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Abstract

We show that the return autocorrelation of underlying stock is an important determi-

nant of expected equity option returns. Using an extended Black-Scholes model incor-

porating the presence of stock return autocorrelation, we demonstrate that expected

returns of both call and put options are increasing in return autocorrelation coefficient

of the underlying stock. Consistent with this insight, we find strong empirical sup-

port in the cross-section of average returns of equity options. Our paper highlights

the necessity to control for stock return autocorrelation when studying option return

predictability.
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1 Introduction

Since the seminal work of Black and Scholes (1973), the academic literature on the options

market has produced tremendous amount of work in the model specification of stock returns.

Studies in this literature typically focus on extending the Black-Scholes model by different

ways of relaxing the assumption that stock price follows geometric Brownian motion with

constant drift.1 The focus of the literature has been mainly placed on the pricing of the

options contract rather than the returns from option investments.2 Recent literature has

started to pay attention to the determinants of the cross-sectional differences of average

equity option returns.3 However, findings of these papers are often based on market im-

perfections, and thus do not have direct connections to the rich literature on option pricing

models. In this paper, we make an attempt to understand how departures from the tra-

ditional assumption of geometric Brownian motion with constant drift as the stock price

process can be important determinants of expected option returns. Specifically, we focus on

the underlying stock’s return autocorrelation and establish both theoretical and empirical

relationship between the autocorrelation and expected equity option returns.

In this paper, we build upon the insight from the model studied by Lo and Wang (1995)

that incorporates non-zero stock return autocorrelation in the option pricing. Lo and Wang

(1995) suggests that investors can misprice an option if they use the unconditional variance

in the Black-Scholes formula if returns in fact have non-zero autocorrelation. Different from

them, we study how the underlying stock’s return autocorrelation can explain the cross

section of average equity option returns, rather than option prices. It is not entirely obvious

why autocorrelation can be an important determinant of expected option returns. This is

1Influential papers in this category include Merton (1976), Heston (1993), Bates (1996), and Duffie, Pan,
and Singleton (2000).

2Existing literature has mainly focused on the investment problem on index options rather than cross-
section of equity options. See, e.g., Liu and Pan (2003) and Faias and Santa-Clara (2017).

3Papers along this direction include Goyal and Saretto (2009), Cao and Han (2013), Vasquez (2017), Cao,
Vasquez, Xiao, and Zhan (2018), Ruan (2020), Cao, Han, Tong, and Zhan (2021), Bali, Beckmeyer, Moerke,
and Weigert (2021).
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because while non-zero return autocorrelation implies the drift of the stock price process is

not constant, it has no impact on the pricing of options as pointed out by Grundy (1991)

and Lo and Wang (1995). Nevertheless, expected future payoffs and hence expected returns

of options can be heavily influenced by the non-constant drift of the stock price process. In

particular, we show that under the model of Lo and Wang (1995), the expected returns for

both calls and puts monotonically increase with the autocorrelation of the underlying stock’s

return.4

The monotonic relationship between the return autocorrelation and expected returns on

options is well supported empirically. Using equity option returns data from January 1996

to December 2020, we document the monotonic pattern in quintile portfolio returns sorted

by the underlying stock’s autocorrelation coefficients. The difference between the highest

autocorrelation portfolio and the lowest autocorrelation portfolio delivers a statistically sig-

nificant monthly return of 3.7% for call options and 6.4% for put options. The results are

robust if we look at straddle returns and delta-hedged option returns. We also show that

these results are not due to the other known drivers of cross-sectional equity option re-

turns and that they are robust to different portfolio sorting frequencies, different methods

to compute autocorrelation, and different moneyness of the option contract. Analyses based

on Fama-MacBeth regressions further suggest that our result is not driven by the known

determinants of expected equity option returns. Our measure of stock return autocorrela-

tion remains statistically significant after controlling for idiosyncratic volatility from Cao

and Han (2013), realized stock return volatility from Hu and Jacobs (2020), variance risk

and illiquidity premium from Goyal and Saretto (2009), maximum daily return from Byun

and Kim (2016), term structure of implied volatilities from Vasquez (2017), and other stock

characteristics studied by Cao et al. (2021).

4This is in contrast to Hu and Jacobs (2020) where they find that expected call option return is decreasing
in volatility while expected put option return is increasing in volatility. Therefore, our result is unlikely driven
by the level of volatility.
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We contribute to the theoretical literature on how expected returns of options are deter-

mined. Relative to the massive literature on pricing of options, there are few studies that

analyzed expected return of options. Under the Black-Scholes model, Rubinstein (1984)

derives the expected return of an option over a finite holding period. Coval and Shumway

(2001) computes the average returns of zero-beta straddles using index option data, where

the betas of the options are computed using the Black-Scholes model. Broadie, Chernov,

and Johannes (2009) computes expected hold-to-expiration returns of options under vari-

ous option pricing models, including the Black-Scholes, the Heston (1993) model, and the

stochastic volatility jump model suggested by Bates (1996). Boyer and Vorkink (2014) stud-

ies the option portfolio returns sorted by the ex-ante skewness of option returns computed

from the Black-Scholes model. Xiao and Vasquez (2016) uses the structural model of firm’s

capital structure to derive an analytical relationship between the firm’s leverage and equity

option returns. Also, Hu and Jacobs (2020) uses the Black-Scholes and the Heston model

to study the relationship between the underlying stock return volatility and expected option

returns. Our contribution is to derive the expected holding period return of options for the

class of models in Lo and Wang (1995) which incorporates stock return autocorrelation.

Recent empirical literature has identified some interesting variables that explain the cross-

sectional differences of average equity option returns. In particular, several studies have

focused on variables that measure the frictions of the underlying stock market and analyzed

their impact on the average equity option returns. For instance, Cao and Han (2013) shows

the relationship between the underlying stock’s idiosyncratic volatility and average delta-

hedged equity option returns while Cao, Vasquez, Xiao, and Zhan (2018) and Ruan (2020)

document the volatility uncertainty measured by volatility of volatility is related to average

delta-hedged equity option returns. In those papers, the cross-sectional differences in average

option returns are attributed to market imperfections and financial intermediary constraints.

In addition, Cao, Han, Tong, and Zhan (2021) documents interesting findings that many
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predictors of underlying stock returns can also explain the average delta-hedged equity option

returns. Instead of finding variables that capture various aspects of market frictions, our

study suggests that an often overlooked attribute of stock return dynamics, namely the

autocorrelation, can help to explain the cross-sectional differences of expected option returns.

The remainder of the paper is organized as follows. Section 2 provides the analytical

relationship between the stock return autocorrelation and expected option returns building

on the models developed in Lo and Wang (1995). Section 3 provides the empirical result

using the cross-sectional equity option returns data. Section 4 performs various robustness

checks and Section 5 concludes.

2 Stock Return Autocorrelation and Expected Option

Returns

2.1 Trending Ornstein-Uhlenbeck Process and Expected Option

Returns

Geometric Brownian motion with constant drift has been the standard assumption for stock

price process used in option pricing, for example, in the Black-Scholes model. However, this

stock price process implies that stock returns have zero autocorrelation. In order to accom-

modate non-zero autocorrelations in returns, Lo and Wang (1995) considers the following

trending Ornstein-Uhlenbeck (O-U) process for log stock price:

d log(St) = (−γ[log(St)− µt] + µ) dt+ σdWt, (1)

where St is the stock price at time t, µ is the drift coefficient, σ is the diffusion coefficient,

γ ≥ 0 is the “speed of adjustment” parameter, and Wt is a standard Weiner process. Unlike

the original Black-Scholes model, which assumes that log-prices follow an arithmetic random
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walk with independently and identically distributed Guassian increments, this log-price pro-

cess is the sum of a zero-mean stationary autoregressive Gaussian process and a deterministic

linear trend.

Defining

rk = log(St+k)− log(St) (2)

as the k-period continuously compounded return of the underlying stock, it can be readily

shown that under the trending O-U process in (1), rk ∼ N(kµ, kσ2
k), where

σ2
k =

σ2
(
1− e−kγ

)
kγ

. (3)

In addition, the k-period return exhibits a first-lag autocorrelation of

ρk(1) = −1

2
(1− e−kγ), (4)

where ρk(1) is a monotonic decreasing function of γ.

As noted by Grundy (1991) and Lo and Wang (1995), the risk-neutral dynamics of the

stock price remains the same as in the Black-Scholes model even though the stock price

follows the trending O-U process under the physical measure. Simple reasoning is that the

drift under the risk-neutral measure has to be equal to the risk-free rate r in order to avoid

arbitrage. This means that call and put option prices remain the same as in the Black-

Scholes model even when the stock price follows the trending O-U process. We denote the

corresponding Black-Scholes call and put prices as

Ct = CBS(St, K, r, τ, σ) = StΦ(d1)−Ke−rτΦ(d2), (5)

Pt = PBS(St, K, r, τ, σ) = Ke−rτΦ(−d2)− StΦ(−d1), (6)

where K is the strike price, r is the continuously compounded risk-free rate, τ is the time-
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to-maturity,

d1 =
log
(
St
K

)
+
(
r + σ2

2

)
τ

σ
√
τ

, (7)

d2 = d1 − σ
√
τ , (8)

and Φ(·) is the cumulative distribution function of a standard normal random variable.

It is important to emphasize that we need to use σ, i.e., the instantaneous volatility in

the above formulae to obtain the correct option prices. Using the volatility of rτ (i.e., στ )

in the Black-Scholes formula will lead to erroneous prices for the options. While γ or ρτ (1)

has no impact on the price of an option today, it plays an important role in determining the

expected future price of an option. In the following Proposition, we present the expected

future price of a general European derivative on the underlying stock when the stock price

follows the trending O-U process in (1).

Proposition 1. Suppose the stock price follows the trending O-U process defined in (1).

Consider a general European derivative with its payoff at time t + τ being a deterministic

function of the stock price at time t+ τ . If the derivative has a current price of

Ht = Ht(St, σ), (9)

then its expected price at t+ k for 0 < k ≤ τ is given by

Et[Ht+k] = erkHt(S
∗
t , σ

∗), (10)
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where5

S∗t = St exp

([
µ− r +

σ2
k

2

]
k

)
, (11)

σ∗2 =
kσ2

k + (τ − k)σ2

τ
. (12)

Proofs of all propositions are given in the Appendix. The result of this Proposition

is quite general; it covers all kinds of European derivatives, including calls, puts, binary

options and compound options. It can also be applied to other types of O-U processes

such as bivariate and multivariate O-U processes, which we discuss later in this section. It

suggests that as long as one has the ability to compute the derivative price today (either

analytically or numerically), one can easily compute its expected price at k periods from now

by replacing St and σ in the pricing formula with S∗t and σ∗ and then multiplying the price

by erk. It should be noted that Rubinstein (1984) has derived the expected value of the call

and put options at times t+k under the assumption that the stock price follows a geometric

Brownian motion. His result can be obtained by setting σk = σ and S̃t = St exp((µ − r)k)

in Proposition 1.6

As a special case of Proposition 1, we can compute the expected payoff of a European

derivative at its maturity, and the result is summarized in the following corollary.

Corollary 1.1. Suppose the stock price follows the trending O-U process defined in (1). For

a general European derivative with current price of Ht = Ht(St, σ) and a time-to-maturity

of τ , its expected payoff at maturity is given by

Et[Ht+τ ] = erτHt(S̃t, στ ), (13)

5It should be emphasized that when stock price follows a geometric Brownian motion dSt/St = µdt +
σdWt, we have Et[Ht+k] = erkHt(S

∗
t , σ) where S∗

t = St exp((µ− r)k).
6Rubinstein’s proof relies on direct integration of the Black-Scholes formula to obtain the expected return

of the option. It is difficult to generalize his proof to the case of more complex European derivatives.

7



where

S̃t = St exp

([
µ− r +

σ2
τ

2

]
τ

)
. (14)

With the ability to compute the expected price of a derivative at any time before maturity,

we can compute the expected return of an option for different holding periods, including

expected hold-to-expiration return. For the European call and put with time-to-maturity

τ , we can use Proposition 1 to obtain their expected k-period (k ≤ τ) returns under the

trending O-U process as

E[RC
t (k)] =

Et[Ct+k]

CBS(St, K, r, τ, σ)
− 1 =

erkCBS(S∗t , K, r, τ, σ
∗)

CBS(St, K, r, τ, σ)
− 1, (15)

E[RP
t (k)] =

Et[Pt+k]

PBS(St, K, r, τ, σ)
− 1 =

erkPBS(S∗t , K, r, τ, σ
∗)

PBS(St, K, r, τ, σ)
− 1. (16)

With the explicit expressions of E[RC
t (k)] and E[RP

t (k)] available, we can analyze the im-

pact of stock return autocorrelation on expected option returns. Note that from (3) and (4),

we can see that ρk(1) and σk are both monotonic decreasing functions of γ, and hence ρk(1)

is a monotonic increasing function of σ2
k. As a result, ∂E[RC

t (k)]/∂ρk(1) has the same sign as

∂E[RC
t (k)]/∂σk. Similarly, ∂E[RP

t (k)]/∂ρk(1) has the same sign as ∂E[RP
t (k)]/∂σk. In the

following Proposition, we provide explicit expressions of ∂E[RC
t (k)]/∂σk and ∂E[RP

t (k)]/∂σk.

