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Conservative Holdings, Aggressive Trades:

Ambiguity, Learning, and Equilibrium Portfolio Flows

Abstract

We study equilibrium asset prices and portfolio flows in a model where agents learn about eco-

nomic fundamentals and differ in their aversion to parameter uncertainty. Exploiting the connection

between confidence intervals from classical statistics and multi-prior sets for ambiguity-sensitive

decision makers, we show that, because ambiguity-averse agents hold conservative portfolios, in

equilibrium they are willing to accept a lower compensation to take on additional risk, making

them natural buyers of risky assets when volatility rises. The model generates time-varying risk

premia that are amplified by bad news and dampened by good news. We empirically document

that these predictions are consistent with observed portfolio flows of agency and proprietary traders

and with patterns of risk premia around information-sensitive events.
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1 Introduction

Periods of high uncertainty, such as those following unexpected corporate or macro announcements,

frequently see institutional investors off-loading risky holdings in their portfolios with individual

investors taking the opposite side of the trade. Common explanations for such flows include,

for example, the role of informational asymmetry, portfolio constraints, or limited attention of

retail investors.1 Similarly, a considerable body of research has documented that a substantial

portion of the equity risk premium is earned during information sensitive events, such as FOMC

announcements.2 Despite the abundance of literature on these topics, jointly explaining equilibrium

dynamics of portfolio flows and risk premia in a unified framework remains an open challenge.

In this paper, we address this challenge by proposing an equilibrium asset pricing model in

which agents learn about the endowment process from realized dividends, have uniform informa-

tion but are heterogeneous in their aversion against ambiguity in parameter estimates. Following

Bewley (2011), we interpret confidence intervals from classical statistics as sets of posterior distri-

butions of a “Knightian” decision maker. Confidence intervals around estimated parameter values

represent therefore the amount of Knightian uncertainty, or ambiguity, an agent faces. Follow-

ing large unexpected dividend realizations, investors’ variance estimates increase and, at the same

time, confidence intervals widen. Hence, learning about parameter values generates time-varying

ambiguity.

Our main result is to show that in equilibrium an increase in estimated volatility induces

ambiguity-averse agents to increase risk in their portfolio. This seems counterintuitive, since

ambiguity-averse agents hold conservative portfolios and an increase in ambiguity about expected

future dividends should intuitively make them even more cautious. However, because ambiguity-

averse agents hold conservative portfolios, they are willing to accept less compensation for taking

on additional risk in spite of an increase in ambiguity.

An implication of this finding is that, in a model with ambiguity-sensitive agents, learning

about the dividend volatility, not just the mean, has a first-order impact on portfolio flows and

risk premia in equilibrium. It is typically believed that the variance parameters are relatively easy

to learn and that learning about volatility has a negligible impact on portfolios and equilibrium

returns (e.g., Collin-Dufresne et al., 2016b; Buss et al., 2021). While it is true that variances

can be learned easily when agents have access to a continuous stream of information, the same

might not be true when information arrives in “batches” such as during earnings or macroeconomic

announcements. Furthermore, because in our model ambiguity-sensitive agents are not locally risk-

1See, among others, Frazzini and Lamont (2007), Barber and Odean (2008) and Hirshleifer et al. (2008) Kaniel
et al. (2008), Kaniel et al. (2012).

2See the large literature on the announcement premium, e.g., Savor and Wilson (2016), Ai and Bansal (2018),
and many others.
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neutral, learning about volatility becomes particularly relevant for the dynamics of equilibrium

flows and risk premia. By emphasizing the importance of learning about volatility, our paper

echoes Weitzman (2007, p.1111) who claims that “for asset pricing implications [. . . ] the most

critical issue involved in Bayesian learning [. . . ] is the unknown variance”.

We first illustrate the main intuition in a simple two-period heterogeneous agent model in

which ambiguity about the mean dividend is naturally tied to the estimated dividend volatility and

which we can fully solve analytically. We show that when both ambiguity-averse and ambiguity-

neutral agents coexist, the equilibrium risky holdings of the ambiguity-averse agent, while more

conservative than those of the ambiguity-neutral agent, are positively related to the level of dividend

volatility. Therefore, an increase in estimated volatility implies an equilibrium flow of risky assets

from ambiguity-neutral (sellers) to ambiguity-averse (buyer) agents. Because volatility directly

affects equilibrium portfolio holdings, learning about volatility becomes a crucial driver of flows

in a model with ambiguity averse agents. The key intuition from the simple model is that in

an equilibrium where both ambiguity-averse and ambiguity-neutral agents coexist, an increase in

estimated volatility leads to a new equilibrium risk premium that is “too high” (i.e., price too low)

for the ambiguity-averse agents and “too low” (i.e., price too high) for ambiguity-neutral agents

to justify the previously optimal portfolio weights. This difference in subjective valuations implies

gains from trade in which ambiguity-averse agents increase their position in the risky asset when

uncertainty increases.

We then generalize the model to an infinite-horizon setting, where overlapping generations of

agents learn about the mean and the variance of the endowment process. Leaning about variance

introduces an important technical challenge. In fact, when both the mean and the variance are not

known, the predictive distribution of dividends is Student-t. Due to the fat tails of the Student-t

distribution, expected utility is not well-defined in this case, see, e.g., Geweke (2001). We overcome

this difficulty by imposing an a-priori restriction on the dividend variance, exploiting recent devel-

opments in Bayesian learning techniques with truncated distributions (see, e.g., Weitzman, 2007;

Bakshi and Skoulakis, 2010). Specifically, we assume that the unknown variance can take values on

an arbitrarily large but finite interval. This assumption implies that the predictive distribution of

dividends is a “dampened Student-t”, i.e., a Student-t distribution with thinner tails, that allows

us to fully characterize the equilibrium with learning about both mean and variance. We show that

learning about variance generates equilibrium returns that are left-skewed, even with an iid-normal

endowment process.

Because in our model the true dividend mean and variance are time-invariant, agents even-

tually learn these parameters perfectly, thus making learning irrelevant in the limit. We provide

a tractable way to achieve perpetual learning in an overlapping-generation model by assuming

that “information leakage” occurs as generations overlap: new generations partially disregard the
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accumulated knowledge handed over to them by the older generation. In a representative agent

economy, this assumption coincides with the idea of “fading memory” as in, e.g., Nagel and Xu

(2021), or “age-related experiential learning”, as in Malmendier and Nagel (2016), Collin-Dufresne

et al. (2016a), and Malmendier et al. (2020).

We empirically investigate our model predictions regarding portfolio flows and risk premia using

a novel database of Euro STOXX 50 futures transactions on the Eurex, one of the largest futures

and options markets in the world. We find that when uncertainty in the markets is high agency

traders—acting on behalf of clients—sell and proprietary traders—acting on their own account—

buy. This patter is robust and cannot be simply attributed to momentum or contrarian strategies.

Instead, these findings are consistent with the predictions of our equilibrium model where agency

traders are ambiguity neutral and proprietary traders are ambiguity averse.3 Furthermore, we also

show that, in line with our model, proprietary traders earn a risk premium for providing liquidity

at the expense of agency traders in periods of market turmoil, e.g., Nagel (2012). This finding

is consistent with Nagel and Xu (2022) who report that subjective risk premia increase with the

subjective estimate of variance.

Our work relates to three strands of literature. First, we contribute to the literature that studies

asset prices under parameter uncertainty and learning.4 We show that even in a model with iid-

normal dividends, time variation in the estimated variance has significant qualitative implications

on the joint dynamics of equilibrium flows and asset prices that features complex patterns present

in empirical data. When dealing with parameter uncertainty and learning, the vast majority of

the asset pricing literature assumes that the mean of the endowment process is unknown, but its

variance is known. This assumption is typically motivated by greater analytical tractability and the

impression that with a large sample and continuous observations, it is easy to learn the variance.

In reality, however, information reaches market participants in a lumpy fashion, such as during

FOMC meetings or corporate earning announcements, and agents cannot avoid the effort to learn

about volatility.5

Second, we contribute to the literature on asset pricing with heterogeneous agents.6 We differ

from the work in this literature by considering learning and agents’ ambiguity aversion. Chapman

and Polkovnichenko (2009) study asset pricing in two-date economies with heterogeneous agents

3This dichotomy is inspired by the “competence hypothesis” of Heath and Tversky (1991), according to which
decision makers are generally ambiguity-averse toward tasks for which they do not feel competent.

4Among others, key contributions are David (1997), Veronesi (1999), Pástor (2000), Barberis (2000), Xia (2001)
Leippold et al. (2008), and Collin-Dufresne et al. (2016b). Pástor and Veronesi (2009) an extensive overview of
learning in financial markets.

5See the large literature on the announcement premium, e.g., Savor and Wilson (2016), Ai and Bansal (2018),
and many others.

6This literature is too vast to be reviewed here. Key contributions, among many others, are Mankiw (1986),
Dumas (1989), Constantinides and Duffie (1996), Dumas et al. (2009), Bhamra and Uppal (2014), and Gârleanu and
Panageas (2015). Panageas (2020) provides an excellent review of the literature.
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endowed with non-expected utility preferences. We focus on one form of deviation from expected

utility, namely ambiguity aversion, and we generalize their results to the case of learning about

the mean and the variance of the endowment process in an overlapping-generation economy.7 Buss

et al. (2021) study the dynamics of asset demand in a multi-period general equilibrium model in

which agents are heterogeneous in their confidence about the assets’ return dynamics. They show

that heterogeneous beliefs lead to asset demand curves that are steeper than with homogeneous

beliefs. Unlike Buss et al. (2021), heterogeneity in beliefs emerges endogenously in our model as a

consequence of agents’ different attitude towards ambiguity.

Third, our work is related to the large literature that studies asset prices and the trading

behavior of agency and proprietary traders. Ample evidence indicates that proprietary traders

act as liquidity providers who meet agency traders’ demand for immediacy.8 Consistent with this

view, we document that agency traders tend to sell when volatility rises. Although proprietary

traders might be less sophisticated (see, e.g., Menkveld and Saru, 2023), they face lower agency

costs and less liquidity constraints than their agency counterparts. This advantage allows them

to act as liquidity providers, especially during times of financial turmoil when liquidity is a scarce

resource. These patterns of flows, together with the observed high level of risk premia are consistent

with the findings of the demand-based asset pricing literature, e.g., Koijen and Yogo (2019) where

price-inelastic proprietary investors buy from agency traders in periods of high uncertainty.

The rest of the paper proceeds as follows. In Section 2 we provide intuition in a simple equi-

librium model. Section 3 presents an overlapping-generations model with learning about the mean

and variance of the dividend process. Section 4 contains our empirical analysis of the equilibrium

flow dynamics. Section 5 concludes. Appendix A contains proofs; Appendix B derives the predic-

tive dividend distribution and expected utility when dividend variance is unknown; Appendix C

provides technical details of Bayesian learning with unknown variance; Appendix D provides de-

tails of the numerical construction of the equilibrium; and Appendix E analyzes the implications

of stochastic volatility for equilibrium portfolio flows.

7Similar to our setup, Easley and O’Hara (2009) model investors with a desire for robustness with respect to
ambiguity in both the dividend mean and variance. In our model, learning ties the ambiguity in the dividend mean
to the variance of the dividend distribution and helps rationalize portfolio flows in reaction to new information.
Cao et al. (2005) use a similar model with heterogeneous uncertainty-averse investors but no learning to show that
limited asset market participation can arise endogenously in the presence of model uncertainty. Illeditsch et al.
(2021) analyze learning under ambiguity about the link between information and asset payoffs and show that this
leads to underreaction to news. Ilut and Schneider (2022) provide a comprehensive survey of modelling uncertainty
as ambiguity.

8See, e.g., Nagel (2012) and Biais et al. (2016).
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2 A two-period model

In this section, we develop a simple model to illustrate the effect of dividend volatility on equilibrium

portfolio weights and risk premia when agents differ in ambiguity attitudes.

