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Abstract

Short performance windows shrink mutual fund managers’ investment horizons well
below value investors’ long-term investment mandates, and relative performance eval-
uations introduce benchmarking incentives among mutual fund managers’ objectives.
We show that these two asset management frictions, primarily through their inter-
action, can explain why the risk premium, volatility, and Sharpe ratio on short-term
dividend strips are higher than on long-term dividend strips — predictions that leading
equilibrium asset pricing models cannot generate. Our theory rationalizes the empir-
ical findings on unconditional and conditional downward sloping risk premiums. We
provide novel empirical evidence to further support the mechanism, which is set in
continuous time, and admits closed-form expressions.

1 Introduction

A growing body of literature studies the impact of professional asset managers on asset

markets. Asset managers’ contracts are expected to align their incentives with those of the

investors to address possible agency problems, but the resulting investment strategy affects

asset prices. This literature relies on two established facts. First, mutual fund managers’

performance is evaluated relative to a benchmark, and second, their performance is evaluated

frequently. In particular, Ma, Tang, and Gómez (2019) have shown recently that 79% of the

mutual fund managers in the US are evaluated relative to a prespecified benchmark with

rolling performance windows of various lengths. The short performance evaluation windows



are especially critical since they strongly incentivize asset managers to become short-term

investors because they may get fired or demoted if they underperform their benchmark in the

short term. Consequently, those asset managers have little interest in investment horizons

beyond their minimum performance window.

The data shows that mutual fund asset managers’ minimum rolling performance windows

are excessively short across all the major investment mandates. In particular, Figure 1 shows

that 83.8% of mutual fund managers have a minimum rolling performance window of one

year or less, and the distribution median is 7 to 8 months, assuming uniform contract starting

dates.

A different but equally significant group of investors, which we refer to as value investors,

do not suffer from the frictions of the asset management industry and, therefore, has a much

longer investment horizon objective than mutual fund managers’ performance window of

seven to eight months. Furthermore, they generally care about absolute performance rather

than performance relative to a benchmark. The terms asset managers and value investors

refer to these two groups of investors throughout the paper, even though the value investors

group may consist of asset managers with value investors’ incentives. Recently, Cochrane

(2022) has emphasized the importance of assets’ payout policy when considering optimal

portfolios of long-term investors.

In this paper we conjecture that the heterogeneity of the investment horizons of these two

groups of investors, combined with the relative performance objectives of mutual fund asset

managers, might explain inconsistencies between short-term and long-term asset prices, given

that the proportion of assets under management affected by these frictions is significant. To

get some perspective, the assets under management of the US active mutual fund industry

equals roughly five trillion dollars; that is, about three to four trillion dollars flow through

the asset management frictions laid out here when 60% - 80% of the industry suffers from

those frictions.

Despite the saliency of the heterogeneity of investment horizons, its asset pricing impli-

cations have yet to be explored. This paper proposes a dynamic asset pricing equilibrium

model that captures the heterogeneous investment horizons in order to study the empirical

regularities of short-term and long-term dividend strips. Dividend strips grant the buyer

dividends between two specified future dates. Like a coupon bond that can be decomposed

into a linear combination of zero-coupon bonds with different maturities, a stock price can
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Figure 1: This figure plots the density (y-axis) as a function of the minimum performance
evaluation window in years (x-axis). The top left figure represents the minimum performance
evaluation window across all managers’ mandates, and the remaining five represent the
minimum performance evaluation window for mutual fund managers with different mandates.
The minimum performance evaluation window across all mandates shows that 83.8% of
managers have a minimum performance evaluation window below a year, and the outcome
is consistent across the major mutual funds’ mandates. The median is between 7-8 months
when we assume a linear distribution of the contracts’ starting dates. The data to construct
these windows was graciously provided by Juan-Pedro Gómez, Linlin Ma, and Yuehua Tang.

be decomposed into a linear combination of short-term and long-term dividend strips as long

as they are non-overlapping and cover the whole horizon. Dividend strips are very useful

because they allow us to differentiate between the effect of long-term and short-term factors

on stock prices.

Our work’s main contribution is to show that the two asset management frictions gen-

erate a downward sloping risk premium, volatility, and Sharpe ratio, thereby providing an
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original theoretical foundation for what has been considered a puzzle. While other expla-

nations for dividends’ strips empirical regularities exist, this paper is the first to show that

frictions tied to the mutual fund asset management industry can account, at least partially,

for these empirical regularities. Our continuous-time setup admits precise closed-form ex-

pressions, allowing us to analyze cash-flow shocks’ effects on prices. In particular, we find

that short-term (non-fundamental) cash-flow news affects long-term asset prices more than

(fundamental) long-term cash-flow news.1

The influential work of van Binsbergen, Brandt, and Koijen (2012) showed that short-

term dividend strips have a higher risk premium, Sharpe ratio, and volatility than long-term

dividend strips by analyzing options data. van Binsbergen, Hueskes, Koijen, and Vrugt

(2013) and, more recently, van Binsbergen and Koijen (2017) extend this evidence using

dividend futures data instead of options data to the US, Europe, Japan, and the UK. These

empirical findings are at odds with the leading equilibrium asset pricing models such as the

long-run risk, external habit formation, and rare disaster risk models.23

Our model implies that the downward sloping trend is stronger at the short end of the

investment horizon. This result is consistent with Giglio, Kelly, and Kozak (2021), who

show that the unconditional risk premium is downward sloping at the short end but flat or

slightly upward-sloping at other horizons. In contrast, Gonçalves (2021a) shows that the

equity risk premium is downward sloping in long maturities due to the reinvestment risk.

Lastly, Weber (2018) and Gonçalves (2021b) have addressed the shortcomings of dividend

futures by directly constructing a cash-flow duration measure; both papers provide evidence

of downward sloping risk premiums and Sharpe ratios.

The literature agrees on the conditional analysis and concludes that the term struc-

1Short-term cash flow news is non-fundamental news about the long-term asset because this asset never
pays in the short term, while long-term cash flow news is fundamental news about this asset’s future cash
flow.

2We point out that the evidence of unconditional downward sloping risk premium is contested. For
instance, Bansal, Miller, Song, and Yaron (2021) argue that the relatively short data and the illiquidity of
dividend futures imply that the evidence of unconditional downward sloping risk premiums is due to the
high frequency of recessions in the sample, and the result flips when considering liquidity. Schulz (2016)
explains the downward-sloping term structure of risk premia by the differential taxation between dividends
and capital gains, and Boguth, Carlson, Fisher, and Simutin (2019) by the market microstructure noise. In
contrast, Gormsen (2021) finds that the one-year unconditional risk premium slopes downward.

3Downward sloping risk premiums are not unique to equity markets and exist in other asset markets. For
instance, evidence from Giglio, Maggiori, and Stroebel (2015) suggests a downward sloping risk premium in
U.K. real estate over a very long horizon.
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ture is downward sloping during recessions, as Aı̈t-Sahalia, Karaman, and Mancini (2020),

Bansal et al. (2021), and Giglio et al. (2021) recently document. Perhaps more importantly,

Gormsen (2021) further shows that the conditional empirical evidence is inconsistent with

the current theories generating an unconditional downward sloping trend, which provides

further evidence to guide new theories explaining the phenomenon.

Consistent with the conditional empirical evidence, our theory predicts that the risk

premium slopes down less as the benchmarking incentives become less severe and eventually

slopes upward when there are no benchmarking incentives. Accordingly, we expect the

downward sloping trend to attenuate or disappear in states with less severe benchmarking

incentives. Cremers and Petajisto (2009) introduced the Active Share measure to investigate

the share of portfolio holdings that differ from the benchmark index holdings. Perhaps not

surprisingly, in the light of the predictions of our model, the Active Share in expansions is

significantly larger than in recessions. Indeed, a panel regression shows that a fund reduces

its Active Share in recessions by 1.4% below the fund’s average, implying that an additional

$75 billion is invested in benchmarked assets in recessions out of the total $5 trillion in active

mutual fund assets under management.4

The model features two types of investors: (i) asset managers who have short-term hori-

zons because their performance is evaluated in the short-term — annually or even quarterly;

additionally, their performance is evaluated relative to indexes; (ii) value investors who do

not pay attention to the indexes and have long term goals.5 Two mechanisms drive the

equilibrium in our model. The first mechanism results from the heterogeneous investment

horizons individually : the short-term performance window relative to the value investor’s

long-term goals. The second mechanism results from the combined effect of the heteroge-

neous investment horizons and the relative performance objectives of asset managers: the

interaction between the short-term performance window and benchmarking incentives. We

explicitly disentangle these two channels and show how the individual and combined effect

determine equilibrium.

4Stambaugh (2014)’s presidential address extensively discusses the Active Share. We preform the panel
regression analysis using the data of Cremers and Petajisto (2009) and Petajisto (2013).

5The asset managers refer to the group of investors who suffers from the two asset management frictions
like mutual fund asset managers, while the value investors refer to the group of investors who do not
suffer from those frictions like hedge funds and retail investors. Of course, in reality, non-mutual fund asset
managers may not suffer from the two asset management frictions and would follow value investing strategies.
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The model has two assets that mimic dividend strips’ payouts: the short-term asset pays

dividends in the short term, and the long-term asset pays dividends in the long term; the

dividends are independent, and their payouts’ dates do not overlap. Furthermore, the asset

manager cares only about the short-term investment horizon due to the short performance

window. Therefore, optimality implies that he must hold the short-term asset eventually,

at the end of his performance window, because the long-term asset does not pay off in the

short term when the asset manager’s performance is evaluated. Our theory addresses some

of the concerns Cochrane (2022) recently raised about standard portfolio theories failing

to consider long-term payout policies and the equilibrium implications of considering such

payout policies. The equilibrium implications align with Campbell and Viceira (2002), who

claim that long-term and short-term investors’ portfolios are not the same because they

evaluate risk differently.

The equilibrium objective is to set asset prices so that the asset manager optimally

chooses to trade off the long-term asset and hold the short-term asset, while the value

investor optimally chooses to trade off the short-term asset and hold the long-term asset.

This objective does not depend on whether the benchmark is long-term or short-term or

whether there is a benchmark. However, the equilibrium adjustments of assets’ returns and

market prices of risk substantially differ depending on whether there is a benchmark and the

strength of asset managers’ incentives to benchmark. In the primary analysis, we focus on

a long-term asset benchmark and show that benchmarking is instrumental to the model’s

predictions. We then show that the model’s predictions carry over to a general weighted

average benchmark in the extension.

The equilibrium achieves this objective as follows. The value investor prefers the long-

term asset due to the long-term risk aversion hedging desires. However, the long-term asset

has higher overall risk exposure, as one would expect in a traditional setup where cash-

flow news today significantly impacts assets that pay off in the long term. Equilibrium

compensates the value investor for taking on that heightened long-term risk (relative to the

short-term asset) by having a higher long-term risk premium, leading to an upward-sloping

risk premium and volatility when there is no benchmark.

Benchmarking induces extra — unrelated to prices — demand to hold the benchmark

asset. This excess demand pressure is unsustainable in the no-benchmark pricing environ-

ment. Prices counteract the benchmarking demand and restore equilibrium by negating the
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demand to hold the benchmark. Equilibrium achieves this goal by making the long-term

asset more expensive when the benchmark is the long-term asset.

The price reaction makes the long-term asset too unattractive, so much so that the value

investor prefers to have a risk free position in equilibrium, violating market clearing. To

make the long-term asset more attractive, equilibrium decreases the long-term asset risk

exposures to the point where the value investor optimally holds one unit while still negating

the benchmarking demand of the asset manager. Equilibrium compensates the asset manager

for taking on that heightened short-term risk (relative to the long-term asset) by having a

higher short-term risk premium, inducing a downward-sloping risk premium and volatility.

The heterogeneity in investment horizons, through the individual effect, emphasizes the

importance of non-fundamental news about the short-term payout — news unrelated to

the long-term payout. We find that news unrelated to fundamentals affects long-term asset

prices more than news about fundamentals. In contrast, in a homogenous investment horizon

economy, the fundamental news is the main driving force behind asset pricing fluctuations,

and news that does not directly affect dividends has minimal to no effect on prices.

While a common long-term and short-term positive shock positively affect prices, a posi-

tive long-term fundamental shock reduces the long-term asset price. Interestingly, this result

provides a new testable implication: asset prices load negatively on long-term cash-flow risk

factors when controlling for short-term cash-flow risk factors.

The individual effect introduces a negative fundamental risk exposure (news about the

long-term payout), and a positive non-fundamental risk exposure (news about the short-

term payout), meaning positive fundamental cash-flow news reduces the long-term asset

price, and non-fundamental cash-flow news increases it in equilibrium. When a common

shock (both fundamental and non-fundamental) arrives, the non-fundamental news effect

would be stronger and increase the long-term asset despite having negative fundamental risk

exposure.

When reflecting on the combined effect (the interaction of benchmarking incentives and

heterogenous horizons) on the assets’ return exposures, we find that in most aspects, but

not all, the heterogeneous investment horizons economy is distinct from an economy with

homogenous investment horizons. In a heterogeneous horizon economy, when the long-term

asset belongs to the benchmark, its fundamental exposure increases but remains negative,

and its non-fundamental short-term risk exposure decreases but remains positive. This
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result reduces the long-term asset return’s total volatility, in line with Cuoco and Kaniel

(2011) but opposite to Basak and Pavlova (2013)s’ findings when the investment horizons

are homogeneous. When the short-term asset belongs to the benchmark, its fundamental

return exposure and total volatility do not change.

