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Abstract

High levels of commitment to R&D activities can facilitate breakthrough innovations, but can also
turn into excess commitment to previously chosen actions. Using project-level R&D data on clinical
trials by pharmaceutical firms, we study how unanticipated variation in firms’ commitment to trials
affects subsequent firm decision-making and R&D outcomes. Unexpected trial completion delays,
as well as unexpected trial cost increases due to exchange rate fluctuations, significantly increase
the likelihood that firms advance trials to the next trial phase. Consumers may, in fact, in some
ways benefit from firm-induced distortions in new drug development. Marginally-launched drugs
because of commitment distortions are associated with insignificantly more adverse events, but are
significantly more likely to target diseases for which there are no or only few existing medications in
the marketplace (orphan drugs).
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1 Introduction

Innovation is central to economic growth and, undoubtedly, research and development (R&D) is an

essential ingredient in the process of innovation. Therefore, it is important to understand the factors that

determine the intensity of R&D activity. One defining feature of innovation and R&D is that to reach

breakthroughs, it is oftentimes necessary to demonstrate long-term commitment to a given course of

action. While this suggests a positive influence of commitment on innovation, seminal prior work, in

particular Staw (1976)’s evidence from the lab, points to a potentially large role of excess commitment to

previously chosen R&D activities.

Conceptually, excess investment is different from overinvestment in the economy. There is a large

literature on, and active debate about, to what extent there is adequate innovation activity in the aggregate

economy. For instance, seminal prior work has uncovered many reasons for why there might be aggre-

gate underinvestment in innovation, including low spillover effects, low competition, patent protection,

infringement lawsuits, and risk aversion (Hall and Lerner, 2010). Our focus is different from this prior

work, in that we examine the level of commitment to existing, in-process R&D endeavours, rather than

whether at the extensive margin there is sufficient adoption of R&D projects.

Empirically, little is known to date about to what extent R&D activity involves adequate versus excess

commitment. Furthermore, it is even less clear to what extent any potential excess commitment to R&D is

harmful, or beneficial, from an aggregate welfare perspective. For example, does elevated commitment

lead to worse or even unsafe innovation, or does it spur the creation of otherwise nonexisting innovation

that benefits consumers?

Studying to what extent commitment and path-dependent decision-making with respect to innovation

is efficient or distorted, as well as resulting welfare consequences, is challenging for at least two reasons.

First, it requires granular data on R&D activities at the project level, with observable information on R&D

milestone achievements and final R&D outcomes. Second, it requires not solely reliable measures of

the level of commitment to a certain R&D activity, but additionally a setting in which there is plausibly-

exogenous variation in the intensity of commitment to R&D.

In this paper, we overcome these twin challenges related to data and identification in the important

setting of new drug development by pharmaceutical firms. Clinical trial drug projects provide a near-ideal,
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project-level setting of R&D investment with detailed observable and quantifiable outcomes. Additionally,

in this setting, we are able to isolate variation in R&D commitment to drug projects. We study whether

unanticipated trial delays or cost increases distort firms’ decision to continue versus suspend clinical trials,

and how this affects ultimate R&D outcomes, in particular patient outcomes of approved drugs. Consistent

with the existence of firm-level frictions inducing path dependence and excess commitment, we find that

unexpectedly delayed trials, and trials that become costlier due to exchange rate fluctuations, are less

likely to be suspended by firms. Marginally-launched drugs as a result of commitment distortions come

with slightly, but insignificantly, more adverse events in patients such as death, hospitalization, disability,

and congenital anomaly after consuming the drug. At the same time, distorted R&D commitment leads to

more approvals of orphan drugs for rare diseases which commonly have no or only few other treatment

options.1 One broad-level takeaway of these results is that firm distortions can potentially have positive

externalities on consumers.

To establish these findings, we assemble a new dataset of clinical trials initiated by U.S.-based

companies, with detailed information on trial timelines (start date, end date, and, importantly, anticipated

end date as filed by the drug sponsor on ClinicalTrials.gov), trial sites (both domestic and international

sites), trial participants (patient eligibility, number of participants, trial sponsors), drug details (drug

indications, ICD category, etc.), post-trial-completion outcomes (project continuation versus suspension),

and ultimate drug outcomes (drug launches, regulatory designations, and adverse events). The data come

from a variety of sources, including, among others, Cortellis Clinical Trial Intelligence, web-scraped and

hand-matched data from ClinicalTrials.gov, and the FDA Adverse Event Reporting System database. Our

final sample is comprised of more than 10,000 clinical trial projects initiated between 1985 and 2019 and

completed between 1991 and 2020, with trial sites spanning 91 countries including the U.S.

We organize our analysis and findings into four main parts. First, we leverage the information on

drug firms’ self-reported anticipated trial end dates—to our knowledge, these data are not explored in

the prior work—and study how unexpected delays in trial completion affect subsequent decision-making.

The average trial completion in our data is delayed by nearly one year, with the 25th (75th) percentile

trial being not delayed (delayed by 1.6 years). We uncover a strong link between the unanticipated trial

1See, e.g., https://www.fda.gov/news-events/fda-voices/rare-disease-day-2021-fda-shows-sustained-support-rare-disease-
product-development-during-public.
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delays and firms’ post-trial-completion decision to suspend versus advance the trial to the next clinical

trial phase. Consistent with path dependence in decision-making, and elevated commitment by firms in

response to prior commitments made, more delayed trials are less likely to be subsequently suspended. A

one standard deviation increase in delay reduces the suspension probability by 4 percentage points, or

15% relative to the baseline suspension probability of 28%.

To further strengthen a causal and investment-distorting interpretation of the effect of unanticipated

delays on subsequent project decisions, we apply an instrument variable (IV) approach that exploits the

nature of limited capacity for a trial site to accommodate clinical trials. When more trials are taking place

simultaneously in a given location, it is more likely to lead to bottlenecks. Our IV for trial completion

delay is a measure capturing trial site congestion, which is the normalized change in the average patient

enrollment speed of a zipcode where the trial takes place between trial start and end date. The main

identification assumption is that changes in trial site congestion affect firms’ decisions to advance trials to

the next phase only through the effect of trial completion delay. We argue this exclusion restriction of our

IV plausibly holds since other potential factors, for example, trial site quality proxied by hospital care

quality provided in a region, seem uncorrelated with the congestion measure.

We find that trial site congestion and delay are significantly positively related, confirming the existence

of a strong first stage. With respect to the second stage, delay in trial completion when instrumented

with trial site congestion continues to significantly affect the decision to continue versus suspend the trial.

Moreover, the IV-based economic magnitude of the effect is in the same ballpark as the OLS estimates.

Second, we shift the focus from delay and time-based commitment measures to trial cost measures,

exploiting fluctuations in exchange rates in foreign-based (i.e., outside the U.S.) trials between trial

start and end date. Exchange rate movements induce plausibly-exogenous variation in firms’ monetary

commitments to a given trial, as the contracts and actual payments are typically conducted in local

currency.2 Again, we find a significant influence of commitments made by a firm to a trial, now arising

from exchange rate movements, on subsequent commitment to advance the trial to the next phase. In

the exchange rate context, we estimate a path-dependence effect amounting to a 6% reduction in trial

2See, for example, https://www.appliedclinicaltrialsonline.com/view/mastering-currency-fluctuation, highlighting that
a “study’s financial obligations may include absorbing fluctuations in exchange rates to meet the established contractual
requirements” and that payments occur “typically [in] the currencies of the countries where the trials are held.”
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suspension probability in response to a one standard deviation increase in trial costs through exchange

rates.

Third, we investigate potential underlying channels and moderators for the effects of trial delay and

exchange rate changes on trial suspension decisions. Neither set of results is driven by early-stage firms

with no or few alternative drugs as in Guedj and Scharfstein (2004). Most firms in our sample have many

viable drug candidates and restricting the estimation to such firms yields nearly identical effect sizes. The

path dependence in decision-making is also not merely the result of firms not being able to pivot due to

financial constraints as gauged by a series of common financial constraint measures. Moreover, differential

sorting by firms into trials with different lengths or delays based on initial expectations is unlikely to be an

underlying mechanism of our delay findings, since we can directly control for trial length expectations in

the analysis without this having any effect on the results. Instead, we find evidence that both unexpected

trial delay and the exchange rate effects on subsequent trial commitment are substantially larger when the

CEO in charge does not change between trial start and end, consistent with senior-management-induced

frictions in firms’ project decision-making.

Finally, we assess welfare implications of our findings, and in particular implications for consumers.

We are able to shed light on different welfare-relevant outcomes, including how distortions in new drug

development affect the availability of drugs in the marketplace as well as adverse events in patients. With

respect to adverse effects, we find that marginally-approved drugs due to delay-induced distorted firm

behavior are associated with economically modest but statistically insignificant increases in harmful events.

At the same time, with respect to drug availability, we find that delay-induced increased commitment to

trials increases the probability that firms ultimately bring the drug to market among drugs with no or few

existing treatment options, as gauged by a drug’s designation as an orphan drug. Taken together, these

findings suggest a nuanced relation between firm distortions and welfare implications for consumers.

Our paper makes three main contributions to the literature. First, we contribute to the literature on the

economics of innovation. Moser (2016) and Bryan and Williams (2021) provide comprehensive surveys

of recent research on the market failures in the markets for innovation and intellectual property. In the

context of pharmaceutical innovations, Acemoglu and Linn (2004) investigate the effect of potential

market size on drug innovations. Budish et al. (2015) show that short-termism and the fixed patent
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term distort private research investments. Azoulay et al. (2019) study the impact of scientific grant

funding at the NIH on pharmaceutical innovations. Krieger et al. (2022a) study how risk aversion leads

pharmaceutical firms to underinvest in radical innovation.3 Departing from the previous work, this paper

studies how firms’ (excess) commitments to the R&D process, an organizational response within firms,

distort their innovation efforts. In particular, we discuss the potential welfare consequences of these

distortions, and challenges the conventional wisdom that R&D distortions are typically and unequivocally

bad for consumers.

