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Financial Intermediaries and Contagion in Market Efficiency:
The Case of ETFs

Abstract

We propose that intermediaries’ capital constraints cause contagion in the pricing efficiency for assets

they manage. We use a simple model to demonstrate this idea for ETFs and their lead market makers

(LMMs). Empirically, we show significant comovement in premia for ETFs with the same LMM,

which exceeds that in ETFs without a common LMM. The comovement is not due to style or region

effects, and is stronger for more capital-constrained LMMs. Around the debt-market disruptions

of COVID-19, the non-fixed-income ETFs of LMMs more active in fixed income experience greater

premia. Overall, intermediaries’ constraints indeed influence comovements in market efficiency.

JEL classification: G12, G14, G21, G23
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How do financial intermediaries affect asset prices? This issue has gathered considerable momentum

in recent years. An important development has been to link asset prices and risk premia to frictions

in financial intermediation. Empirical work that supports intermediary-based asset pricing includes

Adrian, Etula, and Muir (2014) and He, Kelly, and Manela (2017), who construct a proxy for an

intermediary stochastic discount factor (SDF) that explains cross-sectional variation in asset returns.

There is ongoing debate, however, on the reasons for the connection between intermediary balance

sheet capacity and asset returns. One challenge is the issue of confounding effects. For example,

some argue that the relation between intermediary balance sheet capacity and asset prices might in

part be driven by macroeconomic factors, time-varying sentiment or risk aversion (Baron and Xiong

(2017); Gomes, Grotteria, and Wachter (2019); Santos and Veronesi (2022)).

We pursue an alternative rationale for how financial intermediaries affect prices by proposing

that they can cause contagion in market efficiency. Specifically, we consider the idea that capital

constraints of intermediaries influence commonalities in pricing efficiencies across markets where

the intermediaries have a key presence. We first develop a simple model of such contagion, and then

use exchange-traded funds (ETFs) as a laboratory to test whether sharing a common intermediary

enhances comovements in pricing efficiency (as measured by the pricing discrepancy between ETFs

and their underlying portfolios).

Why study the ETF market? There are three reasons. First, since each ETF is assigned an

intermediary (lead market maker, or LMM), this market allows us to differentiate intermediary-

specific capital constraints from aggregate funding constraints (both observed and unobserved).

We can test a sharper prediction of intermediary asset pricing theories that intermediary-specific

constraints have a larger impact on prices when intermediaries are more likely to be the “marginal”

investor (Baron and Muir (2022)). Second, when compared to other financial assets, pricing efficiency

in ETFs is cleanly defined — the price of ETFs should perfectly replicate the value of their underlying

assets in a frictionless world. Indeed, an ETF premium is an accurate measure of arbitrageurs’

expected return, a key object in asset pricing. Thus, ETF arbitrage offers a powerful setting for

understanding how intermediary-induced frictions affect asset prices, in contrast to realized returns,

which are noisy proxies for expected returns (Merton (1980)). Third, ETFs have grown quickly in

both size and scope. As of the end of 2021, there were 2,570 ETFs in the U.S. with total assets under
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management of around $7.2 trillion.1 The sheer size and economic importance of the ETF market

suggest that understanding ETF pricing efficiency is important.

ETF LMMs, along with other authorized participants (APs), are responsible for ensuring that ETF

prices do not deviate significantly from their net asset value (NAV). If LMMs observe any significant

premium or discount between an ETF’s price and its NAV, they conduct arbitrage activities by taking

long (short) positions on the relatively undervalued (overvalued) side.2 However, arbitrage is capital-

intensive and LMMs are subject to capital constraints. Given that an LMM typically needs to maintain

the law of one price in many ETFs, a natural prediction is that the pricing gap between ETFs and their

constituents should comove across the different ETFs served by the same LMM. The rationale is that if

one ETF experiences a higher level of (absolute) pricing gaps due to an exogenous demand shock, the

LMM will direct more capital towards that ETF to exploit the arbitrage opportunity.3 Consequently,

less capital will be available to maintain the law of one price for the other ETFs the LMM manages.

The model we develop formalizes this economic intuition, and also indicates that a decrease in

LMM capital constraints and the costs of arbitraging ETF pricing gaps reduce comovements in ETFs

managed by the same LMM.4 We test these implications utilizing ETF LMM data for January 2012 to

December 2020.

We measure ETF pricing efficiency using the ETF premium, defined as the absolute value of the

percentage deviation of the price from its NAV. We regress each ETF’s daily premium on the average

counterpart across all ETFs sharing the same LMM, excluding the focal ETF, in our baseline model.

We identify a strong comovement in premium among ETFs sharing the same LMM. The coefficient

estimate on the premium is 1.59 (t-stat. = 17.04), and the estimate is eight times higher than the

corresponding estimate for ETFs not served by the same LMM. This suggests that a one-standard

deviation decrease in the average premium of non-focal ETFs managed by the same LMM leads to a

1.59 bps decrease in the focal ETFs’ premium, equivalent to 7.0% of its standard deviation. Since the
1Source: 2022 Investment Company Factbook.
2The ETF premium can be driven by both demand-side and supply-side factors. Demand-side factors include non-

fundamental shocks or shifts in noise traders’ sentiment. Supply-side factors include aggregate funding liquidity or
intermediary capital constraints, which is the focus of our study.

3LMMs rationally allocate capital to correct ETF prices until the marginal benefit of arbitrage per unit of capital is
equalized across different ETFs. When one ETF’s price moves away from its intrinsic value due to exogenous reasons, the
marginal benefit of arbitrage for that ETF becomes greater.

4One potential explanation for the comovement in premia for assets managed by the same LMM could be the
algorithms used for arbitrage are common for all assets managed by an LMM, and different across different LMMs.
However, unlike violations of other parity conditions (such as put-call parity), ETF premium is a model-free measure
for the violation of the law of one price. Hence, the algorithms used to arbitrage on ETF premia should be similar across
different intermediaries. This means that we can reliability attribute the commonality to LMM capital constraints.
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annual dollar trading volume in all ETFs managed by an average LMM is around $528 billion during

our sample period, a one standard deviation decrease in the non-focal average LMM premium results

in an annual dollar savings of $84.0 million to investors who trade ETFs managed by the LMM on

opportune days, and vice versa.5

In our tests, we control for a list of ETF characteristics that may affect the ETF premium. We

include style-day fixed effects, where “style” refers to the detailed style category to which the

focal ETF belongs. The inclusion of this fixed effect helps alleviate the concern that the LMM-level

comovement in ETF premia might be driven by investors’ correlated (time-varying) demand for ETFs

belonging to the same investment style. To further ensure that LMM-level premium comovement is

not driven by commonality in the premium across all ETFs, we orthogonalize the premium with

respect to its non-LMM counterpart, and use the residual premium as our variable of interest in most

of our empirical tests.6 We also investigate whether the ETF premium exhibits excess correlations

in the right tails of the distributions. Intuitively, when the average premium of ETFs managed by

the LMM is large, the LMM likely faces severe capital constraints, which increases the chance of

observing high premia for the focal ETFs. Using a quantile regression approach following Boyson,

Stahel, and Stulz (2010), we find that the focal ETF’s premium has a 16.6% probability of being

above the 90th quantile when the non-focal average LMM premium is also above the 90th quantile,

compared to an unconditional probability of 10% if there were no dependence.

To show that LMMs play a causal role in driving ETF premium comovement, we conduct an

event study around the days when an ETF changes its LMM. A significant fraction of these LMM

change events are due to mergers between two LMMs.7 It can be reasonably assumed that a change

of LMM for an individual ETF is relatively exogenous to the ETF’s unobserved characteristics that

may drive comovement in premia. Using an event-study approach, we find that the focal ETF’s

premium comovement with that of its old LMM reduces significantly from a pre-level of 1.17 bps to

a magnitude of close-to-zero after the ETF switches to a new LMM. The pre- and post-difference in

comovement is 1.03 bps (t-stat. = 4.28). Further, the focal ETF exhibits stronger comovement with
5Our estimate provides a lower bound for the effect of LMM-specific capital constraints on the pricing of ETFs.

The effect of common LMM constraints on ETF premia is removed via the inclusion of style-day fixed effects and the
construction of the residual premium.

6Since our regression models include style-day fixed effects, they already account for comovement in ETF premia due
to systematic factors. However, the difference between style-day fixed effects and using the regression residual is that the
latter allows each ETF to have differential exposure to the aggregate ETF premium.

7For example, Virtu Financial acquired KCG Holdings in July 2017, which accounts for 37% of the LMM switching
events in our sample.
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that of its new LMM after the switch. The comovement with the new LMM increases by a magnitude

of 1.47 bps (t-stat. = 2.95) from its pre-level of 0.24 bps (t-stat. = 1.24). The absence of comovement in

the premium between the focal ETF and the new LMM before the switch and the presence of strong

comovement after the switch, together suggest that our finding is unlikely explained by market-wide

funding constraints that unanimously affect all ETFs.

Next, we examine heterogeneity in ETF premium comovement due to LMM capital constraints.

Intuitively, ETFs with higher return volatility, lower liquidity, and smaller market cap should require

more costly liquidity provision from their LMMs to maintain the law of one price. We interact these

ETF characteristics with the non-focal average LMM premium. We find that the interaction terms

are significantly positive for ETF volatility and illiquidity, and significantly negative for ETF size,

consistent with our conjecture that the premium comovement is stronger for ETFs that are more

costly to arbitrage. We also predict that the comovement should be more pronounced when the

underlying assets of the ETF are more costly to arbitrage. To test this idea, we restrict our sample

to ETFs with U.S. equity as the underlying asset. Aggregating stock-level bid-ask spreads, return

volatility, and lendable supply at the ETF level as proxies of arbitrage costs, we find that the LMM-

level comovement effect is stronger for ETFs with underlying assets in which arbitrage is costlier.

To further examine the role of LMMs, we construct two measures to capture LMM-specific capital

constraints: the total market capitalization of ETFs managed by the LMM, and the number of active

APs for each ETF in a year. We then regress the focal ETF’s premium on the interaction between

the LMM-specific capital constraints and the non-focal average LMM premium. Consistent with

our conjecture, we find stronger ETF premium comovement when the LMM faces more binding

constraints. Moreover, for a smaller sample of LMMs, we construct more direct measures of capital

constraints, utilizing LMMs’ capital position information from the Commodity Futures Trading

Commission (CFTC), as well as changes in individual LMMs’ net worth during a short window

around earnings announcements. Consistently, in periods with tightening of LMM-specific capital

constraints, we observe a stronger comovement in the premia of ETFs intermediated by these LMMs.

To provide causal evidence that LMM-specific capital constraints drive comovement in ETF

pricing inefficiencies, we conduct a difference-in-differences (DiD) test around the onset of COVID-

19, using the fact that fixed income ETFs experienced unprecedented large discounts during the

COVID-19 market sell-off (Falato, Goldstein, and Hortaçsu (2021); Haddad, Moreira, and Muir
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(2021)). The advantage of this setting is that COVID-19 pandemic is an exogenous shock that

originates outside the financial sector. The idea is that LMMs who manage relatively more fixed

income ETFs likely experience more binding capital constraints during the COVID-19 pandemic. We

hypothesize that non-fixed income ETFs managed by more constrained LMMs should experience

greater pricing gaps, compared to ETFs that are managed by less constrained LMMs. Our results are

consistent with our prediction. The DiD analysis provides evidence that negative shocks to LMMs’

capital constraints led to greater ETF pricing gaps. The results also have policy implications, as they

show that inefficiencies can spill over across ETF segments via the sharing of common intermediaries.

We conduct several supplementary tests. First, we perform subsample analyses conditional on

aggregate funding constraints. We use four proxies for constraints: the VIX, the credit spread, the

intermediary capital ratio of He, Kelly, and Manela (2017), and the prior month’s stock market return

(Hameed, Kang, and Viswanathan (2010)). Subsample tests reveal that LMM-induced ETF premium

comovement is similarly strong and significant during both periods of tightened and loosening

aggregate funding constraints. This suggests that the role of LMM-specific capital constraints is

independent from the impacts of aggregate funding constraints. Second, we find the premium

comovement effect is larger for ETFs with a style that is different from that of the focal ETF, suggesting

that our finding is unlikely driven by investors’ correlated demands for ETFs tracking the same

investment style. Third, we include additional fixed effects to rule out the possibility that our result is

driven by investors’ correlated demand for ETFs sharing similar characteristics other than investment

style.8 Fourth, we conduct our baseline analysis for ETFs that track different assets, and find that our

central result holds for all types of ETFs except the highly liquid currency ETFs.9 Fifth, we find

the premium comovement is pervasive across ETFs with different geographical coverage, with the

estimated effect ranging from a low of 0.38 for North America to a high of 3.56 for Asia-Pacific ETFs.

Lastly, the results are similar when we control for the average LMM premium in the prior month

and past ETF returns, for both ETF premiums and discounts, for more mature ETFs, and when we

construct value-weighted LMM premia.

One important caveat of our setting is that we focus mainly on LMMs of ETFs. Although an

LMM is an important financial intermediary with a principal obligation to provide liquidity and

maintain the law of one price, an ETF can potentially have other authorized participants (APs) that
8Specifically, we include region-day, exchange-day, issuer-day, and distributor-day fixed effects.
9The LMM-level comovement in ETF premia also exists for a sample of leveraged/inverse ETFs.
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also contribute to liquidity provision. However, the presence of other APs should only weaken the

role of the LMM, and bias us against finding any LMM-level comovement effect. Using information

on APs reported in SEC N-CEN filings, we indeed find evidence that the presence of active APs

mitigates the impact of LMMs’ capital constraints.10

1 Institutional Background and Literature

In Section 1.1, we describe the institutional background of ETF arbitrage and the role of LMMs

in maintaining the law of one price for ETFs. In Section 1.2, we review the related literature and

highlight the paper’s contributions.

1.1 Institutional background of ETF arbitrage

ETFs are passive investment vehicles that seek to mimic the returns of baskets of securities. They

are traded on both primary and secondary markets. On the latter, ETFs are actively traded by

both institutional investors and retail investors, with the price of an ETF determined by supply and

demand. As a result, the price of an ETF can diverge from the NAV of its underlying assets. To

minimize the divergence between the price of the ETF and its NAV, the ETF sponsor reports the NAV

of the ETF’s underlying assets every 15 seconds during the trading day. By doing so, the ETF sponsor

helps facilitate arbitrage across primary and secondary markets.

On the primary market, LMMs, along with other authorized participants (APs), play a critical

role in facilitating the functioning of the ETF ecosystem. They create and redeem ETF units to ensure

that an ETF’s market price and NAV are closely linked. For example, RBC Capital Markets, one of

the LMMs in our sample, mentions that LMMs “fulfill other important roles in addition to providing

liquidity and maintaining market equilibrium – they also help to ensure the market price of each ETF

unit reflects the value of its underlying securities intraday.”11 While other APs can typically trade as

they please, firms acting as LMMs must consistently offer competitive buy-and-sell quotes for their

assigned ETFs, and they receive rebates on exchange fees. As Figure 1 illustrates, when an ETF trades

at a premium relative to the price of the underlying basket of assets, APs buy the underlying assets,

exchange them for “creation units” from the ETF sponsor, and sell those units on the secondary
10Arora et al. (2020) show that the market of authorized participants is highly concentrated, with 8 (3) APs accounting

for around 80% of total gross creations and redemptions of equity (fixed income) ETFs in 2019. The high concentration
suggests that capital constraints may also be an issue for APs if they need to simultaneously manage a large number of
ETFs.

11https://www.rbcgam.com/documents/en/articles/what-is-the-role-of-the-market-maker-for-etfs.pdf.
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market, thereby harvesting the spread between the price of the ETF and that of the underlying assets.

In practice, an AP could buy the underlying basket and simultaneously short the ETF, and reverse the

positions at the end of the trading day. Such arbitrage activity reduces the ETF premium. Conversely,

when the ETF trades at a discount relative to the price of the underlying basket of assets, APs buy

the ETF on the secondary market, redeem them through the ETF sponsor for baskets of underlying

securities, and offload the underlying securities in the market, and such arbitrage activity narrows

the ETF price discount.

