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Abstract

We study an economy subject to recurrent disasters when agents have im-
precise information about the frequency and duration of the disasters. Un-
certainty about the persistence of states can lead to seemingly pessimistic be-
havior in bad times and optimistic behavior in good times. In a disaster, un-
certainty about duration acts as an amplification mechanism. Agents alter
their optimal investment and consumption more intensely relative to the full-
information benchmark, and the welfare cost of parameter uncertainty can be
extreme. However, in advance of a disaster, uncertainty about the arrival rate
can be welfare-increasing and agents exhibit diminished preparedness: they
optimally invest less in mitigation than under full information and pay less
for insurance against the next disaster.
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1 Introduction
This paper studies the real effects of parameter uncertainty in a model of repeated disas-
ters. Among the many terrifying aspects of the COVID-19 pandemic was the realization
of how little we knew about what would happen. Structural uncertainty about the forces at
work encompassed many dimensions, of course. We focus on two of these that seemed
especially salient: uncertainty about the persistence (or duration) of the crisis, and uncer-
tainty about its recurrence (or frequency) in future.1 Such uncertainty appears pervasive
and spans economic disasters beyond pandemics. For instance, structural uncertainty
about the duration and frequency of recessions and financial crises is also realistic and
potentially important, and likely to be as – if not more – relevant in the context of climate-
related disasters.

Our model depicts disasters in reduced form as simply regimes in which the stock
of wealth (potentially including human wealth) is subject to exogenous destruction. The
economy transitions stochastically between these episodes and “normal times.” Agents
optimally solve their investment/consumption problem, whose solution depends on both
the current state and on current information about the unobserved switching parameters.
We derive closed-form expressions for the information dynamics, and we obtain the value
function and optimal policies under generalized preferences up to a tractable system of
difference/differential equation. We contrast the solution to a representative agent’s life-
time value maximization in the partial-information or parameter-uncertainty setting to
the full-information setting.

Our primary aim is to understand when and how uncertainty about persistence af-
fects agents’ welfare and economic decisions. While economic intuition suggests that any
source of uncertainty will be generically bad for risk-averse agents, we find a surprising
range of effects, for which we provide an explanation. In particular, uncertainty about
the persistence of states can lead to seemingly pessimistic behavior in bad times and opti-
mistic behavior in good times. Hence, in a disaster, uncertainty about duration leads to an
intensified response, or in other words, acts as an amplification mechanism. Agents alter
their optimal investment and consumption conservatively relative to the full-information

1To be clear, when we refer to structural uncertainty we are distinguishing not knowing the model (specifically,
the parameters of the data generating process) from the (ordinary) uncertainty of simply not knowing the
outcomes, which are random variables.
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benchmark, and the welfare cost of parameter uncertainty can be extreme. However, in
advance of a disaster, uncertainty about the arrival rate can be welfare-increasing. Finally,
agents may exhibit diminished preparedness against future disasters, i.e., optimally in-
vest less in mitigation than under full-information, which also manifests as them willing
to pay less for insurance against the next disaster.

Consider first the situation within a disaster. As a benchmark for how bad the disaster
is, we report the amount of wealth an agent would be willing to give up to immediately
end it and return to normal times. Then we perform the same calculation for the will-
ingness to pay to resolve the parameter uncertainty, starting from a baseline in which
agent’s standard deviation of beliefs about the parameters is equal to their expectation.
For a wide range of preference specifications, the welfare gain from removing parameter
uncertainty is of the same order of magnitude as the gain from ending the disaster, and
can even be substantially larger. The scale of the effect is much greater than the gains
from eliminating other sources of uncertainty. Note that the calculation varies only the
precision of the information, leaving mean beliefs about the switching intensities – and
indeed the current state of being in the disaster – unchanged. The calculation is also an
understatement in the sense that it includes no direct benefit to increased information
precision in terms of, for example, improved design of interventions or mitigation strate-
gies to cope with the disaster. Rather, the information effects that we identify stem only
from changing agents’ perception of the risks of their future consumption and wealth.

The paper thus contributes a new observation to the literature that assesses the wel-
fare costs of disaster risk (see Barro (2009), Martin (2008), Pindyck and Wang (2013), Mar-
tin and Pindyck (2015), Jordà et al. (2020), Martin and Pindyck (2021), and Hong et al.
(2022)). While modeling information production is beyond the scope of our work, there
is a clear normative implication that fundamental research on the evolution of disasters
(e.g., long-term epidemiological modeling in the case of pandemics or understanding the
drivers of climate risks) may be even more valuable than is already appreciated.

To understand the mechanism behind the welfare benefit of information, we next
describe the effect that parameter uncertainty has on agents’ choices. Compared to the
full information economy, we show that imprecision acts as an amplification mechanism
for perceived risk, leading agents to respond to a disaster with extreme conservatism in
their investment/consumption behavior. (If the elasticity of intertemporal substitution is
less than one, this implies cutting consumption. For values greater than one, it implies
cutting investment.)
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The reason for this is that Bayesian updating implies that the waiting time to exit
the disaster regime displays negative duration dependence: the longer the crisis lasts, the
longer it is expected to last. As precision declines, this duration sensitivity increases, and
the unconditional expected waiting time can become unbounded even holding fixed the
mean belief about the probability of exiting. This is depicted graphically in Figure 1 when
observers have belief about the switching intensity, λ, that is described by a gamma dis-
tribution with mean E[λ] = 1 and variance 1/a. The figure illustrates how, for low values
of the precision parameter, a, the expected waiting time becomes increasingly determined
by “worst-case scenarios”, i.e., the possibility that the true value of the exit intensity for
the disaster is close to zero. Note that in the plot the explosive behavior of the expected
exit time is due only to decreases in information precision. For all values of a, the agent
has the same mean estimate of the instantaneous probability of an exit (E[λ] ≡ λ̂ = 1 in
the figure).

The expected waiting time is not literally an input into the computation of agents’
optimal consumption or value function. However, understanding this feature of their be-
liefs explains what is happening economically within the dynamic program: they behave
as if the disaster epoch may be highly persistent. From this observation, we can extrap-
olate beyond the welfare calculation, and infer the incentives that they would have for
policies that we do not incorporate explicitly in the model. Specifically, we expect that
their willingness to commit resources for mitigation during a disaster would rise sharply
with the imprecision of their information.2

Another implication of the model, however, is that the reverse effects apply in ad-
vance of a disaster. That is, estimates of the mean arrival rate also exhibit negative du-
ration dependence, which increases when information is imprecise. This, then, can also
entail agents acting as if “best-case scenarios” predominate in their beliefs. In particu-
lar, uncertainty about the persistence of states can lead to seemingly pessimistic behavior
(e.g., about growth rate forecasts) in bad times and optimistic behavior in good times (as
illustrated in Figure 2).