Proposition 2. Suppose the stock price follows the trending O-U process defined in (1). The

partial derivatives of E[RC
t (k)] and E[RP

t (k)] with respect to σk are given by

∂E[RC
t (k)]

∂σk
=
erkS∗t kσk

Ct

[
Φ(d∗1) +

φ(d∗1)

σ∗
√
τ

]
, (17)

∂E[RP
t (k)]

∂σk
=
erkS∗t kσk

Pt

[
−Φ(−d∗1) +

φ(d∗1)

σ∗
√
τ

]
, (18)
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where φ(·) is the probability density function of a standard normal random variable and

d∗1 =
log
(
S∗
t

K

)
+
(
r + σ∗2

2

)
τ

σ∗
√
τ

. (19)

From (17), we can easily see that ∂E[RC
t (k)]/∂σk > 0, so expected return of a call option

is an increasing function of the first order autocorrelation of stock returns. For the case of

(18), we show in the proof of Proposition 2 that when k = τ and µ > 0, a sufficient condition

for ∂E[RP
t (k)]/∂σk > 0 is K ≤ S (i.e., the put option is at-the-money or out-of-the-money).

In principle, (18) can take negative values when the put is deep in-the-money. However, for

reasonable choices of parameters we often encounter, the partial derivative in (18) is positive.

As an example, Figure 1 plots the expected stock return, expected hold-to-expiration re-

turns for at-the-money (ATM) calls, puts and straddles as a function of first-order autocorre-

lation of stock returns under the trending O-U process, assuming µ = 0.1, r = 0.05, σ = 0.2,

and τ = 1/12. The τ -period expected return of the stock is given by exp
(
τµ+ τσ2

τ

2

)
− 1.

Although σ2
τ is an increasing function of the stock return autocorrelation, the impact of stock

return autocorrelation on the expected return of the stock is quite minimal, especially for a

short horizon like τ = 1/12. In contrast, the expected returns of the ATM calls, puts, and

straddles all display a monotonic increasing relation with the stock return autocorrelation

coefficient. When we compare the expected option returns between two extreme cases ρ = 0,

which corresponds to the geometric Brownian motion with constant drift, and ρ = −0.2, the

difference is 11.28% for call option while it is 11.77% for put options. This suggests that

autocorrelation in stock returns indeed has a significant impact on the expected returns of

ATM options.

To gain a better understanding of why the autocorrelation of stock return has such a

large impact on the expected return of the options, we plot the distribution of St+τ for two

different cases (ρ = −0.2 and 0) in Figure 2, with the current stock price set to St = 1.
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It is obvious that with a higher stock return autocorrelation, there is an increase in the

volatility of the stock price at maturity. However, E[St+τ ] is hardly affected by the increase

in volatility because the larger positive outcome of St+τ tends to be offset by its larger

negative outcome, and the expected stock returns for the two cases are very close to each

other (0.969% vs. 1.005%). On the contrary, options benefit from extreme outcomes on only

one side and their expected payoffs are heavily affected by the volatility of the stock price at

maturity. In Figure 2, we use two vertical lines to indicate the expected payoffs for the stock,

conditional on that it is below or above $1, i.e., E[St+τ |St+τ < 1] and E[St+τ |St+τ > 1]. For

ATM options, these conditional payoffs are the most relevant quantities that determine their

expected payoffs. For example, the expected payoff of an ATM call option is equal to

E[Ct+τ ] = P [St+τ > 1](E[St+τ |St+τ > 1]− 1). (20)

When ρ = −0.2, the probability for the call to be in the money is 0.5648, and the expected

payoff conditional on the call being in the money is $1.0455 − $1 = $0.0455. This leads to

an expected payoff for the call option to be 0.5648 × $0.0455 = $0.02570. When ρ = 0,

the probability for the call to be in the money is 0.5574, and the payoff conditional on it

being in the money is $1.0512 − $1 = $0.0512. The expected payoff for the call option is

0.5574 × $0.0512 = $0.02854. Although the difference in the expected payoff for the call

options in these two cases is not large ($0.02570 vs. $0.02854), the call option is a highly

leveraged position and it is selling at a much lower price ($0.02512) than the stock. As a

result, the small difference in the expected payoffs for the call option leads to a large difference

of (0.02854− 0.02570)/0.02512 = 11.28% for the expected return of the call options. Similar

calculation also shows that the expected payoff of ATM put option also increases as the stock

return autocorrelation increases from −0.2 to 0. In summary, there are two main reasons

why the expected option return is heavily affected by the stock return autocorrelation. One

is due to the fact that an option benefits from extreme outcomes because of its asymmetric
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payoff structure, and the other is the high leveraged position of an option magnifies those

extreme outcomes further when returns are considered.

While Figure 1 suggests that autocorrelation of stock return is an important determinant

of expected returns of ATM options, it is of interest to understand whether the same pattern

continues to hold for options with different levels of moneyness. To this end, we plot expected

hold-to-expiration call and put option returns for different levels of moneyness (K/S = 0.95,

1, or 1.05). Instead of plotting the expected option return as a function of stock return

autocorrelation alone, we plot the expected option return as a function of stock return

autocorrelation and stock return volatility. This allows us to judge the relative importance

of these two determinants of expected option returns in different scenarios. Figure 3 suggests

that stock return autocorrelation is extremely important in determining the expected return

of out-of-the-money options (i.e., K/S = 1.05 for call and K/S = 0.95 for put), especially

when the volatility is low. In contrast, for in-the-money options, stock return autocorrelation

is an important determinant of their expected returns only when return volatility is high.

Hu and Jacobs (2020) suggests that stock return volatility is an important determinant of

expected option returns. In particular, they suggest that expected call option return is a

decreasing function of stock return volatility whereas the expected put option return is an

increasing function of stock return volatility. For the Black-Scholes case (i.e., ρ = 0), we

indeed observe such a pattern. However, when returns exhibit negative autocorrelation,

we find that the expected return of out-of-the-money call option (K/S = 1.05) is in fact

an increasing function of volatility and the in-the-money put option (K/S = 1.05) is a

decreasing function of volatility. While we find that stock return volatility is an important

determinant of expected option returns across various cases considered in Figure 3, the effect

of stock return autocorrelation is just as an important determinant of expected option return

as the stock return volatility.
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2.2 Generalizations

Although the trending O-U process in 2.1 provides a simple analytical tool to embed auto-

correlation of stock returns into the option pricing framework, it has a limitation of being

only able to generate negative return autocorrelation. In practice, both negative and positive

autocorrelation of stock returns are often observed in the cross-section. To overcome this

issue, Lo and Wang (1995) proposes the following bivariate trending O-U process that can

generate both negative and positive autocorrelations in stock returns:

d log(St) = (µ− γ[log(St)− µt] + λXt) dt+ σdWt, (21)

dXt = −δXtdt+ σxdW
x
t . (22)

where δ ≥ 0, γ ≥ 0 and the two Weiner processes Wt and W x
t are assumed to be independent

of each other. For this general case, σ2
k and ρk(1) have the following expressions

σ2
k =

1

kγ

[
σ2 +

λ2σ2
x

δ(γ + δ)

] [
(1− e−kγ)− λ

γ − δ
βqx(e

−kδ − e−kγ)
]
, (23)

ρk(1) = −
(1− e−kγ)2 + λ

γ−δβqx
[
(1− e−kδ)2 − (1− e−kγ)2

]
2
[
1− e−kγ − λ

γ−δβqx(e
−kδ − e−kγ)

] , (24)

where

βqx =
γλσ2

x

δ(δ + γ)σ2 + λ2σ2
x

. (25)

With these functional forms, we can prove a similar result to the previous trending O-U case

that both σ2
k and ρk(1) are decreasing function of the “speed of adjustment” parameter γ. As

a result, we obtain the same intuition that expected option return is an increasing function

of the first-order stock return autocorrelation. The following lemma states this result.

Lemma 2.1. Under the general bivariate trending O-U process in Equation (21), both σ2
k

and ρk(1) are decreasing functions of γ for fixed δ, λ, σ, and σx.
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We provide the proofs in the Appendix. Subsequently, it turns out that for this bivariate

O-U process, we can apply Proposition 1 to obtain the expected future price of a European

option by simply replacing the expression of σ2
k in (3) with the one in (23).

In Figure 4, we plot the expected stock return and expected hold-to-expiration returns

for ATM calls, puts, and straddles as a function of autocorrelation coefficient under the

bivariate trending O-U process, assuming µ = 0.1, r = 0.05, σ = 0.2, τ = 1/12, δ = 0.2,

λ = 2.5, and σx = 0.1. The expected stock return is largely unaffected by the stock return

autocorrelation, but expected returns of ATM calls and puts again show a clear monotonic

relationship with the stock return autocorrelation coefficient for the case of the bivariate

trending O-U process, similar to the case of the univariate trending O-U process in Figure 1.

We plot in Figure 5 the expected hold-to-expiration returns of calls and puts as a function

of stock return autocorrelation and stock return volatility for different levels of moneyness

(K/S = 0.95, 1, or 1.05) under the bivariate trending O-U process. Similar to Figure 3

which is for the case of the univariate trending O-U process, we find that stock return auto-

correlation also has an important impact on expected returns of options under the bivariate

trending O-U process, especially for those out-of-the-money options on stocks with low re-

turn volatility. In most cases, the stock return autocorrelation is an important determinant

of expected option returns, and often more so than the stock return volatility.

The analytical results so far strongly support the positive relationship between the stock

return autocorrelation and expected option returns. However, this relationship may depend

on the particular choice of model specified in Lo and Wang (1995). The analytical result of

Proposition 1 suggests that what really matters for expected option returns is the difference

between the holding-period return variance σ2
k and the instantaneous return variance σ2.

Therefore, we also consider a less model-dependent approach by looking at the variance

13



ratio statistic studied in Lo and MacKinlay (1988)

V R =
σ2
k

σ2
. (26)

We use the return autocorrelation as the main variable of interest throughout the paper.

However, we also report the empirical results using variance ratio and discuss its performance

relative to the return autocorrelation in Section 4.

Overall, the analytical exercise in this section provides an insight that expected option

returns should be an increasing function of the first-order autocorrelation coefficient. In the

next section, we test this relationship empirically using equity option return data.

3 Empirical Evidence

3.1 Data and Variable Construction

We collect equity options data including best bid, best offer, implied volatility, expiration

date, and strike price from OptionMetrics database. The sample period is from January 1996

to December 2020. For each month, we choose equity options with the moneyness closest

to 1 within the range between 0.95 and 1.05, and with time to maturity on the third Friday

of next month (i.e., standard monthly option expiration date). The return for each option

is computed from its first trading day after the standard monthly option expiration date to

its maturity in the following month. This allows us to include the largest portion of equity

option trading every month. The reason to choose 30-day ATM equity options is because

they are the most actively traded contracts in the equity option market. Following the

existing literature, we exclude observations that apparently violate no-arbitrage conditions,

have no trading volumes or open interests, have a quoted mid-price less than $0.125, and
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have paid cash dividends during the holding period.7 In our study, we first consider three

types of option portfolios: the call option portfolio, the put option portfolio, and the straddle

portfolio (i.e., a long position in both call and put options with the same strike price). The

returns for each of the three option positions are defined below:

RC
i,t =

max(Si,t −Ki, 0)

Ci,t−1

− 1, (27)

RP
i,t =

max(Ki − Si,t, 0)

Pi,t−1

− 1, (28)

RSt
i,t =

max(Si,t −Ki, 0) + max(Ki − Si,t, 0)

Ci,t−1 + Pi,t−1

− 1, (29)

where i stands for firm i. One problem of using hold-to-expiration option returns is that

there are significant portions of options that expire out-of-the-money, leading to a highly

skewed return distribution as many of the return observations are equal to −1. The highly

skewed distribution may affect the performance of the statistical tests that rely on asymptotic

normality (e.g., t-test and Fama-MacBeth regression). Accordingly, following the empirical

options literature, we also look at the straddle portfolio which generates a less skewed return

distribution (e.g., fewer observations of −1). Another advantage of using straddles is that

straddles are less sensitive to the returns of the underlying asset, as well as to the level

of volatility as in Hu and Jacobs (2020), therefore being able to reduce the effect of the

drift term and the level of volatility. As we have shown in Section 2, since the stock return

autocorrelation affects both expected call and put option returns in the same direction,

theoretically it should be able to explain expected straddle returns as well.