On the secondary market, arbitrageurs such as hedge funds and high-frequency traders can take

advantage of the price differential between the ETF and the underlying basket of securities without

accessing the primary market. When the price of the ETF exceeds (falls below) that of the underlying

assets, the arbitrageur can take a long (short) position in the underlying basket of assets, short (go

long in) the more expensive ETF, and wait for prices to converge to realize an arbitrage profit. ETF

prices can also be arbitraged against other ETFs (Petajisto (2017)) or against futures contracts (Richie,

Daigler, and Gleason (2008)). However, such arbitrage trades are exposed to holding costs and

idiosyncratic risk for as long as the arbitrage trade is kept open (Pontiff (2006)). Moreover, short

sales constraints may prevent arbitrageurs from conducting such activities in the first place. For

these reasons, even though arbitrageurs can engage in ETF arbitrage in the secondary market, LMMs

and APs can do so with much lower arbitrage risk.

1.2 Related literature and our contribution

First, our paper is related to the important literature on intermediary-based asset pricing. One

of the key predictions from these studies is that liquidity provision by financially constrained

intermediaries is a main driver of comovement in the pricing efficiency of intermediated assets

(e.g., Adrian, Etula, and Muir (2014); He, Kelly, and Manela (2017)).12 Although prior studies find

supportive evidence for intermediary-based asset pricing, the relationship between intermediary

balance sheet capacity and asset prices could at least partially be driven by macroeconomic factors

or time-varying sentiment or risk aversion (Baron and Xiong (2017); Gomes, Grotteria, and Wachter

(2019); Santos and Veronesi (2022)). Some papers reverse the idea, using the common component of

market inefficiencies as a measure of financial market dislocation and linking it to aggregate funding

12Other related studies on intermediary-based asset pricing include He, Khorrami, and Song (2019); Baron and Muir
(2022); Goldberg and Nozawa (2021); Haddad and Muir (2021); and Macchiavelli and Zhou (2022).
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constraints (Pasquariello (2014); Rösch, Subrahmanyam, and Van Dijk (2017)).

Recent studies emphasize the role of individual intermediaries’ capital constraints on the pricing

efficiency of certain assets. For example, in the foreign exchange market, Du, Tepper, and Verdelhan

(2018) show that deviations from covered interest rate parity are particularly strong for contracts

that appear on banks’ balance sheets at the end of the quarter.13 Utilizing a regulation reform in the

United Kingdom on the leverage ratio of dealers, Cenedese, Della Corte, and Wang (2021) provide

similar evidence. Lewis, Longstaff, and Petrasek (2021) find strong commonality in the mispricing

of corporate bonds guaranteed by the full faith and credit of the U.S. government, which can be

explained by dealer funding costs.

Different from the above studies that focus on mispricing within an asset class, we investigate

pricing efficiency comovement across ETFs tracking all major asset classes, including U.S. equities,

global equities, fixed income securities, commodities, currencies, and real estate. Indeed, a

disaggregated analysis shows that our central result holds in virtually all asset classes. Further, using

the debt market disruption of COVID-19 as an exogenous shock to LMMs’ capital constraints, we

show inefficiency contagion across ETFs tracking different assets via the common LMM link. A key

differentiating factor in our paper is that since the price of an ETF should perfectly replicate the value

of its underlying assets, pricing efficiency in ETFs is cleanly defined. We thus complement previous

work by offering more direct evidence on the causal relationship between financial intermediaries’

capital constraints and the pricing efficiency of intermediated assets.

Our paper also contributes to the burgeoning literature that examines the impact of rising ETFs

on financial markets. Although the introduction of ETFs substantially lowered management fees and

introduced greater intraday trading flexibility for investors, practitioners and academics alike have

expressed concerns about the potential negative effects of ETFs. Some recent evidence suggests that

ETFs can increase systemic risk, induce non-fundamental volatility and excess comovement, and

impede price discovery for individual constituent stocks (Israeli, Lee, and Sridharan (2017); Ben-

David, Franzoni, and Moussawi (2018); Da and Shive (2018)). On the other hand, some studies

document that ETFs can improve the price efficiency of the underlying stocks, by allowing investors

to exploit stock mispricing through hedging (Huang, O’Hara, and Zhong (2021)) and facilitate the

13In untabulated analysis, we find comovement in ETF premia is not significantly higher at quarter ends. This may be
due to the fact that most LMMs in our sample are non-bank intermediaries that are regulated less stringently relative to
banks.
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transmission of systematic information into the underlying stocks’ prices (Bhojraj, Mohanram, and

Zhang (2020); Glosten, Nallareddy, and Zou (2021)). While previous studies mostly focus on the

impact of ETFs on the underlying constituent securities, few examine whether the price formation

process is efficient at the ETF level and what factors may improve or impede the efficient pricing of

ETFs. This is an important question as, like all other assets, ETFs may be subject to non-fundamental

demand shocks that drive prices temporarily away from their fundamental value.

Among the few studies that examine price efficiencies at the ETF level, Petajisto (2017) finds that

ETF prices significantly deviate from their NAVs, particularly for ETFs holding illiquid securities.

Similarly, Bae and Kim (2020) document that illiquid ETFs have large tracking errors. Brown, Davies,

and Ringgenberg (2021) show, theoretically and empirically, that creation and redemption activities

(ETF flows) provide signals of non-fundamental demand shocks and negatively predict future ETF

returns. Pan and Zeng (2019) and Gorbatikov and Sikorskaya (2021) provide evidence that ETF

arbitrage is limited by the balance sheet space constraints of authorized participants. Our paper

focuses on the comovement in ETF premia, instead of focusing on the level of the premium.14 We

find that this comovement is higher for LMMs with more severe capital constraints, which confirms

a link between the efficacy of intermediation and market efficiency.

Finally, our study is also related to the literature on the excess return comovement among firms

or funds sharing similar characteristics, such as firms headquartered in the same state (Pirinsky

and Wang (2006)); stocks belonging to the same indices (Barberis, Shleifer, and Wurgler (2005);

Greenwood (2008); Boyer (2011)); stocks priced at similar levels (Green and Hwang (2009)); firms

covered by similar sets of analysts (Israelsen (2016)); stocks held by a common set of mutual funds

(Anton and Polk (2014)); stocks that pay dividends (Hameed and Xie (2019)); and hedge funds

sharing the same prime broker (Chung and Kang (2016)). Boyson, Stahel, and Stulz (2010) find

strong evidence of negative return contagion across hedge fund styles. One issue in interpreting

these excess return comovement studies is that it is often challenging to establish whether the return

comovement is indeed excessive (Grieser, Lee, and Zekhnini (2020)). The advantage of our setting

is that we can directly observe a model-free measure of pricing efficiency, which allows us to rule

out fundamental or information-based explanations for the comovement in ETF premia. Moreover,

14Broman (2016) documents comovement in ETF premia across ETFs with similar investment styles, which can be
attributed to investors’ correlated demand for ETFs tracking the same investment styles. Our paper instead focuses on the
liquidity provision role of LMMs in driving comovement.
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differing from previous studies that focus on the demand-side factors in driving return comovement,

we focus on the supply-side by examining the liquidity provision role of LMMs.15

2 The Model

In this section, we present a simple model that serves as the basis for our empirical tests. All proofs,

unless otherwise stated, are in Appendix A.

2.1 The setting

We use a setting with two dates, denoted as 0 and 1. Investors trade at Date 0, and consume at Date 1.

There are two markets: the underlying asset market (termed the “stock market”) and the ETF market.

The stock market: There are K ≥ 2 stocks; each stock is indexed by κ. At Date 1, stock κ pays a

liquidating cash flow:

Vκ = θκ,

where θκ follow independent and identical (i.i.d.) normal distributions with mean zero and variance

ν. The supply of each stock is normalized to be zero.

A mass M of fundamental investors trades in the stock market. The mth such investor has a

standard exponential utility function given by:

U(Wm1) = −exp(−AWm1),

where Wm1 denotes the wealth at Date 1 and A is a positive constant representing the absolute risk-

aversion coefficient. There is also a group of liquidity traders in the stock market. At Date 0, they

have a liquidity demand zκ for stock κ, where zκ are i.i.d with mean zero and variance µ.

The ETF market: There are two synthetic securities, each representing an ETF indexed by i = 1, 2.

ETF i is constructed based on a subset Si of K̂ stocks. At Date 1, ETF i pays a liquidating cash flow

V̂i =
∑
κ∈Si

θκ.

Since the ETF is effectively a derivative based on the existing stocks, its supply equals zero. For
15The LMM-level comovement in ETF premia implies that the benefits of diversification may be circumscribed for

investors using ETFs for portfolio construction, especially during periods when financial intermediaries have more severe
funding constraints.
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simplicity, we assume that S1 and S2 have no overlap (i.e., S1 ∩ S2 = ∅).

A mass N of fundamental investors trades only in the ETF market. The nth such investor has a

standard exponential utility function given by:

U(Wn1) = −exp(−AWn1),

where Wn1 denotes the wealth at Date 1. There is also a group of liquidity traders in the ETF market.

At Date 0, they have a liquidity demand ẑi for ETF i, where ẑi are i.i.d. normal with mean zero and

variance µ̂.

In our model, fundamental investors and liquidity traders trade in either the stock market or

the ETF market, but not both. This trading restriction can be motivated by investment mandates

(Almazan, Brown, Carlson, and Chapman (2004)), or limited attention (Peng and Xiong (2006)).

Market maker: In our main analysis, we consider a scenario where a single arbitrageur has access

to both the stock and the ETF markets. We refer to this arbitrageur as the “LMM” throughout our

analysis. Furthermore, for the moment, we assume that both ETFs 1 and 2 are served by the same

LMM.

For each ETF i (where i = 1, 2), the LMM chooses to create Yi shares of the ETF and

correspondingly buys Yi shares of each constituent stock in the subset Si, where the value of Yi is

determined endogenously. The LMM incurs a cost for this creation, which is given by Ci = cY 2
i . The

parameter c denotes the cost of arbitrage; it is a reduced form way to capture trading frictions, such

as illiquidity in the underlying stocks and/or the ETF, which require capital commitments. Further,

we assume that the LMM has a limited amount of capital, leading to the capital constraint:

2∑
i=1

Ci ≤ Φ. (1)

Here, Φ > 0 is a constant parameter representing the LMM’s constraint. A lower value of Φ indicates

that the LMM is not well-funded and has a more limited capacity for trading.

In addition, there exists a risk-free asset with a constant gross rate of return and a price set to

unity. The risk-free asset is accessible to all participants in the economy. Finally, for simplicity, we

assume that all the random variables, θκs, zκs, and ẑis, are independent of each other.
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2.2 The equilibrium

Let Qi denote the price of ETF i (where i = 1, 2), and Pκ denote the price of stock κ (where κ =

1, ...,K). The ETF’s NAV is expressed as:

NAVi =
∑
κ∈Si

Pκ.

The ETF’s signed pricing gap is given by Qi −NAVi.

We follow Kyle (1989) to consider the symmetric equilibrium with strategic trading by the LMM.

The starting conjecture for the equilibrium is as follows:

• In the stock market, each of the mass M of fundamental investors submits a demand Xκ for

stock κ according to the following trading strategy:

Xκ = −λPκ, where λ = 1/(Aν).

• In the ETF market, each of the mass N of fundamental investors submits a demand X̂i for ETF

i according to the following trading strategy:

X̂i = −λ̂Qi, where λ̂ = λ/K̂.

• The LMM creates Yi shares of ETF i and buys Yi shares of each constituent stock κ ∈ Si

according to the following strategy:

Yi = G (Q1 −NAV1, Q2 −NAV2) ,

where G(., .) is a function of the pricing gaps in the two ETFs.

We verify and derive the conjectured equilibrium strategies in the proof of Proposition 1. We

define two random variables z̄κ,i and Zi as follows:

z̄κ,i ≡
∑
κ∈Si

zκ

/
K̂, and Zi ≡

ẑi
N

− z̄κ,i
M

.

Thus, z̄κ,i denotes the cross-sectional average liquidity demand for ETF i’s constituent stock κ ∈ Si,
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and Zi denotes the difference between ETF i’s normalized liquidity demand and the average liquidity

demand of its constituent stocks. Henceforth, we refer to Zi simply as the demand shock in ETF

i. Further, to minimize notation, we define a parameter η and two random variables δi and ∆i as

follows:

η ≡ 1

c+ (λ̂)−1(N−1 +M−1)
,

δi ≡ Zi

λ̂+ η(N−1 +M−1)
, and ∆i ≡ Zi

λ̂

[
1−

(
N−1 +M−1

)√ Φ/c

Z2
1 + Z2

2

]
. (2)

Proposition 1 provides the equilibrium prices for the ETF and the underlying stocks.

Proposition 1. If both ETFs are served by the same LMM, the equilibrium prices of ETF i (where i = 1, 2)

and each constituent stock κ ∈ Si are given as follows:

(i) If δ21 + δ22 < Φ/(cη2), then

Qi =
−ηδi + ẑi

Nλ̂
and Pκ =

ηδi + zκ
Mλ

;

the ETF’s pricing gap Qi −NAVi = δi.

(ii) If δ21 + δ22 ≥ Φ/(cη2), then

Qi =
1

Nλ̂

(
−∆i

√
Φ/c

∆2
1 +∆2

2

+ ẑi

)
and Pκ =

1

Mλ

(
∆i

√
Φ/c

∆2
1 +∆2

2

+ zκ

)
;

the ETF’s pricing gap Qi −NAVi = ∆i.

The price of stock κ ̸∈ S1 ∪ S2 is given by: Pκ = zκ/(Mλ).

In the proof of Proposition 1, we show that when the absolute scales of the liquidity shocks, |Z1|

and |Z2|, are sufficiently small such that δ21 + δ22 < Φ/(cη2), the capital constraint for the LMM (i.e.,

Condition (1)) does not bind. In this case, the pricing gap in ETF i is given by Qi − NAVi = δi.

Intuitively, if δi is higher, the LMM has more incentives to create additional shares of the ETF and

purchase more shares of each constituent stock κ (i.e., a higher Yi). Consequently, the price Qi of the

ETF decreases, while the price Pκ of each constituent stock κ increases. Note that the prices Qi and

Pκ do not depend on the premium δj associated with the other ETF j (j ̸= i).
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When |Z1| and |Z2| are sufficiently large such that δ21 + δ22 ≥ Φ/(cη2), the capital constraint for the

LMM (i.e., Condition (1)) binds. In this case, ETF i’s pricing gap is given by Qi −NAVi = ∆i. Now,

the ETF’s price Qi and each constituent stock κ’s price Pκ depend not only on the ETF’s pricing gap

∆i, but also on the pricing gap ∆j associated with the other ETF j. This indicates the presence of a

spillover effect between the two ETFs due to the capital constraint.

We use Proposition 1 to express ETF i’s premium as:16

|Qi −NAVi| =


|δi| if δ21 + δ22 < Φ/(cη2),

|∆i| if δ21 + δ22 ≥ Φ/(cη2).

(3)

We obtain the following results:

Proposition 2. Consider the scenario where both ETFs share the same LMM.

(i) If δ21 + δ22 < Φ/(cη2), then the premium of ETF i, |Qi −NAVi| = |δi|, increases with |Zi|, but does not

depend on |Zj | where j ̸= i.

(ii) If δ21 + δ22 ≥ Φ/(cη2), then the premium of ETF i, |Qi − NAVi| = |∆i|, increases with both |Zi| and

|Zj |.

The premium in ETF i increases with the absolute scale of its own liquidity shock, |Zi|. This is

because a higher |Zi| results in a greater divergence between the price Qi of the ETF and the prices

Pκs of its constituent stocks. The LMM aims to correct this divergence through arbitrage activities,

such as creating more shares of the ETF (i.e., a higher Yi). However, these arbitrage activities come at

a cost, preventing the LMM from completely eliminating the divergence.

When δ21 + δ22 ≥ Φ/(cη2), so that the capital constraint for the LMM (Condition (1)) binds, the

premium of ETF i is also influenced by the liquidity shock in the other ETF j, |Zj |. The reason for

this spillover effect is that a higher |Zj | leads to a higher absolute premium |∆j | for ETF j. The

LMM recognizes this arbitrage opportunity and directs more capital towards ETF j to exploit it.

Consequently, less capital is available to correct the pricing gap in ETF i. In equilibrium, the LMM

16Following Petajisto (2017), we call this measure an ETF premium even though it could be either a premium or a
discount.
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allocates capital rationally to correct the pricing gap in ETFs until the marginal benefit of arbitrage

per unit of capital is equalized across different ETFs.

We quantify the comovement between ETF i’s premium, |Qi −NAVi|, and that of the other ETF j

(where j ̸= i), |Qj −NAVj |, using the following parameter:

β =
Cov(|Qi −NAVi|, |Qj −NAVj |)

Var(|Qj −NAVj |)
,

which represents the slope coefficient in the regression: |Qi − NAVi| = Intercept + Slope × |Qj −

NAVj |+ ϵ for i ̸= j. We obtain the following result:

Proposition 3. When ETFs share the same LMM, there is a positive comovement between the premium of

ETF i, |Qi−NAVi|, and the premium of the other ETF j (where j ̸= i), |Qj −NAVj |; that is, the comovement

parameter β > 0.