When reflecting on the combined effect (the interaction of benchmarking incentives and

heterogenous horizons) on the market prices of risk, we find that in a heterogeneous horizons

economy, when the long-term asset is included in the benchmark, the long-term (fundamen-

tal) market price of risk increases while the short-term (non-fundamental) market price of risk

decreases. In contrast, in a homogenous horizon economy, benchmarking reduces the mar-

ket price of benchmarked assets’ fundamental risk while it does not affect non-fundamental

market prices of risk. When the short-term asset is included in the benchmark, it entails

another downforce on the short-term market price of risk, while it does not affect the long-

term market price of risk, which aligns with the results of homogeneous investment horizon

economies.6

Lastly, we provide novel empirical evidence to substantiate the importance of heteroge-

neous investment horizons. Our model predicts that the asset manager buys the benchmark

assets due to the benchmark hedging and sells short the short-term asset due to the risk

aversion hedging. Our regression analysis shows that the total net assets of active all-equity

mutual funds load negatively on the short-term dividend strip while it loads positively on

the long-term dividend strip, in line with simulated data. In a different regression specifica-

tion, we verify a different prediction showing that as the size of the asset manager increases,

the short-term asset price increases relative to the long-term asset price. The equilibrium

predictions show up when measuring the total net assets of mutual actively managed funds

within the Russell 3000 family of prospectus benchmarks.

Our regression specification excludes the effect of the mean-variance portfolio because

empirical evidence suggests that mutual fund asset managers rebalance their hedging port-

folios much more frequently than trading in and out of investment opportunities. Even more

so, when mutual fund asset managers invest, these investments typically exhibit momen-

tum. As a result, opportunistic investing is much less dynamic than rebalancing the hedging

portfolios. For instance, Chan, Chen, and Lakonishok (2002) document that few funds take

6Please refer to Basak and Pavlova (2013), and Buffa and Hodor (2018) for a comprehensive analysis of
the equilibrium effects of homogenous investment horizons.
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positions away from their benchmark (despite having substantial turnover), and when they

do, they favor past winners (indicative of slow-moving momentum strategies).

Due to these reasons, frequently rebalancing the benchmark and risk aversion hedging

portfolios show up statically in a regression analysis with simulated data, while infrequently

rebalancing the mean-variance portfolio does not show up.

The remainder of the paper is organized as follows. Section 2 summarizes the related

literature; Section 3 sets up the economy with the benchmark and heterogeneous horizons;

Section 4 solves for the equilibrium; Section 5 analyzes the equilibrium mechanism; Section

6 discusses the equilibrium implications; Section 7 introduces the novel empirical evidence;

Section 8 extends the main setup to a general geometric average benchmark; and Section 9

concludes.

2 Related Literature

Our article builds upon the growing literature studying the effects of professional asset

management on asset prices. The most relevant to our paper is a strand in that literature

focusing on the asset pricing implications induced by an asset manager with a performance

benchmark objective.

In this strand of literature, it is typical to embed the performance benchmark into the as-

set manager’s objective function. Brennan (1993) and Gómez and Zapatero (2003) introduce

a static setup with a mean-variance asset manager that maximizes the portfolio return rela-

tive to the return on a benchmark portfolio. Cuoco and Kaniel (2011) introduce a dynamic

setup with a constant relative risk aversion asset manager that cares about the benchmark

through performance-based fees. Basak and Pavlova (2013) and Basak and Pavlova (2016)

introduce a dynamic setup with a reduced-form approach to incorporate the benchmark

incentives into the manager’s objective. They provide the salient features a reduced-form

asset manager objective should satisfy and study the asset pricing implications of a single

manager. Buffa and Hodor (2018) adopt their reduced-form asset manager objective and

introduce a dynamic setup to study the asset pricing implications of multiple asset managers

with different performance benchmarks.

Similarly, Basak, Pavlova, and Shapiro (2007) and, more recently, Sotes-Paladino and Za-

patero (2019) embed the performance benchmark into the asset manager’s objective function
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to study the asset manager’s optimal behavior due to benchmarking and given asset prices.

A common thread in all these papers is that there is no heterogeneous investment horizons,

and performance windows align with long-term investment mandates. In contrast, this pa-

per studies the asset pricing implications when there is heterogeneous investment horizons

and fund managers’ performance windows are strictly shorter than long-term investment

mandates.

Our paper proposes another constructive addition to the literature by introducing an en-

dogenous benchmark that depends on the equilibrium price rather than the terminal exoge-

nous dividend, as the literature assumes. Despite the substantial complexity of considering

an endogenous benchmark, our paper provides analytical closed-form solutions to the equi-

librium quantities. We achieve this goal by considering Basak and Pavlova (2013)s’ objective

and letting the benchmarking importance parameter approach infinity.

A related strand of literature addresses the importance of benchmarks to align asset

managers’ incentives. Ou-Yang (2003), Cadenillas, Cvitanić, and Zapatero (2007), and Lioui

and Poncet (2013) show that benchmarking is a part of an optimal contract given prices.

Benchmarking is essential to align incentives even when considering the interplay between

the equilibrium asset pricing and optimal contracting, as Cvitanić and Xing (2018) and

Buffa, Vayanos, and Woolley (2019) show.

While there are other explanations for dividends’ strips empirical regularities, our paper

is the first that connects the frictions arising from asset managers’ objectives to the empiri-

cal regularities of dividend strips. van Binsbergen and Koijen (2017) provides an extensive

review of the different models that generate the dividend strips irregularities and classify

their mechanisms into six broad categories: alternative models of preferences (Berrada, De-

temple, and Rindisbacher (2013), Marfè (2014), Curatola (2015), Eisenbach and Schmalz

(2016), Andries, Eisenbach, and Schmalz (2019), Andries (2021)), alternative models of

technology (Gourio (2008), Nakamura, Steinsson, Barro, and Ursúa (2013), Belo, Collin-

Dufresne, and Goldstein (2015), Lopez, Lopez-Salido, and Vazquez-Grande (2015), Hasler

and Marfè (2016), Marfè (2013), Ai, Croce, Diercks, and Li (2018), Corhay, Kung, Schmid,

and Nieuwerburgh (2020)), alternative models of beliefs (Croce, Lettau, and Ludvigson

(2015)), heterogeneous agent models (Lustig and Nieuwerburgh (2006), Marfè (2017), Fav-

ilukis and Lin (2016)), asset pricing models with an exogenous stochastic discount factor

(Lettau and Wachter (2007), Lettau and Wachter (2011), Lynch and Randall (2011)), mar-
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ket microstructure and tax effects (Boguth et al. (2019), Schulz (2016)). In their review,

van Binsbergen and Koijen (2017) argue that frictions introduced by asset managers may

cause the dividend strips empirical irregularities.

Lastly, our theory relates to a growing literature, connecting asset management’s inelastic

demand for assets as a determinant of asset pricing. Recently, Koijen and Yogo (2019) in-

vestigate the cross-sectional effects of inelastic institutional demand. Further, Chang, Hong,

and Liskovich (2015) and Pavlova and Sikorskaya (2022) investigate the inelastic demand of

the stock inclusion effects; Ben-David, Li, Rossi, and Song (2021) due to Morningstar ratings

change, Peng and Wang (2021), Li (2021), and Gabaix and Koijen (2022) due to funds flow.7

3 The Economic Setup

This section lays out a simple and tractable model to study the mismatch between investors

with short-term performance windows and long-term investment mandates. We consider a

standard pure-exchange finite horizon economy. Time t is continuous and goes from zero to

T . Uncertainty is driven by two independent Brownian motions, (Z1t, Z2t). This model has

two investment horizons: a short-term investment horizon, T
N

, and a long-term investment

horizon, T , whereby N ≥ 2 is a finite number. For the primary analysis, we set N = 2.8

There are two dividend payout dates: short-term and long-term. The dividend payout

(supply of dividends) at the short-term is denoted byDS T
2

and at the dividend payout in long-

term by DLT , where S and L stand for short- and long-term dividend payouts, respectively.

These short-term and long-term dividend payouts are determined by the dynamics of

dDSt = DSt (µdt+ σdZ1t) , (1)

dDLt = DLt (µdt+ σdZ2t) , (2)

where µ and σ are positive constants. We refer to these processes as news about the short-

and long-term dividend payouts. Notice that the short- and long-term dividend payouts are

independent and have the same distributional properties for any given t < T/2. Therefore,

7Ben-David et al. (2021) and Gabaix and Koijen (2022) provide an extensive overview of this growing
literature.

8A longer performance window, N > 2, affects the levels of the equilibrium quantities, but as long as
there are two distinct investment horizons, the equilibrium mechanism remains unchanged.
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any price difference arises due to the equilibrium mechanism that prices short-term (Z1t)

and long-term (Z2t) risks differently.

Potential differences in the distributional properties of the short- and long-term dividend

payouts may have adverse effects on our results. However, Belo et al. (2015) report that short-

term dividend payouts have higher volatility than long-term dividend payouts — making our

results stronger.

There are two risky assets. The first asset, SSt, represents a claim on the short-term

dividend payout, and the second asset, SLt, represents a claim on the long-term dividend

payout. We assume that both assets are in unit supply and follow

dSSt = SSt (µStdt+ σS1tdZ1t + σS2tdZ2t) , (3)

dSLt = SLt (µLtdt+ σL1tdZ1t + σL2tdZ2t) . (4)

Prices, (instantaneous) expected returns, and (instantaneous) volatilities are endogenous and

determined in equilibrium. To capture the short- and long-term assets’ interdependencies,

our analysis focuses on t ≤ T/2, meaning the economy resets to t = 0 when time reaches

T/2. In addition to the risky assets, investors can trade with a riskless bond. We assume the

bond is in zero net supply and denote it by Bt, and for t ≤ T/2, the bond pays a continuous,

exogenous riskless interest payment r, which we set to zero to simplify the analysis.

3.1 Investors

Two types of investors populate the economy: long-term value and short-term asset man-

agers. The long-term value investor, subject to absolute wealth concerns, evaluates his port-

folio at the long-horizon date and has standard constant relative risk aversion preferences

over the terminal value of his portfolio (W V
T ):

E

[(
W V
T

)1−R

1−R

]
. (5)
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The short-term asset manager, subject to relative wealth concerns, evaluates the terminal

value of his portfolio (W I
T/2) relative to a benchmark (SLT/2) at the short-horizon date:

E

(SLT/2)
(
W I
T/2

)1−R

1−R

 , (6)

where V and I stand for the value and asset managers, respectively.

The benchmark is the long-term asset, and Section 8 discusses an extension in which the

benchmark combines the short-term and long-term assets. Though, such a benchmark does

not affect the main equilibrium implications. The economy further assumes that investors

have the same risk aversion parameter, R > 1. Still, the economic setup allows for different

risk aversion parameters while still providing closed-form precise expressions to all the equi-

librium quantities. Qualitatively, the equilibrium outcomes remain the same when the asset

manager is less risk-averse than the value investor.

The asset manager utility function captures the two essential frictions in the asset man-

agement industry: short-term performance window and relative performance objective, com-

monly referred to as benchmarking. First, the model captures the short-term performance

window by setting the time the asset manager collects rewards shorter than the value investor

(T/2 < T ). Second, the model captures the relative performance objective by interacting

the asset manager utility over end-of-period wealth with the benchmark. This interaction

term captures the critical aspect of benchmarking laid out by Basak and Pavlova (2013),

implying that the asset manager strives to post higher returns when the benchmark is high

than when it is low. It captures asset managers’ relative wealth concerns in a reduced form,

allowing a highly tractable equilibrium outcome.

The asset manager utility function (6) introduces two variations to the established utility

function of Basak and Pavlova (2013), introduced to study the equilibrium effects of asset

managers on asset prices. We divide their utility function by the constant b and obtain the

following equivalent preference representation

E

[(
1

b
+ I

)
log (W )

]
, (7)

where b represents the benchmark’s importance, and I represents the exogenous benchmark
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news in their model.

In our first modification of their utility function, we let b→∞ and assume that bench-

marking is extremely important. It substantially simplifies the subsequent analysis and

allows for analytical, closed-form solutions. Our second modification introduces a risk aver-

sion parameter strictly bigger than one (R > 1) because myopic investors with R = 1 do

not care about long-term shocks. Therefore, the financial markets with short- and long-term

investment mandates are not dynamically complete. This assumption is innocuous because

the model subsumes the myopic, R = 1 case. We can set R = 1 + ε with arbitrarily small

ε > 0 and investigate the myopic case with R→ 1. The asset manager’s performance objec-

tive (6) captures the critical aspect of benchmarking laid out by Basak and Pavlova (2013):

the asset manager strives to post higher returns when the benchmark is high than when it

is low.

One constructive and essential deviation from the literature is that, in our model, the

asset manager’s benchmark is endogenous and determined in equilibrium. It includes the

long-horizon asset price (SLT/2) and not its dividend news, as typically assumed in the

literature.

