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Abstract

This paper identifies a unique dimension of currency carry trade related to the intensity

of technology spillover across countries. In the data, technology diffusion is measured by the

R&D ingredient embodied in manufactured goods imports. Empirical evidence shows that the

difference in tech diffusion explains the cross-sectional variation of currency excess returns.

Specifically, countries adopting more technologies tend to have higher interest rates and excess

returns. We rationalize this observation by building a simple two-country model with technology

innovation and adoption. The adoption sector insulates tech-diffusion countries from global

productivity shocks, resulting in a lower productivity risk exposure. As a result, investors require

a risk premium for holding the high-interest-rate currency as compensation for its procyclical

returns.
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1 Introduction

This paper examines the role of technology diffusion in carry trade strategies in a cross-country

environment. First, we provide empirical evidence that cross-country technology diffusion gener-

ates heterogeneous risk exposure and is a fundamental determinant of currency risk premia. Then

we rationalize this finding in a simple two-country environment by showing that the endogenous

resource reallocation between innovation and adoption sectors accounts for the observations. Carry

trade is a currency investment strategy that exploits deviations from the uncovered interest rate

parity (UIP) condition. The UIP indicates that the difference in the yields of foreign and domestic

risk-free securities (e.g., government bonds) must be offset by an analogous depreciation of the

high-interest-rate currency in expectation. However, many studies have documented the empirical

rejection of the UIP (e.g., Bilson, 1981; Fama, 1984; Hansen and Hodrick, 1980), primarily associ-

ated with a time-varying risk premium charged by investors in the foreign exchange (FX) market.

Other studies (e.g., Hassan and Mano, 2019; Lustig, Roussanov, and Verdelhan, 2011a; Lustig

and Verdelhan, 2007) show that a naive strategy that involves a long position in high-interest-rate

currencies and a short position in low-interest-rate currencies (i.e., the carry strategy) generates

prominent excess returns.

Using the UN Comtrade database at the six-digit level, we find that the prevalent cross-country

currency risk premia can be attributed to different abilities in adopting research and development

(R&D) in the intensive margin of trade. Technology diffusion, a dynamic consequence of adoption,

is a key dimension of the carry trade strategy. In this paper, we provide empirical and theoretical

answers to the following questions: How does the difference in the ability of technology adoption lead

to heterogeneous consumption risk exposure over the business cycle? How does this heterogeneity

in the risk exposure contribute to a persistent currency risk premium in the long run?

We develop a measure of technology diffusion using knowledge concentration in the global

trade environment. The factor captures the ingredient of R&D incorporated in the quantity of

manufacturing goods imports. Specifically, we first construct the R&D-adjusted intensive margin

of import for each country pair and then derive the tech-diffusion index of a specific importer

by constructing a concentration measure over its trade partners. Intuitively, a high tech-diffusion

measure implies that a country is central to the global R&D flow, while a low tech-diffusion measure

indicates that the country is peripheral to the global R&D flow. Our hypothesis is that high-

interest-rate countries exhibit a higher concentration of technology diffusion because they receive

more R&D goods from their trade partners. On the other hand, low-interest-rate countries take

on R&D themselves and export a large quantity of high-technology goods to the high-interest rate
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Table 1: Currency Returns and Global R&D

Country Forward Discount Excess Return R&D Ratio (%)

Japan -2.64 -2.12 2.43

Switzerland -1.87 -0.26 2.14

Euro -0.74 -0.84 1.94

Germany* -0.60 -1.11 2.49

Sweden -0.05 -0.95 2.66

Canada 0.04 -0.03 1.52

United Kingdom 0.58 0.17 1.52

Norway 0.77 -0.14 1.00

Australia 1.77 1.91 1.37

New Zealand 2.38 3.39 1.01

United States - - 2.62

Notes: This table presents average forward discounts and excess returns from January 1993 to December 2019 for

the “G10” currencies from the perspective of a U.S. dollar investor. * For Germany, the numbers are based on the

return of the Deutsche mark prior to 1999 and the return of the euro afterward.

countries.1

Table 1 provides an overview of the R&D spending in major large economies of the world,

together with their average forward discount and currency excess returns against the U.S. dollar.2

Overall, we find that currencies with a high R&D ratio demonstrate low forward discounts. In

particular, Japan and Switzerland, considered typical funding currencies in the FX market, actively

conduct R&D on their own. In contrast, New Zealand and Australia, well known for their high

forward discounts and considered investment currencies, are reluctant to innovate. Moreover, the

pattern of currency excess return is generally aligned with the forward discount, indicating the

profitability of the carry trade strategy and the violation of the UIP. This finding invites us to

consider the fundamental link between international knowledge diffusion and the carry trade return.

We start with a cross-sectional regression of future currency excess returns on our tech-diffusion

measure while controlling for country size, inflation, and trade openness. In line with our conjecture,

we find that tech diffusion is a strong and positive predictor for the cross-section of currency return

1A related paper is Gavazzoni and Santacreu (2020), who use a quantitative model to show that international
technology transmission through adoption can account for the cross-country propagation of risk and asset price
puzzles. They also provide empirical evidence to show that the country-pair R&D content of trade is positively
correlated with stock market return comovement and negatively correlated with bilateral exchange rate volatility.
Our paper, instead, focuses on the transmission of technology from innovation to adoption countries in an asymmetric
environment and considers the asset-pricing implications.

2The group is called “G10 currencies,” and it comprises what are considered the most traded and liquid currencies
in the FX market.
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and interest rate difference. The predicting power still exists after we control for countries’ GDP

shares à la Hassan (2013), which is considered to be the key explanatory factor for the carry trade

return in developed economies. To further assess the role of tech diffusion in explaining cross-

sectional currency excess returns, we construct a common risk factor. Specifically, we consider

a zero-cost investment strategy that goes long in currencies of high-tech-diffusion countries (i.e.,

adopters) and short in the low-tech-diffusion economies (i.e., innovators). Over the sample period

from 1993 to 2019, the strategy offers an annualized return of 2.82% for the OECD (Organization

and Economic Co-operation and Development) countries and 3.50% for the G10 currencies with

Sharpe ratios of 42% and 43%, respectively. Over the same period, a monthly rebalanced carry

trade strategy exhibits similar dynamics, achieving an average return of 5.00% before transaction

costs for OECD countries and 4.70% for the G10 currencies.

Next, we test the significance of the tech diffusion using a two-factor asset-pricing model that

comprises a level factor and a slope factor as in Lustig, Roussanov, and Verdelhan (2011a). The

results show that the tech-diffusion factor is priced in the cross-section of currency excess returns

and that it can capture most of the carry trade variability. Also, the portfolios sorted on tech-

diffusion betas lead to the same monotone pattern of excess returns and interest rates. To do

that, we compute each currency’s beta to the tech-diffusion factor by running a 36-month rolling-

window regression that ends in period t − 1. Buying a high-beta portfolio yields higher currency

excess returns than buying a low-beta portfolio, with a high-minus-low spread of 4.40% (3.27%)

per annum in the OECD countries (G10 currencies). The result implies that the sorts based on the

tech-diffusion measure indeed unveil a common risk factor that is fundamental to the carry trade

portfolios.

Two studies closely related to our paper are Ready, Roussanov, and Ward (2017) and Richmond

(2019), who also demonstrate the success of trade-based factors in explaining the cross-section of

the currency risk premium. Specifically, Ready, Roussanov, and Ward (2017) show that countries’

relative advantages in producing either basic goods or final goods account for their different risk

exposure, resulting in a spread of currency excess returns. They construct an empirical measure

of the import ratio to capture the extent to which a country specializes in the production of basic

commodities. Meanwhile, Richmond (2019) builds an empirical centrality measure that echoes

the one in a trade network model and shows that countries that are more central in the global

trade network have lower interest rates because they are more correlated with global consumption

growth. Although our tech-diffusion measure is also based on the disaggregate level of trade data

and is used to predict the cross-sectional currency returns, it conveys different information.3 The

measure reflects the R&D ingredients of trade flows in the intensive margin of import. Loosely

3The data used to construct the tech-diffusion factor is very different from the data used to construct the import
ratio in Ready, Roussanov, and Ward (2017). For example, we focus on the trade of manufacturing goods to consider
the R&D ingredients in the trade flows, and we exclude the data on raw materials and natural resources because
these products barely reflect any technology content.
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speaking, the high-interest-rate countries adopt technologies by importing R&D goods, while the

low-interest-rate countries design them.

We show that countries’ relative rankings based on our tech-diffusion measure and the above

alternative measures do not perfectly correlate. For example, Korea and Switzerland are high-

tech-diffusion countries, but they produce final complex goods and import basic goods. On the

contrary, Portugal and Finland have a low-tech-diffusion index but are periphery to the global

trade network. Comparatively, the connection between the tech-diffusion measure and centrality is

even looser than the connection between tech diffusion and the import ratio. In addition, we also

test the predicting power of orthogonalized risk factors. We first extract the estimated residuals

from a contemporaneous regression of the tech-diffusion factor on the import-ratio (or centrality)

factor. Then we include the orthogonalized risk factors in the asset-pricing model to consider their

predictabilities. The orthogonalized part of the tech-diffusion factor still has a strong predicting

power for the cross-section of currency excess returns, and the two-factor models can explain 37%

and 75% of the cross-sectional variation in the carry trade returns.

Our main conclusion that tech diffusion is a key determinant of cross-sectional currency carry

return is robust to alternative specifications. First, we use the carry trade portfolios sorted on the

half-sample forward discount as test assets and find that our tech-diffusion factor has a stronger

predicting power in explaining the unconditional currency risk premium. This is not surprising

given that the tech-diffusion index captures countries’ heterogeneous risk exposure, which is an

unconditional property in its nature. Also, to guard against the possibility of a “lucky” factor à

la Harvey and Liu (2021) and Lewellen, Nagel, and Shanken (2010), we show that our empirical

results apply to a larger group of testing assets that include both the carry trade and tech-diffusion

portfolios.

We build a simple two-country environment to understand how technology adoption accounts

for the heterogeneous exposure and currency excess returns. The process of innovation and adoption

follows Comin and Gertler (2006) and Comin, Loayza, Pasha, and Serven (2014). The economy

lasts for two periods. In the first period, a social planner decides the resource allocation between

innovating and adopting, while in the second period, patents are used for production, and the

trade of intermediate goods happens. We assume that the home country can only innovate while

the foreign country chooses the optimal investment between the innovation and adoption sectors. A

domestically invented patent only requires the domestic intermediate goods as production inputs,

while the adopted patent requires the intermediate goods imported from abroad. As a result, the

relative profitability of adoption depends on the fluctuation of the real exchange rate, which in turn

determines the investment decision in the first place.

The model indicates that endogenous adoption creates heterogeneous risk exposure between the

two countries. Under a positive shock, the home country expands the innovation effort due to the

higher profitability. The increased production in the home country also benefits the foreign economy
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due to the depreciated real exchange rate (cheaper intermediate exports) and diffusion externality.

As a result, the foreign country expands its adoption sector more than the innovation sector. The

opposite is true under a negative shock: the decline in the home country’s outputs makes the

intermediate imports more expensive in the foreign economy, and since the foreign country quickly

shifts back to its innovation sector, its consumption declines by less than that of the home country.4

The presence of the adoption sector in the foreign country indicates its greater ability to shift

risk toward the home country under global productivity risk. Importantly, we show that the

endogenous rebalancing between innovating and adopting sectors creates an internal link between

the two countries and produces exchange rate dynamics supported by the data. Specifically, home

consumption is more closely correlated with global output than foreign consumption. The stronger

(weaker) precautionary saving motive in the home (foreign) country implies a negative (positive)

interest rate spread and currency excess return. As a result, the carry trade strategy, going long

in the foreign currency and short in the home currency, leads to a spread of interest rates and

currency returns. Because the foreign currency depreciates in the downturn, the carry trade return

is procyclical and so is the home country’s net export.

In sum, this paper shows that technology diffusion is a fundamental pricing factor in the cross-

section of currency returns. On the currency side, high-interest-rate currencies load positively

on the tech-diffusion factor, and low-interest-rate currencies load negatively. As a result, carry

traders require a risk premium for holding the high-tech-diffusion currencies as compensation for

the elevated exchange rate risk. On the business-cycle side, the endogenous adoption allows high-

interest-rate economies to hedge against global productivity shocks, while the more R&D innovation

risks are shifted to the low-interest-rate countries.

Connection to the Literature. Recent advances in the literature suggest that carry trade

profitability can be attributed to a risk premium acquired by FX investors that seek to compensate

themselves for adverse movements of the exchange rate under bad states of the world (e.g., Lustig,

Roussanov, and Verdelhan, 2011a; Lustig and Verdelhan, 2007). In particular, Lustig, Roussanov,

and Verdelhan (2011a) show that two tradable risk factors that are highly correlated with the first

two principal components of currency portfolios, sorted on interest rate differentials, are enough to

price the cross-section of currency returns. The first risk factor resembles a strategy that invests in

a basket of all marketable currencies each time and liquidates its position by borrowing the dollar.

This strategy is mainly driven by the U.S. business cycle, and thus it is labeled as a dollar factor

(DOL, as in Lustig, Roussanov, and Verdelhan, 2011b,0). This factor is highly correlated with

the first principal component of the carry trade portfolios, representing a level factor. The second

risk factor is a carry trade portfolio that invests in a basket of high-interest-rate currencies and

4The adoption sector serves as a hedging device in the foreign country. In good times, the adoption sector allows
the foreign country to take a ride on the higher growth opportunity in the home country, while in bad times, the
foreign country can partly insure against the negative shock by reallocating resources toward its own innovation.
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borrows from the basket of low-interest-rate currencies. This factor lies behind the second principal

component and is labeled as the carry factor (HMLFX).

Many papers explore the fundamental determinants of the carry trade strategy. They use

either the structural asset-pricing approach or build structural models to investigate the economic

mechanism behind currency risk premia. These papers include but are not limited to Colacito,

Riddiough, and Sarno (2020), Dahlquist and Hasseltoft (2020), Della Corte, Riddiough, and Sarno

(2016), Filippou and Taylor (2017), Hassan (2013), Jiang (2022), Menkhoff, Sarno, Schmeling,

and Schrimpf (2012), Ready, Roussanov, and Ward (2017), and Richmond (2019). In particular,

Richmond (2019) uses a trade network model to argue that the low-interest-rate countries are

usually more central to trade networks because their consumption growth is more exposed to global

consumption growth shocks. Ready, Roussanov, and Ward (2017) show that the relative advantage

in producing basic or final goods can account for heterogeneous productivity risk exposure across

countries. The commodity currency appreciates in good times and depreciates in bad times, leading

to a risk premium charged by international investors and a persistent carry trade return. Similar to

these two papers, the construction of our measure is also based on the bilateral trade data, but we

emphasize the effect of R&D diffusion on the cross-country productivity comovement and currency

excess returns.

In addition to the trade-based factors, Hassan (2013) claims that countries’ economic sizes

(GDP shares) are a fundamental factor that can explain a large fraction of cross-sectional currency

return variations. Naturally, larger economies are more able to insure against consumption shocks,

resulting in a low currency return. More recently, Jiang (2022) extends the fiscal theory of price

level (FTPL) to an open-economy environment and shows that the real exchange rate responds to

fiscal shocks through a government’s intertemporal budget constraint. Using a sample of developed

countries, he finds that countries’ fiscal exposure to a common factor is aligned with their currencies’

exposure to the carry trade return. Della Corte, Riddiough, and Sarno (2016) show that countries’

net foreign asset positions (nfa) together with the structure of liabilities (ldc) can explain the

cross-sectional variation in currency excess returns. Investors are compensated for holding net

debtor countries’ assets whose currencies depreciate in bad times. Menkhoff, Sarno, Schmeling,

and Schrimpf (2012) argue that a global volatility factor along with a dollar factor demonstrates

strong pricing ability for interest-rate-sorted portfolios. They show that investment currencies load

negatively on the global volatility innovations, while the opposite holds for the funding currencies,

meaning that the latter provides a hedge against FX volatility risk. Lastly, Colacito, Riddiough,

and Sarno (2020) establish a connection between currency excess returns and the relative strength

of the business cycle in different countries. They show that the business cycle factor can predict

currency returns in both the cross-sectional and the time-series dimensions.

Our paper also contributes to the strand of studies that uses the innovation model for asset-

pricing implications (e.g., Comin, Gertler, and Santacreu, 2009; Croce, Nguyen, and Schmid, 2012;
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Croce, Nguyen, Raymond, and Schmid, 2019; Croce, Nguyen, and Raymond, 2021; Kung and

Schmid, 2015). In a closed-economy environment, Kung and Schmid (2015) embed R&D into a

production economy with recursive preference and show that agents’ uncertainty about the econ-

omy’s growth prospect drives up the risk premium and generates the low-frequency fluctuation of

macro variables. Croce, Nguyen, and Schmid (2012) demonstrate that under model uncertainty, fis-

cal policies aimed at short-run stabilization may increase the amount of long-run risk and depress

economic growth and welfare. In an international environment, Comin, Gertler, and Santacreu

(2009) develop a model to show that the shock to innovations and the process of costly technology

adoption can change people’s beliefs about countries’ growth potentials and thus accounts for the

variation in outputs and stock prices.

Roadmap. Section 2 describes our dataset and the construction of the tech-diffusion measure.

Section 3 shows the main empirical results, which include the cross-sectional regression, summary

statistics of portfolios, the asset-pricing test for a two-factor model, and unconditional currency

returns. Section 4 provides an alternative measure that complements our tech-diffusion index and

contrasts our currency risk factor with other trade-based factors in the literature. Section 5 builds

a model to explain the economic mechanism behind our empirical findings. Section 6 concludes the

paper.

2 Data and Currency Portfolios

The exchange rate data are collected from Barclays and Reuters via Datastream. To construct

currency excess returns, we use the daily spot and one-month forward exchange rates against the

U.S. dollar with the period spanning from January 1993 to December 2019.5 We construct an

end-of-month series for the daily spot and forward rates as in Burnside et al. (2011). In particular,

the data are not averaged but represent the exchange rates on the last trading day of each month.

While Lustig et al. (2011a) start their sample from an earlier date of 1983, very few countries

have exchange rate data and trade data available in the beginning years. We also eliminate the

country-episodes that feature strong violations of covered interest rate parity (CIP).6 In the main

analysis, we consider mid quotes, defined as the mean of the bid and ask quotes of each currency.