The intuition for this proposition is as follows. According to Proposition 2, the premium in ETF

i increases in the absolute scale of its own liquidity shock, |Zi|. In addition, when δ21 + δ22 ≥ Φ/(cη2)

so that the capital constraint for the LMM (Condition (1)) binds, the liquidity shock to ETF j depletes

the arbitrage capital available for ETF i; consequently, the premium of ETF i is also influenced by

the liquidity shock to ETF j. This spillover effect from ETF j to ETF i results in the comovement in

premia across the two ETFs.

The comovement in ETF premia depends on the cost of arbitrage (represented by the parameter

c), return volatility (represented by the parameter ν), and the LMM’s funding condition (represented

by the parameter Φ). We obtain the following result:

Corollary 1. When ETFs share the same LMM, the comovement parameter β converges to zero either as the

cost of arbitrage c → 0, or return volatility ν → 0, or as the LMM becomes increasingly well-funded, i.e.,

Φ → ∞.

Intuitively, if it costs little to arbitrage (i.e., c → 0) and/or the LMM is well-funded (i.e., Φ → ∞),

then the liquidity shock in ETF j does not materially deplete the arbitrage capital available for ETF

i; consequently, the premium of ETF i remains largely unaffected by the shock. In this case, there

is no spillover effect from ETF j to ETF i, implying no comovement in premia across the two ETFs.

If the return volatility is sufficiently low (i.e., ν → 0), then fundamental investors in the stock and
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ETF markets price stocks and ETFs at their expected payoffs. As there is no pricing gap between an

ETF and its constituent stocks (i.e., |Qi − NAVi| = 0 for i = 1, 2), it holds trivially that there is no

comovement in ETF premia. The setting precludes further analyzing the parameter β other than for

the limiting cases above, necessitating numerical analysis that we present in Section 2.3 below.

The comovement in ETF premia is also influenced by whether ETFs are served by the same or

different LMMs. To see this, consider a scenario where two LMMs have access to both the stock and

the ETF markets, and ETFs 1 and 2 are each served by one of the two LMMs. In this case, the LMM

serving ETF i creates Yi shares of the ETF, and each LMM is subject to its own capital constraint (i.e.,

Ci = cY 2
i ≤ Φ where i = 1, 2). In this scenario, there is no spillover effect; consequently, there is no

comovement in ETF premia. Proposition 4 presents this result formally.

Proposition 4. If ETFs 1 and 2 are served by different LMMs, then there is no comovement between the

premium of ETF i, |Qi − NAVi|, and that of ETF j (where j ̸= i), |Qj − NAVj |; that is, the comovement

parameter β = 0.

2.3 A numerical analysis of comovement in ETF premia

We now use numerical analysis to investigate the comovement between ETF premia. Note that if

ETFs 1 and 2 are served by different LMMs, then there is no comovement between ETF premia, as

indicated by Proposition 4. Therefore, we focus on the scenario where both ETFs are served by the

same LMM.

Figure 2 shows the comovement parameter β as a function of c (the parameter representing the

cost of arbitrage). The other parameter values are A = 2, ν = 1, M = 1, µ = 0.2, K̂ = 25, N = 0.5,

µ̂ = 0.1, and Φ = 0.05.17 The figure provides further support for the findings discussed earlier

(Proposition 3 and Corollary 1). Specifically, if it costs little to arbitrage, indicated by a sufficiently

low value of c, the comovement tends to approach zero (i.e., β → 0). Further, as it becomes costlier

to arbitrage (i.e., a higher c), the comovement between ETF premia becomes more pronounced (i.e.,

a higher β). The reason for this is that in this case, even a minor liquidity shock to ETF j significantly

depletes the available capital that could be used to attenuate the premium of ETF i. This amplifies
17Our value for risk aversion, A = 2, is the same as that used in Leland (1992) and Holden and Subrahmanyam (2002).

The values of the payoff volatility and the mass of stock investors (i.e., ν = 1 and M = 1) are subjective. We set N = 0.5
to represent a significant mass of ETF traders, and µ = 0.2 and µ̂ = 0.1 to represent a substantial scale of noise trades in
both the stock market and in the ETF market. We let K̂ = 25 so each ETF tracks a sufficiently large number of stocks, and
Φ = 0.05 so the LMM is not well-funded and has a limited capacity for trading. We have verified that our results are robust
to a range of parameter choices.
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the comovement in ETF premia.

In Figure 3, we consider the comovement parameter β as a function of ν (the parameter

representing return volatility), fixing c = 1. It is evident that as return volatility increases, the

comovement between ETF premia becomes more pronounced (i.e., a higher β). The reason for this

is as follows. In our model, fundamental investors assist the LMM in attenuating the premium. As

return volatility increases, risk-averse investors in a particular ETF (say j) become more cautious and

absorb the liquidity shock in j less effectively. This amplifies the spillover effect from ETF j to ETF i,

resulting in a higher degree of comovement between the premia.

Finally, in Figure 4 we show β as a function of Φ (the parameter representing the LMM’s capital

constraint), fixing c = 1 and ν = 1. We find that as the LMM becomes more capital-constrained (i.e.,

as Φ decreases), the comovement between ETF premia becomes more pronounced. As in Figure 2,

the reason is that liquidity shocks to ETF j materially affects the capital to attenuate the premium of

ETF i. Consequently, comovement gets amplified.

2.4 Empirical implications

Based on our theoretical analyses, we formulate and test four main hypotheses. These, along with

references to the supporting corollaries and/or figures, are provided below:

(i) There is positive comovement between the premia of ETFs that are served by the same LMM.

By contrast, there is little comovement between the premia of ETFs that are served by different

LMMs (Propositions 3 and 4).

Further, the comovement between the premia of ETFs that are served by the same LMM is more

pronounced if

(ii) arbitrage is more costly (Corollary 1 and Figure 2),

(iii) constituent stocks have higher return volatilities ((Corollary 1 and Figure 3), and

(iv) the LMM has stronger capital constraints (Corollary 1 and Figure 4).

3 Data and Summary Statistics

In this section, we provide detailed descriptions of the data and the main variables. We also consider

time series patterns in ETF premia.
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3.1 Data

Our ETF LMM data are from ETF Global, which covers all ETFs listed in the U.S. with no survivorship

bias. ETF Global offers detailed ETF data including the NAV, share price, shares outstanding, flows,

bid/ask prices, volume, inception date, and LMMs of ETFs. Our sample period is from January 1,

2012 to December 31, 2020. We verify the data (and correct any data errors) on ETF prices, shares

outstanding, and bid-ask spreads using data from CRSP security files. We confirm the ETF NAV

information using CRSP mutual fund data. We exclude leveraged and inverse ETFs from our main

sample, but later show that our main finding also obtains for these ETF types. After excluding

ETFs with missing LMM information,18 our final sample includes 3,848 ETFs with broad geographic

coverage including Emerging Markets, Developed Markets, Asia-Pacific, Europe, Global Ex-U.S.,

Global, and North America. In terms of asset class coverage, around 70% of the ETFs are equity

ETFs, with the remaining being commodity, currency, fixed income, real estate, and multi-assets.

Table IA.1 in the Internet Appendix lists the LMMs in our sample. There are 18 LMMs and their

names match those provided by NYSE Arca.19 Some LMMs in our sample are broker-dealers, such as

Goldman Sachs and Credit Suisse, while others are market makers affiliated with hedge funds, such

as Citadel Securities and Jane Street.

3.2 Construction of variables

Our main variable of interest is the premium of an ETF, calculated as (ETF Price − ETF NAV)/ETF

NAV.20 Since the absolute deviation of ETF price from its NAV, regardless of the direction, determines

an LMM’s arbitrage opportunities, we consider the absolute value of the ETF premium, raw

|Premium| in our analysis. To make sure the comovement in ETF raw |Premium| is not simply

driven by aggregate funding constraints, we orthogonalize each ETF’s raw |Premium| with respect

to its non-LMM raw |Premium|, by estimating the following regression21:

raw |Premium|i,t = b0 + b1 non-LMM raw |Premium|i,t + ϵi,t, (4)

18Observations with missing LMMs account for around 10% of the whole sample and are more prevalent after 2019 and
for ETFs with a shorter history. Our robustness tests show that our key result is unlikely driven by missing LMMs in the
ETF Global dataset.

19https://www.nyse.com/products/nyse-arca-market-making.
20We use end-of-day closing prices and NAVs of each ETF to calculate the premium.
21All our results continue to hold when we use the ETF raw premium as the variable of interest. These results are

available upon request.
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where non-LMM raw |Premium|i,t is the average raw |Premium| across all ETFs managed by LMMs

that are different from that of the focal ETF i. For each ETF, we use the full sample to estimate

Equation (4) and take the regression residual ϵi,t as the main variable of interest, |Premium|i,t.

Essentially, we allow each ETF to have a differential exposure to market-wide factors that influence

ETF premia.

In our empirical analyses, we control for several ETF characteristics.22 Log(Size) is the natural

logarithm of an ETF’s market capitalization. Turnover is the daily dollar trading volume of an ETF

scaled by its market capitalization (in percent), estimated using data from the prior 30 days. BidAsk

is the difference between ask and bid quotes scaled by the average of bid and ask quotes (in bps),

estimated using data from the prior 30 days. STD is the standard deviation of daily ETF returns

estimated using data from prior 30 days. Summary statistics for our main variables are in Table

1. The mean and standard deviations of ETF raw |Premium| are 25.5 and 32 bps, respectively. By

construction, ETF |Premium| has a mean close to zero. The standard deviation of |Premium| is

large with a magnitude of 22.8 bps, suggesting that a large degree of variation in |Premium| is not

explained by market-wide factors that influence the premium. The last columns in Table IA.1 show

the average ETF raw |Premium| by LMMs. There is considerable cross-sectional variation in the

average raw |Premium| across different LMMs, ranging from the tightest 5 bps to 48.4 bps.

We also construct two measures to capture time-varying LMM-specific capital constraints.

Log(Mktcap of ETFs) is the natural logarithm of the total market capitalization of ETFs managed

by the LMM. #Active AP is the number of active APs for the ETF in a given year, as reported in form

N-CEN. To control for aggregate funding constraints, we include several macroeconomic variables.

V IX is the CBOE volatility index; the credit spread (CS) is the difference between Moody’s BAA

yield and the yield on 10-year constant maturity Treasury bond; and HKM is the intermediary

capital ratio of He, Kelly, and Manela (2017).

3.3 Time series patterns

We first investigate aggregate patterns in ETF premia. Panel A of Figure 5 shows the number and total

size of ETFs (in billions USD) managed by an average LMM in our sample. The figure shows that on

average, the total assets under management (AUM) of ETFs managed by an average LMM increased

22Appendix B provides a detailed description of main variables used in the paper.
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from $106 billion to $226 billion from 2012 to 2020 (as indicated by the blue line). This aggregate

trend suggests that LMM-managed ETF market cap is growing over time, and if LMM capital does

not grow at the same pace, LMMs face tightening capital constraints. In Panel B of Figure 5, we

plot the average raw and residual |Premium| along with the CBOE Volatility Index (VIX). We find

a strong comovement between VIX and the average raw |Premium|, with a correlation coefficient

of around 0.6. Since the raw |Premium| is a proxy for the expected returns from ETF arbitrage, the

pattern is consistent with the notion that expected returns from liquidity provision and arbitrage

opportunity increase with aggregate uncertainy (VIX). The time-series variation in raw |Premium|

is consistent with Nagel (2012), in which he shows that expected returns from liquidity provision in

equity markets are highly predictable from the VIX. In contrast to the time-varying pattern of raw

|Premium|, the green line plots the average residual ETF |Premium| over time. It is clear from the

figure that the residual |Premium| is quite stable throughout the sample period, suggesting that the

measure of residual |Premium| mostly captures the idiosyncratic components of ETF premia.

4 Main Results on Comovements in ETF Premia

In Section 4.1, we conduct a baseline analysis investigating comovement in pricing efficiency for ETFs

sharing the same LMM (implication (i) of Section 2.4). We supplement the baseline panel regression

results with quantile regression analysis in Section 4.2 and event studies based on ETFs switching

LMMs in Section 4.3.

4.1 Baseline regression

Our first test is to run panel regressions of each ETF’s daily |Premium| on the equally weighted

average |Premium| of all ETFs sharing the same LMM, controlling for a set of ETF characteristics

that may affect the ETF |Premium|. This regression framework has been used to test excess return

comovement among stocks sharing similar characteristics (Pirinsky and Wang (2006); Green and

Hwang (2009)). The regression specification is as follows:

|Premium|i,j,t = β0 + β1 LMM |Premium|i,t + β2 non-LMM |Premium|i,t

+ β3 Xi,t + αi + γj,t + ϵi,t, (5)
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where LMM |Premium|i,t is the average daily |Premium| across all ETFs (excluding the focal ETF

i itself) that share the same LMM as the focal ETF. In some specifications without time-fixed effects,

in order to absorb any residual comovement due to market-wide factors, we also control for non-

LMM |Premium|i,t, which is the average |Premium| of all ETFs served by an LMM that is different

from that of the focal ETF. Xi,t denotes a set of control variables, including ETF size (Log(Size)), ETF

turnover (Turnover), ETF bid-ask spread (BidAsk), and ETF return volatility (STD). To facilitate

comparison, we standardize all independent variables to have a mean of zero and a standard

deviation of one. The observations are at the ETF-day levels. In most specifications, we also

include ETF fixed effects (αi) and Style×Day fixed effects (γj,t), where Style denotes the detailed

style category to which the ETF belongs. Note that the inclusion of Style×Day fixed effects absorbs

any time-varying change in ETF premia at the style level, and hence also absorbs the non-LMM

|Premium|i,t. This helps address two endogeneity concerns. First, the LMM-level comovement in

ETF premium could be driven by investors’ correlated (time-varying) demand for ETFs belonging to

the same investment style (Broman (2016)). Second, ETFs whose underlying constituents are in the

same style might become more costly to arbitrage in certain periods.

Table 2 reports the results. T -statistics are based on standard errors double clustered at the ETF

and Day levels. Columns (1) to (4) consider the raw |Premium|, while columns (5) to (8) the residual

|Premium|. Across different specifications, the coefficients on LMM |Premium|i,t are significantly

positive. For example, column (1) shows that the coefficient on LMM raw |Premium|i,t is 8.34 bps (t-

stat. = 20.21), when estimated without any fixed effects. This suggests that a one-standard deviation

increase in LMM raw |Premium|i,t is associated with an 8.34 bps increase in the focal ETF’s raw

|Premium|. By contrast, the coefficient on Non-LMM raw |Premium|i,t is less than one-eighth of that

on LMM raw |Premium|i,t at 0.95 bps (t-stat. = 2.69). The last two rows of Table 2 show a significant

difference between the coefficients of LMM raw |Premium|i,t and non-LMM raw |Premium|i,t. We

next add a set of ETF characteristics and the ETF fixed effects. The results in column (2) show that the

coefficient of LMM raw |Premium|i,t decreases slightly to 6.85 bps (t-stat. = 29.52). When we include

both the Style×Day and ETF fixed effects, the results in column (4) show that the coefficient of LMM

raw |Premium|i,t is 1.94 (t-stat. = 10.65). The declining pattern in the coefficient estimates of LMM

raw |Premium|i,t suggests that a non-trivial part of the comovement in ETF premia is driven by

market-wide factors. One caveat is that part of the market-wide factors could be driven by LMMs’
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systematic capital constraints. Hence, our estimate in column (4) provides a lower bound for the

effect of LMM-specific capital constraints on the comovement in ETF premia.

Focusing on the coefficients on the control variables, we find that the estimates are consistent with

theories of limits to arbitrage (Shleifer and Vishny (1997)). For example, the negative coefficient on

Log(Size) in column (4) suggests that larger ETFs have lower premia, potentially because there are

more arbitrageurs in the secondary market for larger ETFs. The positive coefficient on the bid-ask

spread (BidAsk) indicates that ETF premia are greater for ETFs with lower liquidity, consistent with

the evidence in Bae and Kim (2020). Similarly, the positive coefficient on STD is consistent with

the notion that, when the ETF return is more volatile, it is more costly for arbitrageurs to take large

arbitrage positions. As a result, the premia are higher for such ETFs.

