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Abstract

This paper studies optimal executive pay when the CEO has fairness concerns: if his

wage falls below a perceived fair share of output, he suffers disutility that is increasing in the

discrepancy. Fairness concerns do not lead to fair wages always being paid; instead, the firm

threatens the CEO with unfair wages for low output to induce effort. The optimal contract

sometimes involves performance shares: the CEO is paid a constant share of output if it is

sufficiently high, but the wage drops discontinuously to zero if output falls below a threshold.

Even if the incentive constraint is slack, the optimal contract features pay-for-performance,

to address the CEO’s fairness concerns and ensure his participation. This rationalizes pay-

for-performance even if the CEO does not need effort incentives.
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Standard executive compensation models assume that CEOs care about pay only for the con-

sumption it enables. As a result, the marginal consumption utility of the extra pay from improving

performance must weakly exceed the marginal cost of effort required to do. Such models have con-

tributed substantially to our understanding of executive compensation and inspired a stream of

empirical research.

However, it is not clear that consumption utility is the only, or even the most important, driver

of CEO pay in practice, given that CEOs are typically wealthy and nearly all of their consumption

needs are already met. Edmans, Gosling, and Jenter (2023) survey directors and investors on

how they set pay contracts. Both sets of respondent highlight how pay is driven not only by the

desire to provide consumption incentives, but also the need to ensure the CEO feels fairly treated.

This finding is consistent with experimental evidence that individuals are motivated by fairness

concerns (see Fehr, Goette, and Zehnder (2009) for a survey) as well as prior research suggesting

that pay is a hygiene factor – pay above a certain level provides limited additional motivation, but

pay below that level is a strong demotivator (e.g. Hertzberg, 1959).

The respondents also suggest that firm value is an important determinant of what directors,

investors, and the CEO view to be a fair level of pay. If firm value has increased due to CEO

effort, they believe that it is fair to reward the CEO for this increase. If firm value has increased

(decreased) due to luck outside the CEO’s control, they believe the CEO should share in this

good (bad) luck. That a share of firm value is perceived as a fair payment is consistent with the

ultimatum game, which has been widely replicated (e.g. Roth et al., 1991). If one party has been

gifted an endowment, the other believes it is fair to be offered a sizable share, and will sacrifice his

own consumption to punish an unfair offer.

This paper studies optimal CEO pay when the CEO is motivated by both traditional consump-

tion utility and fairness concerns. We model fairness concerns by specifying a perceived fair wage

that is increasing in the firm’s output, which in turn depends on both CEO effort and luck. The

CEO suffers disutility if his wage falls below the fair wage, the magnitude of which is increasing

in the discrepancy.

It may seem that fairness concerns should lead to the CEO always receiving a fair wage, but

this turns out not to be the case. We start with a linear model that demonstrates the effect of

fairness concerns in the most transparent possible setting. The fair wage is linear in output , i.e.

the CEO believes that it is fair for him to receive a certain percentage of output. If the actual

wage is at least the fair wage, his utility equals the wage, as with standard risk neutrality. If the

actual wage is below the fair wage, he suffers disutility which is linear in the discrepancy. The

CEO’s utility function is thus piecewise linear, with a slope of 1 above the fair wage and a slope

exceeding 1 below it. The principal is risk-neutral and her goal is to find the cheapest contract to

induce a given effort level out of a continuum. Both parties are protected by limited liability.

We show that the optimal contract involves a threshold below which the CEO is paid zero, and

above which he receives the fair wage, i.e. a constant share of output. This contradicts the intuition

that fairness concerns will lead to the CEO being paid fair wages for all output levels. Instead,
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fairness concerns mean that unfairness can be a powerful motivator. If output is sufficiently low

that it is unlikely that the CEO has worked, the firm pays him the most unfair possible wage

of zero. Only if output exceeds a lower threshold is the CEO paid the fair wage. Depending

on parameter values, there may also be an additional upper threshold above which the CEO is

paid the firm’s entire output. Thus, our model demonstrates the range of outputs over which the

CEO is paid fairly; interestingly it is typically only for intermediate levels, and not for high or low

outputs.

Innes (1990) showed that, with a risk-neutral agent, the optimal contract is “live-or-die” – the

agent receives zero if output is below a threshold, and the entire output above it. The intuition

is that it is optimal to concentrate payments in the highest likelihood ratio states, i.e. pay the

highest possible amount for sufficiently high outputs. However, such a contract is inefficient under

fairness concerns. Even if the CEO works, output may fall below this threshold due to bad luck. If

the CEO is paid zero, he suffers significant disutility due to unfairness, which erodes his incentives

to work. Thus, it is efficient to offer him a fair wage for intermediate output levels. We show that,

if the CEO is paid positive amounts for outputs with a positive likelihood ratio, the threshold is

decreasing in the CEO’s fairness concerns – when the CEO cares more about fairness, the range

of outputs over which he receives a fair wage expands.

The contract resembles performance shares, which are frequently offered in reality (see the

survey of Edmans, Gabaix, and Jenter (2017)). Standard models, such as Holmström (1979), do

not predict discontinuous contracts. Innes (1990) predicts a sharp discontinuity where the CEO’s

pay increases from zero to the entire output, once output crosses a threshold, but such sharp

discontinuities do not exist in reality. To obtain more realistic contracts, Innes (1990) assumes that

the principal’s payoff cannot be decreasing in output, otherwise she would “burn” it or the agent

would secretly inject his own funds into the company to inflate it. Innes’ theory can be interpreted

as either a financing model where an entrepreneur (agent) raises funds from an outside investor

(principal), or a compensation model where a company (principal) offers a contract to a CEO

(agent). While the two justifications for the monotonicity constraint are realistic for the financing

application, they may be less relevant for the compensation application. Dispersed shareholders

cannot coordinate to burn output, and while the board acts on shareholders’ behalf, burning

output violates directors’ fiduciary duty to the company. Similarly, it would likely be illegal for

the CEO to inject his own funds into the company to manipulate the stock price. Our paper obtains

realistic contracts without a monotonicity assumption, and indeed the optimal contract involves a

discontinuity as is often the case in real life. Performance shares provide fair wages if performance

is good and unfair wages if performance is bad, to motivate good performance. Moreover, the

discontinuity is milder and thus more realistic – when performance crosses a threshold, the wage

jumps from zero, but not to the entire output.

We then extend the model to a non-linear one. Now, the utility function takes a more general

form – if the wage is fair, utility is increasing and concave in the wage; if the wage is unfair, utility

is a general function of both the wage and output. It is increasing and convex in the former (as in
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prospect theory) and decreasing in the latter. The fair wage remains increasing in output but need

not be linear, and the utility loss from unfair wages need not be linear in the discrepancy. Despite

this additional generality, we show that the basic features of the linear model remain robust – the

payment is zero below a lower threshold, the fair wage above this threshold, and the entire output

above a higher threshold. However, there is an additional fourth region, in between the regions in

which the CEO receives the fair wage and the entire output. In this region, his payment exceeds

the fair wage, and is generally convex in output. Intuitively, if performance is very strong, the

principal wishes to reward the CEO with more than the fair wage. However, since the CEO is

risk-averse, it is inefficient to pay him the entire output.

We show that pay is increasing in output even when the incentive constraint is slack. When

participation is the only constraint, it may seem that the most efficient way to satisfy this constraint

is to pay the CEO a fair wage for all outputs – the prior argument that zero wages are needed

to punish low effort no longer applies when the incentive constraint is non-binding. However,

guaranteeing the CEO a fair wage for all outputs may lead to the CEO receiving rents. To avoid

this, the firm pays him an unfair wage for some output levels. Since the CEO’s utility function

is convex below the fair wage, if the firm reduces the wage below the fair level, it is optimal to

reduce it all the way to zero. Thus, the firm pays the CEO zero for some output levels, rather

than a moderately unfair wage for a greater range of output levels.

That pay is increasing in output even without an incentive constraint means that the firm can

induce CEO effort “for free”. In a standard moral hazard model, implementing higher effort is

always costly to the firm.1 In our model, since pay is optimally increasing in output to satisfy the

participation constraint, lower effort will be more costly to implement than certain higher effort

levels, so they will never be induced. A frequent criticism of performance-related pay for CEOs is

that it should not be necessary – the CEO should be intrinsically motivated to exert effort, and/or

the board should monitor CEO effort. Our model demonstrates that performance-related pay may

be optimal not to induce effort, but to secure the participation of a CEO with fairness concerns.

This paper is related to the theoretical literature on executive compensation, recently surveyed

by Edmans and Gabaix (2016) and Edmans, Gabaix, and Jenter (2017). The vast majority of

these theories feature moral hazard, where pay only matters to the CEO by providing consumption

utility. Our paper is also related to CEO pay models that feature reference points. For example, De

Meza and Webb (2007) and Dittmann, Maug, and Spalt (2010) study optimal CEO compensation

in the presence of loss aversion. In our model, the fair wage can be seen as a reference point; the

CEO is also loss-averse as his utility is steeper below the fair wage than above it. Our key innovation

is that the fair wage depends on output, which leads to a very different optimal contract. Some

other CEO pay models feature the CEO’s utility depending on variables other than pay, although

not on output. For example, DeMarzo and Kaniel (2023) and Liu and Sun (2023) incorporate

1If the CEO is risk-neutral and protected by limited liability, implementing higher effort requires the firm to
offer him a higher payment upon success and thus a higher expected wage; if the CEO is risk-averse, this requires
the firm to offer him a more sensitive contract and thus a risk premium.
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relative wealth concerns.

An important literature has studied the effect of fairness concerns in contracts outside the CEO

setting. Fehr and Schmidt (1999) study optimal contracts in the presence of inequity aversion,

where an agent dislikes another agent receiving less than him, and dislikes even more another agent

receiving more than him. Sobel (2005) provides a survey of this literature.2 In these models (as

well as most experiments in this literature), subjects are ex ante symmetric, and so it makes sense

for them to compare their consumption. However, these models do not apply to a CEO setting,

where the firm’s objective function is shareholder value, which is orders of magnitude in excess of

CEO pay. An inequity aversion explanation for performance-sensitive CEO pay is that the board

feels sorry for the CEO as he has such a small share of firm value while the firm captures the

entire residual, which seems at odds with real-life perceptions. (If, instead, the board represents

individual shareholders rather than the firm, and a shareholder always envies the CEO as he always

makes more than her, then inequity aversion would have no bite as shareholders would always want

to lower pay as in a standard model). In our model, it is the CEO who has fairness preferences,

rather than the board or shareholders. Moreover, the CEO is only concerned for his own utility,

unlike in social preference models where agents are concerned with other agents’ utility.

1 The Model

We consider a standard principal-agent model with one added feature: the agent (manager,

“he”) has fairness concerns, to be specified below.

