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Abstract

I show that firms with low price change frequency conditional on macroe-
conomic shocks earn a risk premium. I build a multisector model in which
firms face heterogeneous nominal rigidities. Firms with higher price change
frequencies after macroeconomic shocks are less exposed to systematic cash-
flow risk, lowering average equity returns. I create a new dataset that links
firms from Compustat to weekly grocery store scanner data. I demonstrate
that a common proxy for price change frequency conditional on price gap size,
the kurtosis of price changes, carries a risk premium of 6% in the post-2005
period, consistent with the model. This premium cannot be explained by dif-
ferences in unconditional price change frequency.



1 Introduction

Nominal rigidities amplify firms’ cashflow losses after adverse macroeconomic shocks.

Firms that do not adjust prices after these shocks are likely to post product prices

that are either too low or too high compared to their profit-maximizing price, and

experience greater cashflow losses as a result. Investors therefore demand a risk

premium to hold these firms’ equity.

I show that firms with lower price change frequencies conditional on price gap

size earn a risk premium of over 6% per year. How much more likely a firm is

to adjust the price of a product when its price gap is large compared to when it

is small–a property known as state dependence–affects the cashflow losses a firm

experiences after macroeconomic shocks. After a shock, a firm with highly state-

dependent pricing will be more likely to adjust its price and reduce cashflow losses

than a firm with less state dependent pricing, even if both firms adjust prices at the

same unconditional frequency. This makes firms with less state dependence risky,

even holding unconditional price change frequency constant.

To build intuition for why a lack of state dependence heightens cashflow risk,

consider two single product firms with different types of nominal rigidities. Firm A is

randomly allowed to change its price with probability α each period, regardless of how

far its optimal price lies from its current price. This firm has no state dependence:

the probability of a price change is completely unrelated to the size of its price gap.1

In contrast, firm B can change its price whenever it wants, but must pay a menu cost

κ to do so. The probability firm B changes its price is 0 when the cashflow losses

due to its price gap are lower than a threshold determined by κ, and 1 when they

0Researcher’s own analyses calculated based in part on data from Nielsen Consumer LLC and
marketing databases provided through the NielsenIQ Datasets at the Kilts Center for Marketing
Data Center at The University of Chicago Booth School of Business. The conclusions drawn from
the NielsenIQ data are those of the researcher and do not reflect the views of NielsenIQ. NielsenIQ
is not responsible for, had no role in, and was not involved in analyzing and preparing the results
reported herein.

1This type of pricing behavior can occur when firms incur substantial administrative costs asso-
ciated with collecting data on optimal prices. In the firm Zbaracki et al. 2004 focus on, for example,
pricing data are collected over several months during a “pricing season” each year. This leads the
firm to change its price at regular intervals regardless of its products’ price gaps.
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exceed this threshold. Because the probability of this firm’s price changes is entirely

predicted by its price gap, it has high state dependence.

When there is a large negative macroeconomic shock, both firms’ cashflows fall

and their optimal prices move away from their posted price. If the price gap is

large enough, firm B pays the menu cost and changes its price, giving it a higher

conditional frequency of price changes after large shocks. The menu cost κ acts as

an upper bound on the cashflow losses this firm suffers due to its price gap. On the

other hand, firm A does not have a higher price change frequency after such a shock,

and its losses due to its price gap can be large if it does not receive a price change.

Firm A’s lower conditional frequency after large shocks makes its cashflows fall by

more in bad states, making it riskier.

The implications for cashflows in the face of nominal shocks for each firm are

shown in Figure 1. Productivity is given on the x-axis, and cashflows on the y-axis.

The profits of firms without nominal rigidities are shown in blue. The profits of the

low state dependence firm A are shown in red, and of the menu cost firm B in violet.

When there is a negative productivity shock, cashflows fall for all firms. However,

the profits of the menu cost firm fall only slightly more than would a firm with no

nominal rigidities–if the shock is large enough, the profits are exactly the profits of

the non-rigid firm minus the menu cost κ. The Calvo firm’s profits can decrease by

far more, with a gap between its profits and the non-rigid firm’s that is several times

the size of the gap between the menu cost firm’s and the non-rigid firm’s profits.

This greater curvature in profits for the firm with low state dependence makes its

cashflows fall by more when negative shocks hit, making investors demand a premium

for holding its stock.