We illustrate the implications of this result by repeating our welfare computations
in normal times. We show that, in some settings, information about the arrival rate can
be welfare-destroying: agents are subjectively better off with imprecise beliefs. We then
consider an optimal investment problem where the representative agent can invest in mit-

2In a similar vein, Barnett et al. (2021) show that uncertainty about infectious parameters within a pan-
demic leads a central planner with ambiguity averse preferences to impose stricter quarantine measures
compared to the full-information benchmark.
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Figure 1: Information Precision and Expected Transition Time

Note: The top line plots the expected waiting time in years for the end of a regime when ob-
servers have belief about the intensity per unit time of a switch, λ, that are described by a
gamma distribution with mean E[λ] = 1 and variance 1/a, where a is the variable on the hori-
zontal axis. The lower lines depict the contribution to this expectation of different components
of the belief distribution.

igation measures prior the onset of a disaster. We show that, in these settings, agents with
imprecise information about disaster frequencies also choose less mitigation than those
with full information. As a parallel result, we introduce a disaster insurance contract, and
show that information precision can lower the amount agents would pay for it. These re-
sults may shed light on “don’t look up” behavior of seemingly willful ignorance towards
disasters.

Taken together, the model describes a belief dynamic across regimes for which there
is empirical support. In fact, a well established branch of behavioral economics takes as
given the observation that economic decision makers tend to ignore the risk of rare ad-
verse events in good times and exaggerate them in bad times (see Bordalo et al. (2022) for
a recent overview). The theory of diagnostic expectations has been formulated precisely to
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Figure 2: Growth Rate Forecasts: Optimism and Pessimism

The figure plots subjective expectations for the growth of wealth to different horizons, T. The
left panel shows agents’ forecasts when in normal times. The right panel shows forecasts dur-
ing a disaster. In each panel the full-information forecasts are plotted as dotted lines and the
partial information ones as solid lines. The plots take the agent’s posterior expected switching
intensities for the two states to be (0.05,0.20) with respective posterior standard deviations of
(0.05,0.10).

account for the evidence of this pattern. Moreover, in common with the implication in
our model, that theory stresses that agents overreact more to recent news when it is more
salient, which could be viewed as equivalent to settings in which there is less precision
of prior information. While agents are not overreacting in our model, they would ap-
pear to be doing so to an observer with full information. Their consumption/investment
behavior would appear increasingly optimistic prior to a crisis, and then increasingly pes-
simistic during one. In business cycle terms, their forecasts (for future output, say) would
be highest at peaks and lowest at troughs. Survey evidence for such patterns verifies a
testable prediction of our framework.

2 Related Literature
There are a number of papers that study learning problems in the context of models with
disasters. It may be helpful to highlight distinguishing features of our setting and the
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focus of our contribution. A feature common to many models is an exogenous shock pro-
cess (hitting consumption, or output, or the capital stock) whose intensity is unobservable
and possibly time-varying. (Such models include Benzoni et al. (2011), Wachter and Zhu
(2019), and Hong et al. (2022).) We also have such a shock process, and its intensity varies
over time: it is zero in normal times and positive in a disaster regime. However, we as-
sume that agents do know the parameter of these shocks. And, for the sake of clarifying
terminology, we do not use the word “disaster” to refer to the realization of these shocks,
but rather to the epoch in which they occur. In our case, it is the frequency and duration
of these epochs about which agents lack full information.

Collin-Dufresne et al. (2016) study a 2-regime rare disaster economy in discrete time
with learning about the switching parameters. They show that, when risk aversion ex-
ceeds the inverse of the elasticity of intertemporal substitution, even small amounts of
persistence uncertainty can produce large effects on the equity premium and Sharpe ratio.
The mechanism they highlight is the increase due to learning in the subjective volatility
of consumption growth and marginal utility. In contrast, while our setting is similar, the
real effects we document are driven by the drift of the parameter estimates (the duration
dependence), not their revisions.3

In emphasizing uncertainty about persistence, our paper also shares similarities with
Gillman et al. (2014) and Ghaderi et al. (2022) in which regimes of differing growth differ
in their expected duration. These models assume the regime itself is unobservable. Hence
agents’ beliefs about the persistence of current conditions is formed from a mixture over
exponential distributions with posterior weights evolving with experience. In our model,
agents do know whether or not they are in a disaster regime; but, in contrast, they do
not know the switching intensities conditional on the regime. Another related work is
Andrei et al. (2019) in which agents do not observe the mean-reversion speed of current
consumption shocks and thus face persistence risk. In their model, as in ours, the per-
sistence risk is asymmetric: increasing news about persistence is positive in good times
and negative in bad. In Bianchi et al. (2022), agents are uncertain about the duration of
monetary policy regimes.

Most of the above papers focus on the implications of their specifications for asset
pricing. An exception is Hong et al. (2022) who study implications of time-varying dis-
aster beliefs for willingness to pay for mitigation efforts in the presence of externalities.
Our focus too is on welfare effects. We highlight, in particular, the interaction between
3In addition, many of our findings are larger in magnitude when the elasticity of intertemporal substitution
is less than the inverse of the coefficient of risk aversion.
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unobservable persistence and the current state of the economy in determining the value
of information and investment incentives.

3 A Model of Repeated Disasters
In this section, we introduce a regime-switching model of disasters in order to compute
welfare in terms of the economy’s primitive objects. Our fundamental view of a disaster
is as a process that destroys household wealth, as in Gourio (2012), with consumption
responding endogenously. For this reason, we work with a production-based framework
rather than an endowment economy.

3.1 Disaster Dynamics

Following Nakamura et al. (2013), we consider the state of the economy to be either in
a “non-disaster” regime or in a “disaster” regime, and denote the state as s ∈ {0,1,}.
We assume that the economy switches between these states with the following transition
probabilities:

Pr(st+dt =1|st = 0) = ηdt (1)

Pr(st+dt =0|st = 0) = 1 − ηdt (2)

Pr(st+dt =0|st = 1) = λdt (3)

Pr(st+dt =1|st = 1) = 1 − λdt. (4)

That is, η and λ are the probabilities per unit time of switching from one state to the other.
These are the parameters that we will assume to be unobservable in later sections.