We denote St and Ft as the spot and one-month forward exchange rates, respectively, for a

particular country, expressed in units of foreign currency per one U.S. dollar.7 The log spot and

forward exchange rates are given by st = log(St) and ft = log(Ft). Assuming that covered interest

parity holds, we have that the forward discounts are equal to the interest rate differentials; that is

ft − st ≈ ît − it, where ît and it are the nominal interest rates in the foreign country and the U.S.

5We use the three-month forward rate data when calculating the real interest rate.
6Figure C.8 in appendix C plots the number of countries with available data during our sample episode.
7The nominal appreciation of a foreign currency is reflected by a decline in St.
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economy, respectively. The log excess return from t to t+1 (rxt+1) is defined as the payoff of a

strategy that buys a foreign currency in the forward market at time t and then sells it in the spot

market after one month, which is expressed as

rxt+1 = ft − st+1. (1)

The formula can be approximated by rxt+1 ≈
(
ît − it

)
−∆st+1. It says that the currency excess

return consists of two parts: the interest rate differential and the rate of appreciation in the foreign

currency. Similarly, the arithmetic excess return is computed as

RXt+1 =
Ft − St+1

St
=

Ft − St

St
− St+1 − St

St
. (2)

The bilateral trade data are obtained from the UN Comtrade. We adopt the six-digit level of

disaggregation (based on the Standard International Trade Classification [SITC] code) to differenti-

ate between manufactured goods, raw materials, and natural resources and identify the technology

level in each product. Since our paper studies the effect of cross-country R&D spillover, we drop all

products other than manufactured goods. 8 The R&D and GDP data are obtained from the World

Bank’s World Development Indicator (WDI). Quarterly consumption data come from OECD statis-

tics. Because carry trade return is calculated at a monthly frequency, we interpolate the trade and

macro data by keeping their previous-year values constant until a new value becomes available.9

We construct two samples for our analysis. The full sample consists of 27 OECD countries

for which we have exchange rate and R&D data and where the bid-ask spreads of their currencies

show enough liquidity. The full sample (referred to as “all countries”) includes Australia, Austria,

Belgium, Canada, Czechia, Denmark, the euro area, Finland, France, Germany, Greece, Hungary,

Ireland, Israel, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal, Slovakia, Slovenia,

South Korea, Spain, Sweden, Switzerland, and the United Kingdom. The second group (referred

to as “G10 currencies”) is a subset of the full sample and comprises what are considered the most

traded and liquid currencies in the FX market. These are ten currencies: Australia, Canada, the

euro area, Germany (replaced by the euro since 1999), Japan, New Zealand, Norway, Sweden,

Switzerland, and the United Kingdom. The tenth currency is the U.S. dollar itself, which serves as

a base currency. The data of euro area countries are excluded after the introduction of the euro in

January 1999. Some countries entered the eurozone after that date. In that case, their exchange

rates are excluded from the sample at a later date. 10

8In the empirical exercise of Gavazzoni and Santacreu (2020), they also use the bilateral trade flows for seven
manufacturing industries to consider the effect of R&D spillover on cross-country asset price comovements.

9A similar approach has been used by other studies such as Della Corte et al. (2016) and Ready et al. (2017).
10We also take into account the transaction cost of carry trade strategies by constructing net excess returns. Figure

B.3 in appendix B displays portfolio returns after considering the bid-ask spread.

9



Tech-Diffusion Measure. The focus of this paper is to study the effect of R&D spillover on the

heterogeneous productivity risk exposure and consider its implication on currency excess returns.

Generally, studies in the literature (e.g., Coe and Helpman, 1995; Grossman and Helpman, 1991)

claim that if a country imports primarily from high-R&D partners, it is likely to receive more tech-

nologies embedded in intermediate goods, which benefit the productivity in its own production. 11

In other words, the technology transfers across countries contribute to the increase in productivity

of a country importing such technologies. Many papers (e.g., Comin and Hobijn, 2010; Comin and

Mestieri, 2010; Keller, 2004; Nishioka and Ripoll, 2012) use R&D data at both the aggregate and

disaggregate levels to confirm that foreign innovation and the R&D content of trade contribute to

cross-country productivity variations.

We follow the spirit of Gavazzoni and Santacreu (2020) and construct a measure of the R&D-

weighted import to evaluate a country’s absorption of technologies in the trade market.12 First,

we define the trade intensity TIimp,exp as the dollar value of all imported products from a country

exp to a country imp. To control for the country size, the trade intensity is divided by GDPs in

both the exporting and importing economies, TIGDP
imp,exp = TIimp,exp/ (GDPimp +GDPexp). Then

the measure is multiplied by the exporter country’s R&D to consider the technology component of

trade flows. That yields the R&D-weighted trade intensity: TIR&D
imp,exp = TIGDP

imp,exp ×%R&DGDP
exp .

Because part of the imports represents “traditional” goods that do not necessarily carry any

technology, we differentiate between the intensive margin and extensive margin of trade. Comin

and Mestieri (2010) and Comin and Hobijn (2010) arrive at the conclusion that the intensive margin

is more important to understand cross-country differences in adoption patterns and variations in

productivities. Here, we adopt this conclusion by assuming that the intensive margin of adoption

contributes more to the global R&D spillover.13 Specifically, we denote EMimp,exp as the extensive

margin of trade, which is the variety of different products that country exp exports to country imp.

The R&D-adjusted intensive margin is

IMR&D
imp,exp =

T̂ I
R&D

imp,exp

ÊM imp,exp

, (3)

where we take normalization for both the numerator and denominator to correct for the effect of

11See Keller (2004) for a comprehensive literature.
12Comin and Hobijn (2010) test the beneficial effect of foreign R&D on domestic productivity. Similarly, their

measure of foreign R&D represents the knowledge embodied in the trade of intermediate goods used in domestic
production.

13The economic meaning of the “intensive and extensive margin of adoption” is defined in the literature (e.g.,
Comin and Mestieri, 2010), and we paraphrase as follows: “the extensive margin of technology adoption gauges how
long it takes for a country to adopt a technology. It determines the lag with which production methods arrive in a
country. The intensive margin of adoption captures how many units of the good are demanded relative to aggregate
demand once a technology has been introduced. It is determined by the productivity and price of goods that embody
the technology and the cost that individual producers face in learning how to use it.”
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trade openness; that is14

T̂ I
R&D

imp,exp =
TIR&D

imp,exp∑N
j=1 TI

R&D
imp,exp

, ÊM imp,exp =
EMimp,exp∑N
j=1EMimp,j

, (4)

where N is the number of countries in our sample.

Lastly, we use the R&D-weighted intensive margin to compute a concentration measure that

resembles the Herfindahl-Hirschman Index (HHI),

TDimp =

 N∑
exp=1

(
IMR&D

imp,exp

)21/2

, for imp = 1, . . . , N . (5)

The measure captures the cross-country diffusion of technology embedded in the quantity of trade

per intermediate good. The measure accounts for the allocation of knowledge in the import flows

between trade partners. 15 We compute this measure for each country imp at time t and call it

the tech-diffusion index. Essentially, the index is the R&D-adjusted import concentration in the

intensive margin. Intuitively, a high tech-diffusion measure implies that a country is central to

the global R&D flow, while a low tech diffusion indicates that the country is peripheral to the

global R&D flow. Our hypothesis is that high-interest-rate countries exhibit a higher concentration

of technology diffusion because they receive more knowledge by importing R&D goods from their

trade partners. On the contrary, low-interest-rate countries take on R&D themselves and export a

large quantity of high-technology goods to the high-interest-rate countries.

Tech-Diffusion-Sorted and Carry Trade Portfolios. We construct a currency risk factor

based on the tech-diffusion measure and consider its relationship with the carry trade returns.

First, at the end of each month t in year y, we allocate currencies into quintile portfolios based

on the tech diffusion in year y-1. The first portfolio contains countries with a low concentration

of R&D imports, and the last portfolio consists of currencies with a high concentration of R&D

imports. The currency excess returns within each portfolio are equally weighted. We consider a

zero-cost strategy that goes long in the last and short in the first portfolio and call it the tech-

diffusion factor. Following Lustig et al. (2011a), we also consider a carry trade strategy based on

the previous-month forward spread. The first basket contains currencies with the lowest forward

discount and is named funding currencies, while the last basket consists of high-forward-discount

currencies and is called investment currencies. The spread of currency returns between the first

14Coe and Helpman (1995) find that the beneficial effect of foreign R&D spending on domestic productivity is
stronger for countries more open to trade. The evidence in Comin and Hobijn (2004) also indicates that the degree of
trade openness is among one of the most important determinants of the speed at which a country adopts technologies.
We try to control for this effect when constructing our measure.

15We assign a higher value of tech diffusion to an importer that specializes in importing goods from a single country
than another importer that diversifies the imports to multiple trade partners.
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and the last portfolios is the carry trade excess return.

3 Baseline Empirical Results

This section presents the main empirical results. First, we discuss the relationship between tech-

nology diffusion, productivity risk exposure, and the currency risk premium. Then we include the

tech diffusion into a two-factor asset-pricing model to consider its predicting ability for the cross-

sectional currency excess returns. Lastly, we consider the implication of tech-diffusion index on

unconditional carry trade returns.

3.1 Tech Diffusion and Interest Rate Differentials

Figure 1 illustrates how the constructed tech-diffusion measure is related to the currency risk

premium. We plot the countries’ average tech-diffusion measures against the average forward

discounts in our sample. Overall, we find a strong positive correlation: the countries that adopt

more R&D through international trade tend to have higher interest rates than countries that export

R&D goods. Comparing the upper and lower panels shows that the relationship is stronger for the

group of G10 currencies than the currencies of OECD countries. The fitted line in the bottom

panel of figure 1 has a more significant slope coefficient and a larger R2 than the line in the top

panel.

A natural question is whether the interest rate spreads between the high- and low-tech-diffusion

countries lead to a carry trade return. The answer is yes from figure C.1 in appendix C. Countries

that adopt technologies through the intensive margin of trade (e.g., Australia and New Zealand)

tend to generate a positive excess return against the U.S. dollar (rxj > 0). On the other hand,

countries that actively conduct innovations (e.g., Japan and Germany) tend to have negative cur-

rency excess returns in the carry trade portfolio (rxj < 0). From the lower panel of figure C.1, we

also find that the spread of currency excess returns is not completely driven by expected inflation.

On average, the high-tech-diffusion countries enjoy a higher real interest rate (rj − rUS > 0) than

the low-tech-diffusion countries (rj − rUS < 0).

To test the significance of the relationship between technology diffusion and currency returns,

we run a list of cross-sectional regressions based on Fama and MacBeth (1973). Specifically, in each

month t of the calendar year y, we run the following cross-sectional regression:

rxi,t+1 = αr
t + βr

t tdi,y−1 + γrtXi,y−1 + εri,t+1, (6)

fdi,t = αf
t + βf

t tdi,y−1 + γft Xi,y−1 + εfi,t. (7)

Then we take the average of the estimated coefficients across time. rxi,t+1 is the U.S. dollar-

denominated return for investing in currency i from time t to time t + 1. fdi,t = f i
t − sit is the

12



Figure 1: Average Tech-Diffusion Index and Forward Discounts
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Notes: The graph displays the average tech-diffusion indexes (TD) for our sample countries against the annualized

forward discounts (FD). The upper panel reports results for “All Countries,” while the bottom panel shows the

pattern of “G10 Currencies.”

currency-i’s (log) forward discount at time t. The explanatory variable is the log tech-diffusion

measure (td), while we also control for the share of GDP, the annualized inflation, and the trade-

to-GDP ratio. The realized inflation is calculated as the percentage change in the consumer price

index (CPI) over the previous year. We include the GDP share to control for the country size effect

as in Hassan (2013). In our case, larger economies tend to be the ones making innovations and

having a low-tech-diffusion measure. We also include the trade-to-GDP ratios in the regression to

control for trade openness. Since part of the independent variables is reported annually, in our

13



Table 2: Cross-Sectional Regressions of Excess Returns and Forward Discounts

Panel A: Fama-MacBeth Regression of FX Ret: rxt+1

All Countries G10 Currencies

Tech Diffusion 0.28*** 0.24*** 0.32** 0.31*** 0.38*** 0.27* 0.29* 0.29

(0.11) (0.07) (0.13) (0.11) (0.14) (0.15) (0.18) (0.19)

CPI-Inflation 7.89** 6.27 9.48 4.72

(3.68) (3.89) (6.04) (7.91)

GDP Share -0.39 -0.15 -1.85 -1.89

(0.99) (0.74) (1.13) (1.43)

Trade-to-GDP 0.13 0.03 -0.34 -0.24

(0.18) (0.13) (0.23) (0.33)

Cons. -0.55** -0.60** -0.91** -0.80** -0.81*** -0.63** -1.28*** -1.40***

(0.26) (0.25) (0.35) (0.31) (0.29) (0.31) (0.49) (0.52)

Adj. R2 0.06 0.19 0.26 0.38 0.11 0.30 0.46 0.60

No. of Obs. 4,636 4,636 4,636 4,636 2,795 2,795 2,795 2,795

Panel B: Fama-MacBeth Regression of Fwd Dsct: fdt

Tech Diffusion 0.29*** 0.20*** 0.25** 0.17** 0.31*** 0.29*** 0.23*** 0.27***

(0.07) (0.04) (0.11) (0.08) (0.05) (0.04) (0.06) (0.05)

CPI-Inflation 6.53*** 6.69*** 8.77*** 4.80***

(0.93) (0.94) (1.26) (1.62)

GDP Share -0.86 -0.66* -1.83*** -1.37***

(0.54) (0.38) (0.39) (0.29)

Trade-to-GDP -0.05 -0.12*** -0.38*** -0.30***

(0.07) (0.03) (0.11) (0.09)

Cons. -0.60*** -0.54*** -0.85*** -0.68*** -0.67*** -0.77*** -1.11*** -1.12***

(0.16) (0.10) (0.25) (0.16) (0.13) (0.09) (0.16) (0.09)

Adj. R2 0.19 0.47 0.34 0.58 0.19 0.55 0.70 0.81

No. of Obs. 4,648 4,648 4,648 4,648 2,795 2,795 2,795 2,795

Notes: This table presents cross-sectional Fama and MacBeth (1973) regressions of log excess returns (rx: panel A)
and log forward discounts (fd: panel B) on tech diffusion (in logs) and a list of control variables that includes the
GDP share, annualized CPI inflation, and trade-to-GDP ratio. Figures in parentheses are Newey and West (1987)
standard errors corrected for heteroskedasticity and autocorrelation (HAC) using 36 lags. Since some independent
variables are calculated annually, for each regression, the forward discount and returns are regressed on the regressor
values in the calendar year y-1, where y is the calendar year of the monthly observation. The currency data are
collected from Datastream via Barclays and Reuters and contain monthly series from January 1993 to December
2019. *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

specifications, we regress excess returns (or forward discounts) on independent values at the year

y-1. We use Newey and West (1987) standard errors that are corrected for heteroskedasticity and

autocorrelation. This approach allows us to consider the cross-sectional inference for the effect of

technology transmission on currency risk premia.

Panel A of table 2 shows the regression results for the excess returns, and panel B shows the

results for the forward discounts. The left-hand side of each panel shows the estimation for OECD

countries, while the right-hand side shows results for G10 currencies. Overall, it is evident that tech

diffusion positively correlates with future excess returns and contemporaneous forward discounts.

The magnitude of the effect is comparable between the two samples. On average, a 1% increase

14



in our tech-diffusion measure induces a 0.3% percent increase in the currency excess return and

a 0.25% increase in the forward discount. The effect of tech diffusion on the forward discount

is more significant than the effect on excess return since exchange rate fluctuations are largely

unpredictable. In addition, the result still holds after we control for the country size, inflation, and

trade openness. The point estimate also suggests that larger economies tend to have lower currency

returns and interest rates, which is consistent with the result of Hassan (2013).

A comparison across different specifications shows that CPI inflation has a significant and

positive impact on the forward premium. Its effect on currency returns is also positive but less

significant. Adding factors such as GDP share and trade openness into the model induces a higher

R2 in the regression. Together with these two variables, our tech-diffusion measure explains a

substantial portion of the cross-sectional variation in the forward discounts and currency excess

returns (from 26% to 70%). Most importantly, the inclusion of GDP share and inflation does not

significantly alter the predictive power of tech diffusion in the cross-sectional regressions, although

the coefficients of these two variables are also significant in some specifications.

3.2 Tech Diffusion and Global Risk Exposure

The relationship between tech diffusion and interest rate differentials leads us to think about the

economic mechanism behind it. Lustig and Verdelhan (2007) show that investors’ exposure to

aggregate consumption risk can account for the violation of the UIP condition and explains the

return difference between high-interest-rate and low-interest-rate currency portfolios. Colacito et al.

(2018) build an endowment economy with recursive preference to show that FX carry trade strategy

à la Lustig et al. (2011a) can be explained by countries’ heterogeneous exposure to a long-run

global growth shock. Almost at the same time, other papers provide microfoundations to this

heterogeneous risk exposure and suggest that the spread of interest rates across countries can be

attributed to their different specialties in the production technologies (i.e., Ready et al., 2017)

or different positions in the global trade network (i.e., Richmond, 2019). In this subsection, we

consider how the spillover of R&D helps to account for heterogeneous risk exposure.

Figure 2 plots the risk exposure against the average (log) tech-diffusion measure. To derive the

productivity risk exposure for each country (βz
i ), we run the following time-series regression:

∆Productivityi,t = αz
i + βz

i ×∆World Productivityt + εzi,t .

where Productivityi,t is the country-level labor productivity at time t and World Productivityt is

the measure of world productivity from the WDI database. To calculate the consumption risk

exposure (βz
i ), we replace the independent variable with the simple average of consumption growth

across countries. It is clear from figure 2 that low-tech-diffusion countries (such as Portugal, France,

and Finland) tend to have a stronger comovement with the global business cycle, while high-tech-

15



Figure 2: Tech-Diffusion Index and Heterogeneous Risk Exposure
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Notes: The figure plots the productivity growth (βz
i ) or consumption growth betas (βc

i ) for our sample countries

against their average tech-diffusion measures (TD). A country’s productivity growth beta is calculated by regressing

the country-level productivity growth on the world productivity growth. To calculate the consumption growth beta,

we regress a country’s consumption growth rate on the average growth rate across countries.

diffusion countries (such as Norway, New Zealand, and Hungary) are less exposed to global shocks.