Assets. There are two dates and a single “tree” producing a perishable dividend d̃ at the terminal

date. Agents live for two periods. In the first period, they can trade in claims over the dividend tree

(the risky asset) at a price p and a riskless asset available in infinite supply. In the second period,

they consume the dividend from their portfolio. Since consumption occurs only at the terminal

date, the riskless rate in the economy is undetermined and assumed to be a constant r.

The dividend d̃ is normally distributed with unknown mean µ and known variance σ2, d̃ ∼
N (µ, σ2). The assumption of known dividend variance will be relaxed in Section 3. We assume

that agents enter the initial date having observed a history of dividend realizations from which they

can calculate the time series average m and the associated standard error s with s ∝ σ.9

Preferences. The economy is populated by two types of agents, i = A,B, both having CARA

utility, u(W ) = − 1
γ e
−γW , with identical absolute risk aversion γ > 0. Agents differ in their attitude

towards uncertainty about the estimate of the dividend mean µ. Type-B agents are standard

Bayesian (subjective expected utility) investors. They use m as their subjective dividend mean and

account for its estimation error by inflating the variance σ2 by the squared standard error s2.10

Therefore, the predictive distribution of the dividend d̃ for agent B is

d̃ ∼B N
(
µB, σ2 + s2

)
, where µB = m. (1)

In contrast, type-A agents are averse to uncertainty in the mean estimate. To model aversion to

uncertainty we exploit the connection between classical confidence regions and “Knightian” uncer-

tainty, or ambiguity, e.g., Bewley (2011). We assume that ambiguity is represented by “multiple

priors” about the distribution of d̃ and that A-agents are averse to this ambiguity. Operationally,

we characterize the set of priors as “confidence interval” around the mean estimate, m, whose

size depends on the standard error s and the agents attitude towards ambiguity. Specifically, we

characterize the ambiguity that A-agentes face as the confidence interval

P ≡ [m− κs,m+ κs], (2)

9Assuming nt dividend observations, these quantities are, respectively, m = 1
nt

∑t
k=1 dk and s = σ√

nt
.

10See, e.g., Section 2.5 of Gelman et al. (2020) for a proof of this result.

5



with κ > 0 a preference parameter that captures ambiguity aversion. When κ = 0, the set of

priors P collapses to the singleton m, and A- and B-agents are identical. The parameter κ also

has a classical statistical interpretation as a quantile of a distribution. Therefore, agents A face the

following set of predictive distributions

d̃ ∼A N
(
µ̃A, σ2 + s2

)
, µ̃A ∈ P. (3)

Optimal Portfolios. At the initial date, agents i = A,B are initially endowed with wealth W i

and chooses a portfolio of θi units of the risky assets. The agents’ wealth at the terminal date is

W̃ i = W i (1 + r) + θi
(
d̃− p(1 + r)

)
, i = A,B. (4)

Agents B choose the portfolio θB to maximize their expected utility of terminal wealth, that is,

max
θB

E
[
−1

γ
e−γW̃

B

]
, (5)

subject to the budget constraint (4).

Being averse to ambiguity, agents A choose portfolios by maximizing expected utility under the

“worst-case scenario” from the set P in equation (2) as in Gilboa and Schmeidler (1989). That is,

type-A agents solve the following problem11

max
θA

min
µ̃A∈P

E
[
−1

γ
e−γW̃

A

]
, (6)

subject to the budget constraint (4). The prior that minimizes A’s expected utility in equation (6)

is

µA ≡ arg min
µ̃A∈P

E
[
u
(
WA

)]
=


m− κs, if θA > 0

P if θA = 0.

m+ κs, if θA < 0

(7)

Therefore, the minimum expected utility for the ambiguity-averse agent A in equation (6) can be

computed from the predictive distribution of d̃ in equation (3) where the belief µ̃A is selected to be

either µA ≡ m − κs, if θA > 0 or µA ≡ m + κs, if θA < 0. When ambiguity averse agents do not

11For simplicity, in our analysis we rely on the “max-min” implementation of the Gilboa and Schmeidler (1989)
model, as in Garlappi et al. (2007). Alternative and less extreme versions of this approach are possible, such as
models with “variational preferences” as in Hansen and Sargent (2001), in which the desire for robustness can be
captured by a “penalty” for deviations from the belief m, see, e.g., Anderson et al. (2000) and Hansen and Sargent
(2008).
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participate, i.e., θA = 0, no distinct prior is selected. Optimal portfolios are, however, well-defined

θB =
m− p(1 + r)

γ (σ2 + s2)
and θA =


m−κs−p(1+r)
γ(σ2+s2)

> 0 if m− p(1 + r) > κs,

0 if |m− p(1 + r)| < κs.
m+κs−p(1+r)
γ(σ2+s2)

< 0 if m− p(1 + r) < −κs
(8)

This implies that agent A’s problem in equation (6) is equivalent to the problem of agent B but

with a “distorted” belief about the expected dividend. While B agents use EB(d̃) = µB = m,

ambiguity averse agents A determine their demand under the prior that implies EA(d̃) = µA (or

they do not participate, in which case no prior is selected). Figure 1 shows the optimal demands θi

of both agents as a function of the risky asset’s price p. Because of ambiguity aversion, agents A

hold a more conservative portfolio than agents B, |θA| < |θB|. Moreover, ambiguity aversion may

induce non-participation, that is, θA = 0.

P
o
rt
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li
o
d
em

a
n
d

-1
.0

-0
.5

0.
0

0.
5

1.
0

1.
5

p∗ m−κs
1+r

m+κs
1+r

p

B’s demand, θB

A’s demand, θA

aggregate demand
aggregate supply

Figure 1: Risky asset demand. The figure shows the risky asset demand θB and θA from
equation (8) as a function of the risky asset price p. The red line denotes type-A’s demand; the
blue line type-B’s demand; the black line is aggregate demand; and the dashed line is the aggregate
supply of the risky asset.
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In equilibrium, when markets clear and θA + θB = 1, none of the agents hold short positions

in the risky asset and either both types of agents choose positive portfolio weights or ambiguity

averse agents do not participate. We obtain the following characterization of the equilibrium price

p of the risky asset.

Proposition 1. The equilibrium price p is given by

p =
1

1 + r
m− λ, (9)

where the risk premium λ is

λ =


1

1+r

(
κ
2s+ γ

2

(
σ2 + s2

))
if κ ≤ κ∗,

1
1+rγ

(
σ2 + s2

)
σ2 if κ > κ∗.

with κ∗ ≡ γ σ
2 + s2

s
. (10)

Ambiguity averse agents participate, if their coefficient of ambiguity aversion is sufficiently low,

κ ≤ κ∗.

A proof of Proposition 1 is in Appendix A.

The demands for the risky asset in equation (8) implies that in equilibrium either both agents

hold long positions or only B agents participate. Because the standard error is proportional to the

dividend variance, s ∝ σ, equation (A.4) shows that when both agents participate, i.e., κ ≤ κ∗,

the equilibrium risk premium is linear-quadratic in the dividend volatility σ. This is because the

preferences of type-A agents exhibit “first-order” risk aversion, (see, e.g., Segal and Spivak, 1990).

Intuitively, unlike B agents who are locally risk-neutral, A agents are locally risk-averse and demand

a compensation for holding a vanishing amount of risk.

Substituting the equilibrium price p from equation (9) in the agents’ demand functions (8) and

simplifying we obtain that, when both agents participate, the equilibrium weights are

θA =
1

2
− κ

2γ

(
s

σ2 + s2

)
︸ ︷︷ ︸

∝ 1
σ

, and θB =
1

2
+

κ

2γ

(
s

σ2 + s2

)
︸ ︷︷ ︸

∝ 1
σ

, κ ≤ κ∗. (11)

Equation (11) shows that when both agents participate, ambiguity averse agents A increase

their holdings of risky asset when volatility rises while Bayesian agents B decrease their holdings.

As σ →∞, the portfolio holdings converge asymptotically to the constant weights θA = θB = 1/2.

Ignoring the connection between s and σ implied by the iid-normal model, the portfolio weight

θA is negatively related to the standard error s and positively related to the variance σ2. Hence,
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ambiguity-averse agents reduce exposure to the risky asset as ambiguity increase, i.e., as the con-

fidence interval P in equation (2) widens, and increase exposure as variance increases.

Equation (11) shows that dividend volatility is a key variable for the determination of equi-

librium portfolio weights. This feature is a general property of any model with heterogeneous

asset demands. In our model, the difference in demand originates from heterogeneous aversion

towards ambiguity. In general, differences in demand may emerge from a variety of reasons, such

as, heterogeneous information, bounded rationality, differences in belief formation, etc. In fact,

as long as these differences result in different dividend expectations across agents, µA < µB, in a

CARA-normal setting, the equilibrium portfolio weights in equation (11) will take the following

form

θA =
1

2
− ∆µ

γ(σ2 + s2)
, θB =

1

2
+

∆µ

γ(σ2 + s2)
. (12)

with ∆µ ≡ µB − µA > 0 denoting the difference in expectations. If ∆µ is independent of σ, the

pessimistic investors A hold a conservative portfolio and increase their risky holding following an

increase in volatility. If ∆µ depends on σ, agents A’s risky holding increases (decreases) with σ

depending on whether the “tilt”, ∆µ/(σ2 + s2) decreases (increases) in σ. In our model ∆µ ∝ σ

and s ∝ σ, therefore the tilt ∆µ/(σ2 + s2) ∝ 1/σ and the pessimistic investors A increase risky

holdings as volatility increases. In general, however, the above analysis suggests that, as long as

agents disagree on the mean dividend, volatility plays a key role in the determination of equilibrium

holdings and flows.

Figure 2 provides an intuition for the structure of the equilibrium holdings in equation (11). The

dotted curves in the figure represent “iso-portfolio” curves for both agents, that is, the combination

of volatility σ and risk premium λ associated with the same risky asset demand from equation (8).

Red-dashed lines refer to A-agents and blue-dashed lines refer to B-agents. The solid black line

traces the intersection of complementary iso-portfolio curves, i.e., the set of volatility and risk

premia (σ, λ) for which the market clears, θB + θA = 1. From equation (A.4), A-agents participate

only when their ambiguity aversion κ < κ∗ ≡ γ σ2+s2

s . If agents enter the initial date having observed

a history of nt dividend realizations, the standard error is s = σ/
√
nt. Hence, the participation

condition κ < κ∗ = γ nt+1√
nt
σ can be equivalently expressed in terms of volatility as σ > σ∗ ≡

√
nt

nt+1
κ
γ .

The red-shaded area in Figure 2 indicates (σ, λ) combinations for which A-agents do not par-

ticipate. For values of σ < σ∗, the risk premium is too low for A-agents to participate. In this

case, the equilibrium risk premium coincides therefore with the θB = 100% iso-curve, i.e., the

highest blue-dashed line. For values of σ > σ∗, both agents participate. Lemma A.1 in Appendix

A shows that in any equilibrium in which A-agents participate, their iso-portfolio lines are always

flatter than those of B-agents. Intuitively, because A-agents hold fewer units of the risky asset

than B-agents, starting from an equilibrium in which both A and B participate, A-agents require

relatively less compensation than B for bearing an additional unit of volatility while keeping the

9
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Figure 2: Equilibrium portfolios and risk premia. The figure shows iso-portfolios lines of
type-A (red-dashed) and type B (blue-dashed) agents. These lines represent the set of volatility
and risk premium values (σ, λ) that correspond to a given constant portfolio weight in equation (8),
where the standard error s = σ/

√
nt. The solid black line represents the set of points (σ, λ) at which

the market clears, θA+θB = 1, and λ is the equilibrium risk premium λ. The vertical dashed-dotted

line indicates the participation threshold κ < κ∗, or equivalently, σ > σ∗ with σ∗ ≡
√
nt

nt+1
κ
γ , and

the horizontal dashed-dotted line indicates the hurdle risk premium λ∗ ≡ κ
(1+r)

√
nt
σ∗. Parameter

values: nt = 20, γ = 1, κ = 1.

portfolio unchanged. Hence, starting from any equilibrium with participation, a positive shock to

volatility generates “gains from trade” where A-agents are willing to buy and B-agents are willing

to sell.