Second, we contribute to the literature in economics and finance on distortions in firm investment.

Guenzel (2023) documents distortions in firm investment due to sunk cost effects (which can be thought

of as one manifestation of path dependence) in the context of mergers and acquisitions, with exogenously

more expensive acquired businesses being less likely to be abandoned through divestiture. Related to

aggregate efficiency and welfare, Barrero (2022) and Ma et al. (2020) study the macro and equilibrium

effects of managerial overconfidence and diagnostic expectations, but do not consider, e.g., consumer-

relevant effects on product quality or variety as a result of distorted firm investment. Compared to this prior

work, we focus on an entirely different investment context, R&D, extend the scope of distortive factors by

studying the effect of project delays, and quantify various welfare-relevant consumer outcomes. Despite

its importance, studying welfare implications of firm investment distortions is still mostly absent in the

literature on nonstandard firm decision-making (see Malmendier (2018) and Guenzel and Malmendier

(2020) for recent literature surveys).

Third, we contribute to a literature in economics and related fields on the effects of commitment

and escalation of commitment. As alluded to above, in an influential laboratory study on commitment

and path dependence, Staw (1976) finds that subjects are more committed to a chosen (hypothetical)

R&D project if they were personally responsible for the initial action and, consistent with an escalation

mechanism, in response to negative signals about the investment. Subsequent work has provided empirical

evidence consistent with escalating commitment in various contexts including “problem loan” write-offs

3With respect to biomedical innovation, Lo and Thakor (2022) review the recent literature on how external financing frictions
affect drug development, including Lerner et al. (2003) on equity financing cycles, Robinson and Stuart (2007) on financial
contracting in strategic alliances, Lerner and Malmendier (2010) on contractibility in research agreements, Cunningham et al.
(2021) on the M&A market, Liu (2021) on the IPO decisions of biotech, Krieger et al. (2022b) on profit erosion of existing
products, and Li et al. (2022) on common ownership among venture capital firms.
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(Staw et al., 1997) and NBA draft picks (Staw and Hoang, 1995; Camerer and Weber, 1999). A common

problem in empirical studies is the lack of plausibly-exogenous variation in initial commitment decisions,

which opens the door for alternative explanations related to information, beliefs, or selection to explain

subsequent commitment. We advance this literature by deliberately focusing on how unanticipated factors,

delays and cost variation, affect initial and distort subsequent commitment.4

The remainder of the paper is structured as follows. Section 2 provides details on institutional

background and data. Section 3 introduces the empirical approach. Sections 4 and 5 discuss the results

and welfare implications. Section 6 concludes.

2 Data and Institutional Background

2.1 Institutional Background

The pharmaceutical industry is highly R&D intensive. In 2019, the whole industry spent $83 billion

dollars on R&D, and its R&D intensity, defined by R&D spending as a share of net revenues, reached

25 percent, which is higher than the software and semiconductor industries (Austin and Hayford, 2021).

Among a variety of activities, a large portion of the R&D spending in the pharmaceutical industry is

devoted to conducting clinical trials.

Clinical trials are regulated by the FDA and typically involve three stages: Phase I, II, and III trials.

Phase I tests the safety of a drug candidate a small group of humans and determines how and where it

distributes within the body. Phase II involves a larger number of patients, aiming to determine the dosage

and effectiveness of the drug. Phase III primarily focuses on the safety and efficacy for a wide variety of

population by testing the drug candidate on a much larger group of patients. Favorable trial results are

required to move from one phase to the next. After completing all three phases, a drug developer (sponsor)

can submit the new drug application to the FDA to seek the market launch permission. For each stage of

trials, a sponsor needs to design a strict protocol—a scientific plan of action. The protocol explains how

4We note two papers that use price variation induced by auctions to study commitment in consumer, rather than firm, settings
(Augenblick, 2016 in consumers’ penny auction behavior; Ho et al., 2018 in consumers’ car usage behavior). Guenzel (2023)
exploits post-acquisition-agreement aggregate stock market fluctuations to obtain quasi-random variation in sunk acquisition
costs. We further note the existence of a literature on R&D focusing on how commitments by some firms can lead to “path
dependence” in a different sense, namely creating barriers to operate for other firms (e.g., Manez et al., 2009). In contrast to such
studies, we focus on within-firm commitment effects.
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many patients will be recruited, the inclusion/exclusion criteria for eligible patients, what tests will be

performed, how results will be measured and collected, and why the trial may be discontinued. Clinical

trials are often conducted in different settings and locations. These locations are across cities, states, and

countries.

Clinical trials are costly. Recent studies reveal that it costs over $1 billion to bring a new drug to the

market (DiMasi et al., 2003; DiMasi et al., 2016; Wouters et al., 2020). A variety of factors significantly

affect the final cost of a clinical trial, including but not limited to clinical procedure costs, administrative

staff costs, site monitoring costs, site retention costs, and central laboratory costs (Wong et al., 2014).

Noticeably, these cost factors heavily hinge on the length of time to complete a trial. For example, longer

timelines mean higher labor costs as investigators and staff must be compensated for longer hours. Longer

timelines also imply more devoted hours to take care of trial participants, which leads to higher costs to

drug developers. As documented by Wong et al. (2019), the median duration of Phase I, II, and III are 1.6

years, 2.9 years, and 3.8 years,5 In our sample, whose construction we describe next, the median trial

(comprised of Phase I and II trials) similarly takes 2.4 years to complete (Table 1; see Section 2.3 for

further summary statistics).

2.2 Data and Sample Construction

Clinical Trials Data. We construct a sample of clinical trials initiated by U.S.-based companies. The

trials data come from Cortellis Clinical Trial Intelligence, in which we can observe detailed information

on each trial, including its title and phase, start and completion dates, number of sites and site country,

trial protocol, eligibility criteria, interventions, adverse outcome if there is any, and if the endpoint is

achieved; information on drug candidate, drug indications, drug dosage, and associated technology; and

information on drug developer ID and name, its role in the trial, funder type, and if the trial is commercial.

Our analysis focuses on the trial by drug indication level (hereafter referred to as a project). To obtain the

outcome of trials and corresponding drug projects, we merge the trials data with drug development data

from the Cortellis Competitive Intelligence. We classify a project as suspended at certain trial phase if it

is explicitly coded as suspended, discontinued, withdrawn, or coded as “no development” for over three

5However, the time to complete a trial varies widely across indications. For example, the median duration of Phase III
oncology trials is about six years.
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years, or coded as staying in Phase I, II, or III for over five, eight, or ten years, respectively, in the drug

development data (Li et al., 2022).

Data Filters. We apply several filters to construct our final analysis sample. First, we focus on

projects with already-completed Phase I or II trials and non-missing records on their outcomes after these

trials, e.g., suspension or continuation. Second, we drop any projects whose Phase I or II trials were

completed after 2020, because these projects would have insufficient time to reach any outcomes. Third,

we drop any projects in Phase I or II trials where their endpoints were not achieved, so that the suspension

in the next phase of trials is not due to the unfavorable readouts in the previous trials. Next, we require a

project to have a realized trial start and completion dates and hence drop those with estimated completion

dates. These filters yield a sample of 11,228 projects, among which trials were initiated between 1985

and 2019 (completed years between 1991 and 2020) and trial sites were spanning across 91 countries

including the U.S.

Match With ClinicalTrials.gov. We supplement our trial data with a variety of other data sources.

To get detailed address information for each trial site (street, city, state, country, and ZIP code), we

manually match our sample with trial data scraped from ClinicalTrials.gov maintained by U.S. National

Library of Medicine. For each trial, ClinicalTrials.gov contains the initial submission as well as the

updated trial reports submitted by the drug developer afterwards. We match our sample with all report

versions, which also allows us to construct one of the key variables in our analysis, the length of trial

delay, as the difference of the anticipated trial completion date in the drug developer’s initial submission

to ClinicalTrials.gov and the realized trial completion date. Details of the sample matching procedure are

provided in Section II.A.

Adverse Events Data. To shed light on welfare implications, we manually link the approved drugs

in our trials sample to the FDA Adverse Event Reporting System database (2012-2022) and its predecessor,

the Legacy Adverse Event Reporting System (2004-2012). The adverse event database records adverse

drug reactions in the U.S. reported to the FDA. We focus on events in which a drug is listed as the “primary

suspect” (Cohen et al., 2021). Section II.B describes the corresponding matching procedure.

Other Data. Lastly, we obtain financial accounting and management information for a subset of

the drug developers that are public pharmaceutical companies traded on US exchanges from Compustat
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and Execucomp. We get the expected drug revenues once launching in the market from the Cortellis

Competitive Intelligence. We collect the quality information of US hospitals from various CMS-managed

quality programs, including 30-day mortality rates, 30-day readmission rates, and patient safety indicators.

2.3 Summary Statistics

Table 1 presents summary statistics for our main sample comprised of completed clinical trials. Just

under 60% of trials in our sample are Phase I trials, the remainder are Phase II trials. About one in three

trials are suspended, i.e., not advanced to Phase II or III, respectively. The average trial in our data is

conducted at 13 different sites, though there is significant variation with respect to number of trial sites,

and the average trial has 100 participants. The average firm in our sample has 136 drug projects (drug by

ICD indications) under development, i.e., our sample firms are not single-product firms as analyzed in

Guedj and Scharfstein (2004). We discuss variables related to trial duration and exchange rates below in

Sections 3.2 to 3.4, when we introduce the empirical design. We also note that the number of observations

in the regression results will sometimes differ from the summary statistics numbers in Table 1, depending

on the availability of the duration and exchange rate variables.