We denote the total asset market at t = 0 by Sm and assume that at t = 0, the asset

manager is endowed with λ shares of the total asset market, while the value investor with the

residual 1− λ. Starting with these initial endowments, each investor dynamically chooses a

portfolio πkit, where πki represents the fraction of wealth investor k invests in security i, where

k = I, V and i = S, L. The wealth processes of the two investors then follow the dynamics

dW V
t

W V
t

= πV′t

(
µSt

µLt

)
dt+ πV′t Σt

(
dZ1t

dZ2t

)
,

dW I
t

W I
t

= πI′t

(
µSt

µLt

)
dt+ πI′t Σt

(
dZ1t

dZ2t

)
, (8)

where we denote the vector of portfolio weights of investor k by πkt , and the matrix of

return volatilities by Σt, such that

πkt ≡

[
πkSt
πkLt

]
, Σt ≡

[
σS1t σS2t

σL1t σL2t

]
. (9)

14



4 Equilibrium

This section unravels the heterogeneous investment horizons equilibrium mechanism. Our

model introduces two frictions: (i) the heterogeneous investment horizons and (ii) the relative

performance objective of asset managers. Accordingly, three potential equilibrium channels

drive the equilibrium asset pricing quantities. There are two individual effects due to the

heterogeneous investment horizons and the relative performance objective separately. One

combined effect comes from the interaction of the heterogeneous investment horizons and

the relative performance objective. However, notice that the individual relative performance

objective effect cannot drive our equilibrium mechanism and explain the dividend strip ir-

regularities because dividend payouts are simultaneous without heterogeneous investment

horizons. Ultimately, we remain with one individual effect and the combined effect.

Throughout the analysis, we distinguish between these two potential channels and even-

tually show that the combined effect is responsible for the downward-sloping risk premium

and volatility since, without benchmarking, the risk premium and volatility slope upward.

We define the equilibrium in a standard way: equilibrium prices and portfolio holdings are

such that (i) both the asset manager and the value investor choose their optimal portfolios

for given prices, and (ii) stocks, the bond, and consumption-good markets clear.

The separation between the short-term and the long-term assets’ payouts and the sepa-

ration between the short-term asset manager and long-term value investor objectives imply

that equilibrium quantities are set up to ensure that the asset manager optimally trades off

the long-term asset while the value investor trades off the short-term asset.

In the first step towards unraveling the equilibrium, we present investors’ optimal risk

exposures. It is a partial equilibrium result because investors choose their risk exposures

(and portfolios) given prices. Still, it allows us to separate the different shock propagation

channels and analyze how the heterogeneous investment horizons mechanism affects prices.

Lemma 1 (Risk Exposure). The value and asset managers’ risk exposures are given by

Σ
′

tπ
V
t = θt +

[
0

− (R− 1)σ

]
, (10)

Σ
′

tπ
I
t = θt +

[
− (R− 1)σ

0

]
+

[
σL1t

σL2t

]
. (11)
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The Lemma shows that investors’ wealth has three separate shock propagation channels

that affect them. The first channel is the myopic mean-variance channel (θt). It states that

investors buy and sell assets to correlate their wealth with the market prices of risk; in other

words, risk exposure is proportional to excess return per unit of risk. We have yet to identify

which asset has a better risk-return trade-off; it will be revealed explicitly in equilibrium.

The second channel is the risk aversion intertemporal hedge channel. Since the risk

aversion parameter is strictly greater than one (R > 1), the risk aversion hedge states that

investors want more wealth in bad economic states. Alternatively, wealth is less valuable

when investment opportunities are better because it is easier to increase wealth through

investments. The value investor hedges against long-term risk aversion, while the asset

manager hedges against short-term risk aversion. The intertemporal risk aversion hedge

goes back to Merton (1971).

The third remaining channel is an intertemporal benchmark hedge channel. It is en-

tirely driven by the asset manager’s benchmarking motives and disappears when there is no

benchmark. The benchmark hedge states that the asset manager strives to do well when

the benchmark does well. To achieve that goal, the asset manager optimally correlates

his risk exposure with the benchmark’s return and simply buys the benchmark to hedge

against benchmark fluctuations. Accordingly, any deviation from holding the long-term

benchmarked asset is due to either risk aversion hedging or mean-variance considerations.

Notice that the benchmark hedge is endogenous and depends on the equilibrium long-

term benchmarked asset risk exposures. This outcome is unique to our economy and does

not exist in a homogeneous investment horizon economies where the benchmark hedging

exposure is exogenous. As we soon reveal, the endogenous benchmark hedging is a critical

determinant of equilibrium prices.

Significantly, the two assets that mimic dividend strips’ payouts: the short-term asset

pays dividends in the short term, and the long-term asset pays dividends in the long term;

the dividends are independent (DLt ⊥ DSt), and their payouts’ dates do not overlap. Fur-

thermore, the asset manager cares only about the short-term investment horizon due to the

short performance window. Therefore, optimality implies that asset manager must hold the

short-term asset eventually, at the end of his performance window, because the long-term

asset does not pay off in the short term when the asset manager’s performance is evaluated.

The equilibrium objective is to set asset prices so that the asset manager optimally
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chooses to trade off the long-term asset and hold the short-term asset, while the value

investor optimally chooses to trade off the short-term asset and hold the long-term asset.

This objective does not depend on whether the benchmark is long-term or short-term or

whether there is a benchmark. However, the equilibrium adjustments of assets’ returns and

market prices of risk substantially differ depending on whether there is a benchmark and the

strength of asset managers’ incentives to benchmark.

To identify the individual effect, we solve for an equilibrium without the relative perfor-

mance objective but with the heterogeneous investment horizons and denote the equilibrium

quantities by the upper bar (X̄) throughout the analysis. We then compare the asset pricing

quantities arising from these two equilibriums and identify whether the individual channel or

the combined channel drives the difference between the short-term and long-term equilibrium

quantities.

The economic setup allow us to differentiate between the effect of long-term and short-

term factors on stock prices. In particular, short-term cash flow news is non-fundamental

news about the long-term asset because this asset never pays in the short-term. Similarly,

long-term cash flow news is non-fundamental news about the short-term asset because this

asset pays dividends only in the short term. In what follows we characterize the equilibrium

return volatilities and identify the effects of non-fundamental cash-flow news.

Proposition 1 (Volatility). The short-term asset has short-term risk exposure and no

long-term risk exopsure,

σS1t = σ̄S1t = σ, σS2t = σ̄S2t = 0, (12)

where σ̄S1t and σ̄S2t are the equilibrium risk exposures without benchmarking motives. The

long-term asset has a positive exposure to the short-term risk and a negative exposure to the

long-term risk,

σL1t = σ̄L1t −
R

2
σ > 0, σL2t = σ̄L2t +

R− 1

2
σ < 0, (13)

where σ̄L1t and σ̄L2t are the equilibrium risk exposures without benchmarking motives, given

by

σ̄L1t = Rσ > 0, σ̄L2t = − (R− 1)σ < 0. (14)

The individual effect of the heterogeneous investment horizons implies
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(i) that the long-term asset has a negative fundamental exposure, (σ̄L2t, σL2t < 0), and a

positive non-fundamental exposure, (σ̄L1t, σL1t > 0).

(ii) that non-fundamental cash-flow news has a bigger impact on the long-term price than

fundamental cash-flow news, (|σL1t| > |σL2t|) and (|σ̄L1t| > |σ̄L2t|);

(iii) that a common shock to short-term and long-term cash-flow news has a positive effect

on the long-term price, (σL1t + σL2t > 0), (σ̄L1t + σ̄L2t > 0).

The combined effect of the heterogeneous investment horizons and the relative performance

objective

(i) increases the long-term asset (fundamental) long-term exposure (σL2t) and decreases the

(non-fundamental) short-term exposure (σL1t); however, their sign remains the same.

(ii) reduces the long-term asset total volatility:
√
σ̄2
L1t + σ̄2

L2t >
√
σ2
L1t + σ2

L2t;

(iii) reduces the effect of a common shock (σL1t + σL2t < σ̄L1t + σ̄L2t);

In a traditional economy with homogenous investment horizons and without benchmark-

ing incentives, fundamental cash-flow news is the main and, in some cases, the only driving

force behind asset pricing fluctuations. Basak and Pavlova (2013) show that this outcome

persists in an economy with homogenous investment horizons and benchmarking incentives.

However, Proposition 1 reveals that the individual effect (the heterogeneous investment

horizons) reverses this outcome by showing that the non-fundamental cash-flow news (news

about the short-term payout) impacts prices more than the fundamental cash-flow news

(news about the long-term payout), (|σL1t| > |σL2t|). This equilibrium outcome can poten-

tially rationalize key asset pricing findings that traditional models struggle to justify, such as

why asset prices fluctuate much more than dividends, as was first revealed by Shiller (1981).

While a common positive shock positively affects prices (σ̄L1t+ σ̄L2t > 0), a positive long-

term fundamental cash-flow news reduces the long-term asset price (σ̄L2t < 0). Interestingly,

this result provides a new testable implication: asset prices load negatively on long-term

cash-flow risk factors when controlling for short-term cash-flow risk factors.

Notice that these two outcomes are not due to the combined effect (the interaction of the

heterogeneous investment horizons and relative performance objective) since they persist in

an economy without benchmarking incentives: (i) σ̄L2t < 0, and (ii) |σ̄L1t| > |σ̄L2t|.
An essential feature of the equilibrium arising from the combined effect is that the to-

tal volatility of a benchmarked asset decreases in the presence of benchmarking aligning
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with Cuoco and Kaniel (2011) but reversing Basak and Pavlova (2013)s’ findings when the

investment horizons are homogeneous, as item (i) of the combined effect in Proposition 1

reveals.

Lastly, before discussing the equilibrium mechanism, we characterize the market prices

of risk.

Proposition 2 (Market Price of Risk). The short- and long-term market prices of risk

are given by

θ1t =
R

2
σ > 0, θ2t =

R− 1

2
σ > 0, (15)

where θ̄1t = Rσ and θ̄2t = 0 are the equilibrium market prices of risk without benchmarking

motives.

The individual effect of the heterogeneous investment horizons implies that the short-term

market price of risk is higher than the long-term market price of risk

θ1t > θ2t, θ̄1t > θ̄2t. (16)

The combined effect of the heterogeneous investment horizons and the relative performance

objective

(i) increases the long-term market price of risk (θ2t > θ̄2t);

(ii) and decreases the short-term market price of risk (θ̄1t > θ1t);

In a homogenous horizon economy, benchmarking reduces the market price of bench-

marked assets’ fundamental risk while it does not affect non-fundamental market prices of

risk. To ensure market clearing, equilibrium depresses the market price of risk so that a

retail investor without benchmarking motives finds the benchmarked asset unattractive due

to its low risk-return trade-offs. The asset manager is willing to forgo the worse risk-return

trade-off because the benchmarked asset satisfies the benchmark hedging desires. Following

the homogenous horizon economy’s logic, we expect the long-term market price of risk to

decrease and to have no impact on the short-term market price of risk. However, the equilib-

rium’s workings are different in the heterogeneous investment horizon, and the results from

the homogenous case do not follow.

Interestingly, item (i) in Proposition 2 reveals that when the long-term asset belongs

to the benchmark, the market price of the long-term risk increases. Further, item (ii) in
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Proposition 2 indicates that the market price of the short-term risk decreases even though

the short-term asset does not belong to the benchmark. These two outcomes run against

the theoretical findings with homogenous investment horizons, such as Basak and Pavlova

(2013) and Buffa and Hodor (2018).9

However, despite the opposing price pressures reducing the short-term and increasing the

long-term market prices of risk, the short-term market price risk always remains higher than

the long-term market price of risk.

5 Equilibrium Mechanism

So far, we have identified the market prices of risk and return volatilities. Next, we revisit

investors’ partial equilibrium risk exposures, given in Lemma (1), introduces the optimal

portfolios, and analyze the mechanism.

We start with the optimal portfolios. By inverting the volatility matrix transpose
(
Σ
′
t

)
,

we convert investors’ risk exposures, (10) and 11), to portfolio holdings.

πVt =
(

Σ
′

t

)−1

θt +
(

Σ
′

t

)−1
[

0

− (R− 1)σ

]
, (17)

πIt =
(

Σ
′

t

)−1

θt +
(

Σ
′

t

)−1
[
− (R− 1)σ

0

]
+
(

Σ
′

t

)−1
[
σL1t

σL2t

]
. (18)

There are three reasons to hold assets: (i) mean-variance risk exposure, (ii) risk aversion

hedging, and (iii) benchmark hedging. To stay consistent with these different risk exposures,

we represent the value investor’s portfolio (πVt ) as the sum of two separate portfolios: (i) the

first is the mean-variance portfolio (φm.v.), and (ii) the second is the short-term risk aversion

hedging portfolio (φVr.a.). Similarly, we represent the asset manager’s portfolio as the sum of

three separate portfolios: (i) the first is the mean-variance portfolio (φm.v.), (ii) the second

is the long-term risk aversion hedging portfolio (φIr.a.), and (iii) the third is the benchmark

hedging portfolio (φIb). The following Proposition characterizes these portfolios.