To establish the link between state dependence and cashflow risk, I construct a

multisector general equilibrium model where firms face heterogeneous probabilities of

free price changes and menu costs.2 The nominal rigidites of each sector range from

minimal state dependence with frequent random free price changes and prohibitive

menu costs, to maximum state dependence with no random free price changes and

2My model is closely related to that of Nakamura and Steinsson 2010, who denote the combina-
tion of menu costs and free price changes as “Calvo Plus” nominal rigidities.

2



low menu costs. I first show that firms with high state dependence are more likely

to change prices after monetary policy shocks, even though all firms in the economy

have approximately the same unconditional price change frequency. I then show that

average equity returns fall with state dependence. The model therefore predicts that

firms with a lower state dependence are less likely to change prices after aggregate

shocks, and that these firms earn an equity risk premium.

Under a broad class of models, including the model in this paper, state depen-

dence is tightly connected to the kurtosis of a firm’s price changes.3 The kurtosis

of a distribution measures the frequency and size of extreme observations compared

to the peak of the distribution. If a firm exhibits a high kurtosis of price changes,

it closes its price gap frequently when the price gap is small and infrequently when

its price gap is moderately sized. High kurtosis firms also occasionally close very

large price gaps, indicating several periods of accumulated shocks pass before the

firm changes its price. This combination of many small price changes with some

very large price changes indicates that the probability of a firm’s price change is

unrelated to its price gap and that the firm has low state dependence. In contrast,

the high state dependence menu cost firm will change its price every time the price

gap exceeds a threshold determined by the menu cost, and never when the price

gap is below that threshold. This results in a distribution of price changes that is

highly concentrated around this threshold with thin tails, leading to a low kurtosis

of price changes. I show that higher kurtosis indicates lower state dependence in

my model by simulating the distribution of price changes within each sector. The

monotonic, negative relationship between kurtosis and state dependence validates

the use of kurtosis as an empirical proxy for low state dependence in the context of

my model.

To empirically link state dependence to equity returns, I build a new dataset

linking firms in Compustat to grocery store scanner data from Nielsen. I merge

weekly product-store level prices and sales with financial and accounting variables

in Compustat and stock returns from CRSP. I then calculate frequency and kurtosis

of price changes for products in my sample, and aggregate these pricing statistics to

3See Alvarez, Le Bihan, and Lippi 2016.
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the firm level.

I find that firms in the highest tercile of price change kurtosis earn average eq-

uity returns that are 6.4% higher than those of firms in the lowest tercile over the

2006-2019 period. This premium is in the same range as other risk premia asso-

ciated with nominal rigidities, such as the unconditional frequency premium found

by Weber 2014 of 4% and the demand elasticitiy premium of 6.2% found by Clara

2019. This premium is not driven by small firms; value-weighted average returns

imply firms with high kurtosis of price changes earn a premium of 6.6% above low

price change kurtosis firms. Controlling for other variables that commonly predict

returns, including unconditional frequency, does not negate the price change kurtosis

premium.

The risk premium earned by firms with high kurtosis of price changes is explained

by their lower conditional price change frequency after large macroeconomic shocks.

In panel regressions I show that firms with higher price change kurtosis are less likely

to adjust prices after large monetary policy shocks. These regressions confirm the

mechanism in the model where firms with higher state dependence adjust prices more

frequently after macroeconomic shocks, reducing their systematic cashflow risk.

In Section 2, I discuss the related literature in macroeconomics and finance. In

Section 3, I describe a model where firms facing heterogeneous types of nominal

rigidities. In Section 4, I outline the key testable predictions of the model, and

discuss how kurtosis of price changes is linked to state dependence. In Section 5 I

describe my new dataset linking firms in Compustat to Nielsen’s barcode-level data.

In Section 6 I present empirical evidence confirming the predictions of the model.

Section 7 concludes the paper and discusses future directions for research in product

pricing behavior and asset pricing.

2 Literature Review

This paper directly addresses two major strands of the finance and macroeconomics

literatures. It extends the work of Weber 2014 and Gorodnichenko and Weber 2016,

who link the frequency of price changes to equity risk premia. Weber 2014 finds
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that firms that adjust prices with lower unconditional frequency earn an equity risk

premium. To rationalize this result, he builds a model with a continuum of mo-

nopolistically competitive firms that adjust prices at random times (Calvo pricing).

These firms are divided into sectors with different frequencies of price changes. Sec-

tors with lower price change frequency are less able to adjust prices in response to

macroeconomic shocks, making their cashflows have a higher covariance with these

shocks and earning a risk premium.