Figure 1 demonstrates the geographic distribution of clinical trial sites in our sample. As shown,

clinical trials have gone global in the recent decades as the trial sites are widely spread across various

countries. Though a large share of clinical trials are clustered in the US, accounting for 63% of the total

trial sites (59,617 out of 94,261 clinical trial sites), other countries including Canada, Germany, France

and Japan contribute another 12% of the total trial sites. The pattern is robust if we tabulate the number of

trials across countries, as depicted in Figure OA.1 of the Online Appendix. In terms of the trial number,

the US takes up 45% of the total trials (6,847 out of 15,222 clinical trials). The other four countries

(Candada, Germany, France and Japan) contribute 16% of clinical trials in total.

3 Conceptual Framework and Empirical Approach

Our empirical approach centers on examining pharmaceutical firms’ decision to continue versus

suspend drug projects. Specifically, we test whether plausibly-exogenous delays in clinical trial completion

and increases in the cost of foreign-based trials due to exchange rate fluctuations induce firms to be more
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likely to “stay committed” to a clinical trial. That is, in a nutshell, we ask whether (exogenously) higher

levels of prior commitment of a firm to a clinical trial creates path dependence in decision-making and

increased commitment going forward. Before going into the empirical design in more detail, we first

discuss how we conceptually think about “excess commitment” in our setting.

3.1 Conceptual Framework

To fix ideas, consider a firm i that has finished a given phase of a clinical trial and decides whether to

continue or suspend the trial. As a benchmark scenario (which we refer to the “no excess commitment”

scenario), we can model the firm’s decision as a threshold criterion such that it continues if and only if

f (X)> TBench

where X = (x1,x2, ...,xn) is a vector of decision inputs observable to the firm (but potentially not to

the econometrician), f aggregates the inputs, and T is the continuation threshold. We like to think of

X as including all variables that a “standard,” frictionless economic framework would deliver should

matter for the decision, such as previous trial outcomes, prospects about future clinical trials, private

information about the drug safety and efficacy, forecasted demand for the drug, degree of competition,

firm or managerial degree of risk aversion, etc. Note that the above decision criterion is not necessarily

optimal from a welfare perspective. For example, if firm is risk averse, it may produce less innovation than

socially optimal. In other words, while we use the above case as the benchmark, no-excess-commitment

case, we do not benchmark against the socially optimal decision.

We can conceptualize the idea that variables included in X matter for the continuation decision by

saying that ∂ f (X)
∂xi

̸= 0 for all i (assuming f is differentiable). This also easily allows us to spell out what

we mean by excess commitment. We refer to a firm as showing excess commitment with respect to clinical

trial decisions if there exists an observable variable w ∈W,W ∩X = /0, such that the firm continues if and

only if

f (X ,w)> T with
∂ f (X ,w)

∂ (w)
̸= 0.

That is, excess commitment is characterized by nonstandard observables affecting the decision to
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suspend a trial.6 This yields the testable prediction that under the null (alternative) hypothesis, variation

in w across different trials should not (should) be related to firms’ continuation decision.

There are, of course, many candidate observables falling into the set of W . We focus in particular

on variables related to unexpected R&D costs, both monetary and time costs, given their importance in

the R&D investment and innovation process, and given the prior evidence that initial costs can affect

commitment levels (Staw, 1976; Guenzel, 2023). In Section 4.4, we will also draw links to firm and

managerial incentives and frictions, including real options, financial constraints, and agency conflicts, to

further explore potential underlying mechanisms.

3.2 Delay in Trial Completion

We first examine how firms factor unexpected delays in clinical trial completion into their R&D

decision of the follow-on phase of trial, by estimating:

Suspensioni = βDelayInTrialCompletioni + γControlsi +FEs+ηi. (1)

Suspensioni is an indicator variable for whether project i was suspended in the follow-on phase trial

(Phases II or III clinical trials) after completing Phase I (II) clinical trials. The sample includes all projects

i that already completed Phases I or II with detailed clinical trials records. The independent variable,

DelayInTrialCompletioni, is the difference between actual trial completion date and the anticipated

completion date as indicated by the firm at the start of the trial. In our sample, the average trial completion

is nearly one year later relative to the initially anticipated end date (Table 1).

In the regressions, we will employ various levels of fixed effects (FEs) to control for unobserved

heterogeneity, including FEs for the year-by-quarter of trial start date, for the drug company, for the drug’s

ICD category, and completed trial phase (Phase I or II). We will also include a vector of control variables,

the number of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of

drug projects in the company’s pipeline (taking logs), and number of competing projects in the same ICD

(taking logs). We use two-way clustered standard errors clustered at the ICD category and quarter levels.

6We do not take a stance on whether T in the excess commitment case is the same as or different from TBench.
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3.3 Trial Site Congestion as an Instrument for Delay in Trial Completion

As mentioned above, our Delay in Trial Completion measure captures the unanticipated component

of the length of a given clinical trial, as the difference between realized end date and anticipated end

date filed by the firm with ClinicalTrials.gov at trial start. To further isolate the effects of plausibly-

exogenous variation in trial length on firm continuation-versus-suspension decision-making, we introduce

an instrumental variables (IV) strategy that uses trial site congestion as an instrument for trial completion

delay. This instrument is based on the notion that trial sites have limited capacity to accommodate clinical

trials. If a site/location hosts too many trials, it is challenging to recruit patients on time and monitor

multiple trials simultaneously, possibly leading to a slowdown in the trials.

To construct our instrument, we download the universe of trial records across all phases (all Phase I,

II, and III trials) from ClinicalTrials.gov and standardize the ZIP codes of the 20 most frequent countries

where these trials are conducted. The trials in the top 20 countries cover about 90% of total trials at the

ClinicialTrials.gov. We define each unique ZIP code in a country as one trial location, dropping any trials

with missing addresses, number of participants, and start and completion dates. In a first step. we then

construct a congestion measure at the ZIP code level as follows. For a trial i conducted in Ni sites with a

start year τ1 and a completion year τ2, we compute the average patient enrollments per year per site Ei as

trial i’s total number of enrolled patients divided by the number of sites Ni and the number of years to

complete the trial, (τ2 − τ1). The the congestion measure of year t for location z, denoted by Gzt , is the

sum of Ei for all trials that have a site located in z and year t lying between the trial start year τ1 and the

trial completion year τ2:

Gzt = ∑
{i∈I:Ni∩z=z, t∈[τ1,τ2]}

Ei

where I is the full set of all clinical trials. The key intuition is that a larger Gzt implies that location z

hosts more trial participants in year t. In the second step, we calculate the change in congestion measure

at location z between start year τ1 and completion year τ2 for trial i. We scale this change by the mean

level of the congestion measure of location z across years, Gz, so we interpret it as the relative change in

12



congestion at location z. Our instrument for delay is then

zi =Congestioni = max
z∈Ni

{Gzτ2 −Gzτ1

Gz
}.

The instrument takes the maximum across trial i’s sites because a clinical trial is not completed unless the

last trial site is closed. For the average trial in the sample, the increase in trial congestion between trial

start and end, normalized by the mean congestion, is slightly more than five percent (Table 1).

The key identifying assumption is that our IV affects the outcome variable Suspensioni only through

its effect on DelayInTrialCompletioni. The IV test boils down to examining whether firms are more likely

to advance the trial to the next phase if the trial site of the already-completed previous-stage trial became

more crowded. Why does the exclusion condition plausible hold? We argue that the change in trial site

crowdedness of a zipcode (aggregate conditions) is unlikely to be correlated with unobserved shocks

to firms’ decisions to advance a specific clinical trial (firm-level condition). One potential concern is

that the more crowded trial site signals better service quality (e.g. better site monitoring, data collection,

implementation of clinical protocol) it could potentially provide in trials. Clinical trials conducted

in these crowded sites, though with a delayed schedule, tend to have trial results with higher quality.

Therefore, firms are more likely to advance the trials to the next phase. We find no evidence that the

trial site congestion measure Gzt is (positively or negatively) correlated with trial site quality, proxied

by the average clinical score/evaluation across hospitals in a zipcode. Figure 2 exhibits the correlation

coefficients of 26 hospital quality measures devised by the CMS between 2005 to 2017.

3.4 Exchange Rate Variation in Foreign Trials

As a second measure of plausibly-exogenous prior commitments to a clinical trial that is independent

of the time-based delay and congestion measures, we leverage the institutional feature that a large portion

of clinical trials are conducted outside of the US. For a trial involving multiple sites internationally,

the contracts and actual payments are conducted in other currencies rather than the US dollar. When

foreign currencies become more expensive relative to the US dollar, this yields unexpected costs to drug

developers due to the exchange rate volatility.

To measure the extent to which foreign currency becomes more expensive (or cheaper) across the
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whole duration of a clinical trial, we take a moving-window average of changes in exchange rates.

Specifically, we define ∆FXc
[τ] as the percentage change in the exchange rate (unit of dollars in exchange

for one unit of foreign currency in country c) τ years after the clinical trial was initiated. Then we

construct an average exchange rate change for clinical trial i as

∆FXi = ∑
c

nic

Ni

T

∑
τ=1

∆FXc
[τ] (2)

where nic is the number of trial sites in country c, Ni is the total number of trial sites for i, and ∆FXc
[T ] is

the percentage change in exchange rate across the whole duration of the clinical trial. Essentially, ∆FXi

measures the number-of-site-weighted rolling window exchange rate changes for trial i, with a higher

∆FXi indicating higher exchange-rate-driven costs to the drug developer. If a trial is conducted exclusively

in the US, then ∆FXi = 0. 35% of trials in our sample involve foreign trial sites (Table 1). Among foreign

trials, the interquartile range in exchange variation is slightly above six percentage points.

