.15 ROA

We measure a stock’s return on asset (ROA) as income before extraordinary items (Com-

pustat annual item IB) divided by total assets (COMPUSTAT item AT) for the fiscal year
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ending in year t − 1. We then sort stocks into deciles based on their ROA using NYSE

breakpoints at the end of June of year t.

A.16 ROE

We measure a stock’s return on equity (ROE) as income before extraordinary items (Com-

pustat annual item IB) divided by its book equity for the fiscal year ending in year t − 1.

We then sort stocks into deciles based on their ROE using NYSE breakpoints at the end of

June of year t.

A.17 Gross profitability

Novy-Marx (2013) finds that stocks with higher gross profit have higher returns. We measure

gross profitability as total revenue (COMPUSTAT item REVT) minus the cost of goods sold

(COMPUSTAT item COGS), then divide it by total assets (COMPUSTAT item AT). We

then sort stocks into deciles based on their gross profitability using NYSE breakpoints at

the end of June of year t.

A.18 Asset growth rate

Cooper et al. (2008) show that companies that grow their asset rapidly have lower subsequent

returns. We measure asset growth rate as the growth rate of total asset (COMPUSTAT item

AT) from fiscal year ending in year t − 2 to fiscal year ending in year t − 1. We then sort

stocks into deciles based on their asset growth rate using NYSE breakpoints at the end of

June of year t.

A.19 Investment to asset

Titman et al. (2004) find that companies that invest excessively have lower returns. We

measure investment to asset as the sum of changes in gross property, plant, and equipment

(Compustat annual item PPEGT) and changes in inventory (item INVT) in fiscal year ending
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in year t− 1 divided by total assets in fiscal year ending in year t− 2. We then sort stocks

into deciles based on their investment to asset using NYSE breakpoints at the end of June

of year t.

A.20 Investment growth

We measure investment growth as the growth rate of capital expenditure (COMPUSTAT

item CAPX) from fiscal year ending in year t − 2 to fiscal year ending in year t − 1. We

then sort stocks into deciles based on their investment growth rate using NYSE breakpoints

at the end of June of year t.

A.21 Inventory change

Following Thomas and Zhang (2002) and Hou et al. (2015), we measure inventory change as

change in inventory (COMPUSTAT item INVT) from fiscal year t− 2 to t− 1 scaled by the

average total asset of fiscal year t − 2 and t − 1. We then sort stocks into deciles based on

their inventory change using NYSE breakpoints at the end of June of year t.

A.22 Inventory growth

Following Hou et al. (2015), we measure inventory growth as the growth rate of inventory

from fiscal year ending in year t− 2 to fiscal year ending in year t− 1. We then sort stocks

into deciles based on their inventory growth rate using NYSE breakpoints at the end of June

of year t.

A.23 Operating accrual

Sloan (1996) finds that stocks with more accruals have lower returns. Following Hou et al.

(2015), we use the balance-sheet approach of Sloan (1996) to measure operating accrual prior

to 1988 and use cash flow statement to measure operating accrual after 1988. Specifically,

for the balance-sheet approach, we measure opearting accrual as changes in noncash work-
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ing capital minus depreciation (COMPUSTAT item DP). Noncash working capital is the

difference between noncash current asset (item ACT minus item CHE) and non-debt current

liability, which is current liabilities (item LCT) less current debt (item DLC) and tax payable

(item TXP). After 1988, we measure operating accrual as net income (item NI) minus net

cash flow from operations (item OANCF). We scale operating acrrual by the lagged total

asset. Then, at the end of June of year t, we sort stocks into deciles based on their operating

accrual using NYSE breakpoints.

A.24 Percentage operating accrual

Hafzalla et al. (2011) show that operating accrual scaled by net income also predicts stock

return. We measure percentage accrual as operating accrual scaled by the absolute value of

net income in the fiscal year ending in year t− 1. Then, at the end of June of year t, we sort

stocks into deciles based on their operating accrual using NYSE breakpoints.