At time t = −1, the principal (firm, “she”) offers a contract to the agent. At t = 0, if the agent

has accepted the contract, he privately chooses an effort level e ∈ R+. The agent’s cost of exerting

effort e is C(e), where C (·) is continuously differentiable with C ′(e) > 0 and C ′′(e) > 0 for e > 0,

C ′(0) = 0, and lime↗∞C ′(e) = ∞. As is standard, effort can refer not only to working rather than

shirking, but also to choosing projects to maximize firm value rather than private benefits or not

diverting cash flows. At t = 1, output q ∈ [0, q] is realized, where q may be finite or infinite, and

the agent is paid a wage w (q). Output is distributed according to a density function (“PDF”)

ϕ(q|e) that satisfies the monotone likelihood ratio property (“MLRP”). To simplify the exposition,

we assume that ϕ is twice continuously differentiable. Both the principal and agent are protected

by limited liability, so that 0 ≤ w(q) ≤ q ∀q.
We incorporate fairness concerns by assuming that the agent does not evaluate his wage in

isolation, but also takes into account the output generated by the firm. Specifically, his utility

u (w, q) depends both on his wage w and on output q. The utility function is increasing and

2In Rabin (1993), an agent may put positive or negative weight on the other agent’s utility, depending on his
assessment of her intentions. Empirically, Fehr, Klein, and Schmidt (2007) show how inequity aversion leads to a
principal paying an agent a discretionary bonus upon good performance, even though such a bonus is unenforceable.
Fehr, Kirchsteiger, and Riedl (1993) show that workers reciprocate a fair wage with higher effort in the next period,
even though this higher effort is unenforceable. Charness and Rabin (2002) use experiments to distinguish between
various models of social preferences.
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continuously differentiable in w. The agent’s reservation utility is given by U .

For each target level eT , the principal’s problem is to find the cheapest contract that induces

the agent to choose an effort level of at least eT :

minw(·),e∗
∫ q

0
w(q)ϕ(q|e∗)dq (1)

s.t. e∗ ∈ argmaxe

{∫ q

0
u(w(q), q)ϕ(q|e)dq − C(e)

}
≥ eT (2)∫ q

0
u(w(q), q)ϕ(q|e∗)dq − C(e∗) ≥ U (3)

0 ≤ w(q) ≤ q ∀q (4)

w(q) ≥ w(q′) ∀q > q′ (5)

where (2) is the incentive compatibility constraint (“IC”), (3) is the individual rationality constraint

(“IR”), (4) are the limited liability constraints, and (5) is the agent’s monotonicity constraint.3

Note that there is a distinction between the level of effort chosen by the manager e∗, and the

target level of effort required by the principal eT . The former will exceed the latter if the incentive

constraint is slack.

The above formulation captures fairness concerns in the simplest possible way. We use the

standard moral hazard model with continuous effort and continuous output, with the only de-

parture being the specification of the agent’s utility function. As a result, any deviation in the

optimal contract from standard moral hazard models can be attributed to the utility function.

Another formulation, which would follow the ultimatum game more literally, would be to have a

single-period model in which the agent first receives his pay and then chooses his effort, or a multi-

period model where the agent responds to his first-period pay by choosing effort in the second

period. Then, if offered unfair pay, he may withhold effort and reduce total surplus, similar to the

respondent in the ultimatum game refusing the proposed share and leading to both parties receiv-

ing zero. However, such a formulation would be more ad hoc, as we would need to hard-wire the

link between perceived unfairness and next-period effort, rather than fairness entering the utility

function. Our framework captures fairness preferences in a standard one-period model in which

the agent first exerts effort and then receives pay. He will withhold effort if he anticipates that

it will not be fairly rewarded. This allows our results to be compared with standard one-period

moral hazard models without fairness concerns, such as Holmström (1979) and Innes (1990). In

the model of Akerlof and Yellen (1990), the agent’s effort is reduced if his wage is lower than the

fair wage, but the wage is not contingent on the agent’s performance.

3Standard models do not require an agent monotonicity constraint since it is a consequence of the MLRP. In
our model with fairness concerns, this is not necessarily the case. We assume that the agent’s payoff has to be
non-decreasing in output otherwise he would burn output. Innes (1990) assumes that the principal’s payoff has
to be non-decreasing in output otherwise she would burn output; the agent has more control of output than the
principal.
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Define the likelihood ratio LR (q|e) as follows:

LR(q|e) ≡
∂ϕ
∂e
(q|e)

ϕ(q|e)
,

and let qe0 be the output for which the likelihood ratio associated with effort e is zero: LR(qe0|e) = 0.

By MLRP and the fact that ϕ is continuously differentiable, qe0 exists and is unique. To guarantee

that an optimal contract exists, we assume:

∫ qe
T

0

0

u(0, q)
∂ϕ

∂e
(q|eT )dq +

∫ q

qe
T

0

u(q, q)
∂ϕ

∂e
(q|eT )dq ≥ C ′(eT ) (6)

The above inequality means that paying the agent the minimum (zero) for outputs with negative

likelihood ratios and the maximum (the entire output) for outputs with positive likelihood ratios

will induce effort eT . If it is not satisfied, then no contract that satisfies bilateral limited liability

can implement eT .

Lemma 1 below derives a sufficient condition for the validity of the first-order approach (“FOA”),

which allows us to replace the incentive constraints (equation (2)) by the first-order condition.4

Let K+
e (q) and K−

e (q) denote the positive and negative parts of the second derivative of the joint

distribution ϕ(q|e) with respect to effort:

K+
e (q) := max

{
∂2ϕ

∂e2
(q|e), 0

}
, (7)

K−
e (q) := min

{
∂2ϕ

∂e2
(q|e), 0

}
. (8)

Lemma 1 (First-Order Approach): Suppose that∫ q

0

(
K−

e (q)u(0, q) +K+
e (q)u(q, q)

)
dq < C ′′(e) (9)

for all e ∈ R+. Then, the FOA is valid.

We henceforth assume that condition (9) holds. We start in Section 2 by considering a piecewise

linear model to demonstrate the effect of fairness concerns in the simplest possible setting. Section

3 analyzes a non-linear model.

4This is related to the condition for the FOA in a model with limited liability in Chaigneau, Edmans, and
Gottlieb (2022). The difference is that the utility function also depends on output in Lemma 1.
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Figure 1: Top row: the function u(w) defined in equation (10) as a function of w for q = 1, γ = 1
and ρ = 0.5 on the left; γ = 2 and ρ = 0.5 in the middle; γ = 1 and ρ = 0.25 on the right.

2 Linear Model

The agent’s utility function is as follows:

u(w, q) ≡ w − γmax {w∗(q)− w, 0} . (10)

The first term is the standard risk-neutral utility function. The second term captures the agent’s

concern for fairness, where w∗ (q) is the agent’s perceived fair wage for output q, which in this

linear model is given by

w∗(q) ≡ ρq, (11)

where ρ ∈ [0, 1] is the agent’s perceived fair share of output q. If the agent’s actual wage falls below

his perceived fair wage, he suffers disutility scaled by γ ≥ 0, which parametrizes the intensity of

his fairness concerns.

One determinant of ρ is the importance of agent effort to the firm’s output. The survey of

Edmans, Gosling, and Jenter (2023) finds that “how much the CEO can affect firm performance”

is the main determinant of pay variability and the free-text fields and interviews suggest that

fairness is a primary reason: “if the CEO has a greater effect on performance, it is fair to reward

her more for good performance.” Another potential determinant is incentives in peer firms – the

third most popular response in the survey is “the split between fixed and variable pay in peer

firms.”

With γ = 0 (no fairness concerns), the utility function in equation (10) collapses to the standard

risk-neutral utility function u(w, q) = w. Accordingly, unless otherwise specified, we assume γ > 0

and ρ ∈ (0, 1]. The utility function is piecewise linear with a kink at the fair wage. Figure 1

illustrates the utility function for various values of γ and ρ. This piecewise linear utility function

is the simplest and most transparent specification for fairness concerns, and allows us to conduct

comparative statics with respect to the parameters γ and ρ.

As can be seen in Figure 1, the utility function exhibits loss aversion. The agent cares not only

about the wage w per se, but also gains and losses relative to the fair wage, with his sensitivity

to losses exceeding his sensitivity to gains. De Meza and Webb (2007) and Dittmann, Maug, and

Spalt (2010) also study optimal contracts in the presence of loss aversion. The unique feature of
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our fairness model is that the fair wage depends on output and is thus endogenously determined ex

post. A loss aversion model features a reference point that is independent of output and thus known

ex ante: in de Meza and Webb (2007), it is the median of the wage distribution; in Dittmann,

Maug, and Spalt (2010) it is last year’s salary (they consider an alternative reference point that

also includes the market value of the shares and options the agent inherited from the previous

year.)5

To simplify the analysis, in this section we assume:

− γρ

∫ qe
T

0

0

q
∂ϕ

∂e
(q|eT )dq + ρ

∫ q

qe
T

0

q
∂ϕ

∂e
(q|eT )dq ≥ C ′(eT ) (12)

− γρ

∫ q

0

qϕ(q|0)dq − C(0) < U (13)

ρ

∫ q

0

qϕ(q|e∗)dq − C(e∗) ≥ U, where e∗ satisfies equation (2) with w(q) = w∗(q) ∀q. (14)

The assumptions in equations (12)-(14) are not crucial for our results, but reduce the number

of cases we need to consider. Inequality (12) ensures that an incentive-compatible contract that

elicits effort eT exists even if the firm never pays more than the fair wage.6 Inequality (13) implies

that, even if the marginal cost of effort were zero, an agent who is paid zero for any output would

be below his reservation utility and thus reject the contract. Inequality (14) implies that a contract

that always pays the fair wage satisfies the participation constraint.

Define qmin
m implicitly as the highest value that satisfies the following equation:

−γρ

∫ qmin
m

0

q
∂ϕ

∂e
(q|eT )dq + ρ

∫ q

qmin
m

q
∂ϕ

∂e
(q|eT )dq = C ′(eT ). (15)

If a contract that implements eT exists such that the agent is never paid above the fair wage for

any output, qmin
m is the threshold such that the payment is zero below qmin

m , and the fair wage above

qmin
m . Note that, with MLRP, the definition of qe

T

0 and equation (15) imply that qmin
m ≥ qe

T

0 .

Proposition 1 studies the case when the target effort level eT is zero, i.e. the only goal of the

contract is to ensure the agent’s participation. However, the agent still chooses effort optimally

(see equation (2)) given the contract.

Proposition 1 (Zero target effort level): Fix eT = 0. If U and γ are large enough, the principal

5In Hart and Moore (2008), the agent’s reference point is outcomes permitted by the contract, rather than
output, and there is no loss aversion.