9In Section 8, we show that when only the short-term asset belongs to the benchmark, the short-term
market price of risk decreases while the long-term price of risk is unaffected, aligning with the findings of
homogenous investment horizon economies.
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Proposition 3 (Portfolios). The asset manager benchmark hedging portfolio and long-term

risk aversion hedging portfolio are given by

φIb =

[
0

1

]
, φIr.a. =

[
1−R

0

]
, (19)

while the value investor short-term risk aversion hedging portfolio is given by

φVr.a. =

[
−R
2

]
. (20)

The mean-variance portfolio is given by

φm.v. =

[
R

−1

]
(21)

and φIb + φIr.a. + φm.v. = πIt = π̄It and φVr.a. + φm.v. = πVt = π̄Vt .

Proposition 3 reveals that the asset manager has a one-leg long portfolio and a one-leg

short portfolio. Specifically, in the benchmark hedge portfolio, the asset manager buys the

long-term asset, and in the short-term risk aversion hedge portfolio, sells the short-term

asset. The mean-variance portfolio is a two-leg long-short portfolio that offsets the short

position in the short-term asset and the long position in the long-term asset.

The equilibrium objective is to set asset prices so that the asset manager optimally

chooses to trade off the long-term asset and hold the short-term asset, while the value

investor optimally chooses to trade off the short-term asset and hold the long-term asset.

This objective does not depend on whether the benchmark is long-term or short-term or

whether there is a benchmark. However, the equilibrium adjustments of assets’ returns and

market prices of risk substantially differ depending on whether there is a benchmark and the

strength of asset managers’ incentives to benchmark.

We start the discussion of the mechanism by analyzing the risk exposures of the individual

effect when there is no benchmark. By plugging the market prices of risk for the individual
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effect (θ̄), we obtain

Individual Effect:



Σ̄
′
tπ̄
V
t /σ =

R
0

+

 0

− (R− 1)

 =

 R

− (R− 1)

⇒
π̄VSt = 0

π̄VLt = 1

 ,
Σ̄
′
tπ̄
I
t /σ =

R
0

+

− (R− 1)

0

 =

1

0

⇒
π̄ISt = 1

π̄ILt = 0

 .
(22)

The equilibrium outcome when there is no benchmark aligns with a traditional setup where

cash-flow news today has a more significant impact on assets that pay off in the long term

(as opposed to the short term). Equilibrium compensates for the extra risk in the long-

term asset by having a higher risk premium, leading to an upward-sloping risk premium and

volatility.

To see why this is the case, observe that the value investor requires a negative exposure

to long-term shocks due to the long-term risk aversion hedge, −(R− 1). Equilibrium ensures

the value investor buys one unit of the long-term asset (π̄VLt = 1) by positively correlating

the risk aversion hedge with the long-term asset risk exposure (σ̄L2t = −(R− 1) < 0).

In addition, equilibrium ensures that the asset manager does not desire to hold (or short)

the long-term asset (π̄ILt = 0) by setting the long-term risk price to zero (θ̄2t = 0); equilibrium

set (θ̄1t = R) so that the asset manager desire to hold one unit of the short-term asset.

Lastly, the value investor requires positive exposure to short-term shocks (R). To ensure

that the value investor does not obtain this exposure with the short-term asset (π̄VSt = 0),

equilibrium sets the long-term asset risk exposure high enough to match the value investor

desired exposure, (σ̄L1t = R). This outcome implies that the long-term asset has higher

short-term risk exposure (σ̄L1t > σ̄S1t).

Equilibrium compensates the value investor for taking on that risk by having a higher

long-term risk premium, leading to an upward-sloping risk premium (µ̄Lt > µ̄St) and volatil-

ity (
√
σ̄2
L1t + σ̄2

L2t >
√
σ̄2
S1t + σ̄2

S2t).

Next, we focus on the combined effect of the heterogeneous investment horizons and the

relative performance objective. By plugging the market prices of risk (θ) and the long-term

benchmarked asset equilibrium exposures (σ2
L1t, σ

2
L2t), we obtain
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Combined

Effect:



Σ
′

tπ
V
t /σ =

 R/2

(R− 1) /2

+

 0

− (R− 1)

 =

 R/2

− (R− 1) /2

⇒
πVSt = 0

πVLt = 1

 ,
Σ
′

tπ
I
t /σ =

 R/2

(R− 1) /2

+

− (R− 1)

0

+

 R/2

− (R− 1) /2

 =

1

0

⇒
πISt = 1

πILt = 0

 .
(23)

Benchmarking induces extra — unrelated to prices — demand to hold the benchmark as-

set. This excess demand pressure is unsustainable in the no-benchmark pricing environment

(individual effect).

We break the equilibrium pricing of the combined effect into two separate effects: (i)

the partial combined effect of the price reaction (θ̂1t, θ̂2t), given that price dynamics are

unchanged (σ̄Lt, σ̄St); (ii) the complete combined effect of both price reaction and the price

dynamics (σLt, σSt). We pin down the price reaction in the partial combined effect (θ̂1t,

θ̂2t) by imposing the same equilibrium restriction that prices counteract the benchmarking

demand and restore equilibrium by negating the demand to hold the benchmark.

Partial

Combined

Effect (i):



Σ
′

tπ
V
t /σ =

 θ̂1 = 0

θ̂2 = R− 1

+

 0

− (R− 1)

 =

0

0

⇒
π̂VSt = 0

π̂VLt = 0

 ,
Σ
′

tπ
I
t /σ =

 θ̂1 = 0

θ̂2 = R− 1

+

− (R− 1)

0

+

 σ̄L1 = R

σ̄L2 = − (R− 1)

 =

1

0

⇒
π̂ISt = 1

π̂ILt = 0

 .
(24)

In the partial effect, equilibrium induces the long-term (benchmarked) asset to be more

expensive:

θ̂1t < θ̄1t and θ̂2t > θ̄2t ⇒ Cov(−dξ̂t, dS̄Lt) < Cov(−dξ̄t, dS̄Lt)

⇒ S̄Lt(θ̂) > S̄Lt, (25)

where S̄Lt(θ̂) is the long-term asset price considering the partial effect (i), given that price

dynamics are unchanged (24). However, the partial price effect alone cannot restore both

optimal portfolios and market clearing conditions.

The partial price reaction makes the long-term asset too expensive, so much so that the
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value investor prefers to have a risk-free position in equilibrium than holding the long-term

or the short-term assets, violating the market clearing condition. To make the long-term

asset more attractive, equilibrium decreases the long-term asset risk exposures (|σL1t| <
|σ̄L1t|, |σL2t| < |σ̄L2t|) to the point where the value investor optimally holds one unit while

still negating the benchmarking demand of the asset manager, as (23) reveals. In doing so,

the short-term asset has a more pronounced risk exposure (σS1t > σL1t) and, eventually, is

more volatile than the long-term asset.

Equilibrium compensates the asset manager for taking on that heightened short-term

risk (relative to the long-term asset) by having a higher short-term risk premium, inducing a

downward-sloping risk premium (µSt > µLt) and volatility (
√
σ2
S1t + σ2

S2t >
√
σ2
L1t + σ2

L2t).

To conclude, equilibrium strives to negate the benchmark demand by offsetting it entirely

since the asset manager exposure remains unchanged regardless of whether the asset manager

has a benchmark. Equilibrium cannot achieve its goal only through a partial price reaction

since the value investor finds the long-term asset too expensive. As a result, equilibrium

reduces the long-term asset risk exposures until it becomes attractive enough for the value

investor to buy one unit, inducing a downward sloping risk premium and volatility.

6 Equilibrium Implications

There are two primary equilibrium implications. We first discuss the downward-sloping term

structure of risk, as measured by risk premium, total volatility, and Sharpe ratio. We follow

with the optimal portfolios and conclude with a discussion of the equilibrium dynamics.

6.1 Downward Sloping Term Structure of Risk

This section introduces the downward sloping trend in three terms structure of risk. The

following Proposition verifies that this model generates the three empirical regularities first

documented by van Binsbergen et al. (2012).

Proposition 4 (Risk Premium, Total Volatility, and Sharpe Ratio).
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(i) Risk Premium: The short- and long-term risk premiums are given by

µSt = σ2R

2
> 0, µLt = σ2 1

2

(
R− 1

2

)
> 0. (26)

The short-term asset risk premium is higher than the long-term asset risk premium,

µSt > µLt, (27)

while the reverse is true without benchmarking incentives: µ̄St < µ̄Lt, where µ̄St = σ2R

and µ̄Lt = σ2R2. The combined effect further implies

(a) A reduction in expected returns of both the benchmarked and non-benchmarked

assets

µ̄St > µSt, µ̄Lt > µLt. (28)

The reduction in the long-term asset expected return is more pronounced

µ̄Lt − µLt > µ̄St − µSt. (29)

(ii) Total Volatility: The short-term asset volatility is higher than the long-term asset

volatility if and only if investors’ risk aversion is sufficiently low, such that√
σ2
L1t + σ2

L2t <
√
σ2
S1t + σ2

S2t ⇐⇒ R < R̄, (30)

where R̄ < 2 is given in (A.59). The reverse is true without benchmarking incentives

and for any risk aversion parameter R > 1.

(iii) Sharpe Ratio: The short-term asset Sharpe ratio is higher than the long-term asset

Sharpe ratio
µSt√

σ2
S1t + σ2

S2t

>
µLt√

σ2
L1t + σ2

L2t

. (31)

The equilibrium market price of the short-term risk is always higher than that of the long-

term risk (16). However, it does not immediately imply that the short-term risk premium is

higher than the long-term risk premium. In fact, without benchmarking incentives, the short-

term risk premium is lower than the long-term risk premium (µ̄St < µ̄Lt). By decomposing
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the risk premium into the sum of the short-term and the long-term values of risks multiplied

by their respective risk prices, we show that the reason is that the long-term asset has a

bigger value of short-term risk than the short-term asset (σ̄L1t > σ̄S1t), which leads to a

higher long-term risk premium when there are no benchmarking motives.

θ̄1tσ̄S1t + θ̄2t︸︷︷︸
=0

σ̄S2t < θ̄1tσ̄L1t + θ̄2t︸︷︷︸
=0

σ̄L2t. (32)

With benchmarking incentives, the price of the short-term risk drops (θ1t < θ̄1t) while the

price of the long-term risk increases (θ2t > θ̄2t) due to the benchmark hedging portfolio, which

suggests an even higher long-term asset risk premium if the values of risk are unchanged.

However, equilibrium reveals that changes in the values of short-term and long-term risks

are the underlying reason the short-term risk premium is higher than the long-term risk

premium with benchmarking incentives. First, the value of the short-term risk drops for the

long-term asset (σ̄L1t > σL1t) but remains unchanged for the short-term asset (σ̄S1t = σS1t),

which depresses the long-term risk premium. Second, the value of the long-term risk is, in

fact, negative for the long-term asset (σL2t < 0), which depresses the long-term risk premium

further due to the positive and higher long-term risk price (θ2t > θ̄2t > 0). Eventually, the

two forces lead to a negative sloping risk premium.

θ1t σS1t︸︷︷︸
= σ̄S1t

> θ1t σL1t︸︷︷︸
<σ̄L1t

, θ2t σS2t︸︷︷︸
=0

> θ2t σL2t︸︷︷︸
<0

(33)

µSt = θ1tσS1t + θ2tσS2t > θ1tσL1t + θ2tσL2t = µLt. (34)

The Proposition further shows that the total volatility (30) of the long-term asset (SLt)

is, in fact, lower than the short-term asset (SSt) when risk aversion is not too high.

Significantly, the combined effect plays a crucial role in these two outcomes since both

the risk-premium and volatility results reverse without the benchmarking incentives when

only the individual effect exists.

When looking at the Sharpe ratio, it is not immediately apparent that the short-term

asset Sharpe ratio is higher than the long-term asset Sharpe ratio because both the risk

premium and the total volatility of the short-term asset are higher than the long-term coun-

terparts. When dividing the risk premium by the total volatility, the Sharpe ratio of the
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short-term asset may turn out to be smaller. Even more so, whether the combined effect

of heterogeneous investment horizons and relative performance objective drives this result

or the heterogeneous investment horizons individually is not entirely clear. Proposition 4

concludes that the combined effect drives the risk-premium and volatility results; however,

the individual effect drives the Sharpe ratio result.

Lastly, Proposition 4 reveals that the risk premium and the Sharpe ratio results do not

depend on the model’s parameters, while the total volatility result requires that investors’

risk aversion parameter is not too high and roughly below two. This parameter restriction is

in line with established asset pricing models such as the external habit formation of Campbell

and Cochrane (1999) and others.

6.2 Equilibrium Dynamics

We conclude this section with an analysis of the equilibrium dynamics. When summing the

three propagation channels affecting investors’ risk exposures in (10) and (11), we find that

overall, the value investor risk exposure correlates with the long-term asset, while the asset

manager risk exposure correlates with the short-term asset.

Σ
′

tπ
V
t = θt +

[
0

− (R− 1)σ

]
=

[
σL1t

σL2t

]
, (35)

Σ
′

tπ
I
t = θt +

[
− (R− 1)σ

0

]
+

[
σL1t

σL2t

]
=

[
σS1t

σS2t

]
. (36)

Suppose that the short-term asset gets positive fundamental cash-flow news (DSt ↑). The

mean-variance portfolio states that the value investor and asset manager’s wealth increases

because they both purchase R units of the short-term asset for their mean-variance portfolio

(φm.v. = [R,−1]), and since the short-term asset price increases following fundamental short-

term news, as (21) reveals.