A.25 Percentage total accrual

Richardson et al. (2005) show that total accrual predicts stock return. Following Hou et al.

(2015), prior to 1988, we use balance-sheet method to measure total accrual. Specifically,

total accrual is change in noncash working capital plus change in net non-current operating

asset plus change in net financial assets. Noncash working capital is the difference between

noncash current asset (item ACT minus item CHE) and non-debt current liability, which is

current liabilities (item LCT) less current debt (item DLC) and tax payable (item TXP).

Non-current operating asset is non-current operating assets (item AT minus item ACT minus

item IVAO) minus non-current operating liabilities (item LT minus item LCT minus DLTT).

Net financial assets is financial assets (item IVST plus item IVAO) minus long-term debt

(DLTT) and debt in minus current liabilities (DLC) plus preferred stocks (item PSTK). We

scale total accrual by the absolute value of net income in the fiscal year ending in year t− 1

as percent total accrual. Then, at the end of June of year t, we sort stocks into deciles based

on percent total accrual using NYSE breakpoints.
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A.26 Net operating assets

Hirshleifer et al. (2004) show that net operating assets scaled by total assets can predict a

stock’s return. We measure net operating assets as operating assets (defined as item AT

minus item CHE) minus operating liabilities, which equal total assets (item AT) minus debt

in current liabilities (item DLC), minus long-term debt (item DLTT), minus common equity

(item CEQ), minus minority interest (item MIB), and minus preferred stocks (item PSTK).

We then scale net operating assets by the lagged total assets. At the end of June of year t,

we sort stocks into deciles based on their net operating assets using NYSE breakpoints.

A.27 Operating leverage

Following Novy-Marx (2010), we define operating leverage as operating cost, which is cost

of goods sold (item COGS) plus selling, general, and administrative expenses (item XSGA),

scaled by the total asset of fiscal year ending in year t− 1. We then sort stocks into deciles

based on their operating leverage using NYSE breakpoints at the end of June of year t.

A.28 Change in P&I

Change in P&I is the sum of changes in property, plant and equipments (COMPUSTAT

item PPEGT) and inventory (item INVT) scaled by the lagged total assets (item AT). At

the end of June of year t, we sort stocks into deciles based on their change in P&I using

NYSE breakpoints.

A.29 R&D expense to market

We measure a stock’s R&D expense (COMPUSTAT item XRD) as a percentage of its

December-end market capitalization for the fiscal year ending in year t − 1. We then sort

stocks into deciles based on their R&D expense to market using NYSE breakpoints at the

end of June of year t. Due to data limitations, our first month of R&D portfolio return is

from July 1977.
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A.30 Industry

We use Fama-French 10 industries as our definition of industry.

A.31 Duration

Following Dechow et al. (2004) and Hou et al. (2015), we measure equity duration as

Duration =

∑T
t=1 t× CDt/(1 + r)t

ME
+

(
T +

1 + r

r

)
ME −

∑T
t=1CDt/(1 + r)t

ME
, (4)

where CDt is the net cash distribution in year t, ME is market equity, T is the length of

forecasting period (assume to be 10 years), and r is the cost of equity (assume to be 0.12).

Net cash distribution is defined as CDt = BEt−1(ROEt − gt), where BE is book-equity,

ROE is return on equity, and gt is the book equity growth rate. When forecasting ROE, the

starting year ROE is income before extraordinary items (COMPUSTAT item IB) divided by

lagged book equity (item CEQ). Then, we assume ROE follows a first-order autoregressive

process with an autocorrelation of 0.57 and long-run mean of 0.12. We also model the growth

rate in book equity as a first order autoregressive process with an autocorrelation coefficient

of 0.24 and a long run-mean of 0.06. At the end of June of year t, we sort stocks into deciles

based on their equity duration using NYSE breakpoints

A.32 Organizational capital

Following Eisfeldt and Papanikolaou (2013) and Hou et al. (2015), we measure organization

capital OC as

OCit = (1− δ)OCit−1 + SG&Ait/CPIt (5)

where the initial stock of organizational capital is OCi0 = SG&Ai0/(g + δ), SG&Ai0 (item