We next run the same regressions using the residual |Premium|, which further accounts for

each ETF’s differential exposure to market-wide influences on ETF premia. Across all specifications,

we find in columns (5) to (8) that the coefficients on LMM |Premium|i,t are positive and highly

significant, while that on non-LMM |Premium|i,t becomes insignificant. Importantly, since the

residual |Premium|i,t already removes the effects of market-wide influences, the coefficient estimates

of LMM |Premium|i,t are quite stable across different specifications, with estimated coefficients

ranging from 1.58 to 2.12 bps. In terms of economic magnitude, when both the ETF and Style×Day

fixed effects are included, the coefficient on LMM |Premium|i,t in column (8) suggests that a one

standard deviation increase in LMM |Premium|i,t is associated with a 1.59 bps increase in the focal

ETF’s residual |Premium|. Since the standard deviation of residual |Premium| is 22.8 bps, a 1.59 bps

is equivalent to 7.0% of its standard deviation. Given that for our sample, the annual dollar trading

volume of all ETFs managed by an average LMM is around $528 billion, a one-standard-deviation

decrease in LMM |Premium| results in an annual dollar savings of $84.0 million for investors who

trade ETFs managed by the LMM on opportune days, and vice versa.

Overall, the baseline results are consistent with our hypothesis that there is a strong comovement

in the premia of ETFs served by the same LMM. Since the residual |Premium| mainly captures

the idiosyncratic component of ETF premia, we focus on the residual |Premium| as the variable

of interest in the subsequent analyses to provide insight on the importance of LMM-specific capital

constraints. All the empirical results are robust when estimated using the raw |Premium|, and are

sometimes even stronger than the results based on the residual |Premium|.
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4.2 Tests of contagion in the right tails of ETF premia

The results in the previous subsection indicate that there is excess comovement in the |Premium|

of ETFs serviced by the same LMM. We next investigate whether ETF |Premium| exhibit excess

correlations in the right tails of their distributions. The rationale for this test is that when the

average |Premium| of ETFs managed by the LMM is very large, the LMM likely faces severe capital

constraints, which increases the chance of observing very high premia for the focal ETFs. We use

two different approaches for the investigation. The first approach uses quantile regressions, which

make it possible to estimate the probability of a given ETF |Premium| falling in a particular range,

conditional on the |Premium| of all other ETFs sharing the same LMM. The second approach uses a

linear probability estimation. The two approaches provide consistent results.

4.2.1 Co-dependence in ETF and LMM premia – a quantile regression approach

We first visually show the existence of contagion in ETF premia using a “comovement box” approach

as in Boyson, Stahel, and Stulz (2010). Their quantile regression estimates the conditional probability

that a random variable y falls below (or above) a given quantile conditional on a different random

variable x also falling below (or above) the same quantile. The estimated co-dependence is plotted in

a box, which is a square of unit side with the conditional probabilities plotted against the quantiles.

When the plot of the conditional probability lies above (below) the 45-degree line, which represents

the unconditional probability of no dependence between the variables, there is evidence of positive

(negative) conditional comovement between x and y. In our analysis, y represents the residual

|Premium| of a focal ETF, while x is the equally-weighted average residual |Premium| on all other

ETFs managed by the same LMM (LMM |Premium|). Results from the analysis are presented in

Figure 6. To construct the figure, we calculate the probabilities in 5% increments between the 5th

and 95th quantiles. The blue line denotes the 45-degree line, and the red line denotes the actual

conditional probability distribution estimated using the residual ETF |Premium|.

The figure shows that the plot of the conditional probability always lies above the 45-degree line.

It provides strong evidence that the conditional probability of an ETF having a |Premium| below (or

above) any quantile is increased significantly when the LMM |Premium| is also below (or above) the

same quantile. Importantly, the difference between the two plots of probability estimates is larger at

the right tails of the distribution. For example, at the 90th quantile, the focal ETF’s |Premium| has a
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16.6% probability of being above the 90th quantile when the LMM |Premium| is also above the 90th

quantile, compared to an unconditional probability of 10% if there were no dependence.

4.2.2 Tests of contagion in the right tails of ETF premia using a linear probability model

The previous results provide evidence of contagion in the ETF |Premium|, especially at the right

tails of the distributions. In this subsection, we use a linear model for the probability of observing

an extremely large ETF |Premium| conditional on whether its LMM |Premium| also experiences an

extremely large |Premium|.

To conduct this test, we first use a 90% cutoff of the overall distribution of |Premium| to

identify extreme levels of ETF premia. The dependent variable is a dummy variable that equals

one if the focal ETF’s |Premium| is higher than the 90th percentile cutoff, and zero otherwise. To

measure the extent of clustering of extreme ETF premium at the LMM level, we add an indicator

variable, D(LMM |Premium| > 90th percentile), that equals one if the LMM |Premium| is above

its 90th percentile cutoff, and zero otherwise. We include the same set of control variables as

in Equation (5), and use a linear probability model (instead of a logit model) for estimation, in

order to accommodate various fixed effects. Results are reported in Table 3. The coefficients on

D(LMM |Premium| > 90th percentile) are always positive and statistically significant, providing

strong evidence that extreme premia cluster in ETFs sharing the same LMM. Economically, the

coefficient estimates suggest that the probability of a focal ETF’s |Premium| being in the top decile

increases by an additional 2.4% to 5.7% when its LMM |Premium| is also in the top decile. These

results are consistent with the comovement box in Figure 6.

4.3 Identification based on ETFs switching LMM

Our panel regression results show a strong comovement in the idiosyncratic component of ETF

|Premium| among ETFs sharing the same LMM. One might be concerned, however, that the

comovement in ETF premia is driven by self-selection of LMMs. That is, LMMs select the list of

ETFs to make markets based on some unobservable (to an econometrician) ETF characteristics, and

these ETF characteristics may lead to comovement in ETF premia due to correlated investor demand

or time-varying arbitrage costs. To show that LMMs play a causal role in the comovement of ETF

premia, we conduct event studies around the days when ETFs change their LMMs. A significant

fraction of these LMM change events are due to mergers between two LMMs. For example, Virtu
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Financial acquired KCG Holdings in July 2017, which accounts for 37% of the LMM switching events

in our sample. Thus, we can reasonably assume that a change of LMM for an individual ETF is

relatively exogenous to the ETF’s unobserved characteristics that drive comovement in ETF premia.

We identify 1,264 events where an ETF changed its LMM. We choose a window of [−120, 120]

trading days, with day 0 as the date on which the ETF changed its LMM. We then regress the residual

|Premium| on the average residual |Premium| of ETFs that are managed by the focal ETF’s previous

and new LMMs. In Figure 7, we plot the regression coefficients of LMM (raw) |Premium|i,t around

the event days, where the coefficient for each event day is estimated using the [−3, 3] trading day

window surrounding it. The upper graph in the figure shows the regression coefficients estimated

using the raw |Premium| and the lower graph shows the estimations for the residual |Premium|.

The red line indicates the coefficient of the previous LMM (raw) |Premium|i,t while the blue line

indicates the coefficient of the new LMM (raw) |Premium|i,t. The figure clearly shows that, after

an ETF changes its LMM, its premium comoves to a lesser extent with that of ETFs managed by the

previous LMM, while the premium becomes more correlated with those of ETFs managed by the

new LMM.

Next, we confirm this pattern in formal regressions using the specification below:

|Premium|i,j,t = β0 + β1 LMMOld |Premium|i,t + β2 Postt × LMMOld |Premium|i,t

+ β3 LMMNew |Premium|i,t + β4 Postt × LMMNew |Premium|i,t

+ β5 Postt + β6 Xi,t + ϵi,t, (6)

where LMMOld |Premium|i,t (LMMNew |Premium|i,t) is the average residual |Premium| of ETFs

managed by the old (new) LMM before (after) switching. Postt is a dummy variable that equals one

for the days after an ETF changes its LMM. Xi,t denotes the same set of ETF-level controls as those

in Equation (5). In some specifications, we also include macroeconomic factors, returns on the Fama-

French five factors (Fama and French (2015)) and the ten Fama-French industry portfolios to control

for correlated demand shocks to ETFs belonging to the same style or sector (Wahal and Yavuz (2013)).

Table 4 reports the results. Consistent with our predictions, we find that the coefficients on Post×

LMMOld |Premium|i,t are negative and significant across all specifications. Column (1) shows that

the coefficient on LMMOld |Premium|i,t is 1.20, while the coefficient on Post×LMMOld |Premium|i,t
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is -0.92 (t-stat. = -3.48). The economic magnitude suggests that the comovement in the premium with

those of other ETFs served by the previous LMM reduces by around 80% after the ETF switches to a

new LMM. On the other hand, we find the coefficients on Post×LMMNew |Premium|i,t are positive

and significant across all specifications, suggesting that the ETF premium becomes more closely

correlated with those of other ETFs served by the new LMM after switching. Importantly, we find

that the coefficients on LMMNew |Premium|i,t are statistically insignificant across all specifications,

suggesting that the comovement in premia is unlikely driven by the self-selection effects of LMMs.23

Column (1) of Table 4 shows that the coefficient on LMMNew |Premium|i,t is 0.288 (t-stat. = 1.42),

while the coefficient on Post×LMMNew |Premium|i,t is 1.44 (t-stat. = 2.84). Table IA.2 in the Internet

Appendix shows that the results are similar when we exclude LMM switching events due to the

acquisition of KCG by Virtu.

Overall, the absence of comovement before the LMM switch and the presence of strong comove-

ment after the switch between the focal ETF’s premium and that of the new LMM show that the excess

comovement in ETF premia is indeed driven by these ETFs sharing the same LMM.

5 Cross-Sectional Heterogeneity

In this section, we examine the hypothesis that LMM capital constraints have a greater impact on

comovement for ETFs that are more costly to arbitrage (implication (ii) in Section 2.4). To test this

hypothesis, we use specific characteristics of ETFs and, in turn, their constituents as proxies for

arbitrage costs in Sections 5.1 and 5.2, respectively.

5.1 Arbitrage costs of ETFs

When an LMM acts to attenuate the premium in an ETF that is more costly to arbitrage, the ETF

demands a greater capital commitment per unit of attenuation in the premium, resulting in a larger

capital withdrawal from other ETFs. As a result, we should expect to find a stronger comovement

effect for ETFs that are more costly to arbitrage. We use the market capitalization (Log(size)) and

liquidity (BidAsk) of the ETF to capture arbitrage costs (Pontiff (1996); Gromb and Vayanos (2018)).

Our theory suggests that when return volatility (STD) is higher, risk-averse fundamental investors

absorb less liquidity shocks; this increases the comovement in the ETF premia that the LMM needs
23If the results are driven by the selection of LMMs based on unobservable ETF characteristics, we should observe

significant comovement between the premium of the focal ETF and those of other ETFs served by the new LMM prior to
the actual switching date.
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to correct (implication (iii) in Section 2.4). We therefore include return volatility in our analysis.

Columns (1) to (3) of Table 5 report the results when we interact LMM |Premium| with the

relevant ETF characteristics. The results are consistent with our conjecture. Column (1) shows that

the comovement is weaker for ETFs with larger market capitalization. Columns (2) and (3) show

that the effect is more pronounced for ETFs with higher return volatility and higher bid-ask spread,

respectively. The economic effect is also non-trivial. Taking the bid-ask spread as an example, column

(3) shows that for a one-standard-deviation increase in an ETF’s bid-ask spread, the impact of LMM

|Premium| on its own |Premium| is 16.6% greater.

5.2 Arbitrage costs of ETFs’ underlying constituents

Since ETF arbitrage requires LMMs (and other arbitrageurs) to take positions in both the ETF and

its underlying basket securities,24 another cross-sectional prediction is that the comovement effect

should be stronger when the ETFs’ underlying assets are, on average, more costly to arbitrage. To

test this hypothesis, we focus on ETFs with US equity as underlying assets, for which we can access

standard metrics for arbitrage. We use three measures of such costs: the bid-ask spread (Spread CS),

stock return volatility (V olatility), and lendable supply (Supply). We construct stock-level bid-ask

spreads following the approach of Corwin and Schultz (2012).25 We obtain stock lendable supply

(lendable shares divided by total shares outstanding) from the Markit Securities Finance (formerly

Data Explorer) database. Both a higher bid-ask spread and higher return volatility indicate more

severe arbitrage frictions, while a greater lendable supply in the securities lending market indicates

less-constrained short selling. We first aggregate the stock-level arbitrage cost measures to the ETF

level, and then interact these measures with LMM |Premium|i,t, to test the incremental effect of

arbitrage frictions on comovement.

Columns (4) to (6) of Table 5 reports the results. Consistent with our hypothesis, columns (4)

and (5) show that the interactions between LMM |Premium|i,t and Spread CS and V olatility are

significantly positive, and column (6) indicates that the interaction between LMM |Premium|i,t and

24LMMs need to create (redeem) shares of an ETF and simultaneously enter into an opposite direction of trades for the
underlying constituents when the ETF is traded at a premium (discount).

25The Corwin and Schultz (2012) spread estimate is based on two reasonable assumptions. First, daily high-prices are
almost always buyer-initiated trades and daily low-prices are almost always seller-initiated trades. The ratio of high to
low prices for a day therefore reflects both the fundamental volatility of the asset and its bid-ask spread. Second, the
component of the high-to-low price ratio that is due to volatility increases proportionately with the length of the trading
interval while the component due to bid-ask spreads do not. Corwin and Schultz (2012) show via simulations that, under
realistic conditions, the correlation between their spread estimates and true spreads is about 0.9.
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Supply is significantly negative. The economic effect is also meaningful. Taking bid-ask spread as an

example, column (4) shows that for a one-standard deviation increase in the average bid-ask spread

of an ETF’s underlying stocks, the impact of LMM |Premium| on ETF |Premium| is 43% greater.

These results support our hypothesis that the comovement in pricing efficiency is more pronounced

when the LMM faces higher costs in taking arbitrage positions in an ETF’s underlying assets.

6 The Role of LMM-Specific Capital Constraints

In this section, we test implication (iv) of Section 2.4 by examining comovement conditional on LMM-

specific capital constraints. Intuitively, when an LMM faces limited arbitrage capital, the pricing gap

in one ETF managed by an LMM can spill over to pricing gaps in other ETFs for which the LMM

is responsible. Hence, we expect LMM-specific capital constraints to impact comovement in ETF

premia. In Sections 6.1 and 6.2, we consider capital constraints based on specific ETF and LMM

characteristics, respectively. In Section 6.3, we conduct a DiD analysis of ETF premium comovements

around the COVID-19 market sell-off, on the basis that due to the debt market disruptions around

the pandemic, debt-based ETFs suffered increased capital constraints, which would imply greater

spillovers for such ETFs.

6.1 LMM-specific capital constraints based on ETF characteristics

We first use two variables to capture LMM-specific capital constraints based on the characteristics of

ETFs managed by the LMM. Our first measure, Log(Mktcap of ETFs), is the natural logarithm of

the total market capitalization of all ETFs managed by the LMM. The idea is intuitive: if the LMM

needs to simultaneously arbitrage ETFs with larger total market capitalization, then it has less capital

devoted to attenuating pricing gaps for each individual ETF.26

Our second measure is the number of active APs for each ETF in a year. In addition to LMMs, APs

also play an important role in maintaining the law of one price for ETFs. We would expect fewer APs

to imply more stringent capital constraints faced by the LMM. To construct this measure, we collect

information on ETFs’ active APs from SEC N-CEN filings. We create a variable, Log(1/#Active APs),

calculated as the natural logarithm of one divided by the number of active APs, constructed using

filings data from the last fiscal year.
26The total market capitalization of ETFs served by the LMM can also be viewed as a proxy for the LMM’s (in)attention.

However, most ETFs are traded on electronic exchanges, such as NYSE Arca, with LMMs adopting algorithmic trading for
ETFs. For these reasons, attention constraint is unlikely the major reason for the comovement effect we find.
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We interact each of the above measures with LMM |Premium|i,t to estimate the incremental

effect of LMM-specific capital constraints on comovement in ETF pricing efficiency. ETF fixed effects

and Style×Day fixed effects are included in all the regression specifications. Table 6 reports the

results. Consistent with our hypothesis, we find that the interaction terms are significantly positive

for both measures of LMM capital constraints. For example, column (1) reports that the estimated

coefficient on the interaction between Log(Mktcap of ETFs) and LMM |Premium|i,t is 0.319 (t-

stat. = 8.62). The economic magnitude indicates that, for a one-standard-deviation increase in the

Log(Mktcap of ETFs) of an LMM, the impact of LMM |Premium| on the focal ETF’s |Premium| is

18.5% greater.