In addition to raw option returns, we also consider delta-hedged option returns as depen-

dent variables, in order to eliminate that our results are driven by the underlying stock risk

premia. By reducing directional risk, delta hedging can also isolate volatility changes for

7Note that the equity options are American style that can be exercised early. However, several studies (see,
for example, Broadie, Chernov, and Johannes (2007) and Boyer and Vorkink (2014)) argue that adjusting
for early exercise has minimal empirical implications. We therefore ignore the possibility of early exercise in
our empirical analysis, although our findings are robust to removing this filter.
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option traders. We construct the delta-hedged call option portfolio (i.e., a long position in

one call and −delta shares of the underlying stock) and the delta-hedged put option portfolio

(i.e., a long position in one put and −delta shares of the underlying stock). Following Cao

and Han (2013), we construct buy-and-hold delta-hedged option returns as the total dollar

gain at the end of the holding period scaled by the absolute value of the total cost to con-

struct the portfolios at the formation date, in order to make it comparable across stocks that

may have large differences in market prices. Theoretically, since stock return autocorrelation

only affects the terminal option price, the scaling does not change the monotonicity between

autocorrelation and option returns.8 In particular, the delta-hedged call option return is

defined as:

RDC
i,t =

(Ci,t − Ci,t−1)−∆C
i,t−1(Si,t − Si,t−1)−Rf,t(Ci,t−1 −∆C

i,t−1Si,t−1)

|Ci,t−1 −∆C
i,t−1Si,t−1|

, (30)

where C and S denoting the call option price and the underlying stock price, Rf,t denotes

the risk-free rate from time t − 1 to time t, and ∆C
i,t is the Black-Scholes call option delta

for firm i at time t. The numerator of (30) represents the total dollar gain at the end of

the holding period. If we hold the option to expiration, Ci,t = max(Si,t −Ki, 0). Similarly,

delta-hedged put option return for firm i is given by:

RDP
i,t =

(Pi,t − Pi,t−1)−∆P
i,t−1(Si,t − Si,t−1)−Rf,t(Pi,t−1 −∆P

i,t−1Si,t−1)

|Pi,t−1 −∆P
i,t−1Si,t−1|

. (31)

The underlying stock variables, such as stock return, stock price, trading volume, shares

outstanding, and share code, are collected from the CRSP database. In our sample, we

only include common stocks with share code equal to 10 or 11. At the beginning of the

option holding period, we use a past 12-month (250 days) rolling window of daily returns to

8The mathematical proof is provided in the internet appendix.
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estimate the first-order autocorrelation of underlying stock’s return as

ρ̂i,t =

∑248
n=0(RS

i,t−n − R̄S
i,t)(R

S
i,t−n−1 − R̄S

i,t)∑249
n=0(RS

i,t−n − R̄S
i,t)

2
, (32)

where R̄S
i,t = 1

250

∑249
n=0 R

S
i,t−n. A 12-month rolling window is reasonable since it can mitigate

short-term impacts from earnings announcement or major corporate events. The calculated

stock return autocorrelation is then used to sort stocks and options to form the corresponding

quintile portfolios. In order to show the robustness of our empirical results, we construct

several alternative measures of stock return autocorrelation with different rolling windows.

The results of the robustness checks are discussed in Section 4. A stock and its associated

options are eligible to be included in the sample at a certain month if the stock has more

than 130 daily observations during the past 12 months. To eliminate the effect of bid-ask

bounce, especially from penny stocks, we also exclude samples with stock prices less than

$5.9

In addition, we also construct various existing option return predictors in the literature.

We compute realized volatility using past 30-days of the underlying stock’s daily returns,

implied volatility is based on 30-day at-the-money call options, variance risk premium is

constructed by taking the difference between the implied volatility of the ATM call option

expiring in 30 days and the realized volatility, stock illiquidity is computed as the monthly

average of the daily absolute returns divided by daily trading volume following Amihud

(2002), idiosyncratic volatility is defined as the standard deviation of the residuals from

the Fama-French three factor model using daily observations within each month, implied

volatility term structure is constructed by taking the difference between the 90-day and

30-day implied volatility of the ATM call options, Amihud illiquidity is calculated based

on Amihud (2002), realized skewness is calculated using the past 22-day daily returns, and

9Our results are robust to including stocks with prices less than $5 and other securities with the share
code outside 10 and 11.
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maximum daily return is computed based on Bali, Cakici, and Whitelaw (2011) and Byun

and Kim (2016).

Table 1 about here

Table 1 provides the summary statistics. During our sample period, we observe 1,674

firms on average for each month that has liquid options contracts traded (either calls or puts)

and available stock return autocorrelation based on our definition.10 Panel A reports the

average stock return autocorrelation coefficient being slightly negative at −0.012. Within

these firms, we see large variations in the stock return autocorrelation that the 25th percentile

of the observations is −0.067 while the 75th percentile of the observations is 0.043. Panel A

also reports the summary statistics of hold-to-expiration equity option returns in our sample.

As we discussed earlier, the option return is often −100% as many options expire out-of-

the-money. As options represent highly leveraged position, the positive side is also quite

extreme. The 90th percentile for call, put, and straddle are 186.8%, 141.4%, and 98.4%,

respectively. The average monthly return of ATM call options is 7.8% while the average

monthly return of ATM put options is −11.4%, as stock returns are positive on average.

In Panel B, we also report average cross-sectional correlations among stock return au-

tocorrelation and other existing return predictors, such as past one-month stock return,

Amihud illiquidity, realized skewness, maximum daily return, realized volatility, implied

volatility, and variance risk premium. We find stock return autocorrelation has low correla-

tions with existing return predictors which are computed similarly using stock returns. For

example, stock return autocorrelation has a very low correlation (-0.002) with variance risk

premium and a low correlation (0.007) with realized skewness. On the other hand, it has a

substantial positive correlation with realized volatility of 0.146 and with implied volatility

of 0.158, although the magnitude is still moderate.

10The number of observations for stocks is more than that for options in Table 1, because some stocks do
not have both ATM calls and puts.
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3.2 Portfolio Sorting

At the beginning of each portfolio holding period, we sort all eligible stocks into quintiles

based on their stock return autocorrelations. Within each quintile, we compute both equal-

weighted and security price-weighted (based on the security price corresponding to each

portfolio) returns and then construct a long-short portfolio between top and bottom quintiles

for the following cases: call option returns, put option returns, delta-hedged call option

returns, delta-hedged put option returns, straddle returns, and stock returns. The reason

for including the underlying stock portfolio is to examine whether the explanatory power of

the stock return autocorrelation on average option returns comes from its ability to explain

the average returns of the underlying stocks. We hold the portfolio until the expiration date

of the options and calculate the corresponding holding period returns. Table 2 displays the

empirical results.

Table 2 about here

Table 2 confirms the prediction of our Proposition 2 that expected return of an option

is increasing in the stock return autocorrelation. For example, the call options with the

lowest underlying stock return autocorrelations (Low) underperform those with the highest

underlying stock return autocorrelations (High) by 3.7%/month. Similar evidence applies

to put options (6.4%/month) and straddles (4.3%/month). As illustrated in Figures 1 and

4, the expected return of a stock is hardly affected by its return autocorrelation. Consistent

with this, we do not see significant difference in the average returns between the portfolios of

stocks with low and high return autocorrelations. This suggests that the explanatory power

of stock return autocorrelation on average option returns is not due to its explanatory power

on average returns of their underlying stocks. In addition, the explanatory power of stock

return autocorrelation cannot be fully explained by realized volatility. If it is all driven by

realized volatility, we should observe opposite effects of stock return autocorrelation on call

and put options (Hu and Jacobs (2020)), while in our case, stock return autocorrelation
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positively explains the average returns of both call and put options. One possibility of the

predictive power of stock return autocorrelation may be driven by the underlying stocks’

risk premia. In order to reduce this concern, we consider the long-short delta-hedged option

portfolio following Cao and Han (2013). The portfolio spreads of all long-short delta-hedged

option portfolios are statistically significantly positive, implying that our results are not

driven by the underlying stocks’ risk premia.

In Table 2 Panel B, we show that our results hold for security price-weighted portfolios

assuming we invest equal shares for all firms in each portfolio. In Panel B, for call option,

put option, and stock portfolios, the weights are based on the corresponding security prices.

For delta-hedged call, delta-hedged put, and straddle portfolios, the weights are based on

the initial investment for each firm in the portfolio. The results in Table 2 are robust if

we adjust the raw portfolio spread returns to alphas based on the two-factor option model

(i.e., stock illiquidity and idiosyncratic volatility) proposed by Cao et al. (2021), and are

provided in the internet appendix. It is worth noting that in Table 2, the call option results

are less significant than put options. The reason is because stock return autocorrelation is

usually positively correlated with realized volatility. Low autocorrelation, which leads to low

call option returns, corresponds with low realized volatility, thus leading to high call option

returns based on Hu and Jacobs (2020). The mixed effect between autocorrelation and real-

ized volatility may offset the predictive power of autocorrelation in single portfolio sorting,

thus leading to a less significant result for call options. Consistent with this explanation,

the sorting results for put options are much stronger, because both high autocorrelation and

realized volatility lead to high put option returns.

One may have concerns that the stock return autocorrelation captures known risk factors

that determine option returns such as: realized volatility (Hu and Jacobs (2020)), variance

risk premium (Goyal and Saretto (2009)), liquidity risk (Christoffersen, Goyenko, Jacobs,

and Karoui (2018)), or reflects some well-known option mispricings such as idiosyncratic
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volatility (Cao and Han (2013)), implied volatility term structure (Vasquez (2017)), or other

stock characteristics (Cao et al. (2021)). In order to avoid the case that the stock return

autocorrelation only captures the existing predictors documented in the literature (either

risk or mispricing), we extend our portfolio analysis through double sorting stocks by var-

ious characteristics and stock return autocorrelation. We conduct an unconditional double

sorting that for each month, we sort stocks based on a certain characteristic and stock return

autocorrelation separately into quintiles and determine their corresponding cutoffs for each

bin, thus in total twenty-five bins in two dimensions. We then classify a certain stock into

each bin in the five by five group matrix, based on the cutoffs of both the sorted character-

istic and stock return autocorrelation from two dimensions. We then calculate the portfolio

return difference and the corresponding t-statistics between the top and bottom stock return

autocorrelation along each quintile of the bin sorted by one of the other characteristics (e.g.,

idiosyncratic volatility, illiquidity, variance risk premium, etc.). The empirical results are

provided in Table 3.

Table 3 about here

Table 3 confirms that the explanatory power of stock return autocorrelation on average

return of options cannot be fully explained by existing risk factors or mispricing effects.

In most of the bins sorted by the control variables, we continue to see the average call or

put option returns to be positively related to stock return autocorrelations, and most of

the average option return differences between the high and low stock return autocorrelation

quintiles are statistically significant. The results in Table 3 are robust if we adjust the raw

returns to alphas based on the two-factor option model proposed by Cao et al. (2021), or

if we look at delta-hedged call portfolios, delta-hedged put portfolios, or straddle portfolios.

We provide the additional double-sorting results in the internet appendix.
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3.3 Fama-MacBeth Regression

The Fama-MacBeth regression proposed by Fama and MacBeth (1973) provides an alterna-

tive way to test whether the explanatory power of stock return autocorrelation on average

option return is statistically significant after controlling for other variables. For each type

of options (call, put, delta-hedged call, delta-hedged put, or straddle), we run the following

cross-sectional regressions of their returns on stock return autocorrelation and other control

variables, which have been linked to option returns in the literature (e.g., risk premium and

existing option mispricing):

Ri,t = αt + βtρ̂i,t−1 +
M∑
j=1

γjtX
j
i,t−1 + εi,t, i = 1, . . . , Nt, (33)

where Ri,t is the return of option i at time t, ρ̂i,t−1 is the estimated stock return autocorre-

lation for stock i at time t− 1, and Xj
i,t−1 (j = 1, . . . ,M) are the control variables including

those specified in Section 3.2 and other important option predictors suggested by Cao et al.

(2021). Since realized volatility and idiosyncratic volatility are highly correlated, we only

include realized volatility in the regression to moderate the multicollinearity issue. We also

consider averages of the past one-week, past one-month, and past three-month stock returns

to control for the momentum effect. In total, we include 25 independent variables to forecast

option returns in the Fama-MacBeth regression. To save space, some of the control variables

are summarized in one row as “Other Stock Controls” with the detailed variable definitions

listed in the internet appendix.

The cross-sectional regression above is run each month with Nt return observations to

obtain the coefficients for the independent variables. When running cross-sectional regres-

sions, we standardize all independent variables with mean zero and standard deviation of

one. After obtaining the time-series of the coefficients for the independent variables, we

conduct the t-test for each coefficient with one-lag correction of Newey and West (1987).
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The hypothesis of the t-test is: H0 : β = 0 vs. Ha : β 6= 0. The average of the time-series

coefficients and the corresponding t-statistics are reported in Table 4.

Table 4 about here

To save space, we only report multiple regressions on stock return autocorrelation and

all other control variables. The univariate regression results are also significant for all types

of option returns and are provided in the internet appendix. Table 4 supports our claim that

stock return autocorrelation is an important determinant of expected option returns, with the

t-ratios associated with the autocorrelation coefficient ranging from 2.39 to 7.36. The mul-

tiple regression results in Table 4 are consistent with previous findings in the literature. For

example, the stock realized volatility has opposite effects on call and put option returns (Hu

and Jacobs (2020)), variance risk premium and liquidity risk premium can strongly predict

straddle returns (Goyal and Saretto (2009)), and the term structure of implied volatilities

is positively related to straddle returns (Vasquez (2017)). More importantly, the multiple

regression results suggest that the stock return autocorrelation effect cannot be explained

by any of the previous findings in the literature because both the coefficients and t-ratios

associated with the autocorrelation coefficient are not much changed even in the presence of

other explanatory variables.