Similar to Equation (1), we will then estimate:

Suspensioni = β∆FXi + γControlsi +FEs+ηi (3)

to study how firms’ trial continuation decisions are affected by prior exchange-rate-induced commitments

to clinical trials.

4 Results

4.1 Delay in Trial Completion

Table 2 presents the results for how firms’ decision to continue versus suspend a clinical trial after a

given completed phase depends on the experienced delay in trial completion. Column (1), comparing

trials initiated in the same quarter, finds a strong negative effect of delay on the likelihood of suspension,

both economically and statistically speaking. A one standard deviation increase in delay reduces the

suspension probability by 4 percentage points, or 15% relative to the baseline suspension probability of

28% (Table 1).
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The effect of trial completion delay on trial continuation remains unchanged in Column (2) when

we add firm fixed effects, as well as in Column (3) when we further add fixed effects for the drug’s ICD

category and for the trial phase (Phase I versus II trials). Finally, the effect remains unchanged in Column

(4) when we add control variables for the number of sites in a clinical trial (taking logs), count of enrolled

participants (in hundreds), number of drug projects in the company’s pipeline (taking logs), and number

of competing projects in the same ICD (taking logs).7

Overall, the results in Table 2 provide first evidence that commitment by firms to a given clinical trial,

in the form of time it takes to complete the trial beyond what firms anticipated at trial start, induces path

dependence and increases subsequent commitment by firms when it comes to the decision to suspend

versus continue the trial.

4.2 Trial Site Congestion as an Instrument for Delay in Trial Completion

Table 3 presents the IV results, studying the effect of trial completion delay due to trial site congestion

on the decision to subsequently continue versus suspend the trial. Columns (1) and (2) show the first-stage

results, i.e. the relation between delay and trial site congestion as detailed in Section 3.3, with and without

the controls included in the last column of Table 2. The columns reveal a strong association between

congestion and delay. Economically, a one standard deviation increase in the congestion instrument is

associated with an increase in trial completion delay of close to four months. Statistically, the Kleibergen

and Paap (2006) F−statistic is clearly above the common threshold for weak instruments of 10 (Stock

et al., 2002).

Columns (3) and (4) shows the second-stage results. Delay in trial completion, instrumented with

trial site congestion, continues to significantly affect the decision to continue versus suspend the trial.

The economic magnitude of the effect is in the same ballpark as the OLS estimates in Table 3, and the

coefficients on instrumented delay remain significant at 5% continuing to use two-way clustered standard

errors, now corrected for using a two-stage estimation approach.

These IV results further strengthen the interpretation that unanticipated, plausibly-exogenous delays in

7The coefficients on controls (unreported) are mostly intuitive. More projects in the pipeline and more competing projects
are positively (but insignificantly) associated with suspension. More trial sites increases the likelihood of suspension, whereas
more trial participants reduces it.
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trial completion induce distortions in firms’ subsequent behavior with respect to clinical trial continuation

versus suspension.

4.3 Exchange Rate Variation in Foreign Trials

Table 4 shows the results for how firms’ decision to continue versus suspend a clinical trial after a

given completed phase depends on exchange rate fluctuations experienced in foreign-based trials between

trial start and completion. All columns include a control for a trial’s total duration, given that total trial

duration determines the period over which exchange rate fluctuations can affect financial obligations.

Column (1) corresponds to Column (4) of Table 2, i.e., the specification with the full set of fixed effects

but without additional controls. Column (2) then adds the controls, as in Column (5) of Table 2. In

both columns, the coefficient on exchange rate changes is negative, implying exchange-rate-driven cost

increases make trial continuation more likely, and highly statistically significant. In terms of magnitudes,

a one standard deviation increase in trial costs through exchange rates is estimated to reduce the likelihood

of subsequent trial suspension by 1.75 percentage points, or 6% relative to the baseline. These estimated

magnitudes are slightly lower compared to the effects of unexpected delays on suspension decisions, but

still economically meaningful.

Columns (3) and (4) add an “interaction” between the exchange rate variable and whether the trial is

foreign-based and control for the main effect of foreign-based trial on trial suspension probability.8 Doing

so has little effect on the exchange rate variable of interest. If anything, the effect becomes slightly stronger

when controlling for the main effect of foreign-based trial. Now, a one standard deviation exchange rate

increase is associated with a reduction in suspension likelihood of 7% relative to the baseline.

The results in Table 4 provide additional evidence in favor of the idea that plausibly-exogenous

increases in prior commitment to a chosen action induce distortions and path dependence firms’ R&D

decision-making.

8We note that since ∆FX = 0 for domestic trials, it is in fact the case that ∆FX = ∆FX× Foreign Trial, i.e., we adopt the
interaction term notation solely for visual purposes.
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4.4 Underlying Channels

The empirical findings thus far show that pharmaceutical firms’ R&D decisions exhibit excess

commitment with respect to R&D projects. In this section, we discuss potential underlying channels that

might be related to path dependence and (excess) commitment in firms’ drug project decision-making

over time. We discuss several hypotheses in detail below, and gather additional empirical evidence to help

distinguish between the various potential channels.

4.4.1 Potential Underlying Channels

Table 5 focuses on four potential underlying channels and moderators for the previous findings in

Tables 2 to 4: agency conflicts, management changes, initial expectations about trial length, and financial

constraints. Panel A presents mechanism results for the effect of unexpected trial delays on subsequent

R&D commitment. Panel B presents mechanism results for the effect of exchange rate fluctuations.

Agency Conflicts—Lack of Other Viable Drug Candidates? In influential prior work, Guedj and

Scharfstein (2004) find that early-stage bio-pharmaceutical firms are reluctant to abandon their only viable

drug candidate, distorting trial continuation decisions. To check whether such early-stage-firm agency

problems can explain our findings, we restrict the sample to trials of firms with more than ten drug projects

in the company’s pipeline at trial completion (labeled Many Projects in the table).

Doing so, we conclude that a mechanism related to an aversion to “start over or liquidate” does

not explain our results. For one, the many-projects-in-the-pipeline restriction only drops relatively few

observations from the sample (less than 25% in either Panel A or Panel B). That is, the findings in Tables

2 to 4 predominantly come from large firms with many projects to begin with, leaving little room for

an early-stage-firm channel as in Guedj and Scharfstein (2004). Additionally, and consistent with the

previous point, Column (1) in both panels shows that unexpected delays and exchange rate changes

continue to have distortive effects on trial continuation decisions that are of very similar magnitudes

among firms with more than ten drug projects in the pipeline. Thus, the effects we find are not driven by

early-stage firms with no or few alternative drugs as in Guedj and Scharfstein (2004).

Management Changes. If firms distort drug project decisions by taking past actions taken into

account, it is natural to ask who the responsible decision-makers are. In a different context (mergers and
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acquisitions), Guenzel (2023) shows that firms engage in sunk-cost thinking with respect to acquired

targets, distorting their subsequent decisions to abandon acquired businesses through divestiture. Guenzel

(2023) finds the sunk-cost distortions are driven by the CEO who made the initial acquisition. To test for a

similar CEO effect in our setting, we create a Same CEO indicator that equals one if the firm’s CEO is the

same at trial start and completion, and then interact the CEO variable with our delay and exchange rate

variables. We emphasize the test of interest is not whether an incumbent is more or less likely to suspend

a trial, but how the effects of delay and exchange rate fluctuations vary depending on the CEO regime.

Indeed, we find that the commitment effects we uncover are more pronounced when the CEO at trial

end, when the decision to advance or suspend the trial is to be made, is the same CEO that was at the helm

at trial start. Both the effect of unexpected trial delay on subsequent commitment to the trial and that of

exchange rate variation are more than three times as large when there is no CEO change between trial

start and end, in Columns (2) of Table 5. (We note that while economically large, the incumbent-CEO

interaction effect with respect to exchange-rate-driven trial commitment is not statistically significant.)

Overall, these results are consistent with Guenzel (2023) and the existence of senior-management-induced

frictions in firms’ project decision-making.

Expectations of Trial Duration. One possible channel most relevant to our delay results is a

selection-based mechanism based on initial expectations and differential willingness to undertake lengthy

trials. In the data, we observe a positive correlation between a trial’s anticipated duration (anticipated

end date minus start date) and the trial’s delay (end date minus anticipated end date). Thus, it could in

principle be the case that our delay results reflect initially optimistic drug developers selecting into trials

with a longer anticipated duration and a longer delay period on average.

However, the empirical correlation between anticipated duration and delay, while positive, is relatively

small (ρ = 0.07). Furthermore, when we directly control for anticipated duration in Columns (3) of Table

5, we obtain very similar results, most importantly with respect to the effect of delay, but also with respect

to the effect of exchange rates.9 In light of this evidence, differential sorting by firms into trials with

different lengths or delays based on initial expectations is unlikely to be an underlying mechanism of our

findings.

9In unreported tests, we include second- or third-order polynomials for anticipated duration and find nearly identical results
compared to those reported in Table 5.

18



Financial Constraints. Finally, we test whether the path dependence and commitment in drug-

related decision-making is driven by financial constraints of the drug-developing firms. Intuitively, if firms

are financially constrained, they may be more likely to stick to a chosen course of action. To investigate

this, we augment our specifications with a series of financial constraints measures.10 Specifically, the

Constrained variable in the final columns of Table 5 is an indicator variable that equal one if the firm’s

Whited and Wu (2006) (WW) index at trial end is in the top quartile of the index’s sample distribution.