Moreover, a comparison between upper and lower panels indicates that the impact of tech diffusion

on risk exposure is stronger if we use productivity growth in the regression rather than consumption

growth. 16

To consider whether this relationship is quantitatively important, tables B.1-B.2 in appendix

B regress the productivity (or consumption) growth betas on our tech-diffusion measures. We find

16Figures C.2-C.4 in appendix C show that a similar pattern holds for a broader set of countries or if we replace
the risk exposure measure with countries’ consumption risk exposure to the U.S. economy.
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Figure 3: Relative Productivity, Real Exchange Rate, and Interest Rate Differentials: Australia
versus Japan
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Notes: The figure shows the time series of productivities, relative real exchange rates, real interest rate differentials,

and R&D content of imports (intensive margin) for a pair of high- and low-tech-diffusion countries. In the bottom

left panel, the classification of high-technology goods is based on the UN’s SITC code of manufactured products.

Australia is considered a high-tech-diffusion country, while Japan is Australia’s major trading partner aside from the

eurozone.

that the cross-sectional difference in tech diffusion can explain the heterogeneity in risk exposure

even after we control for the country size, trade openness, and R&D volume. Adopting technologies

through imports allows the high-interest-rate countries such as Australia, New Zealand, and Norway

to hedge against global productivity shocks.

How does the heterogeneous risk exposure account for the abovementioned asset-pricing impli-

cations? Figure 3 plots the time paths of productivities, the real exchange rates, and interest rate

differentials for a typical pair of high- and low-interest-rate countries: Australia versus Japan. 17

Relative productivity is defined as the log difference in labor productivities between Australia and

Japan. For a particular country, the real exchange rate (against the U.S. dollar) is the nominal

exchange rate adjusted by the country’s relative CPI levels. The relative real exchange rate is

17Japan is Australia’s second-largest trading partner aside from the eurozone. Since the productivities are hetero-
geneous among the eurozone member countries, it is difficult to find a direct link between productivity risk exposure
and currency excess return if we treat the eurozone as an integrated economy. So we use Australia versus Japan, New
Zealand versus Japan, and Norway versus Japan as three pairs of high- and low-interest-rate countries to illustrate
the mechanism.
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the log difference in the real exchange rates between two countries. The increase in the number

indicates a real depreciation of the Australian dollar against the Japanese yen. The real interest

rate is calculated using the three-month forward discount subtracted by the four-quarters moving

average of inflation.

From the bottom right panel of figure 3, we find that Japan has a stronger comovement with

global productivity shocks than Australia. Australia’s smaller risk exposure indicates that its

relative productivity is higher during the Global Financial Crisis of 2008 (the blue line in the upper

panels). The increased relative productivity depreciates the Australian dollar against the Japanese

yen in the downturn (upper left panel). In the upper right panel, we notice that the real interest

rates are, on average, higher in Australia than in Japan. Apart from that, during the financial

crisis, the expected appreciation of the Australian dollar lowered Australia’s interest rate by more

than the interest rate in Japan. Overall, we find that Australia’s relative real exchange rate against

the Japanese yen is procyclical (appreciates in good times and depreciates in bad times), the same

as their interest rate differentials.

The lower left panel shows the R&D content of bilateral trade between these two countries

(R&D-adjusted intensive margin of trade). We notice that Australia imports more technology

goods from Japan than Japan imports from Australia. Moreover, the R&D import from Japan

to Australia experienced years of fast growth in the period proceeding the Global Financial Crisis

until it encountered a sudden stop. Figures C.5-C.6 in appendix C show that the same mechanism

applies to other country pairs such as New Zealand versus Japan or Norway versus Germany.

In sum, the heterogeneous global shock exposure generates distinct risk profiles for different

currencies and produces a spread of interest rates. The fact that high-tech-diffusion currencies

depreciate during the downturn makes them a negative hedge from international carry traders’

perspective, causing a risk premium. Meanwhile, high-tech-diffusion countries’ smaller exposure to

business cycle risk alleviates domestic agents’ precautionary saving motive and raises their domestic

interest rate. In section 5, we will integrate these channels in a two-country production economy

and characterize the relationship between risk premia and technology diffusion.18

3.3 Descriptive Statistics of Portfolio Returns

To examine the predicting power of tech diffusion on the forward discount and currency returns,

in this section, we sort currencies into five portfolios based on the previous-year tech-diffusion

index. We use this specification because the trade data from the UN Comtrade is reported with

a time delay. Following Lustig et al. (2011a), we construct the carry trade portfolio using the

previous-month forward spread.

18Using a structural model, in section 5, we show that the endogenous reallocation of resources between the
innovation and adoption sectors allows a high-interest-rate country to smooth its business cycle, resulting in smaller
exposure to global shocks.
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In particular, we denote rxit+1 = f i
t−sit+1 as the log excess return of currency i (against the U.S.

dollar) from time t to t+ 1. The excess return of portfolio j is given by rxjt+1 =
∑

i∈Nj
rxit+1/Nj ,

where Nj represents the number of currencies in that portfolio. Similarly, we denote RXi
t+1 =(

F i
t − Si

t+1

)
/Si

t as currency i’s excess return in level, and the corresponding excess return of port-

folio j is RXj
t+1 =

∑
i∈Nj

RXi
t+1/Nj . In the main text, we consider the construction of portfolios

before transaction costs. Since the tech-diffusion measure requires annual rebalancing, the effect of

transaction costs are likely to be small. 19

Panel A of table 3 provides the summary statistics of quintile portfolios that are sorted on

previous-year tech diffusion. The currencies in the first (last) portfolio represent 20% of the curren-

cies having the lowest (highest) tech-diffusion measure in the previous year. The last column of each

panel displays a zero-cost strategy that buys the high-tech-diffusion portfolio and sells the low-tech-

diffusion one. From now on, this high-minus-low investment strategy is named adoption-minus-

innovation (AMI), and we contrast it with the traditional FX carry trade strategy (HMLFX) in

the following analysis.

First, we note that the currency portfolio of R&D exporter countries generates a negative

forward discount on average, which means that these countries have lower interest rates than the

U.S. In contrast, the portfolio of R&D adoption countries has positive forward discounts. The

forward discount increases virtually monotonically from PL to PH , with a spread of 2.41% (2.48%)

in the full sample (G10 currencies). Second, the spread in forward discounts fully translates into

the spread in currency excess returns, which contradicts the UIP condition. For both the OECD

sample and the G10 currencies, investing in the high-tech-diffusion currencies delivers a positive

excess return. The opposite is true for investing in low-tech-diffusion currencies. The spread of

Sharpe ratios between the high and low portfolios is slightly above 0.4. Lastly, the same monotone

pattern applies to the real interest rate differentials. High-tech-diffusion countries tend to have a

higher real interest rate than the low-tech-diffusion economies. 20 This indicates that the spread

of forward discounts is not entirely driven by the expected inflation channel.

19Table B.3 in appendix B displays the summary statistics of portfolio sorting after eliminating the bid-ask spread.
20Both the spread in forward discounts and the spread in real interest rates between the high and low portfolios

are statistically significant at the 1% level. Their t-statistics are omitted in the table.
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Figure 4: Cumulative Returns and Rolling-Window Statistics
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Notes: The left panel displays the cumulative returns from the carry trade and tech-diffusion-sorted (AMI) portfolios.

The right panel displays (60-month) rolling-window correlations of the carry and AMI portfolios as well as their

rolling-window Sharpe ratios. The data contain monthly series from January 1993 to December 2019. The results

are based on the group of G10 currencies.

One thing to note is that the difference in excess returns between PH and PL (2.82% and 3.50%)

is higher than the difference in forward discounts (2.41% and 2.48%), which implies that the high-

tech-diffusion currencies tend to appreciate in the future and the low-tech-diffusion currencies tend

to depreciate. The last line of each panel in table 3 shows the countries’ average risk exposure in

each portfolio. It appears that countries in the high-tech-diffusion basket always enjoy the lowest

risk exposure.

Panel B of table 3 reports the statistics of carry trade portfolios. We find that both currency

excess return and forward discount follow similar patterns as the tech-diffusion-sorted portfolios.

The spread in the average forward discount is larger than the spread in the AMI strategy, which

is not surprising since the forward discount is the source of variation for these portfolios. The

excess returns also rise monotonically from PL to PH . In both samples, the spread of forward

discounts fully translates into the spread of excess returns with the same magnitude, implying

that the interest rate may contain more information than the future exchange rate fluctuations.

The conditional carry strategy of buying high-interest-rate currencies and selling low-interest-rate

currencies renders a Sharpe ratio of 0.6 or 0.48, higher than those from the AMI strategy. The last

line of panel B shows that countries with the highest forward discount (or the highest real interest

rate) have the lowest productivity risk exposure.

Cumulative Returns and Rolling Statistics. One key difference between the carry and

tech-diffusion strategies is that, in the former case, the spread of forward discounts is higher than

the spread of excess returns. But the opposite is true for the tech-diffusion strategy. This suggests

21



Figure 5: Carry Trade Conditional on Technology Diffusion
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Notes: We first divide the time series of the AMI factor into quartiles so that the first (last) quartile represents a

basket with the lowest (highest) tech-diffusion measure (TD). Then, in each basket of AMI realizations, we calculate

the mean excess return between extreme quintiles for the interest-rate-sorted portfolios. Each bar represents the

average carry trade return conditional on a specific tech-diffusion state.

that the tech diffusion may contain additional information about the risk premium rather than the

forward discount.21 Figure 4 provides a visual comparison of these two strategies. The left panel

shows cumulative returns of the carry trade and tech-diffusion portfolios, and the right panel shows

their (60-month) rolling-window correlations and the Sharpe ratios. We find that the carry trade

strategy was very profitable until the Global Financial Crisis of 2008, when the payoff became flat

afterward. The cumulative return based on the AMI factor is much smaller due to the annual

rebalancing, but it exhibits a similar pattern to the carry trade. In the right panel, we find that the

correlation between carry and AMI factors quickly rose up to 80% after 2000 but declined sharply

in 2015. The rolling Sharpe ratios of the two strategies are closely connected. For both strategies,

the Sharpe ratios are relatively higher in the period of 2002 to 2008 than in the post-2008 episode.

Even though the carry trade strategy is more profitable, its larger volatility renders a similar Sharpe

ratio to our AMI strategy.

To better understand the relationship between carry trades and technology diffusion, figure 5

provides a visual illustration of the carry trade profitability conditional on the technology diffusion

level. Specifically, we divide the time series of the tech-diffusion factor (i.e., AMI) into quartiles

so that the first (last) quartile represents a basket with the 25% lowest (highest) realizations of

the factor over its sample distribution. Then, in each basket, we calculate the mean excess return

between extreme quintiles for the interest-rate-sorted portfolios. In the end, each bar in figure 5

represents the average carry trade return under a specific state of technology diffusion. We observe

21Figures C.10-C.13 in appendix C compares the portfolio turnover rates between the carry trade strategy and tech-
diffusion strategy. Although the two sorting strategies do not completely overlap, the countries in the extreme baskets
are almost identical. However, exceptions do exist. For example, the Swiss franc is considered a low-interest-rate
currency in the carry trade strategy, but Switzerland is not categorized as a low-tech-diffusion economy.
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a monotonic pattern of carry trade returns. This suggests that the profitability of carry trades

strongly covaries with our tech-diffusion strategy. To put it another way, sorting currencies based

on the measure of tech diffusion entails similar information to the forward discount.

3.4 Asset-Pricing Tests

This section performs cross-sectional asset-pricing tests and examines the pricing ability of the

tech-diffusion factor for the carry trade portfolio returns. Following the methodology in Cochrane

(2005), under the no-arbitrage condition, the excess return for any asset j satisfies the following

Euler equation:

E
[
Mt+1RXj

t+1

]
= 0, (8)

where Mt+1 is the U.S. investors’ stochastic discount factor (SDF) that is to be projected on a list

of risk factors. In our case, RXj
t+1 is the currency excess returns for portfolio j at time t+ 1. 22

We assume the SDF takes a linear form: Mt+1 = 1 − b′(ϕt+1 − µϕ), where b represents the

vector of factor loadings and µϕ is the vector of factor means; that is, µϕ = E(ϕt+1). Then, we can

derive the beta representation of the asset-pricing model:

E
[
RXj

]
= λ′βj . (9)

Equation (9) says that the expected excess return of portfolio j equals the factor price λ multiplied

by the risk exposure of this portfolio βj . The vector of factor price is expressed as λ = Σϕb, where

Σϕ = E[(ϕt+1 − µϕ)(ϕt+1 − µϕ)
′] represents the variance-covariance matrix of the risk factors. The

beta of each portfolio (βj) can be derived by running a time-series regression of the portfolio excess

return (rxjt+1) on risk factors (ϕt+1).

We use two methods to jointly estimate factor prices λ and portfolio betas β, together with

the factor loadings (b), factor means (µ), and variance-covariance matrix (Σϕ). The first method is

based on the linearization of the generalized method of moments (GMM) as introduced by Hansen

(1982). Since the main purpose of this study is to examine the pricing ability of the model on

the cross-section of currency returns, we restrict our attention to unconditional moments with no

instruments apart from a constant. In the first stage of the GMM (referred to as GMM1), we

start with an identity weighting matrix to see whether the factors can price the cross-section of

the currency excess returns equally well. In the second stage (referred to as GMM2), we choose

the optimal weighting matrix by minimizing the difference between the objective functions un-

der heteroskedasticity- and autocorrelation-consistent (HAC) estimates of the long-run variance-

covariance matrix of the moment conditions. The estimation of the variance matrix is based on

Newey and West (1987) and uses the optimal number of lags.

22We use excess returns in levels instead of logs in the asset-pricing tests so as to avoid having to assume the joint
log-normality of returns and the pricing kernel.
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Table 4: Cross-Sectional Asset-Pricing: DOL and AMI factors

Panel A: Factor Prices
λDOL λAMI χ2 R2 RMSE λDOL λAMI χ2 R2 RMSE

All Countries G10 Currencies
GMM1 0.18 8.31 3.63 0.69 0.69 −0.22 6.22 5.17 0.52 0.92

(1.81) (3.93) {0.30} (1.82) (2.84) {0.16}
GMM2 0.19 9.37 3.56 −0.22 7.53 5.04

(1.80) (3.90) {0.31} (1.79) (3.04) {0.17}
FMB 0.16 8.17 5.00 −0.22 6.12 5.23
(NW) (1.56) (2.67) {0.29} (1.53) (2.61) {0.26}
(Sh) (1.56) (2.82) (1.53) (2.65)

Panel B: Factor Betas
α βDOL βAMI R2 α βDOL βAMI R2

PL −0.20 0.95 −0.27 0.78 PL −0.19 0.88 −0.40 0.65
(0.06) (0.05) (0.09) (0.08) (0.07) (0.08)

P2 −0.09 0.99 −0.13 0.83 P2 −0.14 0.92 −0.13 0.72
(0.05) (0.05) (0.06) (0.06) (0.05) (0.05)

P3 0.08 0.95 −0.05 0.84 P3 0.08 0.87 0.08 0.59
(0.05) (0.03) (0.05) (0.09) (0.06) (0.05)

P4 0.01 0.99 0.08 0.83 P4 −0.05 1.00 0.17 0.80
(0.06) (0.04) (0.08) (0.06) (0.05) (0.05)

PH 0.21 1.16 0.27 0.85 PH 0.19 1.16 0.25 0.82
(0.07) (0.04) (0.10) (0.07) (0.04) (0.07)

Notes: This table reports asset-pricing results for the two-factor model that comprises the DOL and AMI risk factors.

We use as test assets five currency portfolios sorted based on past forward discounts (i.e., carry trade portfolios). We

rebalance the portfolios on a monthly basis. Panel A reports GMM1, GMM2, and the Fama and MacBeth (1973)

estimates of the factor prices (λ). We also display Newey and West (1987) standard errors (in parentheses) corrected

for autocorrelation and heteroskedasticity with optimal lag selection. Sh are the corresponding values of Shanken

(1992). The table also shows χ2 and cross-sectional R2. The numbers in curly brackets are p-values for the pricing

error test. Panel B reports OLS estimates of contemporaneous time-series regressions with HAC standard errors in

parentheses. The alphas are annualized. We do not correct for transaction costs, and excess returns are expressed in

percentage points. The currency data are collected from Datastream via Barclays and Reuters and contain monthly

series from January 1993 to December 2019.

In the second method, we perform a two-stage OLS estimation based on Fama and MacBeth

(1973) (hereafter FMB). In the first stage, we run a time-series regression of portfolio returns on

risk factors to get their betas. In the second stage, we run a cross-sectional regression of the

portfolios’ average excess returns on the betas, period by period (without an intercept term). The

factor price λ is the average of the slope coefficients in the cross-sectional regression. We report

both Newey and West (1987) as well as Shanken (1992) standard errors to account for the potential

“errors-in-variables” issue.

Cross-Sectional Analysis. Lustig et al. (2011a) show that the traditional carry trade portfolios

are characterized by heterogeneous exposure to a common risk factor – the slope factor. The high-
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interest-rate currencies load more on this slope factor than the low-interest-rate currencies. The

purpose of our analysis is to show that our tech-diffusion measure can capture the bulk proportion

of this global risk factor and account for most of the cross-sectional variation in carry trade excess

returns. We assume a two-factor model with the following form:

Mt+1 = 1− bDOL (DOLt+1 − µDOL)− bAMI (AMIt+1 − µAMI) , (10)

where DOL represents the level (dollar) factor that buys market currencies and sells the U.S. dollar.

AMI is the slope factor of our interest that captures the heterogeneous exposure to the state of

technology transmission.

Panel A of table 4 shows the results of the cross-sectional asset-pricing tests: the estimation of

factor prices (λ), the test of pricing errors (χ2), the cross-sectional R2, and the root-mean-square

error. 23 The left panel shows the results of the OECD countries, while the right panel is only for

G10 currencies. From the estimation, we find that the price of the tech-diffusion factor (λAMI) is

always positive and statistically significant based on HAC and Shanken (1992) standard errors. The

t-statistics of λAMI are roughly the same under the GMM method and under Fama and MacBeth

(1973) (3.05 in the full sample and 2.34 for the G10 currencies). Moreover, the χ2 tests suggest

that the cross-sectional pricing errors are insignificant, indicating that our tech-diffusion factor is

a key variable that explains the cross-sectional variation in currency excess returns. Regarding the

goodness of fit of the model, we find a sizeable cross-sectional R2, representing 69% in the full

sample, and 52% using the sample of G10 currencies.24

One thing to note is that the estimate of the dollar factor price (λDOL) is negative in all

specifications and statistically insignificant. This is due to the fact that global interest rates have

largely been affected by the unconventional monetary policies that came into force after the Global

Financial Crisis. These large-scale monetary easing programs greatly lowered currency returns in

the market portfolio. Table B.6 in appendix B shows the asset-pricing tests separately on the

samples before and after the Global Financial Crisis. We find that for both the OECD and G10

currencies, the price of the dollar factor (λDOL) becomes positive if we only use the sample before

2008. Moreover, the price of the slope factor (λAMI) is also more significant than the baseline results

using the pre-2008 sample. In addition, table B.5 in appendix B shows asset-pricing results when

we include both carry-trade-sorted and tech-diffusion-sorted portfolios as test assets to maximize

23The χ2 statistics (together with the p-values) test the null hypothesis that all pricing errors in the cross-section
are mutually equal to zero. The cross-sectional pricing errors are computed as the difference between the realized
and predicted excess returns. Figure C.14 in appendix C displays the pricing error plots at the portfolio level. Our
model generates a strong fit since most of the portfolios are closely aligned with the 45-degree line.