4 Robustness Checks

4.1 Alternative Measures of Return Autocorrelation and Different

Sorting Frequency

We conduct several robustness checks for our main results of equal-weighted portfolios re-

ported in Table 2 Panel A. We first look at the robustness of our measure for stock return

autocorrelations. Specifically, we construct the stock return autocorrelation through differ-
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ent rolling windows: 130 days and 350 days. We find that our portfolio-sorting results hold

in both cases (Table 5 Panel A). As previously discussed in Section 2, the relationship be-

tween the stock return autocorrelation and the expected option return may depend on the

specific choice of model used to generate non-zero return autocorrelation. Since the expected

option return essentially depends on the divergence of σ2
k from σ2, we also consider a more

direct measure of this divergence, namely the variance ratio of Lo and MacKinlay (1988).

Following Lo and MacKinlay (1988), we construct the variance ratio as the variance of the

k-period continuously compounded returns divided by k times the variance of one period

continuously compounded returns. Since the target portfolio is held for around a month, we

choose k = 22 for our empirical analysis. Specifically, the variance ratio (VR) is computed

as

V Rk =
σ̂2
k

σ̂2
(34)

where

σ̂2 =
1

T − 1

T∑
t=1

(rt − µ̂)2, (35)

σ̂k
2 =

1

m

T∑
t=k

(rt−k+1 + · · ·+ rt − kµ̂)2, (36)

m = k(T − k + 1)

(
1− k

T

)
, (37)

µ̂ =
1

T

T∑
t=1

rt, (38)

where rt denotes the continuously compounded daily return at time t and T is the number

of daily observations. In order to match the maturity of the options in our empirical work,

we choose k = 22 and compute the variance ratio based on daily returns of the underlying

stock over the past 12 months. Lo and MacKinlay (1988) shows that V Rk is approximately a

linear combination of the first k− 1 autocorrelation coefficients. When Lo and Wang (1995)
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model holds, stock returns follow an AR(1) process. As a result, autocorrelations of all lags

are completely determined by the first-lag autocorrelation. In this case, V Rk is simply a

noisier measure of the first-lag autocorrelation. However, when Lo and Wang (1995) model

does not hold, V Rk may contain additional information that is not captured by the first-lag

autocorrelation. Therefore, whether the return autocorrelation or the variance ratio performs

better is an empirical question. Panel A of Table 5 reports the result using the variance

ratio to sort the option portfolios. We find that the portfolio-sorting performance is slightly

weaker than the result obtained using first-lag autocorrelation, indicating V Rk could be a

noisier measure of the first-lag autocorrelation. Lastly, since stock return autocorrelation is

calculated by dividing autocovariance by the realized variance of stock returns, the predictive

power of autocorrelation may be driven by the inverse of stock realized volatility. To reduce

this concern, we look at the predictive power of autocovariance as well. We find that the

autocovariance is able to forecast option returns, implying that the predictive power of

autocorrelation is not fully driven by the inverse of stock realized volatility. The result of

autocovariance is displayed in Table 5.

Table 5 about here

Second, we investigate how robust our finding is to different sorting frequencies, in order

to better understand how persistent and stable our finding is. If the turnover of the portfolio

rebalancing is high (i.e., the probability of stocks staying in the same portfolio next period

is low), our findings may not be stable and less profitable for trading in practice after

transaction costs. To examine this, we extend sorting frequencies to every 3 months, 6

months, and 12 months, instead of sorting firms every month. In other words, although we

still use equity options expiring in 1 month to construct the portfolios, the quintile ranks of

the firms only change every 3 months, 6 months, or 12 months. The rest of the calculation

follows the same way in Section 3.2. Our empirical evidence shows that the effect of stock

return autocorrelation on option returns is very persistent and stable over time. For example,
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the difference of average put option returns between the highest autocorrelation and the

lowest autocorrelation can significantly last for one year (6.4% every month, tantamount to

76.8% each year) by sorting portfolio every 12 months.

4.2 Options with Different Moneyness and Return Calculation

In Section 3, we mainly consider ATM options expiring in one month for our empirical tests.

However, based on our theoretical derivation in Section 2, we expect our empirical results

should also hold for options with different moneyness and option return calculation, and in

particular the stock return autocorrelation effect is expected to be stronger for out-of-the-

money (OTM) options. In this subsection, we re-run our empirical tests in Section 3, but

use options with alternative moneyness such as OTM and in-the-money (ITM). In addition,

the option returns we constructed are mainly from the middle of one month (i.e., the third

Friday of the expiration month) to the middle of the next month at expiration. Ni, Pearson,

and Poteshman (2005) argues that hold-to-expiration option returns are affected by biases

at expiration. To avoid this bias, we follow Cao, Han, Tong, and Zhan (2021) to construct

the one-month option returns from the beginning and held to the end of each month. The

results are provided in Table 6.

Table 6 about here

We first investigate the explanatory power of stock return autocorrelation for different

levels of moneyness. We consider two other types of options: OTM options with moneyness

(K/S) less than 0.95 for put options and greater than 1.05 for call options, and ITM options

with moneyness less than 0.95 for call options and greater than 1.05 for put options. To

exclude those illiquid deep in- or out-of-the money options, we set the lower and upper bounds

of moneyness at 0.8 and 1.2. We also construct a portfolio of ITM call and put options as well

as a portfolio of OTM call and put options money and report their average returns under the
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column “Combination”. All the ITM and OTM option returns are computed as the average

returns across all available option contracts satisfying the filtering conditions. Consistent

with our theoretical results, the positive relation between stock return autocorrelation and

average option returns holds for different levels of moneyness. More importantly, the stock

return autocorrelation effect is much stronger for OTM call and put options as well as for

OTM combination, which is consistent with our model’s prediction. For example, the average

monthly quintile spread of OTM put option portfolio is 9.2%, which is larger than the spread

(1.8%) of ITM put option portfolio.

Finally, we consider alternative ways of computing option returns. Instead of constructing

option returns from the middle of each month, we follow Cao, Han, Tong, and Zhan (2021)

and select options at the beginning of each month and choose those options that have a

moneyness closest to 1 between 0.9 and 1.1 and with time to maturities between 30 and

55 days. Through this way, the option returns are calculated from the beginning to the

end of each month. Since the options are not held to maturity, at the end of the holding

period, the option terminal price is calculated as the higher value between the option trading

price (equal to zero if unavailable at the selected date) and the exercised option payoff (i.e.,

intrinsic value) of the option at the particular date. Following Section 4.1, we also examine

the portfolio results with different sorting frequencies from 1 month to 12 months. Panel B

of Table 6 confirms that our empirical results hold for the alternative definition of option

returns.

4.3 Stochastic Volatility

In Section 2, we have assumed the volatility σ to be constant for all models we considered.

This is because we are mainly interested in the effect of autocorrelation stemming from the

trending drift term and it is analytically convenient to make an assumption of constant

volatility. We now relax this assumption by allowing stochastic volatility in the general
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bivariate trending O-U process to examine if stochastic volatility can substantially alter our

conclusions. By embedding Heston (1993) style square-root process of stochastic volatility

specification into the general bivariate trending O-U process, we consider the following model

of log stock price under the physical measure:

d log(St) = (µ− γ[log(St)− µt] + λXt)dt+
√
VtdWt, (39)

dXt = −δXtdt+ σxdW
x
t , (40)

dVt = κ(θ − Vt)dt+ ξ
√
VtdW

v
t , (41)

where θ is the long-term mean of the variance and κ measures the speed of mean-reversion for

the variance. Two Brownian motions Wt and W v
t are correlated with coefficient ρ while W x

t

is assumed to be independent to others. One of the most attractive feature of Heston (1993)

model is being able to generate variance risk premium, which is particularly pronounced in

the index options. Therefore, we calibrate the model to the S&P500 index and its options.

Using the historical mean of index returns, dividend yield, and risk-free rate, we first set

µ = 5.86% and r = 2.25%. For the parameters concerning stochastic volatility process, we

use parameters estimated in Fournier and Jacobs (2020) and set κ = 5.3178, θ = 0.0408,

ξ = 0.1882, ρ = −0.4694, λSV = −1.08, where λSV is the standard linear price of variance

risk parameter. Under the risk-neutral measure, the joint dynamics are described by the

following:

d log(St) = rdt+
√
VtdW

Q
t , (42)

dVt = κ∗(θ∗ − Vt)dt+ ξ
√
VtdW

v,Q
t , (43)

where κ∗ = κ+ λSV ξ and θ∗ = κθ/κ∗.

We rely on simulations to compute the expected option return under this model and plot

its relationship with the stock return autocorrelation in Figure 6. Figure 6 demonstrates that
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our conclusion is not much affected by the inclusion of the stochastic volatility, as monotonic

relationship between expected option returns and stock return autocorrelation persists. The

major effect coming from the inclusion of the stochastic volatility model is on the decrease

in the level of expected option returns through the variance risk premium, but it does not

change our main conclusion.

5 Conclusions

This paper presents a new variable that can explain the cross-sectional difference of expected

equity option returns, namely the first-order stock return autocorrelation coefficient. Using

the extended Black-Scholes framework proposed by Lo and Wang (1995), we show analyti-

cally that expected option return is an increasing function of the underlying stock’s return

autocorrelation. This prediction is strongly supported by the empirical findings where av-

erage returns of calls, puts, and straddles are found to be monotonically increasing in the

magnitude of their underlying stock’s return autocorrelation. These findings are robust to

different implementation methods as well as controlling for other known factors that possess

explanatory power of cross-sectional differences of average equity option returns.

Our findings contribute to the recent literature on the equity options investment. We

identify a new variable that is easy to construct and derive its impact on the cross-section of

expected returns on equity options. This approach could be potentially used to study other

option pricing models that extends the Black-Scholes formula along different directions al-

though obtaining an analytical formula for expected option return could be challenging for

these models. Nevertheless, our results suggest that researchers should take the autocor-

relation effect into consideration when they study option-return related predictors. Most

importantly, we demonstrate that such analysis could lead to superior investment strategies

that offer real benefits for investors even after taking into account of estimation risk and

transaction costs.
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Appendix

A Proof of Proposition 1

Consider a general European derivative with maturity t+ τ and a payoff at maturity given

by

Ht+τ = h(St+τ ), (A.1)

where h(St+τ ) is a deterministic function of the underlying stock price at t+ τ . As noted in

Grundy (1991) and Lo and Wang (1995), the drift of the stock price process is irrelevant for

determining the price of the derivative today, and we can use the risk-neutralized process

of the stock price to determine the price of the European derivative today. Under the

risk neutral measure, the continuously compounded return of rt+τ = log(St+τ ) − log(St) is

normally distributed with a mean of τ
(
r − σ2

2

)
and variance of τσ2. It follows that the

current price of the European derivative is given by

Ht(St, σ) = e−rτEQ
t [h(St+τ )]

= e−rτ
∫ ∞
−∞

h
(
Ste

(r− 1
2
σ2)τ+σ

√
τv
)
φ(v)dv. (A.2)

Similarly, the price of the derivative at time t+ k, where 0 ≤ k ≤ τ , can be obtained as

Ht+k(St+k, σ) = e−r(τ−k)EQ
t+k[h(St+τ )]

= e−r(τ−k)

∫ ∞
−∞

h(St+ke
(r− 1

2
σ2)(τ−k)+σ

√
τ−kv)φ(v)dv. (A.3)

Under the physical measure, the stock price follows a trending O-U process and its k-period

continuously compounded return rk = log(St+k)− log(St) is normally distributed with mean

kµ and variance kσ2
k. As a result, we can write St+k as

St+k = Ste
µk+σk

√
kw, (A.4)

where w is a standard normal random variable. Then, we can compute the expected price

of the derivative at time t+ k as

Et[Ht+k] =

∫ ∞
−∞

Ht+k

(
Ste

µk+σk
√
kw, σ

)
φ(w)dw

=

∫ ∞
−∞

[
e−r(τ−k)

∫ ∞
−∞

h
(
Ste

µk+σk
√
kwe(r−σ

2

2
)(τ−k)+σ

√
τ−kv

)
φ(v)dv

]
φ(w)dw
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= e−r(τ−k)

∫ ∞
−∞

∫ ∞
−∞

h
(
Ste

µk+(r−σ
2

2
)(τ−k)e

√
σ2
kk+σ2(τ−k)u

)
φ2

(
u,w;

σk
√
k

σ∗
√
τ

)
dwdu

= e−r(τ−k)

∫ ∞
−∞

h

(
Ste

µk+
(
r−σ

2

2

)
(τ−k)+σ∗√τu

)
φ(u)du

= erkHt

(
Ste

µk+
(
r−σ

2

2

)
(τ−k)−

(
r−σ

∗2
2

)
τ
, σ∗
)

= erkHt(S
∗
t , σ

∗), (A.5)

where

S∗t = Ste
µk+

(
r−σ

2

2

)
(τ−k)−

(
r−σ

∗2
2

)
τ

= Ste

(
µ−r+σ2k

2

)
k

(A.6)

and φ2(·, ·; ρ) stands for the density function of a standard bivariate normal random variable

with correlation ρ. In the above derivation, we make a change of variable of

u =
σk
√
kw + σ

√
τ − kv√

σ2
kk + σ2(τ − k)

=
σk
√
kw + σ

√
τ − kv

σ∗
√
τ

∼ N(0, 1), (A.7)

and we have

Corr[u,w] = Cov[u,w] =
σk
√
k

σ∗
√
τ
. (A.8)

This completes the proof.

