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Abstract

We introduce a Credit Rating Agency (CRA) to a consumption-based model to ex-

plain the time-series variation of credit spreads on CDO tranches. Practising Bayesian

persuasion, the CRA controls the type-II error of ratings to maximize the proportion of

investment-grade rated firms while attempting to maintain their probability of default be-

low a threshold. The model’s type-II error strongly predict a measure of rating standards

from an ordered probit model. Our analysis suggests the importance of credit rating stan-

dards in explaining the clustering of defaults of investment-grade firms. Out-of-sample,

it implies moderate tranche spreads during the pandemic despite disastrous economic

growth.
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1 Introduction

The collapse of the senior collateralized debt obligation (CDO) market was at the epicentre

of the 2008-2009 financial crisis leading to the collapse of the largest and most prestigious

US banks.1 The technique of tranching of the claims made it possible to repackage credit

risks and produce senior claims with significantly lower default probabilities and higher credit

ratings than the average assets in the underlying pool, meeting investors’ demand for Aaa-

rated securities. The structured finance market demonstrated spectacular growth during the

half decade before the financial crisis, but almost dried up following massive downgrades and

defaults of highly-rated structured products during the crisis (see Coval, Jurek, and Stafford

(2009b)). Somewhat puzzlingly, even though economic growth was significantly worse in

the first quarter of 2020, senior tranche spreads did not rise to the extent that they did in the

financial crisis.

One important narrative that has repeatedly been brought up in the academic liter-

ature as well as the financial press, is that there was a role played by credit rating agencies

(CRAs), which handed out too many high credit ratings prior to the financial crisis. Indeed

the tranche spreads that we study in this paper are constructed from the CDX index by Markit,

which is comprised of investment-grade firms at the inception of a new series (cohort). There-

fore, the credit rating standards at the time of the creation of a new series will affect the spreads

of the index and its tranches. However, the asset pricing literature in pricing CDO tranches

does not explicitly model a CRA or study its role in influencing investors’ expectation on the

value of these securities. Recent papers (most notably Seo and Wachter (2018)) do point to

the role of the consumption disaster during the crisis in leading to the collapse of the CDO

market, and understanding some of the dynamics of spreads during the crisis period. We build

on this consumption-based framework, modelling both long-run risk and economic disasters,

but introducing a new feature, that is, the presence of a stylized credit rating agency (CRA),

which rates firms in the economy using the principle of Bayesian persuasion. We show in the

paper that the time-variations in credit rating standards used by the CRA have an impact on

the clustering of defaults of investment-grade products.

1A typical structured debt product such as a collateralized debt obligation (CDO) is a large pool of economic

assets with a prioritized structure of claims (tranches) against this collateral.
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In our model there are good and bad quality firms, with the latter being more ex-

posed to hidden jump risks. The CRA conducts research on firms’ credit quality, and is able to

partially determine their quality. We assume that consumers have a preference for investing in

highly-rated securities and that the CRA chooses the intensity of its research to maximize the

proportion of firms with investment-grade ratings, subject to a default probability constraint

of the investment-grade rating class.2 3 In periods of strong fundamentals, the default prob-

abilities of all firms are lower, so the CRA gives some more bad firms high ratings to get the

default probability up to its limit, but also conditionally exposes investors to more jump risk.

Another major theme that has arisen among academics and the financial press, is

the role of the collapse of credit after the economic collapse in 2008-2009 in the pricing of

CDO tranches. We in fact uncover some new evidence in this paper, that credit growth does

play a big role in the pricing of alternative CDO tranches, although its impact is different for

different tranches. We study the time series of spreads on tranches on the Dow Jones North

American Investment Grade Index of credit default swaps, which are shown in Figure 1.4 The

“equity” tranche (top-left panel) represents the 0 to 3 percent loss attachment points (these

securities suffer losses if the loss on the entire collateral pool is between 0 and 3 percent of the

2In the seminal framework of Bayesian persuasion proposed in Kamenica and Gentzkow (2011), the signal

sender (a prosecutor) has a bias in her objective function (she only gets paid for convictions). She then

changes the quality of her investigation process to change the type-I and type-II errors of the evidence to

maximize the likelihood of the signal receiver (the judge) to convict. We model a similar communication

game, with the signal sender being the CRA, and the signal receiver being the market.
3There are several institutional reasons for investors to prefer investment-grade securities (see, for example,

Boot, Milbourn, and Schmeits (2006) and Coval, Jurek, and Stafford (2009b)). In addition, the issuer-pays

business model adopted by most credit rating agencies gives the rating agencies the incentive to issue inflated

ratings; for discussion, see e.g., Bar-Isaac and Shapiro (2011), Bolton, Freixas, and Shapiro (2012), Fulghieri,

Strobl, and Xia (2014), Harris, Opp, and Opp (2013), Cohn, Rajan, and Strobl (2013), Kartasheva and Yilmaz

(2012), and Goldstein and Huang (2020).
4It is important to note that contractual features of payment for protection in credit default swaps can be

specified as either upfront payments with fixed quarterly spread payments, or as zero upfront payments with

variable spread payments. The payment features have changed substantially over time making intertemporal

comparisons of the raw data difficult. We summarize these changes in Appendix 2 of this paper. Here using

our model, we present approximated spreads that would result with zero upfront payment and fully variable

quarterly spreads. In Section 3.3, we examine the ability of our theoretical model to fit the raw data.
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underlying capital, are wiped out if the losses exceed 3 percent), while the “senior” tranche

(top-right panel) represents the 15 to 100 loss attachment points. While both spread series rose

rapidly during the financial crisis, the rise in the senior tranche spread was more spectacular,

from only about 3.5 basis points (b.p.) before the crisis, to above 130 b.p. at its peak. The

equity tranche by comparison, only rose by a factor of five from about 1135 b.p. in the second

quarter of 2007 to 6097 b.p. at its peak in the second quarter of 2009. Post-crisis, the initial

recovery of the senior spread was notably faster: by the first quarter of 2010, the senior spread

was down to 30 b.p., while the equity spread remained substantially above pre-crisis levels

until 2012.

Next, we examine the relationship between the tranche spreads and macroeconomic

fundamentals. The bottom-left panel of Figure 1 shows that the 4-quarter lagging moving

average of real consumption growth bottomed out in the middle of the great recession, and

resumed at a more normal pace by mid-2009 right after the recession. The bottom-right panel

shows that the 4-quarter moving average of the ratio of credit growth at nonfinancial com-

panies to GDP bottomed out at the end of the recession, but returned to normal levels only

in mid-2011, substantially later than the normal resumption of consumption. These obser-

vations suggest that the senior tranche is more correlated with economic growth, while the

junior tranche is more correlated with credit availability. In Table 1, we regress the spread

on the entire pool (CDX) as well as the equity and senior tranches on the two fundamentals.

For each of the spread series, it is noteworthy that despite the presence of a macroeconomic

factor, credit growth additionally impacts tranche spreads. However, the relative importance

of the two fundamentals for equity and senior spreads is quite different. In lines 4 to 6, we

see that credit growth explains nearly 64 percent of the variation in the equity spread, while

consumption growth only explains only about 22 percent of its variation. In contrast, in lines 7

to 9, we see that credit growth explains 42 percent of the variation in the senior spreads, while

consumption growth explains 33 percent.

Motivated by this evidence, our model has both credit growth and economic growth

as state variables. While the role of economic growth in affecting the prices of these securities

is now well established, we assume that credit growth affects the parameters that determine

the jump (catastrophic) risks of firms’ cash flows. One possibility (consistent with the view of
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Minsky (1986)) is that during periods of easy credit, credit is provided to weaker borrowers,

who are more susceptible to complete failures. In such a situation, increased credit would

predict future declines in economic growth. Alternatively, credit could respond to macroeco-

nomic growth with lenders getting more cautious and cutting credit following periods of weak

growth, thus propagating the effects of weak growth further. In this situation, weak growth

would predict future declines in credit availability.

We perform a two-stage structural estimation of the parameters of our model to un-

derstand the role of alternative fundamentals and credit rating standards in driving the dynam-

ics of CDO tranche spreads. At the first stage, we estimate the parameters of credit growth,

consumption growth, and aggregate earnings growth of US firms in a regime-switching frame-

work for the period 1952 to 2017. With these estimates, in the second stage, we estimate sets

of jump risk parameters of low quality firms in our model, which depend on the growth and

credit states, over the sample from the third quarter of 2004 to 2017. Our parameter estimates

suggest that the intensity of destructive shocks to bad firms is higher during periods of lower

economic growth as well as lower credit growth, i.e., credit quality is procyclical.

The spreads in the model for structured products that are comprised entirely of

investment-grade firms are a function of both the quality of the good and bad firms as well as

the rating standards (type-II error) determined by the CRA. The optimal type-II error changes

over time as the CRA commits to a maximum default probability over a 5-year horizon con-

ditional on the fundamental state. In periods, of weak fundamentals, the CRA mixes fewer

bad firms into the investment-grade class, however, the default probability may remain above

the target despite higher credit rating standards. Conversely, in periods of strong fundamen-

tals, the CRA is able to provide high ratings to most (all) firms and the default probability

may remain below the target. In the intermediate range, the fundamentals are just sufficiently

strong so that with a chosen level of type-II error by the CRA, the proportion of bad firms in

the investment-grade category leads to a default probability is at the target level.

The results from the structural estimation are quite illuminating on the determinants

of tranche spreads. Using a standard simulated method of moments (SMM) framework, the

tranche spread implications of our model with the CRA has a p-value of only 2 percent if all

the spread data are used; however, the p-value increases above 10 percent if we exclude the

5



senior (15,100) tranche prior to the financial crisis. The model fits the junior tranche spreads

in the data quite well through the entire sample, but it has trouble fitting the senior (15-100)

tranche prior to the financial crisis (data spread is lower than model spread in this period).5

The model fits the senior tranches well during and after the financial crisis. The delay in

recovery of the equity tranche after the end of a macroeconomic recession occurs because

even though firms’ solvency ratios improve, the jump risks of firms remain high amidst weak

credit growth. On balance, the losses at such time are large enough to impact junior tranches,

but not senior tranches. Our evidence is supportive of the view that credit availability remains

weak after bad economic shocks, as opposed to the reverse. We back up these estimates by

impulse response functions and Granger causality tests that suggest that growth causes weak

credit, but not the reverse. Over time, our model replicates the feature in the data that senior

tranche spreads are relatively more exposed to macroeconomic growth shocks, while junior

spreads are more exposed to credit availability shocks.

We view the main contribution of our model is to shed light on the way that time-

varying credit rating standards affect the clustering of defaults of investment-grade firms,

which affects spreads on alternative CDO tranches. To provide plausibility for the rating

standards in our model (type-II error), we compare them to the credit rating standards implied

from the framework of Blume, Lim, and Mackinlay (1998) and Alp (2013), who use an or-

dered probit model of firms credit ratings to measure time variation in credit rating standards.

The independent variables used are firm level indicators of credit quality such as leverage ra-

tios, interest coverage ratios, as well as measures of firms’ risk, such as their idiosyncratic

volatility and exposures to standard systematic risk factors. The time fixed-effect, αt, is a

measure of credit rating standards at time t. We find that there is a correlation of about 0.66

between the six-quarter lagged model type-II error and the intercept from the ordered probit

model, i.e., historical credit rating standards are lagging relative to measures of rating stan-

dards embedded in CDO prices. This ‘slowness’ of ratings is well known (see, e.g, Altman

and Rijken (2004)).

5The overpriced senior tranche prior to the financial crisis is consistent with anecdotal evidence in the financial

press as well as the movie “The Big Short”.
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In addition to generating an empirically plausible credit ratings standards process,

our model also generates an empirically plausible process of average credit ratings. We com-

pare the detrended time-series of the proportion of US firms in Compustat with investment-

grade ratings, with the proportion firms at each date that have investment-grade ratings in our

model. Even though, we do not use this proportion as a moment in our estimation procedure,

we find that the six-quarter lagged model and data proportions are 65 percent correlated, and

display many of the same trends.