Column (4) in both panels shows that the distortive effect of both delay and exchange rates on trial

suspension remains unchanged with the added constraints measure. Thus, the path dependence in decision-

making is not merely the result of constrained firms not being able to pivot (also in combination with the

fact that most firms in our sample have many other viable drug candidate projects).11

Real Option We also explore the potential role of real option considerations in Table 6. The R&D

process involves a sequence of actions and hence involves valuable option values at each decision-making

node, in particular when past experience might reveal information about likely future values (Pindyck,

1991; Dixit et al., 1994). In a survey paper, McAfee et al. (2010) propose a stylized real option model

such that more past investments might reveal better prospect about the option value of further investment,

which might help explain why unexpected delay in a trial is positively correlated with the likelihood of

the firm to advance it to the next phase trial. If indeed the trial delay reveals valuable information about

further investment, we would expect the delay to be positively correlated with proxies for the prospect of

a drug project: either higher expected sales after launching in the market (higher revenues conditional on

getting the FDA approval) or less adverse reaction among trial participants so that it has a higher chance

to survive all stipulated phases of clinical trials (a higher probability of obtaining the FDA approval).

To test this channel, we examine if delays in trial completion predict higher expected drug sales

conditional on launching in the market or less adverse reaction among trial participants. We adopt a

specification following Equation (1) and Table 6 reports the regression results. Panel A examines the

outcome variables pertaining to expected drug sales. We use four different measures (all take logs),

10We note that adding the financial constraints measures restricts the sample to include public firms only.
11We show robustness to other measures of financial constraints, in particular the Hadlock and Pierce (2010) (HP) and Kaplan

and Zingales (1997) (KZ) indices, as well as to constraint measures defined as of the time of trial start in Appendix Tables OA.2
and OA.3. Irrespective of the measure we use, we continue to find a strong effect of trial delay and exchange rates on subsequent
suspension probabilities.
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including the expected first-year sales, the sum of first three-year sales, the sum of first five-year sales,

and the average annual sales, after the drug approved by the FDA. All sales are million US dollars in 2017

adjusted by GDP deflators. Contrary to the real option hypothesis, we find delays in trial completion fail

to predict the expected sales of a drug, both in statistical significance and economic significance. Panel B

looks into the outcome variables pertaining to adverse reaction reports in a completed trial. Columns (1)

and (2) use the total and maximum percentages of raw adverse reaction counts (an enrolled participant

might have multiple reports) relative to the total number of enrolled patients across various adverse

symptoms. Instead of a negative correlation, we document a significantly positive relation between

delays in trial completion and the number of adverse reaction reports. Notice that much of light adverse

reaction, e.g., headache, nausea, fatigue, are included in the counts, and these are of less importance for

drug evaluation by the FDA. Therefore, in columns (3) and (4), we redo our analysis by only counting

life-threatening adverse reaction in a trial, such as acute myelogenous leukemia, basal cell carcinoma,

brain hemorrhage, etc. Again, the results are inconsistent with the real option hypothesis and the slopes

on DelayInTrialCompletioni are statistically and economically insignificant. All these results suggest that

the real option value might not be able to explain the excess commitment in pharmaceutical R&D.

5 Welfare Implications

5.1 Outcome Variables Related to Patient Welfare

To explore the implications of elevated commitment in pharmaceutical R&D for welfare, and specifi-

cally consumer welfare, we consider two outcome variables. First, at the extensive margin, an approved

new drug can save lives if there is no alternative drug that exists in the market to target the disease. To

measure this effect, we examine drug approval outcomes of so-called orphan drugs targeting infrequent

diseases with typically few available treatment options. Second, at the intensive margin, drugs might yield

adverse reactions among users once approved, which is indirectly related to the safety of the drug and is

relevant for consumer welfare. To gauge the impact along this dimension, we use the count of adverse

events occurring after drug launch in the marketplace.
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5.2 Econometric Framework

Unlike the OLS and 2SLS approaches adopted in Section 3, one complication in our welfare analysis

is endogenous sample selection. Specifically, while we can study the effect of investment distortions

on orphan drug launch probability as before, adverse events only occur conditional on the drug being

approved and launched in the market. To account for this, we apply a parametric framework for the

tests related to adverse events. This framework addresses sample selection with endogenous explanatory

variables, and modifies the classic Heckman selection model (e.g., Heckman, 1979; Wooldridge, 2010).

Alternatively, it would be possible to adopt non-parametric identification strategies to estimate bounds for

average treatment effects (e.g., Lee, 2009; Huber, 2014; Bartalotti et al., 2021). We pursue the parametric

approach since it is easy to implement, flexible with respect to continuous treatments, and is able to

circumvent the complication of estimates for observed-only-when-treated sub-populations. We lay out

our framework as follows.

Let i denote a drug project and Xi denote all observed drug and developer characteristics except

our proxy for unexpected commitment, ci. When commitment influences drug developers’ decisions

to continue project i, we would expect that the drug approval outcome, Y app
i , depends on ci. Y app

i is an

indicator equal to one if project i is approved by FDA after completing all required clinical trials and

proving that the drug is safe and effective. We define

Ỹ app
i = β1ci +β

′
2Xi +ui (4)

as the latent variable that maps into potential outcomes Y app
i such that Y app

i = 1
{

Ỹ app
i > 0

}
. ui is a

random variable representing characteristics unobserved by the econometrician or the idiosyncratic shock

affecting drug safety or expected profitability.

We define other outcomes variables, in particular adverse events, as Ỹ out
i . Assume Ỹ out

i is a linear

function of observables Xi and ci so that

Ỹ out
i = α1ci +α

′
2Xi + vi (5)

where vi is the residual term. The sample selection is reflected in the fact that we can observe Ỹ out
i only if
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drug project i is approved by the FDA. Therefore, we define the observable outcome Y out
i = Ỹ out

i × Ỹ app
i .

In our setting, the endogenous sample selection is embodied in the possible correlation between ci

and ui while the endogenous explanatory variable (or endogenous treatment) is captured by the fact that ci

might be correlated with vi. Following a similar strategy as in Section 3.3, we use an exogenous variable

to instrument for ci. Specifically, assume ci is generated according to the model

ci = γ1zi + γ
′
2Xi +ξi (6)

where zi is the instrumental variable.

To close the model, we impose the following parametric assumption on the error terms so that


ui

ξi

vi

∼ Normal




0

0

0

 ,


1 σ12 σ13

σ12 σ2
2 σ23

σ13 σ23 σ2
3


 (7)

where (ui,ξi,vi) is jointly normally distributed and independent of all observables zi and Xi. Without loss

of generality, we normalize var(ui) = 1 as Y app
i is a binary variable. Our setting and assumptions are

similar to the sample selection model with endogenous explanatory variables in Chapter 19 of Wooldridge

(2010). The key difference is that we allow the endogenous variable to enter the sample selection Equation

(4). To discipline the model, we hence impose extra structure on the residuals through Equation (7). Note

that Equation (7) is a stronger version of the restriction imposed on the residuals. Our estimation can

also be obtained under a weaker set of assumptions where (ui,ξi) is jointly normally distributed and

E[vi | β1ξi +ui] = α3(β1ξi +ui).

We detail our estimation procedure as follows:

Step one: Obtain (β̂1, β̂ ′
2, γ̂1, γ̂ ′2, ˆσ12, σ̂2

2 ) from an IV-probit model of Y app
i on ci and Xi where ci follows

Equation (6). Compute the estimated inverse Mills ratios, λ̂i = λ (
β̂1·γ̂1zi+(β̂1·γ̂ ′2+β̂ ′

2)Xi√
β̂ 2

1 σ̂2
2+2β̂1 ˆσ12+1

) where λ (·) = φ(·)
Φ(·)

with φ(·) as the probability density function of the standard normal distribution and Φ(·) as the cumulative

density function of the standard normal distribution.
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Step two: Use the selected sample with Y out being observed and estimate the equation

Y out
i = α1ci +α

′
2Xi +α3λ̂i + errori

by 2SLS, using instruments (zi,Xi, λ̂i).

Our estimation procedure is similar to that proposed in Wooldridge (2010). We provide a detailed

derivation in the Online Appendix (OA Section II.C). Standard errors and test statistics are corrected for

the generated regressor problem by bootstrapping.

5.3 Effects on New Drug Launches With Few Existing Medications (Orphan Drugs)

We first assess welfare implications as they pertain to the development and launch of orphan drugs—

drugs for infrequent diseases for which there are commonly no other or only few other treatment

alternatives. As alluded to above, for this part we can in fact continue to use the IV strategy from Section

3.3, and do not have to rely on the more advanced framework from Section 5.2. Specifically, conditioning

on clinical trials involving orphan drugs, we examine how the likelihood of eventual orphan drug approval

by the FDA (i.e., launch of the drug in the market) varies with congestion-induced delay in the completion

of Phase I or Phase II clinical trials.

We present the corresponding results in Table 7. Similar to Table 3, Column (1) presents the first-stage

results. Despite the reduction in sample size (due to the restriction to orphan drug clinical trials), the first

stage remains strongly significant. Column (2) then presents the second-stage results, with the indicator

variable for FDA orphan drug approval as the dependent variable of interest. We find a significant

positive effect of instrumented delay on the probability that orphan drugs are ultimately launched in the

marketplace. For example, a six-month congestion-induced delay in trial completion is associated with a

1.5 percentage point increase in the probability of orphan drug market launch. This is an economically

large effect, given the relatively low baseline probability of eventual FDA approval of orphan-drug-related

clinical trials of just above 10% in the sample.
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5.4 Effects on Adverse Events Related to Approved Drugs

We next assess welfare implications as they pertain to adverse effects in patients of approved drugs.

For this part, we make use of the econometric sample-selection framework detailed in Section 5.2. Table

8 shows the results, with standard errors bootstrapped using 100 iterations. Column (1) shows the first

stage results, i.e., the first part of the second step outlined in Section 5.2. Similar to Table 7, we continue

to observe a strong relation between trial site congestion and delay despite the reduction in sample size.

(In Table 8, the sample size reduction is due to the fact that we focus on outcomes of approved drugs.)