B Proof of Corollary 1.1

This is a special case of Proposition 1 with k = τ , thus σ∗ = στ and S∗t = Ste
(µ−r+σ2τ

2
)τ = S̃t.

This completes the proof.

C Proof of Proposition 2

From the Black-Scholes formula, it is easy to show that

∂CBS(S∗t , K, r, τ, σ
∗)

∂S∗t
= Φ(d∗1), (A.9)

∂PBS(S∗t , K, r, τ, σ
∗)

∂S∗t
= −Φ(−d∗1), (A.10)

∂CBS(S∗t , K, r, τ, σ
∗)

∂σ∗
= S∗t φ(d∗1)

√
τ , (A.11)
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∂PBS(S∗t , K, r, τ, σ
∗)

∂σ∗
= S∗t φ(d∗1)

√
τ , (A.12)

where

d∗1 =
log
(
S∗
t

K

)
+
(
r + σ∗2

2

)
τ

σ∗
√
τ

. (A.13)

It follows that

∂Et[Ct+k]

∂σk
= erk

[
∂CBS(S∗t , K, r, τ, σ

∗)

∂S∗t

∂S∗t
∂σk

+
∂CBS(S∗t , K, r, τ, σ

∗)

∂σ∗
∂σ∗

∂σk

]
= erk

[
Φ(d∗1)S∗t kσk + S∗t φ(d∗1)

√
τ
kσk
τσ∗

]
= erkS∗t kσk

[
Φ(d∗1) +

φ(d∗1)

σ∗
√
τ

]
, (A.14)

∂Et[Pt+k]

∂σk
= erk

[
∂PBS(S∗t , K, r, τ, σ

∗)

∂S∗t

∂S∗t
∂σk

+
∂PBS(S∗t , K, r, τ, σ

∗)

∂σ∗
∂σ∗

∂σk

]
= erk

[
−Φ(−d∗1)S∗t kσk + S∗t φ(d∗1)

√
τ
kσk
τσ∗

]
= erkS∗t kσk

[
−Φ(−d∗1) +

φ(d∗1)

σ∗
√
τ

]
. (A.15)

We now show that when k = τ and µ > 0, ∂Et[Pt+k]/∂σk > 0 for at-the-money and out-of-

the-money put options. Note that when k = τ and µ > 0,

St ≥ K ⇒ S∗t ≥ Ke

(
µ−r+σ2τ

2

)
τ
⇒ d∗1 ≥ σ∗

√
τ . (A.16)

It follows that

−Φ(−d∗1) +
φ(d∗1)

σ∗
√
τ
≥ −Φ(−d∗1) +

φ(d∗1)

d∗1
=

Φ(−d∗1)

d∗1

[
−d∗1 +

φ(d∗1)

Φ(−d∗1)

]
> 0. (A.17)

The last inequality follows from the result of Gordon (1941) regarding inverse Mill’s ratio

for normal random variable that states for d∗1 ≥ 0,

φ(d∗1)

1− Φ(d∗1)
> d∗1. (A.18)

This completes the proof.

32



D Proof of Monotonicity of σ2
k in γ

We show that under the bivariate O-U process, σ2
k is a monotonically decreasing function of

γ. The expression of σ2
k is given by

σ2
k =

1

kγ

[
σ2 +

λ2σ2
x

δ(γ + δ)

] [
(1− e−kγ)− λ

γ − δ
βqx(e

−kδ − e−kγ)
]
, (A.19)

where

βqx =
γλσ2

x

δ(δ + γ)σ2 + λ2σ2
x

. (A.20)

Taking derivative of σ2
k with respect to γ, we obtain

∂σ2
k

∂γ
=

e−k(δ+γ)

δγ2(δ2 − γ2)2k
[f1 + λ2σ2

xf2], (A.21)

where

f1 = −δekδ(δ2 − γ2)2(ekγ − 1− kγ)σ2, (A.22)

f2 = 2γ3ekγ − (δ − γ)2(δ + 2γ)ek(δ+γ) + [δ2(1 + kγ)− γ2(3 + kγ)]δekδ. (A.23)

Since ekγ > 1 + kγ, it is obvious that f1 ≤ 0. It suffices to show that f2 ≤ 0. Let a = kγ

and b = kδ. We can re-write f2 as a function of a and b as follows

f2/k
3 = f(a, b) = 2a3ea − (a− b)2(b+ 2a)ea+b + (b2(1 + a)− a2(3 + a))beb

= 2a3ea + b[(1 + a)b2 − (3 + a)a2]eb − (a− b)2(2a+ b)ea+b. (A.24)

We first show that f(a, a+ d) ≤ f(a, a) = 0 for d > 0. We have

f(a, a+ d) = ea
{

2a3 + (a+ d)[2a2(d− 1) + d2 + ad(2 + d)]ed − d2(3a+ d)ea+d
}
. (A.25)

Since ea > 0, it suffices to show that the expression within the braces is non-positive. This

follows because

2a3 + (a+ d)[2a2(d− 1) + d2 + ad(2 + d)]ed − d2(3a+ d)ea+d

≤ 2a3 + (a+ d)[2a2(d− 1) + d2 + ad(2 + d)]ed − d2(3a+ d)ed
(

1 + a+
a2

2

)
= −a

2

2
[d3ed + (−4 + 4ed − 4ded + 3d2ed)a]
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= −a
2

2

(
d3ed + a

∞∑
n=2

3n2 − 7n+ 4

n!
dn

)
≤ 0. (A.26)

We next show that f(b+ c, b) ≤ f(b, b) = 0 for c > 0. We have

f(b+ c, b) = eb
{
b3(1 + b+ c)− b(b+ c)2(3 + b+ c) + 2(b+ c)3ec − c2(3b+ 2c)eb+c

}
.

(A.27)

Since eb > 0, it suffices to show that the expression within the braces is non-positive. This

follows because

b3(1 + b+ c)− b(b+ c)2(3 + b+ c) + 2(b+ c)3ec − c2(3b+ 2c)eb+c

≤ b3(1 + b+ c)− b(b+ c)2(3 + b+ c) + 2(b+ c)3ec − c2(3b+ 2c)ec
(

1 + b+
b2

2

)
≡ − b

2
(d0 + d1b+ d2b

2). (A.28)

Hence, it suffices to show that d0, d1, and d2 are all non-negative. Using power series expan-

sion around 0, we observe that

d0 = 2c2[3 + c+ (2c− 3)ec] = 2c2

∞∑
n=2

2n− 3

n!
cn ≥ 0,

d1 = 6c(2 + c) + 2c[c(3 + c)− 6]ec = 2c
∞∑
n=2

n2 + 2n− 6

n!
cn ≥ 0,

d2 = 4(1 + c) + (3c2 − 4)ec =
∞∑
n=2

3n2 − 3n− 4

n!
cn ≥ 0. (A.29)

This completes the proof.

E Proof of Monotonicity of ρk(1) in γ

We show that under the bivariate O-U process, ρk(1) is a monotonically decreasing function

of γ. Given the expression of ρk(1), it can be shown that

∂ρk(1)

∂γ
=
σ4f1 + σ2λ2σ2

xf2 + λ4σ4
xf3

c
, (A.30)
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where

c = 2ekγ
[
ekγ(ekδ − 1)γλ2σ2

x + δekδ(ekγ − 1)(γ2σ2 − λ2σ2
x)− δ3ekδ(ekγ − 1)σ2

]2
> 0 (A.31)

and

f1 = −δ2e2kδ(ekγ − 1)2(δ2 − γ2)2k, (A.32)

f2 = δ(δ2 + γ2)ekγ(ekδ − 1)(ekγ − 1)(ekδ − ekγ)

− δ(δ2 − γ2)[2kδe2kδ(ekγ − 1)2 − kγ(ekδ − 1)ekγ(ekδ+kγ + ekγ − 2ekδ)], (A.33)

f3 = −δ[ekδ+3kγ − e3kγ + kδe2kδ(ekγ − 1)2 + (1 + kγ)e2kγ

− (1 + kγ)e2kδ+2kγ − (1 + 2kγ)(ekδ+kγ − e2kδ+kγ)]. (A.34)

To prove ∂ρk(1)/∂γ ≤ 0, we need to prove that f1 ≤ 0, f2 ≤ 0, and f3 ≤ 0. It is obvious

that f1 ≤ 0.

Proof of f2 ≤ 0:

Let a = kγ and b = kδ. Dividing f2 by δ/k2, which preserves the sign of f2, we obtain a

function of a and b

g(a, b) = (a2 + b2)ea(ea − 1)(eb − 1)(eb − ea)

+ (a2 − b2)[2be2b(ea − 1)2 − aea(eb − 1)(ea+b + ea − 2eb)]. (A.35)

First, consider the case δ > γ so that b > a. We want to show that g(a, a+ d) < g(a, a) = 0

for d > 0, hence g is a decreasing function of b for b > a when fixing a. Taking a partial

derivative of g(a, a+ d) with respect to d, we get ∂g(a, a+ d)/∂d = −e2ag1(a, d), where

g1(a, d) = −(2a2 + 2ad+ d2)ea+d(ea − 1)(ed − 1)− [a2 + (a+ d)2]ed(ea − 1)(ea+d − 1)

− 2(a+ d)(ea − 1)(ed − 1)(ea+d − 1)

+ 2(a+ d)[2(a+ d)e2d(ea − 1)2 − a(ea+d − 1)(ea+d − 2ed + 1)]

+ 2d(2a+ d)ed[(1 + 2d)ed(ea − 1)2 + a(e2a+d − 2ea+d + 2ed − 1)]. (A.36)

We now show that g1(a, d) ≥ 0. Observing that g1(0, d) = 0, it suffices to show that ∂g1
∂a
≥ 0.

Repeating similar argument, we have ∂g1
∂a

(0, d) = 0, hence it reduces to showing that ∂2g1
∂a2
≥ 0.

We then have

∂2g1

∂a2
(0, d) = −2d+ 8ded + 4d2ed − 6de2d + 6d2e2d + 8d3e2d
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=
∞∑
n=1

(n+ 2)[(2n− 3)2n + 4]

n!
dn+1 ≥ 0. (A.37)

Therefore, it now suffices to show that ∂3g1
∂a3

is non-negative. We have the following functional

form
∂3g1

∂a3
= 2ead0(a, d) + 2ead1(a, d)a+ 8ea+dd2(a, d)a2, (A.38)

where

d0(a, d) = 4
(
4d3 + 19d2 + 13d− 6

)
ea+2d + 4(d+ 2)(d+ 3)ea+d

−
(
4d3 + 35d2 + 47d− 3

)
e2d − d− 3, (A.39)

d1(a, d) = 8
(
5d2 + 9d− 4

)
ea+2d + 8(d+ 4)ea+d −

(
10d2 + 32d− 1

)
e2d − 1, (A.40)

d2(a, d) = (4d− 2)ea+d + 2ea − ded. (A.41)

We now show that d0, d1, and d2 are all non-negative. Since d0(a, 0) = 0, taking a derivative

with respect to d we obtain

∂d0

∂d
= 4

(
d2 + 7d+ 11

)
ea+d + 4

(
8d3 + 50d2 + 64d+ 1

)
ea+2d

−
(
8d3 + 82d2 + 164d+ 41

)
e2d − 1

≥ 4
(
d2 + 7d+ 11

)
ed + 4

(
8d3 + 50d2 + 64d+ 1

)
e2d −

(
8d3 + 82d2 + 164d+ 41

)
e2d − 1

= 4
(
d2 + 7d+ 11

)
ed +

(
24d3 + 118d2 + 92d− 37

)
e2d − 1 ≥ 6, (A.42)

where the last inequality can be shown by power series expansion in d around 0, which we

omit the expression for brevity. Next, since d1(a, 0) = 0, taking a derivative with respect to

d we obtain

∂d1

∂d
= 2ed

[
4
(
10d2 + 28d+ 1

)
ea+d + 4(d+ 5)ea −

(
10d2 + 42d+ 15

)
ed
]

≥ 2ed
[
4
(
10d2 + 28d+ 1

)
ed + 4(d+ 5)−

(
10d2 + 42d+ 15

)
ed
]

= 2ed[4(5 + d) + (30d2 + 70d− 11)ed] ≥ 18ed, (A.43)

where the last inequality can be shown by power series expansion in d around 0, which we

omit the expression for brevity. Lastly, since d2(a, 0) = 0, taking a derivative with respect

to d we obtain
∂d2

∂d
= ed[2ea − 1 + (4ea − 1)d] > 0. (A.44)
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This completes the proof that g(a, a+ d) < g(a, a) = 0 for d > 0.

