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Abstract

An optimal tax and borrowing plan determines the marginal cost of servicing gov-

ernment debt, p1, and makes the government’s debt risk-free. An option to default

restricts debt capacity. Optimal debt-GDP ratio dynamics are driven by 1) a primary

deficit, 2) interest payments, 3) GDP growth, and 4) hedging costs. Hedging influ-

ences debt capacity and debt transition dynamics. For plausible parameter values, we

make comparative dynamic quantitative statements about debt-GDP ratio transition

dynamics, debt capacity, and how long it would take our example economy to attain

that calibrated equilibrium debt capacity.
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1 Introduction

What is a maximum sustainable government debt-to-GDP ratio? Under a good policy, how

long should it take to attain that limit? How costly is it for a government to service its debt

and how do costs depend on today’s debt-GDP ratio? Should a government plan to borrow

more when, as in the US today, interest rates on government debt are lower than prospective

GDP growth rates? Under an optimal policy, how much would US tax rates eventually have

to rise in order to finance the U.S. 123% debt-GDP in Q4 2021?1

To answer such questions, we construct a tractable stochastic continuous-time model

of government debt and taxes. To highlight model components that we nickname A, B,

C, and D, we call it an ABCD model. The country’s exogenous (potential) output/GDP

process follows a geometric Brownian motion (GBM) process2 driven by idiosyncratic and

systematic shocks. At each point in time there is a complete set of competitively priced one-

time-increment-ahead Arrow securities that fully span all one-time-increment-ahead state

contingencies, represented in the manner of (Merton, 1971, Black and Scholes, 1973).

We capture distortionary taxes via a convex deadweight loss function as in Barro’s de-

terministic model. As in Eaton and Gersovitz (1981), the government can default on its

debt. Upon default, the government’s debt balance drops to zero, output decreases, and

the government permanently loses access to the debt market: thereafter it must always set

its primary budget surplus to zero. It might also face a more adverse tax distortion func-

tion.3 As in Thomas and Worrall (1988), Worrall (1990), Kehoe and Levine (1993), and

Ray (2002), adverse continuation values after default deter a borrower from reneging on

its debt and bounds its sustainable debt from above.4 Credit constraints that shape the

government’s debt capacity emerge endogenously as a consequence of our no-commitment-

to-repay assumption.5 The final component of our ABCD structure is a Discount rate of

the representative household that is larger than that of sovereign creditors. This assumption

puts a non-zero drift into optimal debt-GDP ratio dynamics.

1This number is from Fred at https://fred.stlouisfed.org.
2The GBM process is the continuous-time counterpart of the endowment process used in the classic

equilibrium asset-pricing and cost-of-business-cycle models: (Lucas, 1978, 1987).
3Our main qualitative results are robust to the detailed specification of punishments for default. The key

is that default is costly and hence the government faces a consequence from default. Costly default supports
a debt capacity. Otherwise, optimal debt capacity would be zero as shown by Bulow and Rogoff (1989).

4Our model shares some of the structure of the simple villager-money-lender model that Ljungqvist and
Sargent (2023, ch. 22) use to introduce some of the ideas in the closed economy model of Kocherlakota
(1996b) that builds on and reinterprets Thomas and Worrall (1988).

5Our model emphasizes effects of financial constraints on sovereign finance, in the same spirit as Bolton
(2016), Bolton and Huang (2018), and Rebelo, Wang, and Yang (2021).

1



Starting from the B environment from Barro (1979), our C, A, and D components,

respectively, add an option like Eaton and Gersovitz (1981) for the government to default on

its debt, complete markets and the ability to hedge government risks by paying appropriate

risk premia, and a representative household that is more impatient than creditors, as in

Aguiar and Amador (2021).6

A household’s optimal value function is as P pB, Y q “ ppbqY , where Y is GDP, B is

government debt, and b “ B{Y . The marginal cost ´PBpB, Y q “ ´p1pbq of servicing debt,

which we refer to as marginal p, motivates the title of this paper. A government optimally

smooths a representative household’s tax burdens over time by equating the marginal cost

of taxing it with the marginal benefit of using tax proceeds to service government debt. The

government in Barro (1979) solves a discounted deadweight loss minimization problem. But

the structure of our model instead directs a government to maximize a risk-adjusted present

value of total cashflow payouts to the household.7

Working in continuous time facilitates sharp explicit characterizations of debt limits and

debt dynamics.8 Two conditions determine a maximum sustainable risk-free debt-to-GDP

ratio b: 1.) the government’s indifference condition between defaulting and servicing its debt

induced by its limited commitment, and 2.) a zero-drift condition for the debt-GDP ratio b

at debt capacity b that boils down to a Gordon growth valuation formula at a steady state

b.9 If we withhold our component C: the limited-commitment debt-market participation

constraint, we retrieve a stochastic version of Barro’s that shares his commitment-to-repay

assumption. That model predicts debt capacities that we think are implausibly high, 10-15

times GDP.

Another difference from Barro (1979) is that, while in our model net government debt

6While there is no default in equilibrium in our model, the default option induces a limited-commitment
constraint. Outcomes in our model differ from sovereign debt models with limited commitment constructed
by Eaton and Gersovitz (1981). Aguiar and Amador (2021).

7In Barro (1979), the household’s value maximization problem is equivalent to the tax distortion cost
minimization problem because the government fully commits to repay its debt and output is exogenous.
Therefore, the solution in Barro (1979) is indeed welfare maximizing. However, in our model, we have to
work with the value maximization problem because the government’s limited commitment to repay its debt
makes output and debt capacity be endogenous. We cannot simply follow Barro (1979) to solve the distortion
cost minimization problem.

8DeMarzo, He, and Tourre (2021) construct a continuous-time sovereign-debt model that generates equi-
librium debt ratcheting. Rebelo, Wang, and Yang (2021) construct a continuous-time sovereign-debt model
in which a country’s degree of financial development, defined as how easily it can issue debt denominated
in domestic currency in international capital markets, generates “debt intolerance” in the sense of Rogoff,
Reinhart, and Savastano (2003).

9The zero-drift condition at b is an equilibrium argument based on local changes. The Gordon growth
model at the steady state is a forward-looking present value calculation argument for the determination of
b. They are equivalent. A non-zero drift of b at b would be inconsistent with the notion of debt capacity.
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continues to be risk free as it is in Barro’s model, it nevertheless bears a risk premium because

the revenue stream that ultimately funds it is stochastic and must be insured. For trading

a macro-security proposed by Shiller (1994) as well as other state-contingent securities, the

government pays an insurance bill to insure itself against risk in GDP growth rates. That

insurance bill appears in the debt transition equation and leads to an adjustment of an

“r ´ g” term featured by Blanchard (2019) and Mehrotra and Sergeyev (2021). We adopt

a “small open economy” assumption that there is an exogenous stochastic discount factor

(SDF) process that is not affected by the government’s tax and borrowing policy.10 How

government debt is evaluated in complete markets settings is studied empirically by Jiang,

Lustig, Van Nieuwerburgh, and Xiaolan (2019).

Thus, important features of our complete-market formulation are that 1.) the optimal

debt-GDP ratio b process evolves deterministically and 2.) a risk premium from the govern-

ment’s hedging has a first-order effect on the dynamics of the risk-free net debt-GDP ratio b.

Both features come from the government’s incentive to reduce the household’s tax burdens.

Applying Jensen’s inequality to the first-order condition for the tax rate that to smooth

taxes over time and across states implies that it is optimal to make the b process determin-

istic. By trading state-contingent securities the government can set to zero all contributions

to the volatility of b coming from both systematic and idiosyncratic risks. Optimal risk

management policies do set them to zero. It is costless to hedge idiosyncratic risk, but the

government has to pay a risk premium to hedge the systematic risk component of its GDP

shock by trading the security whose payouts are indexed to the GDP process that Shiller

(1994) described.11

Optimal debt-GDP ratio dynamics are driven by four forces: 1) the primary deficit, 2)

interest payments, and 3) GDP growth, and 4) hedging costs. We can summarize these

dynamics as follows:

change of b “ primary deficit ` interest rate (r) ˆ b ´ growth (g) ˆ b ` hedging cost (λ) ˆ b.

(1)

The first term on the right side of (1) is the scaled primary deficit, the difference between

government spending and tax revenues, divided by contemporaneous GDP. The second term

10We use a geometric Brownian motion process to model the SDF process. It resembles an endogenous
SDF that emerges from the equilibrium asset-pricing model of Lucas (1978) as well as the SDF processes that
appear in the portfolio-choice model of Merton (1971) and the option pricing model of Black and Scholes
(1973).

11States in which the return on the Shiller macro security is high are also ones in which investors’ marginal
utility (equivalently the SDF) is low. That is why the SDF and the return on the Shiller security are negatively
correlated.
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is a (scaled) interest payment that equals b times the risk-free rate r. The third term is debt

reduction due to GDP growth. These three terms are discussed, for example, by Blanchard

(2019) and Mehrotra and Sergeyev (2021). In addition to these three terms, (1) contains

a fourth term that emerges because the government optimally chooses to hedge its GDP

process in a way that ends up making b evolve deterministically. Hedging costs equal b times

the risk premium of a risky asset whose cash flow process is the same as the GDP process.

Combining the second and fourth terms in (1), we obtain:

change of b “ primary deficit ` Shiller’s macro security return (r ` λ) ˆ b ´ growth (g) ˆ b .

(2)

Evidently, the appropriate expected rate of return to multiply b in the b dynamics (2) is

not the risk-free rate that Blanchard (2019) used but instead the expected return on the

macro security of Shiller (1994). Because GDP is positively correlated with the aggregate

shock, the government buys GDP-indexed hedging contracts that require it to pay a contin-

uous premium payment of λ for each unit of debt outstanding. By making that trade, the

government eliminates its exposure to the aggregate shock and makes its net debt risk-free.

Relative to Barro (1979), a third difference is that our government is impatient as in

Aguiar and Amador (2021) and DeMarzo, He, and Tourre (2021). This implies that the

government’s discount rate exceeds the interest rate. This outcome is consistent with US

Treasury bonds bringing a convenience yield that lowers the US cost of borrowing below a

risk-free rate (Krishnamurthy and Vissing-Jorgensen, 2012).12 The government’s impatience

generates a backloaded tax schedule in which the tax rate increases over time. Fiscal deficits

scaled by GDP decrease over time and eventually become surpluses. The debt-GDP ratio

approaches a steady state that attains a maximum sustainable level b. If a government that

is impatient enough starts from a sufficiently small debt, it immediately increases b to an

optimal target level b ą 0 at which its marginal cost of servicing debt equals one. This is a

Blanchard (2019) “debt is cheap” response on steroids.13 Thus, optimal debt-GDP dynamics

reside in three disjoint regions:14 1.) a lump-sum debt issuance and payout region in which

12Since the US borrowing cost is lower than the risk-free rate, various investment projects and welfare
transfer programs, e.g., infrastructure, seem to become more attractive. One would still need to evaluate net
payoff streams for such projects, but with a lower cost of capital than the risk-free rate. Van Binsbergen,
Diamond, and Grotteria (2022) estimate the convenience yield to be about 40 basis points per annum.

13To construct an optimal fiscal plan, our government uses both singular control (lump-sum debt issuance
and payout to the household) and convex control (tax smoothing). The US government’s 2020 and 2021
covid stimulus checks and related transfers might be interpreted as examples of such payouts financed by
lump-sum debt issuances.

14Only at time 0 is only possible for the government to be in either the lump-sum debt issuance and payout
region or the default region. If starting in the lump-sum debt issuance and payout region where b ă b, the
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b ă b; 2.) a default region in which debt is unsustainable (b ą b); and 3.) an interior region

in which b P rb, bs. Because debt is inexpensive here it is optimal for the government to jump

its debt to b in the b ă b region. In honor of Blanchard (2019), we refer to this as the

Blanchard region. In the b P rb, bs interval, Barro tax-smoothing prevails. When b ě b, the

government balances its budget period by period.

An optimal policy is described by 1) a nonlinear first-order ordinary differential equation

(ODE) for the government’s (scaled) value ppbq; 2) a first-order condition for the optimal

tax rate τpbq; 3) a zero-drift condition and an indifference condition between defaulting and

not defaulting that characterize a steady state in which debt is at the maximum sustainable

level b; 4) value-matching and smooth-pasting conditions that characterize the lump-sum

debt issuance and payout boundary b. The upper debt-capacity boundary b is an absorbing

state and the lower lump-sum debt issuance boundary b is a reflecting barrier. These two

boundaries embody economic forces on the government’s maximum sustainable debt and its

policy for an initial lumpy payout to the household.15 To the best of our knowledge, we

are the first to derive a zero-drift condition that pins down an endogenous debt capacity.

We characterize the two boundaries in ways that show case how the continuous-time setting

allows us to represent underlying economic forces concisely.

The government’s marginal cost of servicing debt ´PBpB, Y q “ ´p1pbq measures how

much the household’s value decreases when government debt increases by one unit. Tax

distortions and limited commitment make ´p1pbq exceed one; ´p1pbq appears in both the first-

order condition for an optimal tax rate and in an equation that restricts the government’s

optimal value function.

A calibrated version of our ABCD model provides a back-of-the-envelope estimate of

how long it will take for the US to attain its maximum sustainable debt. Such calculations

can help us sort through current debates about debt sustainability. We tell how the time to

reach debt capacity critically depends on the prevailing interest rate and on a government’s

impatience.16 For fixed government impatience, the lower is the interest rate, the higher is a

government’s debt capacity. So in an economy in which the interest rate on government debt

is low, a government initially taxes less and borrows more, thereby making the debt-GDP

government increases its debt so that its b instantly equals b after time 0 and then the b process is dictated
by the law of motion in the interior region. If starting in the default region where b ą b, the government
immediately defaults and sets taxes to its expenditure so that its primary deficit is zero at all time.

15Our baseline model is amenable to extensions that will allow additional sources of randomness not
included in the baseline model – e.g., a Markov process for the government expenditures/GDP ratio rather
than the fixed ratio in the baseline model.

16Bohn (1998) described measures that the US took in response to the accumulation of debt during the
1970s and 1980s that are broadly consistent with dynamics prescribed by our model.
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ratio increase faster. In this situation, a direct debt-capacity effect dominates an indirect

(debt-GDP ratio) drift effect in shaping how long it takes to exhaust its debt capacity. This

logic underlies an argument that a government should borrow more when debt is cheap,

e.g., Blanchard (2019). A reader wanting a quick preview of how the ABCD components

combine to shape outcomes can skip ahead to subsection 6.2 and the all-in-one Figure 1.