Finally, we test the out-of-sample performance of our model. Our model’s parame-

ters are estimated using data until 2017, and we test its ability to fit fundamentals and tranche

spreads in the period from 2018 to 2020:Q2. The most successful aspect of this exercise

from our model’s point of view is that it predicts that during the pandemic-induced recession

of 2020, tranche spreads increased, but nowhere near the levels attained during the financial

crisis. This is true in the data as well. Despite even worse economic growth, the model’s

spreads increase only modestly because credit growth in this period is massive, and due to

weak growth, our model predicts that the CRA would not mix bad firms into the investment-

grade class. Overall, the out-of-sample performance provides further support to the model’s

mechanism of tranche spreads being determined by credit growth and rating standards, in

addition to economic growth.

Relation to the Literature

Our paper contributes to the growing literature on the pricing of CDX tranches. In their sem-

inal paper, Coval, Jurek, and Stafford (2009a) investigate whether CDX tranches were mis-

priced prior to the crisis. Using a CAPM-based pricing kernel, they extract state prices from

the prices of 5-year index options using the methodology of Breeden and Litzenberger (1978),

and use these state prices to determine fair CDO spreads in the years before the financial crisis.

Their estimation results suggest that senior CDO tranches were mispriced prior to the finan-

cial crisis, with spreads being too low by a factor of 3 to 4.6 Collin-Dufresne, Goldstein, and

6These authors also point to the importance of considering the systematic risk component of the default losses

of CDO tranches, as opposed to just the expected default losses, a theme that is reiterated by Brennan, Hein,

and Poon (2009).
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Yang (2012) extend the methodology of Coval, Jurek, and Stafford (2009a) to allow for the

possibility of early default such as in Black and Cox (1976). Under this alternative assumption

they find a smaller mispricing of the senior tranches. However, these authors indicate that a

dramatic widening of the senior spread in the crisis can only be reconciled with the possibility

of a catastrophic jump, which they use as a “free parameter” in fitting spreads. Perhaps, our

paper is closest to Seo and Wachter (2018) who develop an equilibrium model with a risk of a

catastrophic economy-wide losses. They show that such a model is able to generate a pricing

kernel required to price senior CDX tranches in the sample from 2004 to 2008. These authors

do acknowledge the role of the financial sector in the propagation of the economic disaster,

but they do not explore this direction. As mentioned, based on our evidence, there is a role

of credit provided by the financial sector in the pricing of CDO tranches, which we attempt

to model, albeit in a simple way. Fostel and Geanakopolos (2012) argue that CDX spread

dynamics were affected by the timing of innovations such as the tranching.

The major focus of our paper is on how time-varying credit rating standards affect

CDO tranche spreads. The literature puts forward several reasons for time-varying quality of

ratings; specifically lower quality of ratings in the times of economic expansion. For exam-

ple, Bar-Isaac and Shapiro (2013) show that changing cost of analysts over the business cycle

affect the accuracy of credit ratings; Fulghieri, Strobl, and Xia (2014) suggest that the rating

precision is cyclical based on a model of credit agency reputation. Cornaggia, Cornaggia, and

Hund (2017) find that ratings were considerably less accurate before the financial crisis in the

areas with more complexity. Skreta and Veldkamp (2009) argue that increased complexity of

assets creates an incentive to rating shop and can lead to higher rating inflation. Goldstein and

Huang (2020) show that a CRA can affect real decisions despite some ratings inflation. In con-

trast to these papers, we propose a model of time-varying rating standards based on Bayesian

persuasion practised by the rating agencies that interacts with time-varying fundamental credit

quality. We show that our model’s ratings are strongly related to those in the data.

There is also a growing literature on the role of credit ratings on alternative asset-

backed securities, which we contribute to. Benmelech and Dlugosz (2009) document a major

disconnect between the credit ratings of Collateralized Loan Obligations (CLO) securities and

the credit quality of the underlying collateral. Griffin and Tang (2012) show that credit ratings
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of CDOs were inflated prior to the financial crisis, and that CDOs with more inflated ratings

suffered more frequent downgrades subsequently. Griffin (2020) provides evidence that credit

ratings on Residential Mortgage Backed Securities (RMBS) were inflated due to the conflict

of interest in the rating industry and show that the prices of these securities indicate that

the marginal investor was unaware of rating inflation. In contrast, Ospina and Uhlig (2018)

examine realized losses on non-agency residential mortgage-backed securities (RMBS) over

the 2007–2013 period and question the conventional narrative, that improper ratings of RMBS

were a major factor in the financial crisis of 2008. It is important to note that in this paper, we

consider rating standards on corporate entities as opposed to ratings on structured products.

Our model of credit ratings contributes to a broader literatures on Bayesian persua-

sion and the role of beliefs in asset pricing. This framework of information design using

Bayesian persuasion was first developed in the seminal paper of Kamenica and Gentzkow

(2011).7 In models where beliefs matter, Hong and Kubik (2003) analyze promotions and

demotions of analysts and find that optimism counts more than accuracy in determining ca-

reer shifts. Malmendier and Shanthikumar (2007) point out that security analysts tend to bias

stock recommendations upward, particularly if they are affiliated with the underwriter. They

find strong evidence that sophisticated investors take into account incentives of the information

provider and update their beliefs as rational Bayesians. In a survey on Bayesian persuasion,

DellaVigna and Gentzkow (2010) argue that the data supports belief-based models with ratio-

nal receivers and persuasive communication is effective in shaping investors’ beliefs.

Finally, our paper contributes to the growing literature on the role of credit in busi-

ness cycles. One strand of this literature seeks to explore how investors expectations and

credit growth relate to economic fundamentals (see e.g. Jorda, Schularick, and Taylor (2011),

Schularick and Taylor (2012), He and Krishnamurthy (2013), Baron and Xiong (2017), Kr-

ishnamurthy and Muir (2017), and Bordalo, Gennaioli, and Shleifer (2018)). In this paper, we

7There is a rapidly growing literature on information design and Bayesian persuasion. Kolotilin, Mylovanov,

Zapechelnyuk, and Li (2017) propose a more general model of public persuasion with a privately informed

receiver. Bergemann and Morris (2016) and Alonso and Zachariadis (2021) analyze an equilibrium in a model

with public persuasion of multiple privately informed receivers. Goldstein and Huang (2016) consider a Bayesian

persuasion in a coordination game where the sender can announce whether or not the fundamentals exceed a given

threshold. Inostroza and Pavan (2021) consider Bayesian persuasion in the global games framework.
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reexamine some of the channels in these papers using data on fundamentals and CDO tranche

spreads by structurally estimating the hidden catastrophic risks of firms in alternative states of

economic and credit growth.

2 A Model For Pricing Tranches on Collateralized Debt Obli-

gations

As a starting point, we use a consumption-based asset pricing framework incorporating both

long-run risk and disasters, each of which have been used in the credit risk literature (see e.g.

Bhamra, Kuehn, and Strebulaev (2009), Chen (2010), and Seo and Wachter (2018)) for pricing

tranches on collateralized debt obligations (CDOs). On this model structure, we build in two

new features: First, we assume that the jump risks in the cash flows of firms depend not only

on economic growth, but also on credit growth in the economy. Second, we model a stylized

credit rating agency (CRA), which rates each firm in the economy as being either investment-

grade or speculative-grade using the principle of Bayesian persuasion. The CDO products

that we price are based on investment-grade firms, and the actions of the rating agency cause

time-variation in the credit quality of firms that are rated investment-grade, thus affecting the

pricing of CDO tranches.

2.1 Preferences and the Pricing Kernel

The representative consumer has stochastic differential utility of Duffie and Epstein (1992),

which is a continuous-time version of the recursive preferences of Kreps and Porteus (1978),

Epstein and Zin (1989), and Weil (1990). The utility at time t for a consumption process c is

Ut = Et

[
∫ ∞

t

f (cs, Us) ds

]

. (1)

The normalized aggregator function f (c, U) is given by

f (c, U) =
φ

1− δ

c1−δ − ((1− γ)U)(1−δ)(1−γ)−1

((1− γ)U)(1−δ)(1−γ)−1−1
, (2)

where γ is the coefficient of relative risk aversion, φ is the rate of time preference, ψ is the

elasticity of intertemporal substitution and δ = ψ−1.
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We start with the real side of the economy. Aggregate consumption, Ct, follows the

process:

dCt

Ct

= µC(st)dt+ σCdWt, (3)

where µC(st) is the state-dependent drift of the growth rate of output, σC is a 1 × 3 vector of

constant volatilities, and where Wt = (W1t,W2t,W3t)
′ is a 3 × 1 standard Brownian motion

process. In our empirical section, we will assume that µC ∈ {µH
C , µ

L
C , µ

D
C}, where the first

two rates are regular high and low growth states, while the last one is a ‘disaster’ growth state.

Aggregate earnings growth in the economy, Yt, follows

dYt
Yt

= µY (st) dt + σY dWt, (4)

where the drift µY (st) is once again in one of three possible states {µH
Y , µ

L
Y , µ

D
Y }, and is per-

fectly correlated with the drift of consumption, and σY is a 1×3 vector of constant volatilities.8

We next specify credit growth in the economy and its relation to economic growth. The ratio

of credit growth-to-GDP (in short credit growth) follows:

dGt = µG(st) dt + σG dWt, (5)

where credit growth µG ∈ {µH
G , µ

L
G, µ

D
G}, that is credit growth can be in either high, low, or

disaster states, the last one capturing sharp credit crunches in the economy, and σG is a 1× 3

vector of constant volatilities.

There are overall 9 composite states of real growth and credit growth, however, in

our empirical section, when we estimate our model, we find that only 6 of these states have

positive probabilities of occurring in our sample. For example, during the financial crisis,

disastrous credit and growth did not occur simultaneously. We number these 6 states as

{(µH
G , µ

H
C , µ

H
Y ), (µ

H
G , µ

L
C , µ

L
Y ), (µ

L
G, µ

H
C , µ

H
Y ), (µ

L
G, µ

L
C , µ

L
Y ), (µ

L
G, µ

D
C , µ

D
Y ), (µ

D
G , µ

H
C , µ

H
Y )}.

The first four states, are simply the cross products of high and low credit, and high and low

growth. The 5th state has low credit, and disastrous growth, while the 6th state has disastrous

credit and high growth.

8Even though consumption and aggregate earnings drifts move together, we will see below that the parame-

ters of consumption growth determine the discount rates in the model, while the aggregate earnings growth

parameters determine the cash flow.
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The objective transition probabilities in continuous-time between the 6 states are

determined by the generator matrix Λ, with elements λij that determine the probability of

switching from state i to state j in an interval of size dt as approximately λijdt, and λii =

−∑

j 6=i λij. Notice that the transition probabilities are defined over the composite economic

growth and credit availability states, so for example, the state of credit growth may affect the

transition probability from a high to a low economic growth state (or vice versa).

For pricing assets, we need to specify all probabilities under the risk-neutral measure,

which are determined from the objective probabilities and the pricing kernel of the economy.

As shown in Bhamra, Kuehn, and Strebulaev (2009) and Chen (2010), the stochastic discount

factor (SDF) follows the Markov-modulated jump-diffusion process:

dmt

mt

= −r(st)dt− σm dWt +
∑

st 6=s
t−

(

eβ(st− ,st) − 1
)

dM
(s

t−
,st)

t , (6)

where r(s) is the real risk-free rate, σm = γ σC are the market prices of risk associated with

the Brownian motions Wt, and β(s,s′) determines the risk premium for switches in state from

state s to state s′. Mt is a matrix of compensated processes with element (s, s′) following

dM
(s,s′)
t = dN

(s,s′)
t − λss′dt, s 6= s′, (7)

where N
(s,s′)
t is a Poisson counting process with intensity λss′ , i.e, dN

(s,s′)
t = 1 with probabil-

ity λss′ dt+ o(dt), and 0 otherwise. The jump intensity between states s and s′ 6= s under the

risk-neutral (Q) measure is

λQss′ = exp (β (s, s′))λss′ . (8)

Under the Q-measure we can write the compensated processes as

dM
∗ (s,s′)
t = dN

(s,s′)
t − λQss′dt, s 6= s′. (9)

The risk-free rate, and risk-adjustment factors, β(s, s′) are given by

r(s) = −φ (1− γ)

1− δ

[(

δ − γ

1− γ

)

h(s)δ−1 − 1

]

+ γµC(s)−
1

2
γ(1 + γ)σCσ

′
C −

∑

s′

λss′e
β(s,s′)

β(s, s′) = (δ − γ) log

(

h(s′)

h(s)

)

,

where h(s) is determined by the solution to the system of equations (A.4) in Chen (2010). It

is useful to note, that we are assuming that the mean economic growth rates affect the pricing
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kernel of the economy, however the mean credit growth rates do not. However, the joint

transition matrix over composite states of economic and credit growth implies the pricing

kernel is affected by the state of credit growth as well as economic growth. In our calibrated

model for example, we find that strong earnings growth is more persistent with high credit

growth relative to low credit growth.