XSGA) is the first valid observation of SG&A expense for the firm, g is the long-term growth

rate of SG&A (assumed to be 10%), and δ is the depreciation rate of organizational capital

(assumed to be 15%). Missing SG&A after the initial year are treated as zero. We scale
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organizational capital by lagged total asset. At the end of June of year t, we sort stocks into

deciles based on their organizational capital using NYSE breakpoints

A.33 O-score

Based on Ohlson (1980) and Hou et al. (2015), we measure O-score as

OScore = −1.32− 0.407 log(TA) + 6.03TLTA− 1.43WCTA+ 0.076CLCA

− 1.72OENEG− 2.37NITA− 1.83FUTL+ 0.285INTWO − 0.521CHIN (6)

where TA is total asset. TLTA is the leverage ratio defined as the book value of debt (item

DLC plus item DLTT) divided by total assets. WCTA is working capital divided by total

assets, where working capital is item ACT minus item LCT. CLCA is current liabilities (item

LCT) divided by current assets (item (ACT). OENEG is 1 if total liabilities exceeds total

asset and is zero otherwise. NITA is net income divided by the total assets. FUTL is the

fund provided by operations (item PI) divided by the total liabilities (item LT). INTWO

equals to 1 if net income is negative for the prior 2 years, and zero otherwise. CHIN is

change in net income scaled by the average absolute value of net income over two years. At

the end of June of year t, we sort stocks into deciles based on their equity duration using

NYSE breakpoints.

A.34 Failure probability

Following Campbell et al. (2008) and Hou et al. (2015), we measure failure probability as

FPt = −9.164− 20.264NIMTAAV Gt + 1.416TLMTAt − 7.129EXRETAV Gt

+ 1.411SIGMAt − 0.045RSIZEt − 2.132CASHMTAt + 0.075MBt − 0.058PRICEt

(7)
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where

NIMTAAV Gt−1,t−12 =
1− φ3

1− φ12
(NIMTAt−1,t−3 + ...+ φ9NIMTAt−10,t−12) (8)

EXRETAV Gt−1,t−12 =
1− φ

1− φ12
(EXRETt−1 + ...+ φ11EXRETt−12) (9)

and φ = 2−1/3. NIMTA is net income (COMPUSTAT quarterly item NIQ) divided by the

sum of market equity and total liabilities. EXRET = log(1+Rit)− log(1+RS&P500,t) is the

log excess return of a company relative to the S&P 500 index. TLMTA is the ratio of total

liabilities divided by the sum of market equity and total liabilities. SIGMA is the annualized

daily stock volatility estimated using a 3-month roling window. RSIZE is the log ratio of

the firm’s market capitalization to the size of S&P 500 index. CASHMTA is the liquidity

position of firm, measured as the ratio of cash and short-term investment (COMPUSTAT

quarterly item CHEQ) divided by the sum of market equity and total liabilities (item LTQ).

MB is the market-to-book ratio. Following Campbell et al, we add 10% of the difference

between the market capitalization and book equity to the book equity to reduce measurement

errors. For firms with negative adjusted book equity, we replace it to $1. PRICE is the

firm’s log stock price, truncated above at $15. We winsorize all right-hand-side variables of

equation (7) at the 5th and 95th percentiles.

We sort stocks into deciles based on their failure probability twice at the end of June

and December of each year. We impose a four-month gap between the date that failure

probability is measured and the portfolio sorting date. We use NYSE breakpoints. Due to

data limitations, our first monthly return is from January 1977.