24Figure C.15 in appendix C shows the pricing error plots for the currency-level regressions. It is not surprising that
the estimates are less precise than the portfolio-level regressions because the currency-level approach introduces more
noise to the data. Most currencies are closely aligned with the 45-degree line except for some euro area currencies,
such as Greece, Portugal, Spain, and Italy, which deviate from the 45-degree line due to their shorter samples. This is
evident in the lower panel of figure C.15, where we can see that most of the G10 currencies are close to the 45-degree
line.
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the power of the tests. We notice that the estimate of factor price (λAMI) becomes smaller but

more significant due to the reduced standard errors.

Time-Series Analysis. Panel B of table 4 displays the coefficients of the time-series regressions

in the first pass of Fama and MacBeth (1973) for each of the five currency portfolios. The coefficients

on the dollar factor (DOL) are all close to one, indicating that all carry portfolios roughly have

the same exposure to this level factor. More importantly, the betas on our tech-diffusion (AMI)

factor increase in an almost monotonic fashion from the low-interest-rate to the high-interest-rate

currencies. The slope coefficients for the extreme portfolios are highly significant, as indicated by

the HAC standard errors. However, the difference in exposure between the high and low portfolios

(βH
AMI − βL

AMI) is not equal to one, which indicates that our AMI factor only accounts for part

of the cross-sectional variation in currency excess returns. The time-series R2 ranges from 78%

to 85% using the full sample and 65% to 82% using the G10 currencies.25 Thus, this structure of

portfolio betas provides us with evidence that the carry-trade-sorted portfolios are characterized by

heterogeneous exposure to a common global risk factor that is related to international technology

transmission.

3.5 Beta-Sorted Portfolios

Our baseline exercise in table 4 indicates that the forward-discount-sorted portfolios (carry) gener-

ate a structure of heterogeneous exposure to the global tech-diffusion risk. This section considers

the opposite question: whether the portfolios sorted on tech-diffusion betas lead to the same mono-

tone pattern of excess returns or interest rates. Specifically, in each date t, we regress the currency

i’s log excess return rxit on a constant and AMIt factor using a 36-month rolling window that ends

in period t-1. 26 This gives rise to the currency i’s exposure to the tech-diffusion factor in time t:

βi
AMI,t. Then we sort currencies into quintile portfolios in each period based on their sensitivity to

the global risk factor. Portfolio 1 contains currencies with a negative exposure to the tech-diffusion

factor, and portfolio 5 includes currencies with positive exposure. Table 5 reports the summary

statistics of the beta-sorted portfolios. Panel A shows results for all countries, and Panel B displays

results for G10 currencies.

First, we find that the average forward discounts increase monotonically from the low-beta

currencies to the high-beta ones. A larger sensitivity to global shocks makes currencies in the last

portfolio a risky investment from the U.S. investors’ perspective, causing a higher risk premium.

Therefore, sorting based on the forward discounts (fd) and sorting based on risk exposure (betas)

25Figure C.18 of appendix C provides an estimate of the time-varying factor price (λAMI,t) using a (36-month)
rolling-window regression in the first stage of Fama and MacBeth (1973). The strong comovement between factor
prices (λAMI,t) and the carry trade high-minus-low return (HMLFX

t ) demonstrates the strong pricing ability of our
tech-diffusion measure.

26Table B.4 in appendix B shows the beta-sorted portfolios when using a 24-month rolling windows in the time-series
regressions.
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Table 5: Portfolios Sorted on Tech-Diffusion Betas: 36-Month Windows

Panel A: All Countries
PL P2 P3 P4 PH Avg H/L

Mean −1.76 0.29 −0.50 0.09 2.44 0.11 4.21
[−0.91] [0.15] [−0.27] [0.05] [1.00] [0.06] [2.67]

Sdev 7.70 8.71 9.01 9.06 11.19 8.24 9.06
SR −0.23 0.03 −0.06 0.01 0.22 0.01 0.46
Skew 0.08 −0.35 −0.17 −0.22 −0.73 −0.25 −0.79
Kurt 3.06 3.87 4.07 4.55 6.38 4.27 6.12
pre-β −0.42 −0.02 0.15 0.37 0.92
post-β −0.43 −0.02 0.15 0.37 0.92
pre-f. f-s −0.95 −0.54 −0.07 0.69 2.12
post-f. f-s −0.96 −0.55 −0.05 0.72 2.14
Tech Diffusion 8.48 8.89 9.11 9.88 11.13

Panel B: G10 Currencies
PL P2 P3 P4 PH Avg H/L

Mean −1.08 −1.81 −1.13 −0.56 2.33 −0.45 3.41
[−0.66] [−1.02] [−0.54] [−0.25] [0.91] [−0.24] [1.95]

Sdev 7.86 8.79 9.50 9.43 11.35 7.90 10.29
SR −0.14 −0.21 −0.12 −0.06 0.21 −0.06 0.33
Skew 0.29 −0.21 −0.21 −0.22 −0.44 −0.13 −0.76
Kurt 3.94 3.88 3.53 5.03 5.56 4.14 5.79
pre-β −0.37 0.14 0.31 0.48 0.81
post-β −0.38 0.14 0.31 0.48 0.81
pre-f. f-s −1.80 −0.64 −0.22 0.69 1.47
post-f. f-s −1.82 −0.63 −0.23 0.69 1.48
Tech Diffusion 8.46 8.26 8.97 9.88 10.43

Notes: This table presents the summary statistics of portfolios sorted on betas of tech-diffusion-sorted portfolios

(AMI). The betas are estimated based on 36-month windows. The first (last) portfolio PL (PH) comprises the

basket of all currencies with the lowest (highest) technology diffusion betas. H/L is a long-short strategy that buys

PH and sells PL, and Avg is the average return across portfolios each time. The table presents the annualized mean,

standard deviation (in percentage points), and Sharpe ratios. We also report skewness and kurtosis. Figures in square

brackets represent Newey and West (1987) t-statistics corrected for heteroskedasticity and autocorrelation (HAC)

with 12 lags. “pre-f. f-s” (“post-f. f-s”) is the pre-formation (post-formation) forward discount. “pre-β” (“post-β”)

is the pre-formation (post-formation) beta.

are closely related. The result also implies that the forward discount may contain information

about the riskiness of an individual currency. Moreover, the excess returns also tend to increase

from the first to the last portfolio, and for the full sample, the spread of high-minus-low (H/L) is

even larger than the one created by the sorts on tech diffusion (4.21 vs. 2.82). In addition, the

beta-sorting strategy produces a spread of Sharpe ratios comparable to our baseline tech-diffusion

sorts.

The last three lines in each panel show the pre- and post-formation betas and the average

tech-diffusion levels in each portfolio. The pre- and post-formation betas vary monotonically from

the first to the last, indicating that the rebalancing of portfolios based on this sorting strategy
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Figure 6: Forward Discounts and Excess Returns before and after December 2000
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The x-axis is the average forward discount of each currency between January 1993 and December 2000. The y-axis

is the average excess return of each currency between January 2001 and December 2007. We cut the data after the

Global Financial Crisis. The data are collected from Datastream via Barclays and Reuters.

is infrequent. The average tech-diffusion level also increases with the betas. It suggests that the

currencies that covary more with our AMI factor come from the countries with a high tech-diffusion

index.

3.6 Unconditional Currency Returns

Since the international transmission of R&D is a slow-moving factor for the currency risk premium,

for most countries, our tech-diffusion measures are quite stable over time.27 It is important to

consider what proportion of the unconditional carry trade returns rather than conditional ones

can be explained by the tech-diffusion factor (AMI). We construct the unconditional carry trade

portfolios using the mean forward discount in the first several years of our sample between 1993 and

2001, following Lustig et al. (2011a). We drop the data after the Global Financial Crisis since it is

well known that currency excess returns have largely been influenced by a series of monetary easing

policies after that date.28 Figure 6 plots the average excess returns from 2001 to 2007 (referred to

as RXafter) against the mean forward discounts in the first-half sample (referred to as FDbefore)

27See figure C.9 in appendix C for countries’ relative rankings based on the tech-diffusion measure.
28Andrews et al. (2020) provide similar evidence and claim that the lower risk premium underlying the traditional

carry trade strategy in the post-2008 episode is due to the sharp decline in expected global growth and global inflation.
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for the G10 currencies. We find that the average forward discount in the first-half sample is a

strong positive predictor for the countries’ future currency excess returns. The fitted line explains

60% of its cross-sectional variation.

Panel A of table 6 shows the summary statistics of unconditional carry trade portfolios sorted

on the mean forward discount in the first-half sample. For comparison, panel B shows the statistics

of conditional carry trade portfolios in the second-half sample (between 2001 and 2007). First,

we find that sorts on average forward discounts produce monotonic currency excess returns in the

second-half sample with a spread of 9.66% (6.74%) in the full (G10) sample, even though the

spread is smaller than the one produced by conditional sorts (10.22% and 10.13%). The premium

on the unconditional carry trade strategy is statistically significant, with a Sharpe ratio that is

even larger than one (1.45 and 1.05). Moreover, the forward discount implied by unconditional

sorts is virtually monotonic from the first to the last, indicating that interest rates are persistent

for individual currencies.

Table B.7 in appendix B shows the unconditionally and conditionally sorted portfolios based on

the half-sample average tech diffusion or the previous-year tech diffusion. The unconditional tech-

diffusion strategy is labeled UAMI. We notice that the currency premium implied by the UAMI

strategy is also smaller than the premium from the conditional one (AMI), but the difference

between these two is relatively small compared with the carry trade strategies. The reason is that

our tech diffusion is a long-run factor, and countries’ relative rankings in the sample barely alternate

across the sample periods.
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Table 7: Asset-Pricing Tests for Unconditional Carry Portfolios: DOL and AMI Factors

Panel A: Factor Prices

λDOL λAMI χ2 R2 RMSE λDOL λAMI χ2 R2 RMSE

All Countries G10 Currencies
GMM1 5.80 11.66 2.36 0.77 1.20 5.65 7.70 1.51 0.99 0.81

(3.14) (3.31) {0.50} (3.28) (2.49) {0.68}
GMM2 5.74 12.49 2.31 6.24 7.94 1.51

(3.10) (3.12) {0.51} (3.18) (2.47) {0.68}
FMB 5.81 11.27 4.74 5.65 7.58 2.22
(NW) (2.66) (3.40) {0.32} (2.73) (2.58) {0.70}
(Sh) (2.67) (3.69) (2.73) (2.65)

Panel B: Factor Betas

α βDOL βAMI R2 α βDOL βAMI R2

PL 0.13 0.95 −0.35 0.84 PL 0.13 0.97 −0.51 0.87
(0.08) (0.05) (0.06) (0.08) (0.05) (0.06)

P2 0.42 0.94 −0.09 0.89 P2 0.38 0.86 −0.12 0.83
(0.07) (0.03) (0.04) (0.09) (0.04) (0.05)

P3 0.53 1.22 0.12 0.82 P3 0.64 1.06 0.24 0.65
(0.10) (0.06) (0.11) (0.17) (0.08) (0.14)

P4 0.70 0.96 0.23 0.71 P4 0.57 1.15 0.19 0.88
(0.12) (0.06) (0.13) (0.10) (0.06) (0.08)

PH 0.92 1.25 0.21 0.83 PH 0.69 0.88 0.26 0.74
(0.11) (0.07) (0.11) (0.12) (0.05) (0.08)

Notes: This table reports the asset-pricing results for the two-factor model that comprises the DOL and AMI risk
factors. AMI stands for the return on a high-minus-low currency strategy sorted on the previous-year tech-diffusion
measure. We only use the sample between January 2001 and December 2007 for estimation. We use as test assets the
five carry trade portfolios sorted on the first-half-sample mean forward discount between January 1993 and December
2000.

Asset-Pricing Implications. Table 7 shows asset-pricing tests if we use the five unconditional

carry trade portfolios as test assets. Compared with the baseline exercise in table 4, we find that the

AMI factor has stronger predicting power for the unconditional currency risk premium. This is not

surprising given that our tech-diffusion measure captures the unconditional properties of countries.
29 Specifically, the factor price estimates (λAMI) are always positive and highly significant in both

samples. Regarding the goodness of fit of the model, the cross-sectional R2 equals 77% for the full

sample and 99% for the G10 currencies, higher than the baseline case when using conditional carry

trade portfolios as test assets. The χ2 tests indicate that we cannot reject the null hypothesis that

cross-sectional pricing errors are equal to zero, implying a strong pricing ability. Panel B shows

the results of the first-pass regression. The coefficients on the DOL factor are always close to one

because it serves as a level factor. The coefficients on the AMI factor increase almost monotonically

from the first to the last portfolio, indicating their heterogeneous exposure to a common source of

risk.

29Table B.8 in appendix B shows asset-pricing test results when we use DOL and UAMI as risk factors. The risk
factor sorted on the mean tech diffusion still has explanatory power for the cross-sectional returns of the unconditional
carry trades.
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Table 8: Explanatory Regressions for Currency Risk Factors

All Countries G10 Countries

HMLFX HMLFX(2) UHMLFX HMLFX HMLFX(2) UHMLFX

α 0.53*** 0.70*** 0.52** 0.48*** 0.47** 0.32

(0.13) (0.20) (0.19) (0.14) (0.22) (0.20)

β 0.69*** 0.74*** 0.52*** 0.88*** 1.13*** 0.68***

(0.09) (0.14) (0.14) (0.08) (0.15) (0.13)

Adj. R2 0.34 0.40 0.18 0.53 0.53 0.35

No. of Obs 167 71 71 167 71 71

Notes: This table presents the results of the following time-series regression: fact = α+βAMIt + γfact−1 + ϵt. The

estimate of γ is omitted from the table. fact represents the conditional and unconditional carry trade returns of either

HMLFX , HMLFX(2) or UHMLFX . Specifically, HMLFX is the conditional carry trade return between January

1993 and December 2007 based on the previous-month forward spread. UHMLFX is the unconditional carry trade

return sorted on the mean forward spread between January 1993 and December 2000. The currency excess returns

are calculated based on the second-half sample from January 2001 to December 2007. For comparison, HMLFX(2)

is the conditional carry trade return only on the second-half sample only. Standard errors in parentheses are based

on Newey and West (1987). *, **, and *** denote significance at the 10%, 5%, and 1% levels, respectively.

Next, we consider by how much proportion the return of AMI strategy can be used to explain

the unconditional excess return of the carry trade (UHMLFX). To do that, we run the following

time-series regression:

fact = α+ βAMIt + γfact−1 + ϵt, (11)

where fac is the currency excess return of either HMLFX or UHMLFX . To make a comparison

with the unconditional carry trade strategy, we also construct a conditional carry trade strategy

for the second-half sample between 2001 and 2007 and label it HMLFX(2). Table 8 shows the

results, where we omit the estimate of γ. We find that in all specifications, the return on AMI is

highly correlated with the carry trade and that the beta coefficients are all significant. However,

the unexplained currency excess returns (alphas) are more significant for conditional strategies than

unconditional carry trade strategies. This latter result implies that the conditional carry trade may

contain more information than the unconditional carry and that the sorts on tech diffusion measure

unveil the heterogeneous exposure to a common risk factor that is unconditional in its nature.

4 Additional Results

This section first provides an alternative sorting strategy based on international technology spillover

that complements our baseline tech-diffusion measure. Then we compare our tech-diffusion risk

factor with the related risk factors (import ratio and trade centrality) in the literature.
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4.1 Double-Sorting Strategy

Our tech-diffusion index captures the trade concentration of an R&D recipient country, weighted by

the innovation efforts (R&D expenditures) of all its trade partner countries. This concept represents

the direction and intensity of the R&D content in the manufacturing trade flows. However, the

tech-diffusion measure is silent about the R&D expenditure of the home (tech-adoption) country. In

this section, following the methods of Della Corte et al. (2016) and Cespa et al. (2022), we consider

a 2× 3 double-sorting strategy based on the importers’ R&D ratios and trade concentrations (not

weighted by R&D), respectively.30

First, we modify the baseline measure (defined in section 2) and calculate an importing country’s

trade concentration (TC) as follows,

TCimp =

 N∑
exp=1

(IMimp,exp)
2

1/2

, for imp = 1, 2, . . . , N , (12)

where the intensive margin of trade is not adjusted by R&D from the country’s trade partners; that

is, IMimp,exp = T̂ I
GDP

imp,exp/ÊM imp,exp
31. We construct the double-sorting portfolios as follows: at

the end of each period t, we first group currencies into two baskets using the countries’ R&D ratios in

year y-1; then we reorder currencies within each basket using the above-defined trade concentration

(TC) value in year y-1. Figure C.16 in appendix C provides an illustration for the double-sorting

strategy. In the end, we allocate currencies into six portfolios so that P13 corresponds to low-R&D

countries that receive a high trade concentration and P21 represents high-R&D countries with a

low trade concentration. The double-sorting (denoted by AMI2×3) refers to a strategy that goes

long in P13 and short in P21. We should note that the procedure does not guarantee monotonicity

in our sorting variables. For example, the trade concentration in P23 doesn’t need to be higher

than that in P11. But the corner portfolios contain the intended set of countries.

Table 9 shows portfolio statistics based on the double-sorting strategy. We notice that the R&D

ratio is higher in P1· than in P2·, which is natural by construction. Also, the trade concentration is

monotonic in the second sorting direction: [P11, P12, P13] and [P21, P22, P23]. Most importantly, we

find that the double-sorting strategy generates a positive and significant spread of currency returns

in the corner portfolios: AMI2×3 = P13−P21. Compared with the return on tech diffusion (in table

3), the double-sorting strategy generates similar excess returns, Sharpe ratios, and t-statistics. The

spread of forward discounts is slightly higher than the baseline. However, we also notice that the

30Della Corte et al. (2016) consider a 2 × 3 double-sorting strategy based on countries’ net foreign asset (nfa)
positions and the fraction of liabilities denominated in domestic currencies (ldc). Similarly, Cespa et al. (2022)
consider a 3× 3 double-sorting strategy based on the previous-24-hour average currency returns and FX transaction
volumes.