The model’s depiction of the disaster consists of a state-specific stochastic process for
the accumulation of wealth. Specifically, let q denote the quantity of productive capital
of an individual household (which could be viewed as both physical and human capital,
the latter reflecting health as well as intangible capital). We assume that the stock of q
is freely convertible into a flow of consumption goods at rate C per unit time. Then our
specification is that q evolves according to the process

dq = µ(s)qdt − Cdt + σ(s)qdBt − χ(s)qdJt (5)

where Bt is a standard Brownian Motion and Jt is a Poisson process with intensity ζ(s).
We set χ(0) = 0 and χ(1) > 0 for the disaster state and normalize ζ(1) = 1 for simplicity.
The Poisson shock captures the risk of an economic loss to the household. While we
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refer to the occurrence of the state s = 1 as the “disaster” (i.e., independent of whether or
how many wealth shocks actually occur), this is a matter of semantics. Somewhat more
common in the literature would be to label these dJ shocks themselves as the “disasters”,
in which case our model maps to a particular specification of time-varying disaster risk,
being either “on” or “off” depending on the regime.4

An assumption worth highlighting concerns the long-run effects of the disaster. Our
specification is pessimistic in the sense that loss of wealth due to the J shocks is perma-
nent. Productive capital q does not get restored when the disaster ends. On the other
hand, the model is optimistic in the sense that the productive process, dq, does fully revert
to pre-disaster dynamics. After the disaster, the world looks stochastically the same as
it did before. In particular, there are no long-run scarring effects, e.g., on the economy’s
growth rate, µ. Both assumptions are important for tractability. In Section 5.2 we will con-
sider augmenting the economy to include a real option to invest in mitigation measures
prior to a disaster that have the effect of lowering χ.

3.2 Preferences

We assume the economy has a unit mass of identical agents (households). Each agent has
stochastic differential utility or Epstein-Zin preferences (Duffie and Epstein, 1992; Duffie
and Skiadas, 1994) based on consumption flow rate C, given as

JJJt = Et

[∫ ∞

t
f (Ct′ ,JJJt′)dt′

]
(6)

and aggregator

f (C,JJJ) =
ρ

1 − ψ−1

[
C1−ψ−1 − [(1 − γ)JJJ]

1
θ

[(1 − γ)JJJ]
1
θ −1

]
(7)

where 0 < ρ < 1 is the discount factor, γ ≥ 0 is the coefficient of relative risk aversion
(RRA), ψ ≥ 0 is the elasticity of intertemporal substitution (EIS), and

θ ≡ 1 − γ

1 − ψ−1 (8)

The use of recursive preferences is standard in macro-finance models because of their
ability to match financial moments. We recognize the limitations of using a utility speci-

4Besides Gourio (2012), important contributions to the literature on time-varying disaster risk include
Gabaix (2012), and Tsai and Wachter (2015).
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fication driven by consumption goods, particularly within a crisis when other consider-
ations (e.g., health, social interaction, the safety of others) so strongly affect well-being.
However, using a familiar formulation ensures that our findings are not driven by non-
standard assumptions about utility.

The representative agent’s problem is, in each state s, to choose optimal consumption
C(s) that maximizes the objective function JJJ(s).

3.3 Full information solution

We now characterize the solution to the optimization problem when agents know the
switching intensities η and λ. For ease of notation, define the following combination of
preference parameters:

e0 ≡
θ

ψ
ρψ and e1 ≡ −ψ

θ
. (9)

Proposition 1. Denote

g(s) ≡ θ ρ − (1 − γ)

(
µ(s)− 1

2
γσ(s)2

)
− ζ(s)

(
[1 − χ(s)]1−γ − 1

)
(10)

for s ∈ {0,1}. Let H(s)’s denote the solution to the following system of recursive equations:

g0 ≡ g(0) = e0 (H(0))e1 + η

[
H(1)
H(0)

− 1
]

(11)

g1 ≡ g(1) = e0 (H(1))e1 + λ

[
H(0)
H(1)

− 1
]

(12)

Assuming the solutions are positive, optimal consumption in state s is

C(s) = ρψ (H(s))e1 q, (13)

and the value function of the representative agent is

JJJ(s) ≡ H(s)q1−γ

1 − γ
. (14)

Note: All proofs appear in the appendix.

The recursive system is straightforward to solve numerically. The unknown functions
H(s) are necessarily bounded by the limiting solutions in which the economy is never in
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a disaster, Hmin
0 , or is always in a disaster, Hmax

1 .5 The former corresponds to η = 0 and
the latter to λ = 0. It is straightforward to show that these constants are given by

Hmin
0 =

(
g0

e0

)1/e1

and Hmax
1 =

(
g1

e0

)1/e1

.

These quantities are real and positive if g0, g1, and e0 all have the same sign. Given
this, it can be shown that a necessary and sufficient condition for existence of a unique
solution is that g1 < g0. Henceforth we implicitly assume the parameters are such that
these regularity conditions are satisfied. It is worth noting that the parameters defining
the exogenous wealth process only affect the system (and hence its solution) through
the constants g0 and g1. So, while the model may seem to involve a large number of
parameters, its effective dimensionality is low.

4 Solution under Parameter Uncertainty

4.1 Information Structure

Recall that in our model η is the intensity of switching from state 0 (“good”) to state 1
(“bad”) and λ is the intensity of switching from 1 to 0. In this section, we assume that
agents have imperfect information about these intensities. As discussed in the introduc-
tion, within a disaster there is likely to be deep uncertainty about all the governing param-
eters. Our focus on the timing parameters is motivated by the experience of COVID-19 in
which the likely duration of the pandemic and the frequency of future pandemics were
especially urgent questions to resolve.

Let us stipulate that at time zero the agent has beliefs about the two intensity parame-
ters that are described by gamma distributions, which are independent of each other. Each
gamma distribution has a pair of non-negative hyperparameters, aη,bη and aλ,bλ, that are
related to the first and second moments via

E[η] =
aη

bη , Std[η] =

√
aη

bη , (15)

and likewise for λ. The relative precision about η, defined as its mean divided by its stan-
dard deviation, is

√
aη. The choice of the gamma family is motivated by tractability, as it

5Note that with γ > 1, the value function is negative. Hence smaller (positive) values of H correspond to
better states.
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induces a finite-dimensional representation of agents’ beliefs. However, the exact func-
tional form does not drive our results. A property that is important is that distribution
is not bounded away from zero: agents are not able to rule out a priori that the switching
intensities could be arbitrarily small.

By Bayes’ rule, under this specification, as the agent observes the switches from one
regime to the next, her beliefs remain in the gamma class with the hyperparameters up-
dating as follows

aη
t = aη

0 + Nη
t

bη
t = bη

0 + tη

where tη represents the cumulative time spent in state 0 and Nη
t represents the total num-

ber of observed switches from 0 to 1. Analogous expressions apply for aλ and bλ. Thus,
while in s = 0, the only information that arrives (on a given day, say) is whether or not
we have switched to s = 1 on that day. If that has occurred, the counter Nη increments by
one and the clock tη turns off and tλ turns on. The system is assumed to start in the state
s = 0 with Nη = Nλ = 0.