2.2 The Firms

There are two types of firms: good and bad. The cash flow of a good firm, X i,g
t , follows

dX i,g
t

X i,g
t

= µY (st) dt+ σX

(√
ρi dW2,t +

√

1− ρi dW
i
t

)

(10)

where we assume that the drift of each firm’s cash flow growth is the same as the aggregate

cash flow drift, the volatility of each firm’s cash flow growth is σX , W i
t is a firm-specific

standard Brownian motion process, and the correlation between the growths of firms i and j

is ρ. The cash flow growth of a bad firm, X i,b
t , follows

dX i,b
t

X i,b
t−

= (µY (st) + κ(s)) dt+ σX

(√
ρi dW2,t +

√

1− ρi dW
i
t

)

− dLs,i
t , (11)

which is identical to the cash flow process of a good firm, except for the last term. In it, Ls,i
t is

the counter of a Poisson jump process for firm i in state s. The jump occurs with a probability

κ(s) dt in an interval of length dt, and in case of the jump, the cash flow becomes zero forever.

Merton (1976) calls this a “destructive” shock. It is useful to note, that aggregate consumption

and earnings do not have jump risk components, so that these idiosyncratic destructive shocks

to firms’ cash flows are uncorrelated with the pricing kernel of the economy, and as such, do

not carry risk premiums. Implicitly we are assuming that the idiosyncratic destructive shocks

to the cash flows of the 125 firms in the Markit CDX indices at any point of time are a ‘small’

component of aggregate consumption shocks, while the continuous components of these cash

flows could be a non-negligble part of aggregate consumption.

The continuous components of bad firms’ are each mutually correlated with correla-

tion coefficient, ρi, the same as for good firms. In addition, we assume that their destructive

jump shocks are correlated. In particular, we assume that the joint distribution of jumps follow
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the correlated binomial (CB) distribution first applied in the finance literature in Cifuentes and

Pagnoncelli (2014).9 For this distribution, the probability of having K jump shocks among N

bad firms is

CB(K; p,N, ϕ) =

(

N

K

)

pK (1− p)N−K (1− ϕ) for K = 1, · · · , N − 1, (12)

= (1− p)N (1− ϕ) + (1− p)ϕ for K = 0, (13)

= pN (1− ϕ) + pϕ for K = N, (14)

where the probability of each firm having a shock is p, and the correlation among shocks is

ϕ. Relative to the standard binomial distribution, the CB distribution shifts some probability

mass from the interior to the end points of the support, i.e., it has a greater probability of 0

shocks, andN shocks. There are two special cases of the CB distribution worth mentioning: if

ϕ = 1, then it two-point distribution with parameter p, and if ϕ = 0, it is a standard binomial

distribution.

The unlevered value of a firm of uncertain quality with current cash flow of Xt is

V α
t (s) = vα(s)Xt. The following Lemma provides expressions for vectors of the valuation

ratios of firms in the S states.

Lemma 1 For a firm whose quality is uncertain, and the investor has a probability that the

firm is good is α, the vector of V/X ratios is

vα =
(

Diag(r + (1− α)κ− µQ
y )− ΛQ

)−1
1, (15)

in which the risk-neutral drift of the cash flow in state s is µQ
Y (s) = µY (s) − γ

√
ρi σ

′
X σC ,

Diag(v) denotes the diagonal matrix created from a vector v, and 1 is the S×1 unitary vector.

The proof is in the appendix. It is interesting that similar to Merton (1976), in the presence

of destructive shocks we can think of the discount rate increasing from r to r + (1− α)κ for

valuing assets.

Each firm maintains a static capital structure that consists of equity and a zero-

coupon bond with face value Di
t. We follow Black and Cox (1976) and David (2008) and

9Longstaff and Rajan (2008) provide some evidence that defaults of firms are correlated.
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assume that the asset value of the firm is a traded security, and ¡the face value of debt

Di
t = Dt

0 exp

[
∫ t

h=0

rh −
1

vαh
dh

]

. (16)

These assumptions ensure that under the risk-neutral measure, there is no trend in the distance

between the firm value and the face value of outstanding debt. The following lemma shows

that for each type of firm, the solvency ratio under the risk-neutral measure has zero drift (is a

local martingale).

Lemma 2 For a firm whose quality is uncertain, and the investor has a probability that the

firm is good is α, the solvency ratio under the risk-neutral measure follows:

dZi,α
t

Zti,α−
= σX (

√
ρi dW

∗
2t +

√

1− ρi dW
i
t )

+
∑

st 6=s
t−

(
vα(st)

vα(st−)
− 1) dM

∗ (st
−
,st)

t − (1− α)dLi,s, (17)

where dW ∗
t = dWt − σm dt, and dM

∗ (st
−
,st)

t is in (9).

As seen, the solvency ratios are subject to three types of shocks: (a) the continuous Brownian

shocks to aggregate cash flow growth and idiosyncratic cash flow growth; (b) macroeconomic

regime changes that cause jumps in the asset valuations; and (c) destructive shocks for bad

firms.

Similarly, under the objective measure the solvency ratio of a firm of unknown qual-

ity follows:

dZi,α
t

Zti,α−
= σm

√
ρiσX + σX (

√
ρi dW2t +

√

1− ρi dW
i
t )

+
∑

st 6=s
t−

(
vα(st)

vα(st−)
− 1) dM

(st
−
,st)

t − (1− α)dLi,s. (18)

We adopt the assumption by Black and Cox (1976), and more recently, Seo and

Wachter (2018), that a firm defaults at time τ at the first time the market value of the firm’s

asset hits the face value of its debt, i.e., its solvency ratio either hits or falls below one:

τ it = inf
{

τ > t : Zi,α
t ≤ 1

}

. (19)
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In a continuous setting, Black and Cox (1976) justify this assumption as a safety

covenant for bondholders. Notice though, that due to the jumps in asset valuations and cash

flow, the solvency ratio can fall below 1. Using (18), for any finite time horizon, T , we can

calculate the default probability of a typical firm within a pool of firms with a fraction α of

good firms by simulation as

ΠD(st, α, Zt, T ) = Prob(ταt ≤ t+ T |st, α, Zα
t = Zt). (20)

Since good and bad firms’ cash flows are identical, except for the possibility of the destructive

jump shocks to the latter, ceteris paribus, the default probability decreases in α. It is also useful

to note that the default probability of the typical firm does not depend on either the continuous

correlation, ρ, or the jump correlation, ϕ.

At the default time τ , the debt holders recover a fraction Φ of the unlevered firm

value, while the complementary fraction 1−Φ is lost due to the deadweight costs of bankruptcy.

2.3 The Credit Rating Agency (CRA)

In this section, we build a model of a CRA based on the principle of Bayesian persuasion

introduced to the literature in Kamenica and Gentzkow (2011). Bayesian persuasion is a game

of the choice of information precision, where an information sender optimally controls the

precision of a signal to induce a particular action by an information receiver. In our case,

the information sender is the CRA, and the information receiver is the representative con-

sumer/investor in the economy.

We assume that firms are either good or bad types as defined in Section 2.2. Firm

types are unobservable, but by conducting research on them, the CRA can partially determine

the type. The CRA then issues a rating of either G or B for each firm, which is a signal

of the firm’s quality. The investor has prior beliefs about the quality of each firm, and after

observing the rating of each firm, as well as the precision of the ratings, the investor updates

her probability of each firm’s type conditional on its rating using Bayes’ rule. We assume that

the consumer has a preference for investing in G-rated securities and that the CRA chooses the

intensity of its research to maximize the proportion of firms with G ratings, subject to a default

probability constraint of the G-rating class to be discussed below. As in Lizzeri (1999) and
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Kartasheva and Yilmaz (2012), we assume that the CRA commits to this precision structure

of ratings.

More precisely, we assume that the proportion of good firms in the population of

firms, α0, is constant over time, and known by both the CRA and investors. Following, Ka-

menica and Gentzkow (2011), we assume that by adjusting its research prodedure, the CRA

can costlessly control the type I and type II rating errors, i.e., πI
t (Zt, st) = P[B|good;Zt, st]

and πII
t (Zt, st) = P[G|bad;Zt, st]; these errors are chosen conditional on the solvency ra-

tio of firms, Zt, and the state of the economy, which affects the jump risk parameters of bad

firms.10 We assume that persuasion at date t determines the cross-sectional distribution of

investment-grade firms that are used in CDO pools created at time t. The composition of these

pools then remains fixed over the tenor of the CDOs, although some firms are lost from the

pools as they default. By choosing πI(Zt, st) and πII(Zt, st), the CRA maximizes

Pt[G] = α0 (1− πI(Zt, st)) + (1− α0) π
II(Zt, st), (21)

which is the probability of assigning a G-rating to each firm subject to the constraint

ΠD(st, α1(t), Zt, T ) ≤ ΠG, (22)

i.e. the default probability at the T-period horizon has to be below a fixed number ΠG, where

ΠD(st, α1(t), Zt, T ) is computed using (20), and α1(t) = P(g|G) is the posterior probability

of a G-rated firm being good. Bayes’ law implies that after observing the ratings assigned to

each firm, the investor’s posterior probability is

α1(t) = P[good|G] =
α0 (1− πI)

α0 (1− πI) + (1− α0) πII
. (23)

Credit rating agencies do not clearly define the meaning of a particular rating. They

do publish estimates of default probabilities of each rating category, which actually show

significant time variation. A good working definition of a rating is that it is a measure of

the “through-the-cycle” default probability of a firm (see e.g. Carey and Treacy (1998) and

David (2008)). Altman and Rijken (2004) provide evidence that the CRAs base their ratings

10Later in this section, we add a constraints on the ability of the CRA to influence investors’ posterior belief of

firms’ quality.
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on longer-term (5 years) default probabilities as opposed to 1-year default probabilities. We

use this interpretation of the rating, and in particular assume that the CRA targets a rating to

have a 5-year default probability below a critical threshold. This definition, along with the

time variation in firms’ fundamentals, gives the rating agency some flexibility in changing

the composition of firms in any rating category. The CRA attempts to issue as many G-

ratings as possible while ensuring that the average probability of default of firms in that rating

category does not exceed the rating’s threshold. In our empirical section, we assume that the

CRA attempts to ensure that the 5-year default probability of investment-grade firms is below

2.8 percent, which is the historical average of the default probability of Baa3 (the lowest

investment-grade rating) firms.

A couple of points are worth nothing: First, α1(t) will be higher, for a lower type-I

error, as fewer good companies are given B ratings, and hence the proportion of good com-

panies among those rated G is higher. Second, α1(t) will be higher for a lower type-II error,

as fewer bad companies are given G ratings, once again increasing the quality of the G-rated

pool. Therefore, α1 can be increased by lowering both type of errors.