The asset manager’s benchmark hedge (φIb = [0, 1]) correlates the risk exposure with the

long-term asset return, and since the long-term asset price increases after non-fundamental

news about the short-term payout (σL1t > 0), the asset manager’s wealth increases further

due to the benchmark hedge, as (19) reveals. However, the asset manager’s wealth decreases

following news about the short-term payout due to the risk aversion hedge (φIr.a = [1−R, 0]),
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which reverses some of the positive impacts of the mean-variance and the benchmark hedge

but not all of it, as (19) reveals. The value investor sells R units of the short-term asset

to hedge against risk aversion, as (φVr.a = [−R, 2]) indicates. The risk aversion short-term

position completely offsets the mean-variance short-term position, leaving the value investor

with no exposure to the short-term asset.

Overall, the value investor and asset managers’ wealth increase following news about

the short-term payout. However, the asset manager’s wealth increases more than the value

investor’s wealth (σS1t > σL1t), implying that the short-term asset increases more than the

long-term asset following news about the short-term payout.

Alternatively, suppose that the long-term asset gets positive fundamental cash-flow news

(DLt ↑). The mean-variance portfolio states that both the value and asset managers’ wealth

increase because they both sell 1 unit of the long-term asset for their mean-variance portfolio

(φm.v. = [R,−1]), and since the long-term asset price decreases after fundamental long-term

news (σL2t < 0), as (21) reveals.

The asset manager’s wealth decreases due to the benchmark hedge portfolio (φIb = [0, 1])

since the long-term benchmarked asset price decreases after fundamental long-term news

(σL2t < 0). These two effects cancel each other, and overall, the asset manager has no

long-term cash-flow news exposure.

The value investor purchases two units of the long-term asset for the risk aversion hedging

portfolio (φVr.a = [−R, 2]). The negative (long position) exposure due to the risk aversion

hedge is more pronounced than the mean-variance positive (short position) exposure, and

overall, the value investor holds one unit of the long-term asset, inducing a negative exposure

to fundamental long-term news.

Overall, the value investor’s wealth decreases following long-term cash-flow news, while

the asset manager’s wealth remains unchanged (0 = σS2t, 0 > σL2t), implying that the

short-term asset remains unaffected by long-term cash-flow news, while the long-term asset

decreases following long-term cash-flow news.

More importantly, common positive cash-flow news to both the short-term and long-

term assets (DLt ↑, DSt ↑) increases both prices, implying that non-fundamental news (news

about the short-term payout) has a stronger effect on the long-term asset (a claim to long-

term payout) than fundamental news (news about the long-term payout). The following

Proposition explicitly presents the short- and long-term security prices in closed form.
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Proposition 5 (Security Prices). The short- and long-term asset prices are given by

SLt = S̄Lt (DLt)
R−1
2 (DSt)

−R
2 ALt, SSt = S̄StASt, (37)

where S̄Lt and S̄St are the equilibrium prices without benchmarking incentives given by

S̄Lt =

(
1− λ
λ

)
(DLt)

1−R (DSt)
R ĀLt, S̄St = DStĀSt, (38)

where t ≤ T
2

. The functions ĀLt, ĀSt, ALt, and ASt are deterministic and positive functions

of time, defined in (A.36), (A.37), (A.38), and (A.39), respectively.

The heterogeneous investment horizons individual effect (38) implies that

(i) the short-term asset price increases relative to the long-term asset price as the asset

manager size increases (λ).

(ii) the long-term asset price is convex and increases in the short-term news, indicating

that short-term news is more critical in good short-term states.

(iii) the long-term asset price is convex and decreases in the long-term news, indicating that

long-term news is more critical in bad long-term states.

The combined effect of heterogeneous investment horizons and relative performance objective

(37) reverses item (ii) above and implies that

(iv) the long-term asset price becomes concave and increases in the short-term news, indi-

cating that short-term news is more critical in bad states.

Proposition 5 reveals several critical features of the individual effect of the heterogeneous

investment horizons. Item (i) reveals that the long-term asset price drops as the asset

manager size increases relative to the value investor (λ ↑), while the short-term asset price

remains unchanged.

The convexity and positive price reaction of the long-term asset to short-term news (item

ii) imply that news about the short-term payout is more critical for long-term prices in good

short-term states; a one percent increase in the news about the short-term payout (DSt ↑)
has a more substantial effect on the long-term price when prices are high than when they

are low. In contrast, the convexity and negative price reaction of the long-term asset to

long-term news (item iii) imply that long-term cash-flow news is more critical for long-term
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Figure 2: This figure plots asset prices as a function of cash-flow news. The left figure shows
that long-term assets are convex in the news about the long-term payout and concave in the
news about the short-term payout. Further, as λ increases from 0.2 to 0.21, the long-term
asset price drops from the black to the blue lines. The solid line plots the long-term price
as a function of the long-term news while short-term news remains fixed (DSt = 2). The
dashed line plots the long-term price as a function of the short-term news while long-term
news remains fixed (DLt = 2). The right figure plots the changes in asset prices due to the
combined effect. The long-term asset shifts from concavity to convexity in the short-term
news once we introduce the benchmark (the combined effect, S̄Lt → SLt), as the black and
blue dashed lines indicate. The rest of the parameters are R = 1.5, µ = 0.1, σ = 0.2, T = 3,
t = 0.5, λ = 0.2, DL0 = DS0 = 1.

prices in bad long-term states; a one percent increase in long-term cash-flow news (DLt ↑)
has a more substantial effect on the long-term price when prices are high than when they are

low. Overall, the effect of non-fundamental short-term news is more critical for the long-term

price when the long-term price is high, while the effect of fundamental long-term news is

more critical for the long-term price when the price is low.

Due to the interaction between heterogeneous investment horizons and relative perfor-

mance objectives (the combined effect in item iv), short-term and long-term news become

more critical for the long-term price in bad states. The concavity with respect to the short-

term news implies that, following positive short-term news, the increase in the long-term

price is more substantial for low levels of news about the short-term payout. Figure 2 illus-

trates these results.

Finally, we present the closed-form expression for the discount factor.
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Figure 3: This figure plots the discount factor (ξ0,t) as a function of news. In the solid
line, we plot the discount factor as a function of the long-term news, while short-term news
remains fixed (DSt = 2). In the dashed line, we plot the discount factor as a function of the
short-term news, while long-term news remains fixed (DLt = 2). The rest of the parameters
are as in Figure 2.

Proposition 6 (Discount Factor). The equilibrium discount factor is given by

ξ0,t =
(DLt/DL0)

1−R
2

(DSt/DS0)
R
2

1

E0,t

(
1−R

2

)
E0,t

(
−R

2

) , t ≤ T/2, (39)

where E0,t

(
1−R

2

)
E0,t

(
−R

2

)
are deterministic functions (A.3), and (A.4).

The discount factor is inversely related to both the short- and long-term cash-flow news.

A feature similar to a traditional asset pricing model: an asset that pays off in states with

a low cash flow gets a high value. Notice that the long-term asset price pays off when

fundamental long-term cash-flow news is low; indeed, its price is inflated in this bad state,

as Figure 2 illustrates.

Interestingly, the discount factor is more sensitive to short-term news than long-term

news, implying that news about the short-term cash flow has a higher impact on prices.

The differential sensitivity of the discount factor is another manifestation of the equilibrium

mechanism inducing better risk-return trade-off for assets that pay off in the short-term asset

(θ1t > θ2t). Figure 3 illustrates this idea.
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7 Empirical Evidence

So far, we have analyzed the equilibrium mechanism and showed that the equilibrium volatil-

ity, risk premium, and Sharpe ratio are downward sloping, supporting the recent empirical

evidence. This section provides novel empirical evidence to further substantiate the hetero-

geneous investment horizons mechanism further and support other model predictions.

Our model predicts that the asset manager buys the benchmark assets due to the bench-

mark hedging and sells short the short-term asset due to the risk aversion hedging. The

mean-variance portfolio is a two-leg portfolio that offsets the hedging portfolios, as Proposi-

tion 3 reveals.

Empirical evidence suggests that mutual fund asset managers rebalance their hedging

portfolios much more frequently than trading in and out of investment opportunities. Even

more so, when mutual fund asset managers invest, these investments typically exhibit mo-

mentum. As a result, opportunistic investing is much less dynamic than rebalancing the

hedging portfolios. For instance, Chan et al. (2002) document that few funds take positions

away from their benchmark (despite having substantial turnover), and when they do, they

favor past winners (indicative of slow-moving momentum strategies).

Due to these reasons, frequently rebalancing the benchmark and risk aversion hedging

portfolios show up statically in a regression analysis with simulated data, while infrequently

rebalancing the mean-variance portfolio does not show up. The following empirical evidence

is consistent with the regression analysis of simulated data.

We estimate the asset manager’s wealth using the total net assets (TNA) of mutual

actively managed funds, and we estimate the short-term and long-term asset prices using

van Binsbergen et al. (2012) dividend prices data. They employ the European put-call

parity to extract the prices of dividends of the S&P 500 index between the quoted time and

the options’ maturity time. For instance, the dividend price in January 1996 for dividends

paid out until June 1997 was $20. They derive a time series of monthly dividend prices for

6-month, 12-month, 18-month, and 24-month maturities.

Giglio et al. (2021) have shown that the term structure of risk premium slopes downward

at the short end and slightly upward at the long end, so we expect the mechanism to show

up when considering dividend strips in short to medium terms. Perhaps more importantly,

the realized dividend price data is highly volatile. The longer the dividend price maturity,
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the more volatile its price realization, so explaining a 1.5 to 2-year ahead dividend price

variations in such a volatile environment is highly challenging.

Accordingly, we define the short-term asset price as the 6-month dividend price and the

long-term asset price as the difference between the 24-month and 18-month dividend prices.

In other words, our short-term asset is a dividend strip paying dividends within zero to six

months, while our long-term asset is a dividend strip paying dividends within one and a half

and two years.10 Then, we conduct an OLS regression of the total net assets (TNA) on the

short-term and long-term dividend strip prices,

TNAt = α + βs × (SSt/S&P 500t) + βl × (SLt/S&P 500t) + εt. (40)

Based on the predictions from simulated data with infrequent mean-variance portfolio re-

balance, we hypothesize that an increase in the short-term asset price decreases the asset

manager’s wealth due to its risk aversion hedge (βS < 0), while an increase in the long-term

asset price increases the asset manager’s wealth (βl > 0) due to its benchmark hedge.

We focus our regression analysis on four different groups of funds. The first is the broadest

group, consisting of all the mutual actively managed funds with a Morningstar category of

US Equity. These funds invest in all the possible styles and market caps. The remaining

three groups consist of mutual actively managed funds within the Russell 3000 family of

prospectus benchmarks: (i) Russell 3000 ; (ii) Russell 3000 Growth; (iii) and the Russell

3000 Value.

Table 1 reports that the asset manager loads negatively on the 0-to-6 months (short-term)

dividend strip and positively on the 18-to-24 months (long-term) dividend strip. The result

is robust to different specifications of asset managers’ benchmarks, as the four columns in

Table 1 show. For instance, the first column in Table 1 states that one standard deviation

increase in the 0-to-6 months dividend strip decreases the US Equity TNA by 0.72 standard

deviations, while one standard deviation increase in the 18-to-24 months dividend strip

increases the US Equity TNA by 0.93 standard deviations.

The empirical analysis in this section abstracts away from essential features of the asset

management industry. In particular, hedging against benchmark fluctuations means a differ-

10The TNA monthly data is from Morningstar and our sample period runs from 31/12/1998 until
30/10/2009.
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ent composition of long- and short-term assets for asset managers with different benchmark

mandates. Still, the equilibrium predictions show up in various specifications of well-known

benchmarks, as Figure 1 indicates. Lastly, one should not confuse an asset manager with a

value index mandate and a value investor without a performance benchmark mandate. As

long as the manager has a performance benchmark objective, the manager behaves as the

model describes.

Proposition 5 reveals that the short-term asset price increases relative to the long-term

asset price as the asset manager size increases relative to the value investor. To support this

hypothesis, we carry out the following OLS regression

(SSt − SLt) /S&P 500t = α + β × λt + εt (41)

and hypothesize that as the asset manager size increases relative to the value investor size

(λt ↑), the short-term asset price increases relative to the long-term asset price (β > 0). We

approximate the equity asset market fluctuations by fluctuations in the S&P 500 index and

changes to the asset manager’s size by fluctuations in the total TNA of actively managed

mutual funds with a particular benchmark. Using these approximations, we measure λt by

comparing the cumulative log return in the asset manager’s TNA relative to the cumulative

log return in the S&P 500 index. For instance, if the asset manager’s TNA increases by 2%

while the S&P 500 index increases by 5% over the same period, the asset manager’s size and

λ shrink. Intuitively, when the equity asset market grows faster than the asset manager size,

it is because the value investor size increases faster than the asset manager size, indicating
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a shrinking λ.