31T̂ I
GDP

imp,exp and ÊM imp,exp are, respectively, the normalized intensive and extensive margins of trade; that is,

T̂ I
GDP

imp,exp = TIGDP
imp,exp/

∑N
exp=1 TI

GDP
imp,exp and ÊM imp,exp = EMimp,exp/

∑N
exp=1 EMimp,exp.
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Table 9: Double-Sorting Currency Portfolios

Panel A: All Countries
P21 P22 P23 P11 P12 P13 AMI2×3

Mean -0.41 -1.23 2.17 0.43 1.03 2.72 3.13
[-0.22] [-0.69] [1.31] [0.23] [0.53] [1.24] [2.41]

Sdev 8.57 8.99 8.43 8.48 8.79 10.25 6.91
SR -0.05 -0.14 0.26 0.05 0.12 0.27 0.45
Skewness -0.23 -0.00 -0.18 -0.46 -0.41 -0.50 -0.19
FD -0.65 -1.04 0.33 0.54 0.95 2.34 2.99

[-2.55] [-4.87] [1.18] [1.90] [3.82] [9.34] [11.26]
RIR 0.17 -0.25 0.86 0.63 0.87 1.74 1.56
R&D (%) 2.31 2.43 2.94 1.26 1.29 1.26
Trade Concentration 6.65 8.72 11.11 6.21 7.79 13.39

Panel B: G10 Currencies
P21 P22 P23 P11 P12 P13 AMI2×3

Mean -1.68 -2.28 -0.47 -0.39 0.17 1.53 3.21
[-0.79] [-1.15] [-0.25] [-0.21] [0.08] [0.72] [2.15]

Sdev 9.59 10.02 9.93 8.60 9.62 9.75 7.84
SR -0.18 -0.23 -0.05 -0.04 0.02 0.16 0.41
Skewness -0.18 0.11 -0.17 -0.50 -0.65 -0.49 -0.39
FD -1.18 -1.32 -1.54 0.56 0.88 1.59 2.77

[-4.13] [-6.32] [-4.70] [3.15] [4.38] [8.55] [15.52]
RIR -0.20 0.17 0.05 0.70 0.99 1.76 1.96
R&D (%) 2.28 2.47 2.25 1.53 1.25 1.21
Trade Concentration 6.16 8.56 9.69 7.69 9.18 17.72

Notes: This table presents the summary statistics of the double-sorting (2× 3) currency portfolios. In the first sort,

we divide the sample into two categories based on R&D-to-GDP ratios, while in the second sort, we further divide

each portfolio into three based on the trade concentration measure. The portfolio P13 (P21) contains the currencies

simultaneously having a low (high) value of R&D and a high value of trade concentration. We denote AMI2×3 as

the long-short strategy that buys P13 and sells P21. The table presents the annualized mean, standard deviation (in

percentage points), and Sharpe ratios. We also report forward discounts and real interest rate differentials for each

portfolio. Figures in square brackets represent Newey and West (1987) t-statistics corrected for heteroskedasticity

and autocorrelation (HAC) using the optimal number of lags. The data are collected from Datastream via Barclays

and Reuters and contain monthly series from January 1993 to December 2019.

returns are not monotone in the degree of trade concentration, especially in the high-R&D group.

Figure C.17 in appendix C contrasts the cumulative returns of the double-sorting and tech-diffusion

strategies. The correlation of returns is 0.76 in the full sample and 0.61 using the G10 currencies.

We should be aware that even though the double-sorting strategy generates a similar return

as our baseline model, the strategies contain different information. The double-sorting strategy

considers the importers’ R&D while the tech-diffusion strategy considers the technology spillover

due to the exporters’ R&D effort. In the double-sorting strategy, we select the countries with a low

innovation effort but that are actively importing manufactured goods, and it turns out that the

currencies of these countries have higher returns than their counterparts, the countries conducting
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innovations but that are more reluctant to import manufactured goods from other countries. In that

sense, our original tech-diffusion measure is a direct measure representing the R&D components of

trade flows, while the double-sorting strategy gives an indirect measure, ranking countries based

on their innovation efforts and trade connections.32

Table B.9 in appendix B shows asset-pricing tests using the return of the double sort as a

risk factor (AMI2×3). The estimate of the factor price is always positive and significant, and the

estimation is more precise than that based on our baseline tech-diffusion measure (smaller standard

errors). Also, in the first pass of FMB regression, we find that the double-sort factor generates a

larger spread of betas than the tech-diffusion factor (βH − βL = 0.68 and 0.82 vs. βH − βL = 0.54

and 0.62), indicating that the double-sorting strategy can better account for the heterogeneous risk

exposure of the tail portfolios.

4.2 A Comparison of Currency Risk Factors: Import Ratio (IMX) and Trade

Centrality (PMC)

In this section, we compare the performance of our factor with two trade-based factors that have

demonstrated success in explaining the cross-section of the currency risk premium.

The first is the IMX factor of Ready et al. (2017) that is constructed based on the countries’

import ratios.33 Specifically, IMX is a long-short strategy that buys currencies of commodity

exporters (i.e., high import ratio) and goes short in the currencies of commodity importers (i.e.,

low import ratio). The relative advantage in producing basic goods endows the commodity producer

with an ability to insure itself and makes the final goods producer’s currency a safe haven. Second,

we consider the PMC factor of Richmond (2019), which is the return on a portfolio that buys

the currencies of central countries and sells the currencies of peripheral economics. Since central

countries are more exposed to the global consumption risk, their currencies generate lower returns

than those of the periphery economies. To facilitate the comparison, we consider the reverse strategy

of PMC (denoted by PMC(−)). Moreover, in this section, we use Ready et al. (2017)’s sample of

22 countries – a common subset of our sample and Richmond (2019)’s sample.

Table 10 shows the summary statistics of all three trade-based currency risk factors, together

with the carry trade returns.34 We notice that both the AMI and IMX strategies offer significant

excess returns. The excess returns delivered by AMI and IMX account for 77% and 92% of the

32Figures C.10-C.13 in appendix C compare the portfolio turnover rates of the two sorting strategies. The identity
of currencies in the two extreme portfolios mostly coincide, but there are exceptions. For example, the euro is almost
always considered a funding currency under tech-diffusion sorts, but sometimes it is missed under double-sorts. The
opposite is true for the Swedish krona.

33The import ratio is defined as follows: Net Imports of Complex Goods + Net Exports of Basic Goods / Manu-
facturing Output.

34Table B.10 in appendix B shows the correlations between alternative risk factors. We find that all factors exhibit
moderate correlations with each other. The AMI factor has a relatively tighter correlation with IMX (0.62) than
with PMC(−) (0.53). Among the three trade-based factors, IMX has the strongest correlation with the carry trade
return at 0.64.
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Table 10: Summary Statistics of Alternative Currency Risk Factors

HMLFX AMI IMX PMC(−) AMI2×3

Mean 4.40 3.38 4.06 2.25 3.24

[2.24] [2.84] [2.10] [1.58] [2.30]

SD 9.66 6.56 9.10 6.83 7.95

Sharpe Ratio 0.45 0.51 0.45 0.33 0.41

Skewness -0.78 0.07 -1.04 -0.03 -0.15

Kurtosis 5.58 3.36 9.35 4.32 3.51

Max. Drawdown -0.12 -0.08 -0.12 -0.08 -0.10

Notes: This table presents the statistics of alternative currency risk factors. PMC(−) is the currency risk factor

sorted based on prior-year trade network centrality (as in Richmond, 2019) and goes long in central countries and

short in peripheral countries (the reverse of PMC). IMX is the currency factor sorted based on the previous-year

import ratio (as in Ready et al., 2017) and goes long in high-import-ratio currencies and short in low-import-ratio

currencies. HMLFX is the carry factor sorted based on previous-month forward spreads. Means and standard

deviations are reported in percentage points.

carry trade strategy, respectively. Moreover, the AMI factor generates the largest Sharpe ratio

among all the risk factors, even larger than that of the traditional carry trade. Furthermore, the

skewness of the AMI factor is weaker than those of all the other factors. The AMI factor exhibits

the smallest disaster risk: the maximum drawdown in the history equals 8%, smaller than the 12%

under IMX and HMLFX .

Figure C.19 in appendix C provides a visual illustration for the relationship between the three

factors by comparing countries’ relative rankings. We find that the rankings based on tech diffu-

sion and the import ratio are positively correlated, indicating that countries adopting technologies

abroad are also the ones that export commodity goods. In the same sense, adopter countries are

usually periphery economies in the global trade network, although the connection between tech

diffusion and centrality is looser than the connection between tech diffusion and the import ratio.

There are many exceptions: Korea is a high-tech-diffusion country, but it produces final complex

goods and imports basic goods. Portugal has a low-tech-diffusion index, but it is peripheral to the

trade network.

The results in table 10 and figure C.19 show that the three trade-based factors are not perfectly

correlated. However, we still need to examine more directly whether our tech-diffusion factor

produces additional information over IMX and PMC in explaining the cross-section of currency

returns. To do that, we first regress the AMI factor on IMX or PMC and extract the estimated

residuals (denoted by AMI⊥IMX and AMI⊥PMC ). Then we include the orthogonalized risk

factors in a two-factor asset-pricing model (together with DOL) to consider their predictabilities.
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Table 11: Asset-Pricing for Orthogonalized Risk Factors: IMX and PMC

Panel A: Factor Prices

λDOL λAMI⊥IMX χ2 R2 RMSE λDOL λAMI⊥PMC χ2 R2 RMSE

Import Ratio (IMX) Trade Centrality (PMC)
GMM1 1.17 8.93 6.81 0.37 1.38 −0.09 10.39 1.86 0.75 0.58

(2.12) (4.14) {0.08} (1.90) (4.78) {0.60}
GMM2 2.32 12.84 5.83 −0.18 13.89 1.66

(1.97 (4.71) {0.12} (1.87) (5.56) {0.65}
FMB 1.18 8.13 9.64 −0.08 10.29 2.60
(NW) (1.79) (3.41) {0.05} (1.60) (3.74) {0.63}
(Sh) (1.79) (3.69) (1.60) (4.16)

Panel B: Factor Betas

α βDOL βAMI⊥IMX R2 α βDOL βAMI⊥PMC R2

PL −0.11 0.78 0.01 0.52 PL −0.18 0.80 −0.26 0.57
(0.11) (0.08) (0.16) (0.10) (0.07) (0.10)

P2 −0.07 0.99 −0.15 0.86 P2 −0.16 0.96 −0.09 0.83
(0.05) (0.04) (0.05) (0.05) (0.03) (0.05)

P3 0.14 0.97 −0.15 0.85 P3 0.01 0.96 −0.03 0.81
(0.05) (0.03) (0.06) (0.06) (0.03) (0.06)

P4 0.10 1.03 −0.02 0.81 P4 0.00 1.03 0.07 0.81
(0.08) (0.05) (0.07) (0.07) (0.04) (0.07)

PH 0.35 1.23 0.27 0.80 PH 0.23 1.24 0.24 0.80
(0.09) (0.05) (0.10) (0.08) (0.04) (0.08)

Notes: This table reports the asset-pricing results for a two-factor model that comprises the DOL and AMI⊥IMX

or AMI⊥PMC risk factors. AMI⊥IMX represents the part of the tech-diffusion factor orthogonalized to Ready et al.
(2017)’s commodity trade factor, while AMI⊥PMC represents the part of the tech-diffusion factor orthogonalized to
Richmond (2019)’s trade centrality factor. We use as test assets five currency portfolios sorted based on past forward
discounts (i.e., carry trade portfolios). We rebalance the portfolios on a monthly basis. The data cover from January
1993 to December 2012 for the IMX factor and from January 1993 to December 2016 for the PMC factor. Panel A
reports GMM1, GMM2, and the Fama and MacBeth (1973) estimates of the factor prices (λ). Panel B reports the
OLS estimates of the contemporaneous time-series regression with HAC standard errors in parentheses.

Table 11 displays the asset-pricing tests for the orthogonalized risk factors.35 The left panel

shows the results of orthogonalization to IMX, while the right panel shows the PMC. In both

cases, the orthogonalized risk factor still has strong predicting power for the cross-sectional variation

in currency returns. The estimated factor prices are statistically significant. The pricing errors are

insignificant for the orthogonalization on PMC and marginally significant for the IMX. Overall,

the two-factor models can still explain 37% and 75% of the cross-sectional variation in carry trade

returns, respectively. The values of R2 are not much lower than that of the baseline asset-pricing

test (0.37 and 0.75 vs. 0.84 in table B.11). Panel B shows the time-series regression coefficients in

the first pass of FMB. The five carry portfolios have heterogeneous exposure to our residual factors,

although the betas are not monotonic for the factor orthogonalized to IMX.

35For comparison, table B.11 in appendix B shows the baseline two-factor asset-pricing tests using Ready et al.
(2017)’s sample of 22 countries.
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5 A Simple Model of Tech Diffusion

This section builds an asymmetric two-country environment to consider how the heterogeneous

exposure to global shocks generates currency risk premia. The process of innovation and adoption

follows Comin and Gertler (2006) and Comin et al. (2009).36 The economy lasts for two periods:

t = 1, 2. In the first period, agents receive endowments and decide on the R&D investments, includ-

ing innovation and adoption efforts. Production only happens in the second period after patents

are invented or adopted. The home country (referred to as country-H) only has the innovation

technology, while the foreign country (referred to as country-F) can either innovate patents or

adopt patents from the home country.37 Innovation and adoption are modeled as a love-of-variety

process as in Romer (1990). In country-F, the size of the innovation (adoption) sector is µ (1−µ).

A domestically invented patent only requires domestic intermediate goods as production inputs,

while the adopted patent requires intermediate goods imported from abroad. As a result, in country-

F, the relative benefits of adopting and innovating depend on the cost of the intermediate goods and

the real exchange rate. In the following, we will use this model to show that endogenous innovation

and adoption create the technology transmission between the two countries and produce exchange

rate dynamics close to the data.

We assume that the productivities are persistent and follow a bivariate log-normal distribution:[
log(zh)

log(zf )

]
∼ N

([
0

0

]
,

[
σ2 ρσ2

ρσ2 σ2

])
. (13)

The shocks are observed at the beginning of the first period before innovators and adopters make

their investment decisions. We assume the first-period endowments are yh1 = zh, yf1 = zf .38

The Second-Period Problem. In period 2, the final goods are produced with intermediate

goods based on the following production functions:

yh2 = zh

Nh
2∑

i=1

(xh2,i)
ξ

 , (14)

yf2 = zf

µ1−ξ

Nf
2∑

i=1

(xf2,i)
ξ + (1− µ)1−ξ

Nf
h,2∑

j=1

(xfh,2,j)
ξ

 . (15)

36Our model shares many similar features with that of Comin et al. (2014), who study technology transmission
from developed (N) to developing (S) economies.

37In the online appendix, we build another version of the model where both countries have an adoption sector. We
can prove that the same mechanism works if the adoption sector in the home country is smaller than the one in the
foreign country.

38The exogenous process is symmetric between the two countries. That allows us to focus on the endogenous
asymmetry in our model that arises from the one-direction technology diffusion.
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where Nh
2 and Nf

2 denote the number of domestically invented patents. Nf
h,2 represents the number

of patents adopted by country-F after they are designed in country-H. We assume that in both

countries, producing one intermediate good (xh2 , x
f
2) costs one unit of final consumption. For the

adopted patents in country-F, using one imported intermediate good (xfh,2) costs 1/e2 units of final

consumption. e2 denotes the real exchange rate level in the second period, which represents the

units of country-H’s consumption goods per country-F’s consumption.39

In addition, final goods can be transported across the border but incur a shipping cost. For

X2 units of consumption goods exported by country-F, country-H only receives X2

(
1− κ

2X2

)
in

the units of its own consumption. There is a continuum of final goods importers. Their zero-profit

condition implies that,

e2 = 1− κ

2
X2. (16)

There is no shipping cost in the first period, indicating that the real exchange rate always equals

one: e1 = 1. The resource constraints in the home and foreign countries are

yh2 = ch2 +Nh
2 x

h∗
2 −X2

(
1− κ

2
X2

)
+Nf

h,2x
f∗
h,2, (17)

yf2 = cf2 +Nf
2 x

f∗
2 +X2. (18)

In period 2, firms’ profit maximization implies the optimal level of intermediate inputs as follows,

xh∗2 = ξ
1

1−ξ z
h, 1

1−ξ , xf∗2 = µξ
1

1−ξ z
f, 1

1−ξ , xf∗h,2 = (1− µ)ξ
1

1−ξ z
f, 1

1−ξ e
1

1−ξ

2 . (19)

The production functions can be simplified to the following,

yh2 = ξ
ξ

1−ξ z
h, 1

1−ξNh
2 , yf2 = ξ

ξ
1−ξ z

f, 1
1−ξ

[
µNf

2 + (1− µ)Nf
h,2e

ξ
1−ξ

2

]
. (20)

The real depreciation in the home country reduces the cost of adoption in the foreign economy and

stimulates foreign country’s production.

The First-Period Problem. In period 1, agents receive endowment incomes, make consump-

tion decisions, and choose innovation and adoption. Innovation and adoption are associated with

the following cost functions:40

Fh(N
h
2 ) = χ(Nh

2 )
1+η, Ff (N

f
2 ) = χ̄(Nf

2 )
1+η, Fh,f (N

f
h,2, N

h
2 ) = χa exp{b1N

f
h,2−b2Nh

2 } . (21)

39An increase in e2 indicates a real depreciation in the home country.
40In Comin and Gertler (2006) and Santacreu (2015)’s models, the probability of success for an adopter is an

increasing function of its adopting effort. In our model, we use the cost function of adoption in order to derive
analytical solutions.
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We notice that the marginal cost of innovation is increasing in the number of patents, indicating

a congestion effect in the R&D market. The adoption technology has two features: First, the

congestion effect also appears. The cost of adoption is exponentially increasing in the adopted

number of varieties with an elasticity b1. Second, the home country’s innovation effort generates

a positive externality and reduces the foreign country’s adoption cost: an international diffusion

effect. As more patents are designed in country-H, the world’s technological frontier rises, and as

a result, country-F also finds it cheaper to adopt. This assumption is consistent with the tech

adoption literature as in Comin and Hobijn (2010) and Comin et al. (2014).41

We suppose at the beginning of the first period, there is a social planner maximizing global

welfare,

U =
2∑

t=1

∑
i=h,f

u(cit). (22)

subject to the resource constraint:

ch1 + cf1 + Fh(N
h
2 ) + Ff (N

f
2 ) + Fh,f (N

f
h,2, N

h
2 ) = zh + zf . (23)

We assume the financial market is complete. The social planner can optimally allocate resources

and coordinate the development of technologies in the two countries.42 In particular, her problem

is to choose the allocations
{
ch1 , c

f
1 , N

h
2 , N

f
2 , N

f
h,2, c

h
2 , c

f
2 , X2, x

h
2 , x

f
2 , x

f
h,2

}
that maximize the

global welfare (22) subject to equations (14), (15), (19), (16), (17), (18), and (23).