The intuition above helps understand the optimal rating process by the CRA. We first

notice in the objective function in (21), that the number of G ratings is higher, for a lower type-

I error. So, the CRA should lower it as much as possible. Lemma 3 below shows that the CRA

will optimally set πI = 0. The optimal type-II error, however, is not equal to zero. As seen

in (21), the number of G ratings increases in the type-II error (the probability of assigning G

ratings to bad firms). The CRA plays a balancing act between increasing πII , and increasing

α1. Why would the CRA want to increase α1? It might, if given the solvency ratio Zt of

firms in the economy, and the jump risks in the current state, its default probability at the prior

belief, α0, is above its committed level. As discussed below (20), the default probability is

decreasing in α, so the CRA must increase α1 until this default probability constraint is met.

At this point, we make the further assumption that α1(t) < ᾱ < 1, i.e. the CRA is

unable to influence investor’s belief of the quality of G-rated firms beyond an upper bound.

This could arise from technological limitations of the CRA being able to perfectly learn firms’

type with their research. We now provide an algorithm that the CRA can use to determine the

optimal type-II error and hence induce the posterior belief α1(t).
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1. Given the prior belief, α0 of investors, and the current solvency ratio of firms, Zt and

the state st if ΠD(st, α0, Zt, T ) ≤ ΠG, then all firms are given the G rating, i.e. πII = 1.

In such periods, the default probability of the G-rated category is below its target, and

α1(t) = α0.

2. If ΠD(st, ᾱ1, Zt, T ) > ΠG, then the CRA does its best possible. It improves investors’

posterior to its maximum possible, i.e. α1(t) = ᾱ.

3. If neither of the above conditions hold, then by continuity of Bayes’ law, there is an

α0 < α1(t) < ᾱ, such that ΠD(st, α1(t), Zt, T ) = ΠG. In this case, πII can be backed

out from (23) after setting πI = 0. In this case, the default probability of the G-rated

category is exactly at its target.

2.4 CDX Tranche Pricing

We use our model to price tranches based on the Dow Jones CDX North American Investment

Grade Index (CDX.NA.IG). The underlying portfolio is an equally weighted basket of N =

125 investment-grade single-name credit default swaps (CDS) (see e.g Duffie and Singleton

(2003) for definitions of CDS). CDX tranches are derivative contracts written on the CDX,

which provide the protection buyer with different layers of protection on default events of

the underlying firms. Following prior research, we determine implied payments (made as a

combination of quarterly spreads with fixed and variable components, or as fixed spreads with

upfront payments) on the index as well as its tranches from the no-arbitrage condition that

discounted cash flows to the protection buyer (the “protection leg”) and protection seller (the

“premium leg”) be equal in value under the risk-neutral measure (see e.g. Collin-Dufresne,

Goldstein, and Yang (2012) and Seo and Wachter (2018)).

Each tranche j is defined by its lower and upper attachment points, which we denote

as Aj
L, and Aj

U , respectively. The lower attachment points refers to the level of subordination

of the tranche, and the upper attachment point to the level at which the losses in the pool wipe

out the entire tranche notional. For example, a tranche with attachment points 3-7 (henceforth,

following market parlance, we will state the attachment points in percentage points) starts

losing value only if the loss on CDX exceeds 3%. If the loss on the full portfolio exceeds
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7%, the notional amount of the tranche is completely exhausted. Note that the entire CDX

index can be considered as a tranche with the lower attachment point equal to 0 and the upper

attachment point equal to 100.

We let Lt,s denote the cumulative fractional loss at time s on the CDX originated at

time t given by

Lt,s =
1

N

N
∑

i=1

1{t<τi≤s}

(

1−R∗
i,τi

)

,

where R∗
i,τ is the recovery rate for a firm i defaulting at τi. The fractional loss on tranche j

with attachment points Aj
L and Aj

H is given by

Lj
t,s =

min
(

Lt,s, A
j
H

)

−min
(

Lt,s, A
j
L

)

Aj
H − Aj

L

.

When the cumulative loss increases, the protection seller pays the protection buyer

the amount of the loss. The no-arbitrage value of the protection leg for tranche j (including

the whole CDX index) is given by

Protj,t = EQ
t

[
∫ T

t

exp

(

−
∫ s

t

rudu

)

dLj
t,s

]

. (24)

The protection buyer of each tranche makes quarterly premium payments to the pro-

tection seller. The amount of the payment depends on the tranche notional. By convention, in

case of a default, tranche notionals are adjusted by loss net recovery starting from the most ju-

nior tranche, and recovery starting from the most senior tranche. For example, the first default

reduces the notional of the most junior tranche, 0-3, by 1
N
(1−R∗

i,τi
), and reduces the notional

of the most senior tranche, 15-100, by 1
N
R∗

i,τi
. The recovery on tranche j is

Rj
t,s =

min
(

Rt,s, 1− Aj
L

)

−min
(

Rt,s, 1− Aj
H

)

Aj
H − Aj

L

,

where Rt,s is the cumulative fractional recovery on the CDX given by

Rt,s =
1

N

∑

1{t<τi≤s}R
∗
i,τi
.

The premium leg for tranche j is given by

Premj,t = U + S EQ

[

0.25
4T
∑

k=1

exp

(

−
∫ t+0.25k

t

rudu

)
∫ t+0.25k

t+0.25(k−1)

(

1− Lj
t,s −Rj

t,s

)

ds

]

,

(25)
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where S is the running spread, which is a quarterly payment from the insurance buyer to the

insurance seller, and U is a fixed upfront payment that the seller pays to the buyer. The expec-

tations for the protection and premium legs are each calculated using Monte Carlo simulations

of firms’ asset value processes in (17), the default assumption in (19), and the mix of good and

bad firms in the G-rating category by the CRA as described in Section 2.3.

As we will see, the convention for market quotes has changed over time, and is differ-

ent for different tranches. Until about 2009 (the switching date varies by tranche), all tranches

were quoted as the running spread defined here, except the 0-3 tranche, which was quoted as

an upfront, with a fixed spread S̄. Therefore S(AL, AU) is implied using U(AL, AU) = 0 and

equating the values of the protection and premium legs for all but the 0-3 tranche. For the (0,3)

tranche, S = S̄ = 500 b.p and the value of U(0, 3) is adjusted so that the two leg values are

equated. Note that the implied upfront can be negative. Subsequently (post 2009), the quotes

have evolved to fixed spreads and upfronts are calculated as above for all the tranches. How-

ever, the fixed spreads have not been constant over time, making intertemporal comparisons

of upfronts difficult.

Due to changes in quotation specifications, we are unable to structurally estimate

our model’s parameters using the raw data. In particular, to identify all parameters, we need

second moments (volatilities and correlations) of spreads, but some of the variations in the

spreads are spurious, due to changes in quotation specifications. To create homogeneous se-

ries, we construct “zero upfront variable (ZUV) spreads”, which are spreads that are implied

when upfronts and fixed spreads are set to zero. We proceed in two stages: first, we estimate

the parameters of our model using these ZUV spreads, then, we convert them back to either
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upfronts or running spreads using the data quotation specifications.11 These are then compared

to the unadjusted raw data.

As we describe in Appendix 2, we attempt to create time-series of spreads with 5-

year tenors; however, since some of the series do not trade at some dates, traded tranches at

different dates have different ages. For example, we use series 9 from 2007 Q4 to 2010 Q3

because it was the most liquid series in that period. For this reason, CDX pools have different

remaining tenor at different dates in our sample. When we calculate spreads on a “seasoned”

pool at date t of age a quarters, then it has remaining tenor of (20− a) quarters. To calculate

the expectations in the protection and premium legs we must simulate prior macroeconomic

states conditional on the current state for which we the smoothing formula using the quarterly

backward transition matrix PQ[st−1 = i|st = j] = λQij/
∑

k λ
Q
kj (see Hamilton (1994)). With

the ‘smoothed’ probabilities of prior states, we calculate the expected tranche values over

pools whose optimal mix of good firms is determined at t − a in each state as described in

Section 2.3.

3 Empirical Analysis

In this section, we structurally estimate our model and evaluate its implications for the pricing

of CDO tranches. Our empirical estimation is implemented in two stages. At the first stage,

we use standard maximum likelihood of regime switching models (see Hamilton (1994)) to

11The expectation (rate), EQ
[

0.25
∑4T

k=1 exp
(

−
∫ t+0.25k

t
rudu

)

∫ t+0.25k

t+0.25(k−1)

(

1− L
j
t,s −R

j
t,s

)

ds
]

in equa-

tion (25) is referred to in industry parlance as the “RPV”. The RPV is not observable, as it is not a rate on

traded security. The RPV is needed to covert quarterly spread payments to upfronts, and vice versa, and is

a combination of riskless rates and portfolio losses (and recoveries). In the existing literature, authors have

calculated it using specific assumptions, such as a CAPM-based pricing kernel, conditional log-normal port-

folio distributions, and linearly declining notionals over time (e.g. Coval, Jurek, and Stafford (2009a)). We

calculate it using our model with regime switches in states and notional declines that are state-dependent. In

addition, our assumption has non-zero covariance between riskless rates and losses, while this covariance is

often assumed to be zero. We plot ZUV spreads for the (0,3) tranche for the period between 2004:Q3 and

2007:Q3 approximated by our model, and by Coval, Jurek, and Stafford (2009a) in Figure 12 in the online

appendix. As can be seen, that albeit some differences at some dates, the two approximations are highly

correlated.
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estimate the cycles in credit availability and macroeconomic growth. The sample for the first

stage is 1952 to 2017. We assume that the regimes are observed by the agents in the model,

but are unobserved by the econometrician. The estimation provides us with the beliefs of the

econometrician about the fundamental states over time. In the second stage, using the beliefs

and estimated parameters in the first stage, we use the simulated method of moments (SMM) to

estimate the parameters of firms’ projects that fit tranche spreads for the sample from 2004:Q3

to 2017. In particular, the spreads are calculated in each state, and then averaged using the

estimated beliefs.

3.1 First Stage Maximum Likelihood Estimation of Regime Switching

Model

The first step in estimating a regime switching model is the choice of the number of regimes

(we use the term ‘regime’ and ‘state’ interchangeably). As is well known, formal tests on

the number of regimes are difficult and lack power (see e.g. discussion in Garcia (1998)

and Hamilton (2008)). We follow the practical approach taken by Gray (1996) and Bansal and

Zhou (2002) and make use of the GMM-based χ2 criterion to determine the number of regimes

for each of the fundamental variables, using the scores of the likelihood function as moments.

For each of the fundamental variables, consumption, and the ratio of credit growth to GDP, we

find that the two regime specification is rejected, while the three regime specification is not

rejected. For each variable there are normal high and low states, as well as a disaster state. We

therefore model ‘disasters’ as states of extreme growth (as in Rietz (1988)) rather than jumps

(as in say Seo and Wachter (2018)). We further assume that the regimes of earnings growth at

firms are perfectly correlated with the regimes of consumption growth.

We then estimate a specification with composite regimes of the two fundamentals.

Unconstrained, we would have nine regimes, however, in our estimation, we find that three of

these regimes have zero probability of occurring in our sample, so we only use six regimes.

This procedure of estimation of composite regimes is developed in David and Veronesi (2013).
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The states are ordered as (High Credit-High Growth), (High Credit-Low Growth), (Low Credit-

High Growth), (Low Credit-Low Growth), (Low Credit-Disaster Growth), and (Disaster Credit-

High Growth). It is also worth noting that since the probabilities of the disaster states are very

low, we make the simplifying assumption that the probability of entering disaster states from

any state are equal, and the probability of transitioning to any state from a disaster state are

equal as well, leading to a smaller number of parameters to be estimated. The parameter es-

timates are shown in Table 3, and it is worth noting that the annualized disaster states of the

credit growth to GDP ratio, consumption growth, and earnings growth, are -4 %, 0 %, and

-88%, respectively.12 Also, as noted earlier, the state of credit growth affects the transition

from high to low growth states: with High Credit, the transition probability to Low Growth is

in a quarter is 4.4 percent, however, in the Low Credit state, the transition probability increases

to 11.1 percent. Therefore, low credit signals growth instability.

In Figure 2, we look at the econometrician’s probability of the six states, which are

observed by the consumer/investor in the economy. The first four states are regular states,

and there are frequent episodes of filtered probabilities of these states being quite high. The

probabilities of states 2 and 4, increased in most recessions since 1952. Also, importantly, the

probabilities of these low growth states increased substantially in 2012 and 2016, even though

these two periods were not classified as economic recessions by the NBER. As we will see,

the increase in the likelihoods of these low growth states contributed to higher spreads in these

periods.