6.2 LMM-specific capital constraints based on LMM characteristics

Our previous analysis uses ETF characteristics to capture LMM-specific capital constraints, because

most LMMs are private companies with little information about their capital positions. For a small

sample of visible, publicly-listed LMMs, however, we are able to measure their capital constraints

directly using publicly available information, in two ways. First, we use changes in individual

LMMs’ net worth during a short window around earnings announcements to capture negative

shocks to their capital. As argued by Ottonello and Song (2022), negative earnings news leads

to a discontinuity in the equity value of intermediaries that is difficult to anticipate and is less

confounded by omitted variables. Specifically, we define the LMM-specific capital constraint as

a dummy variable that equals one for the three-day window [-1, 1] around the LMM’s quarterly

earnings announcements when the market-adjusted announcement abnormal return is less than -

3%, and zero otherwise. The sample is restricted to the 21-day window [-10, 10] around quarterly

earnings announcements for all publicly traded LMMs, including Credit Suisse, Deutsche Bank,

Goldman Sachs, and Virtu Financial.

Second, we measure an LMM’s capital constraint by computing its net capital ratio (Net Capital

Ratio = Net Capital Required/Adjusted Net Capital). We are able to gather capital positions for five LMMs

in our sample, using data from the Commodity Futures Trading Commission (CFTC).27 This ratio is

closely monitored by the CFTC because it measures the amount of capital a market maker holds (the

denominator) relative to the CFTC’s net capital requirement (the numerator). We expect the ratio to

be larger for more constrained LMMs.
27The five LMMs are Cantor Fitzgerald, Credit Suisse, Deutsche Bank, Goldman Sachs, and RBC Capital Markets.
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We interact these two measures of capital constraints with LMM |Premium|i,t and report the

results in Table 7. In columns (1) to (3), the LMM’s capital constraint is measured by the dummy

indicating its earnings announcement return is less than -3%. We find that the interaction terms

are all significantly positive, indicating a stronger comovement effect for ETFs managed by more

constrained LMMs. The economic effect is also meaningful. For example, column (3) reports that the

estimated coefficient on the interaction between LMM |Premium|i,t and Constraint is 0.487 (t-stat.

= 1.95). This suggests that the impact of LMM |Premium| on the focal ETF’s |Premium| is 35.7%

greater when the LMM experiences negative shocks to its capital.28 In columns (4) to (6), we use the

Net Capital Ratio to capture LMM-specific capital constraints and find similar results. Overall, the

results support our premise; specifically, the comovement is more pronounced when LMM-specific

capital constraints are more binding.

6.3 DiD analysis of the ETF premium during the COVID-19 pandemic

We next conduct a difference-in-differences (DiD) estimation around the COVID-19 market sell-off

in 2020, in order to examine whether intermediary capital constraints amplify comovement in ETF

premia. During that period, the ETF market experienced unprecedented pricing gaps, especially for

fixed income ETFs. In Panel A of Figure 8, we plot the average raw |Premium| for ETFs tracking

different asset classes from January 2020 to June 2020. The shaded area indicates the period when

COVID-19 caused significant financial market turmoil, which runs from February 20, 2020, to April

30, 2020, following Pástor and Vorsatz (2020). As the figure shows, the average absolute premium

for all types of ETFs widened dramatically during the crisis period, with the effect being most

pronounced for fixed income ETFs. The premium for fixed income ETFs increases from 14.9 bps

on February 1, 2020 to 156.7 bps at the peak of the crisis on March 20, 2020. This is consistent with

recent studies documenting a significant disruption to the fixed income market during the COVID-19

pandemic (Falato, Goldstein, and Hortaçsu (2021); Haddad and Muir (2021)). In Panel B of Figure

8, we show that the widening pricing gap mainly manifested as a discount (i.e., the prices of ETFs

traded below their NAV), potentially because ETFs are the asset type that investors chose to liquidate

first in the cash crunch, due to their superior liquidity and trading convenience.

Our DiD test exploits the fact that fixed income ETFs experienced the largest |Premium| during
28We also conduct a test using positive earnings announcement returns as placebo events. Untabulated results show

no significant increase in the LMM-level comovement in ETF premia when an LMM experiences a positive change in its
capital.

30



the COVID-19 pandemic. The idea is that LMMs who need to manage a larger fraction of fixed

income ETFs likely face more binding capital constraints during the pandemic. Our arguments

predict that non-fixed income ETFs managed by more constrained LMMs should experience greater

pricing gaps, compared to non-fixed income ETFs that are managed by less constrained LMMs.29

The advantage of the DiD setting, of course, is that the COVID-19 pandemic is an exogenous

shock that originates outside of the financial sector. As a result, LMMs are unlikely to anticipate the

widening ETF premium during this period, which ensures a close-to-random assignment across the

more and less constrained LMMs. We conduct the DiD estimation using the following specification:

raw |Premium|i,j,t = β0 + β1COV IDt + β2Xi × COV IDt + β3Controli,t + αi + ϵi,t, (7)

where COV IDt is a dummy variable indicating the post-treatment period, which equals one for the

period from February 21, 2020 to April 30, 2020, and zero otherwise. The variable Xi denotes two

proxies capturing the LMM’s fixed income exposure. The first proxy, FI Weighti, is a continuous

treatment variable defined at the ETF level, and is calculated as the market capitalization of fixed

income ETFs managed by the focal ETF’s LMM scaled by the total market capitalization of all ETFs

managed by the LMM. Importantly, we measure FI Weighti at the end of 2019 (i.e., before the start

of the COVID-19 pandemic). Our second proxy is a dummy variable, D(FI Weight > Median),

that defines the treatment sample. D(FI Weight > Median) is an indicator that equals one if the

LMM’s FI Weighti is above the sample median, and zero otherwise. The coefficient of interest is

the interaction between FI Weighti (or D(FI Weight > Median)) and COV IDt, which captures

the spillover effect of LMMs on the |Premium| of non-fixed income ETFs, due to LMMs managing

fixed income ETFs as part of their portfolios. Controli,t denotes the same set of control variables as in

the baseline regression in Equation (5). We also control for ETF fixed effects (αi) in all specifications,

which subsume the effect of FI Weighti.

Our sample period spans January 1, 2020, to June 30, 2020, and Table 8 reports the DiD results. In

the regression for column (1), we only include the COV IDt dummy, which has a coefficient of 21.01

(t-stat. = 7.92). This is consistent with Figure 8, where ETFs on average experienced widening pricing

29It is possible that the large premium for fixed-income ETFs partially reflect significant differences in liquidity between
the ETF and underlying bonds. However, our prediction for the commonality in ETF premium should still hold, since
Coughenour and Saad (2004) provide evidence of commonality in liquidity among stocks handled by the same NYSE
specialist firm.
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gaps during the market sell-off. We next add the treatment variable FI Weighti and its interaction

with COV IDt. Column (2) shows that coefficient of FI Weighti*COV IDt is significantly positive,

consistent with our prediction. In column (3), we find similar results after including control variables

and Style×Day fixed effects in the regression, with the latter absorbing the COV IDt dummy. The

economic effect is also meaningful. For example, the estimated coefficient of FI Weighti*COV IDt in

Column (3) is 4.88 (t-stat. = 1.80). The economic magnitude suggests that for a non-fixed income ETF

managed by an LMM with a 75% weight in fixed income ETFs, the increase in its |Premium| during

the sample period is 2.44 bps higher than ETFs managed by an LMM with only 25% in fixed income

ETFs.

We next conduct a dynamic effect analysis to assess the parallel trend assumption required for

DiD estimation. Specifically, we create time dummies indicating half-month periods around the

COVID-19 outbreak. For example, COV IDt−15,t−1 is a dummy variable that equals one from 15

days before February 20, 2020 to the start of the outbreak on February 20, 2020, and zero otherwise.

COV IDt+1,t+15 and COV IDt+16,t+31 are defined similarly. COV IDt+32,End equals one for the period

from 32 days after February 20, 2020 to the end of the first acute phase of the COVID-19 pandemic

on April 30, 2020. The variables of interest are the interactions of fixed income exposure with these

COVID time dummies. The results in column (4) show that the effect of being managed by an LMM

highly exposed to fixed-income ETFs on |Premium| only becomes significant in the post-COVID-

onset period, and is statistically insignificant before the onset of COVID. Columns (5) to (7) report

similar results when we use the dummy variable D(FI Weight > Median) to define the treatment

sample, as the coefficients of the interaction between D(FI Weight > Median) and COV IDt are

positive and statistically significant and the effect only manifests in the period following the onset of

COVID.

In sum, the DiD test indicates that negative shocks to LMMs’ capital constraints causally lead to

increased ETF pricing gaps. From a policy perspective, the result suggests that inefficiencies in one

segment of the ETF market can potentially spillover to other segments through the common LMM

linkage.
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7 Alternative Explanations and Robustness tests

In this section, we conduct tests to rule out alternative explanations for the comovement effect.

Section 7.1 provides further evidence that the impact of LMM-specific capital constraints is not

explained by aggregate funding constraints. In Section 7.2, we test the premium comovement effect

separately for ETFs with the same or different benchmark/style as the focal ETF. In Section 7.3, we

re-estimate the baseline regression by inserting alternative sets of fixed effects, which help absorb

premium comovement due to ETFs sharing other similar characteristics. In Sections 7.4 and 7.5,

we conduct our baseline tests separately for ETFs covering different regions and tracking different

asset classes, respectively. In Section 7.6, we conduct some additional miscellaneous tests to rule out

confounding effects.

7.1 The impacts of aggregate funding constraints

Our evidence in Section 4 indicates that LMMs play a key role in driving the comovement in premia

for ETFs under their umbrella. However, it is possible that LMMs face more severe capital constraints

when aggregate funding constraints tighten. Accordingly, in this subsection we conduct subperiod

analysis controlling for measures of aggregate funding constraints.

We use the VIX index, the credit spread (CS), the intermediary capital ratio of He, Kelly, and

Manela (2017) (HKM ), and Mktret, the stock market return in the prior month (Hameed, Kang, and

Viswanathan (2010)) as proxies for aggregate funding constraints. Higher values of V IX and CS,

and lower values of HKM and Mktret, indicate tightened constraints. We divide the sample into

halves based on each of these four measures. We then conduct the baseline regression in Equation (5)

for the two subperiods, with High (Low) indicating periods with tightened (loosened) aggregate

funding constraints and Up (Down) denoting market states with monthly returns above (below) the

sample median.

Table 9 shows that the coefficients on LMM |Premium|i,t are positive and significant with similar

economic magnitudes in both periods. For example, columns (1) and (2) show that the coefficients on

LMM |Premium|i,t are 1.517 (t-stat. = 15.51) and 1.618 (t-stat. = 16.48) in subperiods with a low and

high VIX, respectively. The pattern is similar when we use the credit spread (CS), the intermediary

capital ratio (HKM ), and the last month’s market return (Mktret) as proxies for aggregate funding

constraints. Overall, the results suggest that the role of LMM-specific capital constraints in driving
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ETF premia comovement is independent from that of aggregate funding constraints.

7.2 Correlated demand shocks among ETFs tracking the same benchmark/style

Our baseline specification includes Style×Day fixed effects, which help absorb premium comove-

ment due to investors’ correlated demand for ETFs tracking the same investment styles. To further

address this issue, we construct the non-LMM |Premium| for ETFs following the same benchmark as

the focal ETF. Column (1) of Table 10 reports an insignificant coefficient on Non-LMM |Premium|

constructed using ETFs tracking the same benchmark as the focal ETF.30 The lack of premium

comovement among ETFs tracking the same benchmark help identify the unique role played by

LMMs in driving the comovement effect. Next, we further decompose the LMM |Premium| into

two parts: one constructed using ETFs with the same style and another using ETFs with a different

style as the focal ETF. The results in column (2) show that the LMM premium comovement effect is

larger for ETFs with a style different that is from that of the focal ETF. Overall, the evidence indicates

that our results are not due to investors’ correlated (time-varying) demand for ETFs belonging to the

investment style, or tracking the same benchmark.

7.3 Correlated demand shocks for ETFs similar in other dimensions

Investors may have correlated demand for ETFs sharing attributes beyond style or tracking bench-

marks. To address this concern, we add alternative sets of fixed effects in the baseline specification

of Equation (5) and report the results in Table 11. In column (1), we control for Region×Day

fixed effects, where Region refers to the geographical focus of the ETF. This also helps rule out an

alternative explanation that the premium comovement effect arises from the time zone differences

between ETFs’ trading venues and those of their underlying assets. In the regression for column (2),

we include Exchange×Day fixed effects, where Exchange denotes the stock exchange in which the

ETF is listed. In the regression for columns (3) and (4), we include Issuer×Day and Distributor×Day

fixed effects, respectively, where Issuer and Distributor refer to the issuer and distributor of the ETF.

We also control for ETF fixed effects and the same set of ETF-level characteristics as in Equation (5).

Across all specifications, the coefficients of LMM |Premium| remain positive and highly significant.

Thus, overall, the LMM-level comovement in premia is robust to alternative fixed effects.

30Since there are not many ETFs that track exactly the same benchmark, the sample size reduces dramatically for this
test.
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7.4 ETFs with different regional coverage

We further examine ETF premium comovement within regions. As reported in Table 12, comovement

in ETF premia is pervasive across regions, with the estimated coefficients on LMM |Premium|

ranging from 0.38 for North America to 3.56 for the Asia-Pacific region. The economic magnitude

of the estimated coefficients is consistent with the notion that pricing efficiency comovement is

higher for ETFs that are more costly to arbitrage. In particular, columns (1) and (2) show that the

comovement for emerging markets ETFs is 19% higher than that for the developed markets ETFs.

Columns (3) to (6) show that ETFs with the highest level of comovement cover the Asia-Pacific region,

followed by those covering Europe and those excluding the U.S. Not surprisingly, North American

ETFs have the lowest degree of premium comovement. In untabulated results, we find that the

average level of the (absolute) premium is also the highest for Asia-Pacific and Emerging Markets

ETFs, and is the lowest for the North America. The lower comovement in the premium for North

American ETFs may be due to the existence of many (non-LMM) arbitrageurs in this ETF segment,

with the attenuation of the premium being less reliant on LMMs.

7.5 ETFs tracking different asset classes

We next consider premium comovement for ETFs tracking different asset categories, including

equities, fixed income securities, real estate, commodities, currencies, and multiple asset classes.

In Table 13, we find that the LMM-level comovement in ETF residual |Premium| is significant for

all asset categories except currencies. The coefficients of LMM |Premium| range from 0.687 for

currencies to 2.16 for multi-assets. We also conduct the comovement test for the subsample of

leveraged and inverse ETFs.31 Column (7) shows that the coefficient of the LMM |Premium| is 1.16

(t-stat. = 2.16), which is slightly smaller than that observed for our main sample of ETFs. Overall,

however, the findings suggest that the notion of LMMs’ constraints influencing comovement in ETF

pricing efficiencies holds across asset classes.

7.6 Other robustness tests

We present several additional robustness tests in the Internet Appendix. First, in all of our previous

analyses, we exclude ETFs with missing LMMs at the very beginning of the data cleaning stage.

31Lu and Qin (2021) infer the market-wide shadow cost of leverage from the return shortfall between leveraged funds’
daily gross NAV returns and the target multiple of the underlying index returns. Our paper focuses on the difference
between ETF prices and NAVs, which mainly captures pricing efficiency.
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Observations with missing LMMs account for around 10% of the whole sample and are much more

prevalent after 2019 and for ETFs with a shorter history (less than two years old). To show that

excluding ETFs with missing LMMs does not systematically bias our results, in Table IA.3, we

conduct subsample tests as in Table 2, using observations up to the year 2018 and for ETFs with

a history longer than 24 months. Our results are unaltered.

Second, we use the signed ETF premium to examine whether our comovement result is symmetric

across positive and negative premia. Specifically, we define Positive (Negative) Premium as the absolute

value of the ETF premium when the sign of the premium is positive (negative), and zero otherwise.

We then regress the Positive (Negative) Premium of the focal ETF on the corresponding LMM Positive

(Negative) Premium. LMM Positive (Negative) Premium is calculated as the equally-weighted average

Positive (Negative) Premium of all ETFs sharing the same lead market maker, excluding the focal ETF.

Table IA.4 shows that the LMM-level comovement is similar in magnitude for both positive and

negative premiums. For example, column (4) shows that with both ETF and Style×Day fixed effects

included, the coefficient of LMM Positive Premium is 1.099, while the corresponding coefficient of

LMM Negative Premium in column (8) is 0.823.