In this section, we have assumed that the dividend variance is known. Therefore, in this model

there cannot be equilibrium flows unless one is willing to assume that variance moves over time in

an unexpected way so that agents are constantly surprised by shocks to volatility. We do not find

such an assumption consistent with the forward-looking nature of market participants. A more

realistic way to introduce time variation in volatility is to consider the case in which volatility is
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unknown and agents learn about it by observing dividend realizations. We develop such a model

in the next section.

3 An overlapping-generations model

We consider an infinite-horizon overlapping-generations (OLG) model in which each generation

consists of type-A and type-B agents in equal mass, as in Section 2, living for two periods. The

setup we consider is similar to De Long et al. (1990) and Lewellen and Shanken (2002), however,

unlike De Long et al. (1990) there are no noise traders in our model, but agents differ in their

attitude towards ambiguity. Unlike Lewellen and Shanken (2002), each generation consists of

heterogeneous agents instead of a representative agent.

3.1 Setup

Assets. There is a riskless asset in perfectly elastic supply that pays the interest rate r in every

period t = 1, . . . ,∞ and a risky security in unit supply that pays the dividend dt in each period t.

Dividends are i.i.d. and normally distributed,

dt ∼ N (µ, σ2), (13)

with constant mean µ and variance σ2. Agents know that dividends are normally distributed, but

they do not know the moments of the distribution. They learn about µ and σ by observing dividend

realizations over time.12

Investors. Agents live for two periods with overlapping generations. There is no first-period con-

sumption or labor supply. In the first period, agents only decide how to allocate their exogenous

wealth between the risky and risk-free asset. In the second period, agents collect the dividend, liq-

uidate their risky portfolio by selling it to the new incoming generation, and consume the proceeds.

There is no bequest. As in Section 2, we assume that both agents have CARA preferences but

differ in their assessment of expected end-of-period wealth: B-agents are Bayesian and A-agents

are ambiguity averse.

Because investors are short-lived, their portfolio decisions do not contain an intertemporal

hedging component. However, in equilibrium, to construct their portfolio, generation-t investors

need to form beliefs about both future dividends dt+1 and asset prices pt+1. To do so, they would

need to know how generation-(t+ 1) forms beliefs and so on, ad infinitum.

12To simplify the exposition of the model, we ignore the fact that eventually agents will learn the true parameters
in the limit. In Section 3.4, we generalize the model to the case of perpetual learning.
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3.2 Learning when variance is unknown

The unknown dividend variance poses a technical challenge in the definition of the agents’ problem.

Standard results from statistics (see, e.g. Greene, 2020), imply that when both the dividend mean

and variance are unknown, the predictive distribution is Student-t. Hence, because learning about

volatility generates fat-tailed dividend distributions, expected utility is not well defined (see, e.g.

Geweke, 2001; Weitzman, 2007). We overcome this difficulty by adopting the approach proposed

by Bakshi and Skoulakis (2010), who provide a methodology for solving asset pricing models with

unknown volatility and Bayesian learning. To guarantee that expected utility is well-defined in

such models, they propose to replace the standard normal-Gamma conjugate prior with a normal-

truncated Gamma conjugate prior.13 Their key methodological contribution is to show how to

impose truncation bounds on the Gamma distribution to preserve conjugacy, that is, to ensure

that the same bounds are preserved after agents update their priors. Bakshi and Skoulakis (2010)

prove that the predictive distribution of dividends obtained in the normal-truncated Gamma setting

is a “dampened” Student-t, that is a Student-t with thinner tails. Under this distribution, expected

utility, and therefore the agents’ portfolio choice problems, are well defined.

The learning problem of agents in each generation t can be decomposed into two steps: (i) in-

formation updating and (ii) belief formation. The first step is common to both A and B agents:

they are equally informed and their heterogeneous preferences do not affect how they update their

information in light of new dividend observations. The second step, belief formation, differs de-

pending on agents’ preferences: A and B make different use of their updated information from

step (i) to form beliefs about moments of the predictive distribution of future dividends.

Figure 3 summarizes the two steps involved in agents’ learning process. We now discuss each

step in detail.

Information updating. While dividend variance is unknown, all generations agree that the

variance is finite. Hence, the dividend precision φ ≡ 1/σ2 is bounded, φ ∈ [φ, φ] with 0 < φ <

φ < ∞. At each time t, both types of agents inherit information about µ and σ from generation

t − 1 in the form of a normal-inverse truncated Gamma posterior which they use as their t-prior,

or “model”, that gets updated after observing the new dividend, dt. The generation t− 1 posterior

of φ that is handed over to generation t is a truncated Gamma with νt−1 degrees of freedom and

shape parameter bt−1, that is,

φ|(t− 1) ∼A,B TG

[
νt−1

2
,
bt−1

2
;φ, φ

]
, 0 < φ < φ <∞, (14)

13See, e.g., Gelman et al. (2020) for a discussion of Bayesian statistics in the normal-Gamma framework. The
density of the truncated Gamma distribution is stated in equation (B.1) of Appendix B.
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Figure 3: Information updating and belief formation. The top part of the figure illustrates
the “information updating” step in which the state variables bt and mt are updated upon observing
a new dividend realization dt+1. The bottom part of the figure illustrates the “belief formation”
step, and shows how agents at time t use the information from the state variables in the infor-
mation processing step to form predictive distributions about the future dividend. The predictive
distribution tDνt [·, ·, ·] refers to the dampened Student-t with νt degrees of freedom, see equation (24).

The degrees of freedom νt−1 describes the precision of the φ-prior and is in classical statistics set

to nt − 1 to obtain a bias free estimate of the variance, see, e.g., Greene (2020). When we discuss

learning under information leakage in Section 3.4 this close connection is no longer cawturetrue.

Conditional on the precision φ, agents’ prior about the mean µ is normally distributed, that is,

µ|φ, (t− 1) ∼A,B N
(
mt−1,

1

nt−1φ

)
, (15)

as in the model of Section 2, with nt−1 the number of observations measuring the precision of

the µ-prior. Again, with information leakage, the close connection between nt and the number

of observations is released. Hence, mt−1, nt−1 and bt−1, νt−1 is the information that is passed

on from generation t − 1 to generation t, where mt−1 is the sample mean estimated from nt−1

observations and the shape parameter bt−1 is essentially the sum of historical squared errors and,

hence, with νt−1 degrees of freedom, bt−1/νt−1 captures an estimate of the variance. We can think

of (mt−1, bt−1) as a “model of the world”, agreed upon by all agents, with mt−1, nt−1, bt−1 and

νt−1 representing its state variables.

Generation t updates this information with the newly observed dividend dt. The computed

t-posterior is again of the normal-inverse truncated Gamma family

φ|t ∼A,B TG

[
νt
2
,
bt
2

;φ, φ

]
, 0 < φ < φ <∞, νt = νt−1 + 1, (16)

µ|φ, t ∼A,B N
(
mt,

1

nt φ

)
, nt = nt−1 + 1, (17)
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where the state variables mt and bt are obtained from updating (mt−1, bt−1) upon observing the

dividend dt, that is,

mt =
nt−1

nt
mt−1 +

1

nt
dt (18)

bt = bt−1 +
nt−1

nt
(dt −mt−1)2︸ ︷︷ ︸

≡e2t

, (19)

with et ≡ dt −mt−1 denoting the time t dividend surprise relative to the mean mt−1.

Belief formation. Although generation t-agents observe the same state variables, update in-

formation in the same way, and arrive at the same posteriors given in equations (16) and (17),

they differ in how they use these posteriors to form their beliefs about the distribution of future

dividends from which they derive their demand. Specifically, A-agents are averse against ambiguity

in the expected dividend. To keep things simple, we assume that both agents are neutral to ambi-

guity in the variance. Assuming that A-agents are also averse towards ambiguity in the variance

requires the specification of a set of priors for both µ and φ. This complicates the analysis without

qualitatively changing the key features of the learning model 14

Both agents use as a prior about the precision φ the posterior that results from information

updating with dt, i.e., the truncated Gamma distributed with shape parameter bt from equations

(16) and (19),

φ ∼A,B TG

[
νt
2
,
bt
2

;φ, φ

]
. (20)

B-agents are ambiguity neutral, hence, they use directly the time-t posterior of the information-

updating step as their prior. Conditional on φ, their prior about the mean µ is normal with mean

µBt = mt,

µ|φ ∼B N
(
µBt ,

1

nt φ

)
, µBt = mt. (21)

In contrast, A-agents are uncertain about the model that drives the predictive distribution of future

dividends. Unlike B-agents, who use (mt, bt) as their model, A-agents consider a set of models,

obtained by constructing a confidence region centered around mt, as this is done in the two-period

model of Section 2. Specifically, they consider confidence intervals for µ from the t-posterior (17)

14Because the estimates of µ and σ are independent, confidence intervals are two-dimensional trapezoids. With
max-min preferences, the ambiguity-averse agent will always elect the highest possible return variance when construct-
ing optimal portfolios, see, e.g., Easley and O’Hara (2009). Therefore, the portfolio choice problem with ambiguity
about both µ and φ reduces to a problem with ambiguity only about µ, where φ is fixed at the lowest possible value
in the prior support.
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and entertain the following conditionally normal priors of µ,

µ|φ ∼A N
(
µ̃At ,

1

nt φ

)
, µ̃At ∈ Pmt (22)

where Pmt denotes the ambiguity sets for the mean, µ,

Pt ≡ [mt − κst,mt + κst] , (23)

with st = κ√
ntEt[φ|bt]

representing agent A’s subjective estimate of the standard error of the dividend

mean. Following Bakshi and Skoulakis (2010), in Lemma B.1 we show, under these assumptions,

agents i’s predictive distribution of future dividends is a “dampened” Student-t15

dt+1 ∼A tDνt

[
µ̃At , bt,

nt + 1

nt

]
, dt+1 ∼B tDνt

[
µBt , bt,

nt + 1

nt

]
, (24)

where µBt = mt and µ̃At ∈ Pmt . Because the dampened Student-t distribution has thinner tails

than the Student-t, the agents’ expected utility is well-defined, and we can solve for their optimal

portfolios.

3.3 Equilibrium

At each time t, agents are initially endowed with wealth W i
t and choose a portfolio of θit units of

the risky assets. Their wealth at time t+ 1 is

W i
t+1 = W i

t (1 + r) + θit (pt+1 + dt+1 − pt(1 + r)) , i = A,B. (25)

Hence, to determine their portfolios at time t, agents have to form expectations about future

dividends dt+1 and prices pt+1. They choose their optimal portfolio by solving, respectively, the

following maximization problems,

max
θBt

Et[u(WB
t+1)], (26)

and

max
θAt

min
µ̃A∈Pt

Et[u(WA
t+1)], (27)

where Pt is the ambiguity set defined in equation (23). Proposition B.1 characterizes the time-t

generation expected utility Eit[u(W i
t+1)] for a given portfolio θit.

Unfortunately, there is no closed-form solution for agents’ demand in this setting. However, we

show in Appendix B.1 that the OLG model with unknown variance features an equilibrium price

15See Definitions B.1 and B.2 in Appendix B for a formal definition of the density of a dampened t-distribution.
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of the form

p(mt, bt) =
1

r
mt − Λ(bt), (28)

with the consequence that A-agents again select either the prior µAt = mt − κst or they do not

participate (as it is the case in the two-period model in Section 2). Hence, participating ambiguity-

averse A-agents select portfolios as if they were purely risk averse with a distorted belief about the

expected dividend, EAt (d̃t+1) = µAt = mt−κst, relative to the expectation of the Bayesian B-agents,

who make portfolio decisions according to EBt (d̃t+1) = mt.