Taking derivatives yields the first-order conditions for the social planner as follows:

(1 + η)χ(Nh
2 )

η = Mh
2 ξ̃z

h, 1
1−ξ +Mf

2

b2
b1
(1− µ)ξ̃z

f, 1
1−ξ e

ξ
1−ξ

2 , (24)

(1 + η)χ̄(Nf
2 )

η = Mf
2µξ̃z

f, 1
1−ξ , (25)

χab1 exp
{b1Nf

h,2−b2Nh
2 } = Mf

2(1− µ)ξ̃z
f, 1

1−ξ e
ξ

1−ξ

2 , (26)

where ξ̃ = ξ
ξ

1−ξ − ξ
1

1−ξ . In addition, the pricing kernels and risk-sharing condition are given by

Mh
2 =

λh
2

λ1
=

u′(ch2)

u′(c1)
, Mf

2 =
λf
2

λ1
=

u′(cf2)

u′(c1)
, e2 =

λf
2

λh
2

. (27)

41Based on this functional form, country-H’s innovation has a second-order effect: the marginal cost of
adoption decreases in the number of innovated patents in country-H; that is, ∂Fh,f (N

f
h,2, N

h
2 )/∂N

h
2 < 0 and

∂2Fh,f (N
f
h,2, N

h
2 )/[∂N

h
2 ∂N

f
h,2] < 0.

42The online appendix shows a decentralized version of the model, which is equivalent to the social planner’s
problem. Conceptually, the competitive equilibrium should be different from the social planner’s solution because
there exists a congestion effect from innovation activities. Since this is a standard feature of endogenous growth
models and our paper focuses on the model’s asset-pricing implications, we only solve the social planner’s problem
in the main text.
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Ultimately, the solution of the model is characterized by equations (19), (20), (16), (17), (18), (23),

(24), (25), (26), and (27).

The timeline proceeds as follows: In the first period, after the shocks of [zh, zf ]′ are realized, the

social planner chooses the optimal levels of innovation and adoption. Then in the second period,

intermediate goods are exported from the home country to the foreign country. Next, final goods

are produced using either the innovated or adopted patents. Lastly, the consumption goods are

traded with a shipping cost.

One can notice that the model features two potentially complementary mechanisms, both of

which contribute to the heterogeneous shock exposure. First, the home innovation effort creates a

positive externality on the effective productivity in the foreign country. Second, our trade structure

is asymmetric. The foreign country imports home intermediate goods, but the home country does

not import foreign intermediate goods. After solving the model, we can show that the second

endogenous mechanism is quantitatively more important for our conclusions.

5.1 Analytical Solutions

To study the carry trade strategy and currency excess returns, we define the interest rates in the

home and foreign countries as rh = log(Rh) = − logE[Mh
2 ], r

f = log(Rf ) = − logE[Mf
2 ]. The

excess return (in log) of shorting the home-currency deposits and buying foreign-currency deposits

is written as rx2 = rf − rd +∆ log e2. For comparison, we also compute the excess return in level

RX2 =
Rf

Rh
e2
e1
.

Next, we provide analytical solutions based on the log-linearization of the model around its

deterministic steady state where productivity shocks degenerate. Then, we show the numerical

result of the generalized model. Denote x̂ as the log-deviation of variable x around its deterministic

steady state. We first make the following assumption.

Assumption 1. Households have a quasi-linear preference: U = ch1+ch,1−σ
2 /(1−σ)+cf1+cf,1−σ

2 /(1−
σ). Moreover, innovating and adopting firms are risk neutral.

The assumption of preference and the risk neutrality simplify the expression of the interest

rate and allows us to characterize the properties of the solution.43 In addition, since country-

H’s innovating activity has an externality effect on country-F, our numerical solution implies that

the social planner’s optimal plan is to run a current account deficit for country-H in period 1

to accelerate its innovation. In the second period, the depreciated exchange rate increases its

intermediate goods export, which benefits country-F’s adoption. The following assumption excludes

this intertemporal financial flow channel and simplifies the solution.

Assumption 2. Countries have balanced trade in each period; that is, X2e2 = Nf
h,2x

f∗
h,2.

43The online appendix builds a model to incorporate CRRA utility and risk-averse firms. We find that all the
mechanisms in this section apply to this generalization.
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Based on the above assumptions, the optimality conditions of innovation and adoption in equa-

tions (24)-(26) can be reexpressed as follows:

N̂h
2 = A1ẑ

h +A2ẑ
f +A3ê2, (28)

N̂f
2 =

1

η

1

1− ξ
ẑf , (29)

N̂f
h,2 =

b2
b1
A1ẑ

h +

(
b2
b1
A2 +

1

b1

1

1− ξ

)
ẑf +

(
b2
b1
A3 +

1

b1

ξ

1− ξ

)
ê2. (30)

where coefficients are

A1 =

1
1−ξ

1
η

1 + b2
b1
(1− µ)

, A2 =

1
1−ξ

1
η
b2
b1
(1− µ)

1 + b2
b1
(1− µ)

, A3 =

ξ
1−ξ

1
η
b2
b1
(1− µ)

1 + b2
b1
(1− µ)

. (31)

Taking equations (28)-(30) into the linearized version of resource constraints (17) and (18) and using
the risk-sharing condition (27), we have the following expressions of exchange rate and consumption
in the second period:

ê2 =

E︷ ︸︸ ︷[
A1

(
1− (1− µ)

b2
b1

)
+

1

1− ξ

]
ẑh +

F︷ ︸︸ ︷[
A2

(
1− (1− µ)

b2
b1

)
− 1

1− ξ

(
1 +

µ

η
+

1− µ

b1

)]
ẑf

1

σ
−A3

(
1− (1− µ)

b2
b1

)
+ (1− µ)

ξ

1− ξ

(
1 +

1

b1

)
︸ ︷︷ ︸

D

, (32)

ĉh2 =

(
A1 +

1

1− ξ
+A3

E

D

)
︸ ︷︷ ︸

C̃D
1

ẑh +

(
A2 +A3

F

D

)
︸ ︷︷ ︸

C̃D
2

ẑf , (33)

ĉf2 =

C̃F
1︷ ︸︸ ︷[

(1− µ)
b2
b1

A1 + (1− µ)

(
ξ

1− ξ

(
1 +

1

b1

)
+

b2
b1

A3

)
E

D

]
ẑh (34)

+

[
1

1− ξ

(
1 +

µ

η
+

1− µ

b1

)
+ (1− µ)

b2
b1

A2 + (1− µ)

(
ξ

1− ξ

(
1 +

1

b1

)
+

b2
b1

A3

)
F

D

]
︸ ︷︷ ︸

C̃F
2

ẑf .

The following lemma describes how the exchange rate responds to productivity shocks.

Lemma 1. Under the conditions (i) 1
σ + (1 − µ) ξ

1−ξ

(
1 + 1

b1

)
> A3

(
1− (1− µ) b2b1

)
and (ii)

1
η

(
1− b2

b1

)
> 1

b1
, we argue that

a. the real exchange rate in country-H depreciates if there is an increase in global productivity;

that is, ∂ê2
∂ẑ > 0, where ẑh = ẑf = ẑ;

b. the real exchange rate in country-H depreciates if the difference in productivity is widened

between H and F; that is, ∂ê2
∂ϵ̂ > 0, where ẑh = −ẑf = ϵ̂.

Proof. See appendix A.1.
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The lemma indicates that an asymmetry shows up even when there is a common shock to global

productivity. The home currency depreciates in good times and appreciates in bad times, which is

a natural hedge for investors in the FX market. The first condition is a regularity condition. The

second condition holds only when the adoption elasticity b1 is big enough or the diffusion effect b2 is

small enough. The former assumption is consistent with the view in the literature that cross-border

technology adoption is a slow-moving process (e.g., Comin et al., 2009; Gavazzoni and Santacreu,

2020). A small tech-diffusion parameter b2 is necessary to generate the asymmetric risk exposure

between two countries. The following lemma describes how consumption and output depend on

shocks.

Lemma 2. Under the same conditions as in lemma 1, we argue that

a. country-H’s consumption increases by more than the consumption in country-F when there is

a positive shock to global productivity; that is,
∂ĉh2
∂ẑ >

∂ĉf2
∂ẑ > 0, where ẑh = ẑf = ẑ,

b. the global output increases when there is a mean-preserving productivity shock between H and

F; that is, ∂ŷ2
∂ϵ̂ = 1

2
∂(ĉh2+ĉf2 )

∂ϵ̂ > 0 where ẑh = −ẑf = ϵ̂.

Proof. See appendix A.2.

The first part of lemma 2 implies that the home country is more exposed to global productivity

shocks than the foreign country. More importantly, the second part of lemma 2 implies that the

“good times” are usually the economic states where country-H’s productivity is higher than that

of country-F. Or put another way, the global business cycle (i.e., the fluctuation of output ŷ2) is

led by country-H.

Currency Return and Consumption Comovement. Given the above properties, we have

the following proposition to characterize the risk premium for investing in the foreign currency.

Define the log pricing kernel as mh
2 = log(Mh

2), m
f
2 = log(Mf

2). Then, the exchange rate change is

given by ∆ log(e2) = mf
2 −mh

2 .

Proposition 1. Suppose conditions (i) and (ii) in lemma 1 hold and we assume the following

condition (iii) holds:

1

1− ξ

(
1 +

µ

η
+

1− µ

b1

)
> (1− µ)

b2
b1
(A1 −A2) + (1− µ)

[
ξ

1− ξ

(
1 +

1

b1

)
+

b2
b1
A3

]
E − F

D
.

Then the currency risk premium for going long in F and short in H is positive; that is,

E [rx2] = rf − rh + E [∆ log e2] =
1

2
var(mh

2)−
1

2
var(mf

2) > 0, (35)

log(E [RX2]) = −cov(mh
2 ,∆ log e2) > 0. (36)

Moreover, the carry trade return is procyclical: cov(ŷ2, rx2) = cov(ŷ2, log e2) > 0.
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Proof. See appendix A.3.

Proposition 1 indicates that the higher shock exposure of the home country makes its currency

less risky than the foreign currency. As a result, investors charge a risk premium on country-F’s

currency to compensate for their loss due to the depreciation in the downturns. The carry trade

returns also positively comove with global output. We have this currency risk structure because

the two countries have heterogeneous exposure to global shocks (as in lemma 2). Condition (iii)

holds when the size of the adoption sector (1− µ) is not too large. Next, the following proposition

describes the correlation between SDFs and the cyclicality of intermediate export from the home

country.

Proposition 2. Suppose conditions (i)-(iii) hold. Then the correlation of SDFs is higher than the

correlation of productivity shocks; that is,

corr(mh
2 ,m

f
2) = corr(ĉh2 , ĉ

f
2) > corr(zh, zf ). (37)

Moreover, the intermediate export from the home country is procyclical, corr(ŷ2, ÊX2) > 0, if and

only if the following condition (iv) holds:

b2
b1
A1 +

(
b2
b1
A3 +

1

b1

ξ

1− ξ
+

1

1− ξ

)
E − F

D
>

b2
b1
A2 +

1

1− ξ

(
1

b1
+ 1

)
.

Proof. See appendix A.4.

5.2 Numerical Illustration

Figure 7 provides a numerical illustration of the model by showing the schedules of consumption,

output, the real exchange rate, and intermediate trade. First, we find that the slope of domestic

consumption is larger than that of foreign consumption, indicating that country-H is more sensitive

to global shocks than country-F (in both dimensions of z and ϵ). Second, country-H leads the

business cycle. The good states are associated with a larger output expansion in the home country.

Third, country-H’s currency depreciates in good times and appreciates in bad times, providing a

financial hedge for FX market investors. In an economic expansion, the depreciated home currency

stimulates the intermediate imports of its trade partner.

Figure 8 shows the predicted moments of the model for different levels of shock correlation

ρfd.
44 The upper left panel shows the currency risk premium (in levels and logs) and the exchange

rate volatility. A larger shock correlation (ρfd) reduces the benefits of risk-sharing between the two

countries and thus decreases the risk premium. In the upper right panel, we find that due to the

44In figure C.20 of appendix C, we show the model simulation results by varying the size of the adoption sector
(1− µ).
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Figure 7: Consumption Risk Sharing in a Two-Country Diffusion Model
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Note: This picture shows the functions of consumption, the real exchange rate, and world production in the simplified
model. The parameter values are as follows: σ = 0.5, µ = 0.5, ξ = 0.45, η = 0.35, b1 = 2, and b2 = 0.3. In the upper
panel, we consider a common productivity shock in the two countries; that is, ẑh = ẑf = ẑ. In the lower panel, we
consider a mean-preserving shock; that is, ẑh = −ẑf = ϵ̂.

endogenous tech-diffusion process, the cross-country correlation of SDFs is always larger than the

correlation of shocks, which confirms proposition 2.

In the bottom left panel, we find that the exchange rate is always procyclical, but its correlation

with output is not monotone in ρfd. Specifically, a mildly positive shock correlation (ρfd at around

0.5) generates the weakest correlation between the exchange rate and output. The bottom right

panel shows that home consumption is always more exposed to the global business cycle than

foreign consumption and that the difference in the two correlations (solid and dashed blue lines)

gets narrower as productivity shocks more strongly comove. Furthermore, a larger ρfd weakens the

correlation between the exchange rate and intermediate export from the home country.

6 Conclusions

This paper examines the role of technology diffusion in the foreign exchange market. In particular,

we link the currency risk premium and carry trade profitability with tech diffusion. Carry trade is

a FX market investment strategy that goes long in the high-interest-rate currencies and short in

the low-interest-rate currencies. First, we define tech diffusion as the concentration of R&D in the

imports of intermediate goods. Then our currency risk factor (tech-diffusion factor) is a zero-cost

strategy that involves a long position in the high-tech-diffusion portfolio (i.e., the adopters’ curren-

cies) and a short position in low-tech-diffusion portfolio (i.e., the innovators’ currencies). Using a
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Figure 8: Simulated Moments at Different Levels of Shock Correlation (ρdf )
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Note: This picture shows model-implied moments at different levels of shock correlation ρdf . The baseline parameter
values are the same as in figure 7. The numerical expectations are evaluated using the Gauss-Hermite quadrature.

two-factor asset-pricing model, we find that the tech-diffusion factor is priced in the cross-section

of the carry trade returns and that the predicting power holds under alternative specifications. In-

tuitively, carry traders require a risk premium for holding the adopters’ currencies as compensation

for the elevated exchange rate risk since the high-tech-diffusion currencies depreciate in bad times

and appreciate in good times. We rationalize our findings in an asymmetric two-country environ-

ment. The model can account for countries’ heterogeneous risk exposure to global productivity

shocks and suggests a persistent currency risk premium.

The pricing ability of our model is further confirmed by constructing the beta-sorted portfolios,

where the individual currency more exposed to the tech-diffusion factor generated higher returns

than the currency less exposed to the factor. We also show that the tech-diffusion measure contains

important information for both conditional and unconditional currency returns. Moreover, our

results hold after controlling for the transaction costs of the carry trade. Finally, we contrast our

tech-diffusion measure with alternative trade-based risk factors in the literature. We find that

the orthogonalized risk factors still have predicting ability for the cross-section of currency excess

returns.
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Appendix

A Proof of Propositions

A.1 Proof of Lemma 1

Proof. The first half: In order to prove that ∂ê2
∂ẑ > 0, we only need to show that E +F > 0 and

D > 0. Given the expression of E and F in equation (32), we have the following

E + F = (A1 +A2)

(
1− (1− µ)

b2
b1

)
− 1

1− ξ

(
µ

η
+

1− µ

b1

)
. (A.1)

Based on the expressions of A1 and A2 in equation (28), we have A1+A2 =
1
η

1
1−ξ . Then, after sim-

plification, E+F > 0 is equivalent to condition (ii) in Lemma 1. Moreover, given the expression of

D in equation (32), we can see that D > 0 is equivalent to condition (i) in Lemma 1. Consequently,

ê2 is always an increasing function of ẑ under the specified conditions.

The second half: In order to prove that ∂ê2
∂ϵ̂ > 0, we only need to show that E − F > 0. Given

the expressions of E and F , we have the following

E − F = (A1 −A2)

(
1− (1− µ)

b2
b1

)
+

1

1− ξ

(
2 +

µ

η
+

1− µ

b1

)
, (A.2)

=
1

1− ξ

1

η

[
1− b2

b1
(1− µ)

]2
1 + b2

b1
(1− µ)

+
1

1− ξ

(
2 +

µ

η
+

1− µ

b1

)
> 0

As a result, ê2 is always an increasing function of ϵ̂.

A.2 Proof of Lemma 2

Proof. The first half: First, we prove that home consumption is more sensitive to a global

productivity shock than the foreign country:
∂ĉh2
∂ẑ >

∂ĉf2
∂ẑ > 0. Using the expressions in equation
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(33)-(34), that only requires us to prove the following

C̃D
1 + C̃D

2 > C̃F
1 + C̃F

2 > 0, (A.3)

⇐⇒

(A1 +A2) +A3
E + F

D
> (A1 +A2)(1− µ)

b2
b1
+ (A.4)

1

1− ξ

(
µ

η
+

1− µ

b1

)
+ (1− µ)

[
ξ

1− ξ

(
1 +

1

b1

)
+

b2
b1
A3

]
E + F

D
,

⇐⇒

(A1 +A2)

(
1− (1− µ)

b2
b1

)
+ (A.5)

E + F

D

[(
1− (1− µ)

b2
b1

)
A3 − (1− µ)

ξ

1− ξ

(
1 +

1

b1

)]
>

1

1− ξ

(
µ

η
+

1− µ

b1

)

Given that E + F = (A1 +A2)
(
1− (1− µ) b2b1

)
− 1

1−ξ

(
µ
η + 1−µ

b1

)
> 0 and D > 0 under conditions

(i)-(ii), the equation (A.5) is simplified to the following

D +A3

(
1− (1− µ)

b2
b1

)
− (1− µ)

ξ

1− ξ

(
1 +

1

b1

)
> 0

Using the expression of D in equation (32), the above equation only requires 1
σ > 0, which always

holds.