A.35 Announcement return

We measure the four day cumulative abnormal return of a stock during its quarterly an-

nouncement, which is meant to capture earnings surprise. Timing of the return is from t− 2

to t + 1, where announcement day is at t = 0. We subtract the market return from the

stock’s return to measure its abnormal return. At the end of June of year t and at the end
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of December of year t, we sort stocks into deciles based on their announcement return in the

most recent quarter. We require the quarter-end day to be within 10 months, but more than

4 months ahead of the portfolio sorting day.

A.36 Standardized unexpected earnings (SUE)

Following Foster et al. (1984), We scale each stock’s quarterly earnings per share (COMPU-

STAT quarterly item EPSPXQ) by its standard deviation measured over the prior 8 quarters

as standardized unexpected earnings (SUE). At the end of June of year t and at the end of

December of year t, we sort stocks into deciles based on their SUE in the most recent quarter

using NYSE breakpoints. We require the quarter-end day to be within 10 months, but more

than 4 months ahead of the portfolio sorting day.

A.37 Consecutive earning growth

We follow Barth et al. (1999), Green et al. (2013), and Hou et al. (2015). We count the

number of quarters that a stock experiences positive earnings (COMPUSTAT quarterly

item IBQ) change relative to the same quarter in the prior year. At the end of June of year t

and at the end of December of year t, we sort stocks into deciles based on how many quarters

they have positive earnings change using NYSE breakpoints. We require the most recent

quarter-end day to be within 10 months, but more than 4 months ahead of the portfolio

sorting day.
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Table A1: Momentum profits and Buy-and-Hold returns, excluding microcaps

This table reports the cross-sectional relationship between a portfolio’s average buy-and-hold
return (with and without adjusting for risk) and average momentum return. It is identical
to Table 3 but excludes firms in the bottom 20% of the size distribution, and firms with
a stock price below $5. Each observation corresponds to a portfolio. The y-variables are
related to the buy-and-hold return of a portfolio, they are: the average buy-and-hold return,
its Sharpe ratio, its CAPM alpha, its FF3 alpha, and its FFC4 alpha. The x-variable is the
average return of a momentum strategy within a portfolio. Panel A presents the baseline
result. Panel B presents the same result, but including the portfolio return’s kurtosis,
skewness, and idiosyncratic volatility as controls. Panels C and D present sub-sample
analysis, for 1966-1992 and 1992-2018 respectively. All t-statistics, shown in parentheses,
are based on robust standard errors of White (1980).

RB&H SR αCAPM αFF3 αFFC4 RB&H SR αCAPM αFF3 αFFC4

A: Baseline result B: Full sample with controls
RMOM -0.1577 -0.2299 -0.3534 -0.2417 -0.2112 -0.1574 -0.1976 -0.3096 -0.1741 -0.1671

(-6.06) (-14.92) (-12.61) (-6.80) (-6.94) (-5.61) (-11.88) (-11.33) (-5.96) (-6.28)
Skewness 0.1206 0.1132 0.2875 0.3479 0.2633

(1.97) (2.48) (4.19) (4.31) (4.03)
Kurtosis 0.0297 0.0241 0.0372 -0.0189 -0.0146

(1.62) (1.86) (1.87) (-0.85) (-0.83)
Ivol 0.0201 -0.0265 -0.0232 -0.0703 -0.0435

(1.03) (-2.28) (-1.23) (-3.48) (-2.52)
Obs. 368 368 368 368 368 368 368 368 368 368
Adj. R2 0.117 0.387 0.385 0.180 0.191 0.136 0.404 0.421 0.282 0.265

C: 1966-1992 sub-sample D: 1992-2018 sub-sample
RMOM -0.1414 -0.1479 -0.2278 -0.0933 -0.0880 -0.0716 -0.2094 -0.3364 -0.2764 -0.2722

(-4.57) (-8.13) (-7.26) (-2.77) (-2.88) (-2.54) (-10.19) (-9.74) (-7.39) (-8.39)
Obs. 368 368 368 368 368 368 368 368 368 368
Adj. R2 0.091 0.217 0.207 0.036 0.043 0.021 0.236 0.271 0.179 0.216
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Table A2: Momentum profits and Buy-and-Hold returns, excluding financial crisis