6This expression considers the contract that provides the highest effort incentives when the principal does not
pay more than the fair wage: one that pays zero for outputs that are bad news about effort, and the fair wage for
outputs that are good news conditional on effort eT .
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implements e∗ > 0 and the following contract is optimal:

w(q) =

{
w∗(q) for q < qc

ρqc for q ≥ qc
, (16)

where qc is set so that the IR in equation (3) binds, with the utility function in equation (10) and

the contract specified in equation (16).

Perhaps surprisingly, the agent chooses a strictly positive effort level even though the principal

does not elicit any effort. Intuitively, a payment increasing in output allows the agent to receive

the fair wage for a greater range of outputs, reducing his disutility from receiving unfair wages

and allowing his IR to be satisfied at lower cost. The increasing payment also induces effort.

One optimal contract pays the agent the fair wage for low outputs (q < qc) to address his fairness

concerns, up to a maximum of ρqc. Since the payment is increasing in output, this contract induces

e∗ > 0. The maximum wage of ρqc reduces effort incentives, which helps satisfy the IR since the

agent has to be compensated for his effort.

Proposition 2 gives the optimal contract when the IC binds. It distinguishes between the cases

in which the IR is binding or nonbinding. A sufficient condition for the latter is:7

U + C(0) ≤ −γρ

∫ q

0

qϕ(q|0)dq where 0 = argmax
e

−γρ

∫ q

0

qϕ(q|e)dq − C(e), (17)

Proposition 2 (Binding incentive constraint): Fix eT sufficiently high. The principal implements

e∗ = eT and offers the following contract:

w(q) =


0 for q < qm

w∗(q) for q ∈ [qm, qM)

q for q ≥ qM

. (18)

Moreover:

(a) If γ <
LR(q|eT )

LR(qmin
m |eT )

−1 and U is sufficiently low that the IR is slack, then LR
(
qm|eT

)
(1+γ) =

LR
(
qM |eT

)
, so that qm < qM .

(b) If U is sufficiently high, then LR(qm|eT ) (1 + γ) < LR(qM |eT ), so that qm < qM .

(c) If γ >
LR(q|eT )

LR(qmin
m |eT )

− 1 and

−γρ

∫ qmin
m

0

qϕ(q|eT )dq + ρ

∫ q

qmin
m

qϕ(q|eT )dq ≥ U, (19)

then qm = qmin
m and qM = q;

7Expression (17) states that an agent who is always paid zero exerts zero effort. Intuitively, zero effort reduces
the cost of effort; it also reduces output and thus the perceived fair wage, and consequently the perceived unfairness

from being paid zero. Note that by MLRP, we have
∫ q

0
q ∂ϕ
∂e (q|e)dq > 0.
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Without fairness concerns (γ = 0), the model is similar to the pure moral hazard setting of

Innes (1990). The principal provides effort incentives by rewarding high outputs; due to MLRP,

it is efficient to concentrate rewards on very high outputs only. Parts (a) and (b)8 show that,

regardless of whether the participation constraint is binding, γ = 0 leads to qm = qM : the optimal

contract is “live-or-die”. There is a single threshold below which the agent is paid the minimum

possible (zero) and above which he is paid the maximum possible (the entire output q).

With fairness concerns (γ > 0), such a contract is suboptimal for two reasons. First, it does

not satisfy the IR efficiently, which is a concern if it is binding (i.e. part (b) applies). The

agent is receiving an unfair wage (zero) for outputs below the threshold, which cause very high

disutility because of his fairness concerns. Second, it does not satisfy the IC efficiently. The

agent is receiving an unfair wage for some output levels below the threshold, even though they

are associated with positive likelihood ratios. Thus, even though these output levels indicate that

the agent has worked, he suffers significant disutility for achieving them, reducing his incentives

to work. Since the utility function is steeper below w∗ (q) rather than above it, it is efficient to

increase the rewards for moderately low outputs (that are nevertheless associated with positive

likelihood ratios) from 0 to w∗ (q), and simultaneously to reduce the rewards for moderately high

outputs from q to w∗ (q).

Part (a) establishes that, when γ is positive but sufficiently low, the optimal contract has three

regions. For outputs below qm, the agent is paid zero; for outputs above qM , he is paid the entire

output. These regions are similar to Innes (1990). Due to fairness concerns, there is a third region

– for intermediate outputs, the agent is paid the fair wage w∗ (q). When output hits q = qm, the

wage jumps to w∗(q); as output continues to rise, he continues to be paid the fair wage which

also rises, since w∗(q) = ρq. Pay-performance sensitivity (“PPS”) ρ is determined by what the

CEO believes to be a fair reward for performance; as explained earlier, ρ could in turn depend on

how much his effort affects output, or PPS in peer firms. In standard models with risk neutrality

(e.g. Innes (1990)), PPS is 1, i.e. the agent is the residual claimant, which is not the case for any

CEO (except for 100% owner-managers). In standard models with risk aversion (e.g. Holmström

(1979)), PPS is determined by a trade-off between incentives and risk aversion. However, it is

unclear how important risk aversion is for CEOs: the survey of Edmans, Gosling, and Jenter

(2023) finds that CEO risk aversion is the least important out of seven determinants of PPS, and

Becker (2006) documents a weak relationship between risk aversion and PPS. Once output reaches

q = qM , the wage jumps to the entire output. Thus, fairness concerns cause the principal to depart

from the live-or-die contract and offer a fair wage for certain output levels.

Intuitively, the two thresholds qm and qM are determined by a trade-off. On the one hand, the

principal wishes to concentrate incentives on outputs with the highest likelihood ratios, as in Innes

(1990). On the other hand, she wishes to avoid paying zero for outputs with a positive likelihood

ratio as this is unfair and reduces the agent’s incentives to work. Thus, the principal pays the fair

wage, rather than zero, for outputs between qm and qM . The distance between them is determined

8Part (c) is inapplicable with γ = 0 due to MLRP and qmin
m ≤ q.
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by (1 + γ)LR (qm|e∗) = LR (qM |e∗). With γ = 0, we have a single threshold; as γ rises, the wider

the region in which the agent is paid the fair wage.

Part (c) shows that, when γ is sufficiently high, qM increases all the way to q. The highest

region disappears, so the agent is never paid the entire output. The optimal contract thus only

has two regions – zero for low outputs and the fair wage for high outputs. Decreasing qm means

that the principal pays the fair wage rather than zero for outputs above qmin
m , which have a positive

likelihood ratio. When fairness concerns are so strong that γ > LR(q|e∗)
LR(qmin

m |e∗) − 1, the penalty γ for

payments below the fair wage is sufficiently high for this effect to outweigh the standard desire to

concentrate incentives on very high outputs (Innes (1990)). Thus, the optimal contract involves

increasing qM to the highest possible level of q. Since the agent is never paid above the fair wage,

incentive compatibility is achieved by setting qm = qmin
m as in equation (15).

While the above explains the optimal contract by starting from a model of moral hazard and

adding in fairness concerns, another way to view the intuition is to start with a pure fairness

model and then add in moral hazard. One may think that fairness concerns would lead to the

agent always being paid the fair wage w∗(q) as this provides the agent his reservation utility at

minimum cost. However, such a contract does not provide effort incentives efficiently. Since the

agent suffers disutility from an unfair wage, it is efficient to “threaten” him with the most unfair

possible wage of zero for low output: fairness concerns can justify unfair wages for some outputs

because avoiding unfairness is a motivator. In addition, if output is sufficiently high, the agent

is paid the entire output rather than the fair wage. This is because, for incentive provision, it is

efficient to concentrate rewards in the highest likelihood ratio states; with a monotone likelihood

ratio, this involved paying the agent the maximum possible for high outputs.

In part (c), the contract represents performance shares, where the agent is given shares worth

ρq that are forfeited if the q < qm. In standard models where the likelihood ratio is a continuous

function of output (as in our setting), such as Holmström (1979), the optimal contract is also a

continuous function of output and so does not involve discontinuities. In our model, discontinuities

are optimal because the threat of the most unfair possible wage incentivizes effort. In the Innes

(1990) model without a monotonicity constraint, the optimal contract is discontinuous but takes a

“bang-bang” form where the agent receives either the lowest possible wage or the highest possible

wage; we are unaware of such a contract being offered in reality. Our contract involves discontinu-

ities, but the discontinuity is non-extreme and leads to interior solutions – at qm, the wage jumps

from 0 to a share of output (rather than the entire output), as with performance shares.9

Corollary 1 shows how the contract depends on the intensity of fairness concerns.

Corollary 1 When the incentive constraint binds, qm ≤ qe
T

0 and qM < q, the threshold qm above

which the manager is paid a fair wage w∗(q) is decreasing in γ.

9Chaigneau, Edmans, and Gottlieb (2022) derive conditions under which performance-vesting options are the
optimal contract. However, such a contract is continuous as it involves options; the “performance” is a signal
separate from output that affects either the number of vesting options or the option strike price.
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Figure 2: The contract w(q) as a function of q for parameter values described in Example 1.

When the contract is designed to provide incentives and qm ≤ qe
T

0 , the threshold qm above which

the manager is paid the fair wage is decreasing in γ. Intuitively, the stronger fairness concerns are,

the stronger the disutility the agent suffers from receiving zero. This reinforces effort incentives

when the agent is only paid zero for outputs which are bad news for effort (qm ≤ qe
T

0 ), but also

reduces the agent’s expected utility from the contract. The principal will therefore change the

thresholds qm and qM to reduce effort incentives and to increase the agent’s expected utility. This

is achieved by decreasing qm, so that the agent receives the fair wage for a larger set of outputs

(the effect on qM is ambiguous).

The intuition for the condition qm ≤ qe
T

0 is as follows. An increase in γ raises the disutility of

zero payments. If qm ≤ qe
T

0 , then zero payments are received only if q < qe
T

0 (i.e. for bad news

outputs) and so the agent’s effort incentives unambiguously rise. To ensure the IC continues to

bind, the principal reduces effort incentives. She does so by lowering qm, because this increases the

range of outputs (qm, q
eT

0 ) over which the agent receives the fair wage even though they are bad

news about effort.10 Thus, an increase in γ unambiguously reduces qm. If qm > qe
T

0 , the effect of

increasing γ on effort incentives is ambiguous: it raises the disutility of receiving zero payments,

which arise not only for all bad news outputs (q < qe
T

0 ) but also for some good news outputs

q ∈ (qe
T

0 , qm). Thus, it is unclear whether effort incentives rise or fall, and so the effect on qm is

ambiguous.

Example 1 illustrates the agent’s preferences and the optimal contract for a given parametriza-

tion.