Third, we control for the average daily LMM (raw or residual) |Premium| in the prior month,

denoted as |Premium|m−1. Because naı̈ve traders could chase past returns and drive ETF premia, we

also include past ETF returns in the regressions as a control. Specifically, Retm−1 and Retm−2,m−12

represent the ETF’s return in the prior month and the cumulative return from the past two to 12

months, respectively. Table IA.5 shows that the coefficients of LMM |Premium| are still positive and

highly significant, for both the raw and residual |Premium|.

Finally, we conduct the baseline test of Equation (5) using the value-weighted versions of LMM

and non-LMM |Premium|, where the weights are given by the total NAV of ETFs as of the end of

the previous month. Table IA.6 shows that the coefficients of LMM |Premium| are still positive and

highly significant, for both the raw and residual |Premium|. Furthermore, the economic magnitudes

of the coefficients on the value-weighted LMM premia are similar to the estimates in Table 2,

indicating that our results are robust to using the value-weighted |Premium|.
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8 Conclusion

How do financial intermediaries affect market efficiency in the assets they manage? In this paper,

we develop a simple model to show that if ETFs share a common lead market maker (LMM), their

pricing differentials (relative to their constituents) exhibit higher comovement than if they do not.

The economic reasoning is that LMM capital constraints cause contagion in the premia across assets

managed by a common intermediary. Empirically, we find strong comovement in the absolute

levels of pricing gaps between ETFs and their underlying assets, among ETFs served by the same

LMM. Additional tests based on changes in ETFs’ LMMs provide causal evidence that the excess

comovement in ETF premium is indeed due to these ETFs sharing the same LMM. Specifically, for

ETFs that change their LMMs, we find that their pricing gaps comove less with those of ETFs served

by their previous LMMs, and more with that of ETFs served by their new LMMs. We also conduct

a difference-in-differences test around the onset of COVID-19, driven by the observation that fixed

income ETFs had large pricing gaps around this event. We find that LMMs that manage relatively

more fixed income ETFs (and thus are likely more constrained) experience greater pricing gaps in

their non-fixed income ETFs.

Our evidence suggests that LMMs play an important role in the pricing efficiencies of ETFs.

Consistent with theories of intermediary-based asset pricing, the comovement in pricing efficiency

among ETFs is less pronounced when the ETF and its underlying constituents are less costly to

arbitrage, and for LMMs with less constrained capital. Our results validate the role of intermediaries

and their capital constraints in the efficiency of financial market prices.
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Appendix A

Proof of Proposition 1: (a) Consider the mass M of fundamental investors who trade the underlying

stocks. Write the mth such investor’s wealth at Date 1 as:

Wm1 = Wm0 +

K∑
κ=1

[Xmκ(Vκ − Pκ)] .

The demand Xmκ maximizes:

E [U(Wm1)] = E

[
−exp

[
−AWm0 −A

K∑
κ=1

[Xmκ(Vκ − Pκ)]

]]

= −exp

[
−AWm0 −A

K∑
κ=1

[Xmκ(−Pκ)] + 0.5A2ν

K∑
κ=1

X2
mκ

]
.

The first order condition (f.o.c.) with respect to (w.r.t.) Xmκ implies that the demand is:

Xκ = −λPκ, where λ = 1/(Aν). (A.1)

The second order condition holds in the above case, and in all other cases below, so let us omit the

reference to it in the rest of the proofs.

For stock κ ̸∈ S1 ∪ S2, the market clearing condition MXκ + zκ = 0, where Xκ = −λPκ from

Equation (A.1), implies that Pκ = zκ/(Mλ). In what follows, we focus on stocks in S1 ∪ S2.

(b) Consider the mass N of fundamental investors who trade the ETFs. Write the nth such

investor’s wealth at Date 1 as

Wn1 = Wn0 +

2∑
i=1

[
X̂ni(V̂i −Qi)

]
.

The demand X̂ni maximizes

E [U(Wn1)] = E

[
−exp

[
−AWn0 −A

2∑
i=1

[
X̂ni(V̂i −Qi)

]]]

= −exp

[
−AWn0 −A

2∑
i=1

[
X̂ni(−Qi)

]
+ 0.5A2K̂ν

2∑
i=1

X̂2
ni

]
.
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The f.o.c. w.r.t. X̂ni implies that the demand is:

X̂i = −λ̂Qi, where λ̂ = λ/K̂. (A.2)

(c) Consider the LMM trading ETF i. The LMM recognizes that with a demand −Yi (which is

equivalent to supplying Yi shares of the ETF) and given that all other investors follow their trading

strategies, the market clearing condition is: NX̂i−Yi+ ẑi = 0, where X̂i = −λ̂Qi from Equation (A.2),

specifies a price:

Qi = ℓ̂Yi +Q−
i , where ℓ̂ = −1/(Nλ̂). (A.3)

ℓ̂ represents the slope of the supply curve for the LMM’s supply Yi specifically, and Q−
i represents

the residual price.

For stock κ ∈ Si, the LMM recognizes that with a demand Yi and given that all other investors

follow their trading strategies, the market clearing condition MXκ + Yi + zκ = 0, where Xκ = −λPκ

from Equation (A.1), specifies the price

Pκ = ℓYi + P−
κ , where ℓ = 1/(Mλ). (A.4)

ℓ represents the slope of the demand curve for the LMM’s demand Yi specifically, and P−
κ represents

the residual price.

Using Equations (A.3) and (A.4), we express the LMM’s payoff, net of the cost, as:

Π =
2∑

i=1

Yi
Qi −

∑
κ∈Si

Pκ

− 0.5cY 2
i


=

2∑
i=1

Yi
(ℓ̂Yi +Q−

i )−
∑
κ∈Si

(ℓYi + P−
κ )

− 0.5cY 2
i

 , (A.5)

with the constraint

2∑
i=1

Ci = c
2∑

i=1

Y 2
i ≤ Φ. (A.6)
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In what follows, we consider two cases: In the first case (d1), Constraint (A.6) is not binding; in the

second case (d2), Constraint (A.6) binds.

(d1) Suppose that Constraint (A.6) is not binding. Consider Equation (A.5), and denote

δi ≡ Qi −
∑
κ∈Si

Pκ. (A.7)

The f.o.c. w.r.t. Yi is expressed as:

δi + Yi(ℓ̂− K̂ℓ)− cYi = 0.

It follows from the previously derived ℓ = (Mλ)−1 and ℓ̂ = −(Nλ̂)−1 and the fact λ̂ = λ/K̂ that

K̂ℓ− ℓ̂ = (λ̂)−1(N−1 +M−1). We express the demand as:

Yi = ηδi, where η =
1

c+ (λ̂)−1(N−1 +M−1)
. (A.8)

The market clearing conditions for the ETF and stock κ, respectively, are:

NX̂i − Yi + ẑi = 0 and MXκ + Yi + zκ = 0.

From the expressions of Xκ, X̂i, and Yi in Equations (A.1), (A.2), and (A.8), we obtain the prices: and

imply the prices:

Qi =
−ηδi + ẑi

Nλ̂
and Pκ =

ηδi + zκ
Mλ

.

Denote

Zi =
ẑi
N

− z̄κ,i
M

, where z̄κ,i =
∑
κ∈Si

zκ

/
K̂.

It then follows from Equation (A.7) that:

δi =
Zi

λ̂+ η(N−1 +M−1)
.
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Note from Equation (A.8) that Yi = ηδi. For Constraint (A.6) to not be binding, the requirement is

that δ21 + δ22 < Φ/(cη2).

(d2) Now suppose that Constraint (A.6) binds; this requires δ21 + δ22 ≥ Φ/(cη2).

In this case, Y 2
1 + Y 2

2 = Φ/c. Treating Y2 as a function of Y1, it follows that dY2/dY1 = −Y1/Y2.

Also from Y 2
1 + Y 2

2 = Φ/c, Π in Equation (A.5) is expressed as:

Π =

2∑
i=1

Yi
(ℓ̂Yi +Q−

i )−
∑
κ∈Si

(ℓYi + P−
κ )

− Φ.

Treat Π as a function of Y1, and denote

∆i ≡ Qi −
∑
κ∈Si

Pκ. (A.9)

The f.o.c. w.r.t. Y1 is given by:

0 = ∆1 + Y1(ℓ̂− K̂ℓ)−
[
∆2 + Y2(ℓ̂− K̂ℓ)

] Y1
Y2

= ∆1 −∆2
Y1
Y2

;

it follows that Y1 = (∆1/∆2)Y2. Using Y 2
1 + Y 2

2 = Φ/c, we obtain

Yi = ∆i

√
Φ/c

∆2
1 +∆2

2

. (A.10)

The market clearing conditions for ETF i and stock κ, respectively, are:

NX̂i − Yi + ẑi = 0 and MXκ + Yi + zκ = 0.

From Equations (A.1), (A.2), and (A.10), we obtain the prices:

Qi =
1

Nλ̂

(
−∆i

√
Φ/c

∆2
1 +∆2

2

+ ẑi

)
and Pκ =

1

Mλ

(
∆i

√
Φ/c

∆2
1 +∆2

2

+ zκ

)
.

We can use Equation (A.9) to show that:

∆i

[
λ̂+

(
N−1 +M−1

)√ Φ/c

∆2
1 +∆2

2

]
=

ẑi
N

− z̄κ,i
M

= Zi,
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which holds for both i = 1 and i = 2; then,

∆i =
Zi

λ̂

[
1−

(
N−1 +M−1

)√ Φ/c

Z2
1 + Z2

2

]
.

Finally, it is straightforward to show from Φ/(cη2) ≤ δ21 + δ22 that

1−
(
N−1 +M−1

)√ Φ/c

Z2
1 + Z2

2

> 0.

2

Proof of Proposition 2: Without loss of generality, let i = 1. Note that if δ21 + δ22 < Φ/(cη2), then the

premium of ETF 1 is given by:

|δ1| =
|Z1|

λ̂+ η(N−1 +M−1)
,

which increases in |Z1|, but does not depend on |Z2|.

If δ21 + δ22 ≥ Φ/(cη2), then the premium of ETF 1 is given by:

|∆1| =
|Z1|
λ̂

[
1−

(
N−1 +M−1

)√ Φ/c

Z2
1 + Z2

2

]
,

where from the proof of Proposition 1,

1−
(
N−1 +M−1

)√ Φ/c

Z2
1 + Z2

2

> 0.

It is straightforward to show, after taking derivatives, that ∆1 increases in both |Z1| and |Z2|. This

completes the proof of the proposition. 2

Proof of Proposition 3: We use three steps in this proof. In Steps 1 and 2, we prove some general

statements regarding the expectations of monotonic functions of random variables. In Step 3, we

apply the statements to prove this proposition.

Step 1: We prove the following statement: If f(x) and g(x) are increasing functions of a random

variable x, then E [f(x)g(x)] > E [f(x)]E [g(x)] or, equivalently, Cov [f(x), g(x)] > 0.

Suppose that x1 and x2 are drawn independently from the distribution of x. Since both f(·) and
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g(·) are increasing functions,

[f(x1)− f(x2)] [g(x1)− g(x2)] ≥ 0,

where the inequality holds strictly in a non-zero measure within the set {x1, x2}. Taking an

expectation yields:

E [[f(x1)− f(x2)] [g(x1)− g(x2)]] > 0,

where the left-hand side, after expansion, becomes:

E [f(x1)g(x1)− f(x1)g(x2)− f(x2)g(x1) + f(x2)g(x2)] = 2E [f(x)g(x)]− 2E [f(x)]E [g(x)] .

It follows immediately that E [f(x)g(x)] > E [f(x)]E [g(x)].

Step 2: We prove the following statement: If F (x, y) and G(x, y) are increasing functions of

two independent random variables x and y, then E [F (x, y)G(x, y)] > E [F (x, y)]E [G(x, y)] or,

equivalently, Cov [F (x, y), G(x, y)] > 0.

Let Ey(.) denote taking an expectation over y. Note that conditional on x, both F (x, y) and G(x, y)

increase with y; it follows from the Step-1 statement that

Ey [F (x, y)G(x, y)|x] > Ey [F (x, y)|x]Ey [G(x, y)|x] . (A.11)

Also note that both Ey[F (x, y)|x] and Ey[G(x, y)|x] increase with x; it follows from the Step-1

statement that:

Ex [Ey [F (x, y)|x]Ey [G(x, y)|x]] > Ex [Ey [F (x, y)|x]]Ex [Ey [G(x, y)|x]]

= E [F (x, y)]E [G(x, y)] . (A.12)

Therefore,

E [F (x, y)G(x, y)] = Ex [Ey [F (x, y)G(x, y)|x]] > Ex [Ey [F (x, y)|x]Ey [G(x, y)|x]]

> E [F (x, y)]E [G(x, y)] ,
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where the first inequality follows from Equation (A.11), and the second inequality follows from

Equation (A.12).

Step 3: From Proposition 2, we can treat the premium of ETF i, |Qi −NAVi|, as a function of |Zi|

and |Zj |. This premium is increasing in |Zi|; it also is increasing in |Zj | when δ21 + δ22 ≥ Φ/(cη2). A

symmetric result holds for the premium of ETF j, |Qj−NAVj |. Note that |Zi| and |Zi| are independent

random variables; it follows from the Step-2 statement that Cov(|Qi − NAVi|, |Qj − NAVj |) > 0.

Therefore,

β ∝ Cov(|Qi −NAVi|, |Qj −NAVj |) > 0.

2

Proof of Corollary 1: It follows from Equation (3) that if c → 0 and/or Φ → ∞, then almost surely,

δ21 + δ22 < Φ/(cη2); in this case, the premium of ETF i, |Qi −NAVi| = |δi|. It follows that

β ∝ Cov(|Qi −NAVi|, |Qj −NAVj |) = 0

because for i ̸= j, Zi ⊥ Zj and thus δi ⊥ δj from Equation (2).

If ν → 0, then almost surely, Vκ = 0 ∀κ and Vi = 0 for i = 1, 2. We can follow the derivation in the

proof of Proposition 1 to show that in this case, Pκ = Vκ = 0 ∀κ and Pi = Vi = 0 for i = 1, 2; thus,

|Qi −NAVi| = 0 for i = 1, 2. It holds trivially that the comovement parameter β → 0. 2

Proof of Proposition 4: (a) Consider the mass M of fundamental investors who trade the underlying

stocks. We use a similar derivation as in the Proof of Proposition 1 to show that each such investor’s

demand for stock κ is given by:

Xκ = −λPκ. (A.13)

Further, for stock κ ̸∈ S1 ∪ S2, this price Pκ = zκ/(Mλ). In what follows, we focus on stocks in Si,

i = {1, 2}.

(b) Consider the mass N of fundamental investors who trade the ETFs. We use a similar

derivation as in the Proof of Proposition 1 to show that each such investor’s demand for ETF i is
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given by:

X̂i = −λ̂Qi. (A.14)

(c) Consider the LMM trading ETF i. We use a similar derivation as in the Proof of Proposition 1

to show that the prices of ETF i and stock κ ∈ Si take the following form:

Qi = ℓ̂Yi +Q−
i and Pκ = ℓYi + P−

κ .

The LMM’s payoff, net of the cost, is expressed as:

Πi = Yi

(ℓ̂Yi +Q−
i )−

∑
κ∈Si

(ℓYi + P−
κ )

− 0.5cY 2
i (A.15)

with the constraint

Ci = cY 2
i ≤ Φ. (A.16)

(d1) Suppose that Constraint (A.16) is not binding. We use a similar derivation as in the Proof of

Proposition 1 to show that the demand Yi = ηδi, and the prices:

Qi =
−ηδi + ẑi

Nλ̂
and Pκ =

ηδi + zκ
Mλ

,

where

δi = Qi −
∑
κ∈Si

Pκ =
Zi

λ̂+ η(N−1 +M−1)
.

Note that Yi = ηδi. For Constraint (A.16) not bind, we require δ2i < Φ/(cη2).

(d2) Now suppose that Constraint (A.16) binds; this requires δ2i ≥ Φ/(cη2).

Since Constraint (A.16) is binding, Y 2
i = Φ/c. Express Πi in Equation (A.15) as: Πi = Yi∆

∗
i − Φ,
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where

∆∗
i = Qi −

∑
κ∈Si

Pκ. (A.17)

It follows that:

Yi = sign(∆∗
i )×

√
Φ

c
. (A.18)

The market clearing conditions for ETF i and stock κ, respectively, are:

NX̂i − Yi + ẑi = 0 and MXκ + Yi + zκ = 0.