This table reports the cross-sectional relationship between a portfolio’s average buy-and-hold
return (with and without adjusting for risk) and average momentum return. It is identical
to Table 3 but excludes the financial crisis from July 2008 to June 2011. Each observation
corresponds to a portfolio. The y-variables are related to the buy-and-hold return of a
portfolio, they are: the average buy-and-hold return, its Sharpe ratio, its CAPM alpha,
its FF3 alpha, and its FFC4 alpha. The x-variable is the average return of a momentum
strategy within a portfolio. Panel A presents the baseline result. Panel B presents the same
result, but including the portfolio return’s kurtosis, skewness, and idiosyncratic volatility
as controls. All t-statistics, shown in parentheses, are based on robust standard errors of
White (1980).

RB&H SR αCAPM αFF3 αFFC4 RB&H SR αCAPM αFF3 αFFC4

A: Baseline result B: Full sample with controls
RMOM -0.14 -0.20 -0.30 -0.22 -0.17 -0.13 -0.17 -0.25 -0.16 -0.16

(-6.33) (-15.44) (-12.71) (-8.59) (-8.75) (-5.52) (-13.17) (-10.92) (-6.57) (-7.50)
Skewness 0.14 0.10 0.29 0.18 0.10

(2.86) (2.96) (5.21) (3.38) (2.38)
Kurtosis 0.06 0.04 0.06 0.01 -0.00

(4.48) (5.11) (4.78) (0.38) (-0.12)
Ivol 0.02 -0.02 -0.04 -0.08 -0.03

(0.74) (-1.80) (-1.93) (-2.93) (-1.36)
Obs. 370 370 370 370 370 370 370 370 370 370
Adj. R2 0.140 0.426 0.403 0.226 0.240 0.205 0.472 0.477 0.272 0.250
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Table A3: PEAD profits and Buy-and-Hold returns

This table reports the cross-sectional relationship between a portfolio’s average buy-and-hold
return (with and without adjusting for risk) and its average post-earnings announcement
drift (PEAD). It is identical to Table 3 but uses PEAD instead of momentum to sort
portfolios. Each observation corresponds to a portfolio. The y-variables are related to the
buy-and-hold return of a portfolio, they are: the average buy-and-hold return, its Sharpe
ratio, its CAPM alpha, its FF3 alpha, and its FFC4 alpha. The x-variable is the average
PEAD return of the portfolio, computed as the difference in return between stocks in the
top tercile and bottom tercile of each portfolio ranked by their earnings surprises in the
past quarter. We measure earning surprise as the difference between realized EPS and
average analyst forecast, all scaled by stock price. Panel A presents the baseline result.
Panel B presents the same result, but including the portfolio return’s kurtosis, skewness,
and idiosyncratic volatility as controls. All t-statistics, shown in parentheses, are based on
robust standard errors of White (1980).

RB&H SR αCAPM αFF3 αFFC4 RB&H SR αCAPM αFF3 αFFC4

A: Baseline result B: Full sample with controls
RMOM -0.01 -0.17 -0.27 -0.19 -0.13 -0.00 -0.12 -0.21 -0.12 -0.09

(-0.36) (-7.30) (-5.53) (-4.47) (-3.76) (-0.01) (-5.74) (-5.26) (-3.31) (-3.09)
Skewness 0.23 0.18 0.31 0.32 0.29

(3.31) (3.34) (3.04) (3.23) (3.57)
Kurtosis 0.01 0.00 0.01 -0.01 -0.01

(0.67) (0.39) (0.62) (-0.65) (-0.46)
Ivol -0.04 -0.10 -0.12 -0.14 -0.09

(-2.70) (-8.53) (-4.86) (-5.49) (-4.61)
Obs. 370 370 370 370 370 370 370 370 370 370
Adj. R2 -0.002 0.161 0.151 0.076 0.052 0.073 0.323 0.253 0.228 0.182
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Table A4: CAPM buy-and-hold alpha vs. momentum return for each anomaly