Besides, C̃F
1 +C̃F

2 equals to the right-hand side of equation (A.4) that is always positive. There-

fore, we have proved that ĉh2 is more sensitive than ĉf2 to a common shock on the global productivity

ẑ.

The second half: Next, we prove that when the home country productivity dominates the foreign

country by a larger amount (an increase in ϵ̂), the global output also increases: ∂ŷ2
∂ϵ̂ = 1

2
∂(ĉh2+ĉf2 )

∂ϵ̂ > 0.

That is, we need to prove the following relationship

C̃D
1 − C̃D

1 + C̃F
1 − C̃F

2 > 0. (A.6)

Using the expressions in equation (33)-(34), that requires the following

(A1 −A2)

(
1 + (1− µ)

b2
b1

)
− 1

1− ξ

(
µ

η
+

1− µ

b1

)
+ (A.7)

E − F

D

[
A3

(
1 + (1− µ)

b2
b1

)
+ (1− µ)

ξ

1− ξ

(
1 +

1

b1

)]
> 0.

Based on (A.1), the first two terms add up to E+F > 0. Given that we know E−F > 0 and D > 0,

the inequality (A.7) always holds. Therefore, we have proved that the global output increases when
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there is positive mean-preserving shock on productivity of the two countries.

A.3 Proof of Proposition 1

Proof. Because we assumed households are risk neutral in period 1, we have the following expression

of interest rate difference and currency risk premium,

rf − rh =
[
− log(EMf

2)
]
−
[
− log(EMh

2)
]

=

[
−Emf

2 − 1

2
var(mf

2)

]
−
[
−Emh

2 −
1

2
var(mh

2)

]
. (A.8)

∆ log(e2) = ê2 = mf
2 −mh

2 , (A.9)

E[rx2] = rf − rh + E[ê2]

=
1

2
var(mh

2)−
1

2
var(mf

2) =
1

2
σ2
(
var(ĉh2)− var(ĉf2)

)
. (A.10)

The currency risk premium (in level) is given by

log(E[RX2]) = E[rx2] +
1

2
var(ê2),

=
1

2
σ2
(
var(ĉh2)− var(ĉf2)

)
+

1

2
var(ê2),

= −cov(mh
2 , ê2). (A.11)

We assume ẑ = ẑh+ẑf

2 and ϵ̂ = ẑh−ẑf

2 , then these two components are independent of each other:

cov(ẑ, ϵ̂) = 0. Based on solutions of the model in equations (33)-(34), we have

ĉh2 = (C̃D
1 + C̃D

2 )ẑ + (C̃D
1 − C̃D

2 )ϵ̂, (A.12)

ĉf2 = (C̃F
2 + C̃F

1 )ẑ − (C̃F
2 − C̃F

1 )ϵ̂ (A.13)

The condition (iii) in proposition 1 guarantees that C̃F
2 − C̃F

1 > 0. That is to say, a positive ϵ̂ shock

reduces the output in country-F. Then, based on the proof of Lemma 2, we have

|C̃D
1 + C̃D

2 | > |C̃F
2 + C̃F

1 |, (A.14)

|C̃D
1 − C̃D

2 | > |C̃F
2 − C̃F

1 |, (A.15)

which leads to the following

var(ĉh2) = (C̃D
1 + C̃D

2 )2σz,2 + (C̃F
2 + C̃F

1 )
2σϵ,2

> (C̃D
1 − C̃D

2 )2σz,2 + (C̃F
2 − C̃F

1 )
2σϵ,2 = var(ĉf2). (A.16)
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The larger risk exposure of the home country results in the lowered risk premium in the currency

market: E[rx2] > 0. Moreover, the currency risk premium in level is

log(E[RX2]) = E[rx2] +
1

2
var(ê2) > 0. (A.17)

The second-period global output and exchange rate are given by,

ŷ2 =
1

2

(
C̃D
1 + C̃D

2 + C̃F
2 + C̃F

1

)
ẑ +

1

2

(
C̃D
1 + C̃F

1 − C̃D
2 − C̃F

2

)
ϵ̂, (A.18)

ê2 =
E + F

D
ẑ +

E − F

D
ϵ. (A.19)

Since we focus on the unconditional excess returns, then

cov(ŷ2, rx2) = cov(ŷ2, ê2)

=
1

2

(
C̃D
1 + C̃D

2 + C̃F
2 + C̃F

1

) E + F

D
σz,2 +

1

2

(
C̃D
1 + C̃F

1 − C̃D
2 − C̃F

2

) E − F

D
σϵ,2.

Due to the conditions (i)-(iii) and the implied relationshipts E+F > 0, E−F > 0, and D > 0, we

have cov(ŷ2, rx2) > 0; that is the excess return for going long in currency F and short in currency

H is procyclical.

A.4 Proof of Proposition 2

Proof. The first half: By the definition of ẑ and ϵ̂ in the proof of proposition 1, we have the

following,

cov(ẑh, ẑf ) = cov(ẑ + ϵ̂, ẑ − ϵ̂) = σz,2 − σϵ,2 = σz,2(1− ρ̄) (A.20)

var(ẑ + ϵ̂) = var(ẑ − ϵ̂) = σz,2(1 + ρ̄) (A.21)

where we define ρ̄ = σϵ,2

σz,2 . Then, we have

corr(ẑh, ẑf ) =
1− ρ̄

1 + ρ̄
, where ρ̄ ∈ [0,∞). (A.22)
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Based on the equations (33) and (34), we have

corr(ĉh2 , ĉ
f
2) =

(
C̃D
1 + C̃D

2

)(
C̃F
2 + C̃F

1

)
σz,2 −

(
C̃D
1 − C̃D

2

)(
C̃F
2 − C̃F

1

)
σϵ,2[(

C̃D
1 + C̃D

2

)2
σz,2 +

(
C̃D
1 − C̃D

2

)2
σϵ,2

] 1
2
[(

C̃F
2 + C̃F

1

)2
σz,2 +

(
C̃F
2 − C̃F

1

)2] 1
2

=
1− (C̃D

1 −C̃D
2 )(C̃F

2 −C̃F
1 )

(C̃D
1 +C̃D

2 )(C̃F
2 +C̃F

1 )
ρ̄[

1 +
(
C̃D

1 −C̃D
2

C̃D
1 +C̃D

2

)2
ρ̄

] 1
2
[
1 +

(
C̃F

2 −C̃F
1

C̃F
2 +C̃F

1

)2
ρ̄

] 1
2

. (A.23)

Under conditions (i)-(iii), we know that 0 <
(
C̃D

1 −C̃D
2

C̃D
1 +C̃D

2

)
< 1 and 0 <

(
C̃F

2 −C̃F
1

C̃F
2 +C̃F

1

)
< 1. Since the

function f(a, b) = 1−ρ̄ab

(1+ρ̄a2)
1
2 (1+ρ̄b2)

1
2
is decreasing in a, b ∈ (0, 1] for every positive ρ̄, we know that,

f

(
C̃D
1 − C̃D

2

C̃D
1 + C̃D

2

,
C̃F
2 − C̃F

1

C̃F
2 + C̃F

1

)
< f(1, 1) =⇒ corr(ĉh2 , ĉ

f
2) > corr(ẑh, ẑf ). (A.24)

The second half: The export of intermediate goods is given by EX2 = (1−µ)Nf
h,2z

f 1
1−ξ e

1
1−ξ

2 ξ
1

1−ξ .

Taking log-linearization and using equation (26) and (32) yields,

ÊX2 = N̂f
h,2 +

1

1− ξ
ẑf +

1

1− ξ
ê2

=
b2
b1
A1ẑ

h +

[
b2
b1
A2 +

1

1− ξ

(
1

b1
+ 1

)]
ẑf +

(
b2
b1
A3 +

1

b1

ξ

1− ξ
+

1

1− ξ

)
ê2

=
b2
b1
A1ẑ

h +

[
b2
b1
A2 +

1

1− ξ

(
1

b1
+ 1

)]
ẑf +

(
b2
b1
A3 +

1

b1

ξ

1− ξ
+

1

1− ξ

)(
E

D
ẑh +

F

D
ẑf
)

When zh and zf perfectly comove, the shock on the common productivity ẑ ensures that

corr(ŷ2, ÊX2) > 0 (because E + F > 0). When zh and zf negatively comove, the mean-preserving

shock ϵ̂ makes the correlation of output and export corr(ŷ2, ÊX2) positive if and only if condition

(iv) holds. Overall, the shocks structure is a combination of ẑ and ϵ̂. Hence, condition (iv) is a

sufficient and necessary condition for corr(ŷ2, ÊX2) > 0 at all ρ ∈ [−1, 1]; or corr(ŷ2, ÊX2) > 0 at

all ρ̄ ∈ [0,∞).
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B Additional Tables

Table B.1: Cross-Sectional Regressions for Productivity Growth Beta: βz
i

All Countries G10 Countries

Tech Diffusion -0.29*** -0.23*** -0.32*** -0.32*** -0.97*** -0.94*** -0.56*** -0.95***

(0.03) (0.03) (0.03) (0.04) (0.04) (0.05) (0.04) (0.06)

GDP Share 0.82*** 0.15***

(0.06) (0.04)

R&D Ratio 13.07*** 23.84***

(1.96) (2.01)

Trade-to-GDP 0.22*** 0.51***

(0.02) (0.03)

R2 0.05 0.06 0.14 0.10 0.37 0.38 0.53 0.51

No. of Obs. 8,184 8,184 8,184 8,184 3,036 3,036 3,036 3,036

Notes: The table shows the cross-sectional Fama and MacBeth (1973) regressions of productivity growth betas on

tech-diffusion index (in logs) and other control variables. The estimate of the constant is omitted from the table.

Productivity growth beta is calculated as the correlation between a country’s labor productivity growth and the

world average productivity growth. Figures in parentheses are Newey and West (1987) standard errors corrected for

heteroskedasticity and autocorrelation (HAC) using 36 lags. Standard errors are clustered by country. *, **, and ***

denote the significance at 10%, 5%, and 1% levels, respectively.

Table B.2: Cross-Sectional Regressions for Consumption Growth Beta: βc
i

All Countries G10 Countries

Tech Diffusion -0.23*** -0.17*** -0.23*** -0.24*** -0.15 -0.30** -0.46*** -0.17

(0.05) (0.04) (0.05) (0.05) (0.11) (0.14) (0.14) (0.12 )

GDP Share 0.59*** -0.65***

(0.09) (0.11)

R&D Ratio -2.45*** -20.41***

(0.49) (2.64)

Trade-to-GDP -0.04** -0.26***

(0.02) (0.03)

R2 0.10 0.14 0.12 0.13 0.14 0.35 0.49 0.23

No. of Obs. 8,184 8,184 8,184 8,184 3,036 3,036 2,796 3,036

Notes: The table shows the cross-sectional Fama and MacBeth (1973) regressions of consumption growth betas on

tech-diffusion index (in logs) and other control variables. The estimate of the constant is omitted from the table.

Consumption growth beta is calculated as the correlation between a country’s consumption growth and the average

growth rate for the sample economies. Figures in parentheses are Newey and West (1987) standard errors corrected

for heteroskedasticity and autocorrelation (HAC) using 36 lags. Standard errors are clustered by country. *, **, and

*** denote the significance at the 10%, 5%, and 1% levels, respectively.
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Table B.4: Portfolios Sorted on Tech-Diffusion Betas: 24-Months Windows

All Countries

PL P2 P3 P4 PH Avg H/L

Mean −1.40 0.23 −0.90 −0.36 3.03 0.12 4.43

[−0.73] [0.12] [−0.46] [−0.18] [1.38] [0.06] [2.90]

Sdev 7.86 8.58 9.50 9.62 10.26 8.19 8.73

SR −0.18 0.03 −0.10 −0.04 0.30 0.01 0.51

Skew 0.17 −0.07 −0.05 −0.50 −0.46 −0.25 −0.49

Kurt 3.16 3.48 4.42 4.84 6.09 4.25 4.89

pre-β −0.50 −0.10 0.11 0.35 0.90

post-β −0.51 −0.11 0.11 0.35 0.91

pre-f. f-s −1.09 −0.25 0.03 0.51 2.01

post-f. f-s −1.09 −0.24 0.03 0.49 2.07

Tech Diffusion 8.52 8.94 9.01 10.29 11.04

G10 Countries

PL P2 P3 P4 PH Avg H/L

Mean −1.29 −1.68 −0.62 0.18 1.75 −0.33 3.04

[−0.75] [−0.92] [−0.29] [0.08] [0.73] [−0.19] [1.65]

Sdev 7.95 8.67 10.53 9.18 11.09 7.95 10.34

SR −0.16 −0.19 −0.06 0.02 0.16 −0.04 0.29

Skew 0.35 −0.23 0.04 −0.31 −0.45 −0.08 −0.67

Kurt 4.09 3.96 4.48 4.60 5.79 4.20 5.43

pre-β −0.40 0.10 0.30 0.45 0.82

post-β −0.41 0.10 0.30 0.45 0.83

pre-f. f-s −1.81 −0.62 −0.01 0.58 1.46

post-f. f-s −1.82 −0.61 −0.03 0.60 1.46

Tech Diffusion 8.46 8.26 8.97 9.88 10.43

Notes: This table presents the summary statistics of portfolios sorted on betas with global tech-diffusion portfolios

(AMI). The betas are estimated based on 24-months windows. The first (last) portfolio PL (PH) comprises the basket

of all currencies with the lowest (highest) technology diffusion betas. H/L is a long-short strategy that buys PH

and sells PL, and Avg is the average across portfolios each time. The table presents the annualized mean, standard

deviation (in percentage points), and Sharpe ratios. We also report skewness and kurtosis. Figures in squared

brackets represent Newey and West (1987) t-statistics corrected for heteroskedasticity and autocorrelation (HAC)

with 12 lags. “pre-f. f-s” (“post-f. f-s”) is the pre-formation (post-formation) forward discount “pre-β” (“post-β”) is

the pre-formation (post-formation) beta. The data contain monthly series from January 1993 to December 2019.
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Table B.5: Carry Trade and Tech-Diffusion Portfolios as Test Assets

Panel A: Factor Prices

λDOL λAMI χ2 R2 RMSE λDOL λAMI χ2 R2 RMSE

All Countries G10 Currencies

FMB 0.11 4.02 13.58 0.30 1.25 −0.23 4.40 6.92 0.49 1.06

(NW) (1.55) (1.37) {0.14} (1.52) (1.75) {0.65}
(Sh) (1.55) (1.38) (1.52) (1.76)

Panel B: Factor Betas

α βDOL βAMI R2 α βDOL βAMI R2

CTL −0.20 0.95 −0.27 0.78 CTL −0.19 0.88 −0.40 0.65

(0.06) (0.05) (0.10) (0.08) (0.07) (0.08)

CT2 −0.09 0.99 −0.13 0.83 CT2 −0.14 0.92 −0.13 0.72

(0.05) (0.05) (0.07) (0.06) (0.05) (0.05)

CT3 0.08 0.95 −0.05 0.84 CT3 0.08 0.87 0.08 0.59

(0.05) (0.03) (0.05) (0.09) (0.06) (0.05)

CT4 0.01 0.99 0.08 0.83 CT4 −0.05 1.00 0.17 0.80

(0.06) (0.04) (0.09) (0.06) (0.05) (0.05)

CTH 0.21 1.16 0.27 0.85 CTH 0.19 1.16 0.25 0.82

(0.07) (0.05) (0.11) (0.07) (0.04) (0.07)

TDL −0.11 0.98 −0.44 0.94 TDL −0.19 1.01 −0.56 0.92

(0.03) (0.02) (0.03) (0.04) (0.02) (0.03)

TD2 −0.00 1.01 −0.11 0.85 TD2 −0.07 0.93 −0.13 0.69

(0.07) (0.04) (0.07) (0.08) (0.07) (0.05)

TD3 −0.06 1.00 −0.03 0.81 TD3 0.05 1.14 0.17 0.74

(0.06) (0.04) (0.04) (0.08) (0.08) (0.06)

TD4 0.09 1.02 0.02 0.85 TD4 −0.00 0.92 0.09 0.72

(0.05) (0.04) (0.04) (0.07) (0.05) (0.05)

TDH 0.11 0.98 0.56 0.96 TDH 0.10 1.01 0.44 0.94

(0.03) (0.02) (0.03) (0.04) (0.02) (0.03)

Notes: This table reports results of the two-factor asset-pricing model that comprises the DOL and AMI risk factors.

We use as test assets five currency portfolios sorted based on past forward discounts (i.e., currency carry trade

portfolios) and five tech-diffusion-sorted portfolios. We rebalance the portfolios on a monthly basis. Panel A reports

Fama and MacBeth (1973) estimates of factor prices (λ). We also display Newey and West (1987) standard errors

(in parentheses) corrected for autocorrelation and heteroskedasticity with the optimal lag selection. Sh represents

the corresponding values of Shanken (1992). The table also shows the χ2 and cross-sectional R2. The number in

the curly bracket is the p-values for χ2. Panel B reports OLS estimates of contemporaneous time-series regression

with HAC standard errors in parentheses. The alphas are annualized. We do not control for transaction costs, and

excess returns are expressed in percentage points. The currency data are collected from Datastream via Barclays and

Reuters and contain monthly series from January 1993 to December 2019.
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Table B.6: Asset-Pricing for Subsamples before and after 2008

Panel A: Factor Prices Before 2008

λDOL λAMI χ2 R2 RMSE λDOL λAMI χ2 R2 RMSE

All Countries G10 Countries

GMM1 2.38 21.47 3.60 0.67 1.45 1.34 10.73 3.65 0.52 1.29

(2.18) (15.29) {0.31} (2.13) (4.71) {0.30}
GMM2 2.07 27.96 3.18 1.48 13.25 3.46

(2.16) (15.55) 0.36 (2.06) (4.96) {0.33}
FMB 2.31 19.30 {13.37} 1.34 10.49 6.91

(NW) (1.82) (5.56) {0.01} (1.74) (3.65) {0.14}
(Sh) (1.83) (7.19) (1.74) (3.85)

Panel B: Factor Prices After 2008

λDOL λAMI χ2 R2 RMSE λDOL λAMI χ2 R2 RMSE

All Countries G10 Countries

GMM1 −2.28 3.06 1.89 0.51 0.61 −2.45 3.51 3.54 0.15 1.33

(3.04) (2.85) {0.60} (3.00) (3.35) {0.32}
GMM2 −2.29 3.04 3.18 −2.67 3.98 3.46

(2.94) (2.76) {0.36} (2.87) (3.18) {0.33}
FMB −2.27 3.00 1.64 −2.43 3.21 2.73

(NW) (2.66) (2.66) {0.80} (2.73) (3.52) {0.60}
(Sh) (2.66) (2.70) (2.73) (3.56)

Notes: This table reports results of the two-factor asset-pricing model when we divide our sample into two episodes.