The historical and expected fundamentals from the regime switching model are

shown in Figure 3. The model explains 64% of the variation in credit growth, and 18% and

40% of the variation in consumption growth and aggregate earnings growth, respectively. In

addition, during the financial crisis, it fitted the low expected growths well.

12While it may seem that 0% consumption growth is hardly disastrous, as seen in Figure 3, at the worst point

of the great recession, consumption growth was about -3.2 percent (at an annual rate) in 2008:Q4, and in

other quarters was larger than that. The lowest consumption growth in our entire sample from 1952 to 2017

is about -10 percent at an annual rate in 1980:2, but in the following two quarters it exceeded 4 percent at an

annual rate.
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3.2 Second Stage SMM Estimation For Model With CRA

In the second stage of our estimation, we take the filtered probabilities of the states from the

first stage and use data on ZUV spreads to estimate the parameters of firms’ cash flows using

the Simulated Method of Moments (SMM). We use data on reported spreads on four tranches

with attachment points 0-3, 3-7, 7-15 and 15-100, and the whole CDX index 0-100.13 We

have daily spread data and create time series at a quarterly frequency by taking the averages

of the daily spreads in each quarter. Overall, we have 5 time-series of spreads, and we fit

these conditionally. In addition, we use the unconditional volatilities of the spreads, and their

correlations in our SMM procedure. In addition, we use the unconditional 5-year probability

of default of investment-grade firms as an additional moment, overall, giving us 21 moments

to fit.

For fitting these moments, we estimate α0, the proportion of good firms in the pop-

ulation of all firms; ᾱ, the highest possible belief that the CRA can induce; σX , the volatility

of firms’ cash flows; ρ, the correlation of the continuous component of the cash flows; Φ, the

proportional bankruptcy cost parameter; and, ϕ, the correlation of destructive shocks. For fit-

ting CDO tranche spreads, we find that we need time-variation in the intensities of destructive

shocks as defined in (12) – (14). We assume that the jump intensities of shocks are state-

dependent, which provide 6 parameters to estimate. Overall, we have 21 moments, and 12

parameters to estimate, and hence our SMM procedure has 9 degrees of freedom.

The estimated parameters from the second stage are in Table 4. We estimate that only

about 26 percent of the firms in the full sample are of good quality, which is the representative

investor’s prior about firm quality. The CRA’s rating process is quite informative for investors

as we estimate that it can increase the investor’s posterior of good quality firms in G-rated

pools to about 55 percent. We estimate the bankruptcy cost parameter is about 29 percent,

which is quite similar to the estimates of a number of papers, and likely includes indirect costs

13As described in Appendix 2, the attachment points are slightly different for two of the tranches prior to 2010.

When we estimate our model, we change the attachment points in our model to match those in the data; in

particular, prior to 2010, we use the 7-10 attachment points instead of 7-15, and the 15-30 attachment points

rather than 15-100. The differences between the last two would be very small if portfolio losses in excess of

30 percent are highly unlikely, as is true for our estimated model.
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of bankruptcy. The average volatility of firms’ cash flow of 21 percent, with a systematic

component, measured as the correlation of the continuous component, of 76 percent. It is

useful to note that we model unsystematic destructive shocks to firms’ cash flows, so that the

the overall systematic component is lower. Finally, the correlation of destructive shocks to bad

firms is about 39 percent.

The estimated jump intensities of bad firms’ destructive shocks in the 6 states have

intuitive patterns: the risk of destructive shocks is decreasing in the level of credit availability

as well as on economic growth. In periods of high credit and high growth, the classic boom

periods, the risk of disastrous shocks is is below 1 percent, at its lowest among states. In

periods of low credit, the risk of such shocks increases to a medium level of about 4 percent in

high growth states, but to a high 10 percent in low growth states. In each of the pathological

states, disaster credit (state 5) or disaster growth (state 6), the jump intensities are above 15

percent. We will discuss the implications for alternative views on the relationship between

growth and credit cycles separately in Section 4 below.

In Figure 4, we plot the data and model ZUV spreads on the tranches, and measures

of the goodness of fit are in Table 5. Our model fits are good in several dimensions. In

particular, the 0-3 (equity), 3-7, and 7-15, and the 0-100 (CDX) are priced quite closely before,

during, and after the financial crisis. More formally, as seen in the top panel of Table 5, the

model spreads explain between 72 and 83 percent of the variation in the data spreads, the

α coefficients are all statistically not different from zero, and the β coefficients are all not

different from 1. The model spread for the (3,7) tranche does overestimate the data spread

either side of the financial crisis, but successful replicates other fluctuations in other periods.

The model has the hardest time in explaining the 15-100 (senior tranche) spread variations.

In particular, consistent with Coval, Jurek, and Stafford (2009b), the spread was too low by a

factor of 3 or more prior the financial crisis. After the crisis, our model spread follows the data

quite closely. The low model (15,100) spreads before the crisis occur despite our modeling

time varying credit rating standards, but the model does correctly price all other tranches in

this period.

The remaining panels of Figure 4 display important components of the model, which

we discuss here. The middle-right panel shows the investor’s prior and posterior probabilities
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of firms in the G-rating category being good. As seen, until about 2007, the posterior was

close to the prior. As explained at the end of Section 2.3, this occurs when fundamentals are

strong to the extent that at the investor’s prior belief, the default probability of the G-rating

class is below its target. In this case, the CRAs issues highly uninformative ratings, with

type-II error of close to 1, and hence, does not influence the investor’s beliefs. In the midst

of the financial crisis, the posterior hit its maximum of around 0.55. This occurs when at

the maximum level of persuasion, fundamentals are bad enough that the default probability

is above the CRA’s target. In this case, the CRA does its best to give bad firms B ratings

and hence improve investor’s posterior beliefs about the quality of the G-rating class. Quite

strikingly, the posterior remained close to its maximum level until about 2010, even though

the NBER-dated recession ended in the second quarter of 2009. The next two panels shed

further light on this issue. The bottom-left panel shows the 5-year default probability of the

G-rated set of firms peaked in the midst of the financial crisis at over 7 percent, but remained

elevated substantially above its target level until 2010. Therefore, the model implies that the

CRA would have to keep the ratings informative for this period, even though fundamentals

improved. The bottom-middle panel shows the average log-solvency ratio of investment-grade

firms, and it is substantially negatively correlated with the default probability. However, it does

not fully explain the default probability and posterior dynamics, as the state of economic and

credit growth, which affect the intensity of destructive shocks to firms, also impact the default

probability and the amount of persuasion by the CRA. Indeed, partly, the default probability

remained elevated as credit growth remained weak until 2010 (see Figures 2 and 3).

Besides, the financial crisis period and its aftermath, the model also explains a large

amount of the variation in spreads in the period between 2010 and 2017. In particular, there

were two bouts of weak growth, which were not characterized by the NBER as recessions, in

2011-12, and again in 2016-17 (see Figures 2 and 3) when CDO spreads rose substantially.

In both cases, credit remained strong initially, but later weakened. The growth declines were

nowhere near of the magnitude of previous two recessions, and according to our model, in-

vestors would believe that these periods had weak growth of the kind modelled in states 2

and 4, rather that the disaster states. In Figure 4 we see that the model’s spreads for all the

tranches were close to that in the data in both episodes. Note, that senior tranche spreads
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are elevated when investors fear that there are potential losses for a substantial proportion for

firms, and hence our model predicts that such systemic losses in these periods were unlikely

with the moderately weak growth during these periods. The model does imply that the CRA

would have to improve the informative of its ratings as seen by the higher posterior (Figure 4

middle-right panel) as the default probability of the G-rating class rose above its target level

in these episodes (bottom-left panel), again not to the extent of the previous two recessions.

The middle and bottom panels of Table 5 show the other ability of our model to fit

the other moments in the SMM procedure. The default probability in the model is close to its

target, as are the volatilities of the spreads. The bottom panel shows that the model-correlation

of ZUV spreads are also very close to the data.

Overall, as noted, the model does well in explaining fluctuations in all tranche spreads,

except the senior (15,100) spread in the years before the financial crisis. Using the chi-squared

statistic from the objective value of the SMM procedure for the full sample, we see that the

p-value for model is only 2 percent. However, if we exclude the errors of the (15,100) spread

from 2014:4 to 2017, the p-value rises above 10 percent. An important caveat is that, in our

model specification here, we have used a constant correlation of firms’ destructive shocks.

In an earlier version of this paper, we assume that the correlation of these shocks increases

proportionately in the amount of persuasion (posterior minus prior probability of firm being a

good type). With a time-varying correlation, the model prices the (15,100 tranche well prior

the financial crisis, and fits in all other periods are better as well. The sensitivity of the senior

tranche price to the correlation has been well established in the literature (see e.g. Duffie and

Garleanu (2001) and Gibson (2005)). However, practitioners have complained that that de-

fault correlation is very hard to measure since defaults are rare events, but changing it freely

can justify any pattern of observed spreads (see, e.g. Mackenzie and Spears (2014)).

3.3 Ability of The Model To Explain the Raw Data

As discussed in Appendix 2, the contractual features of the different tranches have changed

substantially over time. To estimate our model, we convert the raw data into ZUV spreads.

Here, using the estimated structural parameters, we study the ability of our model with the
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CRA to explain the raw data. We show the raw data and our model fits of it in Figure 5, and

provide goodness-of-fit statistics in Table 6.

The left panels of the figure show the fixed spread component of the tranche spreads

over time, the middle panels show the variable spreads, and the right panels show the upfront

payments. For example, for the 0-3 spread, the fixed spread was 500 b.p. until 2015, and 100

b.p. thereafter. This means, that the raw data for the 0-3 tranche was quoted as an upfront

payment, as the quarterly payment was fixed. For the 3-7 tranche, the fixed spread was 0 until

the first quarter of 2009, it was then 500 b.p. until 2010, and 100 b.p. thereafter. Therefore,

until 2009, the raw data was quoted as a running spread, and thereafter, it is quoted as an

upfront, with the qualification, that the quarterly fixed payment changed after 2010. Therefore,

when we look at the time series of upfronts in the right panel, we must keep in mind that some

of the variation in the quoted upfront arises due to the change in the contracted fixed spread.

For the (0,100) spread, the fixed component was zero for the full sample, and the raw date was

quoted as a variable spread.

In the middle and right panels, along with the raw data, we also display the model’s

spreads/upfronts in the raw data format using the conversion process in Section 2.4. As seen

the fits of the variable spreads are really close to the data (with the exception of the 15-100

spread before the financial crisis), with R2s of the model fits of between 76 and 96 percent.

The right panels show that the fits of the upfronts are not as good (in the 33 - 63 percent range)

with the model still capturing most major fluctuations in the data. It must be noted that some

of the fluctuation in the upfronts are due to changes in the fixed spread components, which are

exogenous to our model.

3.4 The Credit Spreads Puzzle

For several years it was widely acknowledged that it was hard to reconcile relatively low

historical low default probabilities along with relatively high credit spreads using structural-

form credit risk models with alternative assumptions (see e.g. Huang and Huang (2012)).

This was called the “Credit Spreads Puzzle”. In the late 2000s, several papers were able

to reconcile this issue. The key intuition that developed was that spreads measure expected
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default losses under the risk-neutral measure, while historical losses are under the observed

measure, so that high prices of risk for bearing macroeconomic shocks along with the greater

incidence of default during periods of low consumption growth, would be consistent with the

facts. In particular, Bhamra, Kuehn, and Strebulaev (2009) and Chen (2010) use long-run risk

models, which imply high prices of risk for consumption shocks.14 In this paper, we build on

this literature by studying spreads on CDO tranches in addition to the standard spread (CDX

spread), and show that the high level of spreads on all the tranches can be justified, while

maintaining default probabilities at empirically observed levels.