By adopting a continuous-time contracting framework used by DeMarzo and Sannikov

(2006) and Sannikov (2008), Internet Appendix I.A formulates the dual to the government’s

optimal debt management problem. It takes the form of present-value-of-revenue maximiz-

ing government that confronts a household that has the option of forcing the government to

balance primary budget always.17 In the dual, a key state variable confronting the revenue-

maximizing government is a continuation value that the government has promised the house-

hold. A well-diversified planner maximizes the present value of cash flows subject to a stream

of incentive constraints on those promised values.

Related Literature. Our model assembles building blocks from Lucas and Stokey (1983)

(complete state-contingent debt) and Barro (1979) (tax distortion costs) in a tractable

continuous-time framework with an exogenously specified SDF along lines of Black and

Scholes (1973), Merton (1973), and Harrison and Kreps (1979). Our assuming an exogenous

stochastic discount factor process distinguishes our model markedly from Lucas and Stokey

(1983). In their model, a government’s tax and borrowing strategy affects the stochastic

discount factor process. That motivates their government to manipulate equilibrium debt

prices by altering distorting taxes. Like Lucas and Stokey (1983), we assume complete fi-

nancial markets that allow the government to issue fully state contingent debt.18 By staying

within the Barro tradition of an exogenous SDF process, we remove dynamic inconsisten-

cies that arise from bond-price-manipulation motives central to models in the Lucas-Stokey

tradition.19 We focus on implications of limited commitment for debt capacity and debt

dynamics.

Bohn (1995) valued government debt with an SDF like that of Lucas (1978). Bohn (1990)

studied how hedging with financial instruments shapes optimal fiscal policy of a risk-neutral

government in a stochastic reformulation of Barro (1979). A difference between our paper

and Bohn (1990) is that hedging costs play a key role in debt-GDP dynamics in our model.

17Ai and Li (2015) and Bolton, Wang, and Yang (2019) construct recursive contracts to cope with limited-
commitment problems in corporate finance.

18Our complete financial spanning setting eases analysis and exposition. We leave important extensions to
incomplete markets settings along the line of Aiyagari, Marcet, Sargent, and Seppälä (2002) for subsequent
research.

19Because the Barro (1979) model is deterministic, his SDF is an exponential function that decays at the
risk-free rate per unit of time.
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We extend Bohn’s insights by incorporating effects of default opportunities on debt dynamics

and sustainability. Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019) analyze how the

covariance between an intertemporal marginal rate of substitution and a primary government

surplus ought to affect the value of government debt.

Brunnermeier, Merkel, and Sannikov (2020, 2022) incorporate a bubble term within

a fiscal theory of the price level, develop a model of safe assets with a negative beta in

an incomplete-markets setting, and analyze implications for debt sustainability. Kocher-

lakota (2021) develops a model of government debt bubbles associated with tail risk in a

heterogeneous-agent incomplete-markets Aiyagari-Bewley-Huggett style model. Reis (2021)

studies debt capacity in a related model with a bubble on government debt. D’Erasmo,

Mendoza, and Zhang (2016) review the literature on government debt sustainability. Abel,

Mankiw, Summers, and Zeckhauser (1989) and Abel and Panageas (2022) analyze maxi-

mum budget-feasible government debt in overlapping generations models with perpetually

zero primary budget surpluses. Elenev, Landvoigt, Shultz, and Van Nieuwerburgh (2021)

construct a New Keynesian model that includes financial intermediation, risk premia, pro-

duction, fiscal policies, and conventional and unconventional monetary policies.20

In calling our model a p theory of taxes and government debt, we provoke an analogy

with a q theory of investment. A convex tax distortion cost that we take from Barro (1979)

serves as a counterpart to the convex capital adjustment cost in a q theory of investment,

e.g., Hayashi (1982). In q theory, an optimum condition sets marginal q, the marginal

value of capital, equal to the marginal cost of investing. In our p theory, an optimal fiscal

policy sets the marginal cost of taxing equal to the marginal cost of servicing government

debt, ´p1pbq. In a q theory, a firm’s asset is productive capital that generates a cash flow.

Government debt is both “backward” and “forward looking”: while it cumulates past primary

government deficits, it has to be serviced from prospective primary surpluses. Because it is

costly to adjust productive capital, marginal q exceeds one in q theory ,while the marginal

cost of servicing debt, ´p1pbq, exceeds one in our p theory because the prospective taxes

that will service government are distortionary. It is enlightening to watch our model unleash

forces that resemble ones that appear in the q-theories of costly capital stock adjustment of

Lucas and Prescott (1971), Hayashi (1982), and Abel and Eberly (1994). Tax distortions in

our model affect asset valuations and act in ways similar to the costs of capital adjustment

in the q theories.

20For other discussions of ‘r ´ g’ and debt sustainability, please see Barro (2020), Van Wijnbergen, Oli-
jslagers, and de Vette (2020), Aguiar, Amador, and Arellano (2021), Mian, Straub, and Sufi (2021), Reis
(2021), and Liu, Schmid, and Yaron (2021).
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2 The Setting

Time t P r0,`8q. Subject to a sequence of limited-commitment constraints, the government

wants an optimal taxation and financing plan. The government trades a complete set of

history-contingent securities. We extend Barro (1979) along three lines. First, we introduce

both idiosyncratic and systematic shocks that allow us to analyze how risks affect taxation

and debt management. Second, in the spirit of Thomas and Worrall (1988), Worrall (1990),

Kehoe and Levine (1993), Kocherlakota (1996b), Alvarez and Jermann (2000, 2001), and

Chien and Lustig (2010), at each instant the government is free to default, an option that

limits its ability to borrow. Third, we assume that the household is impatient. Unlike Lucas

and Stokey (1983), debt at time 0 is endogenous and the SDF is exogenous.21

There are two coupled “regimes.” In the “no-default” regime, the government trades

state-contingent securities and services its debts and chooses how much to tax. If the gov-

ernment ever defaults on its debt, it permanently enters a “balanced-budget” regime.

2.1 Output, Government Spending, and Taxation

After describing GDP, government spending, and taxation in the no-default regime, we’ll

describe them in the balanced-budget regime.

Output, Government Spending, and Taxation in the no-default Regime.

Output process. GDP tYt; t ě 0u is exogenous and follows a geometric Brownian motion

(GBM) process

dYt
Yt

“ gdt ` σY dZY
t , (3)

where, under the physical measure P, ZY
t is a standard Brownian motion, g is the expected

GDP growth rate, σY ą 0 is the growth volatility, and Y0 ą 0 is the known initial value of

Yt.

GDP Yt is subject to idiosyncratic shocks that warrant no risk premium and to systematic

shocks that warrant a risk premium. Let the standard Brownian motion Zh
t represent the

idiosyncratic shock and the standard Brownian motion Zm
t represent the systemic shock

under a physical measure P, respectively. We refer to the systematic shock dZm
t as the

21We represent the household’s risk aversion indirectly via the SDF. In a sequel, we extend our model to
describe risk aversion via an intertemporal utility functional. We can solve this more general model in closed
form up to an ODE with economically interpretable boundary conditions. While some results reported here
are altered under those preferences, key qualitative results about equilibrium debt capacity and optimal tax
smoothing remain unaltered.
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Shiller macro security shock.22 We can decompose the output shock dZY
t over dt under the

physical measure P as

dZY
t “

a

1 ´ ρ2 dZh
t ` ρ dZm

t , (4)

where ρ is the constant correlation coefficient between the output shock dZY
t and the shock

dZm
t . For convenience, we can also write the output process tYt; t ě 0u in (3) as

dYt
Yt

“ gdt `
`

ψhdZh
t ` ψmdZm

t

˘

, (5)

where ψm and ψh are systematic and idiosyncratic volatility parameters given by

ψm “ ρσY and ψh “
a

1 ´ ρ2 σY , (6)

respectively. Expressions (5)-(6) for tYt; t ě 0u help us isolate distinct roles of systematic

and idiosyncratic shocks.

Government spending and debt. Let tΓt; t ě 0u denote an exogenous government

spending process that brings no utility to the household. We assume that in the no-default

regime Γt varies with contemporaneous output Yt according to

Γt “ γtYt , (7)

where γt is exogenous. We set γt “ γ P r0, 1s so that government spending is proportional

to GDP in the no-default regime. The government finances its spending Γt with taxes and

debts.

Debt and taxes. Let tBt; t ě 0u denote the government’s debt balance and tTt; t ě 0u

denote the tax revenue process. As in Barro (1979), we assume that taxes are distortionary.

Let Ct “ CpTt, Ytq denote deadweight loss in units of consumption goods when the gov-

ernment collects tax revenue Tt and GDP is Yt in the no-default regime. Following Barro

(1979), we assume that the deadweight loss function, CpTt, Ytq, is homogeneous of degree

one in output Yt and tax revenue Tt:

Ct “ CpTt, Ytq “ cpτtqYt , (8)

22For mnemonic convenience, we use superscript m to refer to the Shiller macro security shock and the
superscript h to refer to the hedgeable idiosyncratic shock.
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where τt “ Tt{Yt is the average tax rate on output. Again following Barro (1979), we assume

that the scaled deadweight loss, cpτq, is increasing, convex, and smooth.

Since tax revenue at time t cannot exceed net output Yt ´Γt, we require Tt ď τ Yt, which

is equivalent to the following constraint on the tax rate τt:

τt ď τ , (9)

where τ is a maximal politically feasible tax rate on GDP Yt in the no-default regime. Keynes

(1923, pp.56–62) and Keynes (1931) inferred limits on a country’s debt-GDP ratio partly

from an upper bound τ based on political considerations.

Output, Government Spending, and Taxation in the Balanced-budget Regime.

Defaulting brings disruptions to economic activities that cause an output loss. Let pYt de-

note GDP in the balanced-budget regime and let TD denote an endogenous time when the

government defaults. Following Aguiar and Gopinath (2006) and Rebelo, Wang, and Yang

(2021), we assume that when the government defaults it repudiates all of its debt, that GDP

immediately drops from YTD´ “ limsÒTD´ Ys, the pre-default GDP level, to pYTD “ αYTD´ ,

and that the government permanently resides in the balanced-budget regime.23

In the balanced-budget regime (t ě TD), the government can issue no debt (Bt “ 0) and

output pYt follows a downward scaled version of the GBM process (5). Therefore,

pYt “ αYt , t ě TD , (10)

where α P p0, 1q is a constant.24 So output in the balanced-budget regime equals an α fraction

of Yt given in (3), where tYt; t ě 0u would have been GDP had the economy permanently

stayed in the no-default regime.

Let pTt denote tax revenue in the balanced-budget regime. Since the government can

issue no debt in the balanced-budget regime, it has to finance its spending period by period

according to
pTt “ Γt “ γtYt , t ě TD . (11)

Note that government spending tΓt; t ě 0u is exogenous and independent of its default

decision.

Taxation continues to be distortionary in the balanced-budget regime. Let pCt “ pCp pTt, pYtq

denote deadweight loss when the government collects tax revenue pTt and output is pYt in the

23To ease exposition, we assume no exit from the balanced-budget regime.
24Hébert and Schreger (2017) provide supporting empirical evidence.
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balanced-budget regime. We assume that pCp pTt, pYtq is homogeneous of degree one in tax

revenue pTt and output pYt:

pCt “ pCp pTt, pYtq “ pcppτtqpYt , (12)

where pτt “ pTt{pYt is the tax rate in the balanced-budget regime. We assume that pcppτq is

increasing, convex, and smooth.

Deadweight loss functions in the two regimes are connected:

pcp ¨ q “ κ cp ¨ q . (13)

The parameter κ ě 1 measures how much more costly taxation is in the balanced-budget

regime than in the no-default regime.

As in the no-default regime, we require pTt ď τ pYt, which is equivalent to the following

constraint on the tax rate pτt in the balanced-budget regime:

pτt ď τ , t ě TD , (14)

where τ is the same maximum politically feasible tax rate described above.

Thus, default brings three costs: 1) a loss of output (as pYt “ αYt ă Yt); 2) possibly

a worse deadweight loss function than it faced in the no-default regime (κ ě 1); and 3)

period-by-period primary budget balance.

2.2 Financial Markets

A government in the no-default regime has the following investment and financing oppor-

tunities: p1q it can insure its idiosyncratic risk through actuarially fairly priced hedging

contracts; p2q it can invest in a Shiller macro security portfolio; and p3q it can issue risk-free

debt that matures instantaneously and is continuously rolled over. Outcomes would not

change if we were to include longer term government debt too. Markets are dynamically

complete.25

Idiosyncratic risk hedging asset. There is a competitive market in a financial asset

that is perfectly correlated with the idiosyncratic shock Zh
t . Because no risk premium is

25Subject to quantity limits coming from its inability to commit to repayment, the government can dy-
namically trade a complete set of Arrow securities. Our analysis builds on a dynamic replicating portfolio
argument used in Black and Scholes (1973) and Harrison and Kreps (1979) under complete markets with
full commitment.
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awarded for bearing idiosyncratic risk, an investor who holds one unit of this asset at time

t receives no up-front payment but receives a gain or loss equal to dZh
t “

`

Zh
t`dt ´ Zh

t

˘

at

time t ` dt. We normalize the volatility parameter of this hedging contract to be one. We

denote the government’s holdings of this idiosyncratic risk hedging asset at time t by ´Ξh
t ,

so the government’s idiosyncratic risk exposure in levels is ´Ξh
t dZh

t over dt.

Shiller’s macro security and equivalent futures contract. The government can man-

age its exposure to risks in GDP growth by trading an asset whose payouts are proportional

to the aggregate shock, a type of security described by Shiller (1994). In the spirit of Merton

(1971) and Black and Scholes (1973), we assume that under the physical measure P the

Shiller macro security return dRt over dt is independently and identically distributed (i.i.d)

with the drift parameter µm and the volatility parameter σm:
26

dRt “ µmdt ` σmdZm
t , (15)

where Zm
t is a standard Brownian motion under the physical measure P.

We can rewrite the return process (15) as dRt “ rdt ` σmd rZm
t , where η is the Sharpe

ratio of the Shiller macro security

η “
µm ´ r

σm
(16)

and rZm
t represents the risk-adjusted aggregate shock27

d rZm
t “ ηdt ` dZm

t . (17)

We interpret d rZm
t “ ηdt ` dZm

t as the payoff on a unit of the futures contract on the

Shiller macro security (an example of a dt-step-ahead Arrow security.) The value of this

futures contract with payoff (17) is zero (Cox, Ingersoll, and Ross, 1981). Thus, a risk-averse

investor requires a payment of ηdt to bear a unit of the aggregate shock dZm
t . Once we

add the drift payoff ηdt with the aggregate shock exposure dZm
t , the investor is indifferent

between investing and not investing in this futures contract, implying that the value of the

futures contract is zero.

As for the idiosyncratic risk hedging position, we denote the government’s holdings of

this Shiller macro security futures contract at time t by ´Ξm
t , which implies that in levels

26This widely used geometric Brownian motion process for stock price is fully consistent with the asset
pricing model of Lucas (1978). If we generalized our model to allow for disasters/jumps as in Barro (2006),
all of our insights would remain valid.