Columns (2) and (3) show the second-stage results, examining adverse events either over a one-year

or three-year horizon since drug launch. Importantly, we continue to include ICD code fixed effects (as

well as other fixed effects) in this analysis, so all results come from within-drug-category comparisons.

Within one and three years since drug launch, the median number of reported adverse events in our sample

is 37 and 345, respectively. The point estimates in Columns (2) and (3) point to modest increases in

adverse events after congestion-induced delay but are notably insignificant. In both columns, a one-month

instrumented increase in delay is estimated to increase the prevalence of adverse events by about 1%.

Taken together, the results in Sections 5.3 and 5.4 clarify the intricacies and complexities of how

distortions in firm decision-making with respect to innovation can affect (consumer) welfare. While the

distortions we uncover increase the breadth of treatments for infrequent diseases for which there are often

no other existing medications, they might also lead to the launch of drugs with more adverse effects. More

broadly, the results in this paper highlight that for other parties, distortions in firm investment behavior do

not need to exclusively entail welfare costs; instead, investment distortions can, and in fact may frequently,

induce positive externalities on third parties, e.g., in the form of increased product variety.

6 Conclusion

In this paper, we study the extent to which existing commitments made to R&D endeavors induce

path dependence in subsequent R&D decision-making, and examine resulting welfare implications. We

study these questions using project-level R&D data from the pharmaceutical industry, namely clinical

trials data with granular information on many important dimensions ranging from project timelines to
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project outcomes. Clinical trials that experience unanticipated increases in commitment, due do being

unexpectedly delayed or unexpectedly costlier as a result of exchange rate fluctuations, are significantly

more likely to advance to the next trial phase. The economic magnitudes we uncover suggest substantial

path-dependence in firm decision-making. The implications for consumers as a result of distorted R&D

undertakings by firms are nuanced. On the one hand, delay-induced elevated commitment to clinical trials

increases the likelihood of drug launches for diseases with few existing treatment options (orphan drugs).

On the other hand, marginally-approved drugs (not restricted to orphan drugs) may be associated with

modestly higher adverse event counts.

The findings of this paper suggest a variety of potential directions for future research. One promising

area for future work would be to investigate heterogeneities along several dimensions. For example,

it would be interesting to explore how the magnitude of R&D distortions varies with organizational

structure (e.g., top-down versus decentralized decision-making) and by target disease and drug type

(e.g., depressants versus stimulants), and whether there are heterogeneous effects on consumer welfare

outcomes (e.g., by severity of adverse effects, or by various demographic characteristics). Alternatively,

it would also be interesting to bring the analysis of “firm distortions and consumer welfare effects” to

other contexts. The notion that distorted firm decision-making can come with both positive and negative

consequences for consumers applies broadly, whenever firms and consumers interact in goods or financial

markets.
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Figures

Figure 1: Geographic Distribution of Trial Sites
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This figure exhibits the trial-site geographic distribution of clinical trials included in the analysis sample. For each
country, we calculate the natural logarithm of the number of trial sites.
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Figure 2: Correlation between Trial Site Congestion and Hospital Care Quality
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Correlation Coefficients

This figure exhibits the correlation coefficients between the trial site congestion measure and the average hospital
care quality measures in a zipcode. The correlation coefficients are estimated by the regression

Qzt = βGzt + γz + τt

where Qzt is the average quality measure of hospital care at zipcode z in year t. Gzt is the congestion measure at
zipcode z in year t. γz and τt are zipcode and year fixed effects. β represents the correlation coefficients. The y-axis
denotes the names of various quality measures. All standard errors are two-way clustered at the zipcode and year
levels. Capped spikes represent 95% confidence intervals.
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Tables

Table 1: Summary Statistics

This table reports summary statistics. The unit of observation is a drug project. The sample contains all projects that
completed Phase I or II trials with detailed clinical trials records.

N Mean SD P25 Median P75

Clinical Trial Phase (I or II) 11,228 1.59 0.49 1.00 2.00 2.00
Suspension 11,228 0.28 0.45 0.00 0.00 1.00
Number of Clinical Trial Sites 11,179 13.65 40.62 1.00 3.00 13.00
Trial Participants (in hundreds) 11,195 1.00 1.62 0.25 0.49 1.06
Number of Drug Projects 10,998 136.14 179.07 11.00 41.00 230.00
Number of Competing Drug Projects (in logs) 11,182 5.16 1.34 4.39 5.33 6.01
Trial Duration (in months) 11,228 35.65 29.45 12.00 29.00 51.00
Anticipated Trial Duration 9,948 22.83 17.79 9.00 20.00 32.00
Delay in Trial Completion 9,948 11.78 19.19 0.00 3.00 19.00
Trial Site Congestion 9,948 5.28 10.04 0.00 0.93 4.19
Foreign Trial 11,228 0.35 0.48 0.00 0.00 1.00
∆FX | Foreign Trial 3,918 -1.40 6.35 -4.60 -0.92 1.58
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Table 2: Project Outcome and Delays in Trial Completion

This table reports the OLS estimation results of Equation (1). The unit of observation is a drug project. The sample
contains all projects that completed Phase I or II trials with detailed clinical trials records. The dependent variable,
Suspensioni, is an indicator variable (multiplied by 100 for ease of exposition) for whether project i was suspended
after completing Phase I or II clinical trials. The independent variable, Delay inTrialCompletioni, is the gap in
months between the realized trial completion date and the expected trial completion date for project i to complete
Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables include the number
of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects in
the company’s pipeline (taking logs), and number of competing projects in the same ICD category (taking logs).
Standard errors are two-way clustered at the ICD category and quarter levels. We report t−statistics in parentheses.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension

(1) (2) (3) (4)

Delay in Trial Completion −0.220∗∗∗ −0.211∗∗∗ −0.195∗∗∗ −0.188∗∗∗

(−5.29) (−6.36) (−5.60) (−5.30)

Controls N N N Y
Year × Quarter FE Y Y Y Y
Firm FE N Y Y Y
ICD FE N N Y Y
Trial Phase FE N N Y Y
Observations 9,912 9,433 9,397 9,161
Adj. R-squared 0.1262 0.2592 0.3050 0.3060
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Table 3: Project Outcome and Delays in Trial Completion: Trial Site Congestion as an Instrument for
Delay

This table reports the IV estimation results of Equation (1), using trial site congestion as an instrument for delay in
clinical trial completion. The unit of observation is a drug project. The sample contains all projects that completed
Phase I or II trials with detailed clinical trials records. The second-stage dependent variable, Suspensioni, is an
indicator variable (multiplied by 100 for ease of exposition) for whether project i was suspended after completing
Phase I or II clinical trials. The instrument, TrialSiteCongestioni, is the normalized change in the number of
participants in the universe of trials on ClinicalTrials.gov between trial start and end date, taking the maximum
across all trial sites of a given trial in the sample. The second-stage independent variable, Delay inTrialCompletioni,
is the gap in months between the realized trial completion date and the expected trial completion date for project i
to complete Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables include the
number of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects
in the company’s pipeline (taking logs), and number of competing projects in the same ICD category (taking logs).
Standard errors are two-way clustered at the ICD category and quarter levels.We report t−statistics in parentheses.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

DV: Delay DV: Suspension
First Stage Second Stage

(1) (2) (3) (4)

Trial Site Congestion 0.360∗∗∗ 0.358∗∗∗

(4.26) (4.37)

Delay in Trial Completion −0.334∗∗ −0.422∗∗

(−2.42) (−2.37)

Controls N Y N Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
F-stat 18.13 19.13 – –
Observations 9,397 9,161 9,397 9,161
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Table 4: Project Outcome and Change in Exchange Rates

This table reports the OLS estimation results of Equation (3). The unit of observation is a drug project. The sample
contains all projects that completed Phase I or II trials with detailed clinical trials records. The dependent variable,
Suspensioni, is an indicator variable (multiplied by 100 for ease of exposition) for whether project i was suspended
after completing Phase I or II clinical trials. The independent variable, ∆FXi, is the average exchange rate change
for clinical trial i defined in Equation (2). Trial Durationi, is the length of time (in months) for which it takes
project i to complete Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables
include the number of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of
drug projects in the company’s pipeline (taking logs), and number of competing projects in the same ICD category
(taking logs). Standard errors are two-way clustered at the ICD category and quarter levels. We report t−statistics in
parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension

(1) (2) (3) (4)

∆FX −0.279∗∗∗ −0.276∗∗∗

(−2.98) (−2.83)

∆FX ×Foreign Trial −0.309∗∗∗ −0.307∗∗∗

(−3.24) (−3.14)

Foreign Trial −1.857∗ −2.331∗∗

(−1.92) (−2.04)

Trial Duration −0.179∗∗∗ −0.170∗∗∗ −0.179∗∗∗ −0.172∗∗∗

(−6.46) (−6.03) (−6.52) (−6.14)

Controls N Y N Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
Observations 10,600 10,363 10,600 10,363
Adj. R-squared 0.3112 0.3104 0.3114 0.3108
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Table 5: Underlying Channels

This table investigates underlying channels with respect to the results in Tables 2 to 4. The unit of observation
is a drug project. The sample contains all projects that completed Phase I or II trials with detailed clinical trials
records. The dependent variable, Suspensioni, is an indicator variable (multiplied by 100 for ease of exposition) for
whether project i was suspended after completing Phase I or II clinical trials. In Panel A, the independent variable,
Delay inTrialCompletioni, is the gap in months between the realized trial completion date and the expected trial
completion date for project i to complete Phase I or II clinical trials. In Panel B, the independent variable, ∆FXi, is
the average exchange rate change for clinical trial i defined in Equation (2). Fixed effects are indicated in the bottom
rows. Control variables include the number of sites in a clinical trial (taking logs), count of enrolled participants (in
hundreds), number of drug projects in the company’s pipeline (taking logs), and number of competing projects in
the same ICD (taking logs). See Section 4.4 for further details. Standard errors are two-way clustered at the ICD
category and quarter levels. We report t−statistics in parentheses. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

Panel A: Delay in Trial Completion

Dependent Variable: Suspension

Many Projects CEO Vs. Expect. Vs. Fin. Constr.