As Proposition B.1 shows, the determination of (participating) agents’ expect utility in each

generation only requires the numerical evaluation of a well-behaved integral. Agent i’s demand θit

is obtained by solving the first-order conditions

dEit[u(W i
t+1)]

dθit
= 0, i = A,B.

Appendix D provides details of the numerical procedure we use to construct the equilibrium.

As a special case, we solve the case with known variance, for which we can obtain a closed-form

solution. The following proposition characterizes the equilibrium price and the portfolio weights

when variance is known.

Proposition 2. Assume dt ∼ N (µ, σ2), with µ unobservable and σ observable and that agents

i = A,B form beliefs µit about µ as described in equations (21) and (22) with φ = 1/σ2 known.

Then, the equilibrium price of the risky asset when both agents participate is

pt =
1

r
mt − Λt, (29)

where the risk premium Λt is given by

Λt = gt
κ

2
σ + ft

γ

2
σ2, (30)

with gt and ft deterministic functions of time defined in equations (A.23) and (A.24) of Appendix A.

The equilibrium portfolio weights are

θAt =
1

2
− κ

2γ

(
r
√
nt

1 + r(nt + 1)

)
1

σ
and θBt =

1

2
+

κ

2γ

(
r
√
nt

1 + r(nt + 1)

)
1

σ
. (31)

A proof of Proposition 2 is in Appendix A.

The equilibrium weights (31) are the infinite-horizon OLG equivalent of the equilibrium weights

in equation (11) in the two-period model of Section 2. As in the simple model of Section 2, A-agents
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hold conservative portfolios, θAt < θBt , but as volatility increase, they increase the weight in the

risky asset, i.e., ∂θAt /∂σ > 0.16

Portfolio flows: As in the simple model of Section 2, after obtaining the equilibrium prices, we

can derive the equilibrium portfolio weights of both agents. We denote by θi(mt, bt) the resulting

equilibrium demand of type-i agents in generation t and define portfolio flows as

∆θi(mt, bt) = θi(mt, bt)− θi(mt−1, bt−1), i = A,B. (32)

The equilibrium portfolio weights depend on the state variables mt and bt. Therefore, unlike the

static model of Section 2 or the OLG model with known variance of Proposition 2, learning about

the dividend variance generates flows across agents in equilibrium. Specifically, a positive flow,

∆θi(mt, bt) > 0, implies that the t-generation of type-i agents increases risky asset holdings relative

to the (t−1)-generation. Such a positive flow represents an intra-generational trade in which type-i

agents buy the risky asset from non-type-i agents.

3.4 Perpetual learning

In the analysis so far, we have ignored the fact that, because the unknown true dividend mean

µ and variance σ2 are constant, agents eventually learn the true parameters. This problem is

particularly relevant in the context of an OLG economy, where there is an implicit assumption that

generations overlap forever. To address this common shortcoming of learning models, we modify

the analysis of Section 3.2 by assuming that some information from past observations is gradually

lost as generations overlap. In a representative agent economy, this setting coincides with the idea

of “fading memory” as in, e.g., Nagel and Xu (2021), or “age-related experiential learning”, as in

Malmendier and Nagel (2016), Collin-Dufresne et al. (2016a), and Ehling et al. (2018).

To model perpetual learning in a tractable fashion in an OLG model, we assume that when

generation overlap, a shock occurs that reduces the informativeness of the posteriors of φ and µ|φ in

equations (14) and (15) as they are handed-over from one generation to the next. The effect of this

shock is to introduce a “time-distortion” by a factor ω ∈ (0, 1).17 In particular, with information

leakage, the number of observations, nt, and the degrees of freedom, νt, are no longer incremented

by one with each new dividend observation, see equations (16) and (17). The iteration schemes are

now nt = ωnt−1 + 1 and νt = ωνt−1 + 1, i.e., the information content in the t−1 prior is discounted

before learning from the new observation is done. In the context of information leakage, we refer to

16As t→∞ agents eventually learn the true mean µ and the weights in equation (31) converge to 1/2. In Section
3.4 we extend the model to allow for perpetual learning.

17Appendix C provides details about how we explicitly model the shocks to the priors about µ and φ and how the
state variables are updated in a Bayesian way with new dividend information.
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nt as the “effective number of observations” as it is used, e.g., in Nagel and Xu (2021). Intuitively,

the quantity nt represents a new “clock” that runs slower than t. This device allows us to achieve

perpetual learning in our model while keeping most of the analysis of Section 3.2 unaffected.

In the case of perpetual learning, the prior of φ|t in equation (16) becomes

φ ∼A,B TG

[
νt
2
,
bt
2

;φ, φ

]
, 0 < φ < φ <∞, (33)

where the degrees of freedom are νt instead of t− 1; the prior of µ|φ, t in equation (17) becomes

µ|φ ∼A,B N
(
mt,

1

ntφ

)
, (34)

where the precision is ntφ instead of tφ; the updating equations of the state variables mt and bt in

equations (18)–(19) become

mt+1 =
ωnt

ωnt + 1
mt +

1

ωnt + 1
dt+1, (35)

bt+1 = ωbt +
ωnt

ωnt + 1
(dt+1 −mt)

2; (36)

and the updating equation of the additional two new state variables nt and νt is

nt+1 = ωnt + 1, νt+1 = ωνt + 1. (37)

In these equations, the parameter ω ∈ [0, 1] controls the amount information leakage. By setting

ω = 1, we can recover the case described in Section 3.2. Notice that, as t increases, nt approaches

the asymptotic value n = 1
1−ω . Therefore, in the steady state the problem can be described by just

two state variables, mt and bt.

3.5 Results

We numerically solve for an equilibrium with unknown mean and variance with perpetual learning,

following the procedure described in Appendix D. Figure 4 shows the equilibrium portfolio weights.

The red line refers to the ambiguity averse agents’ portfolios and the blue line to the Bayesian

agents’ portfolios. Consistent with the weights derived in equation (11) in the two-period model of

Section 2 and with those for an OLG economy with known variance in Proposition 2, the weights

of the ambiguity averse agent A is increasing and those of the Bayesian agent B are decreasing

in
√
bt/νt, which is an indicator of the estimated dividend volatility.18 In the figure we set the

18If dividend precision φ = 1/σ2 is non-truncated Gamma distributed, E(φ) = νt/bt. This motivates the usage of
bt/νt, i.e., the sum of squared errors divided by the number of degrees of freedom as an indicator of dividend variance
and the square root of this expression as an indicator of dividend volatility.
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truncation bounds φ and φ such that the true volatility σ ∈ [0.2, 0.6]. When the
√
bt/νt takes

values outside this range, agents become very confident that the true σ is either at the upper or

at the lower bound of the a-priori interval. Therefore, as the shaded areas in the figure show, the

portfolio weights are less sensitive to changes in dividend volatility for values outside the range of

[0.1, 0.6].
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Figure 4: Equilibrium portfolios and volatility. The figure shows A and B agents’ equilibrium
portfolios as a function of the standard deviation estimate σ̂t ≡

√
bt/νt, where bt is the sum of

squared error and νt the degrees of freedom. Parameters values: κ = 1, φ and φ such that the true
volatility σ ∈ [0.1, 0.6], r = 0.1, and νt = n = 20.

The dependence of the portfolio weights θAt and θBt on
√
bt/νt, shown in Figure 4, has a direct

counterpart in terms of dividend “surprises”, i.e., deviations of the realized dividend from the

historical mean mt. Figure 5 shows the equilibrium risky asset holdings of A-agents (left panel)

and B-agents (right panel) as a function of this surprise. Different lines correspond to different

values of the ambiguity aversion parameter κ. Larger values of κ imply stronger ambiguity aversion

and more conservative (aggressive) portfolios for A-agents (B-agents). Large dividend surprises

are associated with large subjective values of volatility. The U-shape nature of the equilibrium

portfolios in the left panel of Figure 5 implies that A-agents are more aggressive than B-agents in

their trades. After large positive and negative surprises A-agents increase their risky asset holdings.

Heterogeneity in ambiguity attitude is crucial for this result. In fact, if A-agents were ambiguity

neutral, κ = 0, there will be no flows in equilibrium, even if A and B were to differ in their degree of
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Figure 5: Equilibrium portfolios and dividend surprise. The figure shows the equilibrium
portfolio of A-agents (left panel) and B-agents (right panel) as a function of the standard deviation
estimate σ̂t ≡

√
bt/νt = 0.3, where bt is the sum of squared error and νt the degrees of freedom.

Different lines corresponds to different values of the ambiguity aversion parameter κ. Parameters
values: φ and φ such that σ ∈ [0.1, 0.6], r = 0.1, and νt = n = 1

1−ω = 20.

risk aversion. As discussed earlier, heterogeneity in ambiguity attitude provides a micro-foundation

for difference in beliefs across agents, which is at the root of the trading motive in our model.

Figure 6 shows equilibrium flows for a given random path of dividend realizations. The solid

red line reports the time series of normalized surprises, while the blue bars represent flows of risky

asset from B to A, defined in equation (32). A positive value of flows means that A is buying from

B in equilibrium, and vice versa for negative values. Consistent with results shown in Figures 4 and

5, following large positive and negative surprises, ambiguity-averse A-agents increase their holding

of the risky asset by buying from ambiguity-neutral B-agents, ∆θAt > 0. In contrast, periods with

low surprises are characterized by A-agents selling to B-agents. The figure therefore reiterates

the aggressiveness of ambiguity-averse agents’ trades when faced with large dividend surprises and

confirms, in an infinite horizon model with learning about mean and volatility, the main intuition

developed in the simple two-period model of Section 2.

3.6 Implications for return predictability

As the expression of the equilibrium price in equation (28) shows, when variance is unknown the

risk premium is time-varying and depends on the state variable bt. In contrast, when variance is
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Figure 6: Portfolio flows on a simulated path. The figure illustrates A-agents’s surprises,
eAt = dt+1 − µAt (left axis), and portfolio flows, ∆θAt (right axis). The state variable b0 is chosen
such that σ̂0 =

√
b0/n = 0.3. Parameters values: κ = 1, φ and φ such that the true volatility

σ ∈ [0.1, 0.6], r = 0.1, and νt = n = 1
1−ω = 20.

known, as Proposition 2 shows, the risk premium is a deterministic function of time. Therefore,

learning about volatility qualitatively changes the nature of equilibrium asset prices and, by making

risk-premia endogenously time-varying, generates return predictability in the model.

To explore the implications of our model for return predictability, Figure 7 shows the equilibrium

risk premium as a function
√
bt/νt, an estimate of the standard deviation, in the steady state of the

OLG economy with perpetual learning. The figure shows that the risk premium is an increasing

function of the estimated standard deviation. Combined with the properties of portfolio flows shown

in Figure 4, the risk premium pattern in Figure 7 implies that when B agents sell to A agents,

a phenomenon that occurs following surprising dividend realizations, asset prices are lower. This

feature is consistent with the findings from the demand-based asset pricing literature (e.g., Koijen

and Yogo, 2019) where price-inelastic A-agents are willing to absorb flows from selling B-agents,

whose demand shows higher price elasticity.

To understand the origin of return predictability in our model, consider first the case in which

the true dividend mean is constant and unknown, while the variance is constant and known to

all investors, as in Proposition 2. This case is similar to the economy studied by Lewellen and
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Figure 7: Equilibrium risk premium. The figure shows the equilibrium risk premium Λt as a
function of the standard deviation estimate σ̂t ≡

√
bt/νt when both the dividend mean and variance

are unknown. Parameters values: κ = 1, φ and φ such that the true volatility σ ∈ [0.1, 0.6], r = 0.1,

and νt = n = 1
1−ω = 20.

Shanken (2002). In such a setting, after positive dividend realizations, investors’ estimate of the

mean dividend mt is higher than the true mean µ, and the stock is “over-priced” relative to its

fundamental value. Since the true mean is lower than investors’ estimate, the price will be mean

reverting. An econometrician looking at the data will find that high prices predict lower returns.