27In Appendix B, we show that rZm
t is a standard Brownian motion under the risk-neutral measure rP. The

drift of the price of the stock futures contract is zero under rP (Duffie, 2001).
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the government’s systematic risk exposure is ´Ξm
t pηdt ` dZm

t q over dt. Because financial

market risk spanning is complete, the government can also use the Shiller macro security

rather than the futures contract to manage aggregate shocks. We use the futures contract

in order to preserve the expositional symmetry in our treatment of idiosyncratic risk and

systematic risk management.

Stochastic discount factor. We assume that a single aggregate shock Zm
t drives the

Shiller macro security payout. Using the standard no-arbitrage argument for complete-

markets economies, we obtain a unique stochastic discount factor process (SDF), Λt:

dΛt

Λt

“ ´rdt ´ ηdZm
t , Λ0 “ 1 . (18)

No arbitrage requires that the drift of dΛt{Λt equals ´r. In our one-factor model, the

volatility of dΛt{Λt equals ´η, where η “ pµm ´ rq{σm is the market price of risk; this is also

the Sharpe ratio for the Shiller macro security (Duffie, 2001).

2.3 Government Budget and Objective

Budget constraints. Given an initial debt level (B0), the government at t “ 0 has in-

tertemporal budget constraint:

B0 ď E0

ż TD

0

Λt rpTt ´ Γtq dt ´ dUts , (19)

where tUt; t ě 0u is the undiscounted cumulative lump-sum transfer to households process

so that dUt is the incremental non-negative lump-sum transfer to households over dt.28 The

right side of (19) is the present value of the government’s primary surplus rpTt ´ Γtq dt ´ dUts.

The left side of (19) is the initial debt level B0. Inequality (19) states that the value of debt

B0 cannot exceed the time-0 value of the government’s primary surpluses until it defaults at

TD. After the government defaults, creditors recover nothing.

Flow payoffs to the household. Let 1D
t be an indicator function that equals one in

the balanced-budget regime when t ě TD and zero in the no-default regime when t ă TD.

In the balanced-budget regime (1D
t “ 1), the government has no debt and the household

continuously receives payments at rate ppYt ´ pΓt ` pCtqq because pTt “ Γt. In the no-default

regime (1D
t “ 0), the household continuously receives payments at the rate pYt ´ pTt ` Ctqq,

28Technically, tUt; t ě 0u is a singular control process. We shall show that at an optimum Ut is non-
decreasing.
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which equals the difference between GDP Yt and total costs of taxes pTt`Ctq. The household

also receives a lump-sum transfer dUt when the government issues debt dUt and distributes

the proceeds. When the benevolent government, acting in the interests of the representative

household, is impatient, a lump-sum transfer can occur under an optimal government plan.

Thus, the household receives flow payments from three sources: 1) lump-sum transfer to

the household financed by debt issuance dUt in the no-default regime; 2) recurrent payments

in the no-default regime pYt ´ pTt ` Ctqq; and 3) recurrent payments in the balanced-budget

regime ppYt ´ p pTt ` pCtqq.

Intertemporal discounting and risk premium specifications. Let pζ ` rq denote the

rate at which the household discounts future payoffs. We assume that the household values

risk in the same way as investors and hence uses the same market price η for aggregate

risk.29 As a result, when ζ “ 0, the benevolent government and the market are equally

patient. In this case, the household and investors use the same SDF Λt to value payouts.

However, when the household is impatient (ζ ą 0), a common assumption in the sovereign

debt literature (e.g., Aguiar and Gopinath, 2006), the benevolent government front loads

consumption and postpones debt repayments. This leads us to use e´ζtΛt as the effective

SDF for the household to value their risky payoffs instead of the SDF Λt that investors use

to price payoffs. Appendix B provides technical details.

Government objective. Combining our assumptions about flow payoffs and the house-

hold’s effective SDF, we obtain the the household’s value:

E0

ż 8

0

e´ζtΛt

”

`

1 ´ 1D
t

˘

pdUt ` pYt ´ pTt ` Ctqq dtq ` 1D
t

´

pYt ´ p pTt ` pCtq

¯

dt
ı

, (20)

where ζ ě 0 measures the household’s impatience. The government chooses lump-sum

transfers (dUt), tax rates (τt and pτt), and idiosyncratic and systematic risk hedging demands

(Πh
t and Πm

t ) to maximize (20) subject to budget constraint (19), constraint (9) on the tax

rate τ in the no-default regime, and constraint (14) on pτ in the balanced-budget regime.

The government’s access to complete markets and the inefficiency of default induce the

government not to default and to make its net debt be risk free. Risk-free debt capacity Bt

is part of an optimal plan. To economize on free parameters, we use the same SDF Λt to

value flow payoffs to the household in both no-default and balanced-budget regimes.30

Let Pt “ P pBt, Ytq denote the household’s continuation value at time t. Let St “ SpBt, Ytq

29The household and investors use the same Radon-Nikodym derivative that links physical measure P to
risk-neutral measure rP (Duffie, 2001). With complete markets, this Radon-Nikodym derivative is unique.

30To capture additional adverse affects from defaulting, we could modify the SDF in the balanced-budget
regime by using a different risk-free rate and market price of risk.
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denote the sum of debt value Bt and the household’s value P pBt, Ytq:

St “ SpBt, Ytq “ P pBt, Ytq ` Bt . (21)

The household’s value function after a default affects its value and optimal decisions before

it has defaulted. Since government debt is always zero in the balanced-budget regime, the

household’s value function in the balanced-budget regime depends on only contemporaneous

GDP pYt “ αYt; so we denote the value function in the balanced-budget regime by pP ppYtq.

Because default is costly, the government wants to manage its state-contingent debt dynamics

to avoid default. That gives rise to the following participation constraint:

P pBt, Ytq ě pP ppYtq . (22)

3 Model A: Ricardian Equivalence

Before deducing an optimal government plan in our ABCD model, we revisit the Ricardian

equivalence logic of Barro (1974). A Ricardian equivalence version of our model features

only a complete set of Arrow’s one-period ahead securities. We call this special case Model

A. Taxes are not distorting all budget-feasible tax policies are equivalent. The household’s

value (20) becomes

P0 “ E0

ż 8

0

Λt rdUt ` pYt ´ Ttq dts , (23)

and its present value budget constraint becomes

B0 ď E0

ż 8

0

Λt rpTt ´ Γtq dt ´ dUts . (24)

Combining (23) and (24) at equality yields

P0 ` B0 “ E0

ż 8

0

Λt pYt ´ Γtq dt . (25)

Expression (25) states that the total value SFB
0 “ P0 ` B0 is independent of policies

tUt, Tt; t ě 0u, a version of “Ricardian equivalence”. We use superscript FB to denote

the value attained when our three extensions to Barro (1979) have been deactivated.

In the spirit of Shiller (1994), consider a financial asset whose cash flow almost surely
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equals net output tYt ´Γt “ p1´ γqYt; t ě 0u process. Its value equals the right side of (25).

The SDF (18) implies that the risk premium of this macro asset λ equals βpµm ´ rq , where

β “ ρσY {σm is the CAPM regression coefficient of this asset’s return on the Shiller macro

security portfolio return. We can equivalently write this asset’s risk premium as

λ “ ψmη “ ρσY η . (26)

Since tax and debt policies are irrelevant here, total value SFB
t “ Pt ` Bt equals the value

of this Shiller-like financial asset:

SFB
0 “ E0

ż 8

0

Λt pYt ´ Γtq dt “
1 ´ γ

r ` λ ´ g
Y0 . (27)

To assure convergence of the integral on right side of the above equation, we require the

expected return r ` λ to be larger than the GDP growth rate g:

r ` λ ą g . (28)

4 Model AB: Stochastic Version of Barro (1979)

We now briefly describe an AB version of our general ABCD model. This model includes

Barro’s tax distortions and a complete set of Arrow’s one-period-ahead securities, but it

excludes theCD features of the general model. The government chooses a policy to maximize

E0

ż 8

0

Λt rdUt ` pYt ´ pTt ` Ctqq dts , (29)

subject to budget constraint (24) and the Keynes constraint (9) on the tax rate. Substituting

budget constraint (24) at equality into objective function (29), we obtain that the value being

maximized by the government is

E0

ż 8

0

Λt pYt ´ Γt ´ Ctq dt ´ B0 . (30)

Choosing tTt; t ě 0u to maximize (30) is equivalent to minimizing the present value of

deadweight losses E0

ş8

0
ΛtCtdt subject to the constraint of honoring an initial debt B0 that

satisfies (24) with equality. This was Barro’s justification for recasting the government’s

value maximization problem as a deadweight loss minimization problem. Such an equivalence
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does not prevail in our ABCD model because the government’s option to default contributes

endogenous distortion costs. So we must work with a value-maximization problem rather

than a cost-minimization problem.

It is useful to scale variables by contemporaneous GDP. Let bt denote a debt-GDP ratio

bt “
Bt

Yt
. (31)

Similarly, let

ppbtq “
P pBt, Ytq

Yt
and spbtq “

SpBt, Ytq

Yt
“ ppbtq ` bt . (32)

We have

Proposition 4.1. Stochastic Barro (1979) Model. Assuming ζ “ 0 and a government

commited to service its debt, the optimal debt-GDP ratio bt “ b0 for all t; the optimal tax

rate τt is constant over time and depends only on b0:

τpbtq “ τpb0q “ pr ` λ ´ gqb0 ` γ . (33)

The government’s scaled value function, fpbtq, is also constant over time and given by

ppbtq “ ppb0q “
1 ´ τpb0q ´ cpτpb0qq

r ` λ ´ g
. (34)

Any initial debt-GDP level b0 satisfying b0 ď b is sustainable, where

b “
τ ´ γ

r ` λ ´ g
. (35)

We relegate a proof of Proposition 4.1 to Appendix A. In our stochastic Barro economy,

any initial condition is a steady state, since bt “ b0 and ppbtq “ ppb0q. Therefore, the present

value of the (scaled) primary surplus τpbtq ´ γ equals the (scaled) debt bt at all t:

τpbtq ´ γ

r ` λ ´ g
“ bt “ b0 . (36)

Notice that discount rate r` λ appears in present value equation (36), not the risk-free rate

r. An optimal tax rate τpbtq satisfies the following first-order condition:

1 ` c1
pτpbtqq “ ´p1

pbtq . (37)
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The government optimally equates the marginal cost 1 ` c1pτpbtqq of taxing the household

with the marginal benefit ´p1pbtq ą 0 of reducing debt, a version of Barro’s tax smoothing

recommendation.

Were it to be offered an option to choose its initial debt level, a government would set

b0 “ 0 because that maximizes spb0q “ ppb0q ` b0. Using (37), we obtain s1pb0q “ p1pb0q `1 “

´c1pτpb0qq ď 0. Our assertion that an optimal b0 “ 0 follows from the assumption that cp ¨ q

is increasing and convex: issuing lump-sum debt yields no benefits but induces distorting

debt servicing costs.

Next we show that when the government has the option to default, equivalence between

the government’s value maximization and cost minimization problem no longer holds .

5 Tax and Debt Management in Environment ABCD

After posing our section 2 government’s dynamic debt and risk management problem as a

dynamic program, we characterize policies in both interior and lump-sum transfer regions of

the state space.

5.1 No-default Regime

Dynamic State-Contingent Debt Management. The government manages idiosyn-

cratic and systematic risk by choosing Ξh
t and Ξm

t . Government debt Bt evolves as

dBt “ prBt ` pΓt ´ Ttqq dt ` dUt ´ Ξh
t dZh

t ´ Ξm
t pηdt ` dZm

t q . (38)

Since Γt ´Tt is the primary deficit and rBt is an interest payment, the first term on the right

side of (38) is government saving. The second term dUt is the government’s lump-sum transfer

to households. The third and fourth terms record gains and losses from government holdings

of the idiosyncratic and systematic risk-hedging assets. That the household is strictly better

offer if the government makes the evolution of tBtu state contingent is captured by the last

two terms in (38).

Let Bt denote the government’s maximum sustainable debt, to be determined in Section

5.2. We shall show that the government’s optimal lump-sum transfer policy tdUtu is charac-

terized by an endogenous debt threshold level, Bt, below which it issues and makes a payout

dUt ą 0 to the household.

Interior Region (Bt ď B ď Bt). Next, we characterize the optimal policies and value
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function for the interior region (Bt P rBt, Bts). In this region of the state space, the govern-

ment sets dUt “ 0 and relies exclusively on risk hedging strategies and taxation to shape its

state-contingent debt dynamics.

Dynamic programming. The government chooses tax revenue T , idiosyncratic-risk hedg-

ing demand Ξh, and the systematic risk hedging demand Ξm. The optimal value function

P pB, Y q solves Hamilton-Jacobi-Bellman (HJB) equation

pζ ` rqP pB, Y q “ max
T ,Ξh,Ξm

pY ´ T ´ CpT , Y qq ` rrB ` Γ ´ T sPBpB, Y q (39)

`
pΞhq2 ` pΞmq2

2
PBBpB, Y q ` pg ´ ρησY qY PY pB, Y q

`
σ2
Y Y

2

2
PY Y pB, Y q ´

`

ψhΞ
h

` ψmΞ
m

˘

Y PBY pB, Y q .

The first term on the right side of (39), pY ´ T ´ CpT , Y qq, is the net payment flow to the

household. The second and third terms are drift and diffusion volatility effects of increasing

debt B on P pB, Y q. The fourth and fifth terms express effects of drift and volatility of

GDP on P pB, Y q. The sixth term captures effects of the intertemporal idiosyncratic and

systematic risk hedging demands on P pB, Y q.

First-Order conditions. Tax revenue T satisfies the FOC:

1 ` CT pT , Y q “ ´PBpB, Y q . (40)

It equates the marginal cost of taxing the household, 1`CT pT , Y q, with the marginal benefit

of using taxes to reduce debt, ´PBpB, Y q ą 0.