(1) (2) (3) (4)

Delay in Trial Completion −0.196∗∗∗ −0.083 −0.206∗∗∗ −0.185∗∗∗

(−5.09) (−1.31) (−5.49) (−3.64)

× Same CEO −0.262∗∗

(−2.28)

Same CEO 6.521∗∗∗

(2.78)

Anticipated Trial Duration −0.085∗

(−1.95)

Constrained (WW) 2.961
(0.69)

Controls Y Y Y Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
Observations 7,050 3,399 9,159 4,745
Adj. R-squared 0.2756 0.2552 0.3064 0.2616
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Table 5: Continued.

Panel B: Change in Exchange Rates

Dependent Variable: Suspension

Many Projects CEO Vs. Expect. Vs. Fin. Constr.

(1) (2) (3) (4)

∆FX −0.269∗∗ −0.091 −0.256∗∗ −0.301∗∗

(−2.42) (−0.40) (−2.35) (−2.16)

× Same CEO −0.211
(−0.59)

Same CEO 2.604
(1.39)

Trial Duration −0.181∗∗∗ −0.165∗∗∗ −0.202∗∗∗ −0.203∗∗∗

(−6.32) (−4.39) (−5.47) (−5.60)

Anticipated Trial Duration 0.112∗∗

(2.55)

Constrained (WW) 2.699
(0.70)

Observations 7,992 3,752 9,157 5,283
Adj. R-squared 0.2800 0.2522 0.3067 0.2644
Controls Y Y Y Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
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Table 6: Examining the Real Option Channel

This table investigates the hypothesis of real option values. Panel A examines the relationship between the log
of expected drug sales (Million US dollars adjusted to 2017 by GDP delfators) after obtaining the FDA approval
and Delay inTrialCompletioni, the gap in months between the realized trial completion date and the expected trial
completion date for project i to complete Phase I or II clinical trials. Columns (1) to (4) use four different sales
measures (all take logs), including the expected first-year sales after launch, the sum of first three-year sales, the
sum of first five-year sales, and the average annual sales. Panel B examines the relationship between the percentage
of adverse reactions among trial participants for project i that already completed Phase I or II clinical trials and
Delay inTrialCompletioni. Columns (1) to (4) use four different dependent variables, including the total percentage
of adverse reaction reported in the completed trial (a participant might experience multiple adverse events such
as headache, nausea, fatigue) relative to the total number of enrolled participants, the maximum percentage of
adverse reaction among various adverse symptoms, the total percentage of severe adverse reaction (life-threatening
reaction, for example, acute myelogenous leukemia, basal cell carcinoma, brain hemorrhage, etc.), and the maximum
percentage of severe adverse reaction among various adverse symptoms. We adopt the specification following
Equation (3.2). Fixed effects are indicated in the bottom rows. Control variables include the number of sites in a
clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects in the company’s
pipeline (taking logs), and number of competing projects in the same ICD category (taking logs). Standard errors
are two-way clustered at the ICD category and quarter levels. We report t−statistics in parentheses. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Panel A: Expected Drug Sales

First-year Sales Three-year Sales Five-year Sales Average Annual Sales
(1) (2) (3) (4)

Delay in Trial Completion −0.000 −0.000 −0.000 0.000
(−0.12) (−0.58) (−0.11) (0.41)

Controls Y Y Y Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
Observations 3,949 3,847 3,609 3,949
Adj. R-squared 0.4370 0.5591 0.5577 0.5722

Panel B: Adverse Reaction in Trials
Total Reaction Max Reaction Total Severe Reaction Max Severe Reaction

(1) (2) (3) (4)

Delay in Trial Completion 0.726∗∗∗ 0.132∗∗∗ 0.001 0.003
(5.46) (6.12) (0.40) (0.86)

Controls Y Y Y Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
Observations 9,159 9,159 9,159 9,159
Adj. R-squared 0.2178 0.1891 −0.0551 −0.0560
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Table 7: Effects on New Drug Launches With No or Few Existing Medications (Orphan Drugs)

This table investigates the effects of delay-induced R&D investment distortions on the probability of new drug
launches with no or few existing medications (orphan drugs), using trial site congestion as an instrument for delay in
clinical trial completion. The unit of observation is a drug project. The sample contains all orphan-drug-designated
projects that completed Phase I or II trials with detailed clinical trials records. The second-stage dependent variable,
FDAApprovali, is an indicator variable (multiplied by 100 for ease of exposition) for whether a drug is eventually
approved by the FDA. The instrument, TrialSiteCongestioni, is the normalized change in the number of participants
in the universe of trials on ClinicalTrials.gov between trial start and end date, taking the maximum across all trial
sites of a given trial in the sample. The second-stage independent variable, Delay inTrialCompletioni, is the gap in
months between the realized trial completion date and the expected trial completion date for project i to complete
Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables include the number
of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects in
the company’s pipeline (taking logs), and number of competing projects in the same ICD category (taking logs).
Standard errors are two-way clustered at the ICD category and quarter levels. We report t−statistics in parentheses.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

DV: Delay DV: FDA Approval
First Stage Second Stage

(1) (2)

Trial Site Congestion 0.551∗∗∗

(5.17)

Delay in Trial Completion 0.249∗∗∗

(2.65)

Controls Y Y
Year × Quarter FE Y Y
Firm FE Y Y
ICD FE Y Y
Trial Phase FE Y Y
F-stat 26.75 –
Observations 1,859 1,859
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Table 8: Effects on Adverse Events Related to Approved Drugs

This table investigates the effects of delay-induced R&D investment distortions on adverse events related to approved
drugs, using trial site congestion as an instrument for delay in clinical trial completion. The unit of observation is a
drug project. The sample contains all approved projects that completed Phase I or II trials with detailed clinical
trials records. The second-stage dependent variables are the count of adverse events reported by the FDA (taking
logs) within the first and the first three years since drug launch, respectively. The instrument, TrialSiteCongestioni,

is the normalized change in the number of participants in the universe of trials on ClinicalTrials.gov between
trial start and end date, taking the maximum across all trial sites of a given trial in the sample. The second-stage
independent variable, Delay inTrialCompletioni, is the gap in months between the realized trial completion date
and the expected trial completion date for project i to complete Phase I or II clinical trials. Please see Section
5.2 for further details on the econometric specification and estimation. Fixed effects are indicated in the bottom
rows. Control variables include the number of sites in a clinical trial (taking logs), count of enrolled participants (in
hundreds), number of drug projects in the company’s pipeline (taking logs), and number of competing projects in
the same ICD (taking logs). We report t−statistics, based on standard errors accounting for the generated regressors
problem by bootstrapping, in parentheses. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
levels, respectively.

DV: Delay DV: log(Adverse Events in 1 Year) DV: log(Adverse Events in 3 Years)
First Stage Second Stage Second Stage

(1) (2) (3)

Trial Site Congestion 0.903∗∗∗

(5.25)

Delay in Trial Completion 0.014 0.014
(0.57) (0.58)

Inverse Mills Ratio −1.572 1.101 1.467
(−0.12) (0.54) (0.66)

Controls Y Y Y
Year × Quarter FE Y Y Y
Firm FE Y Y Y
ICD FE Y Y Y
Trial Phase FE Y Y Y
Observations 438 438 438
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I. Supplementary Results

I.A Figures

Figure OA.1: Geographic Distribution of Clinical Trials
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This figure exhibits the geographic distribution of clinical trials in our analysis sample. For each country, we
calculate the natural logarithm of the number of trials.
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I.B Tables

Table OA.1: Phase I Versus Phase II Trials

This table separates the results in Tables 2 and 4 by trial phase. The unit of observation is a drug project. The
sample contains all projects that completed Phase I or II trials with detailed clinical trials records. The dependent
variable, Suspensioni, is an indicator variable for whether project i was suspended after completing Phase I or II
clinical trials. The independent variables, Delay inTrialCompletioni and ∆FXi, are the gap in months between the
realized trial completion date and the expected trial completion date for project i to complete Phase I or II clinical
trials, and the average exchange rate change for clinical trial i defined in Equation (2), respectively. Fixed effects are
indicated in the bottom rows. Control variables include the number of sites in a clinical trial (taking logs), count of
enrolled participants (in hundreds), number of drug projects in the company’s pipeline (taking logs), and number of
competing projects in the same ICD (taking logs). We report t−statistics in parentheses. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension

Phase I Phase II Phase I Phase II

(1) (2) (3) (4)

Delay in Trial Completion −0.152∗∗ −0.181∗∗∗

(−2.63) (−4.68)

∆FX −0.284 −0.280∗∗

(−1.10) (−2.14)

Trial Duration −0.143∗∗∗ −0.167∗∗∗

(−3.01) (−6.48)

Controls Y Y Y Y
Year × Quarter FE Y Y Y Y
Firm FE Y Y Y Y
ICD FE Y Y Y Y
Trial Phase FE Y Y Y Y
Observations 3,356 5,414 4,055 5,890
Adj. R-squared 0.3653 0.2877 0.3545 0.2937
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Table OA.2: Project Outcomes and Delays in Trial Completion: Further Evidence on Financial Constraints