Example 1 The agent’s preferences are given by γ = 1, ρ = 1
2
, and C(e) = c

10
× e10. Output is

lognormally distributed with parameters e∗ = 1 and σ = 1. The optimal contract is depicted on the

left of Figure 2 for c = 2 and U = 3, in the middle of Figure 2 for c = 4 and U = 2, and on the

right of Figure 2 for c = 4.75 and U = 2.5.

10While reducing qm is costly to the principal by reducing the range of outputs over which zero wages are paid,
doing so allows the principal to increase qM which lowers the cost of the contract.
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Figure 3: Top row: the function u(w) defined in equation (20) as a function of w for v(w) = ln(w+1)
and ν(w, q) = (w + 1)1.2 − 1 − 1

5
q with q = 0.5 on the left, q = 1 in the middle, and q = 2 on

the right. Bottom row: the blue line is the fair wage w∗(q) defined by v(w∗(q)) ≡ ν(w∗(q), q) as a
function of q for v(w) = ln(w+1) and ν(w, q) = (w+1)1.2− 1− 1

5
q on the left, v(w) =

√
w + 1− 1

and ν(w, q) = w − 1
2
q on the right. The orange line is principal LL.

3 Nonlinear Model

In this section, the utility function is defined as:

u(w, q) ≡ min {v(w), ν(w, q)} (20)

where v(w) is the utility over money alone, which is increasing and concave (v′ > 0, v′′ ≤ 0), with

v(0) = 0.11 The term ν(w, q) is the agent’s utility when his payment is below the fair wage, which

in turn depends on output. We assume that ν(0, q) ≤ 0, νq(w, q) < 0 (higher output raises the fair

wage and thus lowers utility), νw(w, q) > 0, νww(w, q) ≥ 0, νwq = 0, and νqq = 0.

For any given q, the two functions v(w) and ν(w, q) intersect on (0,∞) at most once.12 Let this

point, if it exists, be denoted by w∗(q), i.e. v(w∗(q)) ≡ ν(w∗(q), q). At this point, v′(w) < νw(w, q),

so that there is a kink in u(w, q) as a function of w at w = w∗(q). Thus, w∗ (q) captures the agent’s

perceived fair wage, but we no longer require it to be linear in output as in Section 2. This utility

function (20) exhibits not only loss aversion, but also concavity above the fair wage w∗(q) and

convexity below it, as in prospect theory.13

11This specification for the function v(w) includes CRRA utility with relative risk aversion less than 1, and
v(w) = ln(w + 1).

12Indeed, for w = 0 and any q, we have v(0) ≥ ν(0, q). In addition, for any q, v(w) is weakly concave in w whereas
ν(w, q) is weakly convex in w.

13However, the model does not exhibit probability weighting as in prospect theory.
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We also assume that for any q,

lim
w↘0

νw(w, q) > lim
w↘0

v′(w) (21)

so that the utility function is always steeper below the fair wage than above it.

We assume that an agent who is paid his fair wage for any output is at or above his reservation

utility:∫ q

0

v(w∗(q))ϕ(q|e∗)dq − C(e∗) ≥ U, where e∗ satisfies equation (2) with w(q) = w∗(q) ∀q, (22)

The following assumption ensures that a manager who is always paid zero is below his reservation

utility:

U + C(e∗) > 0. (23)

Proposition 3 considers the general case in which both the IC and IR may be binding or

nonbinding.

Proposition 3 For the program (1)-(5), the optimal contract is such that:

w(q) =


0 for q ∈ [0, qm)

w∗(q) for q ∈ [qm, qM ]

v′−1 (1/ (λ1 + λ2LR(q|e∗))) for q ∈ [qM , qN ]

q for q ∈ [qN , q]

.

If eT = 0, then qM = qN = q; if also U is sufficiently large, then e∗ > 0.

The optimal contract is given by four regions. As in the linear model, there are three regions in

which the agent is paid zero, the fair wage, and the entire output. However, there is an additional

region, given by q ∈ (qM , qN), where output is sufficiently high that the principal wishes to pay

the agent more than his fair wage (v′−1 (1/ (λIR + λICLR(q|e∗))) > w∗ (q)). It is inefficient to give

him the entire output, since the agent exhibits diminishing marginal utility and so does not value

this additional reward highly. Thus, unlike in linear model, the optimal contract is continuous at

qM – the principal pays the agent more than his fair wage, but not the entire output. As output

rises above qM , the likelihood ratio increases further and so the actual wage exceeds the fair wage

by more. The contract will generally be convex between qM and qN .
14 For q > qN , the likelihood

ratio is so high that the principal rewards the agent with the entire output.

14However, the contract will be concave if the likelihood ratio is concave, so that very high output is only
slightly more indicative of effort, and if risk aversion is sufficiently important compared to prudence (see Chaigneau,
Sahuguet and Sinclair-Desgagné, 2017). The latter condition means that protecting the agent against downside risk
is relatively unimportant, but providing strong incentives where the agent’s marginal utility is high (i.e. for low
outputs) is especially important. It will typically not be satisfied for CEOs who have low relative risk aversion due
to their wealth.
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If eT = 0, i.e., the IC is slack, then the principal chooses the cheapest contract that satisfies the

IR; Proposition 3 shows that this involves paying the agent his fair wage w∗(q) for outputs above

qm. Since the wage is both increasing in output and fair, it induces effort and so the principal

obtains effort “for free”, as in Proposition 1.15 Any lower level of effort is suboptimal and will not

be induced by the principal.

This result is in stark contrast to the case without fairness concerns. In the standard model

of Holmström (1979) with a risk-neutral principal and a risk-averse agent, eliciting higher effort

is always more costly to the principal. Without an incentive constraint, the optimal contract

involves a fixed wage for optimal risk-sharing; inducing effort requires an output-contingent wage

which leads to inefficient risk-sharing and is thus costly. As a result, any effort level in R+ can

in principle be optimal, depending on model parameters. This is not true with fairness concerns,

because the principal will always induce a positive level of effort. Providing low effort incentives

either requires paying unfair wages for high outputs (which reduces expected utility and fails to

satisfy the IR) or paying above the fair wage for low outputs (which is costly). Critics of high

incentives argue that they are not needed to induce effort, since boards should monitor effort or

CEOs should be intrinsically motivated. However, performance-sensitive contracts may be offered

not to provide incentives, but to ensure the CEO is fairly paid. Without fairness concerns, it is

costly to incentivize high effort levels; with fairness concerns, it is costly to incentivize low effort

levels as doing so requires offering unfair pay. A by-product of fair pay is that it incentivizes effort,

even if such incentives are unnecessary.

While paying the fair wage for a range of outputs helps satisfy the participation constraint,

doing so for all outputs would give the agent rents. The question then becomes: at which outputs

does the firm pay below the fair wage, and how much below does it pay? With νww > 0, the

agent’s utility is non-concave below the fair wage. Thus, if the firm pays below the fair wage, it is

efficient to pay him zero. Since the fair wage is increasing in output, the disutility from zero wages

is also increasing in output, and so it is optimal to pay zero wages for low output levels.

Proposition 3 shows how whether the IR binds affects the optimal contract. When the partici-

pation constraint does not bind, we have qm > 0, so that the contract has a discontinuity between

zero payments and positive payments. It is optimal to pay the agent the most unfair feasible wage

for low outputs to incentivize effort. However, doing so may fail to ensure the agent’s participa-

tion. Thus, when the participation constraint binds, the contract may not have a discontinuity

(see Proposition 3). Overall, the participation constraint binding is a necessary condition for pay

to be a continuous function of output. The increasing use of performance shares, which do contain

discontinuities, is consistent with the participation constraint no longer binding for many CEOs –

15Note that it is insufficient for the wage to be merely increasing in output for it to provide effort incentives –
it may fail to do so if it is also unfair. Indeed, since ν(w, q) is decreasing in q, a payment schedule which is only
slightly increasing in output and is below the fair wage may fail to elicit effort. Intuitively, even though higher
output increases the wage, for an increasing wage schedule, it also increases the fair wage. Thus, if the fair wage
increases by more than the actual wage, the agent’s utility does not increase, and so he is not rewarded for increasing
output.
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Figure 4: The contract w(q) as a function of q. The agent’s preferences are as in Example 2 with

ν(w, q) = (w+1)1.2− 1− 1
5
q, C(e) = c

10

(
e
eT

)10
, and eT = 5. (a): U = 0 and c = 0.02. (b): U = −2

and c = 0.02. (c): U = −2 and c = 0.05.

that they are willing to accept unfair pay for low output levels suggests that they are above their

outside option.

A special case of Proposition 3 is as follows.

Example 2 Consider v(w) = ln(w+1),16 and an output that follows a truncated normal distribu-

tion on (0,∞) with parameters e∗ and σ = 1, LR(q|e∗) ∝ q+constant, and v′−1 (1/ (λ1 + λ2LR(q|e∗)))
is linear in q. The contract is illustrated in Figure 4.

In panel (a) of Figure 4, the incentive constraint is nonbinding (i.e. e∗ > eT ), but the par-

ticipation constraint is binding, and so the principal pays the agent the fair wage for some low

outputs. In panel (b), a lower U leads to the participation constraint being nonbinding, and the

incentive constraint being binding instead (i.e. e∗ = eT ). As a result, contract design is now driven

by its effect on incentives rather than on the agent’s utility, and the fair wage is no longer paid for

outputs with a negative likelihood ratio.17 In panel (c), the cost of effort is higher than in panel

(b), requiring the principal to increase incentives. She does so by paying the fair wage rather than

zero for a larger subset of outputs with a positive likelihood ratio, and payments higher than the

fair wage for very high outputs.

4 Conclusion

This paper has studied optimal contracting under fairness preferences, where the agent’s per-

ceived fair wage depends on output. We started with a model in which the agent’s utility function

is piecewise linear – it has a slope of 1 above the perceived fair wage, and in excess of 1 below

it. The wedge between the slopes is increasing in the agent’s fairness concerns, and the perceived

fair wage is itself linear in output. We showed that fairness concerns do not lead to the agent

being paid fair wages for all output levels; in contrast, unfair wages can be effective to induce

16This yields v′
−1

(w) = 1
w − 1, so that v′

−1
(1/λLR(q|e∗)) = λLR(q|e∗)− 1.

17When the incentive constraint is binding so that e∗ = eT , the likelihood ratio is positive for LR(q|eT ) > qe
T

0 ≈ 5.
The approximation is due to the use of the truncated normal distribution with e = 5 and σ = 1.
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effort. The optimal contract involves two thresholds for output. The agent receives zero below

the lower threshold, the entire output above the upper threshold, and the fair wage in between.

When fairness concerns are sufficiently strong, the upper region in which the agent receives the

entire output disappears, and the contract becomes performance shares – they give the agent his

perceived fair share of output unless it output falls below a threshold. The model thus rational-

izes the common usage of performance shares in reality; most other contracting theories predict

continuous contracts, or extreme discontinuities where the agent’s pay switches from zero to the

entire output.