Table 1: TNA on long-term and short-term dividend strips’ prices

Dependent Variable: TNAt US Equity Russell 3000 Russell 3000 Growth Russell 3000 Value

constant 4.3071(***) -0.06457 5.7401(***) 2.8293(***)

(0.48127) (0.372213) (1.34844) (0.59541)

SLt/S&P 500 0.9268(***) 0.81502(***) 0.3685 1.0897(***)

(0.22124) (0.199148) (0.26738) (0.28014)

SSt/S&P 500 -0.7180(***) -0.10453 -0.6679(***) -0.6940(**)

(0.28694) (0.253569) (0.20143) (0.26584)

R2 0.1871 0.5232 0.1427 0.149

Notes: The table presents the OLS regression of dollar TNA on the long-term and short-term dividend strip

prices. The first column consists of all the actively managed mutual funds with a US Equity Morningstar

category. The remaining three columns reflect the actively managed funds with the indicated prospectus

benchmark. Newey-West standard errors in parenthesis. To avoid non-stationarity issues, we divide the

S&P 500 index dividend strip prices by the S&P 500 index level, similar to van Binsbergen et al. (2012).

Variables are standardized. (***),(**),(*) corresponds to 1%, 5%,10% confidence levels, respectively.

Table 2 reports that as the asset manager size increases, the short-term asset price in-

creases relative to the long-term asset price. The result is robust whether we measure asset

manager size with the cumulative log return of (i) the TNA across all funds with the US

Equity Morningstar category, (ii) the TNA of funds with the Russell 3000 prospectus bench-

mark, or (iii) the TNA of funds with the Russell 3000 Growth prospectus benchmark. For

instance, the third column in Table 2 states that a 1% increase in the Russell 3000 Growth

funds size increases the difference between the short- and long-term dividend strip prices by

1.64 standard deviations. The result attenuates when measuring the asset manager size with

the Russell 3000 Value prospectus benchmark TNA, but also, the R-squared vanishes.
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Table 2: Short-term minus long-term dividend strips’ prices on λ.
Dependent Variable: (SSt − SLt)/S&P 500

constant -0.8718 -0.1671 -1.7472(*) 1.0696(**)

(1.13946) (0.3067) (1.00677) (0.50250)

λ (US Equity) 1.2443 — — —

(0.925) — — —

λ (Russell 3000) — 0.5031(*) — —

— (0.269) — —

λ (Russell 3000 Growth) — — 1.6399(**) —

— — (0.68835) —

λ (Russell 3000 Value) — — — -0.3215

— — — (0.42552)

R2 0.03281 0.063 0.09824 0.004122

Notes: The table presents the OLS regression of the difference between the short-term and the long-term

dividend strip prices on the size of the asset manager. We measure the relative size by comparing the

cumulative log return in the asset manager’s TNA relative to the cumulative log return in the S&P 500

index. The different specifications refer to the US actively managed mutual funds with various mandates

are similar to Table 1. To avoid non-stationarity issues, we divide the dividend strip prices by the S&P 500

index level, similar to van Binsbergen et al. (2012), and to adjust for potential heteroskedasticity, we use

robust standard errors in parenthesis. The dependent variable is standardized. (***),(**),(*) corresponds

to 1%, 5%,10% confidence levels, respectively.

We have presented two novel and straightforward pieces of evidence showing that frictions

tied to the mutual fund asset management industry can account, at least partially, for the

empirical evidence originally discovered by van Binsbergen et al. (2012).

8 Extensions and Further Discussion

This section extends the primary analysis and allows for a benchmark that composes both

the short-term and long-term assets. By doing so, the model introduces another equilibrium

channel from short-term benchmarking incentives. Still, the additional channel corroborates

the findings in the primary analysis and supports the main empirical findings.
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Specifically, we consider a benchmark, a geometric weighted average of the short- and

long-term assets. The short-term asset weight is α, and the long-term asset weight is β,

0 ≤ α, β ≤ 1; the rest of the economic setup remains unchanged. other ceteris paribus.

Accordingly, extending the risk exposures in Lemma (1), we find that the asset manager’s

benchmark hedging portfolio consists of α units of the long-term asset and β units of the

short-term asset.

Σ
′

tπ
I
t = θt +

[
− (R− 1)σ

0

]
+

[
σL1t

σL2t

]
α +

[
σS1t

σS2t

]
β. (42)

The value investor risk exposure remains unchanged. Unlike the primary analysis, in this

case, the asset manager desires to get exposure to the short-term asset due to benchmarking

incentives. Equilibrium achieves market clearing by negating the benchmarking hedging

desires.

Proposition 7 (Extension: Volatility, Market Prices of Risk, and Portfolios). The

short-term and long-term assets’ risk exposures are given by[
σS1t

σS2t

]
=

[
σ

0

]
,

[
σL1t

σL2t

]
= σ

[
R−β
1+α
1−R
1+α

]
. (43)

The short- and long-term market prices of risk are given by

θ1t =
R− β
1 + α

σ, θ2t =
α (R− 1)

1 + α
σ, θ1t > θ2t > 0. (44)

The effects introduced in the original analysis remains unchanged. The asset manager bench-

mark hedging portfolio and long-term risk aversion hedging portfolio are given by

φIb = α

[
0

1

]
+ β

[
1

0

]
, φIr.a. =

[
1−R

0

]
, (45)

while the value investor short-term risk aversion hedging portfolio is given by

φVr.a. =

[
− (R− β)

1 + α

]
. (46)
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The mean-variance portfolio is given by

φm.v. =

[
R− β
−α

]
(47)

and φIb + φIr.a. + φm.v. = πIt = π̄It and φVr.a. + φm.v. = πVt = π̄Vt .

By plugging the market prices of risk and the benchmark exposures, we obtain

Combined

Effect:
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πILt = 0
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(48)

Similar to the primary analysis, benchmarking induces extra — unrelated to prices —

demand to hold the benchmark asset. This excess demand pressure is unsustainable in the

no-benchmark pricing environment (individual effect).

We break the equilibrium pricing of the combined effect into two separate effects: (i)

the partial combined effect of the price reaction (θ̂1t, θ̂2t), given that price dynamics are

unchanged (σ̄Lt, σ̄St); (ii) the complete combined effect of both price reaction and the price

dynamics (σLt, σSt). We pin down the price reaction in the partial combined effect (θ̂1t,

θ̂2t) by imposing the same equilibrium restriction that prices counteract the benchmarking

demand and restore equilibrium by negating the demand to hold the benchmark.

Partial

Combined

Effect (i):
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Σ
′

tπ
V
t /σ =

θ̂1 = R (1− α)− β

θ̂2 = α (R− 1)

+

 0

− (R− 1)

 =

 R (1− α)− β

− (R− 1) (1− α)

⇒
 π̂VSt = −β

π̂VLt = 1− α

 ,
Σ
′

tπ
I
t /σ =

θ̂1 = R (1− α)− β

θ̂2 = α (R− 1)

+

− (R− 1)

0

+ α

 R

− (R− 1)

+ β

1

0

 =

1

0

⇒
π̂ISt = 1

π̂ILt = 0

 .
(49)
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The partial effect induces the short-term and long-term assets to be more expensive:

θ̂1t < θ̄1t and θ̂2t > θ̄2t

⇒Cov(dξ̂t, dS̄Lt) < Cov(dξ̄t, dS̄Lt)⇒ S̄Lt(θ̂) > S̄Lt,

⇒Cov(dξ̂t, dS̄St) < Cov(dξ̄t, dS̄St)⇒ S̄St(θ̂) > S̄St, (50)

where S̄St(θ̂) and S̄Lt(θ̂) are the short-term and long-term asset price considering the partial

effect (i), given that price dynamics are unchanged (49). However, the partial price effect

alone cannot restore both optimal portfolios and market clearing conditions.

The partial price reaction renders the short-term asset too expensive, so much so that

the value investor takes a short position on that asset in that pricing environment. The long-

term asset is also not attractive, inducing the value investor to have a long position of (1−α)

which is less than one unit. In the general benchmark case as well, the partial effect cannot

clear the financial markets, as (49) reveals. To make the long-term asset more attractive,

equilibrium decreases the long-term asset risk exposures (|σL1t| < |σ̄L1t|, |σL2t| < |σ̄L2t|) to

the point where the value investor optimally holds one unit of the long-term asset and no

position in the short-term asset while still negating the benchmarking demand of the asset

manager, as (48) reveals. In doing so, the short-term asset has a more pronounced risk

exposure (σS1t > σL1t) and, eventually, is more volatile than the long-term asset.

Equilibrium compensates the asset manager for taking on that heightened short-term

risk (relative to the long-term asset) by having a higher short-term risk premium, inducing a

downward-sloping risk premium (µSt > µLt) and volatility (
√
σ2
S1t + σ2

S2t >
√
σ2
L1t + σ2

L2t).

Noticeably, equilibrium is restored by depressing the long-term risk exposures, while the

short-term risk exposures remain unaffected, regardless of the benchmark composition. This

outcome runs against the homogenous investment horizon with benchmarking economy in

which benchmarking increases the fundamental volatility. Moreover, the market price of the

short-term risk drops due to the short-term benchmark (β > 0), similar to the homoge-

nous investment horizon with benchmarking economy. However, this section shows that the

mechanism driving this outcome is different.

To see why the short-term risk premium is higher than the long-term risk premium, notice

that σL1t < σS1t if and only if R < 1 + α + β, equaling 2 when α + β = 1 (the geometric

average case). Following the primary analysis and representing the risk premiums as their
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values of risk times prices of risk (33) leads to

θ1tσS1t > θ1tσL1t, θ2tσS2t > θ2tσL2t ⇒ µSt > µLt. (51)

The following proposition ensures that the short-term risk premium, short-term volatility,

and short-term Sharpe ratio are higher than their long-term counterparts in the general

geometric benchmark case.

Proposition 8 (Extension: Risk Premium, Total Volatility, and Sharpe Ratio).

(i) Risk Premium: The short-term asset risk premium is higher than the long-term asset

risk premium if and only if investors’ risk aversion is sufficiently low, such that

µSt > µLt ⇐⇒ R < 2. (52)

The effects introduced in the original analysis remains unchanged.

(ii) Total Volatility: The short-term asset volatility is higher than the long-term asset

volatility if and only if investors’ risk aversion is sufficiently low. The threshold R̄

depends on the composition of the benchmark, but the condtion R̄ < 2 remains.

(iii) Sharpe Ratio: The short-term asset Sharpe ratio is higher than the long-term asset

Sharpe ratio.

One may consider an additional investor with a passive inelastic investment mandate.

Inelastic passive demand to hold the benchmark reduces the remaining supply of the bench-

marked assets to other investors. Consequently, the passive investment mandate translates

to a typical supply shift from the value investor and asset manager’s perspective. Such a

supply shift increases the benchmarked asset prices and decreases their risk premiums. As

long as the benchmark composition of assets tilts towards the long-term asset, the passive

index investment will not affect the equilibrium implications. Notice that passive investment

with exchange-traded funds (ETFs) is small in the equity market; the average proportion

of the US stock market held by all equity ETFs is roughly 6%; therefore, their effects are

inconsequential.
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9 Conclusion

Empirical evidence points to a critical difference between the asset managers’ short-term per-

formance window and value investors’ long-term investment mandates. The heterogeneity in

their investment horizons combined with the relative performance objectives of asset man-

agers has the potential explanatory power of asset pricing anomalies because mutual funds’

assets under management affected by these frictions are enormous. Despite its economic

significance, the asset pricing effects of the heterogeneity in investment horizons have yet to

be explored. Campbell and Viceira (2002), and more recently, Cochrane (2022), emphasize

the importance of these effects to portfolio theory and equilibrium prices.

The data shows that mutual fund asset managers’ minimum performance windows are

excessively short across all the primary investment mandates. In particular, 83.8% of mutual

fund managers have a minimum rolling performance window of one year or less, and the

distribution median is 7 to 8 months, assuming uniform contract starting dates. The short

performance windows are especially critical since they strongly incentivize mutual fund asset

managers to become short-term investors because they may get fired or demoted if they

underperform their benchmark in the short term. Consequently, those mutual fund asset

managers have little interest in investment horizons beyond their minimum performance

window.

Our main contribution shows that these two mutual fund asset management frictions

generate a downward-sloping risk premium, volatility, and Sharpe ratio, thereby providing

an original theoretical foundation for recent empirical evidence. This paper is the first to

show that frictions tied to the mutual fund asset management industry can account, at least

partially, for these empirical regularities.

Our theory predicts that the risk premium slopes down less as benchmarking incentives

become less severe and eventually slopes upward without benchmarking incentives. Accord-

ingly, our theory aligns with the conditional empirical evidence since the Active Share in

expansions is significantly larger than in recessions, indicating that the downward-sloping

risk premium is more severe in recessions due to stronger benchmarking motives.

Our continuous-time setup admits precise closed-form expressions, allowing us to analyze

cash-flow shocks’ effects on prices. In particular, we find that news about the short-term

payout affects long-term asset prices more than news about the long-term payout. The
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closed-form precise equilibrium characterization allows us to introduce novel empirical ev-

idence to support other predictions. Our model predicts that the asset manager buys the

long-term asset due to the benchmark hedging and sells short the short-term asset due to

the risk aversion hedging. Further, as the size of the asset manager increases, the short-term

asset price increases relative to the long-term asset price. Our empirical analysis verifies

those predictions.