Our model has both long-run risk and disasters, each of which raises the price of

risk of consumption shocks. We use standard parameters for the elasticity-of-intertemporal

substitution (1.1) and risk-aversion (10), as in these above papers. In addition to the insights

of these above papers, for fitting tranche spreads, we need additional assumptions on jump

risk intensities of bad firms and their correlations, which have different impacts on junior

and senior spreads. Besides fitting the level of spreads for the CDX and the tranches, our

structural-form estimation also helps understand the dynamics of spreads and the underlying

risks of firms’ cash flows. As we build in the Sections 4, our structural estimation shows

the importance of building in changes in shocks to credit as well as credit rating standards in

understanding the dynamics of spreads.

4 Understanding the Relations Between Economic Growth,

Credit Growth, and Credit Rating Standards

In the introduction, we noted that the senior tranche spread is relatively more exposed to eco-

nomic growth shocks, while the equity tranche spread is relatively more exposed to credit

14Chen, Collin-Dufresne, and Goldstein (2009) show that firms’ default boundaries increase in bad times, and

hence the increased likelihood of defaults in bad times increases the credit spread. David (2008) showed

that a substantial proportion of the spread arises from a convexity effect, which arises as credit spreads are

non-linear (convex) functions of relevant firm’s fundamentals. Bhamra, Kuehn, and Strebulaev (2009) also

use this convexity effect.
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growth shocks. In particular, the equity tranche spread remains elevated after the end of re-

cessions, until credit growth recovers. In this section, we will shed some light on these rela-

tionships, as well as the role of changes in credit rating standards in determining the different

exposures.

4.1 Economic Growth and Credit Growth Cycles

As a first step, we examine the relationship between economic and credit growth. We estimate

a standard Vector Auto Regression (VAR) between the ratio of credit growth-to-GDP and

consumption growth for quarterly data from 1952 to 2017. The generalized impulses from

the estimated parameters are shown in Figure 6. The top panel shows that credit growth

increases as a response to economic growth, and the relation is statistically significant up to

10 quarters. The bottom panel shows that the response of economic growth to credit shocks

is insignficantly different from zero, that is, credit growth does not appear to cause economic

growth. We confirm these relationships with Granger causality tests: the p-value for the null

hypothesis that credit growth does not cause economic growth is 0.85, while that of the reverse

hypothesis that economic growth does not cause credit growth is smaller that 10−4.

These relationships cast doubt on the narrative that excessive credit causes crisis and

weak economic growth, but are supportive of the view, that the financial sector curtails credit

after a negative growth shock. In fact, our 2nd stage estimation results in Table 4 show that

the jump intensities of bad firms’ destructive shocks are lower during periods of high growth

and high credit. Our results are consistent with the recent evidence on the reverse causality

from economic growth to credit markets in Boons, Ottonello, and Valkanov (2022).

4.2 Why Does Junior Tranche Correlate More with Credit Growth and

Senior Tranche More with Economic Growth

As we see in the bottom-middle panel of Figure 4, the average solvency ratio of investment

grade firms recovered to a fairly strong level at the end of the recession in 2009. The solvency

ratio affects all firms and is the largest component of correlation for firms’ default in our

structural credit risk framework. However, credit growth remained extremely weak until 2010,
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and our structurally estimated parameters show that the jump intensities of destructive shocks

are very high (0.16) remain high in periods of disastrous credit growth. Due to the resulting

relatively high default rate, our model implies that credit rating standards remain strong in

such periods, so that there is a smaller proportion of bad firms in investment-grade pools

initiated. Overall, with better solvency ratios, and a lower proportion of firms with potentially

destructive shocks, losses are able to affect the junior tranche, but not the senior tranche, which

only experiences losses if more than 15 percent of the capital is destroyed. Supporting this

view, the solvency ratio is 80 percent correlated with the senior spread, but only 60 percent

with the equity spread. More generally, the solvency ratio is highly correlated with economic

growth, and hence the senior spread is relatively more exposed to economic growth shocks.

5 Credit Rating Standards

Following Blume, Lim, and Mackinlay (1998) and Alp (2013), we use an ordered probit model

of firms credit ratings to measure time variation in credit rating standards. We obtain long-

term issuer credit ratings from Standard and Poor’s Capital IQ database. We assign successive

integer ratings from 10 to 17 for investment-grade bonds rated BBB, A, · · · , AAA.

In particular we use the above authors’ specification:

Rit = 17 if Zit ∈ [µ16,∞], (26)

Rit = 16 if Zit ∈ [µ15, µ16], (27)

.. (28)

Rit = 10 if Zit ∈ [µ9, µ10], (29)

in which, Zit = αt+β
′·Xit+ǫit, is the latent variable that affects the rating with partition points

µi, the independent variables, Xit, are firm level indicators of credit quality such as leverage

ratios, and E[ǫit|Xit] = 0. The intercept, αt, is a measure of credit rating standards at time

t. While Alp (2013) uses annual intercepts, we use quarterly ones to compare these credit

standards with those implied by our CDO pricing model. Also, notably, while Alp (2013) fits

her model until 2007, our sample ends in the third quarter of 2016. We use almost the same

list of independent variables as Alp (2013), whose exact definitions of these variables are in
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Table 7. In addition to the variables in her paper, we add firm’s exposure to the momentum

and HML factors. We do not include the SMB coefficient since firms’ size is one of the

explanatory variables.

The parameter estimates of the betas in the the ordered probit regression are in Ta-

ble 8, while the time-varying intercepts are plotted in Figure 8. We first make some brief

comments on the beta estimates. All our coefficients have the same sign as in Alp (2013).

In particular, higher operating margins, dividend payouts, R&D expenses, tangibility, firm

size, and retained earnings lead to higher ratings, while higher leverage ratios and capital ex-

penditures, lead to lower ratings. In addition, all the measures of firms’ risk – idiosyncratic

volatility, and loadings on market, HML, and momentum lead to lower ratings. Finally, firm’s

book-to-market ratio and their cash-to-asset ratios do not have significant affects on their credit

ratings. The insignificance on cash is consistent with the evidence in Acharya, Davydenko,

and Strebulaev (2012). For our fitted ratings, we excluded the insignificant variables. The

overall specification for the ratings is highly significant with a p-value smaller than 10−5, and

its pseudo-R2 is about 0.104.

The quarterly time series of the intercept from 1985 to 2016 is shown in the top

panel of Figure 8. A higher intercept means lower credit standards (higher unexplained rat-

ings). Our estimated series has very similar properties to the annual series in Alp (2013), with

investment-grade ratings generally getting more stringent until about 2006 (with an exception

of a deterioration in standards between 1996 and 2001). Rating standards deteriorated quite

sharply from 2006 to 2008, and then tightened sharply after the financial crisis until 2011.

Standards then moderated, however, there was one additional bout of tightening standards in

2014 – albeit far less than that in the financial crisis.

We compare the credit rating standards from the ordered probit model, and from

our CDO pricing model. In our model, a measure of rating standards is the type-II error

(probability of bad firms getting G ratings) as developed in Section 2.3. We extract our model’s

implied πII
t from (23), where we put πI

t = 0 at each date. Using the optimal α1(t) set by the

CRA as described at the end of Section 2.3 and displayed in the middle-right panel of Figure

4, we get

πII
t =

1− α1(t)

α1(t)

α0

1− α0

. (30)
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We find that there is a correlation of about 0.66 between the six-quarter lagged type-II error and

the intercept from the ordered probit model, i.e., credit rating standards are lagging relative

to measures of rating standards embedded in CDO prices. This ‘slowness’ of ratings has

been recognized by several authors in academia as well as industry (see, e.g., Altman and

Rijken (2004)). For the period from 2004:Q4 to 2016:Q3, the sample for our estimated model,

we show the intercept as well as the six-quarter lagged type-II error in the bottom panel of

Figure 8. As seen, the lagged model type-II error comoves with the intercept for all the major

fluctuations in the sample. The lag implies, for example, that the market’s expectations of

tightening rating standards rose at the start of the great recession, rather than towards its end.

As discussed in Section 3.2, our model implies that credit ratings were very uninformative

in the years before the financial crisis, and here we see that the model’s type-II error was

close to 1 in this period. Our model implies that the type-II error declined during the crisis,

but since then has fluctuated substantially, approaching 1 again in 2011 and 2015, preceding

minor economic corrections in these periods noted earlier.

We finally investigate the relationship between the model’s type-II error and funda-

mentals. We estimate the relationship:

log(Type-II Error)(t) = −0.891 + 0.047
Credit Growth(t)

GDP(t)
+ 0.272Consumption Growth(t) + ǫ(t).

= [−16.889][5.623] [3.165]

The R2 for the relationship is 0.496; T-statistics are in parenthesis and are adjusted by Newey-

West’s procedure for autocorrelation and heteroskedasticity. As seen, the type-II error is higher

in periods of higher credit growth, as well as economic growth. Combining the information on

the jump intensities of bad firms in the fundamental states (Table 4), we see that in the model

during periods of high credit and high economic growth, the jump intensities of each firm are

lower, but there is a greater proportion of bad firms in the investment-grade category. Looking

again in Figure 4, we see that spreads on the junior (0,3) and (3,7) spreads rose during periods

of higher type-II errors in 2011-12 and 2015-16, although the senior spreads rose less. This

relative pattern arises due to a combination of more bad firms with less frequent jump shocks.
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5.1 Does a Bayesian Persuasion Based CRA Explain Ratings in the Data?

As discussed in the section 3.2, besides the two fundamental variables (credit growth and

economic growth), tranche spreads in our model are affected by time-varying credit rating

standards, which affect the proportion of bad firms in investment grade pools. In this section,

we discuss further how credit rating standards evolve in our model, and provide evidence that

our model’s implications are supported in the data.

To determine whether the model’s credit ratings are close to those in the data, we first

calculate the proportion of US firms in the Compustat database with investment-grade ratings.

The time-series of this proportion is displayed in the top panel of Figure 7. The series has a

downward trend, which has also been noted by other authors (e.g. Alp (2013)). We therefore,

detrend this series using the Hodrick-Prescott filter, and use this as our targeted endogenous

variable to be explained.

We next construct the proportion of firms that are assigned investment-grade ratings

in our model. Using the law of total probability, the conditional probability of a firm having a

G-rating in our model is

Pt(G) = α0 + (1− α0) π
II
t , (31)

where we use our result that the optimal type-I error of the CRA in our model is 0.

Finally, using (31) and the type-II error process, we plot Pt(G) and the detrended

proportion of investment-grade firms in the bottom panel of Figure 7. As seen, the two series,

have a correlation of 65 percent, which is remarkable, given that we did not target the rating

proportion in our structural estimation. It is also useful to note, that the investment-grade

proportion, both in the data and the model, fell after the financial crisis, and did not fully

recover until about 2016. While there have been other theoretical models of the credit rating

process (see the references in the introduction), to the best of our knowledge, ours is the first

to generate an empirically plausible times-series of ratings.
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6 Out-of-Sample Performance of The Model

Our model parameters are estimated using data until 2017. In this section, we briefly dis-

cuss the ability of our model to fit fundamentals and tranche spreads in the period from 2018

to 2020:Q2. This out-of-sample period has the pandemic-caused recession, when economic

growth as well as credit growth took unprecedented magnitudes, so it is a difficult test of our

model’s predictions. The figures showing the performance are in the online appendix, and

here we make the main points.

As seen in Figure 9, fundamentals exhibited normal fluctuations until 2020, and then

consumption growth fell about 10 percent in the second quarter of 2020. Earnings fell by 8.5

and 12.9 percent in the first and second quarters, while credit grew by 28.1 and 18.3 percent in

these two quarters. Clearly, the consumption growth and credit growth outcomes were outside

the possibilities of our estimated model. In addition, in our estimated model with 6 states,

there is no possibility of simultaneously having disastrous growth and such rapid expansion of

credit. As seen in Figure 10 however, the econometrician’s probability of state 2 (high-credit

and low growth) reached 1 in the first quarter of 2020, and then, in the second quarter, it fell

to about 0.4, as the probability of state 5 (low credit-disastrous growth) increased to about 0.6.