As in Merton (1971), systematic risk intertemporal hedging demand Ξm satisfies:

Ξm
“ ψm

Y PBY pB, Y q

PBBpB, Y q
. (41)

Similarly, the FOC for the intertemporal diffusion risk hedging demand is

Ξh
“ ψh

Y PBY pB, Y q

PBBpB, Y q
. (42)

The cross partial derivative PBY that appears in equations (41) and (42) shapes the govern-

ment’s idiosyncratic and systematic risk intertemporal hedging demands. Note the symmetry

between (41) and (42).
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We can use FOCs (40), (41), and (42) to represent the HJB equation (39) as

pζ ` rqP pB, Y q “ max
T ďτY

Y ´ T ´ CpT , Y q ` rrB ` Γ ´ T sPBpB, Y q (43)

` rgY PY pB, Y q `
σ2
Y Y

2

2
PY Y pB, Y q ´

σ2Y 2

2

P 2
BY pB, Y q

PBBpB, Y q
,

where rg “ g´ρησY is a risk-adjusted growth rate.31 The household’s value function P pB, Y q

is homogeneous of degree one in B and Y . Consequently the following expression holds:32

PY Y pB, Y q “
P 2
BY pB, Y q

PBBpB, Y q
. (44)

Using (44) to simplify (43), we obtain the following first-order partial differential equation:

pζ ` rqP pB, Y q “ max
T ďτY

pY ´ T ´ CpT , Y qq ` prB ` Γ ´ T qPB ` pg ´ ρησY qY PY . (45)

The first term on the right side of (45) is the flow payoff to the household. The second

term captures the effect of fiscal deficit prB ` Γ ´ T q on its value function P pB, Y q and the

last term describes the risk-adjusted growth effect of Y on the household’s value. Optimality

implies that the sum of these three terms equals pζ`rqP pB, Y q. Access to complete markets

lets the government optimally hedge and make its debt be risk free; consequently no diffusion

terms associated with PBB, PY Y , or PBY appear in (45). Systematic volatility ψm of output

growth appears in the last term because it influences the household’s value via the standard

discount rate channel present in the CAPM.

Lump-sum Debt Issuance and Payout Region (0 ď Bt ă Bt).

Next, we turn to a region 0 ď Bt ă Bt where the government issues a lump-sum amount

of debt to finance a one-time pay out to the household. In this region, the debt-output ratio

bt “ Bt{Yt is so low that it is optimal for the government immediately to issue debt and pay

out the proceeds to the household. The optimal lump-sum transfer policy for a given Bt is

dUt “ max tBt ´ Bt, 0u . (46)

31Technically, it is the growth rate under the risk-neutral measure rP.
32Using the homogeneity property P pB, Y q “ ppbqY , we obtain PB “ f 1pbq, PBB “ p2pbq{Y, PY “

ppbq ´ p1pbqb, PY Y “ p2pbqbB{Y 2 “ p2pbqb2{Y , and PBY “ ´p2pbqb{Y . Therefore, we can verify PBBPY Y “

pp2pbqb{Y q2 “ P 2
BY .
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Equation (46) implies the following value-matching condition when Bt ă Bt:

P pBt, Ytq “ P pBt, Ytq ` pBt ´ Btq . (47)

Rewriting (47) and using the definitions SpBt, Ytq “ P pBt, Ytq`Bt and SpBt, Ytq “ P pBt, Ytq`

Bt, we find that SpBt, Ytq “ SpBt, Ytq, so that sums of the household’s value and debt value

are equated before and after new debt issuances.

By appropriately setting dUt, the government optimally sets a new debt level Bt ě 0

that attains

max
Bě0

SpBt, Ytq “ P pBt, Ytq ` Bt . (48)

If an optimal Bt is interior (i.e., if Bt ą 0), it satisfies the FOC:

PBpBt, Ytq “ ´1 or equivalently SBpBt, Ytq “ 0 . (49)

Otherwise, the government issues no lump-sum new debt and Bt “ 0.

5.2 Debt Capacity Bt and Balanced-budget Regime (Bt ą Bt)

Balanced-budget Regime (Bt ą Bt). When government debt Bt exceeds debt capacity

Bt, the government defaults and permanently enters the balanced-budget regime.33 The

household’s value function P pBt, Ytq at Bt ą Bt satisfies

P pBt, Ytq “ pP ppYtq , (50)

where pYt “ αYt and the household’s value in the balanced-budget regime pP ppY q satisfies the

differential equation

pζ ` rq pP ppY q “

´

pY ´ Γ ´ pCpΓ, pY q

¯

` pg ´ ρησY qpY pP 1
ppY q `

σ2
Y

pY 2

2
pP 2

ppY q . (51)

The first term on the right side of (51) is the net payment flow received by the household

in the balanced-budget regime. Since the government can neither borrow nor lend in the

default regime, tax revenues Tt must equal government spending Γt. The second and third

terms capture impacts of the risk-adjusted drift and volatility of output on the household’s

value function pP ppY q. The balanced-budget regime is absorbing. Here for t ě TD, output

33We can generalize our model to allow for the possibility where the government has a probability to exit
the balanced-budget regime and return to the no-default regime.
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equals pYt “ αYt and there is no debt (Bt “ 0). Let ppt “ pP ppYtq{pYt. Later we’ll show that

ppt “ pp, a constant. To ensure that the value function in the balanced-budget regime is

non-negative, we impose:34

1 ´ γ{α ´ κcpγ{αq ě 0 . (52)

Debt Capacity B. The government’s debt capacity Bt is shaped by 1) the government’s

incentive to renege on its debt, which gives rise to a limited-commitment constraint; and 2)

the “Keynesian” tax constraint τ ď τ , where τ is the maximal rate at which the government

can tax the household (again see Keynes (1923, pp.56–62) and Keynes (1931).) If the

government’s default incentive is strong, the limited-commitment constraint binds at its

debt capacity. If the government has limited ability to tax output (i.e., when the maximum

feasible tax rate on output, τ , is relatively low), the tax constraint τ ď τ binds at debt

capacity.

When limited-commitment constraint binds at Bt. When the government is indiffer-

ent between servicing its debt and defaulting, it has reached its debt capacity, Bt, and the

following value-matching condition prevails:

P pBt, Ytq “ pP ppYtq , (53)

where pYt “ αYt´ and pP ppYtq satisfies (51). Counterparts of this condition play key roles in

models of Worrall (1990), Kehoe and Levine (1993), and Kocherlakota (1996b).35

When tax constraint T pB, Y q ď τY binds at Bt. When the government’s tax constraint

τt ď τ binds at debt capacity:

T pBt, Ytq “ τYt . (54)

Either (53) or (54) holds at debt capacity Bt. Because Bt is a free boundary, we require

one more condition to pin it down. After describing some simplifications, we supply this

condition in the next subsection.

34The value function in the balanced-budget regime is non-negative if and only if the condition pY ´ Γ ´
pCpΓ, pY q ě 0 holds, which is equivalent to the condition given in (52) after we use the homogeneity property

and pYt “ αYt.
35Our approach is related to Bolton, Wang, and Yang (2019) and Rebelo, Wang, and Yang (2021) who in-

corporate the limited-commitment constraints into corporate finance and international finance in continuous-
time models.
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5.3 Exploiting Homogeneity

The debt-output ratio b is the state variable. Let dut “ dUt{Yt be scaled lump-sum transfer

and bt “ Bt{Yt be the maximum feasible debt-GDP ratio.

Optimal tax rate τpbq. Substituting P pB, Y q “ ppbqY into FOC (40) for tax revenue T ,

we obtain the following simplified FOC for the tax rate τpbq:36

1 ` c1
pτpbqq “ ´p1

pbq . (55)

Since c2p ¨ q ą 0, we can invert the marginal tax distortion cost function c1p ¨ q to obtain the

unique tax rate τpbq for a given b.

Debt-GDP (bt) dynamics in the interior region: b P rb, bs. When the debt-GDP ratio

is not too low, i.e., b ě b, the government presents no lump-sum payments to the household:

dut “ 0, because the marginal benefit of financing an immediate payout to the household is

smaller than the marginal cost of financing debt, including deadweight losses. Using Ito’s

Lemma, we can show that in this interior region bt evolves deterministically according to

9bt ” µb
t “ µb

pbtq “ γ ´ τpbtq
looomooon

primary deficit

` r ˆ bt
loomoon

interest payment

´ g ˆ bt
loomoon

growth

` λ ˆ bt
loomoon

hedging cost

. (56)

The first term on the right side of (56) is the scaled “primary” or net-of-interest fiscal deficit

γ ´ τpbq. The second term is the interest cost of servicing debt. The sum of these two terms

is the scaled fiscal deficit, gross of interest payments. The third term is a debt-GDP ratio

reduction contributed by output growth. The last term captures the hedging cost due to the

risk premium payment, a term that Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019)

also included in a related but different setting. Although payouts on the government’s net

debt Bt are risk-free, the λbt term appears because the source of funds for these payouts is

a future primary surplus stochastic process that must be discounted at r ` λ to account for

the costs of hedging transactions that the government undertakes in order to purchase the

claims that allow it to make B be risk free.

Debt-GDP ratio limit b. Drift of the debt-GDP ratio bt is zero at b. To see this, note

that ipso facto b cannot exceed b, which implies µbpbq ď 0. Furthermore, with ζ ě r, the

government weakly has incentives at the margin to postpone tax burdens, which implies that

µbpbq ě 0. These two inequalities jointly imply that the drift of b at debt capacity is zero so

36This condition holds regardless of whether the tax constraint (9) binds or not. The reason is that the
tax constraint may bind only at b. Tax smoothing implies that the FOC (55) holds also at the boundary b.
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that µbpbq “ 0.

Substituting µbpbq “ 0 into (56) yields

b “
τpbq ´ γ

r ` λ ´ g
. (57)

Equation (57) asserts that at the maximum sustainable debt-GDP ratio b equals the present

value of the primary deficit pτpbq´γq evaluated at the appropriate discount rate r`λ, because

the optimal primary deficit is risky and bears an insurance premium of λ. Condition (57)

fulfills our Section 5.2 promise to pin down the endogenous debt-GDP capacity b.

Scaled lump-sum debt issuance boundary b and payout policy dut. We can use

homogeneity to simplify (48) and verify that the lump-sum debt issuance boundary b solves

max
bě0

spbq “ ppbq ` b . (58)

If the optimal b is interior (i.e., b ą 0), the marginal cost of debt issuance must be zero

at b so that s1pbq “ 0. Otherwise, the government issues no lumpy debt and b “ 0, since

s1pbq ă 0. Thus, an optimal lump-sum transfer policy satisfies

dut “ maxtb ´ bt, 0u. (59)

Distinct economic forces shape the optimal upper and lower boundaries. The lower

boundary b is about an optimal lump-sum transfer to households financed by a lump-sum

debt issue; it is characterized by smooth-pasting and super-contact conditions. The upper

boundary b is absorbing and can be approached only from the left. That certifies it as the

maximum sustainable level of debt per unit of GDP.

If at t “ 0 initial government debt were zero and if an optimal b ą 0, a government would

immediately issue debt and uses the proceeds to finance a lump-sum payment dU0 “ bY0 to

the household, thereby resetting b to equal b; thereafter bt stays inside rb, bs until it reaches

the maximum sustainable debt capacity b.

When the optimal b is strictly positive (b ą 0), there is no deadweight cost of debt and

the marginal cost of servicing debt, ´p1pbq, equals one. This outcome differs from the zero

fiscal cost of debt asserted in Blanchard (2019) and Sims (2022). “Debt is cheap” statements

like theirs apply when b ă b. Here the government has not borrowed enough and should

increase its debt-GDP ratio to b ą 0.
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5.4 Optimal Fiscal Plan

Theorem 5.1. Under restriction (28) that r ` λ ą g as well as the additional restrictions

κ ě 1, α ď 1, and the condition 1´γ{α´κcpγ{αq ě 0 given in (52), the scaled value function

in the no-default regime, ppbq, satisfies the first-order nonlinear differential equation:

rζ ` pr ` λ ´ gqs ppbq “ 1 ´ τpbq ´ cpτpbqq ` rpr ` λ ´ gqb ` γ ´ τpbqs p1
pbq , (60)

subject to the debt-sustainability condition (57) and one of the following two conditions for

the scaled debt capacity b:

ppbq “ αpp , when the tax rate constraint (9) does not bind ; (61)

τpbq “ τ , when the tax rate constraint (9) binds . (62)

The scaled value pp in the balanced-budget regime is

pp “
1 ´ γ{α ´ κcpγ{αq

ζ ` pr ` λ ´ gq
. (63)

The lump-sum debt issue boundary b is described by (58), and the optimal lump-sum transfer

policy, dut, is given by (59). The optimal tax rate policy τpbq is given by (55) and the

debt-output ratio tbtu evolves deterministically at rate of 9bt described by (56).

Unlike Mehrotra and Sergeyev (2021) who study debt limits for exogenous tax and debt

paths, the debt capacity in our model depends on optimal tax and debt paths. Because

we dropped the commitment-to-repay assumption of Barro (1979), our model contains an

endogenous debt capacity that turns out to be quantitatively important. Our section 6

calibration shows that debt capacity is much smaller in our model than it would be without

the default option. Because our model contains shocks to GDP growth rates, debt-GDP

ratio dynamics and debt capacity both depend on a risk premium. The following proposition

asserts that the equilibrium debt capacity exists and is unique.

Proposition 5.2. Under the r ` λ ą g condition given in (28), κ ě 1, α ď 1, and the

condition 1´ γ{α´ κcpγ{αq ě 0 given in (52), the equilibrium debt capacity b is unique and

given by

b “ min

"

b˚,
τ ´ γ

r ` λ ´ g

*

, (64)
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where b˚ is the unique positive root of the following equation

1 ´ pr ` λ ´ gqb ´ cppr ` λ ´ gqb ` γq “ α ´ ακcpγ{αq . (65)

We now report a closed-form optimal plan in for the special ABC version of our model

that has no extra household impatience: ζ “ 0. This version of the model includes a complete

set of Arrow’s one-period-ahead securities, Barro’s tax distortions, and equilibrium Credit

Constraints.

Lemma 5.3. When ζ “ 0, bt “ b0 and the optimal tax rate τpbtq is affine for all t:

τpbtq “ τpb0q “ pr ` λ ´ gqb0 ` γ . The scaled value function in the no-default regime, ppbq,

is constant and given by

ppbtq “ ppb0q “
1 ´ τpb0q ´ cpτpb0qq

r ` λ ´ g
. (66)

The scaled value pp under autarky is pp “
1´γ{α´κcpγ{αq

r`λ´g
ą 0 . There is no lumpy debt issue and

hence b “ 0. Scaled debt capacity is b “ p´1pα pfq when tax rate constraint (9) does not bind.

Otherwise, b “
τ´γ

r`λ´g
. We thus obtain

b “ min

"

p´1
pαppq,

τ ´ γ

r ` λ ´ g

*

. (67)

Note that with no extra impatience (ζ “ 0), the debt-GDP ratio remains constant: bt “ b0

for all t. The optimal plan entails tax smoothing and features constant tax rate over time

as in Barro (1979). Moreover, the debt balance, Bt, is volatile and non-stationary: because

Bt “ b0Yt, it follows a geometric Brownian motion process with drift µ and volatility σ.

6 Quantitative Illustration

To prepare the way for quantitative illustrations of our model’s salient properties, we first

describe how we set key parameters.