However, such a return predictability cannot be exploited by agents in the economy. To see why

this is the case, let λobj

t = rΛobj

t = µ − ptr denote the (per period) objective risk premium, and

decompose it as follows

λobj

t = µ− ptr = µ− µit︸ ︷︷ ︸
unobservable

+µit − ptr︸ ︷︷ ︸
≡λit

, (38)

with λit denoting i-agents’ subjective risk premium. Using the equilibrium price pt derived in

Proposition 2, we deduce that the subjective risk premium λit is only a deterministic function of t.

Following a positive dividend realization, agents’ subjective estimate of the mean µit increases, which

leads to an increase in the price pt. As a consequence, see equation (38), the objective expected

risk premium λobj

t decreases, implying lower expected returns. However, unlike the econometrician,

investors do not know the true dividend mean µ and therefore cannot exploit such a predictability.

22



In contrast, when the variance is not known, the equilibrium subjective risk premium is time-

varying as it explicitly depends on the state variable bt. Formally, from equation (28) we can define

the objective and subjective risk premia, Λobj
t and Λit as follows

pt(mt, bt) =
1

r
mt − Λ(bt) =

1

r
µit −

(
1

r
(µit −mt) + Λ(bt)

)
︸ ︷︷ ︸

≡Λit(bt)

, (39)

=
1

r
µ−

(
1

r
(µ−mt) + Λ(bt)

)
︸ ︷︷ ︸

≡Λobj
t (bt)

. (40)

Because for B agents, µit = mt, equation (39) implies that Λt(bt) is agents B’s subjective risk

premium. As Figure 7 shows, Λt(bt) is an increasing function of
√
bt/νt. Therefore, agents expect

higher returns after large positive or negative dividend surprises.19 Time-varying subjective risk

premia implies return predictability.

Finally, note that the objective risk premium Λobj

t in equation (40) responds asymmetrically to

dividend surprises. Positive surprises increase mt and negative surprises decrease mt. However,

dividend surprises, regardless of their sign, increase bt, and hence Λt(bt). Therefore, an econome-

trician observing ex-post dividend realizations would detect risk premia that are amplified by bad

news and dampened by good new. Figure 8 illustrates the dynamic of the risk premium Λt(bt) for

a simulated random path of dividend surprises, eit = dt+1 − µit, i = A,B. The figure shows that

the risk premium increases after large positive (t = 20) as well as large negative (t = 40) surprises,

and declines gradually when dividend realizations are close to their expected value, i.e., surprises

are small in magnitude.

4 Empirical analysis

In this section, we provide evidence in support of our model predictions using a novel database

of trading activity on Euro STOXX 50 futures. Before presenting our main empirical results we

provide a brief description of the data.

19Nagel and Xu (2022) analyze CFO survey data and find that the subjective risk premium is positively related to
subjective estimates of variance and that CFOs’ subjective return expectations strongly depend on realized variance.
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Figure 8: Risk premium on a simulated path. The figure illustrates surprises eit = dt+1−µit,
i = A,B (left axis), with the corresponding steady state equilibrium risk premium Λt (right axis).
The state variable b0 is chosen such that σ̂0 =

√
b0/n = 0.3. Parameters values: κ = 1, φ and φ

such that σ ∈ [0.1, 0.6], r = 0.1, and νt = n = 1
1−ω = 20.

4.1 Data

Our main data source consists of Euro STOXX 50 futures transactions on the Eurex, one of the

most active futures and options markets in the world.20 The Euro STOXX 50 is the index for the

largest and most liquid stocks in the Eurozone. The sample period spans from January 2002 to

December 2020 and the data contain information on order flows of three different trader types:

agency traders, market makers, and proprietary traders. Agency traders are market participants

who trade for a client, while market makers and proprietary traders act on their own account.

Trading takes place in an electronic limit order book, and trading flows are recorded at a frequency

20This data set was also used for, e.g., the Finance Crowd Analysis Project, see https://fincap.academy and
Menkveld et al. (2023). See, e.g., Menkveld and Saru (2023) for further background information and institutional
details. We thank Deutsche Boerse for providing us these data.
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of milliseconds. In total, we have 824 million trades from the three different trader types at 188

million different timestamps. For the purpose of our analysis, we aggregate buy and sell orders

at a daily frequency Flows of market makers and agency traders show a correlation coefficient of

−0.8. Those of proprietary traders and agency traders are correlated with a coefficient of −0.86.

Therefore, in line with the Finance Crowd Analysis Project, we analyze flows as the weight changes

in agency traders’ portfolio ∆θagencyt = θagencyt − θagencyt−1 and do not discriminate between flows

originating from trades with proprietary traders and from trades with market makers.

Two challenges arise when bringing our model to the data: (i) how to map the idealized agent

types in our model to observable classes of market participants; and (ii) how to find good empir-

ical measures of dividend surprises. To address the first challenge, we rely on the microstructure

literature that has modeled market makers as ambiguity-averse agents, arguing that ambiguity

aversion may emerge as a natural response of market makers to inventory risk and to the fear of

trading against informed traders, see, e.g., Routledge and Zin (2009), Easley and O’Hara (2010),

and Zhou (2021).21 This modelling choice is in line with experimental studies documenting that

ambiguity aversion is influenced by the perceived competence of decision makers (“competence hy-

pothesis”, see Heath and Tversky, 1991), or “by a comparison with less ambiguous events or with

more knowledgeable individuals” (“comparison hypothesis”, see Fox and Tversky, 1995). Gra-

ham et al. (2009) argue that investors who perceive themselves competent are likely to have less

parameter uncertainty about their subjective distribution of future asset returns. Menkveld and

Saru (2023) document that for low frequency trades (greater than five seconds), agency traders are

better informed than proprietary traders. To the extent that ambiguity aversion is a reaction to

missing information, this evidence indicates that for low frequency trades proprietary traders have

a stronger desire for robustness than agency traders. Hence, we use these arguments to identify

agency traders as the least ambiguity averse agents, type-B in our model. Proprietary traders and

market maker together constitute ambiguity averse agents, type-A in our model.

Because daily observations of dividends are not available, we address the second challenge by

using the volatility index VSTOXX directly and interpret changes in VSTOXX as resulting from

surprises about corporate profitability. The VSTOXX is the 30-day implied volatility calculated

from options on the Euro STOXX 50 index. As such, this measure captures general market con-

ditions and can be mapped to a measure of aggregate surprise in the market, consistent with the

learning framework of our model.

21These papers study the 2007-2009 financial crisis and explain “market freezes” in markets for certain credit
products with market makers’ ambiguity aversion. While our model also features non-participation by ambiguity-
averse agents, our focus is not on the micro-structure determinants of the bid-ask spread and on market freezes.
Instead, our goal is to study the sensitivity of traders’ asset flows to uncertainty shocks.
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4.2 Equilibrium flows

Our model predicts that changes in the estimated volatility induces trades between market par-

ticipants. To assess this channel empirically, at each day t we sort the aggregate daily flow data

on the STOXX 50 index futures according to the change in the volatility index (∆VSTOXX) from

day t− 1 to day t. Table 1 shows median values within quintile bins of volatility changes. Because

of market clearing, we have ∆θagency = − [∆θproprietary + ∆θmarket maker].

Q return ∆θagency VSTOXX ∆VSTOXX

1 1.22 12019.00 24.75 -1.68
2 0.50 4623.00 19.18 -0.64
3 0.06 612.00 17.91 -0.09
4 -0.30 -4636.50 19.43 0.45
5 -1.38 -17224.00 25.11 1.71

Table 1: Flows and volatility. The table shows agency traders’ flows ∆θagency on the Euro
Stoxx 50 futures, returns on the Euro Stoxx 50 and VSTOXX levels depended on changes in the
volatility index ∆VSTOXX. The data is from Eurex Exchange, and flow data are aggregated on a
daily frequency. Observations are grouped in quintile bins for ∆VSTOXX, and median values are
reported for each bin.

The results in Table 1 are consistent with our model predictions regarding equilibrium flows.

High level of surprises, captured by high levels of ∆VSTOXX, are associated with negative flows

from agency to proprietary traders: Proprietary traders buy and agency traders sell in response to

surprises in the market. As our model indicates, such a pattern would emerge when all traders learn

and proprietary traders have a stronger desire for robustness than agency traders.22 This evidence

is also consistent with the literature that identifies proprietary traders as liquidity providers in

times of market turmoil (see, e.g., Nagel, 2012).

Columns 2 and 3 in Table 1 show a strong and negative correlation between realized returns

of the Euro Stoxx 50 and ∆VSTOXX. This empirical fact is known as the “asymmetric volatility

phenomenon”.23 Given the highly negative relationship between changes in implied volatility and

contemporaneous realized returns, one may argue that the flow patterns we observe are not driven

by traders’ reaction to surprises, as our model predicts, but by reaction to returns. For example, if

agency traders follow “momentum” strategies and proprietary traders are “contrarian”, we would

observe negative agency traders’ flows following high volatility simply because high volatility is

22These findings are not due to a specific chosen time frame and/or to a specific number of bins. A Kruskal-Wallis
test shows that the median trading volumes of agency traders in the different bins are significantly different (p-value <
2.2e-16), and a post-hoc Dunn test confirms the monotonic decline of aggregated daily agency trades with increasing
volatility.

23For the US market, Dennis et al. (2006) estimate a negative correlation of −0.679 between returns and daily
changes in implied volatility (see, e.g, also Wu, 2001; Bekaert and Wu, 2000).
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associated with low returns. To isolate the effect of volatility and returns on flows, we analyze

flow patterns conditional on realized returns. Table 2 shows the agency traders’ flows at time

t for different levels of volatility change (by row), conditional on realized returns at time t − 1

(by column). The results in Table 2 show a very robust pattern across each column. In sum,

even after conditioning for return levels, agency traders sell and proprietary traders buy when

volatility increases. We take this evidence as support of the mechanism identified by our model

where the more ambiguity averse (proprietary traders) buy from the less averse (agency traders)

when uncertainty rises.

lagged return

∆VSTOXX 1 2 3 4 5

1 9686 13148 13162 19416 11159
2 -123 5263 6949 6536 7499
3 -546 -450 990 -1178 4662
4 -9827 -6904 -3071 -3918 1143
5 -22138 -18283 -18279 -18439 -11196

Table 2: Flows, volatility, and lagged returns. The table shows agency traders’ flows ∆θagency

on the Euro Stoxx 50 futures depended on changes in the volatility index ∆VSTOXX (rows) and
lagged returns of the Euro Stoxx 50 (columns). The data is from Eurex Exchange, and flow data
are aggregated on a daily frequency. Observations are grouped in quintile bins for ∆VSTOXX and
lagged returns (double sort), and median values of ∆θagency are reported for each combination.

4.3 Equilibrium risk premium

We conclude our empirical analysis by studying the relationship between equilibrium risk pre-

mia and trading activity. In our model, ambiguity-averse agents buy when uncertainty rises and

ambiguity-neutral agency traders sell. Because risk premia increase with uncertainty, ambiguity-

averse traders would on average earn the risk premium at the expense of ambiguity-neutral traders.

To test this prediction, we regress realized returns on lagged flows of agents and on lagged vari-

ance (VSTOXX2). We expect that higher variance at time t predicts higher t + 1 returns (as a

risk compensation), but that, on average, agency traders’ flows at time t are associated with low

realized returns at time t+ 1. The results reported column (1) of Table 3 confirm this conjecture.

The coefficient of lagged agency traders’ flows is negative and highly significant. The coefficient of

VSTOXX2 is positive and significant at the 5% level (Newey-West corrected).