Figure 11 shows the ability of our model to fit the tranche spreads in the out-of-

sample period. As seen, the model’s (0,3), (3,7), and (0,100) spreads were quite accurate

through this entire period, although the model overestimated the spreads in the first quarter

of 2020. The model’s (7,15) and (15,100) spreads were too high through this entire period,

but most significantly, in the pandemic period, they increased, but not to the magnitudes of

the financial crisis. For example, the model’s (15,100) spread rose to 135 b.p. in the financial

crisis, but only about 40 b.p. in the pandemic. This was despite economic growth being far

lower in the pandemic. The major difference in the two episodes is the level of credit growth,

which was at its lowest during the financial crisis, and its highest during the pandemic quarters.

Our estimated parameters suggest that the risks of catastrophic defaults are lower in periods

of such high credit growth, and due to the low quality of fundamentals, the CRA does not

mix low grade firms into the investment-grade class. Both factors lead to only a moderate

increase in senior tranche spreads. This successful prediction by our model, lends further

36



support to the model’s mechanism of tranche spreads being determined by credit growth and

rating standards, in addition to economic growth.

As a final point, the observed tranche spread increases during the first two quarters

of 2020 were likely moderated by the setting up of the Secondary Market Corporate Credit

Facility (SMCCF) by the Federal Reserve Board. The Board’s actions were taken “to support

credit to employers by providing liquidity to the market for outstanding corporate bonds.”

(see https://www.federalreserve.gov/monetarypolicy/smccf.htm). Our

model’s predicted spreads would serve as a good counterfactual to assess the impact of the

Board’s actions.

7 Conclusion

We present a new model to shed light on the time-variation of credit spreads on CDO tranches

both before and after the financial crisis of 2008. Building on a consumption-based framework

with both long-run risk and economic disasters, the model’s new feature is the presence of a

stylized credit rating agency (CRA), which rates firms in the economy using the principle

of Bayesian persuasion. The CRA optimally changes the type-II error (probability of giving

bad firms high ratings) over time, depending on the fundamental credit quality of firms, thus

affecting spreads on investment-grade products. Our model also assumes that the fundamental

credit quality of firm depends on economic growth as well as credit growth in the economy.

We structurally estimate our model, and show that with over 15 years of tranche

spreads data, the model is not rejected as long as we exclude the data on the senior-most

(15,100) tranche before the financial crisis. Over time, our model replicates the feature in the

data that senior tranche spreads are relatively more exposed to macroeconomic growth shocks,

while junior spreads are more exposed to credit availability shocks. The changing credit rating

standards are an important component of our model in explaining the dynamics of the CDO

spread tranches. Indeed, we view the main contribution of our model is to shed light on the

way that time-varying credit rating standards affect the clustering of defaults of investment-

grade firms, which affects spreads on alternative CDO tranches. We provide evidence that

the rating standards in our model (type-II error), are strongly related to credit rating standards
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implied from the framework of Blume, Lim, and Mackinlay (1998) and Alp (2013) although

the latter are lagging six-quarters relative to measures of rating standards embedded in CDO

prices. We provide evidence that the average ratings of firms in our model are highly correlated

with average ratings in the data. The model correctly predicts that tranche spreads during the

pandemic of 2020 were only moderately high, despite disastrous economic growth, due to

high credit growth and relatively tight credit rating standards.
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Appendix 1

Proof of Lemma 1 The valuation of a firm of uncertain quality satisfies the system of ODEs

r(s)V (X, s) = µQ
Y (s)X

∂V

∂X
+
1

2
(σXX)2

∂2V (X, s)

(∂X)2
+X+

S
∑

s′=1

λQss′V (X, s′)−(1−α)κ(s)V (X, s),

(32)

whose solution is V α (X, s) = X vα(s) where vα is in (15). �

Proof of Lemma 2

Using Ito’s lemma for jump diffusion processes (see, e.g. Duffie), we can see that

the value of a firm of uncertain quality as

dV i,α
t

V ti,α−
= µY (st) dt dt+ σX(

√
ρi dW2t +

√

1− ρi dW
i
t )− (1− α)dLs,i

+
∑

st 6=s
t−

(
vα(st)

vα(st−)
− 1) dM

(st
−
,st)

t . (33)

Using the expression for vα(st) from Lemma 1, the drift simplifes to r(st) − 1/vα(st) −
σm

√
ρiσX , and hence under the Q-measure as

dV i,α
t

V ti,α−
= (r(st)− 1/vα(st)) dt+ σX(

√
ρi dW

∗
2t +

√

1− ρi dW
i
t )− (1− α)dLs,i

+
∑

st 6=s
t−

(
vα(st)

vα(st−)
− 1) dM

∗ (st
−
,st)

t . (34)

Now using the debt growth assumption in (16), gives the solvency ratio dynamics. �

Lemma 3 The CRA never assigns B-ratings to good firms, i.e. πI = P[B|good] = 0.

Proof of Lemma 3 To simplify notation, we omit the arguments of the type-I and type-II

errors. The CRA seeks to maximize P[G] in (21), subject to the default probability constraint

(22), and the upper bound on the posterior probability achivable, ᾱ. Since (21) is a weighted

sum of πI and πII , to maximize the probability P[G] the CRA chooses πI as low as possible

and πII as high as possible subject to the constraints. Now it is easy to see that a low type-I

error increases the objective value, and lowers the default probability, so the CRA will choose

the lowest value possible, which is 0. �
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Appendix 2: Data Description

As mentioned in Section 2.4, payments from insurance buyers to insurance sellers

are made as a combination of quarterly spreads with fixed and variable components, or as

fixed spreads with upfront payments. In this appendix, we provide details of the quotation of

spreads on the alternative CDO tranches from September 2004 to July 2020.

The CDX indices roll every six months. In particular, each year on March 20th and

September 20th, new series of the index with updated constituents are introduced. While

previous series are traded for some time after new series are created, liquidity is usually con-

centrated on the on-the-run series.15 We do not have data on Series 1 and 2. The data from

September 2004 to September 2007 are obtained from the dataset supplemented to Coval et

al. (2009). This subsample contains the on-the-run series numbers 3 to 8. The data from

September 2007 to July 2020 are obtained from Bloomberg (CMA New York). Starting from

series 15 and onward, only series with odd numbers have been traded with tranches. The CDX

indices have 3, 5, 7 and 10 year tenors. We use 5-year CDX indices which are most liquid for

most series.

We summarize all the changes in quotations in Table 2 and in addition, we provide

time-series plots of each component in Figure 5. The fixed component of spreads, the variable

component of spreads, and the upfront payment, are shown in the left, middle, and right panels,

respectively. We summarize some of the main points on the changes in quotations from these

exhibits here:

1. All tranches of series 3-8 except the 0-3 tranche, are quoted as fully variable spreads

(zero fixed spreads). The 0-3 tranche of these series are quoted as an upfront payment

with a 500 b.p. fixed spread.

2. The data from September 2007 to September 2010 includes series 9 only (therefore

skips series 10-14). All tranches of series 9 except the 0-3 tranche are initially quoted as

spreads, and later as upfront payments with fixed spreads. The quote switch for tranche

3-7 occurred in November 2008, for tranche 7-10 in February 2009, and for tranches

10-15, 15-30, and 30-100 in May 2009. After these switches, the fixed spreads are 500

15An exception is series 9 introduced in September 2007 and traded until December 2012, which has been the

most liquid series from September 2007 to September 2010.
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b.p. for tranches 3-7, and 7-10, and 100 b.p. for tranches 10-15, 15-30, and 30-100. The

0-3 tranche of series 9 is always quoted as an upfront payment with a fixed spread of

500 b.p. and a zero variable spread component.

3. The period from September 2010 to July 2020 contains series with odd numbers in

the range 15-33 except series 23. Due to inconsistencies in reported prices, we have

replaced series 17 (on-the-run from September 2011 to September 2012) and 23 (on-

the-run from September 2014 to September 2015) with off-the-run series 15 and 21,

respectively.

4. Before series 15 is introduced in September 2010, the CDX index trades with tranches 0-

3, 3-7, 7-10, 10-15, 15-30 and 30-100. Starting from series 15, the structure of tranches

changes to 0-3, 3-7, 7-15 and 15-100.

5. Starting from series 15, all tranches are quoted as upfront payments with fixed spreads.

Series 15, 17, 19, 21, and 23 have fixed spreads of 500, 100, 100, and 25 b.p. for

tranches 0-3, 3-7, 7-15, and 15-100, respectively.
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Table 1: What Explains CDO Tranche Spreads? (2004:3 – 2017)

No. α β1 β2 R2

CDX Spread

1. 120.013 -6.547 0.538

[10.016] [-4.817]

2. 115.038 -53.948 0.265

[7.321] [-3.560]

3. 133.868 -5.746 -36.676 0.653

[15.664] [-5.997] [-5.608]

Spread (0-3)

4. 3261.805 -209.586 0.636

[10.73] [-2.50]

5. 2970.136 -1451.504 0.222

[6.166] [-3.165]

6. 3593.951 -190.367 -879.284 0.712

[15.776] [-7.111] [-5.089]

Spread (15-100)

7. 49.687 -3.640 0.416

[5.242] [-3.439]

8. 50.800 -38.054 0.331

[5.690] [-4.220]

9. 60.650 -3.006 -29.019 0.596

[9.056] [-4.161] [-6.360]

Tranche spreads are on the Dow Jones North American Investment Grade In-

dex, which are reported by Credit Market Analysis (CMA) and obtained from

Bloomberg (see Data Appendix for construction of our time series). CDX repre-

sents the full CDO. Spread (AL,AU) represents the spread on a trance with loss

attachment points AL and AU in percentage points. For example, the “senior”

spread represents the 15 to 100 percent loss attachment points, while the “equity”

tranche represents the 0 to 3 loss attachment points. We report the coefficients of

the fitted regression:

Tranche Spread(t) = α+ β1
Credit Growth(t)

GDP(t)
+ β2 Consumption Growth + ǫ(t)

for alternative tranches. T-statistics are in parenthesis and are adjusted by Newey-

West’s procedure for autocorrelation and heteroskedasticity.
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Table 2: Fixed spreads of tranches
Start Series Tranches’ Tickers 0-3% 3-7% 7-10% 10-15% 15-30% 30-100%

Sep. 2004 S3 500 - - - - -

Mar. 2005 S4 500 - - - - -

Sep. 2005 S5 500 - - - - -

Mar. 2006 S6 500 - - - - -

Sep. 2006 S7 500 - - - - -

Mar. 2007 S8 500 - - - - -

Sep. 2007 S9 CT753589 CT753593 CT753597 CT753601 CT753605 CT753609 500 - - - - -

Sep. 2007 S9 CT753589 CT753593 CT753597 CT753601 CT753605 CT753609 500 500 500 100 100 100

0-3% 3-7% 7-15% 15-100%

Sep. 2010 S15 CY071225 CY071229 CY071233 CY071237 500 100 100 25

Sep. 2011 S17 CY087579 CY087583 CY087587 CY087591 500 100 100 25

Sep. 2012 S19 CY125375 CY125380 CY125385 CY125390 500 100 100 25

Sep. 2013 S21 CY181667 CY181672 CY181677 CY181682 500 100 100 25

Sep. 2014 S23 CY233259 CY233265 CY233271 CY233277 500 100 100 25

Sep. 2015 S25 CY295911 CY295917 CY295923 CY295929 100 100 100 100

Sep. 2016 S27 CY328667 CY328673 CY328679 CY328685 100 100 100 100

Sep. 2017 S29 CY344120 CY344126 CY344132 CY344138 100 100 100 100

Sep. 2018 S31 CY372924 CY372930 CY372936 CY372942 100 100 100 100

Sep. 2019 S33 CY437839 CY437845 CY437851 CY437857 100 100 100 100

Tranche attachment points are stated in percentage points. Data from September 2004 to September 2007, which traded series 3 to 8, is

obtained from the American Economic Review webpage for Coval, Jurek, and Stafford (2009a). All tranches of series 9 except the 0-3%

tranche were initially quoted as spreads (the first line with S9 series) and later as upfront payments with fixed spreads (the second line

with S9 series). The quote switch for tranche 3-7% occurred in November 2008, for tranche 7-10% in February 2009, and for tranches