6.1 Parameters

We set the mean of output growth to g “ 2% per annum in line with the estimates in Jiang,

Lustig, Van Nieuwerburgh, and Xiaolan (2020). We set the annual risk-free rate r to 1%, the

risk premium λ to 3%, and the government spending/output ratio to γ “ 20%, in line with
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the estimates in Jiang, Lustig, Van Nieuwerburgh, and Xiaolan (2019).37 Our choice of a 3%

annual risk premium aligns with an equilibrium consumption CAPM analysis.38 Consider

a Lucas (1978) equilibrium asset pricing model in which the source of aggregate risk is the

world stock market and the β of a financial claim on the US aggregate output proposed

by Shiller (1994) is between 1{2 and one, which seems plausible in light of sizes of the US

stock market and the US economy relative to the world’s. With a 6% annual world stock

market risk premium and a β of 1{2 for the financial claim on the US output, we obtain a

risk premium of λ “ 3% for a financial claim on US output.

We set the upper bound for the maximum politically feasible tax rate τ at 50%.39 As

benchmarks, Denmark has the highest average tax-output ratio: 46.3% and the average tax

rate in OECD countries is 33.8%. We calibrate Ω “ tζ, α, φτu from the US debt data40 from

2000 to 2020 (see Appendix C). The impatience parameter is ζ “ 0.1% per annum. The

output recovery fraction in the balanced-budget regime is α “ 0.94.

We follow Barro (1979) in using a quadratic deadweight loss function:

cpτq “
φτ

2
τ 2 , (68)

where the parameter φτ ą 0 measures the deadweight cost caused by distortionary taxes.

With this specification, we obtain a closed form for debt capacity.

Lemma 6.1. Under the conditions given in Theorem 5.1 and when the deadweight loss

function is quadratic so that cpτq “
φτ

2
τ 2 as given in (68), debt capacity b is

b “ min

$

&

%

´

a

1 ` 2φτ p1 ´ α ` γ ` φτκγ2{α{2q ´ 1
¯

{φτ ´ γ

r ` λ ´ g
,

τ ´ γ

r ` λ ´ g

,

.

-

. (69)

When tax constraint (9) does not bind, the debt capacity b equals the first term in (69). Debt

capacity b increases with increases in the expected growth rate g, default cost κ, and output

loss α; it decreases with increases in tax distortion costs φτ , the expected risky asset return

r ` λ, the risk free rate r, and the risk premium λ.

We calibrate tax distortion parameter at φτ “ 2.8. To avoid freely choosing another

37We do not need to choose the value for output growth volatility σY once we calibrate risk premium λ.
38See Kocherlakota (1996a) for a critical review of the early literature on the equity risk premium.
39Keynes (1931) guessed .25 for this parameter for France in 1926.
40We use our calibration principally to illustrate our model’s mechanism via a serious back-of-the-envelope

calculation.
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Table 1: Parameter Values. This table summarizes the parameter values for our baseline
quantitative analysis. Whenever applicable, parameter values are continuously compounded
and annualized.

Parameter Symbol Value
A. Calibration inputs
risk-free rate r 1%
risk premium λ 3%
average output growth rate g 2%
government spending to output ratio γ 20%
default deadweight loss κ 1
B. Calibration outputs
(relative) impatience ζ 0.1%
output recovery in the balanced-budget regime α 0.94
tax deadweight loss φτ 2.8

parameter, we set κ “ 1 so that the dead deadweight loss function is the same in the two

regions: cp ¨ q “ pcp ¨ q. Table 1 summarizes parameter values for our baseline analysis.

6.2 All in One Figure

Figure 1 portrays how outcomes in the interior region of the state space vary as we include or

withhold components of ourABCD model. The dotted black lines show Ricardian outcomes

that prevail in our component-A-only model. In this model, the value function is constant

and independent of b, the tax rate is indeterminate (and so absent from panel C on the lower

left). When we add the B distorting taxes component to get a Stochastic Barro model, the

drift of debt is constant at zero and the tax rate is constant over time at the value determined

by τpbq at the initial debt level. When we add limited commitment component C but not

component D by keeping ζ “ 0, the only consequence is that maximum sustainable debt b̄

drops from its higher value under a Keynes (1931) guess about a maximum tax rate to a

much lower value. Thus, notice that for all levels of b up to b “ 1.97, the optimal government

plan in our limited-commitment model coincides with that for the Stochastic Barro model

that had assumed commitment and ζ “ 0; here b “ 1.97 is debt capacity in our limited-

commitment model. A notable result from this figure is that the government’s debt capacity

is reduced by 87% from b “ 15 in the stochastic Barro model to 1.97 in our model.41 This

87% reduction of debt capacity is attributable solely to the government having the option to

default in our model. Note that the drift of debt continues to be zero for all debt levels. It is

only when we add theD component of ourABCDmodel, namely extra discounting to reflect

41The government’s debt capacity for the stochastic Barro model equals b “
τ´γ

r`λ´g “ 0.5´0.2
4%´2% “ 15.
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Figure 1: Four Models in One Graph. Outcomes for the pure A model (denoted Ricar-
dian), the stochastic Barro model, a limited commitment model without added impatience
(ζ “ 0), and a limited commitment model with added impatience (ζ “ .01q. All parameter
values other than ζ are those reported in Table 1. In the stochastic Barro (full-commitment)
model, debt capacity is b “ 15 with τ “ 0.5. In our limited-commitment model, debt capac-
ity is b “ 1.97. Under Ricardian equivalence, an outcome prevails at which spbq “ sFB “ 40
and s1pbq “ 0.
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extra impatience of the representative household relative to the investors who bequeath the

discount factor process Λt to the model, that the drift now becomes a decreasing function of

b, starting high at b “ 0 and declining monotonically to 0 at b̄.

Figure 1 shows how taxes distort. An undistorted outcome is attained under the special

section 3 version of our model that we used to retrieve a Ricardian equivalence outcome. In

our model, the total scaled value in this case is sFB “ p1´γq{pr`λ´gq “ 40. Under Ricardian

equivalence, tax and debt policies are irrelevant and therefore the marginal deadweight cost

of debt, ´s1pbq “ 0, is zero for all admissible levels of b (panel B). The gap between the solid

blue line (the spbq solution for the stochastic Barro model) and the horizontal Ricardian

(dotted black) line spbq “ sFB “ 40 increases with b. In the special section 4 stochastic
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Barro (1979) version of our model, the marginal deadweight cost of debt increases with b

and reaches ´s1pbq “ 1.40 at its debt limit b “ 15. To sustain such a high level of debt, the

government has to tax output at 50%: τpbq “ 0.5.

6.3 Time to Reach Debt Capacity

Our model asserts that a government’s debt-output ratio bt evolves deterministically at rate
9bt “ µbpbtq described by (56). For a given initial b0, the time it takes for the government to

reach its debt capacity b is

ż b

b0

dbt
9bt

“

ż b

b0

1

pr ` λ ´ gqbt ` γ ´ τpbtq
dbt. (70)

Figure 2: Time to Reach Debt Capacity as a Function of Impatience ζ. All other
parameter values are reported in Table 1. The initial the debt-GDP ratio is b0 “ 108.1%
and debt capacity is 197%.
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Figure 2 shows that as governments become more impatient across economies (i.e., as

ζ increases), the time it takes for the government to exhaust its debt capacity decreases.

Even for a seemingly small increase of impatience, effects of impatience are large. In our

calculation, starting from the current US debt level of b “ 108%, it will take about 66 years

to reach the debt limit in 2086 if ζ “ 0.1%, but it would take less than 20 years to reach

the debt limit in 2038 if impatience were to increases to ζ “ 1%. If we interpret populism

as impatience, these comparative dynamics are consistent with a commonly held view that

debt capacity is smaller for a populist government.

Figure 3 plots time it takes for the government to reach its debt capacity as a function of

interest rate r. First recall that when facing a lower interest rate, a forward-looking govern-
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Figure 3: Time to Reach Debt Capacity as a Function of Interest Rate r. For
both panels, the initial b is b0 “ 108.1%. In panel A, the impatience parameter is fixed at
ζ “ 0.1%. In panel B, the discount rate is fixed at ζ ` r “ 1.1%. All other parameter values
are reported in Table 1.
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ment can finance its debt repayment with a lower tax rate τpbq, which is less distortionary

(a lower marginal cost of debt, ´p1pbq). As a result, debt is more sustainable, which means a

larger debt capacity b, but the debt-GDP ratio also drifts upward at a faster rate 9bt, ceteris

paribus. Holding impatience ζ fixed, we see that it takes longer to reach the steady state

and exhaust its debt capacity if the interest rate is lower (panel A). This is because the debt

capacity force is stronger than the drift effect. Across economies, the level of the interest

rate has big consequences. At our parameter settings, starting from the current US debt

level of b “ 108%, it takes about 87 years to reach the debt limit in 2107 if r “ 0.5%, but

takes about 66 years to reach the debt limit in 2086 if r “ 1%. This pattern is in line with

reasoning of Blanchard (2019) and Furman and Summers (2020).

We now perform a distinct calculation that holds a government’s discount rate fixed even

though we alter the interest rate. We hold a government’s discount rate pζ ` rq fixed and

plot time to reach debt capacity as a function of r in panel B of Figure 3. Evidently, it takes

less time to reach steady-state debt capacity if interest rate is lower. This is because the

drift effect (due to a corresponding increase in impatience ζ) becomes much stronger than

the debt capacity effect. For a fixed value of ζ`r “ 1.1%, starting from the current US debt

level of b “ 108%, it would take about 32 years to reach the debt limit in 2052 if r “ 0.5%;

but if r “ 1%, it would take about 66 years to reach the debt limit in 2086.

A key takeaway from the two panels of Figure 3 is that time to reach the steady-state

debt capacity crucially depends on both how impatient the government is and the level of

interest rate.
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6.4 Quantitative Debt-GDP Ratio Dynamics

Next, we analyze prospective debt-GDP ratio dynamics using our calibrated parameter val-

ues. Since we are interested in both the maximum sustainable debt b at the optimal steady

state and transition dynamics towards b, we assume that a government can completely hedge

its exposures to risks, with the consequence that dynamics of the debt-GDP ratio are deter-

ministic. We have designed our model parsimoniously in a way that can capture a long-run

trend and the steady state of debt dynamics.

Figure 4: Prospective Debt-GDP Ratio Dynamics for Scenarios. The US debt-
output ratios in 2000 and 2020 are 57.5% and 108.1%, respectively. For all model-predicted
b processes in panels B, C, and D, the left-end points of the horizontal lines are the corre-
sponding levels of debt capacity b.
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Panel A of Figure 4 plots the implied debt-GDP ratio dynamics from 2000 to 2020 using

parameters from our baseline calibration.42 Our model (the blue solid line) does a good job

42Recall that our calibration procedure did not target the debt-GDP ratio dynamics that we plot, which
only conditions on the initial condition. Our calibration procedure minimizes the sum of the squared of the
difference between one-step-ahead model-predicted bt and the realized bt.
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of approximating the trend of debt-GDP ratio dynamics tbtu over this 20-year period in the

US (the black dashed line). Panels B, C, and D of Figure 4 plot the predicted debt-output

ratio tbtu processes starting from 2021 until the government exhausts its debt capacity and

reaches the steady state for various scenarios where we change interest rate r, growth rate

g, and risk premium λ.

Panel B shows that the government can be expected to reach its debt capacity (b “ 1.97)

in 2086 if r “ 1% as we noted earlier. The debt-GDP ratio gradually builds up until

reaching the steady state where b “ 1.97 (the solid blue line.) But if the interest rate were

unexpectedly and permanently decreases to r “ 0.5%, the debt-GDP ratio would increase

at a much faster rate, so that a steady state b “ 2.62 (the dotted red line) would be reached

in 2107.

Panel C shows that if a government’s growth rate permanently drops to 1% from 2%, the

government will reach its reduced debt capacity (b “ 1.31 from 1.97) in 2051. This result

confirms the intuition that economic growth is a key source of servicing debt.

Panel D shows that if the risk premium λ were unexpectedly and permanently to drop

to 2% from 3%, the government’s debt capacity would then increase to b “ 3.94 from 1.97;

it would take almost 118 years to exhaust its debt limit around 2138. This result shows

that the risk premium λ has a very large quantitative effect on both debt capacity and on

transition dynamics to a steady state.

Additional quantitative experiments appear in Appendix D.

7 Concluding Remarks and Extensions

To construct streamlined formulas that allow us to isolate salient forces that determine

optimal fiscal policy, debt capacity, and debt dynamics, we purposefully chose to work with

a complete-markets limited-commitment model with only one aggregate shock. We have

neglected other sources of aggregate risks that governments face including stochastic interest

rates, a stochastic government spending-GDP ratio γ, and market prices of risk (Jiang,

Lustig, Van Nieuwerburgh, and Xiaolan, 2019). We can extend our model to include such

risks by making γ, the risk-free rate r, or GDP growth g an n-state Markov process. These

extended models remain tractable and generate richer dynamics of debt, debt capacity, and

taxes. They can be used to study various long-run risks that can confront a government. In

a sequel, we extend our model to include a quantity theory of money and an inflation tax as

an additional source of government revenues. That model allows us to extend an analysis of

the interdependence of fiscal and monetary policies provided by Sargent and Wallace (1981).
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Appendices

A Stochastic Barro Model

In this appendix, we compute an optimal fiscal policy for the Section 4 model, which is a

stochastic formulation of Barro (1979). This model is a special case of our general model for-

mulation with full commitment and no impatience (ζ “ 0). We characterize the household’s

value function and show that the government’s tax policies are time consistent.

To solve the government’s optimization problem given by (29) subject to the budget

constraint (19), we introduce the following Lagrangian L

L “ max
Tt,Ut;tě0

E0

ż 8

0

Λt rdUt ` pYt ´ pTt ` Ctqq dts

`ϑ

„

E0

ż 8

0

Λt pTt ´ Γtq dt ´ E0

ż 8

0

ΛtdUt ´ B0´

ȷ

, (I-1)

where ϑ is the Lagrangian multiplier for the government’s budget constraint (19).

The first order condition for the optimal tax rate at time t is given by

1 ` CT pT , Y q “ ϑ . (I-2)

Using the homogeneity property of the tax deadweight cost function (8) to simplify the FOC

(I-2), we obtain c1pτ˚
t q “ ϑ ´ 1 for the optimal tax rate τ˚

t at any time t. Since ϑ is a

constant, the optimal tax rate τ˚
t is constant at all t: τ˚

t “ τ˚ for all t, where τ˚ satisfies:

c1
pτ˚

q “ ϑ ´ 1 . (I-3)

The (strict) convexity of the deadweight loss function cpτq implies that the Lagrangian

multiplier for the government budget constraint is (strict) larger than one: ϑ ą 1. Because

tax is distortionary and there is no incentive for the government to front load consumption

(as ζ “ 0), there is no lump-sum transfer at any time t: dUt “ 0. (Moreover, the optimal

debt target should be zero: b “ 0, if the government were given the option to chooses its

initial debt b0.) We obtain ϑ by using (I-3): ϑ “ 1 ` c1pτ˚q. Next, we determine τ˚.