This table reports the relationship between a portfolio’s CAPM buy-and-hold alpha and
average momentum return for different sets of anomaly characteristics. Each column
corresponds to a particular characteristic, which is used to sort all firms into deciles. Thus,
each regression has 10 observations. We sort firms into portfolios in June of year t and
measure each portfolio’s buy-and-hold and momentum returns in July of year t to June of
year t+ 1. Then, we use the average CAPM alpha of buy-and-hold returns as the y-variable
and the average of momentum returns as the x-variable. The sample period is from July
1966 to June 2018. All t-statistics, shown in parentheses, are based on robust standard
errors of White (1980).

Size BM Compos. Momntm Net βCAPM Idios. Total Mispricing

issue issue Vol. Vol. score

RMOM 0.09 -0.19 -0.36 -0.32 -0.65 -0.54 -0.49 -0.55 -0.64

(2.47) (-1.44) (-3.00) (-2.10) (-2.92) (-4.20) (-3.97) (-6.71) (-7.06)

Adj. R2 0.363 0.107 0.471 0.276 0.455 0.650 0.621 0.830 0.844

Earn. CF Net pay Adv. exp. ROA Gross ROE Asset Inv. to

yield yield yield to market profit growth asset

RMOM -0.38 -0.32 -0.36 -0.07 -0.32 0.07 -0.16 -0.33 -0.32

(-3.16) (-3.22) (-3.52) (-0.36) (-4.64) (0.28) (-1.93) (-4.45) (-3.24)

Adj. R2 0.499 0.510 0.558 -0.108 0.695 -0.114 0.232 0.677 0.513

Invest. Invntry Invntry % operat. Operat. % tot. Net operat. Operat. Change

growth change growth accrual accural accrual asset leverage P&I

RMOM -0.38 -0.31 -0.30 -0.52 -0.37 -0.26 -0.36 0.03 -0.29

(-3.43) (-2.03) (-3.23) (-4.58) (-3.73) (-2.00) (-3.89) (0.19) (-3.71)

Adj. R2 0.545 0.258 0.511 0.690 0.589 0.251 0.610 -0.120 0.587

O-score Duration Org. cap. R&D to System. Failure SUE Earn. ann. Consec.

to asset market vol. prob. return earn. gr.

RMOM -0.29 -0.39 -0.27 -0.12 -0.19 -0.30 0.18 -0.12 0.05

(-5.01) (-4.16) (-1.99) (-0.64) (-1.44) (-2.24) (1.04) (-1.41) (0.53)

Adj. R2 0.728 0.645 0.247 -0.071 0.106 0.308 0.009 0.100 -0.086
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Table A5: Twenty portfolios with highest and lowest MTO

This table lists top twenty portfolios with the highest and lowest momentum returns.
Momentum return is the monthly difference in return between winners and losers within a
portfolio. Category is the name of the firm characteristics used to sort firms into portfolios.
Portfolio number indicates the level of the characteristics, 1 being the lowest and 10 being
the highest. The sample period is from July 1966 to June 2018.

Top 20 momentum profit Bottom 20 momentum profit
Anomaly Decile Average Anomaly Decile Average