This table further explores the role of financial constraints for explaining the relationship between trial suspension
and delay in completion of the preceding trial phase, adding to the evidence in the final column in Panel A of Table
5. The unit of observation is a drug project. The sample contains all projects that completed Phase I or II trials with
detailed clinical trials records. The dependent variable, Suspensioni, is an indicator variable for whether project i
was suspended after completing Phase I or II clinical trials. The independent variable, Delay inTrialCompletioni,
is the gap in months between the realized trial completion date and the expected trial completion date for project i
to complete Phase I or II clinical trials. Fixed effects are indicated in the bottom rows. Control variables include the
number of sites in a clinical trial (taking logs), count of enrolled participants (in hundreds), number of drug projects
in the company’s pipeline (taking logs), and number of competing projects in the same ICD (taking logs). See
Section 4.4 for further details. We report t−statistics in parentheses. ***, **, and * indicate statistical significance at
the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension

(1) (2) (3) (4) (5) (6)

Delay in Trial Completion −0.185∗∗∗ −0.168∗∗∗ −0.187∗∗∗ −0.183∗∗∗ −0.181∗∗∗ −0.179∗∗∗

(−3.64) (−3.51) (−3.65) (−4.20) (−4.06) (−4.05)

Constrained (WW) 2.961
(0.69)

Constrained (HP) 17.184∗∗∗

(3.91)

Constrained (KZ) −1.937
(−0.79)

Constrained–Trial Start (WW) 1.867
(0.59)

Constrained–Trial Start (HP) 8.369
(1.63)

Constrained–Trial Start (KZ) 2.761
(1.12)

Controls Y Y Y Y Y Y
Year × Quarter FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
ICD FE Y Y Y Y Y Y
Trial Phase FE Y Y Y Y Y Y
Observations 4,745 4,854 4,758 4,985 5,172 4,994
Adj. R-squared 0.2616 0.2683 0.2632 0.2551 0.2585 0.2564
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Table OA.3: Project Outcomes and Delays in Trial Completion: Further Evidence on Financial Constraints

This table further explores the role of financial constraints for explaining the relationship between trial suspension
and exchange rate changes in the preceding trial phase, adding to the evidence in the final column in Panel B of
Table 5. The unit of observation is a drug project. The sample contains all projects that completed Phase I or II
trials with detailed clinical trials records. The dependent variable, Suspensioni, is an indicator variable for whether
project i was suspended after completing Phase I or II clinical trials. The independent variable, ∆FXi, is the average
exchange rate change for clinical trial i defined in Equation (2) Fixed effects are indicated in the bottom rows.
Control variables include the number of sites in a clinical trial (taking logs), count of enrolled participants (in
hundreds), number of drug projects in the company’s pipeline (taking logs), and number of competing projects in
the same ICD (taking logs). See Section 4.4 for further details. We report t−statistics in parentheses. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% levels, respectively.

Dependent Variable: Suspension

(1) (2) (3) (4) (5) (6)

∆FX −0.301∗∗ −0.283∗∗ −0.307∗∗ −0.260∗ −0.228∗ −0.254∗

(−2.16) (−2.08) (−2.22) (−1.94) (−1.69) (−1.89)

Trial Duration −0.203∗∗∗ −0.187∗∗∗ −0.205∗∗∗ −0.183∗∗∗ −0.179∗∗∗ −0.180∗∗∗

(−5.60) (−5.42) (−5.54) (−5.55) (−5.33) (−5.47)

Constrained (WW) 2.699
(0.70)

Constrained (HP) 14.365∗∗∗

(3.60)

Constrained (KZ) −0.778
(−0.35)

Constrained–Trial Start (WW) 3.766
(1.18)

Constrained–Trial Start (HP) 8.499∗

(1.78)

Constrained–Trial Start (KZ) 3.835
(1.52)

Controls Y Y Y Y Y Y
Year × Quarter FE Y Y Y Y Y Y
Firm FE Y Y Y Y Y Y
ICD FE Y Y Y Y Y Y
Trial Phase FE Y Y Y Y Y Y
Observations 5,283 5,405 5,298 5,573 5,792 5,581
Adj. R-squared 0.2644 0.2690 0.2658 0.2581 0.2595 0.2594
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II. Data and Estimation Appendix

II.A Details on Information from clinicaltrials.gov

In a first step, we use the official and short titles of observations in our main dataset to find the

corresponding National Clinical Trial (NCT) identifier. For this, we use a combination of searching the

clinicaltrials.gov database for the official and short titles, and fuzzy-string matching between the titles

in our dataset and those on clinicaltrials.gov (using the jellyfish package in Python). After matching,

we add additional information from clinicaltrials.gov (number of participants, trial start and end dates),

in order to compare the added information to that from our main dataset. This allows us to determine

whether we matched the correct trial. Before determining the correctness of the match (described further

below), we also scrape the anticipated completion date as well as primary anticipated completion date

from clinicaltrials.gov’s “History of Changes” records associated with each trial (i.e., each NCT identifier).

We use the information from the earliest available historical record, and use the anticipated completion

date (rather than the primary anticipated completion date) when available.12

In a second step, we further assess the correctness of the matched trial from clinicaltrials.gov. When-

ever it is not clear whether a match is correct (e.g., we conclude the match is correct when the information

on number of participants as well as trial start and end dates in both datasets coincides, and the Levenshtein

distance between titles is at most 10, or the jellyfish similarity score is above 0.99) or incorrect (e.g., we

conclude the match is incorrect when the anticipated completion date from clinicaltrials.gov preceeds

the start date of the trial in our main dataset), we manually assess the match (e.g., we assess whether the

sponsors and collaborators match, taking into account acquisitions, joint ventures, and name changes).

Table OA.4 below contains several examples of correctly or incorrectly matched trials between our main

dataset and clinicaltrials.gov. The first (third) example contains a clear correct (incorrect) match. The

second example contains a slightly more subtle incorrect match. Finally, for incorrect matches that were

based on searching the clinicaltrials.gov database for the official and short titles, we also implement the

fuzzy-string matching, and repeat the subsequent steps for the new matches (adding information from

clinicaltrials.gov, scraping NCT identifier, assessing correctness of each match).

12For one observation in the dataset, we use the primary anticipated end date, as the anticipated completion date is implausibly
high in the first record (year 2087) and corrected in subsequent records.
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II.B Matching with FDA Drug Adverse Events Database

For the clinical trials in our main analysis sample, we locate a subsample of trials in which their

experimental drugs eventually obtained the FDA approval and are launched in the market. We manually

collect drugs’ brand names by Googling drugs’ experimental names under trials (typically contain the

names of drugs’ active ingredients or chemical compounds). To ensure that we find the correct brand

names, we also match the drug developers and disease indications by searching relevant information from

the Internet (e.g., prominent websites including Drug Bank and Adis Insight).

We then use both brand names and experimental names under trials of drugs to match with drug

names appearing in the FDA Drug Adverse Events Database. We include drugs’ experimental names (e.g.,

active ingredients) in the matching since sometimes they also show up in the adverse adverse report. But

due to the presence of biosimilars and generic drugs, for which the adverse events database also reports

the corresponding active ingredients contained in drugs, we conduct extra steps to guarantee the matching

quality. Specifically, we identify if a drug (with experimental names reported in the adverse events

database) is uniquely developed and marketed by the company. If so, we compare the manufacturers’

names in the adverse events database to the drug sponsor names in the trial data.

After obtaining the matched adverse events sample, we restrict our analysis to the incidents with

drugs listed as the primary suspect. We drop incidents with any missing information on incident dates and

incident primary ID. In the end, we are able to match 3,890,964 adverse events to the drug projects that

obtained the FDA approval in our clinical trials data.
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II.C Estimation Procedure

Our derivation of the estimation equation follows Wooldridge (2010). Let us rewrite Equation (5) so

that

Ỹ out
i = α1ci +α

′
2Xi +g(zi,Xi,Y

app
i )+ ei

where g(zi,Xi,Y
app
i ) = E[vi | zi,Xi,Y

app
i ] and ei = vi −E[vi | zi,Xi,Y

app
i ]. Since E[ei | zi,Xi,Y

app
i ] = 0 by

construction, we could estimate the above equation y 2SLS on the selected sample using (zi,Xi,g(zi,Xi,Y
app
i =

1)) if we know g(zi,Xi,Y
app
i ). In the following step, we focus on the derivation of g(·).

By definition,

g(zi,Xi,Y
app
i = 1) = E[vi | zi,Xi;Y

app
i = 1]

= E[vi | zi,Xi;β1ci +β
′
2Xi +ui > 0]

= E[vi | zi,Xi;β1(γ1zi + γ
′
2Xi +ξi)+β

′
2Xi +ui > 0]

= E[vi | zi,Xi;β1ξi +ui >−β1γ1zi − (β1γ
′
2 +β

′
2)Xi]. (8)

Given the assumption in Equation (7), we have

 vi

β1ξi +ui

∼ Normal


 0

0

 ,

 σ2
3 β1σ23 +σ13

β1σ23 +σ13 β 2
1 σ2

2 +2β1σ12 +1


 .

Therefore, the conditional expectation of vi is

E[vi | β1ξi +ui] =
β1σ23 +σ13

β 2
1 σ2

2 +2β1σ12 +1
(β1ξi +ui) = α3(β1ξi +ui)

where α3 =
β1σ23+σ13

β 2
1 σ2

2+2β1σ12+1 .
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Applying iterated expectations on Equation (8),

g(zi,Xi,Y
app
i = 1) = E[E[vi|zi,Xi;β1ξi +ui] | zi,Xi;β1ξi +ui >−β1γ1zi − (β1γ

′
2 +β

′
2)Xi]

= α3E[β1ξi +ui | zi,Xi;β1ξi +ui >−β1γ1zi − (β1γ
′
2 +β

′
2)Xi]

= α3λ (
β1γ1zi +(β1γ ′2 +β ′

2)Xi√
β 2

1 σ2
2 +2β1σ12 +1

)

where λ (·) = φ(·)
Φ(·) with φ(·) as the probability density function of the standard normal distribution and

Φ(·) as the cumulative density function of the standard normal distribution.
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