Methodologically, our setup introduces a benchmark that depends on endogenous prices

rather than exogenous dividend news as currently assumed in the literature.

There are several avenues for future research. Theoretically, it would be interesting to

extend the model to allow for variations in the risk premium and observe if the mechanism

addresses other well-known empirical phenomena, such as momentum and reversal. Em-

pirically, data on short- and long-term dividend strips is scarce and, therefore, explored by

relatively few papers. More work remains to alleviate the data shortcomings.

A Proofs

In this section we show how to derive the equilibrium quantities. We introduce two generalizations to the

short-term asset manager utility function in the main setup.

E

(SST/N)β (SLT/N)α
(
W IT/N

)1−R
1−R

 . (A.1)

First, the short-term period is T/N for a general N ≥ 2, and second, the parameters α and β respectively

control the importance of the long-term and short-term assets to asset manager’s incentives. We assume that

α ≥ 0 and β ≥ 0. When α = β = 0, there is no benchmark and the equilibrium coincide with a traditional

two consumption dates setup. When α = 1 and β = 0, we obtain the main setup, and when β > 0, the

short-term asset becomes important for benchmarking. We do not restrict α, β ≤ 1, and analyze cases in

which the benchmark is extremely important for incentive purposes. Throughout the analysis, the long-term

value investor utility function remains identical to the main setup (5). The proofs’ order reflects the most

convinient way to solve for equilibrium and does not reflect the order in which the propositons appear in the

text.
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Before we begin with the formal proofs, we solve the following expected values.

Et1,t2 (1−R) ≡ Et1
[
(DLt2)

1−R
]
/ (DLt1)

1−R
= e(1−R)(µ− 1

2σ
2R)(t2−t1), (A.2)

Et1,t2
(

(1−R)α

1 + α

)
≡ Et1

[
(DLt2)

(1−R)α
1+α

]
/ (DLt1)

(1−R)α
1+α = e

(1−R)α
1+α

(
µ−σ22

1+αR
1+α

)
(t2−t1), (A.3)

Et1,t2
(
β −R
1 + α

)
≡ Et1

[
(DLt2)

β−R
1+α

]
/ (DLt1)

β−R
1+α = e

β−R
1+α

(
µ−σ22

1+α−β+R
1+α

)
(t2−t1), (A.4)

Et1,t2
(

1 +
β −R
1 + α

)
≡ Et1

[
(DLt2)

1+ β−R
1+α

]
/ (DLt1)

1+ β−R
1+α = e(

1+ β−R
1+α )

(
µ−σ22

R−β
1+α

)
(t2−t1). (A.5)

We reference to these expected values throughout the proofs.

Proof of Proposition 6 (Discount Factor). The security market is dynamically complete. As such,

there exists a unique state price density process, ξ, and the no arbitrage relations

ξtSLt = Et [ξTDLT ] , t ∈ [0, T ], (A.6)

ξtSSt = Et
[
ξT/NDST/N

]
, t ∈ [0, T/N ], (A.7)

are always satisfied. In our setup, we set r = 0 for t ≤ T/N , and thus the state price density evolves

according to

dξt = −ξt (θ1tdZ1t + θ2tdZ2t) , t ≤ T/N. (A.8)

The processes θ1t and θ2t are the market prices of risk of the short-term and long-term shocks, respectively.

Restating the dynamic budget constraints as

ξtW
V
t = Et

[
ξTW

V
T

]
, t ∈ [0, T ], (A.9)

ξtW
I
t = Et

[
ξT/NW

I
T/N

]
, t ∈ [0, T/N ], (A.10)

and maximizing each investor’s objective function (5) and (A.1), subject to (A.9) and (A.10) at time t = 0,

respectively, we obtain the first order conditions

(
SβST/NS

α
LT/N

yIξT/N

) 1
R

= W IT/N , (A.11)

(
yVξT

)− 1
R = WVT , (A.12)

where yS and yL are the corresponding Lagrange multipliers. By utilizing the budget constraints at t = 0,
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(A.9), and (A.10), we find that the Lagrange multipliers satisfy

(
1

yI

) 1
R

=
ξ0λSm

E

[(
SβST/NS

α
LT/N

) 1
R (

ξT/N
)1− 1

R

] , (A.13)

(
1

yV

) 1
R

=
ξ0 (1− λ)Sm

E
[
(ξT )

1− 1
R

] . (A.14)

We obtain the state price density at the long- and short-term by utilizing the market clearing conditions and

observing that DST/N = SST/N due to the no arbitrage condition. By doing so, we obtain

ξT/N =

(
ξ0λSm
DST/N

)R Dβ
ST/NS

α
LT/N

E

[(
Dβ
ST/NS

α
LT/N

) 1
R (

ξT/N
)1− 1

R

]R , (A.15)

ξT =

 ξ0 (1− λ)Sm

DLTE
[
(ξT )

1− 1
R

]
R

. (A.16)

Next, to pin down the benchmark, we derive the long-term security price at the short-term date, SLT/N .

We do so by utilizing the no-arbitrage condition, given in (A.6), at t = T/N .

ξT/NSLT/N = ET/N [ξTDLT ] . (A.17)

Plugging ξT/N and ξT from (A.15) and (A.16) leads to an equation for SLT/N given by

S1+α
LT/N(

DST/N
)R−β

 λSmξ0

E

[(
DβST/NS

α
LT/N

) 1
R (

ξT/N
)1− 1

R

]

R

=
(
DLT/N

)1−R ET/N,T (1−R)

 (1− λ)Smξ0

E
[
(ξT )1−

1
R

]
R . (A.18)

To ease notation we define ξ̄S and ξ̄L by

ξ̄S ≡ ξ0

 λSm

E

[(
Dβ
ST/NS

α
LT/N

) 1
R (

ξ0,T/N
)1− 1

R

]

R

, ξ̄L ≡ ξ0

 (1− λ)Sm

E
[
(ξ0,T )

1− 1
R

]
R

, (A.19)

where ξs,t ≡ ξt
ξs

. We obtain that SLT/N is given by

SLT/N =
(
DLT/N

) 1−R
1+α

(
DST/N

)R−β
1+α

(
ET/N,T (1−R)

ξ̄L
ξ̄S

) 1
1+α

, (A.20)
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where ET/N,T (1−R) is given in (A.2), evaluated at (t1, t2) = ( TN , T ). Plugging SLT/N back to ξT/N we find

ξT/N =
(
DLT/N

) (1−R)α
1+α

(
DST/N

) β−R
1+α

(
ET/N,T (1−R) ξ̄L

) α
1+α

(
ξ̄S
) 1

1+α . (A.21)

Further, because ξT/N is a martingale it is given by the relationship ξt = Et
[
ξT/N

]
, which leads to

ξt = (DLt)
(1−R)α

1+α (DSt)
β−R
1+α

(
ET/N,T (1−R) ξ̄L

) α
1+α

(
ξ̄S
) 1

1+α Et,T/N
(

(1−R)α

1 + α

)
Et,T/N

(
β −R
1 + α

)
, (A.22)

for t ≤ T/N , where both Et,T/N
(

(1−R)α
1+α

)
and Et,T/N

(
β−R
1+α

)
are deterministic functions of time given in

(A.3) and (A.4), respectively, and evaluated at (t1, t2) = (t, TN ). Dividing ξt by ξ0 (A.22), we obtain

ξ0,t =
(DLt)

(1−R)α
1+α (DSt)

β−R
1+α

(DL0)
(1−R)α

1+α (DS0)
β−R
1+α

1

E0,t
(

(1−R)α
1+α

)
E0,t

(
β−R
1+α

) , t ≤ T/N. (A.23)

Proof of Proposition 2 (Market Price of Risk). We take Itô’s Lemma on ξ0,t (A.23) and obtain

θ1t =
R− β
1 + α

σ, θ2t =
α (R− 1)

1 + α
σ, (A.24)

Further, we find that θ1t > θ2t if, and only if

R (1− α) > β − α, (A.25)

which is always satisfied because R (1− α) > (1− α) > β − α since R > 1 and 0 < α, β ≤ 1. We obtain the

no benchmark case by setting α = β = 0, and we obtain (15) by setting α = 1 and β = 0. Addressing the

remaining items in the proposition, it is straightforward to see that θ̄1t > θ̄2t, θ̄1t > θ1t, and θ2t > θ̄2t, when

0 < α, β ≤ 1.

Proof of Proposition 5 (Security Prices). To find the long-term security price, we again utilize the

no-arbitrage condition

SLt =
Et
[
ξT/NSLT/N

]
ξt

, t < T/N, (A.26)

and find that

SLt = (DLt)
1−R
1+α (DSt)

R−β
1+α

(ET/N,T (1−R) ξ̄L

ξ̄S

) 1
1+α Et,T/N (1−R)

Et,T/N
(

(1−R)α
1+α

)
Et,T/N

(
β−R
1+α

) . (A.27)
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By plugging ξ̄S and ξ̄L, given (A.19), we find that

SLt =

(
1− λ
λ

) R
1+α


E

[(
D
β
ST/NS

α
LT/N

) 1
R
(
ξ0,T/N

)1− 1
R

]

E

[(
ξ0,T

)1− 1
R

]


R
1+α

(DLt)
1−R
1+α (DSt)

R−β
1+α

(
ET/N,T (1− R)

) 1
1+α Et,T/N (1− R)

Et,T/N
(

(1−R)α
1+α

)
Et,T/N

(
β−R
1+α

) , (A.28)

for t ≤ T/N . To characterize E

[(
Dβ
ST/NS

α
LT/N

) 1
R (

ξ0,T/N
)1− 1

R

]
, we evaluate the above equation at

t = T/N , raise it to the power of α
R , multiply both sides by D

β
R

ST/N
(
ξ0,T/N

)1− 1
R , and take expectations. By

doing so, we get

E

[(
DβST/NS

α
LT/N

) 1
R (

ξ0,T/N
)1− 1

R

]

=

(
1− λ
λ

)α 1

E
[(
ξ0,T

)1− 1
R

]

α(

E

[(
ξ0,T/N

)1− 1
R
(
DLT/N

) 1−R
R

α
1+α

(
DST/N

)α+
β
R

1+α

])1+α (
ET/N,T (1−R)

) α
R . (A.29)

By plugging this identity back to SLt (A.28) and rearranging, we find

SLt =

(
1− λ
λ

)R

E

(ξ0,T/N)1− 1
R
(
DLT/N

) 1−R
R

α
1+α

(
DST/N

)α+
β
R

1+α


E

[(
ξ0,T

)1− 1
R

]


R

(DLt)
1−R
1+α (DSt)

R−β
1+α

ET/N,T (1− R) Et,T/N (1− R)

Et,T/N
(

(1−R)α
1+α

)
Et,T/N

(
β−R
1+α

) ,

(A.30)

We are left to evaluate the two unconditional expected values in this last formulation of SLt. By evaluating

the first expected value, we obtain

E

[(
ξ0,T/N

)1− 1
R
(
DLT/N

) 1−R
R

α
1+α

(
DST/N

)α+
β
R

1+α

]
=

(DL0)
1−R
R

α
1+α (DS0)

α+
β
R

1+α

(
E0,T/N

(
(1−R)α
1+α

)) 1
R E0,T/N

(
1+α+β−R

1+α

)
(
E0,T/N

(
β−R
1+α

))R−1
R

,

(A.31)

where
(
ξ0,T/N

)1− 1
R is obtained by evaluating (A.23) at t = T/N and by raising the expression to the power

of 1− 1
R . The function E0,T/N

(
1+α+β−R

1+α

)
is given in (A.5), evaluated at (t1, t2) = (0, TN ). We continue with

the evaluation of the second expected value. By dividing ξT (A.16) by ξ0 (A.22), we obtain

ξT
ξ0

=

(
ξ̄L
ξ̄S

) 1
1+α (DLT )

−R

(DL0)
(1−R)α

1+α (DS0)
β−R
1+α

(
ET/N,T (1−R)

) α
1+α E0,T/N

(
(1−R)α
1+α

)
E0,T/N

(
β−R
1+α

) . (A.32)

By plugging ξ̄L, ξ̄S from (A.19), by raising the expression to the 1− 1
R power of both sides, taking expectations,
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and rearranging we obtain

E
[
(ξ0,T )

1− 1
R

]
=

(
1− λ
λ

) (R−1)
α+R

(
E

[(
Dβ
ST/NS

α
LT/N

) 1
R (

ξ0,T/N
)1− 1

R

]) (R−1)
α+R

 (DL0)
1−R E0,T (1−R)[

(DL0)
(1−R)α

1+α (DS0)
β−R
1+α

(
ET/N,T (1−R)

) α
1+α E0,T/N

(
(1−R)α
1+α

)
E0,T/N

(
β−R
1+α

)]R−1
R


1+α
α+R

.