10-15%, 15-30%, and 30-100% in May 2009.
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Table 3: Maximum Likelihood Estimates of 6-Regime Markov Switching Model for Ratio of

Credit Growth at Nonfinancial Firms to GDP, Real Consumption Growth, and Real S&P 500

Earnings Growth (2004:3 – 2017)

Ratio of Credit Growth-to-GDP Parameters (%)

µH
G µL

G µD
G

0.835 0.300 -4.086

(0.005) (0.006) (0.003)

Consumption Growth Parameters (%)

µH
C µL

C µD
C

5.08 2.00 0.00

(.003) (0.002) (0.000)

Aggregate Earnings Growth Parameters (%)

µH
Y µL

Y µD
Y

13.03 -9.76 -88.1

(0.131) (2.691) (2.898)

Volatilities (%)

σG,1 σG,2 σG,3

5.78 0.948 0.218

(0.070) (0.022) (0.005)

σC,1 σC,2 σC,3

0.000 1.300 0.000

(0.001) (0.120) (0.001)

σY,1 σY,2 σY,3

0.000 0.000 8.762

(0.001) (0.04) (0.009)

Quarterly Transition Probability Matrix

HC-HG HC-LG LC-HG LC-LG LC-DG DC-HG

HC-HG 0.899 0.0440 0.054 0.000 0.001 0.001

HC-LG 0.181 0.817 0.000 0.000 0.001 0.001

LC-HG 0.000 0.000 0.887 0.111 0.001 0.001

LC-LG 0.019 0.101 0.081 0.795 0.001 0.001

LC-DG 0.098 0.098 0.098 0.098 0.509 0.098

DC-HG 0.098 0.098 0.098 0.098 0.098 0.509

Transition Matrix (Standard Errors)

HC-HG HC-LG LC-HG LC-LG LC-DG DC-HG

HC-HG 0.006 0.003 0.000 0.000 0.000

HC-LG 0.002 0.001 0.001 0.000 0.000

LC-HG 0.000 0.000 0.002 0.000 0.000

LC-LG 0.002 0.000 0.001 0.000 0.000

LC-DG 0.004 0.004 0.004 0.004 0.004

DC-HG 0.004 0.004 0.004 0.004 0.004

Log Likelihood =-401.725
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Table 4: Second Stage SMM Estimated Parameters of Firms’ Cash Flow Processes for Model

With the CRA (2004:3 – 2017)

Prior Belief, Posterior Belief, Bankruptcy Costs

α0 0.256 ᾱ 0.552 Φ 0.287

(0.004) (0.002) (0.003)

Cash Flow Volatility and Correlation

σX 0.212 ρi 0.760

(0.001) (0.004)

Jump Intensities

κ(1) 0.009 κ(2) 0.033 κ(3) 0.042

(0.000) (0.000) (0.000)

κ(4) 0.104 κ(5) 0.184 κ(6) 0.157

(0.000) (0.000) (0.000)

Jump Correlation

ϕ 0.385

(0.045)

SMM Error Value for full sample: χ2(9) = 19.746; p-value = 0.020. SMM Error Value for full sample excluding

spread(15,100) from 2004:4 – 2007: χ2(9) = 14.488; p-value = 0.106. Standard errors are in parenthesis.
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Table 5: Measures of Goodness-of-Fit of ZUV Spreads for Model With the CRA (2004:3 –

2017)

Regression of Data on Model ZUV Spreads (in Basis Points)

α β R2

spread(0,3) 203.279 0.944 0.806

(0.891) ( 7.263)

spread(3,7) 84.188 0.679 0.766

(1.781) (6.975

spread(7,15) 24.181 0.927 0.820

(1.411) (8.982)

spread(15,100) 4.169 0.734 0.645

(0.710) (10.434)

spread(0,100) -7.055 1.144 0.823

(-0.690) (8.448)

Data and Model ZUV Spread Volatilities in Basis Points

Data Model

spread(0,3) 854.590 771.692

spread(3,7) 403.900 527.834

spread(7,15) 202.670 212.95

spread(15,100) 31.355 37.949

spread(0,100) 48.818 40.474

Data and Model 5-Year Target Default Probability

Data Model

0.028 0.029

Data Correlation of ZUV Spreads

spread(0,3) spread(3,7) spread(7,15) spread(15,100) spread(0,100)

spread(0,3) 1.000 0.961 0.889 0.674 0.985

spread(3,7) 0.961 1.000 0.970 0.759 0.985

spread(7,15) 0.889 0.970 1.000 0.863 0.943

spread(15,100) 0.674 0.759 0.863 1.000 0.742

spread(0,100) 0.985 0.985 0.943 0.742 1.000

Model Correlation of ZUV Spreads

spread(0,3) spread(3,7) spread(7,15) spread(15,100) spread(0,100)

spread(0,3) 1.000 0.880 0.891 0.885 0.907

spread(3,7) 0.880 1.000 0.977 0.925 0.976

spread(7,15) 0.891 0.977 1.000 0.955 0.968

spread(15,100) 0.885 0.925 0.955 1.000 0.968

spread(0,100) 0.907 0.976 0.968 0.968 1.000

In the top panel, we present results of the regressions of the form: Data Variable = α +
β Model Variable. Newey-West T.statistics are in parenthesis.
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Table 6: Measures of Goodness-of-Fit of Raw Data for Model (2004:3 – 2017)

Regression of Data on Model Variable Spreads (in Basis Points)

α β R2 Sample

spread(3,7) 13.597 0.622 0.771 2004:Q3 – 2008

(0.443) (6.186)

spread(7,15) -22.764 0.933 0.80 2004:Q3 – 2009:Q1

(-1.266) (7.164)

spread(15,100) -27.516 0.925 0.959 2004:Q3 – 2009:Q2

(-6.590) (29.944)

spread(0,100) -4.262 1.082 0.805 2004:Q3 – 2017

(-0.389) (7.224)

Regression of Data on Model Upfronts (in Basis Points)

α β R2 Sample

upfront(0,3) 11.101 0.845 0.632 2004:Q3 – 2017

(1.853) (5.304)

upfront(3,7) 6.486 0.463 0.491 2009:Q1 – 2017

(2.598) (2.217)

upfront(7,15) 0.56 0.679 0.337 2009:Q2 – 2017

(1.057) (3.612)

upfront(15,100) -0.567 0.649 0.397 2009:Q3 – 2017

(-1.362) (2.228)

We present results of the regressions of the form: Data Variablet = α + β Model Variablet + ǫt.

Newey-West T.statistics are in parenthesis.
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Table 7: Definition of Variables Used for Estimation of Creding Rating Standards

Variable Definition

Operating Margin Operating Income Before Depreciation (oibdp) to Sales (sale)

Interest Coverage Operating Income Before Depreciation plus interest expense (xint) divided by inteerst expense

Total Debt to Assets Long-term debt (dltt) + short-term debt (dlc) divided by assets (att)

Cash to Assets Cash and short-term investments (che) to assets (att)

Research and Development to Assets R&D expenses (xrd) to assets (att). Missings set to zero

Tangibility Property plant and equipment (ppent) to assets (att)

Retained Earnings to Assets Retaained aarnings (re) to assets

Capital Expenditures to Assets Capital expenditures (capx) to assets (att)

Size (NYSE) Percentile NYSE market capitalization percentile

Idiosyncratic Volatility Standard deviation of residuals from rolling one-year regression

of daily stock market returns on four factors (market, SMB, HML¡ and momentum);

factors are btained from the website of Ken French

Market Beta Firm’s coefficient on market from four-factor model above

Momentum Firm’s coefficcient on momentum factor from four-factor model above

HML Firm’s coefficient on HML factor from four-factor regression above

The Computstat data items are in parenthesis.
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Table 8: Estimation of Determinants of Credit Ratings and Credit Rating Standadars from

Ordered Probit model (1985:4 – 2016:3)

Number of Observations: 23,142

Pseudo R2: 0.1083

Independent Variable Coefficient Standard Error P-Value

Operating Margin 0.868 0.044 0.000

Interest Coverage 0.182 0.008 0.000

Total Debt to Assets -2.329 0.066 0.000

Divident Payer 0.441 0.019 0.000

Cash to Assets -0.145 0.087 0.092

Research and Development to Assets 10.912 0.789 0.000

Tangibility 0.567 0.038 0.000

Retained Earnings to Assets 0.754 0.033 0.000

Capital Expenditures to Assets -1.335 0.238 0.000

Size (NYSE) Percentile 0.975 0.062 0.000

Market/Book 0.011 0.008 0.164

Idiosyncratic Volatility -1.689 0.078 0.000

Market Beta -42.349 2.218 0.000

Momentum -19.624 2.253 0.000

HML -11.24 1.368 0.000

We provide estimates of an ordered probit model of firms credit ratings to measure

time variation in credit rating standards. Long-term issuer credit ratings of issuers

are assigned succesive integer ratings from 10 to 17 for investment-grade bonds

rated BBB, A, · · · , AAA. We estimate the specfication:

Rit = 17 if Zit ∈ [µ16,∞],

Rit = 16 if Zit ∈ [µ15, µ16],

..

Rit = 10 if Zit ∈ [µ9, µ10],

in which, Zit = αt+β′ ·Xit+ǫit, is the latent variable that affects the rating with

partition points µi, the independent variables, Xit, are the firm level indicators

of credit quality listed in each row, and E[ǫit|Xit] = 0. The intercept, αt, is a

measure of credit rating standards at time t. The full-timeseries of αt is shown in

Figure 8.

49



Figure 1: Tranche Spreads, Economic Growth, and Credit Availability

Tranche spreads are on the Dow Jones North American Investment Grade Index, which are reported by Credit

Market Analysis (CMA) and obtained from Bloomberg (see Data Appendix for construction of our time series).

The “senior” spread represents the 15 to 100 percent loss attachment points, while the “equity” tranche represents

the 0 to 3 loss attachment points.
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Figure 2: Probabilities of the States From Regime Switching Model (1952 – 2017)
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Figure 3: Fundamentals: Data and Fitted From Regime Switching Model (1952 – 2017)

The expected growth explains realized growth with R2s of 63.9%, 18.6%, and 40.1%, for credit growth, con-

sumption growth, and aggregate earnings growth, respectively.
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Figure 4: Data Approximated and Model Zero Upfront Variable Spreads on CDO Tranches

(2004:4 – 2017)
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Figure 5: Raw Data and Model Upfronts and Variable and Fixed Spreads on CDO Tranches

(2004:4 – 2017)
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Figure 6: Impulse Responses of Credit Availability and Consumption Growth (1952 – 2017)
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We display the generalized impulse response functions of Pesaran and Shin (1998). 95% confidence bands are

in dotted lines.
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Figure 7: Proportion of Firms with Investment-Grade Ratings (2004:4 – 2017)
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Figure 8: Crediit Rating Standards for Investment-Grade Ratings (2004:4 – 2017)
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8 Online Appendix

In this appendix we present results for the out-of-sample performance for the period 2018 -

2020:2 based on the parameters of our model, which is estimated from 1952 - 2017.

Figure 9: Fundamentals: Data and Fitted From Regime Switching Model In-Sample (1952 –

2017) and Out-of-Sample(2018 – 2020:2)

The expected growth explains realized growth with R2s of 63.9%, 18.6%, and 40.1%, for credit growth, con-

sumption growth, and aggregate earnings growth, respectively.
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Figure 10: In-Sample (1952 – 2017) and Out-of-Sample(2018 – 2020:2) Probabilities of the

States From Regime Switching Model (1952 – 2017)
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Figure 11: Data Approximated and Model (With CRA) Zero Upfront Spreads on CDO

Tranches In-Sample (1952 – 2017) and Out-of-Sample(2018 – 2020:2)
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Figure 12: ZUV Spread (0,3) Approximated by our Model and by Coval, Jurek, and Stafford

(2009a)
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