We thus paste together two linked learning regimes. In each regime, we have a finite
dimensional filter in the sense that the two updated parameters fully characterize beliefs
about that regime. Further, η̂t ≡ Et[η] = aη/bη, and it remains the case that the agent
views this number as the probability per unit time of an instantaneous switch from s = 0
to s = 1 (again with equivalent expressions for the other regime.)

This type of gamma-exponential conjugate system is well studied in stochastic pro-
cess theory (e.g., see Harris and Singpurwalla (1968) and Rubin (1972)), and has some
important properties. Most notably, under the observer’s subjective probability measure,
the system exhibits negative duration dependence, meaning the longer the experienced
waiting time for a switch, the longer the expected remaining waiting time (since the esti-
mated switching intensity grows weaker). As a result, unlike a pure exponential system
(driven by a Poisson process with known intensity), the subjective expected waiting time
until the next switch is not the inverse of the (expected) intensity, but is larger. In fact,
the explicit measure for the switching time is described by a Lomax distribution (Lomax
(1954)), whose expectation (in the s = 0 regime) is 1/η̂ times (aη/(aη − 1). Note that
this can be infinite when the relative precision of knowledge of η is low (as illustrated in
Figure 1). Similarly the variance of the waiting time explodes for low precision. As we
will see, these features have important consequences for the agents’ welfare and optimal
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behavior in our economy.

4.2 Partial-Information Solution

Under the above information structure, the economy is characterized by a six-dimensional
state vector consisting of the stock of wealth, q, aη,bη, aλ,bλ and the regime indicator S.
However this six-dimensional space can actually be reduced to three when solving for
the agent’s value function.

Since the switches between states alternate, let us define an integer index Mt to be
the total number of switches Nη

t + Nλ
t and then (assuming we are in state 0 at time 0)

Nη
t = Mt/2 when M is even, and Nλ

t = (Mt + 1)/2 when M is odd. Knowing M (along
with the priors aη

0 and aλ
0 ) is equivalent to knowing aη

t and aλ
t . Given these values, spec-

ifying the current mean estimates η̂t and λ̂t is equivalent to specifying the remaining
hyperparameters bη

t and bλ
t . Thus, solutions to the model can be described as a sequence

of functions HM(η̂, λ̂) for the agent’s value function at step M.
Compared to the full-information model in Section 3, within each regime the only

new changes to the state come through variation in the estimates η̂t and λ̂t which change
deterministically with the respective clocks tη and tλ. Holding M fixed, the dynamics of
η̂t are given by

dη̂t = d
aη

t

bη
t
= aη

t d
1
bη

t

= − aη
t

(bη
t )

2
dt

= − (η̂t)2

aη
t

dt. (16)

The latter expression says that, until new information arrives, η̂ decays quadratically and
deterministically to zero at a rate that is faster when aη is small. This dynamic defines the
negative duration dependence of the system and drives the main results.6

Under partial information, we proceed as in Section 3.3 to write-out the HJB equation
with the state variables following the dynamics determined by the representative agent’s

6The ODE in (16) has the exact solution

η̂t =
1

1
η̂0

+ t
aη

0

where t is the time since the regime began.
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information set. As before, we can conjecture a form of the value function

JJJ =
q1−γ

1 − γ
H(η̂, λ̂, M;C). (17)

And, as before the first order condition for consumption yields C = q (ρψ) He1 (where e1

is defined in (9)). This follows because consumption does not enter into any of the new
terms involving the information variables.

Using these results, it can be shown that (See the Appendix for a derivation of (18)-
(19)):

Proposition 2. The HJB system characterizing the value function in the presence of parameter
uncertainty can be written as a set of infinite-dimensional linked PDEs, where M runs over the
even integers, with the constants g0 and g1 are as defined in Section 3.3:

g0 = e0He1
M + η̂

(
HM+1

HM
− 1

)
− (η̂)2

aη HM

∂HM

∂η̂
(18)

g1 = e0He1
M+1 + λ̂

(
HM+2

HM+1
− 1

)
− (λ̂)2

aλHM+1

∂HM+1

∂λ̂
. (19)

For large M, the estimation errors for both η and λ, expressed as a fraction of the
posterior estimates, go to zero:

Std[η]
E[η]

=
1√
aη

=
1√

aη
0 + Mt

.

The system always converges to the full-information solution, providing one boundary
condition, which, together with the single-regime solutions on the edges of the (η̂, λ̂)
plane, enables computation of all individual H functions. Knowing the solution for
higher M enables direct evaluation of the jump-terms in (18)-(19). Knowing the solution
on the inner edges enables explicit approximation of the first partial derivatives.

5 Results
We now turn to numerical analysis to illustrate the effect of information precision on
the economy’s properties. We will highlight, in particular, differences in these effects
depending on the current state.

To undertake the analysis, we specify a benchmark set of parameters described by the
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values shown in Table 1. These can be partitioned into preference parameters and those
specifying the (pre-consumption) dynamics of wealth, q. The baseline preference param-
eters are broadly consistent with the macro-finance literature under stochastic differential
utility. For the q dynamics, we choose to fix the growth rate µ(s) and Gaussian volatility
σ(s) across regimes in order to focus attention on the role of the disaster shock size χ.
(The former values are chosen to approximately match the growth rate and volatility of
aggregate dividends in non-disaster times.) We fix the disaster shock intensity to be 1.0
in order to interpret χ as the expected loss of wealth per year.

5.1 Information Precision and Welfare in a Disaster

To start, we examine the welfare consequences of parameter uncertainty within a disaster.
Since Lucas (1987), a large literature has analyzed the welfare costs of aggregate risks in
business cycle models in order to quantify incentives to reduce such risks. Here, we
extend this line of research to encompass the perceived risk that stems from parameter
unobservability. We address two main questions. First, comparing partial information
to full information, how much worse is the disaster compared to the non-disaster state?
Second, how much would agents pay to gain information precision about the persistence
parameters? We also explore which features of the model make imprecision more costly.

For any pair of economies or states, {i, j}, we report the fraction of wealth that the
representative agent would be willing to pay for a one-time transition from the worse (j)
to the better state (i). The welfare gain is computed as the certainty equivalent change in
the representative agent’s lifetime value function :

1 −
(

H(j)
H(i)

) 1
1−γ

This willingness-to-pay definition is standard in the literature.

5.1.1 Welfare Gain from Ending a Disaster

To quantify the severity of disasters under our parameterization, Table 2 reports the wel-
fare gain for ending a disaster, that is, to transitioning from s = 1 to s = 0 holding ev-
erything else fixed. In the context of a pandemic, this could be viewed as the value of a
perfectly effective cure or vaccine. Each cell of the table shows this gain for three values
of λ̂ and two values of η̂. The top panel shows the result when there is no uncertainty
about the parameters. Here the upper left cell shows that, in this benchmark case, agents
would be willing to pay between roughly 5% and 20% of wealth to return to the normal
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economic state. The values are intuitively reasonable in the sense that, for η = 0.01 say,
they are not too far from just the expected duration of the disaster (1/λ) times the expected
loss of wealth per year, χ = 0.04. When disasters are expected to reoccur more frequently
(η = 0.05) the welfare gain is smaller. Reading across the top panel, changing the prefer-
ence parameters does not have large effects on the the full-information values.