Short-term return reversal is a natural alternative explanation for time-varying risk premia. To

assess whether low time t returns predict high t+ 1 returns, we include lagged returns as a control

variable. Column (2) in Table 3 shows that time t returns have no explanatory power in explaining

t + 1 returns. This result further emphasizes our model’s prediction that time-varying variance is
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of first order relevance and that flows to ambiguity-averse investor groups predict a high future risk

premia rather than historical returns do.24

Dependent variable:

return

(1) (2)

Constant -3.165e-04 -3.126e-04
(2.767e-04) (2.762e-04)

lagged return -2.615e-03
(2.378e-02)

lagged ∆θagency -1.837e-08∗∗ -1.771e-08∗

(7.966e-09) (1.027e-08)

lagged VSTOXX2 8.397e-07∗ 8.350e-07∗

(4.712e-07) (4.670e-07)

Observations 4,833 4,833
R2 0.003 0.003
Adjusted R2 0.003 0.003
Residual Std. Error 0.014 (df = 4830) 0.014 (df = 4829)
F Statistic 7.695∗∗∗ (df = 2; 4830) 5.137∗∗∗ (df = 3; 4829)

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

Table 3: Risk premia and portfolio flows. The table shows results for Euro Stoxx 50 returns
regressed on lagged Euro Stoxx 50 returns, lagged agents’ flows ∆θagendy on Euro Stoxx 50 futures
and lagged variance VSTOXX2. The data is from Eurex Exchange, and flow data are aggregated
on a daily frequency. Standard errors are Newey-West corrected.

5 Conclusion

This study contributes to the literature on equilibrium asset prices and portfolio flows within

an overlapping-generation model by incorporating agents’ learning behavior regarding economic

fundamentals and their differential aversion to parameter uncertainty. Our analysis reveals that in

equilibrium, investors with ambiguity-averse preferences exhibit a propensity for more conservative

portfolios while displaying heightened trading activity in response to unanticipated variations in

24This result complements the findings of Nagel (2012) that VIX is a much more powerful predictor of future
returns than past returns are and of Nagel and Xu (2022) that subjective risk premia depend on investors’ risk
perception rather than following a simple anti-cyclical pattern.
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corporate profitability. Notably, our model generates subjective risk premia that increases with

uncertainty, alongside objective risk premia that are accentuated by adverse news and attenuated

by favorable news.

The core findings of our study highlight the critical role played by two key factors in the

determination of equilibrium portfolio flows and risk premia: distinctions in investors’ ambiguity

attitudes and the learning process pertaining to fundamental variance. Under scenarios where all

agents exhibit ambiguity neutrality, equilibrium portfolio flows cease to exist. Moreover, in the

context of a known variance setting, the equilibrium subjective risk premium assumes a constant

value, leading to the persistence of static portfolios for agents. Unlike the case in which variance is

known, we show that learning about variance generates return predictability that can be exploited

by forward-looking investors.

To support our theoretical framework, we conduct an empirical analysis employing flow data

on Euro Stoxx 50 futures contracts. Our empirical results provide evidence indicating that agency

traders sell, and proprietary traders buy under increasing uncertainty. Additionally, we estab-

lish that the expected risk premium increases with uncertainty. These empirical findings provide

support for the theoretical predictions of our model, which posits that ambiguity-neutral market

participants engage in trading activities with ambiguity-averse, price-inelastic investors. Our re-

search underscores the importance of accounting for the effects of ambiguity aversion and learning

when jointly studying equilibrium asset prices and portfolio flows.
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A Proofs

Proof of Proposition 1

The portfolio problem of agents can be written as follows

max
θi

E
[
−1

γ
e−γi(W

i(1+r)+θi(d̃−p(1+r))

]
, (A.1)

where expectations are taken with respect to agents prior distributions of d̃ from (1) and (3) plus

the prior selection criterion in equation (7). Using the normality of d̃, the optimal portfolio weights

are:

θA =

{
0 if µA = P

µA−p(1+r)
γ(σ2+s2)

otherwise.
, θB =

µB − p(1 + r)

γ (σ2 + s2)
, (A.2)

Imposing market clearing, we obtain that in equilibrium θA ≥ 0 and furthermore

p =
1

1 + r
m− λ, (A.3)

where

λ =


1

1+r

(
κ
2s+ γ

2

(
σ2 + s2

))
if κ ≤ κ∗,

1
1+r

(
γ
(
σ2 + s2

)
σ2
)

if κ > κ∗.
with κ∗ ≡ γ σ

2 + s2

s
. (A.4)

Lemma A.1. Let λ̄A(σ) and λ̄B(σ) denote the iso-portfolios of agent A and B, respectively. For

all equilibrium values λ of the risk premium in equation (A.4), we have that ∂λ̄A(σ)/∂σ < ∂λ̄B/∂σ.

Proof. Let s = σ/
√
nt, with nt denoting the number of observations used to compute the dividend

mean m and its standard error s. From agents’ demand for the risky asset stated in equation (8)

and the definition of the risk premium λ = 1
1+rm − p, we derive the risk premium that agents

require for holding a fraction θi of the risky asset (the iso-portfolio line) and its derivative with

respect to the dividend volatility σ as

λ̄A =
κσ
√
nt

+ γθA
(
nt + 1

nt

)
σ2, λ̄B = γθB

(
nt + 1

nt

)
σ2, (A.5)

∂λ̄A

∂σ
=

κ
√
nt

+ 2γθA
(
nt + 1

nt

)
σ,

∂λ̄B

∂σ
= 2γθB

(
nt + 1

nt

)
σ. (A.6)
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We prove that along the equilibrium risk premium λ in equation (A.4) the slope of λ̄A is flatter

than the slope of λ̄B, i.e.,

∂λ̄A

∂σ
<

∂λ̄B

∂σ
. (A.7)

Using expressions (A.5)–(A.6), and market clearing, θB = 1− θA, this is equivalent to prove

κ
√
nt

+ 2γθA
(
nt + 1

nt

)
σ < 2γ(1− θA)

(
nt + 1

nt

)
σ, (A.8)

or, rearranging,

4γθA
(
nt + 1

nt

)
σ < 2γ

(
nt + 1

nt

)
σ − κ√

t
. (A.9)

We restrict our analysis to the region where both agents are in the market, σ >
√
nt

nt+1
κ
γ , and

substitute equilibrium portfolios weights from equation (11) into the above inequality. This yields

2γ

(
nt + 1

nt

)
σ − 2

( √
ntκ

(nt + 1)σ

)(
nt + 1

nt

)
σ < 2γ

(
nt + 1

nt

)
σ − κ
√
nt
, (A.10)

2
κ
√
nt

>
κ
√
nt
, (A.11)

which is true for κ > 0 and nt <∞ independently of σ.

Proof of Proposition 2

We first solve for the equilibrium in a fictitious finite-horizon overlapping-generation economy with

horizon τ , and we then derive the equilibrium in the infinite horizon as limit for τ →∞.

Let pt,τ be the time t equilibrium price in a τ -period economy. As we see in what follows,

the equilibrium price is linear in mt independent of τ . When ambiguity-averse agents participate,

they will in equilibrium take long positions in the risky asset and the selected prior from Pt which

satisfies the max-min criterion (27) is always µAt = mt − κst. Hence, participating A-agents form

portfolios according to the belief µAt = mt − κst while Bayesian B-agents use the belief µBt = mt.

For ease of notation we use Eit to denote agent i’s conditional expectations at time t. The risky

asset demand θit,τ , i = A,B is

θit,τ =
Eit [pt+1,τ−1 + dt+1]−Rpt,τ
γVart [pt+1,τ−1 + dt+1]

, τ > t,

where we denoted by R ≡ (1 + r).
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Using the fact that pt,0 = 0 for all t, we can construct the equilibrium in a τ = 1 economy. In

this economy, when both agents participate

θit,1 =
Eit [dt+1]−Rpt,1
γVart [dt+1]

=
µit −Rpt,1
γσ2

(
nt+1
nt

) ,
where

dt+1 ∼i N
(
µit, σ

2

(
nt + 1

nt

))
, with µBt = mt and µAt = mt − κ

σ
√
nt
. (A.12)

Imposing market clearing we have

pt,1 =
1

R
mt − Λt,1, (A.13)

where the risk premium Λt,1 is

Λt,1 =
κ

2
gt,1σ +

γ

2
ft,1σ

2, with gt,1 =
1

R

1
√
nt
, and ft,1 =

1

R

(
nt + 1

nt

)
. (A.14)

In a τ = 2 period economy, agents demand is

θit,2 =
Eit [pt+1,1 + dt+1]−Rpt,2
γVart [pt+1,1 + dt+1]

, (A.15)

where pt+1,1 is given by equation (A.13). Because

mt+1 =
nt

nt + 1
mt +

1

nt + 1
dt+1,

using the predictive distribution (A.12) we obtain

EBt [pt+1,1 + dt+1] =

(
1 +

1

R

)
mt − Λt+1,1, (A.16)

EAt [pt+1,1 + dt+1] =

(
1 +

1

R

)
mt −

(
1 +

1

R(nt + 1)

)
κ
σ
√
nt
− Λt+1,1, (A.17)

Vart [pt+1,1 + dt+1] =

(
1 +

1

R(nt + 1)

)2(nt + 1

nt

)
σ2, (A.18)

with Λt+1,1 defined in equation (A.14). Substituting in equation (A.15) and imposing market

clearing we obtain

pt,2 =

(
1

R
+

1

R2

)
mt − Λt,2, (A.19)

where

Λt,2 =
κ

2
gt,2σ +

γ

2
ft,2σ

2, (A.20)
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with

gt,2 =
1

R

(
1 +

1

R(nt + 1)

)
1
√
nt

+
1

R2

1√
nt + 1

,

ft,2 =
1

R

(
1 +

1

R(nt + 1)

)2(nt + 1

nt

)
+

1

R2

(
nt + 2

nt + 1

)
.

Following similar steps, we can show that for a generic τ the equilibrium price is:

pt,τ =
τ∑
i=1

1

Ri
mt − Λt,τ , (A.21)

where

Λt,τ =
κ

2
gt,τσ +

γ

2
ft,τσ

2, (A.22)

with

gt,τ =
τ∑
j=1

1

Rτ+1−j

(
1 +

1

nt + τ − j + 1

j−1∑
i=1

1

Ri

)
1√

nt + τ − j
,

ft,τ =

τ∑
j=1

1

Rτ+1−j

(
1 +

1

nt + τ − j + 1

j−1∑
i=1

1

Ri

)2(
nt + τ − j + 1

nt + τ − j

)
.

Taking the limit as τ →∞ we obtain

gt = lim
τ→∞

gt,τ =
∞∑
j=1

1

Rj

(
1 +

1

r(nt + j)

)
1√

nt + j − 1
, (A.23)

ft = lim
τ→∞

ft,τ =
∞∑
j=1

1

Rj

(
1 +

1

r(nt + j)

)2 nt + j

nt + j − 1
. (A.24)

Hence the equilibrium price in the infinite-horizon overlapping generation economy is

pt =
1

r
mt − Λt, (A.25)

with

Λt = gt
κ

2
σ + ft

γ

2
σ2, (A.26)

and gt, and ft given in equations (A.23) and (A.24), respectively.
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To determine equilibrium weights we start from the expression for the agents’ optimal asset

demand

θit =
Eit [pt+1 + dt+1]− (1 + r)pt

γVart [pt+1 + dt+1]
, i = A,B. (A.27)

Direct computation using the equilibrium price in equation (A.25) yields:

EBt [pt+1 + dt+1] =

(
1 +

1

r

)
mt − gt+1

κ

2
σ − ft+1

γ

2
σ2,

EAt [pt+1 + dt+1] =

(
1 +

1

r

)
mt −

(
1 +

1

r(nt + 1)

)
κ
σ
√
nt
− gt+1

κ

2
σ − ft+1

γ

2
σ2,

Varit[pt+1 + dt+1] =

(
1 +

1

r(nt + 1)

)2(nt + 1

nt

)
σ2, i = A,B.