We then extend the model to a general setting in which the agent is risk-averse, and the

perceived fair wage is only increasing in output – it need not be linear. The contract retains the

same three regions as in the piecewise linear model, but there is an additional fourth region, in-

between the regions in which the CEO receives the fair wage and the entire output. In this region,

his payment exceeds the fair wage, and is generally convex in output.

In both models, we show that, even if the incentive constraint is slack, pay is increasing in

output – by paying the agent the fair wage over a greater range of outputs, this reduces perceived

unfairness and allows the participation constraint to be satisfied at least cost by reducing perceived

unfairness. As a result, the firm can induce CEO effort “for free”, in contrast to standard risk-

neutral models in which inducing higher effort involves paying the agent limited liability rent, and

standard risk-averse models in which it requires paying the agent a risk premium. This result may

rationalize why performance-related pay is given to agents even if they are intrinsically motivated,

or even if there are alternative solutions to moral hazard such as monitoring.

This paper is a first step in modeling CEO pay under fairness preferences, using the standard

model to make transparent how fairness concerns affect the optimal contract. For future research,

it may be fruitful to explore the other potential determinants of the fair wage suggested by the

survey of Edmans, Gosling, and Jenter (2023), such as peer firm pay in a model of multiple firms,

employee pay in a model of multiple agents, or last year’s pay in a dynamic model.18

18The results of Edmans, Gosling, and Jenter (2023) also suggest that shareholders, not just the CEO, may also
have fairness concerns. However, this may be a less promising direction for future research as the principal makes
no decisions beyond offering the contract; studying the effect of fairness concerns for the party that makes decisions
(the agent) allows us to explore how such concerns affect his incentives. Fairness concerns for the principal are
similar to having a restriction on the space of contracts, such as an upper bound on pay or the sensitivity of pay to
performance. The effect of contracting constraints has been explored in prior work, such as Innes (1990).
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A Proofs

Proof of Lemma 1:

For a given contract w(q), the effort choice problem of the agent can be written as

max
e

∫ q

0

u (w(q), q)ϕ(q|e)dq − C(e).

The second derivative of the agent’s objective function with respect to e is negative for any e if

and only if: ∫ q

0

u (w(q), q)
∂2ϕ

∂e2
(q|e)dq < C ′′(e) ∀e ∈ (0, ē). (24)

With principal limited liability (see equation (4)), since the utility function increasing in w, the

maximum value of u for a given q is u (q, q). In addition, with agent limited liability (see equation

(4)), the minimum payment is w(q) = 0; with a utility function increasing in w, this implies that

the minimum value of u for a given q is u (0, q). Therefore, for any given q:

u (w(q), q) ∈ [u (0, q) , u (q, q)] .

Using notations K+
e (q) and K−

e (q) defined in equations (7) and (8), the expression on the left-hand

side (“LHS”) of equation (24) can then be rewritten as:∫ q

0

u (w(q), q)min

{
∂2ϕ

∂e2
(q|e), 0

}
dq +

∫ q

0

u (w(q), q)max

{
∂2ϕ

∂e2
(q|e), 0

}
dq. (25)

As established above, we have u (w(q), q) ≥ u(0, q) for any q, and u (w(q), q) ≤ u(q, q) for any q.

Therefore, for any q such that ∂2ϕ
∂e2

(q|e) ≤ 0 we have u (w(q), q) ∂2ϕ
∂e2

(q|e) ≤ u(0, q)∂
2ϕ

∂e2
(q|e); and for

any q such that ∂2ϕ
∂e2

(q|e) ≥ 0 we have u (w(q), q) ∂2ϕ
∂e2

(q|e) ≤ u(q, q)∂
2ϕ

∂e2
(q|e). Integrating over q, this

implies that expression (25) is less than:∫ q

0

(
K−

e (q)u(0, q) +K+
e (q)u(q, q)

)
dq,

which completes the proof.

Proof of Proposition 1:

We describe the optimal contract when eT = 0, i.e. the IC does not bind for any contract. In

the optimization problem with a nonbinding IC, the IR for e∗ ≥ 0 must be binding. Suppose that

it is not. Then, the contract that solves the optimization problem in equations (1), (4), and (5) is

simply w(q) = 0 for any q, which gives utility u(0, q) = −γmax{ρq, 0} = −γρq for any q ∈ [0, q],

so that: ∫ q

0

u(0, q)ϕ(q|e∗)dq − C(e∗) = −γρ

∫ q

0

qϕ(q|e∗)dq − C(e∗) < U,

where the inequality follows from equation (13) given that C ′ > 0 and e∗ ≥ 0. This implies that
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the IR is not satisfied, a contradiction.

The relaxed optimization problem with a nonbinding IC, a binding IR, and the FOA, is:

min
w(q),e∗

∫ q

0

w(q)ϕ(q|e∗)dq (26)

s.t.

∫ q

0

u(w(q), q)ϕ(q|e∗)dq − C(e∗) = U (27)∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (28)

0 ≤ w(q) ≤ q (29)

w(q) ≥ w(q′) ∀q > q′ (30)

At first, we hold effort constant. We then consider the effects of the contract on the effort choice,

which matters because it affects the equilibrium effort e∗, and therefore the LHS of equation (27).

Lemma 2 Let the utility function be as in equation (10) and suppose that effort is constant. On

any non-empty subinterval of [0, q], the optimal contract is such that w(q) ≤ w∗(q).

Proof. This proof is by contradiction. Suppose that the contract is not such that by w(q) ≤ w∗(q)

for all q.

A contract such that w(q) ≥ w∗(q) for all q ∈ [0, q] with a strict inequality for some q would

not solve the optimization program in equations (26)-(29). Indeed, due to equation (14) the agent

would be strictly above his reservation utility so that the payment w(q) could be reduced on some

subinterval of [0, q], which would decrease the cost of the contract in equation (26) without violating

the IR in equation (27) or the limited liability constraints in equation (29), a contradiction.

We now consider a contract which is neither such that w(q) ≤ w∗(q) for all q nor such that

w(q) ≥ w∗(q) for all q with a strict inequality for some q. We show that this contract, which is

such that w(q′) > w∗(q′) for some q′ ∈ [0, q] and w(q) < w∗(q) for some q ∈ [0, q] is suboptimal.

Denote by Q+ the subinterval of [0, q] such that w(q) > w∗(q). Denote by Q− the subinterval of

[0, q] such that w(q) < w∗(q). Consider the following perturbation: for q ∈ Q−, increase w(q) by

ϵ/ϕ(q|e∗), and for q′ ∈ Q+ decrease w(q′) by ϵ/ϕ(q′|e∗), where ϵ is positive and arbitrarily small.

By construction, this perturbation is cost-neutral for a given effort, i.e. it does not change the

principal’s objective function. Now consider the effect on the LHS of the IR in equation (27). Since

w(q) ∈ [0, w∗(q)) and w(q′) ∈ (w∗(q′), q′], the change in the LHS of the IR is: ϵ(1 + γ) − ϵ = ϵγ,

which is strictly positive since γ > 0. Since the LHS of the IR increases and the IR is binding,

standard arguments show that it is then possible to construct a contract that leaves the LHS of the

IR unchanged relative to the initial contract and reduces the cost of the contract to the principal,

which establishes that the initial contract was suboptimal. This rules out any contract such that

w(q) > w∗(q) for some q.

When the IC is nonbinding, for a given effort, the optimization program in equations (26), (27),

and (29) has an infinity of solutions: any contract such that w(q) ∈ [0, w∗(q)] ∀q and equation

22



(27) holds would solve this optimization problem. However, even when the IC is nonbinding, effort

is not exogenously given. Moreover, the cost of effort enters the LHS of the IR in equation (27)

(by assumption, C ′ > 0). Suppose for now that there exists a contract with w(q) ∈ [0, w∗(q)] ∀q
and the monotonicity constraint that induces e∗ = 0 (e = 0 is the minimum effort). Because of

the monotonicity assumption in equation (5) and MLRP, the effort minimizing contract such that

equation (27) is satisfied, w(q) ∈ [0, w∗(q)] ∀q, and the induced effort is e∗ = 0 takes the form:

w(q) =

{
w∗(q) if q < qc

ρqc if q ≥ qc
, (31)

where qc adjust so that the IR in equation (27) is satisfied, and e∗ = ec is the induced effort. If

ec = 0, then this contract is optimal since it is indeed the effort minimizing contract even without

the restriction w(q) ∈ [0, w∗(q)] ∀q.
We now study the case in which ec > 0. For a contract as in equation (31) and an equilibrium

effort e∗ given by equation (2) with eT = 0, define:

A(qc, e) ≡
∫ qc

0

ρq
∂ϕ

∂e
(q|e)dq +

∫ q

qc

(ρqc − γ(ρq − ρqc))
∂ϕ

∂e
(q|e)dq (32)

Given the FOA and the concavity of the agent’s objective function with respect to effort, for a

given qc the equilibrium effort is zero if and only if A(qc, 0) ≤ 0. Since the IR is binding and the

FOA applies for any interior solution to the effort choice problem, the optimal value of qc and the

effort e∗ induced by a given contract with threshold qc are implicitly defined by:∫ qc

0

ρqϕ(q|e)dq +
∫ q

qc

(ρqc − γ(ρq − ρqc))ϕ(q|e)dq − C(e∗) = U (33)

e∗ =

{
0 if A(qc, 0) ≤ 0

C ′−1 (A(qc, e
∗)) if A(qc, 0) > 0

(34)

For qc = q, A(qc, e) has the same sign as
∫ q

0
q ∂ϕ
∂e
(q|e)dq, which is strictly positive for any e

because of
∫ q

0
∂ϕ
∂e
(q|e)dq = 0 for any e and MLRP. Therefore, for qc = q, we have A(0, e) > 0 for

any e, including e = 0, i.e. e∗ > 0 (see equation (34)). For qc = 0, A(qc, e) has the same sign as

−
∫ q

0
q ∂ϕ
∂e
(q|e)dq, which is strictly negative for any e, i.e. e∗ = 0 (see equation (34)). Moreover,

the derivative of the right-hand side (“RHS”) of equation (32) with respect to qc holding effort

constant at e = e∗ is:

ρqc
∂ϕ

∂e
(qc|e∗)− ρqc

∂ϕ

∂e
(qc|e∗) +

∫ q

qc

ρ (1 + γ)
∂ϕ

∂e
(q|e∗)dq,

which is strictly positive because ρ (1 + γ) > 0,
∫ q

0
∂ϕ
∂e
(q|e∗)dq = 0, and MLRP. Moreover, the level

of qc is strictly increasing in U according to equation (33). In sum, when U is sufficiently high, we
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have e∗ = ec > 0 with a contract as in equation (31).