The bottom panel shows the same computation when agents’ current uncertainty
about the timing parameters (their posterior standard deviation) is equal to their mean
belief about each of them, or their relative precisions are 1.0 for both. This is our baseline
case of partial information.7 Compared to the top panel of the table, it is clear that the
partial information situation is subjectively much worse. Adding parameter uncertainty
greatly increases the resources that the economy would be willing to expend to find a
cure or otherwise curtail the damage.

Among the preference parameters, we note that the information effects are more ex-
treme with lower EIS (ψ) and lower time discount factor (ρ). Also, perhaps surprisingly,
the relative effect is strongest when the estimated switching intensity to return to the nor-
mal state λ̂ is higher. This is counterintuitive because one might think information about
timing would matter less when disasters are shorter-lived. We return to these effects be-
low.

5.1.2 Welfare Gain from Resolving Parameter Uncertainty

The results above immediately raise the question of how much agents would be willing
to pay to resolve parameter uncertainty, even staying within the disaster state. Table 3
answers this question. In fact, for each of the preference configurations considered and
for almost all values of η̂ and λ̂, the value of resolving the parameter uncertainty is as
large or larger than the value of resolving the present disaster under full information.

It is perhaps not surprising that risk averse agents would be willing to pay something
to resolve parameter uncertainty. However, as we will see below, this need not always be
the case. Moreover, here, it is the magnitude of the value that is surprising. The numbers
are much larger than typically found in analogous calculations in the literature for other
types of risk. As one example, in the current model, when we compute the welfare gain
to eliminating the stochastic nature of disaster shocks8 we find welfare gains on the order

7In this case the gamma prior is just an exponential distribution. There is also nothing critical about the
value 1.0: the policies and value functions are all continuous in the precision parameter. Hence the numer-
ical results are similar for higher initial precision.

8This entails dropping the Poisson jump term in the dq specification and lowering the disaster drift, µ(1),
by the expected jump magnitude, ζχ.
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of 1 percent or smaller, much less than those in Table 3. We are not the first to make this
observation. Collin-Dufresne et al. (2016) show that, measured by the one-period utility
loss compared to an adaptive expectations benchmark, uncertainty about the persistence
of the bad state is an order of magnitude more important than uncertainty about other
parameters, e.g., growth rates and volatilities in the two regimes.

From a policy perspective, the implication of the extreme value of information in a
disaster is that, while working to curtail the disaster itself is enormously valuable, equally
and perhaps even more valuable is investment and effort to uncover fundamental knowl-
edge about the underlying mechanisms, including biological, physical, and sociological,
governing the duration of these episodes. Note too that the welfare gain that the model
identifies does not even consider the direct effect that such knowledge has on our ability
to prevent or mitigate disasters. The model contains no channel by which knowing more
about λ and η allows agents to change them.

5.1.3 Comparative Statics

Returning to Table 3, comparing the results across preference specifications, the informa-
tion value – the value of resolving parameter uncertainty – increases with higher risk-
aversion (γ), and is lower with a lower time discount factor (ρ). The γ effect is intuitive:
parameter risk increases the subjective volatility of wealth, which agents dislike. Less
apparent is the effect of ρ. Why should agents with a longer time horizon (lower subjec-
tive discount rate) care so strongly about information? Recall that when agents do not
know the true value of λ, their expected time until the end of the disaster is governed
by a Lomax distribution whose expectation explodes as the precision of their information
declines. Put differently, with parameter uncertainty, worst case scenarios come into play.
When there is little experience from which to learn, the current disaster may look effec-
tively permanent. Hence, its impact on welfare can be enormous when discount rates are
low.

This effect also explains why the results in the table show surprisingly little sensitivity
to λ̂. As noted above, this seems counterintuitive. Here the key observation is the seem-
ingly paradoxical fact that the explosion of the expected waiting time for the end of the
disaster happens for any level of belief about the intensity of switches. Again, this can be
viewed as due to increased weight being placed on worst case scenarios: agents cannot
rule out that λ ∼ 0, i.e., that the disaster will effectively last for their entire lifetime.

The largest effects in Table 3 come from lowering the elasticity of intertemporal sub-
stitution. This is noteworthy because there is a common understanding of Epstein-Zin

16



preferences under which agents with ψ ≤ 1/γ can be viewed as having a preference for
“later resolution of uncertainty,” which might suggest that they value information less
than high EIS agents, whereas here the result is precisely the opposite.9

To understand this, we observe that, with recursive preferences, agents with low EIS
cut consumption when the economy enters the disaster state. This is because a low EIS
implies strong consumption smoothing motives, and the prospect of lower future wealth
motivates a sharp increase in savings. By contrast, a higher EIS implies relatively more
concern with investment risk than consumption smoothing. Agents with a high EIS there-
fore decrease investment in a disaster, since investment is exposed to greater risk. So, the
propensity to consume out of wealth increases for these agents during a disaster. These
responses are plotted in the top panel of Figure 3.

However, the differing consumption responses do not make disasters worse per se for
agents with a low EIS: the top panel of Table 2 shows little effect of the EIS under full
information. Instead, as the plot in the lower panel of Figure 3 shows, it is the extreme
decrease in consumption as information precision declines that leads to the large welfare
losses for these agents. This is again due to the time horizon effect. With low precision
of information about λ, the withdrawal of consumption starts to look effectively perma-
nent.10

To summarize, the crucial effect of parameter uncertainty within a crisis is that, with
less precise information, agents place more weight on increasingly bad possibilities, or
low values of λ. This leads to very large welfare losses and consumption/investment
distortions, which are stronger when agents have longer time horizons (low ρ) or less
intertemporal elasticity of substitution (low ψ). It is worthwhile to remark that the effects
are mostly driven by agents’ beliefs about the current disaster: the worst-case scenario is
that it lasts forever.

5.2 Parameter Uncertainty Prior to a Disaster

The analysis above immediately suggest an unexpected corollary: all of the conclusions
may be reversed prior to a disaster. Low precision of information about the disaster inten-
sity in normal times could lead to agents acting as if they overweight best case scenarios,

9See Epstein et al. (2014) for an examination of the welfare consequences of varying the timing of the reso-
lution of uncertainty.