Because the government’s budget constraint (19) holds with equality (as ϑ ą 1), the

present value of primary surplus tpτ˚ ´ γqYt; t ě 0u, discounted at the rate of r`λ, the sum

of the risk-free rate r and risk premium λ, equals the outstanding debt balance, B0. This
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calculation yields the following explicit equation:43

τ˚
“ b0pr ` λ ´ gq ` γ . (I-5)

Substituting (I-3) and dUt “ 0 into the Lagrangian (I-1) and using the homogeneity

property, we obtain the following expression for the value function (also the Lagrangian)

under optimal policies:

ppb0q “ L “
1 ´ τ˚ ´ cpτ˚q

r ` λ ´ g
, (I-6)

where τ˚ is given in (I-5). As the budget constraint (19) binds, we only need to calculate

the first term in (I-1) under the optimal policies.

Using the tax policy given by (I-5), the government optimally adjusts its debt balance Bt

in each step with output Yt so that the debt-GDP ratio is constant at all t ě 0: bt “ b0. The

government in the future will follow the same strategy chosen by the time-0 government.

Therefore, the government’s optimization problem is time consistent (Lucas and Stokey

1983).

Finally, we discuss the maximum sustainable debt under commitment. Suppose that the

maximal tax burden that the household is willing to tolerate without triggering a revolution,

denoted by T ˚

t , is the level at which the household’s value function is zero. Given the

stationarity of our perpetual growth model, the household’s net cash flow payoff in each

period is zero:

Yt ´ T ˚

t ´ CpT ˚

t , Ytq “ 0 . (I-7)

Let B denote the corresponding largest sustainable debt that the government can credibly

honor. Then, B satisfies the following equation:

B “ E0

ż 8

0

Λt

´

T ˚

t ´ Γt

¯

dt. (I-8)

The maximum sustainable debt-GDP ratio b is then given by b “ pτ˚ ´ γq { pr ` λ ´ gq ,

where τ˚ “ T ˚

t {Yt.

43The present value formula is
τ˚ ´ γ

r ` λ ´ g
“

B0

Y0
” b0 (I-4)

under the condition that the tax policy τ˚ is feasible.
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B Optimal Fiscal Plan for ABCD model

In this appendix, we describe the optimal plan that appeared in Section 5 for the primal

dynamic debt management problem defined in Section 2.

HJB equation for P pB, Y q. Using Ito’s formula, we obtain the following SDF-adjusted

dynamics for the household’s value function P pBt, Ytq:

dpΛtP pBt, Ytqq “ ΛtdP pBt, Ytq ` P pBt, YtqdΛt` ă dΛt, dP pBt, Ytq ą, (I-9)

where the SDF tΛt; t ě 0u is given in (18) and

dP pBt, Ytq “ PBdBt `
PBB

2
ă dBt, dBt ą `PY dYt `

PY Y

2
ă dYt, dYt ą `PBY ă dBt, dYt ą

“

„

prB ` pΓ ´ T q ´ ΞmηqPB ` gY PY `
σY Y

2PY Y

2

ȷ

dt

`

«

`

pΞhq2 ` pΞmq2
˘

PBB

2
´ pΞhψh ` ΞmψmqY PBY

ff

dt

´ PBpΞhdZh
t ` ΞmdZm

t q ` Y PY pψhdZh
t ` ψmdZm

t q . (I-10)

Note that the process defined by

ż t

0

`

e´ζsΛs pYs ´ Ts ´ CpTs, Ysqq ds
˘

` e´ζsΛsdUs ` e´ζtΛtP pBt, Ytq

is a martingale under the physical measure P. Therefore, its drift under P is zero:

Et

“

d
`

e´ζtΛtP pBt, Ytq
˘‰

` e´ζtΛt pYt ´ Tt ´ CpTt, Ytqq dt “ 0. (I-11)

Note that we have used the result that dUt “ 0 in the interior region. Simplifying (I-11)

gives the HJB equation (39) for the household’s value function P pBt, Ytq.

We do not repeat the first-order condition (FOC) for the tax rate and other derivations

contained in the main body. Below we provide the details for risk management policies.

Shiller macro security allocation ξm. Let ξmt “ Ξm
t {Yt denote the scaled Shiller macro

security allocation. Using the homogeneity property, we show that ξmt is a function of bt,

which we denote by ξmpbtq. Simplifying the FOC given in (41) for Ξm, we obtain the following

expression for ξmpbq:

ξmpbq “ ´ψmb . (I-12)
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Idiosyncratic hedging demand ξh. Let ξht “ Πh
t {Yt denote the scaled idiosyncratic risk

hedging demand. Similarly, using the homogeneity property, we show that ξht is a function

of bt, which we denote by ξhpbtq. Simplifying the FOC given in (42) for Ξh, we obtain the

following expression for ξht “ ξhpbtq:

ξhpbq “ ´ψhb . (I-13)

Debt-GDP ratio bt dynamics. Applying Ito’s lemma to bt “ Bt{Yt, where Bt is given in

(38) and Yt is given in (3), we obtain

dbt “ µb
t dt ` dut ` σb,h

t dZh
t ` σb,m

t dZm
t , (I-14)

where

µb
t “ pr ´ gqbt ` γ ´ τt ´ ηξmt `

`

ψhξ
h
t ` ψmξ

m
t ` btσ

2
Y

˘

(I-15)

σb,h
t “ ´

`

ξht ` ψhbt
˘

(I-16)

σb,m
t “ ´ pξmt ` ψmbtq . (I-17)

Substituting hedging policies (I-12) and (I-13) into (I-15), we show that the debt-output

ratio, tbtu, evolves deterministically at the rate given by:

9bt “ µb
t “ µb

pbtq “ pr ` λ ´ gqbt ` γ ´ τpbtq (I-18)

where τpbtq is given by (55).

Equivalent formulation of optimization problem under risk-neutral measure rP.
As is standard in macro research, we have formulated the government’s optimization problem

in Section 2 and provided the solution in Section 5 under the physical measure P. We can

equivalently formulate the problem and solve it under the risk-neutral measure rP. Recall that
under the physical measure P, the Brownian motions for idiosyncratic shock and systemic

shock are given by Zh
t and dZm

t , respectively. Because the shock to the market portfolio

is systematic with a constant Sharpe ratio of η, using the standard Black-Merton-Scholes

dynamic replication argument, we can show that the Brownian motion for systemic shock

under the risk-neutral measure rP, denoted by rZm
t , is given by

d rZm
t “ dZm

t ` ηdt . (I-19)
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This equation is also the reason why a well-diversified investor who holds a long position in

the market futures contract demands a positive payment at the rate of ηdt to break even.

This explains the last term in the law of motion (38) for Bt. The Brownian motion for the

idiosyncratic shock under the risk-neutral measure rP is the same as that under the physical

measure P:
d rZh

t “ dZh
t , (I-20)

as there is no risk premium.

Using (I-19) amd (I-20) under the risk-neutral measure, we may express the output

process (3) under the risk-neutral measure rP as follows:

dYt
Yt

“ rgdt ` σY

´

a

1 ´ ρ2d rZh
t ` ρd rZm

t

¯

, (I-21)

where rg is the average output growth rate under the risk-neutral measure rP:

rg “ g ´ ρσY η . (I-22)

In the interior region where dUt “ 0, we may equivalently express the government’s

optimization problem under the risk-neutral measure rP as follows:

max
TtďτYt,Ξh

t ,Ξ
m
t

rE0

„
ż 8

0

e´pζ`rqt
´

pYt ´ Tt ´ CpTt, Ytqq
`

1 ´ 1D
t

˘

`

´

pYt ´ pTt ´ pCp pTt, pYtq
¯

1D
t

¯

dt

ȷ

,

(I-23)

subject to the government’s tax constraint Tt ď τYt and the budget constraint:

Bt “ rEt

«

ż TD

t

e´rps´tq
pTs ´ Γsq ds

ff

. (I-24)

Note that the budget constraint (I-24) is under the risk-neutral measure rP.
Equation (I-24) implies that e´rtBt `

şt

0
e´rs pTs ´ Γsq ds is a martingale under the risk-

neutral measure rP. Using the marginal representation theorem, we can equivalently express

debt dynamics under the risk-neutral measure rP as:

dBt “ prBt ` pΓt ´ Ttqq dt ´ Ξh
t d

rZh
t ´ Ξm

t d
rZm
t . (I-25)

Using (I-23), (I-25), and (I-21) in the interior region, we use the following HJB equation
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to solve the household’s value functionP pB, Y q:

pζ ` rqP pB, Y q “ max
T ďτY,Ξh,Ξm

Y ´ T ´ CpT , Y q ` rrB ` Γ ´ T sPBpB, Y q (I-26)

` pg ´ ρησY qY PY pB, Y q `
pΞhq2 ` pΞmq2

2
PBBpB, Y q

`
σ2
Y Y

2

2
PY Y pB, Y q ´

`

ψhΞ
h

` ψmΞ
m

˘

Y PBY pB, Y q .

Existence and uniqueness of equilibrium debt capacity. In Proposition 5.2, we show

that under the κ ě 1 and α ď 1 conditions, there exists a unique positive debt capacity

b ą 0. Furthermore, when the tax constraint (9) does not bind, there exists a unique b ą 0

where ppbq “ αpp. When taxes are more distortionary (κ ě 1) under the balanced-budget

regime or when default causes output losses (α ď 1), the government is always better off

not defaulting and instead prudently managing risk exposures and debt dynamics to avoid

default.

Proof of proposition 5.2. Equations (60) and (57) imply

ppbq “
1 ´ τpbq ´ cpτpbqq

ζ ` r ` λ ´ g
, (I-27)

where τpbq “ pr`λ´ gqb` γ. The debt capacity b solves one of the following two equations

ppbq “ αpp , when the tax rate constraint (9) does not bind ; (I-28)

τpbq “ τ , when the tax rate constraint (9) binds . (I-29)

If tax constraint (9) binds, the equilibrium debt capacity b is the unique solution of

(I-29): b “
τ´γ

r`λ´g
. If tax constraint (9) does not bind, we can show that the equilibrium

debt capacity, which is the solution of (I-28), exists and is also unique. First, (I-27) implies

that the left side of (I-28) is decreasing b. Second, the left side of (I-28) when b “ 0 equals

1 ´ γ ´ cpγq, which is strictly larger than the right side of (I-28), given that the deadweight

loss function cp ¨ q is increasing and convex (in addition to the κ ě 1 and α ď 1 conditions).

Third, the left side of (I-28) approaches negative infinity as b Ñ 8. Therefore, there exists

a unique value of b ą 0 where (I-28) holds with equality. This unique value of b ą 0 solves

(65). Thus, an equilibrium debt capacity exists and is uniquely determined by

b “ min

"

b˚,
τ ´ γ

r ` λ ´ g

*

.
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Extension: finite balanced-budget regime duration. Our baseline model assumes that

the government stays in the balanced-budget regime forever after reneging on its liability.

As typical in the sovereign-debt literature, we generalize our baseline model by allowing the

government to regain access to international capital markets with probability χ per unit

of time. Let T ϵ denote the government’s stochastic exogenous exit time from the balanced-

budget regime. Upon exiting it at T ϵ and returning to the no-default regime, the household’s

value function is P p0, YT ϵq, where output is continuous at T ϵ, which means YT ϵ “ pYT ϵ . The

household’s value function in the balanced-budget regime pP ppY q therefore satisfies

pζ ` r`χq pP ppY q “ pY ´Γ´ pCpΓ, pY q ` pg´ ρησY qpY pP 1
ppY q `

σ2
Y

pY 2

2
pP 2

ppY q `χP p0, pY q . (I-30)

The scaled value in the balanced-budget regime, pp, is then given by

pp “
1 ´ γ{α ´ κcpγ{αq ` χpp0q

ζ ` pr ` λ ´ gq ` χ
. (I-31)

C Calibration

We use the US annual debt-output ratio from 2000 to 2020 to estimate our model. US debt

and GDP data are from FRED provided by St. Louis fed: https://fred.stlouisfed.org.

Let Ω “ tφ, ζ, κu. Our model asserts that the government debt-GDP ratio bt grows

deterministically at rate 9bt ” µbpbtq given in (56). Let µbpbt; Ωq denote the drift of b given Ω.

To account for measurement errors, we introduce a noise term into the law of motion (56)

for bt and discretize the bt process as follows:

bti`1
“ bti ` µb

pbti ; Ωqpti`1 ´ tiq ` εi`1 , i “ 1, 2, ¨ ¨ ¨ , (I-32)

where εi`1 is a random variable that captures the effect of measurement errors. Let hpεi`1q

denote the density function of εi`1:

h
`

bti`1
´ bti ` µb

pbti ; Ωqpti`1 ´ tiq
˘

. (I-33)

Let tpbti , i “ 1, ¨ ¨ ¨ , 21u, where ti “ 1999 ` i, denote the annual US debt-to-GDP ratio from
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2000 to 2020. Our estimate of Ω is

pΩ “ argmax
Ω

20
ÿ

i“1

lnh
´

pbti`1
´ pbti ` µb

ppbti ; Ωq

¯

. (I-34)

D Quantitative Comparative Dynamics

Figure 5: Effects of Impatience ζ. All parameter values other than ζ are reported in
Table 1.
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In this appendix we perturb some parameters one at a time and display effects on out-

comes.

Effects of impatience ζ. A larger parameter ζ indicates more primal government’s im-

patience. It introduces a wedge in first-order conditions that has quantitatively important

effects on taxes and value functions. Figure 5 compares outcomes in our baseline (ζ “ 0.1%)

case with those from a ζ “ 4% case in which the government is much more impatient.

As ζ increases from 0.1% to 4%, the total value ppbq decreases by about two thirds at

all admissible levels of b (panel A.) This outcome emerges mostly from a typical discounting
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channel. More interesting to us is that the marginal cost of debt (´p1pbq) and the optimal tax

rate (τpbq) both decrease substantially for most values of b (panels B and C). This happens

because it is much less costly for the government to defer taxation. As a result, the marginal

cost of debt (´p1pbq) at b “ 0.44 is one when ζ “ 4% but equals 1.52 dollars in our baseline

ζ “ 0.1% case. The optimal tax rate (τpbq) at b “ 0.44 is zero when ζ “ 4% but equals 18%

in our baseline ζ “ 0.1% case.