Suppose that there does not exist a contract as in equation (31) that satifies IR in equation (27)

and such that e∗ = 0 (this can happen for example if equation (14) holds as an equality given that

the equilibrium effort when w(q) = w∗(q)∀q is positive by MLRP). In addition, suppose that there

exists a contract that satifies IR in equation (27) and such that e∗ = 0 (for example a contract

such that w(q) = q for q ≤ qt, and w(q) = qt for q ≥ qt, where qt ∈ [0, q]). The latter contract

that induces e∗ = 0 and such that w(q) > w∗(q) for a non-empty subinterval is more costly to the

principal when γ is sufficiently high. Thus, even with eT = 0, we can have e∗ > 0.

Proof of Proposition 2:

We describe the optimal contract when the IC binds. When the condition from Lemma 1 holds

so that the FOA applies, a binding IC can be rewritten as:∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗), (35)

with e∗ = eT since the IC binds. We now describe the optimal contract when the IC in equation

(2) binds.

The first step of the proof establishes that a contract as described in equation (18) is optimal.

To this end, we rely on the agent’s monotonicity constraint in equation (5) and on Lemma 3 below.

Lemma 3 Let the utility function be as in equation (10) and suppose that the IC is binding. The

optimal contract is such that w(q) /∈ (w∗(q), q) for any q.

Proof. This proof is by contradiction. Suppose that for some q we have w(q) ∈ (w∗(q), q).

Consider any given initial incentive-compatible contract and the following perturbation for any

q > q′ in this subinterval, increase w(q) by ϵ/ϕ(q|e∗), and decrease w(q′) by ϵ/ϕ(q′|e∗), where ϵ

is positive and arbitrarily small. By construction, for a given effort this perturbation does not

change the principal’s or the agent’s objective function (note that the agent’s objective function is

linear in w for any w and q such that w > w∗(q)). Now consider the effect on the LHS of the IC in

equation (35). With w(q) ∈ (w∗(q), q) and w(q′) ∈ (w∗(q′), q′), the change in the LHS of the IC is:

ϵ (LR(q|e∗)− LR(q′|e∗)) ,

which is strictly positive by MLRP. Since the LHS of the IC increases and the IC is binding,

standard arguments show that it is then possible to construct a contract that leaves the LHS of

the IC and IR unchanged compared to the initial contract and reduces the cost of the contract

to the principal, which establishes that the initial contract was suboptimal. This rules out any

contract such that w(q) ∈ (w∗(q), q) for any q.

The second step of the proof establishes the values of qm and qM for a given effort e∗ to be

induced.
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The relaxed optimization problem with qm ∈ [0, q] and qM ∈ [qm, q] is:

min
qm,qM

∫ q

0

w(q)ϕ(q|e∗)dq (36)

s.t.

∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (37)∫ q

0

u(w(q), q)ϕ(q|e∗)dq − C(e∗) ≥ U (38)

w(q) =


0 for q < qm

w∗(q) for q ∈ [qm, qM ]

q for q > qM

(39)

With the utility function defined in equation (10), this can be rewritten as, for qm ∈ [0, q] and

qM ∈ [qm, q]:

min
qm,qM

∫ qM

qm

ρqϕ(q|e∗)dq +
∫ q

qM

qϕ(q|e∗)dq (40)

s.t.

∫ qm

0

(−γρq)
∂

∂e
ϕ(q|e∗)dq +

∫ qM

qm

ρq
∂ϕ

∂e
(q|e∗)dq +

∫ q

qM

q
∂ϕ

∂e
ϕ(q|e∗)dq = C ′(e∗) (41)∫ qm

0

(−γρq)ϕ(q|e∗)dq +
∫ qM

qm

ρqϕ(q|e∗)dq +
∫ q

qM

qϕ(q|e∗)dq − C(e∗) ≥ U (42)

Denote by ηIC and ηIR the Lagrange multipliers associated with the constraints in equations (41)

and (42), respectively. The FOC for an interior solution are:

−ρqmϕ(qm|e∗)− ηIC

(
−γρqm

∂ϕ

∂e
(qm|e∗)− ρqm

∂

∂e
ϕ(qm|e∗)

)
−ηIR (−γρqmϕ(qm|e∗)− ρqmϕ(qm|e∗)) = 0 (43)

ρqMϕ(qM |e∗)− qMϕ(qM |e∗)− ηIC

(
ρqM

∂ϕ

∂e
(qM |e∗)− qM

∂ϕ

∂e
(qM |e∗)

)
−ηIR (ρqMϕ(qM |e∗)− qMϕ(qM |e∗)) = 0 (44)

which for qm ̸= 0 and qM ̸= 0 is equivalent to:

−1 + ηIC

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
(1 + γ) + ηIR (1 + γ) = 0 (45)

−1 + ηIC

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
+ ηIR = 0 (46)

The optimal value of qm is generically not described by a corner solution. We have qm = 0 in

a nongeneric case: when equation (14) is satisfied as an equality at e∗ = eT . Now suppose that

equation (14) is not satisfied as an equality at e∗ = eT , i.e. it is satisfied as a strict inequality. This
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implies that the IR is nonbinding when qm = 0 (indeed, it is nonbinding for qm = 0 and qM = q,

and the LHS of the IR in equation (42) is decreasing in qM). Moreover, a contract with qm = 0

does not provide incentives at the minimum cost, since increasing qm would increase the LHS of

the IC in equation (41) while reducing the cost of the contract in equation (40). Finally, since the

IR is nonbinding at qm = 0 and its LHS is continuously differentiable in qm, the increase in qm can

be small enough that the new contract still satisfies IR. In sum, if equation (14) is not satisfied as

an equality at e∗ = eT , then we cannot have qm = 0 at the optimal contract.

Likewise, we cannot have qm = q, which would imply qM = q, at the optimal contract. Indeed,

this would violate the IC in equation (41) since the LHS would then be negative and the RHS

positive; this would also violate the IR in equation (42) according to equation (13).

Thus, the optimal value of qm is generically given by the first-order condition in equation (45),

which can be rearranged as:

LR(qm|e∗) =
1

ηIC

(
1

1 + γ
− ηIR

)
,

where ηIC ≥ 0 and ηIR ≥ 0.

There are two cases.

Nonbinding IR. In the optimization problem with a nonbinding IR, the IC for eT > 0 must

be binding. Suppose that it is not. Then, the contract that solves the optimization problem in

equations (1), (4), and (5) is simply w(q) = 0 for any q, so that u(0, q) = −γmax{ρq, 0} = −γρq

for any q ∈ [0, q], and:∫ q

0

u(0, q)
∂ϕ

∂e
(q|e)dq = −γρ

∫ q

0

q
∂ϕ

∂e
(q|e)dq < 0 < C ′(e),

for any e > 0, i.e. the IC is not satisfied, a contradiction.

If the optimal values of qm and qM are interior solutions, equations (45) and (46) with ηIR = 0

(nonbinding IR) and ηIC > 0 (binding IC) immediately give:

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
(1 + γ) =

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
. (47)

With a nonbinding IR, we establish that qm ≥ qe
∗

0 , where e∗ = eT . Consider any given initial

compensation contract such that qm < qe
∗

0 and the following perturbation: increase qm by an

arbitrarily small amount. This perturbation increases the LHS of the IC and reduces the cost of

the contract to the principal. Standard arguments show that it is then possible to construct a

contract that leaves the LHS of the IC unchanged compared to the initial contract and reduces the

cost of the contract to the principal, which establishes that the initial contract was suboptimal.

Denote the subset of values of {qm, qM} that satisfy the IC by QIC , and denote the values of

{qm, qM} in this subset by {qICm , qICM }. Let qICM be a function of qICm . This is a continuous function by
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the implicit function theorem since the LHS of the IC in equation (37) is continuously differentiable

in qm and qM , and the product of continuous functions is continuous.

Totally differentiating the LHS of the IC with respect to qICm and taking into account the effect

on qICM so that the LHS of the IC remains unchanged gives:

d

dqICm

∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq =

(
u(0, qICm )− u(w∗(qICm ), qICm )

) ∂ϕ
∂e

(qICm |e∗)

+

((
u(w∗(qICM ), qICM )− u(qICM , qICM )

) ∂ϕ
∂e

(qICM |e∗)
)

dqICM
dqICm

= −(1 + γ)w∗(qICm )
∂ϕ

∂e
(qICm |e∗)− (qICM − w∗(qICM ))

∂

∂e
ϕ(qICM |e∗)dq

IC
M

dqICm
= 0

⇔ dqICM
dqICm

= −(1 + γ)w∗(qICm )

qICM − w∗(qICM )

∂
∂e
ϕ(qICm |e∗)

∂ϕ
∂e
(qICM |e∗)

, (48)

where both the numerator and the denominator of the second fraction on the RHS are positive

since qe
∗

0 ≤ qm ≤ qM .

Now consider the subsetQc of values of {qm, qM}, denoted by {qcm, qcM}, that leaves the expected
cost of the contract in equation (36) unchanged for the principal. By construction:

d

dqcm

∫ q

0

w(q)ϕ(q|e∗)dq = −w∗(qcm)ϕ(q
c
m|e∗)− (qcM − w∗(qcM))ϕ(qcM |e∗)dq

c
M

dqcm
= 0

⇔ dqcM
dqcm

= − w∗(qcm)

qcM − w∗(qcM)

ϕ(qcm|e∗)
ϕ(qcM |e∗)

. (49)

Because of MLRP, for qe
∗

0 ≤ qm ≤ qM , we have:

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
≤

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
⇔

∂
∂e
ϕ(qm|e∗)

∂ϕ
∂e
(qM |e∗)

≤ ϕ(qm|e∗)
ϕ(qM |e∗)

, (50)

with strict inequalities for qM > qm.

For any given element in QIC , there are two possible cases:

1) For values of qICm and qICM such that (1 + γ)
∂ϕ
∂e

(qICm |e∗)
ϕ(qICm |e∗) <

∂ϕ
∂e

(qICM |e∗)
ϕ(qICM |e∗) and qm ≥ qe

∗
0 , a marginal

increase in qm and associated decrease in qM (since
dqICM
dqICm

< 0) that satisfies incentive compat-

ibility as in equation (48) results in a lower cost to the principal because of equations (49)

and (50).