By plugging E

[(
Dβ
ST/NS

α
LT/N

) 1
R (

ξ0,T/N
)1− 1

R

]
, given in (A.29), using (A.31), and rearranging, we obtain

E
[
(ξ0,T )

1− 1
R

]
=

(
1− λ
λ

)R−1
R

(DL0)
1−R
R (DS0)

R−1
R

E0,T/N
(

1+α+β−R
1+α

)
E0,T/N

(
β−R
1+α

)


R−1
R

(E0,T (1−R))
1
R . (A.33)

By plugging these two expected values back to SLt (A.30), we obtain

SLt =

(
1− λ
λ

)(
DLt
DL0

) 1−R
1+α

(
DSt
DS0

)R−β
1+α

(DS0)
E0,t

(
(1−R)α
1+α

)
E0,T/N

(
1+α+β−R

1+α

)
E0,t (1−R) Et,T/N

(
β−R
1+α

) . (A.34)

Similarly, the short-term security price is given by

SSt = (DSt)
Et,T/N

(
1+α+β−R

1+α

)
Et,T/N

(
β−R
1+α

) . (A.35)

We get S̄St and S̄Lt by setting α = β = 0, and SSt and SLt by setting α = 1 and β = 0. Further, we define

ĀLt and ĀSt to decompose the deteminstic parts affecting prices, as follows.

ĀLt ≡
(

1

DL0

)1−R(
1

DS0

)R
DS0

E0,t (0) E0,T/N (1−R)

E0,t (1−R) Et,T/N (−R)
, (A.36)

ĀSt ≡
Et,T/N (1−R)

Et,T/N (−R)
. (A.37)

Similarly, we define

ALt ≡
1

ĀLt

(
1

DL0

) 1−R
2
(

1

DS0

)R
2

DS0
E0,t

(
1−R
2

)
E0,T/N

(
1− R

2

)
E0,t (1−R) Et,T/N

(
−R2

) , (A.38)

ASt ≡
1

ĀSt

Et,T/N
(
1− R

2

)
Et,T/N

(
−R2

) . (A.39)
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Proof of Lemma 1 (Risk Exposure). We utilize the no arbitrage conditions (A.9) and (A.10), the mar-

ket clearing conditions in the consumption good, and write

ξtW
V
t = Et [ξTDLT ] , t ∈ [0, T ], (A.40)

ξtW
I
t = Et

[
ξT/NDST/N

]
, t ∈ [0, T/N ]. (A.41)

By plugging ξT (A.16) and ξT/N (A.21) we find that

ξtW
V
t ∝ (DLt)

1−R
, (A.42)

ξtW
I
t ∝ (DSt)

1+ β−R
1+α (DLt)

(1−R)α
1+α = (DSt)

1−R
(DSt)

R
α+

β
R

1+α (DLt)
(1−R)α

1+α ∝ (DSt)
1−R

(SLt)
α

(SSt)
β
. (A.43)

In the third term of (A.43), we separate the benchmarking from the non-benchmarking components by

setting α = β = 0, which leads to a non benchmarking component that equals (DSt)
1−R

and a benchmakring

component that equals (DSt)
R
α+

β
R

1+α (DLt)
(1−R)α

1+α . We obtain the last term of (A.43) by observing that the

benchmarking component equals (SLt)
α

(SSt)
β
, as (A.34) and (A.35) reveals. We finish by applying Itô’s

Lemma to both sides of the above equations, (A.42), (A.43) and find that

Σ
′

tπ
V
t − θt =

[
0

− (R− 1)σ

]
, (A.44)

Σ
′

tπ
I
t − θt =

[
− (R− 1)σ

0

]
+

[
σL1t

σL2t

]
α+

[
σS1t

σS2t

]
β, (A.45)

which leads to the desired result when setting α = 1 and β = 0.

Proof of Proposition 1 (Volatility). We obtain the volatility coefficients by taking Itô’s Lemma of SLt

(A.34) and SSt (A.35) as follows. [
σS1t

σS2t

]
=

[
σ

0

]
,

[
σL1t

σL2t

]
= σ

[
R−β
1+α
1−R
1+α

]
. (A.46)

We set α = 1 and β = 0 to get the results for the benchmark case and α = β = 0 for the no benchmark

case. Following (A.46), it is strightforward to see that when α = β = 0, we have (σ̄L1t) > 0, (σ̄L2t) < 0,

|σ̄L2t| < |σ̄L1t| and when 0 < α, β < 1 we have |σL2t| < |σL1t| to verify item (i) and item (ii) of the individual

effect. Verifying item (iii) and item (i) of the combined effect, it is strightforward to see that 0 < σL1t < σ̄L1t

and 0 > σL2t > σ̄L2t when 0 < α, β < 1. Lastly, since σL2t is closer to zero than σ̄L2t, and σL1t is closer to

zero than σ̄L1t it must be that the total volatility shrinks when 0 < α, β < 1.

Proof of Proposition 4 (Risk Premium, Total Volatility, and Sharpe Ratio). We start the proof
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by showing that the risk premium of the short-term asset is higher than the long-term asset. To find the

risk premiums we use the identity

[
µSt

µLt

]
=

[
σS1t σS2t

σL1t σL2t

][
θ1t

θ2t

]
= σ2

[
1 0

R−β
1+α −R−11+α

][
R−β
1+α
R−1
1+αα

]
= σ2

 R−β
1+α(

R−β
1+α

)2
−
(
R−1
1+α

)2
α

 . (A.47)

We find that µSt > µLt if and only if

R− β
1 + α

>

(
R− β
1 + α

)2

−
(
R− 1

1 + α

)2

α. (A.48)

Let us define X ≡ R−1
R−β , divide both sides by

(
R−β
1+α

)2
, and rewrite the inequality such that

X2α > 1− 1 + α

R− β
=
R− β − 1− α

R− β
=
R− 1

R− β
− β + α

R− β
= X − β + α

R− β
. (A.49)

Transferring the X to the left hand side leads to

X (Xα− 1) =
R− 1

R− β
(Xα− 1) > − β + α

R− β
. (A.50)

Rearranging, we finally obtain

(R− 1)Xα > (R− 1)− (β + α) . (A.51)

It is clear from (A.51) that if α = β = 0 the inequality is not satisfied, implying that the short-term asset

expected return is lower than the long-term asset expected return without benchmarking when R > 1. To

show that (A.51) is satified with benchmarking incentives, we assume that 0 < α + β ≤ 1. We want to

show that for a given 0 ≤ α ≤ 1 there exists a threshold 0 ≤ β < 1 − α, such that for any β ∈ [β, 1 − α]

the inequality (A.51) is satisfied. Towards that goal, let R = 1 + ε < 2 for 0 < ε < 1. Then, for any given

α ∈ [0, 1], we set β = max {ε− α, 0}. It is apparent that β < 1 − α because ε < 1, so [β, 1 − α] is a non

empty set. Eventually, we obtain

(R− 1)Xα > 0 ≥ ε−
(
β + α

)
≥ ε− (β + α) = (R− 1)− (β + α) , (A.52)

where the right inequality holds because β ≥ β. We conclude that with benchmarking, the short-term asset

expected return is higher than the long-term asset expected return. Notice that (A.51) always holds when

α = 1, β = 0, but holds when α = 0, β = 1 if and only if R < 2. We finish with the risk premiums by

verifying (28) and (29). Following (A.47), it is apparent that

µ̄St =
R− 0

1 + 0
>
R− β
1 + α

= µSt, (A.53)
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and

µ̄Lt =

(
R− 0

1 + 0

)2

−
(
R− 1

1 + 0

)2

0 >

(
R− β
1 + α

)2

−
(
R− 1

1 + α

)2

α = µLt, (A.54)

verifying (28). To verify (29), notice that µ̄Lt > µ̄St and µSt > µLt (A.47). Adding these two ineqaulities

leads to

µ̄Lt + µSt > µ̄St + µLt. (A.55)

Algebraic manipulation leads to the desired result.

Next, we show that the total volatility of the short-term asset is higher than the long-term asset.

Following the definition of total volatility (30) and the volatility coefficients (A.46) from the proof Proposition

1, we find that the total volatility of the short-term asset is higher than the long-term asset, if, and only if,

1 >

(
R− β
1 + α

)2

+

(
R− 1

1 + α

)2

. (A.56)

An algebraic manipulation leads to

2R2 − 2R (1 + β) +
[(

1 + β2
)
− (1 + α)

2
]
< 0. (A.57)

We solve for the roots of R and find

R =

2 (1 + β)±
√

4 (1 + β)
2 − 4× 2

[
(1 + β2)− (1 + α)

2
]

4
. (A.58)

Another algebraic manipulation finally leads to

R =
(1 + β)±

√[
1− β

(√
2− 1

)] [
1 + β

(√
2 + 1

)]
+ 2α (2 + α)

2
. (A.59)

This quadratic equation has two solutions. We define R̄ as the upper solution. It is immediately observable

that when α = β = 0, the upper solution equals 1, implying that the short-term asset volatility is lower than

the long-term asset volatility for R > 1 without benchmarking. When there is benchmarking, 1 ≥ α+β > 0,

we left to show that 1 < R̄ < 2. Following (A.59), we find that R̄ > 1 if, and only if

α (2 + α) > β (β − 2) , (A.60)

which is satisfied for any β, α ∈ (0, 1], since the right hand side is negative and the left hand side is positive.
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Further, we find that R̄ < 2 if, and only if

α (2 + α) < (2− β)
2
. (A.61)

Adding and subtracting 1 from the left hand side, and rearranging leads to

−1 < (1− α− β) (3 + α− β) , (A.62)

which is satisfied for α+ β ≤ 1.

Lastly, we find that the short-term asset Sharpe ratio is higher than the long-term asset Sharpe ratio if,

and only if,

R− β
1 + α

>

(
R−β
1+α

)2
−
(
R−1
1+α

)2
α√(

R−β
1+α

)2
+
(
R−1
1+α

)2 . (A.63)

Let us define X ≡ R−1
R−β and rewrite the inequality above in terms of X, leading to

√
1 +X2 > 1−X2α. (A.64)

This inequality is always satisfied because X > 0. Notice that the inequality holds for α = β = 0 as well.

Proof of Proposition 3 (Portfolios). It is easy to verify from (A.47) that

(
Σ
′

t

)
=

[
1 R−β

1+α

0 −R−11+α

]
σ,

(
Σ
′

t

)−1
=

[
1 R−β

R−1
0 − 1+α

R−1

]
1

σ
, (A.65)

where Σt is defined in (9). Multiplying the risk exposures, given in (A.44) and (A.45), by the inverse of(
Σ
′

t

)
, we obtain

πVt =
(

Σ
′

t

)−1
θt +

(
Σ
′

t

)−1 [ 0

− (R− 1)σ

]
, (A.66)

πIt =
(

Σ
′

t

)−1
θt +

(
Σ
′

t

)−1 [− (R− 1)σ

0

]
+
(

Σ
′

t

)−1 [σL1t
σL2t

]
α+

(
Σ
′

t

)−1 [σS1t
σS2t

]
β. (A.67)

We define the portfolios of the individual equilibrium channels, which also appears in the text above Propo-
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sition 3) as

φm.v. ≡
(

Σ
′

t

)−1
θt, φVr.a. ≡

(
Σ
′

t

)−1 [ 0

− (R− 1)σ

]
, (A.68)

φIr.a. ≡
(

Σ
′

t

)−1 [− (R− 1)σ

0

]
, φIb ≡

(
Σ
′

t

)−1 [σL1t
σL2t

]
α+

(
Σ
′

t

)−1 [σS1t
σS2t

]
β. (A.69)

By taking the inner products we obtain

φm.v. =

[
R− β
−α

]
, φVr.a. =

[
− (R− β)

1 + α

]
, φIr.a. =

[
− (R− 1)

0

]
, φIb = α

[
0

1

]
+ β

[
1

0

]
, (A.70)

leading to our desired results in (19), (20) and (21) when β = 0 and α = 1. When there is no benchmark,

we plug α = β = 0 and find that πVt = π̄Vt and πIt = π̄It .

Proof of Proposition 7 (Extension: Volatility and Market Prices of Risk). The proof follows the

steps of the proof of Proposition 1 and Proposition 2.

Proof of Proposition 8 (Extension: Risk Premium, Total Volatility, and Sharpe Ratio). The proof

follows the steps of the proof of Proposition 4.
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Cvitanić, J., and H. Xing. 2018. Asset Pricing Under Optimal Contracts. Journal of Economic Theory
173:142–180.

Eisenbach, T. M., and M. C. Schmalz. 2016. Anxiety in the Face of Risk. Journal of Financial Economics
121:414–426.

Favilukis, J., and X. Lin. 2016. Wage Rigidity: A Quantitative Solution to Several Asset Pricing Puzzles.
Review of Financial Studies 29:148–192.

Gabaix, X., and R. S. J. Koijen. 2022. In Seach of the Origin of Financial Fluctuations: the Inelastic Markets
Hypothesis. NBER working paper 28967 .

Giglio, S., B. Kelly, and S. Kozak. 2021. Equity Term Structures without Dividend Strips Data. SSRN .

Giglio, S., M. Maggiori, and J. Stroebel. 2015. Very Long Run Discount Rates. Quarterly Journal of
Economics 130:1–53.
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Marfè, R. 2017. Income Insurance and the Equilibrium Term Structure of Equity. Journal of Finance 72.

Merton, R. C. 1971. Optimum Consumption and Portfolio Rules in a Continuous Time Model. Journal of
Economic Theory 3:373–413.
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