10In Van Nieuwerburgh and Veldkamp (2006) and Kozlowski et al. (2020) learning effects within downturns
endogenously cause the downturns to last longer. In our case, the uncertainty-induced investment and
consumption distortions do not affect the length of the disaster. However, negative duration dependence
implies that the perceived duration lengthens the longer the episode goes on.
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Figure 3: Consumption and the Elasticity of Intertemporal Substitution

The top panel plots the ratio, c(1)/c(0) of the marginal propensity to consume in states 1
(disaster) and 0 (non-disaster) states under full information. The bottom panel plots the re-
spective propensities in successive disaster states, starting from the prior distributions given
by aη = aλ = 1. Both panels use the benchmark parameters from Table 1. In both panels, the
current beliefs are η̂ = 0.03, λ̂ = 0.5.

namely, that a disaster will never materialize. We now show that, indeed, this can be
the case. Moreover, we will see that both types of effects – pessimistic in a disaster and
optimistic beforehand – may co-exist.
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5.2.1 Welfare Gain from Resolving Parameter Uncertainty

To set the stage, we start by examining the welfare effect of uncertainty about η when
s = 0. We isolate this effect by setting the prior precision for λ to be very high, so that,
effectively agents know its value. Table 4 shows the value of information under these
conditions. In the baseline case, the value of information about η indeed can be negative,
although the magnitude is not large economically. Working against the effect of longer
subjective waiting time until a disaster is the effect of risk aversion: the value function is
concave in η̂, so higher posterior variance lowers welfare through this channel. The third
panel in the table exhibits that with γ = 2 the effect can be economically significant: when
the point estimate η̂ is large the representative agent would be willing to give up to 2.1%
of wealth to not learn the true disaster frequency.

When information about both λ and η is imprecise, the former typically matters more
in the sense that full information is overall welfare improving in both states. Intuitively,
the worst-case scenarios still loom large prior to a disaster. However, we can vary the
degree to which duration dependence operates in each regime from the observation that
the percentage drift in the means (which drives the effect) scales with the ratio of the mean
to the precision parameter. Thus, when η̂/aη

0 and λ̂/aλ
0 are close in size, we obtain similar

belief dynamics in the two states. Figure 2 in the introduction illustrates this co-existence
of pessimism and optimism in terms of growth rate expectations. Using the parameters
in that figure together with γ = 1, the welfare cost of parameter uncertainty is 3.2% of
wealth in the disaster and -3.5% before it. Hence, the incentives to acquire information
alternate sign in the two states.

5.2.2 Disaster Mitigation Incentives

We observed above that, when information about disaster duration was imprecise, agents
had stronger incentive to end the disaster (c.f. Table 2). But that logic would now also be
expected to flip. When agents place more weight on best-case scenarios, their incentives
to invest in mitigation are weaker. To make this explicit, consider endowing the economy
with a one-time real option to expend resources, I, out of the stock of wealth, q, to invest
in a mitigation technology that can lower the severity, χ, of future disasters via χ = g(i),
where i = I/q, for some positive smooth function g with g′ < 0. Parameterizing mitigation
technology is beyond the scope of this work. However, in this setting, the strength of
the welfare effects of mitigation map directly to the degree of optimal investment for
any technology. Specifically, if the (log) value function coefficient H is less sensitive to χ

under partial information than under full information, then it is straightforward to show
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that optimal investment is lower as well.11

Figure 4 plots the log value function as a function of the disaster severity under full
and partial information. The figure uses the same parameters as in Figure 2 with γ close
to one.12 When s = 0 in the left panel, we verify the conjecture that the slope is less
positive, and the relation is reversed when s = 1 in the right panel. We can conclude that,
for any reasonable investment technology, lower precision of information will result in
underinvestment in mitigation or preparedness relative to full-information in advance of
a disaster.

5.2.3 Pricing of Disaster Insurance

Another way of capturing preparedness incentives is via willingness to pay for insurance
against a disaster. So consider the price of a financial contract which pays 1 upon the
arrival of the next disaster. This contract is in net zero supply and does not affect real
outcomes. However, its price provides a measure of agents’ assessment of the likelihood
and timing of a disaster, as well as its consequences in marginal utility terms. Then,

Proposition 3. The price, P, in the non-disaster state of the claim which pays 1 upon the arrival
of the next disaster, satisfies the equation

− (η̂)2

aη

∂P
∂η̂

+ η̂
H(η̂, λ̂, M + 1)

H(η̂, λ̂, M)
(1 − P) − r0 P = 0 (20)

where r0 is the riskless rate.13

Given the value function solutions, this is a first-order differential equation in η̂, with
boundary condition P(0) = 0. Figure 5 plots the solutions for the parameter set we have

11 The assertion is that, for two otherwise equal economies E1 and E2, if the sensitivity of the value function,
H, to χ is weaker in E1 than in E2, then, if a solution to the real-options problem exists in E2, a solution also
exists in E1 with smaller optimal investment. To see this, view H as a function of χ, and the problem is to
choose i to maximize the H(g(i))(1 − i)1−γ/(1 − γ) with first order condition −g′(i) ∂ log H(g(i))/∂χ =
(γ − 1)/(1 − i). Assume γ > 1. Then the right side (the marginal cost) is an unbounded increasing
function of i on [0,1) which is the same for both economies. Call it RHS(i). On the left side (the marginal
benefit), the first term is the same for both economies. The hypothesis is that ∂ log H(χ)/∂χ is smaller
in E1 than in E2 for all χ implying that the second term is smaller. Hence LHS1(i) < LHS2(i) for all i.
Assume LHS2 is continuous and declining. Then, if an interior solution, i∗2 , exists, it follows that on [i∗2 ,1)
we have LHS1 < LHS2 < RHS, meaning that there cannot be a solution for E1 in this region. Hence,
either there is a solution i∗1 < i∗2 or no interior optimum exists and i∗1 = 0 in E1.

12The plot use take γ = 1.01 for convenience. Recall the full value function is negative, so higher values of
H are worse.

13The rate and the pricing kernel are derived in terms of the model primitives in the Appendix.
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Figure 4: Parameter Uncertainty and Mitigation Incentives

The figure plots log value function multiplier, H, as a function of the disaster severity. χ. In
each panel, the full-information values are plotted as dotted lines and the partial information
ones as solid lines. The plots use the benchmark parameters in Table 1 with γ = 1.01. The plots
take the agent’s posterior expected transition intensities for the two states to be (0.05,0.20)
with respective posterior standard deviations of (0.05,0.10).

been considering. In line with the intuition that partial information leads to longer ex-
pected waiting times, we see that the contract is substantially underpriced relative to its
full information value.