2) For values of qICm and qICM such that (1 + γ)
∂ϕ
∂e

(qICm |e∗)
ϕ(qICm |e∗) >

∂ϕ
∂e

(qICM |e∗)
ϕ(qICM |e∗) and qm ≥ qe

∗
0 , a marginal

increase in qm and associated decrease in qM (since
dqICM
dqICm

< 0) that satisfies incentive compat-

ibility as in equation (48) results in a higher cost to the principal because of equations (49)

and (50).
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Consider the smallest value for qICm and corresponding highest value for qICM in the subset QIC ,

and denote them by qmin
m and qmax

M . We can show by construction that qmax
M = q: according

to equations (12), an incentive-compatible contract such that qm ≥ qe
∗

0 and qM = q exists; by

definition of QIC and qmax
M , this means that qmax

M = q. Since IR is nonbinding and the cost of a

contract is decreasing in qm, all else equal, q
min
m is implicitly defined by incentive compatibility with

qmax
M = q in equation (15). From equations (12) and (15), we have qmin

m ≥ qe
∗

0 . There are two cases.

First, if (1 + γ)
∂ϕ
∂e

(qmin
m |e∗)

ϕ(qmin
m |e∗) >

∂ϕ
∂e

(q|e∗)
ϕ(q|e∗) , then due to MLRP and

dqICM
dqICm

< 0, for any element of QIC ,

we have (1 + γ)
∂ϕ
∂e

(qICm |e∗)
ϕ(qICm |e∗) >

∂ϕ
∂e

(qICM |e∗)
ϕ(qICM |e∗) , so that case 2) described above is relevant for any element

of QIC . Therefore, the optimal values of qm and qM are respectively qmin
m and q. That is:

w(q) =

{
0 for q ∈ [0, qmin

m )

w∗(q) for q ∈ [qmin
m , q]

, (51)

where qmin
m is defined in equation (15).

Second, if (1 + γ)
∂ϕ
∂e

(qmin
m |e∗)

ϕ(qmin
m |e∗) <

∂ϕ
∂e

(q|e∗)
ϕ(q|e∗) , then for elements in the subset QIC , for low enough

values of qICm and high enough values of qICM , case 1) described above is relevant. Moreover, since

γ > 0 and the likelihood ratio LR(q|e) is continuous in q by assumption, for elements in the subset

QIC , for high enough values of qICm and low enough values of qICM (since
dqICM
dqICm

< 0), case 2) described

above is relevant. In sum, the optimal values of qm and qM belong to the subset QIC and satisfy

the following equation:

(1 + γ)
∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
=

∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
. (52)

Binding IR. When both the IC and IR are binding, qm and qM must satisfy:

−γρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq + ρ

∫ qM

qm

q
∂ϕ

∂e
(q|e∗)dq +

∫ q

qM

q
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (53)

−γρ

∫ qm

0

qϕ(q|e∗)dq + ρ

∫ qM

qm

qϕ(q|e∗)dq +
∫ q

qM

qϕ(q|e∗)dq − C(e∗) = U (54)

We also know that the optimal value of qm is generically an interior solution, so we have three

cases.

1. First, if the optimal values of qm and qM are interior solutions, equations (45) and (46) with

ηIR > 0 and ηIC > 0 immediately give:

∂ϕ
∂e
(qm|e∗)

ϕ(qm|e∗)
(1 + γ) +

ηIR
ηIC

γ =
∂ϕ
∂e
(qM |e∗)

ϕ(qM |e∗)
(55)

Because of MLRP, the LHS of equation (55) is strictly increasing in qm, and the RHS is

28



strictly increasing in qM . Thus, for any pair {qm, qM} that satisfy this equation, qM is

strictly increasing in qm.

2. If qM = qm, then qm must satisfy:

−γρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq +

∫ q

qm

q
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (56)

−γρ

∫ qm

0

qϕ(q|e∗)dq +
∫ q

qm

qϕ(q|e∗)dq − C(e∗) = U (57)

The LHS of the IR in equation (57) is strictly decreasing in qm. Thus, there exists at most

one value of qm such that equation (57) holds, and this value is strictly decreasing in U . The

derivative of the LHS of IC in equation (56) with respect to qm is qm
∂ϕ
∂e
(qm|e∗) (−γρ− 1),

which by MLRP and definition of qe
∗

0 is positive if and only if qm < qe
∗

0 . Thus, there exists

at most two values of qm such that equation (57) holds, and these values are independent of

U . In sum, generically we cannot have IC and IR binding with qM = qm.

3. If qM = q, then qm must satisfy:

−γρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq + ρ

∫ q

qm

q
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (58)

−γρ

∫ qm

0

qϕ(q|e∗)dq + ρ

∫ q

qm

qϕ(q|e∗)dq − C(e∗) = U (59)

The LHS of the IR in equation (59) is strictly decreasing in qm. Thus, there exists at most

one value of qm such that equation (59) holds, and this value is strictly decreasing in U . The

derivative of the LHS of IC in equation (58) with respect to qm is qm
∂ϕ
∂e
(qm|e∗) (−γρ− ρ),

which by MLRP and definition of qe
∗

0 is positive if and only if qm < qe
∗

0 . Thus, there exists

at most two values of qm such that equation (59) holds, and these values are independent of

U . In sum, generically we cannot have IC and IR binding with qM = q.

Proof of Corollary 1:

When the IC is binding with a contract as in Proposition 2, the IC can be written as in equation

(53). In this equation, only the first term on the LHS depends on γ. Furthermore, with qm ≤ qe
T

0

and a binding IC which implies e∗ = eT , we have ∂ϕ
∂e
(q|e∗) < 0 for any q < qm, so that the first

term on the LHS of equation (53) is strictly positive. Moreover, with qm ≤ qe
T

0 the IR must be

binding as established in the proof of Proposition 2.

With a contract as in Proposition 2, the first derivatives of the LHS of the IC and IR in

equations (53) and (54) with respect to γ are respectively:

−ρ

∫ qm

0

q
∂ϕ

∂e
(q|e∗)dq > 0 and − γρ

∫ qm

0

qϕ(q|e∗)dq < 0.
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Thus, following a marginal change in γ, qm and qM must change in a way that decreases the LHS

of the IC and increases the LHS of the IR.

With a contract as in Proposition 2, the first derivatives of the LHS of the IC in equation (53)

with respect to qm and qM are respectively:

−(1 + γ)ρqm
∂ϕ

∂e
(qm|e∗) > 0 and (ρ− 1)qM

∂ϕ

∂e
(qM |e∗) < 0.

With a contract as in Proposition 2, the first derivatives of the LHS of the IR in equation (54)

with respect to qm and qM are respectively:

−(1 + γ)ρqmϕ(qm|e∗) < 0 and (ρ− 1)qMϕ(qM |e∗) < 0.

In sum, following a marginal increase in γ an increase in both qm and qM would strictly decrease

the LHS of the IR, while an increase in qm and a decrease in qM would strictly increase the LHS

of the IC. Therefore, the only changes in qm and qM that leave the LHS of both the IC and IR

unchanged overall following an increase in γ involve a decrease in qm.

Proof of Proposition 3:

At first, we describe the optimal contract when the IC does not bind, which in particular is

the case for eT = 0. We then verify when the IC does not bind. In the optimization problem with

a nonbinding IC, the IR for e∗ ≥ 0 must be binding. Suppose that it is not. Then, the contract

that solves the optimization problem in equations (1), (4), and (5) is simply w(q) = 0 for any q,

so that, using equation (23) at any effort e∗ with ν(0, q) ≤ 0 by assumption:∫ q

0

u(0, q)ϕ(q|e∗)dq =
∫ q

0

ν(0, q)ϕ(q|e∗)dq ≤ 0 ⇒
∫ q

0

u(0, q)ϕ(q|e∗)dq − C(e∗) < U

i.e. IR is not satisfied, a contradiction.

The relaxed optimization problem with a nonbinding IC, a binding IR, and the FOA, is:

min
w(q)

∫ q

0

w(q)ϕ(q|e∗)dq (60)

s.t.

∫ q

0

u(w(q), q)ϕ(q|e∗)dq − C(e∗) = U (61)∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (62)

0 ≤ w(q) ≤ q (63)

w(q) ≥ w(q′) ∀q > q′ (64)

Consider the subset of contracts that induce a given effort e∗, i.e. such that equation (62)

holds (given the FOA). In this subset of contracts, we will show that any contract that satisfies IR

as an equality as in equation (61) and the constraints on contracting in equations (63) and (64)
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is associated with a higher expected cost (as specified in equation (60)) than a contract of the

following form:

w(q) =

{
0 if q < qm

w∗(q) if q ≥ qm
. (65)

This in turn implies that the optimal contract is as in equation (65).

The proof is as follows. Given the constraints on contracting in equations (63) and (64), a

contract as in equation (65), denoted by wO(q), and an alternative contract, denoted by wA(q),

can differ in the following subintervals, where some of these subintervals can be empty. First, for

outputs such that wO(q) = 0 but wA(q) > 0; denote the union of these subintervals of outputs by

Q0. Second, for outputs such that wO(q) = w∗(q) but wA(q) < w∗(q); denote the union of these

subintervals of outputs by Q−. Third, for outputs such that wO(q) = w∗(q) but wA(q) > w∗(q);

denote the union of these subintervals of outputs by Q+.

Since contracts wO(q) and wA(q) both satisfy equation (61), as already specified, we have:∫
Q0

(
ν(wA(q), q)− ν(0, q)

)
ϕ(q|e∗)dq +

∫
Q+

(
v(wA(q))− v(w∗(q))

)
ϕ(q|e∗)dq

=

∫
Q−

(
ν(w∗(q), q)− ν(wA(q), q)

)
ϕ(q|e∗)dq (66)

Because of equation (66), we can split the subset Q− into two subsets, Q1
− and Q2

−, such that:{ ∫
Q1

−

(
ν(w∗(q), q)− ν(wA(q), q)

)
ϕ(q|e∗)dq =

∫
Q0

(
ν(wA(q), q)− ν(0, q)

)
ϕ(q|e∗)dq∫

Q2
−

(
ν(w∗(q), q)− ν(wA(q), q)

)
ϕ(q|e∗)dq =

∫
Q+

(
v(wA(q))− v(w∗(q))

)
ϕ(q|e∗)dq

. (67)

We now use Taylor expansions, properties of the functions ν and v (including νww(w, q) > 0,

v′′(w) < 0, and νwq(w, q) = 0 so that νw(w, q1) = νw(w, q2) for q1 ̸= q2), and q < qm for any q ∈ Q0,

to write:

ν(wA(q), q)− ν(0, q) < νw(w
A(qm), qm)w

A(q) for q ∈ Q0

ν(w∗(q), q)− ν(wA(q), q) > νw(w
A(qm), qm)

(
w∗(q)− wA(q)

)
for q ∈ Q−

v(wA(q))− v(w∗(q)) < v′(0)
(
wA(q)− w∗(q)

)
for q ∈ Q+

(68)
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Use the inequalities in equation (68) to get:∫
Q0

(
ν(wA(q), q)− ν(0, q)