Substituting these expressions in equation (A.27), we obtain the following equilibrium weights:

θAt =
−1+r

r
1√
nt
κσ + [(1 + r)gt − gt+1] κ2σ + [(1 + r)ft − ft+1] γ2σ

2

γ
(

1 + 1
r(nt+1)

)2 (
nt+1
nt

)
σ2

=
1

2
− κ

2γ

(
r
√
nt

1 + r(nt + 1)

)
1

σ

and

θBt =
[(1 + r)gt − gt+1] κ2σ + [(1 + r)ft − ft+1] γ2σ

2

γ
(

1 + 1
r(nt+1)

)2 (
nt+1
nt

)
σ2

=
1

2
+

κ

2γ

(
r
√
nt

1 + r(nt + 1)

)
1

σ

B Predictive distribution of the dividend when the variance is

unknonw

Agents of generation t base their belief about the dividend dt+1, on which their terminal wealth

depends, on the prior information they receive in their first period of life. This is characterized by

the state variables mt, bt, nt, and νt. If the precision φ = 1/σ2 has a truncated Gamma distributed

with shape parameter b and ν degrees of freedom is, its density is given by

p(φ|b, ν) =
1

C(bt, νt;φ, φ)
φ
νt
2
−1e−φ

bt
2 1[φ,φ], φ ∼ TG

[
νt
2
,
bt
2

;φ, φ

]
, 0 < φ < φ <∞, (B.1)
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with 1 the indicator function and

C(bt, νt;φ, φ) =

∫ φ

φ
φ
νt
2
−1e−φ

bt
2 dφ =

(
bt
2

)− νt
2
[
Γ

(
νt
2
, φ
bt
2

)
− Γ

(
νt
2
, φ
bt
2

)]
. (B.2)

The function Γ(x, y) is the upper incomplete Gamma function defined as

Γ(x, y) =

∫ ∞
y

φx−1e−φdφ.

Definition B.1 (Dampened t-distribution). Let φ be a truncated Gamma random variable,

φ ∼ TG
[ν

2
,
ν

2
;φ, φ

]
, 0 < φ < φ ≤ ∞,

and x a conditionally Normal random variable with mean 0 and precision φ,

x ∼ N (0, 1/φ).

Then, the distribution of x is a “dampened t-distribution” with ν degrees of freedom

x ∼ tDν [φ, φ],

and its density is given by

f(x) =

∫ φ

φ

√
φ

2π
e−

1
2
φx2 1

C(ν, ν;φ, φ)
φ
ν
2
−1e−φ

ν
2 dφ

=
1

C(ν, ν;φ, φ)

√
1

2π

∫ φ

φ
φ
ν+1
2
−1e−φ

ν
2
− 1

2
φx2dφ

=

√
1

2π

C(ν(1 + x2

ν ), ν + 1;φ, φ)

C(ν, ν;φ, φ)
,

with C(·, ·;φ, φ) a normalizing constant defined in equation (B.2).

Since φ has finite support and is especially bound away from 0, the fat tails of x are dampened.

As a consequence, its moment generating function is finite, and, thus, all its moments exist and

are finite, see Bakshi and Skoulakis (2010) for a proof. If φ→ 0 and φ→∞, the distribution of x

becomes a Student-t distribution. In this limit, fat tails emerge and moments of order ≥ ν do not

exist.

Definition B.2 (Non-standardized dampened t-distribution). A random variable y has a

non-standardized dampened t-distribution with mean m, shape b, variance scale parameter v2, ν
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degrees of freedom and truncation bounds φ, φ,

y ∼ tDν [m, b, v2;φ, φ]

if

y|φ ∼ N (µ, v2/φ),

φ ∼ TG

[
ν

2
,
b

2
;φ, φ

]
, f(φ) =

1

C(b, ν;φ, φ)
φ
ν
2
−1e−

b
2
φ1[φ,φ].

Then the random variable y−µ
v
√
b/ν

has a dampened Student-t distribution, as per Definition B.1, with

truncation bounds at b
νφ and b

νφ,

y − µ
v
√
b/ν
∼ tDν

[
b

ν
φ,
b

ν
φ

]
.

Lemma B.1. Consider a subjective Normal/inverse-Gamma prior for µ and σ with parameters

µit, bt, nt, and νt. The predictive distribution of dt+1 is then a dampened Student-t,

dt+1|µit, bt, nt, νt ∼i tDν
[
µit, bt,

nt + 1

nt
;φ, φ

]
.

Proof: With the given subjective prior, the predictive density of dt+1 is conditionally normal

f(dt+1|φ, µit, nt) =

∫ +∞

−∞
f(dt+1|µt, φ)p(µ|φ, µit, nt)dµ

=

∫ +∞

−∞

√
φ

2π
e−

1
2
φ(dt+1−µ)2

√
ntφ

2π
e−

1
2
ntφ(µ−µit)2dµ

=

√
ntφ

(nt + 1)2π
e
− 1

2
ntφ

(nt+1)
(dt+1−µit)2

∫ +∞

−∞

√
(nt + 1)φ

2π
e
− 1

2
(nt+1)φ

(
µ− dt+1−ntµ

i
t

nt+1

)2

dµ

=

√
ntφ

(nt + 1)2π
e
− 1

2
ntφ

(nt+1)
(dt+1−µit)2 ,

dt+1|φ, µit, nt ∼ N
(
µit,

nt + 1

ntφ

)
.

36



The unconditional density of dt+1 can be determined from the conditional density by integrating

out the precision φ.

f(dt+1|µit, bt, nt, νt) =

∫ φ

φ
f(dt+1|φ, µit, nt)p(φ|bt, nt)dφ,

=

∫ φ

φ

√
ntφ

(nt + 1)2π
e
− 1

2
ntφ

(nt+1)
(dt+1−µit)2 1

C(bt, νt;φ, φ)
φ
νt
2
−1e−φ

bt
2 dφ,

=
1

C(bt, νt;φ, φ)

√
nt

(nt + 1)2π

∫ φ

φ
φ
νt+1

2
−1e
−φ bt

2
− 1

2
ntφ

(nt+1)
(dt+1−µit)2dφ,

=

√
nt

(nt + 1)2π

C(bt + nt
(nt+1)(dt+1 − µit)2, νt + 1;φ, φ)

C(bt, νt;φ, φ)
, dt+1 − µit√

nt+1
nt

√
bt
νt

 |µit, bt, nt, νt ∼ tDνt

[
bt
νt
φ,
bt
νt
φ

]
,

dt+1|µit, bt, nt, νt ∼ tDνt

[
µit, bt,

nt + 1

nt
;φ, φ

]
.

B.1 Expected utility when variance is unknown

In the main text we argue that the equilibrium price in an infinite horizon OLG with unknown

variance is linear in mt and, hence, when both types of generation-t agents participate, their priors

about µ are characterized by µAt = mt − κst and µBt = mt. In this section of the appendix we

show that the model actually features an equilibrium price linear in mt. The selected A-prior is

consequently at the lower bound of the confidence interval Pt.

In Lemma B.1 above, we show that the distribution of dt+1 follows a non-standardized dampened

Student-t with state variables mt, bt and nt. The expected utility of agents of type i with µ prior

µit is then obtained by integration of the agents’ CARA utility of t+ 1 wealth over the dampened

t-density of the dividend

Eit[u(W i
t+1)] =

∫ ∞
−∞

Eit[u(W i
t+1)|φ]p(φ|bt, νt)dφ, (B.3)

with p(φ|bt, νt) the density of the truncated Gamma distribution stated in equation (B.1). The

expected utility conditional on φ is calculated by integrating agents CARA utility over the condi-
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tionally normal density of the µ prior µit

Eit[u(W i
t+1)|φ] = −1

γ
e−γ(1+r)(Wt−θpt)

√√√√ φ

2
(
nt+1
nt

)
π

∫ ∞
−∞

e
−γθit(µit+eit+1+pt+1)− 1

2
φ

(nt+1
nt )

(eit+1)2

deit+1.

(B.4)

with eii+1 = dt+1 − µit denotes agents i’s dividend surprise.

Proposition B.1. Suppose the equilibrium price pt is linear in mt with

pt =
1

r
mt − λ(bt, nt, νt),

and let ∆µit = mt − µit. Then expected utility of agents i is given by

Eit(u(Wt+1)) =
1

C(bt, νt;φ, φ)

∫ φ

φ
Eit(u(Wt+1)|φ,mt, nt, νt)φ

νt
2
−1e−φ

bt
2 dφ (B.5)

Eit(u(Wt+1)|φ,mt, nt, νt) = −1

γ

√
ntφ

(nt + 1)2π

∫ ∞
−∞

e−γW
i
t+1e

− 1
2

ntφ
(nt+1)

(dt+1−µit)2ddt+1

= −1

γ
e−γ(1+r)(W i

t−θpt)

√
ntφ

(nt + 1)2π

∫ ∞
−∞

e−γθ(dt+1+pt+1)e
− 1

2
ntφ

(nt+1)
(dt+1−µit)2ddt+1

= −1

γ
exp

{
−γ
[
(1 + r)(Wt + θΛ(bt, nt, νt))− θ

(
1 +

1

rnt+1

)
∆µit

]}
×

√
ntφ

(nt + 1)2π

∫ ∞
−∞

exp

{
−γθ

[(
1 +

1

rnt+1

)
eit+1 − Λ(bt+1, nt+1, νt+1)

]}
× exp

{
−1

2

ntφ

(nt + 1)
(eit+1)2

}
deit+1

eit+1 = dt+1 − µit
bt+1 = bt +

nt
nt+1

(∆µit − eit+1)2

nt+1 = nt + 1

νt+1 = νt + 1

Expected utility is independent of mt. In particular, for ambiguity averse agents A, the largest

possible value for ∆µAt minimizes expected utility, thus, the selected prior is µAt = mt − κst.

Proof: Substitute the respective densities, the linear price function and the budget constraint

(25) in the agents’ CARA utility and simplify the integral. Regarding (1 + r)1
rmt = 1

rmt, the

contribution of mt to pt and its contribution to pt+1 cancel.

38



The boundedness of this variance implies boundedness of the risk premium in equilibrium. This

guarantees that the equilibrium price pt+1 is finite, and hence the integral in equation (B.5) is well

defined.

C Information leakage and learning about mean and variance:

Technical details

In this section of the appendix we describe how information leakage is modeled, how generation

t − 1 posteriors are first affected by leakage and how they are then updated with the observed

dividend dt. Throughout the appendix we make use of basic principles of Bayesian data analysis,

see e.g., the textbook of Gelman et al. (2020).

The information set of generation t− 1 about the unknown dividend mean µ and the precision

φ is given by their posteriors in equations (14) and (15). When these posteriors are handed over to

generation t, information is lost. We model information leakage in form of shocks that add noise

to these posteriors before they are updated by generation t upon observation of the dividend dt.

The generation t− 1 posterior of µ with nt−1 (effective) observations is√
nt−1φ

2π
e−

1
2
ntφ(µ−mt−1)2 , µ|φ ∼ N

(
mt−1,

1

nt−1φ

)
.

This posterior is shocked with an additive Gaussian shock with mean 0 and variance ( 1
ω − 1) 1

nt−1φ

with ω ∈ (0, 1]. This shock is independent of the estimation error in µ and increases the variance of

the posterior by a factor 1
ω ≥ 1. The post leakage µ-prior, which is passed to generation t is then

µ+|φ,mt−1, nt−1 ∼ N
(
mt−1,

1

ω

1

nt−1φ

)
, ω ∈ (0, 1].

This noisy posterior is then updated with the information contained in the dividend dt. The

following posterior is transferred to both types of agents of generation t in form of the updated
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state variables mt and nt

p(µ|dt, φ,mt−1, nt−1) ∝ f(dt|µ, φ)p(µ+|φ,mt−1, nt−1, ω)

=

√
φ

2π
e−

1
2
φ(dt−µ)2

√
ωnt−1φ

2π
e−

1
2
ωnt−1φ(µ−mt−1)2

=

√
ωnt−1φ

(ωnt−1 + 1)2π
e
− 1

2

ωnt−1φ

(ωnt−1+1)
(dt−mt−1)2

×
√

(ωnt−1 + 1)φ

2π
e
− 1

2
(ωnt−1+1)φ

(
µ− dt+ωnt−1mt−1

ωnt−1+1

)2

∝
√

(ωnt−1 + 1)φ

2π
e
− 1

2
(ωnt−1+1)φ

(
µ− dt+ωnt−1mt−1

ωnt−1+1

)2
,

=

√
ntφ

2π
e−

1
2

(nt)φ(µ−mt)2

where

µ|dt, φ,mt−1, nt−1 ∼ N
(
mt,

1

ntφ

)
,

et = dt −mt−1,

mt = mt−1 +
1

nt
et,

nt = ωnt−1 + 1.