This section has shown that information about disaster frequency can be welfare re-
ducing because, with less information, agents rationally believe a disaster may never ma-
terialize (the expected waiting time becomes unbounded) even when the mean intensity
of disasters is held fixed. The other phenomena that we have illustrated (optimistic fore-
casts, underinvestment in mitigation, undervaluing insurance) are all manifestations of
the same belief dynamic. The negative value of information may shed light on failure
to prepare adequate for disasters and on “don’t look up” behavior of seemingly willful
ignorance towards their threat.14

14Models with costly information processing have also been used to explain failure to prepare for disasters.
See Maćkowiak and Wiederholt (2018). Aversion to information is explicitly modelled in the preference
specification of Andries and Haddad (2020).
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Figure 5: Disaster Insurance Pricing

The figure plots the price of a contract paying 1 upon the arrival of the next disaster as a
function of the mean arrival intensity, η̂. Other parameter values are the same as in Figure 4.

6 Conclusion and Discussion
Motivated by the ongoing COVID-19 pandemic, we augment a standard regime-switching
model to include uncertainty about the duration of both the disaster and the non-disaster
states. We find a perhaps surprising dichotomy: the welfare benefit of information about
persistence of the state can be extreme within a disaster and small or even negative prior
to one. The mechanism behind the welfare effects is that imprecision heightens the pos-
sibility that the true transition probability is small. Hence, agents in the economy act, in
effect, as if the current state may never end, even holding fixed their estimate of the in-
stantaneous probability of it ending. This can result in seemingly exaggerated pessimistic
behavior within a disaster (e.g., extreme reductions in consumption) at the same time as
seemingly exaggerated optimistic behavior (e.g. reduced investment in mitigation or in-
surance) in non-disaster times.

In the introduction, we cited the behavioral economics literature that documents the
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tendency of managers and investors (as well as professional forecasters) to overweight
recent experience in forming their beliefs. We believe evidence for this may also be in-
terpreted as consistent with the specific type of parameter uncertainty that we study
here. In particular, the literature advancing diagnostic expectations stresses the pattern of
decision-makers ignoring “tail events” in good times and exaggerating their effects when
they occur. In those models, unlike ours, investors are incorrectly overweighting current
data, for which there is evidence in survey data.15 Rather than rebut this alternative to our
story, however, we would suggest that our conclusions overall are likely to go through –
or even be strengthened – under it. An agent in a crisis who places even more weight on
worst case scenarios than does a rational Bayesian will be willing to pay even more than
the magnitudes we find in order to rule them out. Likewise, the subjective well-being of
such an agent in good times is similarly likely to be even less improved by ruling out best
case scenarios or in expending resources on mitigation.

15Some of the patterns in the survey data can also be explained by models of learning about low frequency
features of the data generating process. See Farmer et al. (2021).
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Bartosz Maćkowiak and Mirko Wiederholt. Lack of preparation for rare events. Journal of
Monetary Economics, 100:35–47, 2018.

Ian WR Martin. Disasters and the welfare cost of uncertainty. American Economic Review,
98(2):74–78, 2008.

Ian WR Martin and Robert S Pindyck. Averting catastrophes: the strange economics of
scylla and charybdis. American Economic Review, 105(10):2947–85, 2015.

Ian WR Martin and Robert S Pindyck. Welfare costs of catastrophes: lost consumption
and lost lives. The Economic Journal, 131(634):946–969, 2021.

Emi Nakamura, Jón Steinsson, Robert Barro, and José Ursúa. Crises and recoveries in an
empirical model of consumption disasters. American Economic Journal: Macroeconomics,
5(3):35–74, 2013.

Robert S. Pindyck and Neng Wang. The economic and policy consequences of catastro-
phes. American Economic Journal: Economic Policy, 5(4):306–39, November 2013.

Izhak Rubin. Regular point processes and their detection. IEEE Transactions on Information
Theory, 18(5):547–557, 1972.

Jerry Tsai and Jessica A. Wachter. Disaster risk and its implications for asset pricing.
Annual Review of Financial Economics, 7(1):219–252, 2015.

Stijn Van Nieuwerburgh and Laura Veldkamp. Learning asymmetries in real business
cycles. Journal of Monetary Economics, 53(4):753–772, 2006.

Jessica A Wachter and Yicheng Zhu. Learning with rare disasters. Wharton Working
Paper, September 2019.

25



Table 1: Parameter Values

Parameter Symbol Value

Coefficient of relative risk aversion γ 4.0
Elasticity of intertemporal substitution ψ 1.5
Rate of time preference ρ 0.04
Expected growth of wealth µ(0) = µ(1) 0.04
Volatility of wealth σ(0) = σ(1) 0.05
Destruction intensity in disasters ζ 1.0
Disasters shock magnitude χ 0.04

The table shows the parameter values for preferences and the capital stock dynamics that form the
baseline case in the numerical analysis.
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Table 2: Welfare Gain to Ending Disaster

Low Uncertainty

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.188 0.090 0.046

η̂
0.01 0.205 0.093 0.046

0.05 0.147 0.081 0.044 0.05 0.162 0.085 0.045

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.160 0.079 0.042

η̂
0.01 0.225 0.100 0.048

0.05 0.135 0.072 0.04 0.05 0.166 0.091 0.047

High Uncertainty

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.294 0.212 0.14

η̂
0.01 0.715 0.716 0.704

0.05 0.212 0.169 0.128 0.05 0.559 0.585 0.610

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.242 0.154 0.095

η̂
0.01 0.466 0.436 0.392

0.05 0.195 0.137 0.094 0.05 0.297 0.292 0.287

The table shows the fraction of wealth the agent would be willing to surrender for a one-time transition
out of the disaster state. In the top four panels, agents in the economy know the parameters λ and η.
In the bottom four panels they have posterior standard deviation equal to their point estimates of these
quantities. The benchmark parameters are given in Table 1.
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Table 3: The Value of Information

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.170 0.161 0.114

η̂
0.01 0.865 0.828 0.767

0.05 0.129 0.162 0.139 0.05 0.851 0.832 0.786

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.114 0.094 0.064

η̂
0.01 0.564 0.571 0.488

0.05 0.095 0.106 0.086 0.05 0.404 0.514 0.504

The table shows the fraction of wealth the agent would be willing to surrender for a transition from
partial information to full information (as defined in Table 2) while remaining in the disaster state. The
benchmark parameters are given in Table 1.