Similarly, we now need to show that g(b + c, b) < g(b, b) = 0 for c > 0. Taking a partial

derivative of g(b+ c, b) with respect to c, we get ∂g(b+ c, b)/∂c = −e2bg2(b, c), where

g2(b, c) = (2b2 + 2bc+ c2)ec(eb − 1)(3eb+2c − 2eb+c − 2ec + 1)

+ 2(b+ c)ec(eb − 1)(ec − 1)(eb+c − 1)

− 2(b+ c)[2b(eb+c − 1)2 − (b+ c)ec(eb − 1)(eb+c + ec − 2)]

− c(2b+ c)ec{2b(e2b+c − eb + ec − 1)− (eb − 1)[(2c+ 1)(eb+c + ec − 1)− 1]}.
(A.45)

The proof of g2(b, c) ≥ 0 is similar to the proof of g1(a, d) ≥ 0, so we only sketch it here. Since

g2(0, c) = 0, it suffices to show that ∂g2
∂b
≥ 0. We then show that ∂g2

∂b
(0, c) ≥ 0, which suggests

that it suffices to show that ∂2g2
∂b2
≥ 0. Repeating similar argument, we have ∂2g2

∂c2
(0, c) = 0

and it suffices to show ∂3g2
∂b3
≥ 0. After simplification, we obtain

∂3g2

∂b3
= eb+ce0(b, c) + 2eb+ce1(b, c)b+ 2eb+ce2(b, c)b2, (A.46)

where

e0(b, c) = 2c3(8eb+c − 1) + 6(ec − 1)(16eb+c − 7ec − 7) + 4c(ec − 1)(22eb+c − 5ec − 5)

+ c2(24eb+2c + 32eb+c − 3e2c − 11), (A.47)

e1(b, c) = c2(8eb+c − 1) + (ec − 1)(80eb+c − 19ec − 19)

+ c(24eb+2c − 56eb+c − 3e2c + 11), (A.48)

e2(b, c) = c(2− 16eb+c) + 3(ec − 1)(8eb+c − ec − 1). (A.49)

The proof that e0, e1, and e2 are positive is similar to the proof of of positivity of d0, d1, and

d2, so we do not repeat it here. This completes the proof that g(b + c, b) < 0, hence g(a, b)

is negative for all a and b.

Proof of f3 ≤ 0:

We now show that f3 ≤ 0. Let a = kγ and b = kδ, we need to show that

f(a, b) = e3a+b− e3a + be2b(ea− 1)2− (1 +a)e2a(e2b− 1) + (1 + 2a)(ea+2b− ea+b) ≥ 0. (A.50)

We first show that f(a, a + d) ≥ f(a, a) = 0 for d > 0. We have f(a, a + d) = e2ag(a, d),
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where

g(a, d) = a(ed − 1)2 + (ea − 1)[ed − 1− de2d + ea+d + (d− 1)ea+2d]. (A.51)

As g(0, d) = 0, it suffices to show that ∂g
∂a
≥ 0. Using the inequality

1 + (d− 1)ed =
∞∑
n=2

n− 1

n!
dn ≥ 0, (A.52)

we obtain

∂g

∂a
= (ea − 1){2ea+d[1 + (d− 1)ed]− (ed − 1)2}

≥ (ea − 1){2ed[1 + (d− 1)ed]− (ed − 1)2}

= (ea − 1)[−1 + 4ed + (2d− 3)e2d]

= (ea − 1)
∞∑
n=2

4 + (n− 3)2n

n!
dn ≥ 0. (A.53)

We next show that f(b + c, b) ≥ f(b, b) = 0 for c > 0. We have f(b + c, b) = e2bh(b, c),

where

h(b, c) = b(ec − 1)2 + ec(eb − 1)[(ec − 1)(eb+c − 1)− c(−2 + ec + eb+c)]. (A.54)

As h(0, c) = 0, it suffices to show that ∂h
∂b
≥ 0. We have

∂h

∂b
= (eb+c − 1)[2eb+c(ec − 1− c)− (ec − 1)2]

≥ (eb+c − 1)[2ec(ec − 1− c)− (ec − 1)2]

= (eb+c − 1)(e2c − 2cec − 1)

= (eb+c − 1)
∞∑
n=2

2n − 2n

n!
cn ≥ 0. (A.55)

This completes the proof that f3 ≤ 0.
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Table 1
Summary Statistics of Important Variables

Panel A: Stock and Option Characteristics (Monthly Frequency)

Percentile Values

Summary Statistics Avg Obs. Avg 10th 25th 50th 75th 90th

Return Autocorrelation (ρ) 1,674 −0.012 −0.119 −0.067 −0.012 0.043 0.093

Stock Return (Ret) 1,674 0.011 −0.127 −0.056 0.008 0.073 0.149

Realized Volatility (RV) 1,674 0.446 0.230 0.294 0.398 0.548 0.715

Implied Volatility (IV) 1,674 0.466 0.251 0.317 0.425 0.572 0.728

Variance Risk Premium (VRP) 1,674 0.019 −0.118 −0.040 0.020 0.081 0.161

Call Option Return (CRet) 1,200 0.078 −0.997 −0.944 −0.454 0.597 1.868

Put Option Return (PRet) 1,045 −0.114 −0.971 −0.900 −0.606 0.227 1.414

Straddle Return (StRet) 941 −0.018 −0.859 −0.602 −0.169 0.380 0.984

Panel B: Average Cross-sectional Correlations among Return Predictors

MOM ILIQ Skew Max RV IV VRP

Return Autocorrelation (ρ) 0.010 −0.009 0.007 0.126 0.146 0.158 −0.002

Past One-month Return (MOM) 0.037 0.423 0.464 0.094 −0.041 −0.188

Amihud Illiquidity (ILIQ) 0.051 0.215 0.206 0.284 0.076

Realized Skewness (Skew) 0.375 0.105 0.038 −0.094

Maximum Daily Return (Max) 0.777 0.594 −0.306

Realized Volatility (RV) 0.703 −0.459

Implied Volatility (IV) 0.289

Panel A provides descriptive statistics for the monthly time-series variables used in the paper.
The statistics are calculated by first taking the cross-sectional average of all eligible firm-level
observations and then compute the average over time. The variance risk premium is computed as
the difference between the annualized 30-day option implied volatility and the annualized 30-day
stock realized volatility. A stock and its associated options are eligible to be included in the sample
at a certain month if the stock has more than 130 daily observations during the past 12 months.
Panel B reports average cross-sectional correlations among autocorrelation and common existing
return predictors. Amihud Illiquidity is computed based on Amihud (2002), maximum daily return
is computed based on Byun and Kim (2016), and realized skewness is calculated using the past
22-day daily returns for each stock. The sample period is from January 1996 to December 2020.
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Table 2
Portfolios Sorted by Stock Return Autocorrelation

Panel A: Equal-weighted Portfolio

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

Low 0.050 −0.143 −0.0055 −0.0068 −0.041 0.0107

2 0.076 −0.129 −0.0036 −0.0048 −0.023 0.0114

3 0.090 −0.124 −0.0034 −0.0047 −0.015 0.0117

4 0.084 −0.097 −0.0021 −0.0042 −0.011 0.0113

High 0.088 −0.079 −0.0017 −0.0040 0.002 0.0105

High-Low 0.037 0.064 0.0038 0.0028 0.043 −0.0002

t-stat (2.60) (4.61) (4.07) (3.46) (5.72) (−0.10)

Panel B: Security Price-weighted Portfolio

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

Low 0.040 −0.133 −0.0041 −0.0056 −0.045 0.0098

2 0.070 −0.135 −0.0024 −0.0045 −0.028 0.0116

3 0.090 −0.132 −0.0020 −0.0037 −0.017 0.0123

4 0.082 −0.116 −0.0018 −0.0039 −0.018 0.0125

High 0.076 −0.083 −0.0007 −0.0028 −0.001 0.0118

High-Low 0.036 0.051 0.0034 0.0028 0.043 0.0020

t-stat (2.35) (3.31) (4.11) (3.54) (4.96) (1.16)

This table summarizes the average returns in monthly frequencies for portfolios sorted by the stock
return autocorrelation and hold for one month. The portfolio securities are specified as the top of
each column and are defined in Section 3.1. Panel A reports the equal-weighted average returns,
while Panel B reports the security price-weighted average returns assuming we invest equal shares
for all firms in the portfolio. In Panel B, for call option, put option, and stock portfolios, the
weights are based on the corresponding security prices. For delta-hedged call, delta-hedged put,
and straddle, the weights are based on the initial investment for each firm in the portfolio. The
sample period is from January 1996 to December 2020.
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Table 3
Option Portfolios Double Sorted by Stock Return Autocorrelation and Other
Stock Characteristics

Panel A: Double-sorted Call Option Return

Sorted by Realized Volatility Low 2 3 4 High

High ρ − Low ρ 0.067 0.079 0.059 0.037 0.030

t-stat (2.91) (3.40) (2.80) (1.61) (1.20)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

High ρ − Low ρ 0.077 0.069 0.069 0.039 0.001

t-stat (3.23) (3.13) (3.18) (1.72) (0.03)

Sorted by Variance Risk Premium Low 2 3 4 High

High ρ − Low ρ 0.036 0.027 0.057 0.036 0.064

t-stat (1.59) (1.21) (2.51) (1.54) (2.94)

Sorted by ILIQ Low 2 3 4 High

High ρ − Low ρ 0.050 0.022 0.032 0.028 0.051

t-stat (2.24) (0.97) (1.38) (1.27) (1.96)

Sorted by IVTS Low 2 3 4 High

High ρ − Low ρ 0.013 0.052 0.035 0.069 0.020

t-stat (0.56) (2.35) (1.53) (3.22) (0.85)

Panel B: Double-sorted Put Option Return

Sorted by Realized Volatility Low 2 3 4 High

High ρ − Low ρ 0.010 0.060 0.060 0.090 0.034

t-stat (0.40) (2.92) (3.16) (4.06) (1.50)

Sorted by Idiosyncratic Voaltility Low 2 3 4 High

High ρ − Low ρ 0.021 0.042 0.086 0.033 0.067

t-stat (0.77) (2.11) (4.24) (1.44) (3.07)

Sorted by Variance Risk Premium Low 2 3 4 High

High ρ − Low ρ 0.090 0.054 0.063 0.057 0.067

t-stat (4.35) (2.28) (2.98) (2.58) (3.14)

Sorted by ILIQ Low 2 3 4 High

High ρ − Low ρ 0.054 0.091 0.061 0.040 0.081

t-stat (2.46) (3.97) (2.71) (2.06) (3.39)

Sorted by IVTS Low 2 3 4 High

High ρ − Low ρ 0.092 0.061 0.058 0.054 0.060

t-stat (4.90) (2.80) (2.57) (2.72) (2.74)

In this table, we conduct an unconditional sorting based on a certain stock characteristic and stock
return autocorrelation, in total twenty-five bins in two dimensions. We classify a certain security
into each bin based on the cutoffs of the sorted characteristic and stock return autocorrelation.
ILIQ stands for the stock illiquidity computed following Amihud (2002) and IVTS denotes the
implied volatility term structure defined in Section 3.1. Within each bin we compute the difference
of average returns between the high and low stock return autocorrelation quintile. To save space,
we only show the results for equal-weighted call and put option portfolios. The results for delta-
hedged call, delta-hedged put, and straddle portfolios are provided in the internet appendix. The
sample period is from January 1996 to December 2020.