To update also the φ prior with the t dividend, we must first determine the distribution of dt

conditional of φ.

f(dt|φ,mt−1, nt−1) =

∫ +∞

−∞
f(dt|µ, φ)p(µ+|φ,mt−1, nt−1)dµ

=

∫ +∞

−∞

√
φ

2π
e−

1
2
φ(dt−µ)2

√
ωnt−1φ

2π
e−

1
2
ωnt−1φ(µ−mt−1)2dµ

=

√
ωnt−1φ

(ωnt−1 + 1)2π
e
− 1

2

ωnt−1φ

(ωnt−1+1)
(dt−mt−1)2

∫ +∞

−∞

√
(ωnt−1 + 1)φ

2π
e
− 1

2
(ωnt−1+1)φ

(
µ− dt−ωnt−1mt−1

ωnt−1+1

)2
dµ

=

√
ωnt−1φ

(ωnt−1 + 1)2π
e
− 1

2

ωnt−1φ

(ωnt−1+1)
(dt−mt−1)2

,

where dt|φ,mt−1, nt−1 ∼ N
(
mt−1,

ωnt−1+1
ωnt−1φ

)
.

Information leakage regarding the posterior of the precision φ of generation t−1 is modeled as a

multiplicative shock 1/ωηφt−1 that is generalized-beta distributed (see Bakshi and Skoulakis, 2010,

equation (35)), leading to a posterior denoted φ+, that is again a Gamma distribution truncated
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at the same bounds,

φ+|bt−1, νt−1 ∼ TG

[
ω
νt−1

2
, ω
bt−1

2
;φ, φ

]
, 0 < φ < φ <∞.

Updating with dt leads to the posterior which is transferred to the agents of generation t in the

form of bt and νt.

p(φ|dt,mt−1, bt−1, nt−1, νt−1;φ, φ) ∝ f(dt|φ,mt−1, nt−1)p(φ+|bt−1, νt−1;φ, φ),

=

√
ωnt−1φ

(ωnt−1 + 1)2π
e
− 1

2

ωnt−1φ

(ωnt−1+1)
(dt−mt−1)2

× 1

C(bt−1, ωνt−1;φ, φ)
φ
ωνt−1

2
−1e−φω

bt−1
2 1[φ,φ],

∝ φ
ωνt−1+1

2
−1e
−φ
(
ω
bt−1

2
+ 1

2

(dt−mt−1)
2ωnt−1

ωnt−1+1

)
1[φ,φ],

∝ 1

C(bt, νt;φ, φ)
φ
νt
2
−1e−φ

bt
2 1[φ,φ],

φ|dt, bt−1,mt−1, nt−1, νt−1;φ, φ ∼ TG

[
νt
2
,
bt
2

;φ, φ

]
,

et = dt −mt−1,

bt = ωbt−1 + ω
nt−1

nt
e2
t ,

nt = ωnt−1 + 1,

νt = ωνt−1 + 1.

When ω < 1 and t large, the effective number of observations nt and the degrees of freedom νt

converge to the same upper limit

lim
t→∞

nt = lim
t→∞

νt ≡ n =
1

1− ω
.

We implement a desired asymptotic effective number of observations n by choosing

ω =
n− 1

n
.

D Numerical procedure to determine the equilibrium

Both types of agents of generation t know the state variables mt, bt, nt and νt from the “information

processing” step. Generation-t agents anticipate that information gets lost, when information is
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transferred to generation t+1. Since this generation buys the asset from generation-t agents, agents

of generation t must anticipate the demand of generation-t+ 1 agents and the price pt+1.

Let ∆µit denote the agents i’s adjustment to mt when forming beliefs about the dividend mean,

that is ∆µit = mt − µit. The density of the dividend dt+1 under the subjective prior of agents i is

dampened t-distributed

dt+1 ∼i tDνt

[
µit, bt,

nt + 1

nt

]
,

dt+1 − µit√
nt+1
nt

√
bt
νt

∼i tDνt

[
bt
νt
φ,
bt
νt
φ

]
.

The individual surprise eit+1 is defined relative to the subjective expectation µit

eii+1 = dt+1 − µit,
eii+1√
nt+1
nt

√
bt
νt

∼i tDνt

[
bt
νt
φ,
bt
νt
φ

]
.

While agents have subjective beliefs about the distribution of dt+1, they agree on the way in-

formation is handed over to the next generation (including the information leakage during the

transition of information) and how the next generation will learn from observing dt+1. We express

the mechanics of updating the state variables in terms of eit+1

nt+1 = ωnt + 1,

νt+1 = ωνt + 1,

mt+1 =
ωnt

ωnt + 1
mt +

1

ωnt + 1
dt+1,

= mt −
1

nt+1
∆µit +

1

nt+1
eit+1,

bt+1 = ωbt +
1

2

ωnt
ωnt + 1

(mt − dt+1)2,

= ωbt +
ωnt
nt+1

(∆µit − eit+1)2.

We assume that t is large, so nt and νt have already reached their asymptotic limit n. We conjecture

that in an economy that lasts for τ generations the price can be written as a function of the state

variables pt = h(τ)mt − Λ(bt, τ) and all agents agree on this functional form. For τ → ∞, we can
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write pt+1 as

pt+1 =
1

r
mt+1 − Λ(bt+1),

=

(
1

r
mt −

1

rn
∆µit +

1

rn
eit+1

)
− Λ(bt+1),

=

(
1

r
mt −

1

rn
∆µit +

1

rn
eit+1

)
− Λ(bt+1).

Under this conjecture, the budget constraint becomes independent of mt and only depends on Λ(bt)

and Λ(bt+1).

W i
t+1(θ) = (W i

t − θpt)(1 + r) + θ(dt+1 + pt+1),

= (W i
t − θ

(
1

r
mt − Λ(bt)

)
)(1 + r)

+ θ

(
1 +

1

r

)
mt − θ(1 +

1

rn
∆µit) + θ

(
1 +

1

rn
eit+1

)
− θΛ(bt+1),

= (W i
t + θΛ(bt))(1 + r)− θ

(
1 +

1

rn
∆µit

)
+ θ

(
1 +

1

rn
eit+1

)
− θΛ(bt+1).

The expected utility of agents i is then

Ei(u(W i
t+1(θ))) =

1

C(bit, n;φ, φ)

∫ φ

φ
Ei(u(W i

t+1(θ)|φ, bt)φ
n
2
−1e−φ

bt
2 dφ,

Ei(u(W i
t+1(θ))|φ, bt) =

= −1

γ
exp

{
−γ
[
(1 + r)(Wt + θΛ(bt))− θ

(
1 +

1

rn

)
∆µit

]}
×

√
nφ

(n+ 1)2π

∫ ∞
−∞

exp

{
−γθ

[(
1 +

1

rn

)
eit+1 − Λ(bt+1)

]}
× exp

{
−1

2

nφ

(n+ 1)
eit+1

2
}
deit+1

bt+1 = ω
(
bt + (∆µit − eit+1)2

)
.

Since eit+1 is dampened t, Λ(bt) ≥ 0, and limbt→∞ Λ(bt) <∞, the expected utility is well defined.
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The marginal utility is computed as

dEi(u(W i
t+1(θ))|bt)
dθ

=
1

C(bit, n;φ, φ)

×
∫ φ

φ

dE(u(W i
t+1(θ))|φ, bt)
dθ

φ
n
2
−1e−φ

bt
2 dφ,

dEi(u(Wt+1(θ))|φ, bt)
dθ

= −γ
[
(1 + r)Λ(bt)−

(
1 +

1

rn

)
∆µit

]
Ei(u(Wt+1(θ))|φ, bt)

+
1

γ
exp

{
−γ
[
(1 + r)(Wt + θΛ(bt))− θ

(
1 +

1

rn

)
∆µit

]}
×

√
nφ

(n+ 1)2π

∫ ∞
−∞

γ

[(
1 +

1

rn

)
eit+1 − Λ(bt+1)

]
× exp

{
−γθ

[(
1 +

1

rn

)
eit+1 − Λ(bt+1)

]}
× exp

{
−1

2

nφ

(n+ 1)
eit+1

2
}
deit+1,

bt+1 = ω(bt +
(
∆µit − eit+1)2

)
We determine the function Λ(bt) as a fixed point via value function iteration. When both agents

invest at a given bt, they take Λ(bt) as given and optimize their holding θit via the first-order

condition dEi(u)
dθi

= 0. The equilibrium risk premium Λ(bt) satisfies market clearing, θB(bt)+θA(bt) =

1.

E Learning about variance vs. stochastic volatility

One might be tempted to argue that a model in which subjective variance is endogenously time-

varying due to learning, as in the model of Section 3, is observationally equivalent to a model with

observable stochastic volatility. Although both models exhibit time-variation in volatility, they

have starkly different implication for equilibrium flows. In fact, in a model with learning, a revision

in the estimated variance following a new dividend observation can both increase or decrease the

standard error of the mean. This is because a change in the estimated variance implies a change

in the perceived information quality of all historically observed dividends. In contrast, in a model

with stochastic volatility, any new dividend observation can only reduce the standard error of the

mean and hence its confidence interval. Because variance is known, albeit time-varying, a change

in variance cannot affect the quality of past information. Therefore, in the limit with known and

stochastic volatility the confidence interval of the mean collapses to a singleton and the effect of

ambiguity on portfolio flows vanishes.

44



To illustrate this point, suppose the dividend process dt is iid with unknown and constant mean

µ and time-varying but observable variance σ2
t . In this setting, the Generalized Least Square (GLS)

estimate of the mean mt from a history of t observations is (see, e.g., Chapter 9 in Greene, 2020)

mt =
t∑
i=1

widi, with wi =

1
σ2
i∑t

i=1
1
σ2
i

, (E.1)

where the weight wi represents the precision of each observation and s2
t =

(∑t
i=1

1
σ2
i

)−1
the squared

standard error of the mean.25

At time t + 1, the updated values of the mean and standard error, after observing the new

realized dividend dt+1 and variance σ2
t+1, are

mt+1 = (1− wt+1)mt + wt+1dt+1, wt+1 =

1
σ2
t+1

1
s2t

+ 1
σ2
t+1

=
s2
t

s2
t + σ2

t+1

(E.2)

1

s2
t+1

=
1

s2
t

+
1

σ2
t+1

. (E.3)

Equation (E.3) shows that with stochastic but known variance, the updated standard error st+1

does not depend on the new dividend realization dt+1 and that st+1 ≤ st. Hence, new observations

can only reduce the standard error of the mean. Because the standard error controls the size of

the set of priors Pµt = [m − κst,m + κst] in equation (E.3), in a model with stochastic volatility

a new dividend observation always reduces ambiguity. Dividends dt+1 observed in times of high

volatility σt+1 receive a tiny weight wt+1 in the updated mean mt+1 and only marginally reduce

the standard error st+1.

25Because dividend realizations are independent, the variance of mt is given by

s2t = var(mt) =

t∑
i=1

w2
i var(di)︸ ︷︷ ︸

=σ2
i

=

 1∑t
i=1

1
σ2
i

2
t∑
i=1

[(
1

σ2
i

)2

σ2
i

]
=

1∑t
i=1

1
σ2
i

.
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Sanford, A., Sankaran, H., Sarkar, A., Sarno, L., Scaillet, O., Scharnowski, S., Schenk-Hoppé,
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