For both cases, as b increases, the tax rate τpbq and the marginal cost of debt increase

until debt has reached debt capacity b “ 1.97. While increasing ζ does not change the

government’s debt capacity, it does substantially increase the drift of the debt-GDP ratio

µbpbq, which in turn changes the time it takes for a government to reach its debt capacity,

as we describe in Section 6.3.

Figure 6: Effects of Interest Rate r. All parameter values other than r are reported in
Table 1.
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Effects of risk-free rate r. Figure 6 compares outcomes in our baseline (r “ 1%) case

with those in an r “ 0.5% case. When r decreases across economies from 1% to 0.5%, a

government’s debt capacity b increases substantially from 1.97 to 2.62. Importantly, both
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the marginal cost of debt ´p1pbq and the tax rate τpbq decrease substantially for the lower r

economy. Because interest payments are smaller, debt burden is smaller and tax distortions

are also smaller. As a result, a government is more willing to borrow causing the drift of the

debt-GDP ratio µbpbq to increase as r falls for all levels of b (panel D).

Figure 7: Effects of Risk Premium λ. All parameter values other than λ are reported
in Table 1.
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Effects of risk premium λ. Figure 7 compares outcome under our baseline (λ “ 3%)

case with those of a λ “ 2% case. When across economies λ decreases from 3% to 2%, a

government’s debt capacity b doubles from 1.97 to 3.94. Importantly, both the marginal

cost of debt ´p1pbq and the tax rate τpbq decrease markedly as the risk premium λ falls.

Because systematic risk management costs are smaller, the debt burden and tax distortions

are smaller. As a result, a government is more willing to borrow causing the drift of the

debt-GDP ratio 9bt “ µbpbq to increase as risk premium falls for all levels of b (panel D).

Effects of Output Growth Rate g. Figure 8 compares outcomes under our baseline

(g “ 2%) case with those from a g “ 1% economy. When the growth rate across economies

decreases from 2% to 1%, a government’s debt capacity b decreases by about one third
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Figure 8: Effect of Average Output Growth Rate g. All parameter values other than
g are reported in Table 1.

0 0.5 1 1.5 2

10

20

30

40

0 0.5 1 1.5 2

1.5

1.55

1.6

1.65

1.7

0 0.5 1 1.5 2

0.16

0.18

0.2

0.22

0.24

0 0.5 1 1.5 2

0

0.01

0.02

0.03

from 1.97 to 1.31. The marginal cost of debt ´p1pbq and the tax rate τpbq both increase

substantially as the growth rate falls from 2% to 1%. With slower growth, a government is

less willing to borrow against the future, causing drift of the debt-GDP ratio 9bt “ µbpbq to

fall for all levels of b (panel D). That government response has important implications about

the time it takes for a government to reach its debt limit.

Effects of tax distortion cost φ. The parameter φ governs tax distortions in the dead-

weight loss function cp ¨ q. Figure 9 compares outcomes under our baseline (φ “ 2.8) case

with those from a φ “ 0.08 case. When φ decreases from 2.8 to 0.08, a government’s debt

capacity b increases a little from 1.97 to 2.95 and the household’s value function ppbq in-

creases. The marginal cost of debt ´p1pbq and the tax rate τpbq both decrease. When taxes

are less distortionary, a government is more willing to borrow against the future, causing

lump-sum debt issuance threshold b to increase from 0 to 0.62 (panel A), and drift of the

debt-GDP ratio 9bt “ µbpbq to increase at all levels of b (panel D).

Effects of default costs: (increasing tax distortion costs κ ě 1). The parameter
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Figure 9: Effect of Tax Distortion Cost φ. All parameter values other than φ are
reported in Table 1.
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κ measures how much more distortionary taxes are in the balanced-budget regime than in

the service-debt regime. Figure 10 compares outcomes under our baseline (κ “ 1) case with

those under a κ “ 1.2 case. When across economies κ increases from 1 to 1.2, a government’s

debt capacity b increases from 1.97 to 2.32 and the household’s value function ppbq increases

slightly. The marginal cost of debt ´p1pbq and the tax rate τpbq both decrease. That is

because when default is more costly, a government is more willing to repay debt, allowing it

to borrow more. As κ increases across economies, the drift of the debt-GDP ratio 9bt “ µbpbtq

is higher for all levels of b (panel D).

Effects of default costs: output loss p1´αq. The parameter α measures the recovery of

output in the default regime. Figure 11 compares outcomes under our baseline (α “ 0.94)

case with those under an α “ 0.9 case. When across economies output loss p1´αq increases

from 6% to 10%, a government’s debt capacity b increases markedly from 1.97 to 3.22,

but the household’s value function ppbq increases only slightly. The marginal cost of debt

´p1pbq and the tax rate τpbq both decrease. This is because when default is more costly, the
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Figure 10: Effects of Default Costs: (Increasing Tax Distortion Costs κ ě 1). All
parameter values other than κ are reported in Table 1.
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government is more willing to repay debt and hence is able to borrow more. Finally, the

drift of the debt-GDP ratio 9bt “ µbpbtq is higher as we increase output loss p1 ´ αq for all

levels of b (panel D).

Our comparative static results with respect to p1´αq and κ are similar because increasing

p1 ´ αq directionally has the same effect as increasing κ. Both make default more costly,

which in turn improves incentives to repay and therefore debt capacity.

Effects of government spending-GDP ratio γ. The parameter γ measures government

spending as a fraction of output. Figure 12 compares outcomes under our baseline (γ “ 0.2)

case with those under a γ “ 0.3 case. When across economies government spending γ

increases from 0.2 to 0.3, a government’s debt capacity b decreases slightly from 1.97 to

1.80, but the household’s value function ppbq decreases markedly. The marginal cost of

debt ´p1pbq and the tax rate τpbq both increase substantially. That is because when the

government spending fraction is higher, a household’s value in the balanced-budget regime

becomes lower. Hence, a government is more willing to tax more in order to repay its debt.
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Figure 11: Effect of Default Costs: Output Recovery α. All parameter values other
than α are reported in Table 1.
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That enables it to borrow more.

Effects of expected balanced-budget-regime duration 1{χ. In our baseline Section

2 model, the government permanently stays in the balanced-budget regime once it enters.

In reality, a sovereign after defaulting on its debt stochastically regains its access to capital

markets. To capture a finite stochastic duration of staying in the balanced-budget regime,

we assume that a government exits it at a constant (annual) rate, denoted by χ, following

the sovereign-debt literature.44 We set χ “ 1{5 per annum as a sovereign after default on

average stays in the balanced-budget regime for four or five years (e.g., see the estimate in

Aguiar and Gopinath, 2006). In Figure 13, we compare this χ “ 0.2 case with our baseline

χ “ 0 case in which the balanced-budget regime is an absorbing state.

As we decrease the expected duration of being in the balanced-budget regime 1{χ from 8

to five years, the equilibrium debt capacity b decreases from 1.97 to 1.43 while the marginal

cost of debt ´p1pbq and the tax rate τpbq both increase. With a lower debt capacity (for the

44In Appendix B, we provide technical details.
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Figure 12: Effect of Government Spending γ. All parameter values other than γ are
reported in Table 1.

0 0.5 1 1.5 2

20

25

30

35

40

0 0.5 1 1.5 2

1.4

1.6

1.8

2

0 0.5 1 1.5 2

0.15

0.2

0.25

0.3

0.35

0 0.5 1 1.5 2

0

0.01

0.02

0.03

χ “ 0.2 case), the government has less room to smooth taxes and hence has to tax more

in order to honor its debt. Because higher taxes cause more distortions, the government’s

marginal cost of debt is higher. As a result of higher taxes, the government pays back its

debt at a faster rate (for all admissible levels of b) causing the drift of its debt-GDP ratio
9bt “ µbpbtq to be lower for the χ “ 0.2 case than for our baseline χ “ 0 case (panel D).
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Figure 13: Effect of intensity to exit balanced-budget regime χ. All parameter values
other than χ are reported in Table 1.
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Internet Appendix to
“A p Theory of Government Debt and Taxes”

Wei, Jiang, Thomas J. Sargent, Neng Wang, and Jinqiang Yang

I.A Dual

The dual formulation of our primal problem in Section 2 ABCD model describes a govern-

ment that is devoted to maximizing the present value of its fiscal surplus stream. The dual

can be interpreted as an abstract “tax-farmer” problem. We show that taxes and transfer

payments for this dual problem are identical to those that emerge from the solution in Sec-

tion 5 for the primal problem. In the dual problem, the government maximizes the present

value of its future primary surpluses subject to a sequence of participation constraints that

induce the representative household to consent to the government’s fiscal plan.

I.A.1 Government’s Value and Household’s Promised Value

The dual government chooses a tax revenue process tTt; t ě 0u that provides a smooth

flow payment (Yt ´ Tt ´ Ct) and a cumulative payment process tJt; t ě 0u to the impatient

representative household. Optimal policies, tTt; t ě 0u and tJt; t ě 0u, depend on histories

of idiosyncratic and systematic shocks tZh
t ,Zm

t ; t ě 0u. The maximum feasible tax rate that

the planner can impose on the output process is τYt for all t ě 0, i.e., Tt ď τYt, the same as

the constraint (9) that appeared in our primal dynamic debt management problem.

The planner maximizes the risk-adjusted present value of pTs ´ Γsq ds´dJs, the difference

between the government’s primary surplus (pTs ´ Γsq ds) and its distribution to the household

(dJs), at time 0. Let Ft denote the planner’s optimal value function at time t:

Ft “ max Et

«

ż TD

t

Λs

Λt

rpTs ´ Γsq ds ´ dJss

ff

. (I.1)

We’ll soon indicate the arguments with respect to which Ft is a maximum. We adopt an

assumption like Green (1987), Phelan and Townsend (1991), and Atkeson (1991) that the

planner is risk-neutral or has access to complete insurance markets. The same unique SDF Λ

described by process (18) prevails as did in our section Section 5 primal problem. The same

“small open economy” assumption rationalizes the exogeneity of that process. We assume
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that there is zero continuation value for the planner after TD. This assumption corresponds

to our earlier assumption of no debt recovery upon default in the debt management problem.

Household’s promised value tWt; t ě 0u. The dual problem uses the household’s

promised value, denoted by tWt; t ě 0u, as the key state variable.1 The household’s promised

value at time t, Wt, equals the present value of all future payments:

Wt “ Et

ż 8

t

e´ζps´tqΛs

Λt

´

dJs ` pYs ´ pTs ` Csqq
`

1 ´ 1D
s

˘

ds ` rpYs ´ p pTs ` pCsqs1D
s ds

¯

. (I.2)

Using the Martingale Representation Theorem, without loss of generality, we can represent

the dynamics of tWt; t ě 0u as:

dWt “ rpζ ` rqWt ´ pYt ´ Tt ´ Ctq ´ ηΦm
t s dt ´ dJt ´ Φh

t dZh
t ´ Φm

t dZm
t . (I.3)

The planner chooses tΦh
t ; t ě 0u and tΦm

t ; t ě 0u, exposures of the household’s promised

value tWt; t ě 0u to idiosyncratic and systematic risks, respectively.2

The dual government must respect a sequence of constraints that require the household

to choose to continue to participate. Let W t “ W pYtq denote the minimal threshold for the

household’s promised valueWt at which the household is willing to participate. Participation

constraints are:

Wt ě W pYtq, t ě 0 . (I.4)

We will determine W pYtq soon.

Next, we turn to the dual planner’s choice of a lump-sum payout to the household and

an associated upper boundary for W . There is a cost of deferring payments because the

household is impatient (ζ ě 0) relative to the dual government planner. Deferring payments

to the household increases Wt, which relaxes the participation constraint. This suggests an

endogenous threshold level, W t “ W pYtq, above which it is optimal for the planner to make

a payment to the household and to defer payments otherwise. Therefore, we set

dJt “ maxtWt ´ W pYtq, 0u . (I.5)

1See DeMarzo and Sannikov (2006) and Sannikov (2008) for pioneering work on continuous-time recursive
contracting formulations. See Ai and Li (2015) and Bolton, Wang, and Yang (2019) for continuous-time
recursive formulations of contracting problems with limited commitment in Corporate Finance.

2As in our Section 5 primal debt management problem, the government and household both diversify
away idiosyncratic risks and optimally choose aggregate risk exposures. So we use the risk adjustments
called for by the SDF Λ given in (18), to evaluate risk premia for both of them. Note that the household is
impatient, having a discount rate that exceeds the risk-free rate r by ζ ě 0.
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Let F pWt, Ytq denote the planner’s value function that solves the optimization problem

(I.1). In the payout region where Wt ą W pYtq,

F pWt, Ytq “ F pW pYtq, Ytq ´
`

Wt ´ W pYtq
˘

, (I.6)

and the threshold level W solves

max
W

F pW,Y q ` W . (I.7)

In the interior region where W P rW,W s, the planner optimally sets dJt “ 0 and the

value function F pW,Y q satisfies the HJB equation:

rF pW,Y q “ max
T ďτY,Φh,Φm

pT ´ Γq ` ppζ ` rqW ´ pY ´ T ´ CpT , Y qqqFW (I.8)

` pg ´ ρησY qY FY `
σ2
Y Y

2FY Y

2

`
ppΦhq2 ` pΦmq2qFWW

2
´

`

ψhΦ
h

` ψmΦ
m

˘

Y FWY .

We provide details now.

HJB equation for the planner’s value function F pW,Y q. Using Ito’s formula, we

obtain the following SDF-adjusted dynamics for the planner’s value function F pWt, Ytq:

dpΛtF pWt, Ytqq “ ΛtdF pWt, Ytq ` F pWt, YtqdΛt` ă dΛt, dF pWt, Ytq ą, (I.9)

where the SDF Λt is given in (18) and

dF pWt, Ytq “ FWdWt `
FWW

2
ă dWt, dWt ą `FY dYt `

FY Y

2
ă dYt, dYt ą `FWY ă dWt, dYt ą

“

„

pζWt ´ pYt ´ T ´ Ctq ´ ΦmηqFW ` gY FY `
σY Y

2FY Y

2

ȷ

dt

`

«

`

pΦhq2 ` pΦmq2
˘

FWW

2
´ pΦhψh ` ΦmψmqY FWY

ff

dt

´ FW pΦhdZh
t ` ΦmdZm

t q ` Y FY pψhdZh
t ` ψmdZm

t q . (I.10)

Note that the process defined by

ż t

0

Λs pTs ´ Γtq ds ` ΛsdJs ` ΛtF pWt, Ytq
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is a martingale under the physical measure P. Therefore, its drift under P is zero:

Et rd pΛtF pWt, Ytqqs ` Λt pTt ´ Γtq “ 0. (I.11)

Note that we have used the result that dJt “ 0 in the interior region. Simplifying (I.11)

gives the HJB equation (I.8) for the household’s value function F pWt, Ytq.

We do not repeat FOC for the tax rate and other derivations contained in the main body.

Below we provide the details for risk management policies.