momentum return momentum return
O-score 10 1.68 Operating accrual 4 -0.02
Change in P&I 10 1.55 Earnings yield 8 -0.02
Asset growth 10 1.52 Composite issuance 4 -0.01
Cash flow yield 1 1.49 Cash flow yield 8 0.02
Net operating asset 10 1.48 Duration 5 0.03
Duration 10 1.46 Composite issuance 3 0.03
Earnings yield 1 1.46 Asset growth 5 0.03
Investment to asset 10 1.43 ROE 6 0.05
Total volatility 10 1.40 Inventory growth 4 0.05
Inventory change 10 1.39 Systematic volatility 5 0.06
Org. capital to asset 1 1.37 Net payout yield 6 0.08
Size 1 1.36 Total volatility 1 0.09
Mispricing score 10 1.36 Cash flow yield 5 0.10
Idiosyncratic volatility 10 1.33 Ad. expense to market 8 0.11
ROE 1 1.30 Earnings yield 7 0.12
Composite issuance 10 1.30 Failure probability 5 0.12
Operating accrual 10 1.29 Net payout yield 8 0.13
Inventory growth 10 1.27 CAPM beta 1 0.13
Net payout yield 1 1.26 Ad. expense to market 6 0.13
Net payout yield 2 1.26 Mispricing score 1 0.14
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Table A6: Correlation between MTO score and other firm characteristics

This table presents correlations between our measure of a how informative its prices are,
which we refer to as MTO, and other firm characteristics. To compute a firm’s MTO
score in June of year t, we first rank our 370 portfolios as listed in Table 1 based on each
portfolio’s average momentum return in the past 10 years. Then, for each firm, we define
its MTO score as the number of top 10% MTO portfolios it belongs to relative to total
portfolios it belongs to.

MTO Ivol Asset growth Book-to-market Size CAPM beta Gross profit
MTO 1.00
Ivol 0.50 1.00
Asset growth 0.34 0.14 1.00
Book-to-market -0.10 0.03 -0.14 1.00
Size -0.33 -0.41 -0.01 -0.33 1.00
βCAPM 0.21 0.14 0.06 -0.08 0.08 1.00
Gross profit -0.10 0.02 -0.08 -0.10 -0.08 0.06 1.00
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Table A8: Loading of fundamentals on GDP

This table presents the loadings of various quantities related to a firm’s fundamentals on
GDP growth. We sort firms into quintiles based on their MTO score. To compute a firm’s
MTO score in June of year t, we first rank our 370 portfolios as listed in Table 1 based on
each portfolio’s average momentum return in the past 10 years. Then, for each firm, we
define its MTO score as the number of top 10% MTO portfolios it belongs to relative to
total portfolios it belongs to. We then run a pooled OLS regression of all firms in a quintile
on GDP growth at the quarterly frequency. All t-statistics, shown in parentheses, are based
on robust standard errors of White (1980).

Low MTO 2 3 4 High MTO Low MTO 2 3 4 High MTO

Net Income growth Sales growth

GDP gr. 8.69 13.99 18.03 23.15 23.88 2.50 2.42 2.27 2.66 2.77

(8.05) (13.21) (15.97) (17.17) (14.52) (16.48) (22.27) (19.93) (19.20) (13.60)

Obs. 61,189 72,741 88,536 111,438 145,285 67,748 79,904 99,826 137,074 249,462

Adj. R2 0.001 0.002 0.003 0.003 0.001 0.004 0.006 0.004 0.003 0.001

Asset growth Gross profit

GDP gr. 1.00 0.87 0.99 1.68 3.70 -0.46 0.02 0.72 0.53 0.96

(8.20) (9.14) (10.51) (15.48) (26.60) (-15.45) (0.90) (27.32) (20.99) (37.01)

Obs. 67,470 79,663 99,637 136,864 255,050 68,465 79,849 99,983 138,249 258,629

Adj. R2 0.001 0.001 0.001 0.002 0.003 0.003 -0.000 0.007 0.003 0.005

ROA EPS/Price

GDP gr. 0.02 0.11 0.23 0.35 1.10 0.65 0.63 0.74 0.91 1.66

(1.17) (11.00) (22.04) (27.45) (50.41) (29.82) (35.60) (34.52) (35.58) (55.99)

Obs. 69,097 80,460 100,780 139,451 261,172 69,642 80,733 101,387 140,497 261,960

Adj. R2 0.000 0.001 0.005 0.005 0.010 0.013 0.015 0.012 0.009 0.012
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