Table 4: The Value of Information about Disaster Frequency

Benchmark ψ = 0.20

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 0.001 0.001 0.000

η̂
0.01 0.012 0.002 0.001

0.05 -0.008 -0.000 0.001 0.05 0.079 0.026 0.007

γ = 2 ρ = 0.02

λ̂ λ̂
0.2 0.5 1.0 0.2 0.5 1.0

η̂
0.01 -0.001 -0.000 -0.000

η̂
0.01 0.050 0.015 0.004

0.05 -0.021 -0.007 -0.002 0.05 0.044 0.047 0.023

The table shows the fraction of wealth the agent would be willing to surrender for a transition from
partial information to full information about the disaster intensity η while remaining in the non-disaster
state. The agent is assumed to have full information about λ. The benchmark parameters are given in
Table 1.
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Appendix

A Proofs and Derivations

A.1 Proof of Proposition 1

Proof. For ease of notation, define λ(0) = η,λ(1) = λ. Using the evolution of capital stock
for the representative agent (5) the Hamilton-Jacobi-Bellman (HJB) equation for each state
s can be written:

0 = max
C

[
f (C,JJJ(s))− ρJJJ(s) + JJJq(s)(qµ(s)− C)

+
1
2

JJJqq(s)q2σ(s)2 + ζ(s) [JJJ(s) (q(1 − χ(s)))− JJJ(s)(q)]

+ λ(s)
[
JJJ(s′)(q)− JJJ(s)(q)

]
]
]

(A.1)

for s = {0,1} and s′ = {1,0}.
Taking the first-order condition with respect to C(s) in (A.1), we obtain

fc(C,JJJ(s))− JJJq(s) = 0. (A.2)

Using f (C,JJJ) from (7) and taking the derivative with respect to C, we obtain

fc =
ρC−ψ−1

[(1 − γ)JJJ(s)]
1
θ −1

. (A.3)

Substituting the conjecture JJJ(s) in equation (14) yields

fc =
ρC−ψ−1

H(s)
γ−ψ−1

1−γ qγ−ψ−1
. (A.4)

Then, for state s, we obtain by substituting JJJq(s) = H(s)q−γ in (A.2), and simplifying:

C(s) =
H(s)−θψ−1

q
ρ−ψ (A.5)

which agrees with (13) using the definitions of the constants in (9).
To verify the conjectured form of the value function, we plug it in to the HJB equation

(A.1) and reduce it to the recursive system in the proposition via the following steps:
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1. substitute the optimal policy C(s) into the HJB equation (A.1);

2. cancel the terms in q which have the same exponent; and

3. group constant terms not involving Hs into g(0) for state 0 and g(1) for state 1.

After some rearrangement, we reach equations (10) – (12).

A.2 Proposition 2: HJB System with Parameter Uncertainty

Proof. As noted in the text, the model can be parameterized in terms of the state vari-
ables M, η̂, λ̂, and q, where M = Mt is an integer counter that increases on a state switch
such that M0 = 0 and even numbered states are the non-pandemic epochs and odd num-
bered states are the pandemics. Also, in the non-pandemic states, λ̂ is constant, while
η̂ is constant in pandemics. As a consequence, compared with the derivation above for
the full-information case, there is now only one additional source of variability in each
regime. The dynamics of η̂ are given in (16) with an analogous expression for and λ̂. And
note that, under the agents’ information set, the dynamics of the wealth variable q are
identical to the full information dynamics.

As a result, the HBJ equations under partial information are the same as (A.1) above
(with state 0 and state 1 being replaced by M and M + 1) with the addition of a single
term on the right side:

− (η̂)2

aη

∂JJJ(0)
∂η̂

(A.6)

for s = 0, and

− (λ̂)2

aλ

∂JJJ(1)
∂λ̂

(A.7)

for s = 1. Since, under the agent’s information set, the state switches are a point-process
with instantaneous intensities η̂ and λ̂, these quantities also replace their full information
counterparts, η and λ, in multiplying the jump terms in the respective equations.

The next steps in the derivation involving the first order condition for optimal con-
sumption are unchanged from the full-information case. Replace JJJ by the conjecture
q1−γ

1−γ H(η̂, λ̂, M), then a common power of q term is cancelled, and the whole equation
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is divided by H. These manipulations lead to the above two terms becoming the right-
most terms in (18) and (19), which are otherwise identical to the full-information system
(11) and (12).

A.3 Pricing Kernel, Riskless Rate and Proposition 3

This section first derives the pricing kernel and riskless rate under partial information.
The results are then used to prove Proposition 3 Section 5.2 which describes the pricing
equation of insurance against a disaster.

Under stochastic differential utility, the kernel can be represented as

Λt = e
∫ t

0 fJJJdu fC (A.8)

where the aggregator function is given in (7). With the form of the value function and
the optimal consumption rule from Section 4.2, evaluating the partial derivatives yields
(after some rearrangement)

Λt = q−γ H(η̂, λ̂, M) e
∫ t

0 [cu (θ−1)−ρθ]du (A.9)

where c = c(η̂, λ̂, M) ≡ C/q is the marginal propensity to consume.
The riskless rate is minus the expected rate of change of dΛt/Λt under the agents’

information set. Applying Itô’s lemma, for even values of M, the expected change is

c (θ − 1)− ρθ − γ(µ − c) +
1
2

γ(γ + 1)σ2

− (η̂)2

aη

1
H

∂H
∂η̂

+ η̂

(
H(M + 1)

H(M)
− 1

)
.

A key simplification is to observe that, by the HJB equation derived above (see (18)), the
latter two terms in this expression can be replaced by g0 − θ

ψ c. This causes all of the terms
involving c to exactly cancel. Using the definition of g0 in (10), the remaining terms are
just −µ + γσ2. Hence we have shown

r0 = µ − γσ2.
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Repeating the above steps for odd values of M and applying the same trick yields

r1 = µ − γσ2 − ζχ(1 − χ)−γ.

Turning to the insurance claim, the asset is assumed to make a terminal payout of 1.0 upon
the occurrence of the next disaster. Proposition 3 characterizes its price in normal-times
prior to that disaster.

Proof. We conjecture that the price, P, of the insurance is not a function of wealth, q.
Moreover, when s = 0, the state variables aη, aλ, and λ̂ are all fixed, and η̂ evolves deter-
ministically according to (16).

By the definition of the pricing kernel, for any claim in the economy, its instantaneous
payout per unit time (in this case, zero) times Λ must equal minus the expected change
of the product process PΛ, or

L(Λ(qt, st, η̂t) P(st, η̂t))/Λt = 0, (A.10)

where L(X) is the drift operator E[dX]/dt under the agents’ information set.
Using Itô’s lemma for jumping processes to expand the expected change,

− (η̂)2

aη

∂P
∂η̂

+ µΛ P + η̂

(
H(M + 1)

H(M)
− P

)
= 0

where we have written µΛ for the deterministic terms in dΛt/Λt and used the fact that
P(M + 1) = 1.

Next, add and subtract η̂(H(M+1)
H(M)

− 1)P and use the fact that the expected growth rate
of the pricing kernel is minus the riskless rate:

r0 = −µΛ − η̂

(
H(M + 1)

H(M)
− 1

)
to get (20):

− (η̂)2

aη

∂P
∂η̂

− r0P + η̂
H(M + 1)

H(M)
(1 − P) = 0.
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