Optimal hedging policies. The optimal idiosyncratic and systematic risk hedging demand

functions, ϕhpwtq “ Φh
t {Yt and ϕ

mpwtq “ Φm
t {Yt, are respectively given by

ϕh
pwq “

ψhY FWY pW,Y q

FWW pW,Y q
“ ´ψhw and (I.12)

ϕm
pwq “

ψmY FWY pW,Y q

FWW pW,Y q
“ ´ψmw . (I.13)

Household promised value wt dynamics. Applying Ito’s lemma to wt “ Wt{Yt, where

Wt is given in (I.3) and Yt is given in (3), we obtain:

dwt “ rpζ ` r ` ρησY ´ gqwt ´ p1 ´ θt ´ cpθtqqsdt ` djt

`

”

σ2
Ywtdt `

´

a

1 ´ ρ2σY ϕ
h
pwtq ` ρσY ϕ

m
pwtq

¯

dt
ı

´pϕh
pwtq `

a

1 ´ ρ2σYwtqdZh
t ´ pϕm

pwtq ` ρσYwtqdZm
t , (I.14)

“ µw
pwtqdt ` djt ` σw,h

pwtqdZh
t ` σw,m

pwtqdZm
t , (I.15)

where djt “ 0 in the interior region and

µw
pwtq “ pζ ` r ` λ ´ gqwt ´ p1 ´ θt ´ cpθtqq , (I.16)

σw,h
pwq “ pϕh

` ψhwq “ 0 , (I.17)

σw,m
pwq “ pϕm

` ψmwq “ 0. (I.18)

Therefore, the wt process evolves deterministically as:

9wt “ pζ ` r ` λ ´ gqwt ´ p1 ´ θpbtq ´ cpθpbtqqq . (I.19)

Household promised value in balanced-budget regime: pw. In the balanced-budget
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regime, the scaled promised value pw satisfies the following equation:

pζ ` rq pw “ 1 ´ γ{α ´ κcpγ{αq ` pg ´ ρησY q pw , (I.20)

which yields

pw “
1 ´ γ{α ´ κcpγ{αq

ζ ` r ` λ ´ g
. (I.21)

Planner’s Optimal Value Function

Using homogeneity again, we can simplify the dual to a one-dimensional problem. Let

wt “ Wt{Yt denote the scaled household’s value and let

F pWt, Ytq “ fpwtq ¨ Yt . (I.22)

Let wt “ W t{Yt denote the scaled upper boundary of w. We can show that wt is constant

so that we can drop the time subscript if we want. The scaled optimal lump-sum transfer to

the household for wt, djt “ dJt{Yt, at any t is

djt “ maxtwt ´ wt, 0u. (I.23)

Interior region: wt P rw,ws. Here there is no lump-sum transfer: djt “ 0. Let θt “ θpwtq “

Tt{Yt denote the optimal tax rate. Substituting (I.22) into (I.8) and simplifying yields the

following implicit equation for θpwq:

1 ` c1
pθpwqq “ ´1{f 1

pwq. (I.24)

Using the optimal tax policy (I.24) and the optimal hedging strategies, (I.12) and (I.13), we

obtain the following deterministic dynamics for the scaled promised value wt:

9wt ” µw
t “ µw

pwtq “ pζ ` r ` λ ´ gqwt ´ p1 ´ θt ´ cpθtqq . (I.25)

Substituting F pWt, Ytq “ fpwtq¨Yt from (I.22) and the optimal policy functions (I.24), (I.12),

and (I.13) for θpwq, ϕhpwq, and ϕmpwq, respectively, into the HJB equation (I.8), we obtain

the following first-order nonlinear differential equation for the planner’s scaled value fpwq:

pr ` λ ´ gqfpwq “ τpwq ´ γ ` rpζ ` r ` λ ´ gqw ´ p1 ´ θpwq ´ cpθpwqqqs f 1
pwq . (I.26)

Lump-sum payout region: w ą w. Here the planner’s value function is fpwq “ fpwq `
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w ´ w. The upper boundary w is constant and solves

max
w

fpwq ` w . (I.27)

Participation constraint and balanced primary budgets. At any time t, the household

is free to enter autarky, in which case output immediately drops to pYt “ αYt and the

household pays for public spending period-by-period so that pTt “ Γt. The household’s value

in this regime, xW ppYtq, is

xW ppYtq “ E
ż 8

t

e´ζps´tqΛs

Λt

´

pYs ´ Γs ´ pCpΓs, pYsq
¯

dt . (I.28)

The participation constraint requires that the lower boundary ofWt in the interior region,

W pYtq, is greater than or equal to the value function in the balanced-budget regime xW ppYtq:

Wt ě W pYtq ě xW ppYtq . (I.29)

The inequalityW pYtq ě xW ppYtq holds with equality when the tax constraint (9) is not binding.

Otherwise, the tax constraint (9) pins down the lower boundary W pYtq.

Let pwt “ xW ppYtq{pYt. Using homogeneity and solving (I.28), we obtain:

pw “
1 ´ γ{α ´ κcpγ{αq

ζ ` r ` λ ´ g
. (I.30)

Then the scaled promised outside value w is

w “ α pw , when the tax constraint (9) does not bind. (I.31)

Otherwise, (9) binds at the boundary and w is the root of the following equation:

θpwq “ τ . (I.32)

To ensure that w ě w, using the same reasoning as deployed for our Section 5 primal

formulation, we obtain the following zero-drift condition for w at w:

µw
pwq “ pζ ` r ` λ ´ gqw ´ p1 ´ θpwq ´ cpθpwqqq “ 0. (I.33)

The following theorem describes the optimal contract.
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Theorem I.A.1. Under the r ` λ ą g condition given in (28), κ ě 1, α ď 1, and the

condition 1 ´ γ{α ´ κcpγ{αq ě 0 given in (52), the scaled value function in the no-default

regime, fpwq, satisfies the nonlinear first-order differential equation:

pr ` λ ´ gqfpwq “ τpwq ´ γ ` rpζ ` r ` λ ´ gqw ´ p1 ´ θpwq ´ cpθpwqqqs f 1
pwq , (I.34)

subject to the zero-drift condition (I.33) and one of the following two conditions for the scaled

promised outside value w:

w “ α pw , when the tax constraint (9) does not bind ; (I.35)

θpwq “ τ , when the tax constraint (9) binds . (I.36)

The scaled value pw in the balanced-budget regime is

pw “
1 ´ γ{α ´ κcpγ{αq

ζ ` pr ` λ ´ gq
. (I.37)

The lump-sum payout boundary w is given by (I.27), and the optimal lump-sum payout policy,

djt, is given by (I.23). The optimal tax rate policy θpwq is given by (I.24) and the scaled

promised value twtu evolves deterministically at the rate of 9wt described by (I.25).

I.A.2 Taxes and Debts in Primal and Dual

Primal and dual problems yield identical tax outcomes with probability one. The state

variable in the primal government debt management problem (scaled debt, b) equals the value

function (scaled dual planner’s value, fpwq) in the dual planner’s problem. By symmetry, the

state variable in the dual planner’s problem (promised value for the household, w) equals the

value function (investors’ value, ppbq) in the primal government debt management problem.

Thus,

b “ fpwq and w “ ppbq. (I.38)

Together these equations imply f ˝ ppbq “ b. The composition of pp ¨ q from the primal debt

management problem with fp ¨ q from the dual planner’s problem equals an identity function.

Table 2 summarizes one-to-one mappings for state variables, value functions, policy rules in

the primal and dual problems.

Equivalence of Primal and Dual

The government’s debt management problem (20) is equivalent to the planner’s value-
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Table 2

Comparison of Primal and Dual Optimization Problems

Primal Dual
Debt Management Planner’s Allocation

A. State variables b w

Drift 9bt given in (56) 9wt given in (I.25)

Admissible region b P rb, bs w P rw,ws

B. Value function ppbq fpwq

Interior region ODE given in (60) ODE given in (I.26)
C. Policy rules

lump-sum transfer du given in (59) dj given in (I.23)
Payout boundaries b given in (58) w given in (I.27)
Tax rates τpbq given in (55) θpwq given in (I.24)

D. Limited commitment

Boundary condition µbpbq “ 0 µwpwq “ 0
Default value pp given in (63) pw given in (I.30)

Non-binding-tax-constraint case ppbq “ αpp w “ α pw

Binding-tax-constraint case τpbq “ τ θpwq “ τ

maximizing problem (I.1). The key implications are: 1.) the credible debt capacity, BpY q,

in the primal problem equals the planner’s value when the limited-commitment constraint

binds, F pW,Y q in the dual problem: BpY q “ F pW,Y q ; 2.) the lump-sum debt-issuance

and payout boundary, BpY q, equals the planner’s value when the planner makes a lumpy

payouts, F pW,Y q in the dual problem: BpY q “ F pW,Y q; 3.) the value function P pB, Y q

in the primal problem characterized by the HJB equation (39) and associated FOCs maps

to the value function F pW,Y q in the dual problem characterized by the HJB equation (I.8)

and associated FOCs as follows: P pBt, Ytq “ Wt and Bt “ F pWt, Ytq.

Using the homogeneity property, we obtain the following mapping for scaled variables

and value functions:

b “ fpwq and w “ ppbq. (I.39)

Additionally, we have the following results at the boundaries:

b “ fpwq , (I.40)

and

b “ fpwq . (I.41)

Next, we demonstrate the equivalence between the two problems by showing that by

substituting b “ fpwq into the ODE for ppbq, we obtain the ODE for fpwq, and vice versa.
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Substituting (I.39) and (I.40) into ODE (60) for fpbq, we obtain the ODE (I.26) for ppwq.

Substituting (I.39) and (I.40) into the constraint (57) for b and ODE (63) for the default

value pf , we obtain the constraint (I.33) for w, and ODE (I.20) for the default value w.

Substituting (I.39) and (I.41) into the constraint (58) for b, we obtain constraint (I.27) for

w. Substituting (I.39) into the optimal tax policy (55) in the government debt problem, we

obtain the optimal tax policy (I.24) in the dual planner’s problem.

I.A.3 Primal and Dual in Pictures

Figure I-1: Household’s Value ppbq, Planner’s Value fpwq, Marginal Cost of (Ser-
vicing) Debt ´p1pbq, and Marginal Cost of Compensating Household ´f 1pwq. Debt
capacity is b “ 1.97 and there is no lump-sum debt issuance and payout: b “ 0. Parameter
value are reported in Table 1.
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We now illustrate the equivalence between the (primal) government debt management

problem and the (dual) government profit-maximization problem. Panels A and C of Figure

I-1 plot the household’s value ppbq and the marginal cost (MC) of servicing debt ´p1pbq “

PBpB, Y q, respectively. The household’s value ppbq is decreasing and concave in b because as

b increases the household becomes more constrained. As we increase b from its lower bound

b “ 0 to the government’s debt capacity b “ b “ 1.97, ppbq decreases from pp0q “ 35.5 to
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Figure I-2: Optimal Tax Rate τpbq, Optimal Tax Rate θpwq, Drift of Debt-GDP
Ratio µbpbq, and Drift of Scaled Promised Value µwpwq. Lower bound of promised
value w “ 32.4 and lumpy payment boundary: w “ 35.5. Parameter value are reported in
Table 1.
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ppbq “ 32.4 and the MC of servicing debt ´p1pbq increases from ´p1p0q “ 1.49 to ´p1pbq “

´p1p1.97q “ 1.67 (panel C). That the MC of servicing debt exceeds one reflects costs of tax

distortions and limited commitment. At the current US debt-GDP ratio of 1.08, the MC of

servicing one dollar of debt is about ´p1p1.08q “ 1.56 dollars.

Panels B and D of Figure I-1 plot the government’s value fpwq and the marginal cost

(MC) of compensating households ´f 1pwq “ ´FW pW,Y q, respectively, for the section I.A

dual problem. The planner’s value fpwq is decreasing and concave in the (scaled) household’s

promised value w. As the participation constraint limits the government more, the MC of

compensating households ´f 1pwq increases.

We can illustrate equivalence of primal and dual problems by rotating panel A (away

from its plane) and swapping x and y axes. Doing so generates panel B. As a result, the red

dot in panel A corresponds to the red dot in panel B: ppbq “ w and fpwq “ b. Similarly, the

black square in panel A corresponds to the black square in panel B. Indeed, for all b P r0, bs,

we have f ˝ ppbq “ b so that the composition of pp ¨q from the primal debt management

problem with fp ¨q from the dual planner’s problem is an identity function.
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Equivalence between primal and dual problems implies f ˝ ppbq “ b, so we also have

p1pwqˆf 1pbq “ 1. Since tax distortions make the MC of servicing debt exceeds one (´f 1pbq ą

1), the marginal cost (MC) of compensating households by cutting taxes must be less than

one ´p1pwq ă 1. As we increase w from w “ 32.4 to w “ 35.5, the MC ´f 1pwq increases

from ´f 1pwq “ 0.60 at w “ w “ 32.4 to ´f 1pwq “ 0.67 at w “ w “ 35.5. The MC of cutting

taxes is less than one for the dual government because cutting taxes also reduces distortions

and relaxes the household’s participation constraint. The higher the value of household’s

promised value w, the less financially constrained is the household and the smaller the benefit

from reducing distortions by cutting taxes.

In panels A and B of Figure I-2, we plot optimal tax rate function τpbq and θpwq in

the primal and dual formulations. The optimal tax rate τpbq increases with b and reaches

its maximum value τpbq “ 0.24 at the debt limit b “ 1.97 (panel A). For sufficiently low

b, the government runs a primary deficit by keeping taxes low. When debt is sufficiently

high (b ą 1.06), the government runs a primary surplus by increasing the tax rate (at an

increasing rate) in order to bring down the drift of b (panel C). In the limit, the economy

settles at b “ 1.97. At the current debt-output ratio (1.08), the optimal tax rate on output

is about τp1.08q “ 20%.

Panel B for the dual problem shows that θpwq decreases with w. This happens because

the government’s power to tax the household decreases as the household’s value w increases.

Red dots in panels A and B describe the same outcomes, as do black squares.

Panels C and D plot the drift of b and the drift of w, respectively. Note that 9bt, the rate

at which the debt-GDP ratio b increases, decreases with the level of bt. As b increases, both

the marginal cost of servicing debt ´p1pbq and the tax rate τpbq increase. As a result, the

debt-GDP ratio increases at a slower rate (i.e., 9bt decreases) until it eventually reaches zero

at debt capacity: µbpbq “ 0 (panel C). This occurs because the government cannot exceed its

debt limit. Correspondingly, the drift of scaled promised value in the absolute value |µwpwtq|

decreases as wt decreases. As w decreases, the promised value w decreases at a slower rate

until it reaches zero at the lowest promised value w: µwpwq “ 0 (panel D).
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