From Equations (A.13), (A.14), and (A.18), we obtain the prices:

Qi =
1

Nλ̂

[
−sign(∆∗

i )×
√

Φ

c
+ ẑi

]
and Pκ =

1

Mλ

[
sign(∆∗

i )×
√

Φ

c
+ zκ

]
.

We use Equation (A.17) to show that:

∆∗
i =

1

λ̂

[
Zi − sign(∆∗

i )×
√

Φ

c
×
(

1

N
+

1

M

)]
. (A.19)

Note from the binding Constraint (A.16), δ2i ≥ Φ/(cη2). If δi ≥ η−1
√

Φ/c, then it is

straightforward to show that:

Zi ≥
√

Φ

c
×

(
λ̂

η
+N−1 +M−1

)
>

√
Φ

c
×
(
N−1 +M−1

)
;

it follows from Equation (A.19) that in this case,

∆∗
i =

1

λ̂

[
Zi −

√
Φ

c
×
(
N−1 +M−1

)]
.

If δi ≤ −η−1
√

Φ/c, then it is straightforward to show that:

Zi ≤ −
√

Φ

c
×

(
λ̂

η
+N−1 +M−1

)
< −

√
Φ

c
×
(
N−1 +M−1

)
;
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it follows from Equation (A.19) that in this case,

∆∗
i =

1

λ̂

[
Zi +

√
Φ

c
×
(
N−1 +M−1

)]
.

(e) It follows from the previous derivations (d1) and (d2) that the premium of ETF i is expressed

as:

|Qi −NAVi| =



|δi| if |δi| < η−1
√

Φ/c,

1

λ̂

[
Zi −

√
Φ

c
×
(
N−1 +M−1

)]
if δi ≥ η−1

√
Φ/c,

1

λ̂

[
Zi +

√
Φ

c
×
(
N−1 +M−1

)]
if δi ≤ −η−1

√
Φ/c.

Note that here |Qi − NAVi| depends only on Zi; thus, |Qi − NAVi| is independent of |Qj − NAVj |

where j ̸= i. It follows that the comovement parameter

β ∝ Cov(|Qi −NAVi|, |Qj −NAVj |) = 0.

2
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Appendix B: Variable Definitions

This table reports the definitions of the main variables used in the empirical analysis.

Variables Definition

raw |Premium|i,t
The absolute value of an ETF’s raw premium, defined as |(ETF Price − ETF

NAV)/ETF NAV|.

LMM raw |Premium|i,t
Equally-weighted average raw |Premium|i,t of all ETFs sharing the same lead

market maker as the ETF i, excluding the focal ETF i.

non-LMM raw |Premium|i,t
Equally-weighted average |Premium|j,t of all ETFs managed by a lead

market maker that is different from that of the focal ETF i.

|Premium|i,t

We orthogonalize each ETF’s raw |Premium| with respect to its non-LMM

raw |Premium|, by estimating the following regression: raw |Premium|i,t =

a+b×non-LMM raw |Premium|i,t+ϵi,t. An ETF’s |Premium|i,t is captured

by the residual terms ϵi,t .

LMM |Premium|i,t
Equally-weighted average |Premium|i,t of all ETFs sharing the same lead

market maker as the ETF i, excluding the focal ETF i.

non-LMM |Premium|i,t
Equally-weighted average |Premium|j,t of all ETFs managed by a lead

market maker that is different from that of the focal ETF i.

LMMOld |Premium|i,t

Equally-weighted average |Premium| of all ETFs managed by the ETF’s old

LMM, excluding the focal ETF i itself. Old LMM is the lead market maker

just before the ETF changes its lead market maker.

LMMNew |Premium|i,t

Equally-weighted average |Premium| of all ETFs managed by the ETF’s

new LMM, excluding the focal ETF i itself. New LMM is the lead market

maker just after the ETF changes its lead market maker.

Log(Size) The natural logarithm of an ETF’s market capitalization.
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STD
The standard deviation of daily ETF returns estimated using data from t−30

to t− 1.

BidAsk
The difference between ask and bid quotes scaled by the average of bid and

ask quotes (in bp), estimated using daily data from t− 30 to t− 1.

Turnover
Daily dollar trading volume of an ETF scaled by its market capitalization (in

percent), estimated using daily data from t− 30 to t− 1.

Log(Mktcap of ETFs)
Natural logarithm of the total market capitalization of ETFs managed by the

LMM.

#Active AP
The number of active authorized participants for the ETF, as reported in

form N-CEN.

D (Earnings Announcement

Return <-3%)

Dummy variable that equals one for the [-1,1] trading day window of

earnings announcement, with an announcement-day CAR more negative

than -3%.

Net Capital Ratio
Net Capital Required/Adjusted Net Capital, which measures the amount of

capital an LMM holds relative to the CFTC’s net capital requirement.

V IX The CBOE volatility index.

CS
Credit spread = Moody’s BAA Yield − Yield on Treasury 10-year constant

maturity.

HKM The intermediary capital ratio of He, Kelly, and Manela (2017).

Mktret Stock market return (VWRETD) in the prior month.
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Figure 1. Illustration of arbitrage on ETF price and net asset value deviation 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Figure 2. Comovement in ETF premia as a function of the cost of arbitrage

This graph plots β (the parameter representing the comovement between the premium of ETF i, |Qi −NAVi|,
and the premium of ETF j (where j ̸= i), |Qj −NAVj |) as a function of c (the parameter representing the cost
of arbitrage). The other parameter values are A = 2, ν = 1, M = 1, µ = 0.2, K̂ = 25, N = 0.5, µ̂ = 0.1, and
Φ = 0.05.
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Figure 3. Comovement in ETF premia as a function of return volatility

This graph plots β (the parameter representing the comovement between the premium of ETF i, |Qi −NAVi|,
and the premium of ETF j (where j ̸= i), |Qj − NAVj |) as a function of ν (the parameter representing return
volatility). The other parameter values are A = 2, M = 1, µ = 0.2, K̂ = 25, N = 0.5, µ̂ = 0.1, c = 1, and
Φ = 0.05.
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Figure 4. Comovement in ETF premium as a function of the LMM capital constraint

This graph plots β (the parameter representing the comovement between the premium of ETF i, |Qi −NAVi|,
and the premium of ETF j (where j ̸= i), |Qj − NAVj |) as a function of Φ (the parameter representing the
LMM’s capital constraint). The other parameter values are A = 2, ν = 1, M = 1, µ = 0.2, K̂ = 25, N = 0.5,
µ̂ = 0.1, and c = 1.
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Figure 5. Number and total size of ETFs managed by an average LMM, and ETF premium over Time 
Panel A shows the number and total size of ETFs (in billions USD) managed by an average lead market 
maker in our sample. Panel B shows the equally-weighted average raw |Premium| and residual |Premium| 
for each month. On the right axis, the blue dotted line shows the level of the VIX. The sample period runs 
from January 2012 to December 2020.  

 

Panel A: Coverage of ETFs by an average LMM 

 

Panel B: Average absolute ETF premium  
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Figure 6. Comovement box: Relationship between ETF |Premium| and LMM |Premium|  
We estimate co-dependence between the ETF residual |Premium| and LMM residual |Premium| using a 
quantile regression approach, and plot the results in a co-movement box. This box is a square of unit side 
that plots the conditional probability that an ETF has a residual |Premium| below or above a certain 
percentile conditional on the same event occurring in its LMM residual |Premium|. To construct the figure, 
we calculate the probabilities at the 5% increments between the 5th and 95th quantiles. The blue line 
denotes the 45-degree line, which represents the unconditional probability of no dependence between the 
variables. The red line denotes the actual conditional probability distribution estimated using the ETF 
residual |Premium|. 
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Figure 7.  Comovement in |Premium| when ETFs change the lead market makers  
This figure reports the comovement in the (absolute) ETF premium with those of other ETFs served by the 
old and new lead market makers (LMMs) over the [-120, 120] trading days around the change in LMM.  
𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂  |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| (𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁  |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|) is the average absolute premium of ETF i’s previous (new) LMM, 
excluding ETF i.  For each trading day around the event, we use a [-3, +3] trading day window to estimate 
the following regression: 

|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑖𝑖,𝑡𝑡 = 𝑎𝑎 + 𝑏𝑏𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑖𝑖,𝑡𝑡 + 𝑐𝑐𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑖𝑖,𝑡𝑡 + 𝜀𝜀, 
and plot the estimates of b and c. The shaded area is the 95% confidence interval. The upper graph shows 
the regression coefficients estimated using the raw |Premium| and the lower graph shows the estimates for 
the residual |Premium|.  

. 
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Figure 8. ETF premium during the COVID-19 pandemic 
Panel A (Panel B) of this figure shows the average absolute (signed) premium for ETFs tracking different 
assets from January 1, 2020 to June 30, 2020. The shaded area denotes the period around the onset of 
COVID-19 pandemic period, and runs from February 20, 2020 to April 30, 2020.  
 

                     

Panel A: Average Absolute Premium for Different Types of ETFs 
                                                    

                                   

 

Panel B: Average Signed Premium for Different Types of ETFs 
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Table 1. Summary Statistics 
This table shows summary statistics for the main variables. Raw |Premium| is the absolute value of the ETF 
premium in bps. |Premium| is the residual |Premium|, which is the residual from a regression of |Premium| 
on the non-LMM |Premium|. LMM (raw) |Premium| is the equally-weighted average (raw) |Premium| of 
all ETFs sharing the same LMM (in bps.). Log (Size) is the natural logarithm of an ETF’s market 
capitalization. Turnover is an ETF’s daily dollar trading volume scaled by its market capitalization (in 
percent). STD is the standard deviation of daily ETF return. BidAsk is the difference between ask and bid 
quotes scaled by the average of bid and ask quotes (in bps). Turnover, STD, and BidAsk are estimated using 
daily observations from last 30 days. We winsorize the continuous variables at the 1% and 99% levels. See 
Appendix B for variable definitions.  
 

Summary Statistics of Main Variables 
Variable N Mean Std Q1 Median Q3 
raw |Premium| (bps) 2,946,280 25.48 31.99 4.44 12.59 33.21 
|Premium| (bps) 2,946,280 -0.02 22.80 -10.46 -1.90 5.81 
LMM raw |Premium| (bps) 2,946,280 25.74 9.51 19.20 24.81 31.04 
LMM |Premium| (bps) 2,946,280 -0.02 3.33 -1.96 -0.28 1.62 
Log (Size) 2,946,280 18.81 2.27 17.16 18.77 20.38 
STD (percent) 2,946,280 0.83 0.60 0.44 0.72 1.09 
BidAsk (bps) 2,946,280 0.24 0.27 0.06 0.14 0.30 
Turnover (precent) 2,946,280 1.36 2.41 0.38 0.68 1.28 
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Table 3. Tests of contagion in the extreme level of ETF |Premium| using a linear probability model  
This table reports the probability of observing a high ETF |Premium| conditional on whether its LMM 
|Premium| also takes on a high value. The dependent variable is an indicator that equals one if the focal 
ETF’s |Premium| is higher than the 90th percentile cutoff, and zero otherwise. To capture extreme values of 
LMM |Premium|, we create an indicator variable, D(LMM |Premium| > 90th percentile), that equals one if 
the LMM |Premium| is above its 90th percentile cutoff, and zero otherwise. Other controls include ETF size, 
ETF turnover, ETF bid-ask spread, and ETF return volatility. All continuous independent variables are 
standardized with a mean of zero and a standard deviation of one. We include ETF and Style × Day fixed 
effects as indicated. Standard errors are double clustered at the ETF and Day level. The t-statistics are in 
parentheses. See Appendix B for variable definitions. The sample period is from January 1, 2012 to 
December 31, 2020.  
 

  Dep. Var. = Dummy (|Premium| >90th percentile) 
 (1) (2) (3) (4) 

D (LMM |Premium| > 90th percentile) 0.057 0.050 0.027 0.024 
 (11.05) (13.79) (6.40) (7.07) 

Log (Size)  -0.021 -0.002 -0.017 
  (-6.94) (-1.31) (-5.29) 

STD  0.010 0.019 0.017 
  (10.85) (8.39) (9.52) 

BidAsk  0.049 0.046 0.050 
  (18.78) (19.80) (18.76) 

Turnover  0.003 0.006 0.003 
  (2.05) (4.05) (2.03) 

Constant 0.047 0.048 0.049 0.049 
 (26.70) (123.38) (40.22) (117.57) 

Style×Day FE N N Y Y 
ETF FE N Y N Y 
Observations 2,946,280 2,946,280 2,946,280 2,946,280 
R-squared 0.3% 9.9% 8.1% 12.2% 
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Table 4. Comovement in |Premium| when ETFs change lead market makers 
This table shows the comovement of the ETF |Premium| with the equally-weighted average |Premium| of 
ETFs served by their old and new LMMs. The sample includes ETF-Day observations within the [-120, 120] 
trading days around the 1,264 events when an ETF changes its LMM. We include the same set of controls 
as in Table 2. L𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂  |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| (𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁  |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|) is the equally-weighted average |Premium| of ETF 
i’s previous (new) LMM, excluding ETF i. Post is a dummy variable that equals one for the period after an 
ETF changes its LMM. We also control for aggregate funding constraints, including VIX, CS, and HKM, the 
returns on the five Fama-French factors, and the ten Fama-French industries as indicated. All independent 
variables are standardized with a mean of zero and a standard deviation of one. The standard errors are 
clustered at the event levels. The t-statistics are in parentheses. See Appendix B for variable definitions.  
 

  Dep. Var. = |Premium| 
  (1) (2) (3) (4) (5) 
𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂 |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| 1.196 1.229 1.195 1.169 1.171 
 (4.26) (4.91) (4.47) (4.03) (3.95) 
Post×𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂 |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| -0.923 -0.986 -0.977 -1.030 -1.032 
 (-3.48) (-3.94) (-4.16) (-4.29) (-4.28) 
𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁 |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| 0.288 0.26 0.245 0.244 0.242 
 (1.42) (1.33) (1.28) (1.26) (1.24) 
Post×𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁 |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| 1.444 1.550 1.547 1.479 1.467 

 (2.84) (2.88) (2.86) (2.99) (2.95) 
Post 0.351 0.788 0.478 0.532 0.551 

 (0.98) (1.28) (0.63) (0.73) (0.77) 
Log (Size)  1.546 1.514 1.511 1.511 

  (4.27) (4.14) (4.12) (4.12) 
STD  0.346 0.323 0.331 0.332 

  (1.39) (1.39) (1.38) (1.38) 
BidAsk  3.236 3.230 3.233 3.233 

  (7.58) (7.65) (7.68) (7.69) 
Turnover  -0.145 -0.146 -0.148 -0.149 

  (-0.83) (-0.89) (-0.91) (-0.91) 
Controls of Aggregate Funding Constraints   Y Y Y 
FF 5 factors    Y Y 
FF 10 Industries     Y 
Observations 189,471 189,432 189,432 189,432 189,432 
R-squared 0.5% 2.0% 2.0% 2.0% 2.0% 

 

 

 

 

 

 

 



 

 66 

Table 5. Cross-sectional heterogeneity: Arbitrage costs of ETFs and ETFs’ constituents 
This table reports the comovement in ETF premia conditional on proxies measuring the arbitrage costs of 
ETFs and ETFs’ constituents. In columns (1) to (3), the coefficients of interest are the interaction between 
LMM |Premium| and ETF characteristics, including the natural logarithm of ETF market capitalization 
(column (1)), ETF return volatility (column (2)), and ETF bid-ask spread (column (3)). Columns (4) to (6) 
restrict the sample to US equity ETFs, for which we can measure arbitrage costs of the ETF’s constituent 
stocks. Spread CS is the bid-ask spread calculated following the method of Corwin and Schultz (2012). 
Volatility is the daily stock return volatility within a month. Lendable supply (Supply) is the lendable shares 
from Markit divided by total shares outstanding. All independent variables are standardized with a mean 
of zero and a standard deviation of one. ETF and Style × Day fixed effects are included. Standard errors are 
double clustered at the ETF and Day level. The t-statistics are in parentheses. See Appendix B for variable 
definitions. The sample is from January 1, 2012 to December 31, 2020.  
 