44



Table 4
Fama-MacBeth Regression

Call Option Put Option Delta-hedged Call Delta-hedged Put Straddle Underlying Stock

Intercept 8.268 −13.727 −0.386 −0.538 −2.748 1.284

t-stat (2.42) (−2.60) (−1.99) (−2.94) (−1.45) (3.33)

Autocorrelation 2.675 1.361 0.204 0.153 1.656 0.027

t-stat (4.85) (2.39) (7.36) (5.23) (5.68) (0.62)

Realized Volatility −7.333 1.960 −0.795 −0.529 −2.596 0.225

t-stat (−4.34) (1.02) (−7.54) (−4.88) (−2.41) (1.07)

Variance Risk Premium −5.676 1.221 −0.655 −0.421 −2.322 0.098

t-stat (−5.58) (0.93) (−8.37) (−6.24) (−3.32) (0.81)

ILIQ −1.317 −0.481 −0.102 −0.110 −1.025 0.032

t-stat (−2.16) (−0.84) (−2.59) (−2.69) (−2.92) (0.53)

IVTS 0.874 2.266 0.162 0.134 1.856 0.010

t-stat (1.22) (3.10) (3.46) (3.13) (4.69) (0.15)

Past One-month Return −2.606 −0.024 −0.187 −0.189 −1.441 −0.016

t-stat (−2.78) (−0.02) (−3.15) (−2.94) (−2.63) (−0.19)

Past Three-month Return −0.663 −1.337 −0.059 −0.064 −0.726 0.080

t-stat (−0.73) (−1.40) (−1.08) (−1.15) (−1.59) (0.86)

Past One-week Return −3.043 0.796 −0.128 −0.097 −0.816 −0.180

t-stat (−4.72) (1.13) (−3.11) (−2.30) (−2.30) (−2.69)

Max Daily Return −1.724 0.051 0.021 −0.028 −0.774 −0.269

t-stat (−1.46) (0.04) (0.26) (−0.33) (−1.17) (−2.09)

Moneyness 0.594 1.129 −0.101 0.067 −0.898 0.081

t-stat (0.89) (1.65) (−3.26) (2.06) (−1.57) (2.60)

Other Stock Controls Yes Yes Yes Yes Yes Yes

Average adj. R2 (%) 10.16 11.75 11.98 13.38 10.66 17.23

This table reports the Fama-MacBeth regression for each dependent variable that is the return of different

securities specified at the top of each column. The independent variables are stock return autocorrelation and

other control variables specified Section 3.3. All predictors are normalized to have mean zero and standard

deviation of one at each month. All dependent and independent variables are expressed as monthly values

and the coefficients are multiplied by 100. The coefficients in the table are calculated by taking the time-

series average of the cross-sectional regressions over time. The t-stat reported is the t-test with Newey-West

one-lag correction. The sample period is from January 1996 to December 2020.
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Table 5
Robustness Checks for Portfolios Sorted by Stock Return Autocorrelation

Panel A: Alternative Measures of Stock Return Autocorrelation

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

Autocorrelation (130 days) High-Low 0.031 0.058 0.0033 0.0025 0.038 0.0008

t-stat (2.24) (4.58) (4.03) (3.44) (5.70) (0.45)

Autocorrelation (350 days) High-Low 0.044 0.081 0.0043 0.0033 0.048 −0.0002

t-stat (3.00) (5.89) (4.58) (3.97) (6.82) (−0.08)

Variance Ratio (250 days) High-Low 0.021 0.052 0.0028 0.0015 0.029 0.0002

t-stat (1.38) (3.74) (3.40) (2.02) (4.07) (0.13)

Autocovariancee (250 days) High-Low 0.023 0.060 0.0048 0.0030 0.031 −0.0028

t-stat (1.73) (5.20) (4.80) (3.35) (4.50) (−1.64)

Panel B: Alternative Portfolio Sorting Frequency

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

3 Months High-Low 0.035 0.065 0.0042 0.0031 0.044 −0.0006

t-stat (2.48) (5.06) (4.62) (3.99) (6.22) (−0.32)

6 Months High-Low 0.030 0.050 0.0031 0.0026 0.038 −0.0008

t-stat (2.27) (3.87) (3.63) (3.38) (5.40) (−0.51)

12 Months High-Low 0.014 0.064 0.0027 0.0023 0.032 −0.0020

t-stat (1.10) (4.92) (3.36) (2.93) (4.56) (−1.32)

This table summarizes robustness checks for the predictive power of stock return autocorrelations.
The sorting process is as same as that in Table 2. In Panel A, we first construct four alternative
measures for stock return autocorrelation: autocorrelation using 130-day rolling window, autocor-
relation using 350-day rolling window, variance ratio of 22 days over 1 day using 250-day rolling
window, and autocovariance using 250-day rolling window. In Panel B, similar to Table 2, we keep
constructing the portfolios using equity options expiring in 1 month, but sort the portfolio every
3, 6, or 12 months respectively. The corresponding portfolio returns are calculated as the average
of monthly option returns with a monthly rollover of the options. All variables in this table are
expressed as monthly values, and all portfolios are equally weighted. The sample period is from
January 1996 to December 2020.
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Table 6
Portfolio Returns Using Different Option Maturity and Moneyness

Panel A: Options with Different Moneyness

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

OTM High-Low 0.079 0.092 0.0059 0.0030 0.029 −0.0002

t-stat (3.10) (2.99) (4.15) (2.02) (3.82) (−0.10)

ITM High-Low 0.003 0.018 0.0012 0.0005 0.008 −0.0002

t-stast (0.30) (2.07) (1.78) (1.00) (1.04) (−0.10)

Panel B: Alternative Option Return Calculation (Month-end to Month-end)

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

1 Month High-Low 0.036 0.060 0.0054 0.0029 0.036 0.0012

t-stat (3.22) (5.93) (5.80) (3.71) (5.88) (0.64)

3 Months High-Low 0.025 0.064 0.0053 0.0031 0.036 −0.0011

t-stast (2.23) (6.49) (5.94) (3.90) (5.98) (−0.59)

6 Months High-Low 0.029 0.057 0.0046 0.0027 0.034 −0.0011

t-stat (2.75) (5.61) (5.54) (3.45) (5.91) (−0.63)

12 Months High-Low 0.015 0.054 0.0038 0.0025 0.032 −0.0019

t-stat (1.54) (5.55) (5.05) (3.65) (5.66) (−1.23)

This table reports the robustness checks using alternative types of options. In Panel A, instead of using ATM

options, we use options with different moneyness such as out-of-the-money (OTM) options with moneyness

less than 0.95 for put options and greater than 1.05 for call options, and in-the-money (ITM) options with

moneyness less than 0.95 for call options and greater than 1.05 for put options. The moneyness is defined

as the strike price divided by the underlying stock price. To exclude those illiquid deep in- or out-of-the

money options, we set the lower and upper bounds of moneyness at 0.8 and 1.2. All the ITM and OTM

option returns are computed as the average returns across all available option contracts satisfying the filtering

conditions.The call and put combination is the portfolio consisting of both call and put options with the same

moneyness. In Panel B, we consider alternative ways of computing options returns. Instead of constructing

the option returns from the middle of each month, we use options at the beginning of each month and choose

those ATM options (i.e., cloesest to 1 between 0.9 and 1.1) with time to maturities between 30 and 55 days.

We then hold it to the end of each month. The sample period is from January 1996 to December 2020.
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Figure 1
Expected Stock and Option Returns under the Trending O-U Process
This figure plots the expected stock return, expected hold-to-expiration option and straddle returns

as functions of first-order autocorrelation of stock returns under the trending O-U process. All

options are at-the-money options with the following parameters: µ = 0.10, r = 0.05, τ = 1/12, and

σ = 0.2.
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Figure 2
Distribution of Maturity Stock Price under Two Different Trending O-U Pro-
cesses
This figure plots the distribution of the maturity stock price (St+τ ) for τ = 1/12 under the trending O-U

process with parameters µ = 0.10 and σ = 0.2, when the current stock price (St) is normalized to one. The

plot shows the distribution of St+τ when the first-order autocorrelation of stock returns (ρ) is equal to 0

(solid line) or −0.25 (dotted line). In addition, the vertical lines show the conditional payoff of the stock at

maturity when it is above and below the current stock price.
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Figure 3
Expected Option Returns under the Trending O-U Process for Different Mon-
eyness
This figure plots the expected hold-to-expiration call and put option returns as functions of volatility (σ)

and first-order autocorrelation of stock returns (ρ) under the trending O-U process for three different levels

of moneyness and with the following parameters: µ = 0.10, r = 0.05, and τ = 1/12.
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Figure 4
Expected Stock and Option Returns under the Bivariate Trending O-U Process
This figure plots the expected stock return, expected hold-to-expiration option and straddle returns

as functions of first-order autocorrelation of stock returns under the bivariate trending O-U process.

All options are at-the-money options with the following parameters: µ = 0.10, r = 0.05, τ = 1/12,

σ = 0.2, σx = 0.1, λ = 2.5, and δ = 0.2.
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Figure 5
Expected Option Returns under the Bivariate Trending O-U Process for Differ-
ent Moneyness
This figure plots the expected hold-to-expiration call and put option returns as functions of volatility

(σ) and first-order autocorrelation of stock returns (ρ) under the bivariate trending O-U process

for three different levels of moneyness and with the following parameters: µ = 0.10, r = 0.05,

τ = 1/12, σx = 0.1, λ = 2.5, and δ = 0.2. 52



Figure 6
Expected Option Returns under the General Bivariate Trending O-U Process
with Stochastic Volatility
This figure plots the expected stock return, expected hold-to-expiration option and straddle returns

as functions of first-order autocorrelation of stock returns under the general bivariate trending O-U

process with stochastic volatility. The result is based on 6 million simulated random paths. All

options are at-the-money options with the following parameters: µ = 0.0586, r = 0.0225, τ = 1/12,

κ = 5.3178, θ = 0.0408, ξ = 0.1882, ρ = −0.4694, λSV = −1.08, σx = 0.1, λ = 2.5 and δ = 0.2.
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Online Appendix for

“Stock Return Autocorrelations and Expected Option
Returns”

Current Version: March 12, 2023

This document supplements the paper “Stock Return Autocorrelations and Expected Option

Returns”. It provides additional results and robustness analyses which are not displayed in

the published text.
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OA.1 Delta-hedged Option Return

As in Goyal and Saretto (2009), we consider static delta-hedged call option gain held-to-
expiration given by

ΠC
t,T = CT −∆C

t ST − (Ct −∆C
t St)e

rτ .

Hence, the expected Delta-hedged call option gain held-to-expiration can be computed as

Et[Π
C
t,T ] = Et[CT −∆C

t ST − (Ct −∆C
t St)e

rτ ]

= Et[CT ]−∆C
t Et[ST ]− (Ct −∆C

t St)e
rτ

= Et[CT ]−∆C
t Ste

τµ+
τσ2τ
2 − (Ct −∆C

t St)e
rτ .

Now, if we take the partial derivative of the above expected gain with respect to στ , which
has equivalent sign as taking partial derivative with respect to the first-order autocorrelation,
using (A.15) we get

∂Et[Π
C
t,T ]

∂στ
=
∂Et[CT ]

∂στ
−∆C

t Ste
τµ+

τσ2τ
2 τστ

= erτS∗t τστ

[
(Φ(d∗1)− Φ(d1)) +

φ(d∗1)

στ
√
τ

]
.

For put option, we have

Et[Π
P
t,T ] = Et[PT ]−∆P

t Ste
τµ+

τσ2τ
2 − (Pt −∆P

t St)e
rτ .

Using (A.16), we get

∂Et[Π
P
t,T ]

∂στ
=
∂Et[PT ]

∂στ
−∆P

t Ste
τµ+

τσ2τ
2 τστ

= erτS∗t τστ

[
−Φ(−d∗1) +

φ(d∗1)

στ
√
τ

+ Φ(−d1)

]
= erτS∗t τστ

[
(Φ(d∗1)− Φ(d1)) +

φ(d∗1)

στ
√
τ

]
=
∂Et[Π

C
t,T ]

∂στ
.

The last equality also follows from the put-call parity. Since Φ(−d1) is always positive, if
∂Et[PT ]/∂στ was positive, then the delta-hedged put option gain has also positive partial
derivative with respect to the first-order autocorrelation. Hence, we conclude that delta-
hedged option gain also follow the same pattern as the raw return in our case.
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Table OA.1
Description of Control Variables in the Fama-MacBeth Regression

Variable Description

skew skew is the physical skewness calculated using the past 22-day daily returns for each
stock.

bm ratio bm ratio for June of year t−1 to May of year t is computed as the ratio of the book value
of common equity in fiscal year t − 1 to the market value of equity (size) in December
of year t− 1. Book equity is the book value of stockholders’ equity, plus balance sheet
deferred taxes and investment tax credit (if available), minus the book value of preferred
stock.

size size is the natural logarithm of a firm’s market cap at the end of each month, and market
cap is defined as the product of the closing price and the number of shares outstanding
(in millions of dollars).

beta beta is the beta coefficient of each underlying stock based on the CAPM

disp disp is the standard deviation of the analyst forecasts scaled by the mean of analyst
forecasts in Diether, Mallowy, and Scherbina (2002) from the IBES.

baspread baspread is the ratio of the difference between the bid and ask quotes of option to the
midpoint of the bid and ask quotes at the end of the previous month.

suv suv is defined as the standardized unexpected volume following Garfinkel and Sokobin
(2006). It is computed as the standardized prediction error from a regression of trading
volume on the absolute value of returns during the week before the end of each month
(trading days [−6,−2] relative to the end of each month).

cfv cfv is the cash flow variance, defined as the variance of the monthly ratio of cash flow
to the market value of equity over the last 60 months. Cash flow is calculated as net
income plus depreciation and amortization, all scaled by the market value of equity.

ch ch is the cash-to-assets ratio, defined as the value of corporate cash holdings over the
value of the firm’s total assets.

issue 1y issue 1y is the one-year new issues, measured as the log change in shares outstanding
from the past 11 months.

pm pm is the profit margin, defined as earnings before interest and tax scaled by revenues.

lnprice lnprice is the natural logarithm of the price at the end of each month.

profit profit is calculated as earnings divided by book equity, in which earnings is defined as
income before extraordinary items.

tef tef is the total external financing, defined as net share issuance plus net debt issuance
minus cash dividends, scaled by total assets.

z score z score is calculated as (1.2×(working capital/assets) + 1.4×(retained earnings/assets)
+ 3.3×(EBIT/assets) + 0.6×(market value of equity/book value of total liabilities) +
(revenues/assets)).