Panel A uses the subsample before the Global Finance Crisis (1/1993 - 12/2007); while panel B uses the subsample

after it happened (1/2008 - 12/2019). We use as test assets five currency portfolios sorted based on past forward

discounts (i.e., carry trade portfolios). We rebalance the portfolios on a monthly basis. The table reports GMM1,

GMM2, and the Fama and MacBeth (1973)’s estimates of factor prices (λ). We also display Newey and West (1987)

standard errors (in parentheses) corrected for autocorrelation and heteroskedasticity with the optimal lag selection.

Sh represents the corresponding values of Shanken (1992). The table also shows the χ2 and cross-sectional R2. The

numbers in curly brackets are p-values for the χ2 tests.
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Table B.8: Asset-Pricing Tests for Unconditional Carry Portfolios: DOL and UAMI Factors

Panel A: Factor Prices

λDOL λUAMI χ2 R2 RMSE λDOL λUAMI χ2 R2 RMSE

All Countries G10 Currencies

GMM1 6.43 8.45 3.39 0.56 1.72 5.18 6.90 3.09 0.70 1.22

(3.05) (4.52) {0.33} (3.15) (3.21) {0.38}
GMM2 8.06 9.08 3.08 6.92 8.26 2.84

(2.67) (3.92) {0.38} (2.68) (3.01) {0.42}
FMB 6.39 7.55 7.59 5.16 6.66 7.15

(NW) (2.66) (3.54) {0.11} (2.53) (2.95) {0.13}
(Sh) (2.67) (3.83) (2.53) (3.06)

Panel B: Factor Betas

α βDOL βUAMI R2 α βDOL βUAMI R2

PL 0.13 0.89 −0.22 0.77 PL 0.13 0.98 −0.37 0.83

(0.09) (0.05) (0.08) (0.07) (0.05) (0.08)

P2 0.42 0.92 −0.20 0.91 P2 0.19 0.82 −0.32 0.89

(0.07) (0.03) (0.04) (0.06) (0.02) (0.02)

P3 0.53 1.23 −0.14 0.83 P3 0.55 1.00 −0.08 0.85

(0.10) (0.06) (0.10) (0.08) (0.05) (0.05)

P4 0.70 1.01 0.42 0.76 P4 0.57 1.25 0.27 0.88

(0.11) (0.07) (0.08) (0.10) (0.06) (0.08)

PH 0.92 1.28 0.05 0.82 PH 0.69 0.99 0.38 0.79

(0.12) (0.07) (0.09) (0.10) (0.05) (0.08)

Notes: This table reports results of the two-factor asset-pricing model that comprises the DOL and UAMI risk

factors. UAMI stands for the (unconditional) return on a high-minus-low strategy sorted on the average tech-

diffusion measure in the first half-sample between 1/1993 and 12/2000. We use as test assets the unconditional carry

trade portfolios sorted on the first half-sample mean forward discount. The currency excess returns are calculated

based on the second half-sample between 1/2001 and 12/2007.
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Table B.9: Asset-Pricing for Double-Sort Factor: DOL and AMI2×3 factors

Panel A: Factor Prices

λDOL λAMI2×3 χ2 R2 RMSE λDOL λAMI2×3 χ2 R2 RMSE

All Countries G10 Currencies

GMM1 −0.08 6.42 5.19 0.60 0.77 −0.48 5.72 3.06 0.70 0.76

(1.76) (2.57) {0.16} (1.70) (2.35) {0.38}
GMM2 −0.11 6.54 5.19 −0.51 6.77 3.03

(1.74) (2.43) {0.16} (1.66) (2.28) {0.39}
FMB −0.08 6.33 6.37 −0.48 5.67 3.20

(NW) (1.49) (2.13) {0.17} (1.44) (2.22) {0.52}
(Sh) (1.49) (2.17) (1.44) (2.25)

Panel B: Factor Betas

α βDOL βAMI2×3 R2 α βDOL βAMI2×3 R2

PL −0.20 0.99 −0.27 0.78 PL −0.19 0.88 −0.37 0.72

(0.06) (0.05) (0.07) (0.07) (0.05) (0.05)

P2 −0.09 1.03 −0.12 0.81 P2 −0.14 0.96 −0.12 0.75

(0.05) (0.05) (0.04) (0.06) (0.04) (0.04)

P3 0.08 1.00 −0.07 0.85 P3 0.08 0.93 0.05 0.56

(0.05) (0.04) (0.03) (0.09) (0.06) (0.06)

P4 0.01 1.03 0.12 0.82 P4 −0.05 1.08 0.17 0.74

(0.06) (0.04) (0.05) (0.07) (0.06) (0.05)

PH 0.21 1.19 0.41 0.89 PH 0.19 1.27 0.45 0.83

(0.06) (0.04) (0.06) (0.06) (0.05) (0.05)

Notes: This table reports results of the two-factor asset-pricing model that comprises DOL and AMI2×3 risk factors.

AMI2×3 is the currency risk factor based on a double-sorting strategy. We use as test assets five currency portfolios

sorted based on past forward discounts (i.e., carry trade portfolios). We rebalance the portfolios on a monthly basis.

Panel A reports GMM1, GMM2 as well as Fama and MacBeth (1973) estimates of factor prices of risk (λ). We also

display Newey and West (1987) standard errors (in parentheses) corrected for autocorrelation and heteroskedasticity

with optimal lag selection. Panel B reports OLS estimates of contemporaneous time-series regression with HAC

standard errors in parentheses. The currency data are collected from Datastream via Barclays and Reuters and

contain monthly series from January 1993 to December 2019.
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Table B.10: Correlation b/w Alternative Risk Factors

HMLFX AMI IMX PMC(−) AMI2×3

HMLFX 1.00

AMI 0.52 1.00

IMX 0.64 0.62 1.00

PMC(−) 0.53 0.53 0.60 1.00

AMI2×3 0.59 0.70 0.59 0.40 1.00

Notes: This table presents the correlation matrix between alternative risk factors. PMC(−) is the currency risk

factor sorted based on previous-year trade network centrality (as in Richmond, 2019) and goes long in the central

countries and short in the peripheral countries (the reverse of PMC). IMX is the currency factor sorted based on

previous-year import ratio (as in Ready et al., 2017) and goes long in the high-import-ratio currencies (commodity

country) and short in the low-import-ratio currencies (producer country). HMLFX is the conditional carry factor.

AMI2×3 is the double-sorting strategy based on the R&D ratio and trade concentration. We use the sample of 22

countries as in Ready et al. (2017).
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Table B.11: Cross-Sectional Asset-Pricing using RRW’s Sample of 22 Countries (Ready et al.,
2017)

Panel A: Factor Prices

λDOL λAMI χ2 R2 RMSE

GMM1 −0.22 6.73 2.02 0.84 0.47

(1.71) (2.73) {0.57}
GMM2 −0.26 7.96 1.99

(1.69) (2.79) {0.57}
FMB −0.22 6.68 2.17

(NW) (1.46) (2.44) {0.70}
(Sh) (1.46) (2.53) {0.74}

Panel B: Factor Betas

α βDOL βAMI R2

PL −0.17 0.87 −0.33 0.62

(0.08) (0.07) (0.07)

P2 −0.16 0.99 −0.14 0.84

(0.04) (0.03) (0.04)

P3 0.01 0.97 −0.02 0.80

(0.05) (0.03) (0.03)

P4 −0.01 1.01 0.08 0.81

(0.06) (0.04) (0.06)

PH 0.20 1.17 0.36 0.82

(0.07) (0.04) (0.08)

Notes: This table reports results of the two-factor asset-pricing model that comprises DOL and AMI risk factors.

We use as test assets five currency portfolios sorted based on past forward discounts (i.e., carry trade portfolios).

We rebalance the portfolios on a monthly basis. Panel A reports GMM1, GMM2, and Fama and MacBeth (1973)’s

estimates of factor prices (λ). We also display Newey and West (1987) standard errors (in parentheses) corrected

for autocorrelation and heteroskedasticity with optimal lag selection. Sh are the corresponding values of Shanken

(1992). The table also shows the χ2 and cross-sectional R2. The numbers in curly brackets are p-values for the

pricing error test. Panel B reports OLS estimates of contemporaneous time-series regression with HAC standard

errors in parentheses. The alphas are annualized. The currency data are collected from Datastream via Barclays and

Reuters and contain monthly series from January 1993 to December 2019.
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Table B.12: Conditional Asset-Pricing Using Rolling-Window Regressions

Panel A: All Countries

λDOL λAMI χ2(NW ) χ2(Sh) RMSE ρ(λAMI,t, HMLFX
t )

-0.62 4.39 12.90 4.85 1.14 0.48

(1.54) (1.82) {0.06} {0.45}

Panel B: G10 Currencies

λDOL λAMI χ2(NW ) χ2(Sh) RMSE ρ(λAMI,t, HMLFX
t )

-0.91 2.43 12.52 4.92 1.36 0.77

(1.51) (1.94) {0.12} {0.47}

Notes: The table reports the results of the Fama-Macbeth rolling-window asset-pricing test based on 36-months

windows. The numbers are the market prices of risk, the root-mean-square errors (RMSE), and the χ2 of pricing-

error tests together with the p-values. Test assets are the five currency portfolios sorted on the previous-month

forward discounts. The standard errors in parentheses are based on Newey and West (1987). The sample period

covers from January 1993 to December 2019.
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C Additional Figures

Figure C.1: Tech Diffusion, Real Interest Rate Differentials, and Currency Excess Returns
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Notes: The graph shows the average tech-diffusion indexes (TD) for our sample countries against their average excess

returns (referred to as RX) and real interest rate differentials (relative to the U.S., referred to as RID). The left panel

reports results for “All Countries”, while the right panel shows results for “G10 Currencies”. The real interest rate

is calculated using the three-month forward discounts subtracted by the four-quarter moving average of inflation of

each country.
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Figure C.2: Tech Diffusion vs. Productivity Risk Exposure βz
i : A Broader Set of Countries
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Notes: The figure shows the productivity growth betas against the average tech-diffusion measure (TD) for a broader

set of countries. See the description under figure 2 for construction of productivity growth betas.

Figure C.3: Tech Diffusion vs. Consumption Risk Exposure βc
i : A Broader Set of Countries
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Notes: The figure shows the consumption growth betas against the average tech-diffusion measure (TD) for a broader

set of countries. See the description under under figure 2 for construction of consumption growth betas.
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Figure C.4: Tech Diffusion vs. Consumption Exposure to the U.S.: βc,US
i
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Notes: The figure plots the consumption risk exposure to the U.S. economy against their tech-diffusion measures

(TD). Each country’s consumption risk exposure to the U.S. economy is calculated based on the following regression:

∆Consumptioni,t = αi + βc,US
i ×∆US Consumptiont + εi,t.
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Figure C.5: Relative Productivity, Real Exchange Rate, and Interest Rate Differentials: New
Zealand versus Japan
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Notes: The figure shows the time series of productivities, the relative real exchange rates, real interest rate differ-

entials, and R&D content of imports (intensive margin) for a pair of high and low-tech-diffusion countries. In the

bottom left panel, the classification of high-technology goods is based on the UN’s SITC code of manufacturing prod-

ucts. New Zealand is considered a high-tech-diffusion country, while Japan is New Zealand’s major trading partner

aside from the eurozone.
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Figure C.6: Relative Productivity, Real Exchange Rate, and Interest Rate Differentials: Norway
versus Germany

1995 2000 2005 2010 2015
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

R
e

la
ti
v
e

 l
a

b
o

r 
p

ro
d

u
c
ti
v
it
y
 (

lo
g

 d
if
f.

)

1.9

2

2.1

2.2

2.3

R
e

la
ti
v
e

 R
E

R

Relative productivity

Relative RER

1995 2000 2005 2010 2015
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

R
e

la
ti
v
e

 l
a

b
o

r 
p

ro
d

u
c
ti
v
it
y
 (

lo
g

 d
if
f.

)

-0.4

-0.2

0

0.2

0.4

0.6

R
e

a
l 
in

te
re

s
t 

ra
te

 d
if
f.

 (
%

)

Relative productivity

Real int. rate diff.

1995 2000 2005 2010 2015
0

0.005

0.01

0.015

0.02

0.025

Norway's import from Germany,

Germany'import from Norway

1995 2000 2005 2010 2015
-8

-6

-4

-2

0

2

4

p
e

rc
e

n
t

World

Germany

Norway

Notes: The figure shows the time series of productivities, the relative real exchange rates, real interest rate differ-

entials, and R&D content of imports (intensive margin) for a pair of high and low-tech-diffusion countries. In the

bottom left panel, the classification of high-technology goods is based on the UN’s SITC code of manufacturing

products. Norway is considered a high-tech-diffusion country, while Germany is Norway’s largest trading partner.

We use the euro exchange rate after Germany joined the eurozone in 1999.
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Figure C.7: Cumulative Returns and Rolling-Window Statistics (All Countries)
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Notes: The left panel displays the cumulative returns from the carry trade and tech-diffusion-sorted (AMI) portfolios.

The right panel displays (60-month) rolling-window correlations of the carry and AMI portfolios as well as their

rolling-window Sharpe ratios. The data contain monthly series from January 1993 to December 2019. The results

are based on the group of “All Countries.”

Figure C.8: Number of Available Currencies
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Figure C.10: Portfolio Turnover of Investment Currencies (All Countries)
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Notes: The figure displays turnover rates of the carry trade portfolio (upper panel), tech-diffusion-sorted portfolio

(middle panel), and portfolio constructed by double-sorting strategy (bottom panel). The results are based on the

sample of all countries. A larger number means that a country more frequently belongs to the investment currency

group. The data are collected from Datastream via Barclays and Reuters, which contain monthly series from January

1993 to December 2019.
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Figure C.11: Portfolio Turnover of Funding Currencies (All Countries)
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Notes: The figure displays turnover rates of the carry trade portfolio (upper panel), tech-diffusion-sorted portfolio

(middle panel), and portfolio constructed by double-sorting strategy (bottom panel). The results are based on the

sample of all countries. A larger number means that a country more frequently belongs to the funding currency group.

The data are collected from Datastream via Barclays and Reuters, which contain monthly series from January 1993

to December 2019.
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Figure C.12: Portfolio Turnover of Investment Currencies (G10 Currencies)
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Notes: The figure displays turnover rates of the carry trade portfolio (upper panel), tech-diffusion-sorted portfolio

(middle panel), and portfolio constructed by double-sorting strategy (bottom panel). The results are based on the

sample of G10 currencies. A larger number means that a country more frequently belongs to the investment currency

group. The data are collected from Datastream via Barclays and Reuters, which contain monthly series from January

1993 to December 2019.

75



Figure C.13: Portfolio Turnover of Funding Currencies (G10 Currencies)
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Notes: The figure displays turnover rates of the carry trade portfolio (upper panel), tech-diffusion-sorted portfolio

(middle panel), and portfolio constructed by double-sorting strategy (bottom panel). The results are based on the

sample of G10 currencies. A larger number means that a country more frequently belongs to the funding currency

group. The data are collected from Datastream via Barclays and Reuters, which contain monthly series from January

1993 to December 2019.

76



Figure C.14: Pricing Error Plot: Portfolio-Level Asset Pricing
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Notes: The figure plots the fitted currency excess returns based on our asset-pricing model against the realized mean

excess returns for each quintile portfolio.
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Figure C.15: Pricing Error Plot: Currency-Level Asset Pricing
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Notes: The figure plots the pricing errors for the currency-level asset pricing. First, we run a time-series regression

of currency return rxj,t on DOLt and AMIt factors (with a constant). Then, we run the cross-sectional regression,

period by period, to get the estimates of factor price: λDOL and λAMI . The horizontal axis represents the realized

mean excess return (rxj) for each currency, while the vertical axis shows the fitted excess returns based on our

asset-pricing model; that is r̂xj = βjλ.
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Figure C.16: An Illustration of the Double-Sorting Strategy
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Figure C.17: Cumulative Returns: Tech-Diffusion and Double-Sorting Strategies
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Notes: The figure compares the cumulative returns of tech-diffusion-sorted portfolio (AMI) and double-sort portfolio

(AMI2×3). The upper panel shows the group of “All Countries”, while the lower panel shows “G10 Currencies”.

The data contain monthly series from January 1993 to December 2019.
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Figure C.18: Time-Varying Factor Prices (λAMI,t) and Carry Trade Returns
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Notes: This figure shows the time-varying factor prices of tech diffusion (λAMI,t) based on the conditional FMB

regression. First, we calculate the betas (βj
t ) of each portfolio by running a time-series regression of portfolio excess

return on the DOL and AMI factors (using 36-month windows). Second, in each period, we run a cross-sectional

regression of the average portfolio return over the event window rxj
t =

(∑t
s=t−36 rx

j
s

)
/36 on portfolio betas βj

t . The

figure compares the paths of slope coefficients (λAMI,t) with the carry trade returns (HMLFX
t ).
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Figure C.19: Comparing Alternative Currency Risk Factors: Tech Diffusion, Trade Centrality,
and Import Ratio
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Notes: This figure compares the countries’ average ranking based on our tech-diffusion factor versus alternative

currency risk factors in the literature, which includes import ratio (as in Ready et al., 2017) and trade centrality (as

in Richmond, 2019). The import ratio is defined as the net export of basic goods minus net exports of complex goods

as a percentage of total trade volumes. Centrality is the export-share weighted average of countries’ bilateral trade

intensities — pairwise trade divided by pairwise total GDP.
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Figure C.20: Simulated Model Moments by Varying the Size of Adoption Sector (1− µ)
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Note: This picture shows model-implied moments by varying the size of adoption sector: 1 − µ. Other parameter
values are described under figure 7. And we set the correlation of productivity shocks ρdf = 0.4.
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