 Dep. Var. = |Premium| 
  (1) (2) (3) (4) (5) (6) 
LMM |Premium| 1.706 1.684 1.721 0.316 0.317 0.340 

 (17.96) (18.42) (18.20) (4.94) (4.96) (5.02) 
Log (Size)×LMM |Premium| -0.285      

 (-3.23)      

STD×LMM |Premium|  0.233     
  (3.24)     

BidAsk×LMM |Premium|   0.286    
   (3.16)    

Spread CS×LMM |Premium|    0.136   
    (2.46)   

Volatility×LMM |Premium|     0.122  
     (2.35)  

Supply×LMM |Premium|      -0.252 
      (-2.72) 

Controls Y Y Y Y Y Y 
Style×Day FE Y Y Y Y Y Y 
ETF FE Y Y Y Y Y Y 
Observations 2,946,280 2,946,280 2,946,280 842,002 842,002 806,818 
R-squared 5.9% 5.9% 5.9% 8.8% 8.8% 8.8% 
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Table 6. LMM-specific capital constraints based on ETF characteristics 
This table reports the effects of LMM-specific capital constraints on comovement in ETF premia. In the 
regression for column (1), the LMM-specific capital constraint is measured by the natural logarithm of total 
market capitalization of all ETFs managed by the LMM (Log(Mktcap of ETFs)). In the regression for column 
(2), Log(1/#Active APs) inversely measures the number of other APs available to alleviate LMM constraints.  
It is the natural logarithm of one over the number of active APs, estimated using SEC N-CEN filings data 
from last fiscal year. Active APs are those APs that create or redeem shares for the ETF at any point in time. 
Other controls are the same as those in Table 2. ETF and Style × Day fixed effects are included. All 
independent variables are standardized with a mean of zero and a standard deviation of one. The t-statistics 
are in parentheses. See Appendix B for variable definitions. In column (1), the sample period is from 
January 1, 2012 to December 31, 2020. In column (2), the sample period is from July 1, 2017 to December 31, 
2020.  
 

Dep. Var.= |Premium| 
 (1) (2) 

LMM |Premium| 1.724 1.576 
 (17.58) (11.34) 

Log (Mktcap of ETFs) 0.158  
 (1.07)  

Log (Mktcap of ETFs) ×LMM |Premium| 0.319  
 (8.62)  

Log (1/#Active APs)  0.545 
  (1.48) 

Log (1/#Active APs) ×LMM |Premium|  0.365 
  (3.15) 

Controls Y Y 
Style×Day FE Y Y 
ETF FE   Y Y 
Observations 2,916,567 664,972 
R-squared 8.1% 13.5% 
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Table 7. LMM-specific capital constraints based on LMM characteristics 
This table reports the effects of time-series variation in LMM-specific capital constraints on comovement in 
ETF premia. In columns (1) to (3), we use the change in LMMs’ net worth during a window around earnings 
announcements to capture negative shocks to capital constraints.  Specifically, we define the LMM-specific 
constraint as a dummy that equals to one for the three-day window [-1, 1] around LMM’s quarterly 
earnings announcements when the market-adjusted announcement abnormal return is less than -3%, and 
zero otherwise. The sample is restricted to the 21-day window [-10, 10] around quarterly earnings 
announcements for all publicly traded LMMs, including Credit Suisse, Deutsche Bank, Goldman Sachs, 
and Virtu Financial. In columns (4) to (6), the LMM-specific capital constraint is captured by the net capital 
ratio, which measures the amount of capital an LMM holds relative to CFTC’s net capital requirement. A 
larger value of net capital ratio indicates that the LMM is more capital constrained. Information on net capital 
ratios is available for five LMMs including Cantor Fitzgerald, Credit Suisse, Deutsche Bank, Goldman Sachs, 
and RBC Capital Markets. We include the same set of controls as in the regressions for Table 4. The standard 
errors are double clustered at the ETF and day levels. The t-statistics are in parentheses. See Appendix B 
for variable definitions.  
 

Dep. Var. = |Premium|  
 D (Earnings Announcement Returns <-3%)  Net Capital Ratio 
 (1) (2) (3)  (4) (5) (6) 

LMM |Premium|×Constraint 0.528 0.519 0.487  0.574 0.564 0.559 
 (2.00) (2.02) (1.95)  (4.34) (4.30) (4.25) 

Constraint 0.224 0.201 0.243  0.230 0.225 0.222 
 (1.50) (1.30) (1.56)  (1.87) (1.83) (1.79) 

LMM |Premium|  1.423 1.400 1.364  1.670 1.663 1.658 
 (10.22) (9.82) (10.11)  (13.09) (13.09) (13.03) 

Log (Size) 1.020 1.020 1.022  1.003 1.004 1.005 
 (8.19) (8.17) (8.18)  (5.07) (5.08) (5.08) 

STD 0.518 0.521 0.524  0.256 0.261 0.263 
 (4.18) (4.21) (4.23)  (1.86) (1.89) (1.91) 

BidAsk 2.417 2.419 2.425  2.855 2.857 2.859 
 (15.38) (15.40) (15.43)  (9.90) (9.90) (9.90) 

Turnover 0.252 0.251 0.251  0.208 0.208 0.207 
 (3.35) (3.34) (3.33)  (2.06) (2.05) (2.04) 

Controls of aggregate 
funding constraints 

Y Y Y  Y Y Y 

FF5F  Y Y   Y Y 
FF10 industries    Y    Y 
Observations 104,596 104,596 104,596  798,152 798,152 798,152 
R-squared 1.30% 1.30% 1.30%   1.70% 1.70% 1.70% 
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Table 8. DiD analysis of ETF |Premium| during COVID-19 pandemic 
This table reports the results from a difference-in-differences estimation of ETF |Premium| around the COVID-19 pandemic. 
The sample includes only non-fixed income ETFs. The sample period is from January 1, 2020, to June 30, 2020. COVID is a 
dummy variable that equals one for period from February 21, 2020, to April 30, 2020. We use two proxies to capture LMM’s 
fixed income exposure: FI Weight is calculated as the market capitalization of fixed income ETFs managed by the focal ETF’s 
LMM scaled by the total market capitalization of all ETFs managed by the LMM. We calculate FI Weight for each LMM 
based on the observations in December 2019. D(FI Weight>Median) is a dummy variable that equals one if the FI Weight is 
above sample median, and zero otherwise. The coefficient of interest is the interaction of COVID and FI Weight (or D(FI 
Weight>Median)), which identifies the mispricing of ETFs managed by LMMs with large exposure to fixed income ETFs 
with that of ETFs managed by LMMs with smaller exposure to fixed income ETFs during the COVID-19 pandemic period. 
In columns (4) and (7), we create half-month dummies around the COVID-19 outbreak. COVIDt-15,t is a dummy variable that 
equals one from 15 days before the COVID-19 outbreak to the start of outbreak on February 20, 2020, and zero otherwise. 
COVIDt+1,t+15 and COVIDt+16,t+31 are defined similarly, and COVIDt+32,End equals one from 32 days after February 20, 2020 to the 
end of the first acute phase of the COVID-19 pandemic on April 30, 2020. We also include the interactions of fixed income 
exposure with COVID dummies. All the continuous control variables are standardized with a mean of zero and a standard 
deviation of one. We include ETF and Style × Day fixed effects as indicated. The t-statistics are in parentheses.  

Dep. Var. = Raw |Premium| 
   X = FI Weight X = D(FI Weight>Median) 

  (1) (2) (3) (4) (5) (6) (7) 
COVID 21.009 17.715   18.118   

 (7.92) (7.52)   (7.68)   

X×COVID  11.973 4.879  4.558 2.237  
  (3.88) (1.80)  (3.56) (2.03)  

X×COVIDt-15,t    -1.457   -0.734 
    (-0.79)   (-1.00) 

X×COVIDt+1,t+15    9.203   3.846 
    (2.76)   (3.08) 

X×COVIDt+16,t+31    9.771   4.413 
    (1.56)   (2.28) 

X×COVIDt+32,End    0.994   0.629 
    (0.39)   (0.76) 

Log (Size)   -3.425 -3.435  -3.317 -3.360 
   (-1.63) (-1.63)  (-1.57) (-1.87) 

STD   -0.807 -0.788  -0.774 -0.769 
   (-0.63) (-0.62)  (-0.61) (-0.95) 

BidAsk   3.470 3.530  3.549 3.533 
   (6.05) (6.12)  (6.21) (6.49) 

Turnover   1.000 0.979  0.985 0.969 
   (2.68) (2.63)  (2.65) (2.72) 
ETF FE Y Y Y Y Y Y Y 
Style×Day FE   Y Y  Y Y 
Observations 152,170 152,170 150,889 150,889 152,170 150,889 150,889 
R-squared 43.8% 43.9% 55.2% 55.2% 43.8% 55.2% 55.2% 
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Table 10. Co-movement in |Premium| for ETFs tracking the same or different benchmark (style) 
This table presents the ETF premium comovement effect among ETFs following the same or different 
benchmark or style. In column (1), we construct Non-LMM |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁 𝑏𝑏𝑁𝑁𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚 as the equally weighted 
average |Premium| of all ETFs managed by a different LMM but tracks the same benchmark index as the 
focal ETF. In column (2), we decompose LMM |Premium| into LMM |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑁𝑁/𝑜𝑜  𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁 𝑠𝑠𝑡𝑡𝑠𝑠𝑂𝑂𝑁𝑁  and LMM 
|𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑁𝑁𝑖𝑖𝑡𝑡ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁 𝑠𝑠𝑡𝑡𝑠𝑠𝑂𝑂𝑁𝑁, by separately computing the equally-weighted average |Premium| for ETFs with and 
without the same style category as the focal ETF. All independent variables are standardized with a mean of 
zero and a standard deviation of one. See Appendix B for variable definitions. The t-statistics are in 
parentheses. The sample period is from January 1, 2012 to December 31, 2020.  
 

Dep. Var. = |Premium| 
  (1) (2) 
LMM |Premium|  0.748  
 (4.73)  
Non-LMM |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁 𝑏𝑏𝑁𝑁𝑏𝑏𝑏𝑏ℎ𝑠𝑠𝑠𝑠𝑚𝑚𝑚𝑚  -1.135  

 (-0.76)  
LMM |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑁𝑁/𝑜𝑜  𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁 𝑠𝑠𝑡𝑡𝑠𝑠𝑂𝑂𝑁𝑁  1.301 

  (14.35) 
LMM |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|𝑁𝑁𝑖𝑖𝑡𝑡ℎ 𝑠𝑠𝑠𝑠𝑠𝑠𝑁𝑁 𝑠𝑠𝑡𝑡𝑠𝑠𝑂𝑂𝑁𝑁  0.638 

  (3.07) 
Log (Size) -3.310 -3.593 

 (-3.39) (-10.14) 
STD 1.666 2.073 

 (3.55) (10.36) 
BidAsk 7.444 6.531 

 (12.22) (24.42) 
Turnover -0.267 0.366 

 (-0.46) (2.45) 
Style×Day FE Y Y 
ETF FE Y Y 
Observations 334,836 2,871,587 
R-squared 18.2% 7.9% 
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Table 11. Alternative specifications of fixed effects 
This table presents results of the baseline regression model in Table 2 with additional fixed effects. In 
column (1), we further add a region × day fixed effect to the baseline specification, where region refers to 
the geographical focus of the ETF. Column (2) adds an exchange × day fixed effect, where exchange denotes 
the exchange on which the ETF is listed. Columns (3) and (4) add issuer × day and distributor × day fixed 
effects respectively. All independent variables are standardized with a mean of zero and a standard 
deviation of one. See Appendix B for variable definitions.  The t-statistics are in parentheses. The sample 
period is from January 1, 2012 to December 31, 2020.  
 

Dep. Var. = |Premium| 
 Region×Day FE Exchange×Day FE Issuer×Day FE Distributor×Day FE 

 (1) (2) (3) (4) 
LMM |Premium| 1.422 1.667 1.339 1.542 

 (17.51) (17.23) (13.84) (16.14) 
Log (Size) -3.379 -3.174 -3.335 -3.473 

 (-9.99) (-8.96) (-9.23) (-9.79) 
STD 2.079 2.126 2.069 2.014 

 (10.73) (10.56) (10.51) (10.24) 
BidAsk 6.613 6.576 6.503 6.543 

 (25.15) (24.04) (24.95) (24.59) 
Turnover 0.243 0.338 0.378 0.324 

 (1.66) (2.27) (2.56) (2.11) 
ETF FE Y Y Y Y 
Style×Day FE Y Y Y Y 
Observations 2,944,230 2,762,153 2,903,631 2,885,231 
R-squared 11.6% 6.7% 12.3% 8.1% 
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Internet Appendix to “Financial Intermediaries and 
Contagion in Market Efficiency: The Case of ETFs” 

 
 
 
Table IA.1. List of lead makers 
This table lists the information about the lead market makers (LMMs) in our sample. We first calculate the 
number and size (in billions USD) of ETFs, as well as the equally weighted average (raw) |Premium| of 
ETFs managed by each LMM at the daily level. We then report the time series average statistics of these 
variables from January 2012 to December 2020.  
 

 List of Lead Market Makers 
LMM #ETF Size (billion USD) Raw |Premium|   |Premium|  
Goldman Sachs 280 634.5 20.56 -0.97 
KCG 364 489.5 30.92 1.41 
Virtu Financial 203 377.6 17.25 -0.43 
Jane Street 209 316.3 33.99 1.75 
Susquehanna 215 302.6 29.06 0.16 
IMC Chicago 105 204.2 16.71 0.42 
Cantor Fitzgerald 109 122.2 26.31 0.35 
Latour Trading 25 97.1 5.08 -0.05 
Pundion 23 74.2 22.24 2.40 
Credit Suisse 38 63.0 21.48 -1.13 
RBC Capital Markets 32 37.7 19.17 0.15 
Citadel 22 32.6 14.80 -0.78 
Deutsche Bank 19 17.3 19.11 -0.32 
Flow Traders 10 12.9 26.15 0.73 
Societe Generale 9 6.4 23.78 -2.81 
Wolverine Trading 5 4.1 19.01 -0.21 
CLP 3 1.4 48.38 0.77 
C&C Trading 4 1.0 31.91 -4.72 
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Table IA.2. Comovement in |Premium| when ETFs change the lead market makers (excluding the 
acquisition of KCG by Virtu)  
This table replicates Table 4 on the comovement effect for ETF |Premium| served by their previous and 
new LMMs, by excluding the 476 events driven by the acquisition of KCG by Virtu. The sample includes 
ETF-Day observations within the [-120, 120] trading days around the events when an ETF changes its LMM. 
We include the same set of controls as in Table 2. L𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂  |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| (𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁  |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃|) is the equally 
weighted average |Premium| of ETF i’s old (new) LMM, excluding ETF i. Old (new) LMM is the LMM 
before (after) the ETF changes its LMM. Post is a dummy variable that equals one for the period after an 
ETF changes its LMM. We also control for aggregate funding constraints, including VIX, CS, and HKM, the 
returns on the five Fama-French factors, and the ten Fama-French industries as indicated. All independent 
variables are standardized with a mean of zero and a standard deviation of one. The standard errors are 
clustered at the event levels. The t-statistics are in parentheses. See Appendix B for variable definitions.  
 

  Dep. Var. = |Premium| 
  (1) (2) (3) (4) (5) 
𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂 |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| 1.241 1.230 1.200 1.179 1.189 
 (3.61) (4.13) (3.87) (3.64) (3.62) 
Post×𝐿𝐿𝐿𝐿𝐿𝐿𝑂𝑂𝑂𝑂𝑂𝑂 |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| -0.968 -0.997 -0.989 -1.049 -1.059 
 (-2.88) (-3.27) (-3.33) (-3.44) (-3.52) 
𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁 |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| 0.305 0.247 0.233 0.235 0.230 
 (1.54) (1.23) (1.18) (1.19) (1.18) 
Post×𝐿𝐿𝐿𝐿𝐿𝐿𝑁𝑁𝑁𝑁𝑁𝑁 |𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃| 1.428 1.566 1.573 1.496 1.483 

 (2.82) (2.93) (2.93) (3.10) (3.09) 
Post 0.221 0.484 0.195 0.251 0.274 

 (0.46) (0.67) (0.25) (0.34) (0.38) 
Log (Size)  1.194 1.153 1.147 1.150 

  (3.54) (3.56) (3.53) (3.53) 
STD  0.543 0.545 0.556 0.559 

  (1.81) (1.88) (1.83) (1.83) 
BidAsk  3.012 3.015 3.020 3.021 

  (5.25) (5.33) (5.37) (5.37) 
Turnover  -0.184 -0.192 -0.194 -0.196 

  (-0.78) (-0.86) (-0.86) (-0.87) 
Controls for Aggregate Funding Constraints   Y Y Y 
FF 5 factors    Y Y 
FF 10 Industries     Y 
Observations 135,420 135,386 135,386 135,386 135,386 
R-squared 0.70% 2.00% 2.10% 2.10% 2.10% 
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