This table lists predictors used as control variables in Table 4 of the Fama-MacBeth regression.
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Table OA.2
Portfolio Sorted by Stock Return Autocorrelation

Panel A. Equal-weighted Portfolio

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

Low 0.050 −0.143 −0.0055 −0.0068 −0.041 0.0107

2 0.076 −0.129 −0.0036 −0.0048 −0.023 0.0114

3 0.090 −0.124 −0.0034 −0.0047 −0.015 0.0117

4 0.084 −0.097 −0.0021 −0.0042 −0.011 0.0113

High 0.088 −0.079 −0.0017 −0.0040 0.002 0.0105

High-Low 0.037 0.064 0.0038 0.0028 0.043 −0.0002

t-stat (2.60) (4.61) (4.07) (3.46) (5.72) (−0.10)

Two Option-factor alpha 0.043 0.058 0.0050 0.0038 0.043 −0.0011

t-stat (2.90) (4.12) (6.04) (5.05) (5.58) (−0.57)

Panel B: Security Price-weighted Portfolio

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

Low 0.040 −0.133 −0.0041 −0.0056 −0.045 0.0098

2 0.070 −0.135 −0.0024 −0.0045 −0.028 0.0116

3 0.090 −0.132 −0.0020 −0.0037 −0.017 0.0123

4 0.082 −0.116 −0.0018 −0.0039 −0.018 0.0125

High 0.076 −0.083 −0.0007 −0.0028 −0.001 0.0118

High-Low 0.036 0.051 0.0034 0.0028 0.043 0.0020

t-stat (2.35) (3.31) (4.11) (3.54) (4.96) (1.16)

Two Option-factor alpha 0.043 0.046 0.0044 0.0036 0.045 0.0013

t-stat (2.78) (2.92) (5.74) (4.86) (5.05) (0.74)

This table summarizes the average returns in monthly frequencies for portfolios sorted by the stock return
autocorrelation and hold for one month. Panel A reports the equal-weighted average returns, while Panel
B reports the security price-weighted average returns assuming we invest equal shares for all firms in the
portfolio. In Panel B, for call option, put option, and stock portfolios, the weights are based on the corre-
sponding security prices. For delta-hedged call, delta-hedged put, and straddle, the weights are based on the
initial investment for each firm in the portfolio. We follow Cao, Han, Tong, and Zhan (2021) to construct
a two option-factor model: illiquidity and idiosyncratic volatility. The factor realizations in each month are
obtained as the high-minus-low spread returns of stock value-weighted portfolios of writing delta-neutral calls
sorted on the idiosyncratic volatility or the Amihud illiquidity measure of the underlying stock. The alpha
is calculated based on the two option-factor model. The sample period is from January 1996 to December
2020.
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Table OA.3
Option Portfolios Double Sorted by Stock Return Autocorrelation and Other
Stock Characteristics

Panel A: Double Sorting Call Option Return

Sorted by Realized Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.061 0.086 0.060 0.035 0.031

t-stat of α (2.60) (3.66) (2.75) (1.50) (1.18)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.071 0.071 0.070 0.041 0.002

t-stat of α (2.88) (3.13) (3.14) (1.75) (0.06)

Sorted by Variance Risk Premium Low 2 3 4 High

α of High ρ − Low ρ 0.038 0.032 0.062 0.037 0.064

t-stat of α (1.63) (1.40) (2.65) (1.55) (2.85)

Sorted by ILIQ Low 2 3 4 High

α of High ρ − Low ρ 0.051 0.034 0.033 0.023 0.053

t-stat of α (2.23) (1.45) (1.39) (1.02) (1.95)

Sorted by IVTS Low 2 3 4 High

α of High ρ − Low ρ 0.012 0.053 0.040 0.074 0.025

t-stat of α (0.54) (2.31) (1.70) (3.37) (1.05)

Panel B: Double Sorting Put Option Return

Sorted by Realized Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.012 0.054 0.064 0.094 0.022

t-stat of α (0.45) (2.53) (3.27) (4.12) (0.93)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.028 0.040 0.086 0.029 0.062

t-stat of α (1.01) (1.92) (4.12) (1.24) (2.76)

Sorted by Variance Risk Premium Low 2 3 4 High

α of High ρ − Low ρ 0.089 0.048 0.065 0.051 0.059

t-stat of α (4.19) (1.96) (3.00) (2.26) (2.73)

Sorted by ILIQ Low 2 3 4 High

α of High ρ − Low ρ 0.055 0.075 0.058 0.039 0.073

t-stat of α (2.46) (3.24) (2.51) (1.98) (3.01)

Sorted by IVTS Low 2 3 4 High

α of High ρ − Low ρ 0.087 0.058 0.049 0.049 0.061

t-stat of α (4.52) (2.62) (2.11) (2.40) (2.71)

In this table, we conduct an unconditional sorting based on a certain stock characteristic and stock return
autocorrelation, in total twenty-five bins in two dimensions. We classify a certain security into each bin
based on the cutoffs of the sorted characteristic and stock return autocorrelation. ILIQ stands for the stock
illiquidity computed following Amihud (2002) and IVTS denotes the implied volatility term structure defined
in Section 3. Within each bin we compute the difference of average returns between the high and low stock
return autocorrelation quintile. We follow Cao et al. (2021) to construct a two option-factor model: illiquidity
and idiosyncratic volatility. The factor realizations in each month are obtained as the high-minus-low spread
returns of stock-value-weighted portfolios of writing delta-neutral calls sorted on the idiosyncratic volatility
or the Amihud illiquidity measure of the underlying stock. We report the alpha and the corresponding t-stat
based on the two option-factor model for equal-weighted call and put option portfolios.
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Table OA.4
Option Portfolios Double Sorted by Stock Return Autocorrelation and Other
Stock Characteristics

Panel A: Double Sorting Delta-hedged Call Option Return

Sorted by Realized Volatility Low 2 3 4 High

High ρ − Low ρ 0.002 0.005 0.005 0.007 0.008

t-stat (2.89) (5.06) (4.54) (3.91) (3.36)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

High ρ − Low ρ 0.004 0.005 0.006 0.006 0.006

t-stat (3.93) (4.90) (4.83) (3.82) (2.67)

Sorted by Variance Risk Premium Low 2 3 4 High

High ρ − Low ρ 0.006 0.003 0.004 0.005 0.004

t-stat (3.94) (2.56) (3.71) (3.76) (2.49)

Sorted by ILIQ Low 2 3 4 High

High ρ − Low ρ 0.003 0.004 0.003 0.004 0.006

t-stat (2.85) (2.96) (2.22) (2.93) (2.97)

Sorted by IVTS Low 2 3 4 High

High ρ − Low ρ 0.004 0.005 0.003 0.005 0.005

t-stat (2.22) (3.58) (2.72) (4.43) (3.36)

Panel B: Double Sorting Delta-hedged Put Option Return

Sorted by Realized Volatility Low 2 3 4 High

High ρ − Low ρ 0.002 0.004 0.005 0.007 0.003

t-stat (2.16) (3.99) (4.20) (4.43) (1.56)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

High ρ − Low ρ 0.003 0.004 0.005 0.005 0.002

t-stat (2.83) (4.59) (4.62) (3.19) (1.22)

Sorted by Variance Risk Premium Low 2 3 4 High

High ρ − Low ρ 0.004 0.002 0.004 0.004 0.004

t-stat (2.98) (1.46) (3.09) (3.23) (2.52)

Sorted by ILIQ Low 2 3 4 High

High ρ − Low ρ 0.003 0.003 0.003 0.002 0.004

t-stat (2.94) (2.46) (2.33) (1.59) (2.03)

Sorted by IVTS Low 2 3 4 High

High ρ − Low ρ 0.003 0.004 0.003 0.004 0.003

t-stat (2.12) (2.87) (2.18) (3.90) (2.08)

In this table, we conduct an unconditional sorting based on a certain stock characteristic and stock return
autocorrelation, in total twenty-five bins in two dimensions. We classify a certain security into each bin
based on the cutoffs of the sorted characteristic and stock return autocorrelation. ILIQ stands for the stock
illiquidity computed following Amihud (2002) and IVTS denotes the implied volatility term structure defined
in Section 3. Within each bin we compute the difference of average returns between the high and low stock
return autocorrelation quintile. We show the results for equal-weighted delta-hedged call and delta-hedged
put portfolios.
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Table OA.5
Option Portfolios Double Sorted by Stock Return Autocorrelation and Other
Stock Characteristics

Panel A: Double Sorting Straddle Return

Sorted by Realized Volatility Low 2 3 4 High

High ρ − Low ρ 0.049 0.058 0.042 0.055 0.026

t-stat (3.51) (4.40) (3.31) (4.16) (1.66)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

High ρ − Low ρ 0.056 0.048 0.057 0.038 0.025

t-stat (3.81) (3.85) (4.79) (2.83) (1.66)

Sorted by Variance Risk Premium Low 2 3 4 High

High ρ − Low ρ 0.049 0.033 0.055 0.052 0.050

t-stat (3.88) (2.66) (4.49) (3.74) (3.78)

Sorted by ILIQ Low 2 3 4 High

High ρ − Low ρ 0.049 0.049 0.042 0.037 0.022

t-stat (4.40) (3.78) (3.37) (2.71) (1.15)

Sorted by IVTS Low 2 3 4 High

High ρ − Low ρ 0.041 0.053 0.040 0.052 0.040

t-stat (3.00) (4.28) (2.93) (4.21) (3.09)

Panel B: Double Sorting Straddle Return (Alpha)

Sorted by Realized Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.045 0.056 0.041 0.053 0.022

t-stat of α (3.15) (4.21) (3.15) (3.91) (1.37)

Sorted by Idiosyncratic Volatility Low 2 3 4 High

α of High ρ − Low ρ 0.058 0.042 0.057 0.035 0.024

t-stat of α (3.81) (3.30) (4.65) (2.53) (1.53)

Sorted by Variance Risk Premium Low 2 3 4 High

α of High ρ − Low ρ 0.049 0.032 0.061 0.048 0.046

t-stat of α (3.84) (2.48) (4.87) (3.38) (3.41)

Sorted by ILIQ Low 2 3 4 High

α of High ρ − Low ρ 0.049 0.050 0.038 0.032 0.010

t-stat of α (4.40) (3.83) (2.99) (2.30) (0.50)

Sorted by IVTS Low 2 3 4 High

α of High ρ − Low ρ 0.040 0.049 0.039 0.054 0.042

t-stat of α (2.83) (3.88) (2.77) (4.22) (3.20)

In this table, we conduct an unconditional sorting based on a certain stock characteristic and stock return autocorrelation,
in total twenty-five bins in two dimensions. We classify a certain security into each bin based on the cutoffs of the sorted
characteristic and stock return autocorrelation. ILIQ stands for the stock illiquidity computed following Amihud (2002) and
IVTS denotes the implied volatility term structure defined in Section 3. Within each bin we compute the difference of average
returns between the high and low stock return autocorrelation quintile. In Panel A, we show the results for equal-weighted
straddle portfolios. In Panel B, we follow Cao et al (2021) to construct a two option-factor model: illiquidity and idiosyncratic
volatility. The factor realizations in each month are obtained as the high-minus-low spread returns of stock-value-weighted
portfolios of writing delta-neutral calls sorted on the idiosyncratic volatility or the Amihud illiquidity measure of the underlying
stock. We report the alpha and the corresponding t-stat based on the two option-factor model for straddle portfolios.
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Table OA.6
Fama-Macbeth Regressions with Stock Return Autocorrelation

Call Option Put Option
Delta-hedged Delta-hedged

Straddle
Underlying

Call Put Stock

Intercept 7.761 −11.415 −0.326 −0.490 −1.766 1.113

t-stat (2.42) (−2.28) (−1.70) (−2.74) (−0.98) (2.74)

Autocorrelation 1.200 2.284 0.125 0.083 1.363 −0.009

t-stat (2.48) (4.87) (3.86) (2.97) (5.67) (−0.12)

Average adj. R2 (%) 0.29 0.32 0.25 0.26 0.28 0.54

This table reports the Fama-MacBeth regressions for each dependent variable that is the return of different
securities specified at the top of each column. The independent variable is stock return autocorrelation. All
predictors are normalized to have mean zero and standard deviation of one at each month. The detailed
cross-sectional regression and time-series test are specified in Section 3.3. All dependent and independent
variables are expressed as monthly values and the coefficients are multiplied by 100. The coefficients in
the table are calculated by taking the time-series average of the cross-sectional regressions over time. The
t-stat reported is the t-test with Newey-West one-lag correction. The sample period is from January 1996
to December 2020.
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Figure OA.1
Expected Delta-hedged Call Option Gain under the Trending O-U Process
This figure plots the expected hold-to-expiration call option gain as a function of first-order auto-

correlation of stock returns under the trending O-U process. All options are at-the-money options

with the following parameters: µ = 0.10, r = 0.05, τ = 1/12, and σ = 0.2.
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