)
ϕ(q|e∗)dq < νw(w

A(qm), qm)

∫
Q0

wA(q)ϕ(q|e∗)dq (69)∫
Q1

−

(
ν(w∗(q), q)− ν(wA(q), q)

)
ϕ(q|e∗)dq >

∫
Q1

−

νw(w
A(qm), qm)

(
w∗(q)− wA(q)

)
ϕ(q|e∗)dq(70)∫

Q+

(
v(wA(q))− v(w∗(q))

)
ϕ(q|e∗)dq < v′(0)

∫
Q+

(
wA(q)− w∗(q)

)
ϕ(q|e∗)dq (71)∫

Q2
−

(
ν(w∗(q), q)− ν(wA(q), q)

)
ϕ(q|e∗)dq > νw(w

A(qm), qm)

∫
Q2

−

(
w∗(q)− wA(q)

)
ϕ(q|e∗)dq(72)

Combining the equalities in equation (67) and the inequalities in equations (70)-(72), we have:

νw(w
A(qm), qm)

∫
Q1

−

(
w∗(q)− wA(q)

)
ϕ(q|e∗)dq < νw(w

A(qm), qm)

∫
Q0

wA(q)ϕ(q|e∗)dq (73)

νw(w
A(qm), qm)

∫
Q2

−

(
w∗(q)− wA(q)

)
ϕ(q|e∗)dq < v′(0)

∫
Q+

(
wA(q)− w∗(q)

)
ϕ(q|e∗)dq (74)

Moreover, because of assumption (21) and properties of the function v and ν, we have νw(w, q) >

v′(w) for any {w, q}. Combining with equations (73) and (74), this gives:∫
Q1

−

(
w∗(q)− wA(q)

)
ϕ(q|e∗)dq <

∫
Q0

(
wA(q)− 0

)
ϕ(q|e∗)dq (75)∫

Q2
−

(
w∗(q)− wA(q)

)
ϕ(q|e∗)dq <

∫
Q+

(
wA(q)− w∗(q)

)
ϕ(q|e∗)dq (76)

By definition of the subintervals and of the contracts wO and wA, combining inequalities in equa-

tions (75) and (76) implies:∫ q

0

wO(q)ϕ(q|e∗)dq <
∫ q

0

wA(q)ϕ(q|e∗)dq. (77)

This completes this part of the proof.

The next part of the proof considers when effort e∗ is strictly positive even when the IC does

not bind (e∗ < eT ) and for when the IC does not bind. With a contract as in equation (65), the

FOC to the effort choice problem can be rewritten as:∫ qm

0

ν(0, q)
∂ϕ

∂e
(q|e∗)dq +

∫ q

qm

v(w∗(q))
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (78)

With qm = 0, we have u(w∗(q), q) = v(w∗(q)) by definition of the fair wage and the utility function,

and w∗′(q) > 0 and v′ > 0. Combining this with MLRP shows that the LHS of equation (78) is

strictly positive. Finally, by assumption, C ′(0) = 0 and C ′(e) > 0 for any positive e, so that the
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equilibrium effort e∗ is strictly positive when qm = 0.

The derivative of the LHS of equation (78) with respect to qm holding effort constant at e = e∗

is:

ν(0, qm)
∂ϕ

∂e
(qm|e∗)− v(w∗(qm))

∂ϕ

∂e
(qm|e∗). (79)

By definition we have v(w∗(qm)) = ν(w∗(qm), qm), so that ν(0, qm)− v(w∗(qm)) < 0 since ν(w, q) is

strictly increasing in w. Therefore, the expression in equation (79) is strictly positive if and only

if ∂ϕ
∂e
(qm|e∗), which by MLRP and definition of qe

∗
0 is equivalent to qm < qe

∗
0 . In sum, there is q̂m

such that e∗ > 0 if qm ∈ [0, q̂m).

We now determine for which parameter values this is the case. Consider the effect of a change

in qm on the LHS of the IR in equation (61) when e∗ > 0 and is therefore given by the first-order

condition (FOC) to the agent’s effort choice problem given the FOA. The derivative of the LHS of

equation (61) with respect to qm holding effort constant is:

ν(0, qm)ϕ(qm|e∗)− v(w∗(qm))ϕ(qm|e∗). (80)

The expression in equation (80) is strictly negative for any e (see the preceding paragraph). More-

over, the LHS of the IR in equation (61) is the agent’s objective function, and the agent chooses

effort e to maximize this objective function. From the envelope theorem, we know that the total

effect of a marginal change in a parameter (here qm) on the objective function is equal to its effect

holding effort constant. In sum, the LHS of equation (61) is continuously decreasing in qm, and

given optimal effort choices it is below the RHS for qm = q according to equation (23), and it

is above the RHS for qm = 0 according to equation (22). This implies that there exists qm that

satisfies equation (33), and this level of qm is strictly decreasing in U according to equation (61).

In sum, when U is sufficiently high, we have qm < q̂m, so that e∗ > 0 according to the preceding

paragraph.

With the contract in equation (65), where qm is set to solve the IR in equation (61) as an

equality, when the induced e∗ is greater than eT , the IC does not bind. On the contrary, when the

induced e∗ is strictly less than eT , the IC binds, and the principal’s problem is solved in the next

part of the proof below.

In this second part of the proof, we describe the optimal contract when the IC binds. By

Lemma 1, when the IC in equation (2) is binding, it can be replaced by the FOC:∫ q

0

u(w(q), q)
∂ϕ

∂e
(q|e∗)dq = C ′(e∗). (81)

For now, ignore the monotonicity constraint in equation (64). We will verify below that the optimal

contract thus derived satisfies monotonicity. This part of the proof has two steps.

Lemma 4 On any non-empty subinterval of [0, q], we have w(q) /∈ (0, w∗(q)).
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Proof. Let ǔ(q) := u(w(q), q), and let u−1
w (·) be such that u−1

w (ǔ(q)) = w(q) ⇔ u−1
w (u(w(q), q)) =

w(q). The Lagrangian for the optimization problem in equations (60)-(63) is:

L =

∫ q

0

u−1
w (ǔ(q))ϕ(q|e∗)dq − λ

(∫ q

0

ǔ(q)ϕ(q|e∗)dq − C(e∗)− U

)
−µ

(∫ q

0

ǔ(q)
∂ϕ

∂e
(q|e∗)dq − C ′(e∗)

)
− λLLA(q)u

−1
w (ǔ(q))− λLLP(q)

(
q − u−1

w (ǔ(q))
)

Note that the constraints are linear in ǔ(q). The first-order necessary condition (FONC) with

respect to ǔ(q) at any given output q is:

u−1
w

′
(ǔ(q))ϕ(q|e∗)− λϕ(q|e∗)− µ

∂ϕ

∂e
(q|e∗)− λLLA(q)u

−1
w

′
(ǔ(q)) + λLLP(q)u

−1
w

′
(ǔ(q)) = 0

⇔ u−1
w

′
(ǔ(q)) = λ+ µ

∂ϕ
∂e
(q|e∗)

ϕ(q|e∗)
+

λLLA(q)

ϕ(q|e∗)
u−1
w

′
(ǔ(q))− λLLP(q)

ϕ(q|e∗)
u−1
w

′
(ǔ(q)) (82)

where λLLA(q) = 0 for w(q) > 0 ⇔ uq > u(0, q), and λLLP(q) = 0 for w(q) < q ⇔ uq < u(q, q).

The proof is by contradiction. For a given q, suppose that w(q) ∈ (0, w∗(q)) ⇔ uq ∈
(u(0, q), u(w∗(q), q)), which implies λLLA(q) = 0 and λLLP(q) = 0 by definition of these Lagrange

multipliers, and also implies u(w(q), q) = ν(w(q), q) by definition of the utility function. The

function ν(w, q) is increasing and convex in w. This implies that u−1
w is increasing and con-

cave. Thus, the FONC does not describe an optimum to the minimization problem, and further-

more the optimal w(q) is not in the interval (0, w∗(q)) ⇔ the optimal uq is not in the interval

(u(0, q), u(w∗(q), q)).

Combining the agent’s monotonicity constraint (w(q) is nondecreasing in q) in equation (5)

and Lemma 4, for some qm ∈ [0, q] we have: w(q) = 0 for q ∈ [0, qm), and w(q) ∈ [w∗(q), q] for

q ≥ qm because of principal limited liability. This implies that u(w, q) = v(w) for q ≥ qm. That is,

for a given qm, the relaxed optimization problem that gives the optimal contract to induce effort

e∗ = eT can be rewritten as:

min
w(q)

∫ q

qm

w(q)ϕ(q|e∗)dq (83)

s.t.

∫ qm

0

u(0, q)
∂ϕ

∂e
(q|e∗)dq +

∫ q

qm

v(w(q))
∂ϕ

∂e
(q|e∗)dq = C ′(e∗) (84)∫ qm

0

u(0, q)ϕ(q|e∗)dq +
∫ q

qm

v(w(q))ϕ(q|e∗)dq ≥ U (85)

w(q) ∈ [w∗(q), q] ∀q (86)

We henceforth consider the subset of values of qm such that the optimization problem in equations

(83)-(86) has a solution (the optimization problem has a solution for some qm because of equations

(6) and (22). Using the notation in Jewitt, Kadan, and Swinkels (2008), we have m(q) = w∗(q)
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and m(q) = q. We can apply Proposition 1 in their paper to derive the optimal contract on [qm, q]

given that the payment w(q) is 0 on [0, qm) (note that the first terms on the LHS of equations (84)

and (85) are independent of w(q) and can therefore be treated as constants in the optimization

problem in equations (83)-(86)). In sum, the optimal contract is defined implicitly by:

1

u′
w(w(q), q)

=


1

u′
w(0,q)

for q ≤ qm
1

v′(w∗(q))
for q > qm and λIR + λICLR(q|e∗) < 1

v′(w∗(q))

λIR + λICLR(q|e∗) for q > qm and 1
v′(w∗(q))

< λIR + λICLR(q|e∗) < 1
v′(q)

1
v′(q)

for q > qm and 1
v′(q)

< λIR + λICLR(q|e∗)

with λIR ≥ 0 and λIC > 0, which are the Lagrange multipliers associated respectively with the

constraints (85) and (84), and which therefore depend on qm (in general, these are not the Lagrange

multipliers associated with the IR and IC of the original optimization problem). Equivalently:

w(q) =


0 for q ≤ qm

w∗(q) for q > qm and λIR + λICLR(q|e∗) < 1
v′(w∗(q))

v′−1 (1/ (λIR + λICLR(q|e∗))) for q > qm and 1
v′(w∗(q))

< λIR + λICLR(q|e∗) < 1
v′(q)

q for q > qm and 1
v′(q)

< λIR + λICLR(q|e∗)

.
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