A closely related paper in this vein in Gorodnichenko and Weber 2016, who show

that short-term stock returns are more responsive to monetary policy shocks for firms

with less frequent price changes. D’Acunto et al. 2018 and Augustin et al. 2021 study

the effect of nominal rigidites on the capital structure and credit risk of firms. Li and

Palomino 2014 study the asset pricing implications of monetary policy responses to

inflation in the presence of price and wage rigidities. Clara 2019 demonstrates that

in the presence of nominal rigidities, firms’ demand elasticities are a significant risk

factor for equity returns. However, he finds no evidence for a price change frequency

premium in the 2011-2017 period.

This paper also has implications for an ongoing debate in the monetary economics

literature on sufficient statistics for monetary non-neutrality. Alvarez, Le Bihan, and

Lippi 2016 and Alvarez, Lippi, and Oskolkov 2021 show that within a broad class of

standard price stickiness models and low inflation environments, the ratio of kurtosis

to frequency of price changes is a sufficient statistic to predict the real response

within an economy to a once-and-for-all interest rate shock.

The empirical evidence on this topic has so far been ambiguous. Alvarez et

al. 2021 use French CPI and PPI microdata to regress price response responses at

the sector level on kurtosis and frequency of price changes. They find that sectors

with higher kurtosis to frequency ratios have smaller cumulative price responses

to interest rate shocks. Gautier, Marx, and Vertier 2022 find that kurtosis and

frequency are indeed sufficient statistics for monetary non-neutrality among gasoline

providers in France in the period from 2007 to 2018. However, Hong et al. 2021

find no evidence that kurtosis of price changes is associated with differences in price

responses to monetary policy shocks across US Producer Price Index (PPI) sectors,
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while higher frequency is associated with a greater response. My results support

the view of Alvarez et al. 2021 and Gautier, Marx, and Vertier 2022 that standard

models realistically link pricing moments to monetary non-neutrality.

3 Model

I build a general equilibrium model that links lower state dependence to higher

cashflow risk, an equity risk premium, and higher kurtosis of price changes. At the

core of the model are firms with heterogeneous menu costs and probabilities of a free

(Calvo) price change. The nominal rigidities of this model are a special case of the

class of rigidities studied in Alvarez, Le Bihan, and Lippi 2016, in which kurtosis and

frequency are sufficient statistics for predicting the real effects of a once-and-for-all

monetary policy shock.4

Firms face nominal rigidities that combine Calvo-style free price changes and

menu costs. The probability of a free price change and the menu cost differ according

to a firm’s sector k. Each period, a firm receives the opportunity to change its price

for free with probability αk, as in Calvo 1983. If it does not receive a free price

change, it can choose to pay a menu cost κk to change its price, as in Caplin and

Spulber 1987 and Golosov and Lucas 2007. κk acts as an upper bound on the losses

a firm sustains from its price gap, as the firm will always change its price when

expected cashflows losses from its price gap exceed κk.

3.1 Households

Households maximize discounted expected utility, which is a function of consumption

Ct and labor supplied Nt. The household has CES utility.

4Their result is contingent on the strong assumptions that firms have symmetric costs to their
price gaps, inflation is 0, and shocks to the price gap are normally distributed. While none of these
assumptions hold in my model exactly, I quantitatively demonstrate that lower kurtosis of price
changes predicts stronger price responses to monetary policy shocks in Section 4.2.
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max
Ct,Nt

E0

∞∑
t=0

βt
[C1−γ

t

1− γ
− χN

1+ξ
t

1 + ξ

]
The consumption aggregate is a combination of the goods produced by each firm

i:

Ct =

(∫
i

C
η−1
η

i,k,t di

) η
η−1

k is the sector firm i belongs to. As describe in the next subsection, firms are ex

ante identical except in the types of nominal rigidities they face. η is the elasticity of

substitution between goods. I assume the between-sector elasticity of substitution is

identical to the within-sector elasticity. This eliminates the need to keep track of the

relative price of a sector compared to the economy-wide aggregate price, eliminating

a state variable from the model. The household faces a budget constraint

PtCt +Qt+1Bt+1 ≤ Dt +Bt +WtNt

Where Pt is the aggregate price index, Bt+1 are household savings in period t,

Qt+1 is the price of the risk-free asset, and Wt is the nominal wage. The first order

conditions for aggregated consumption, bond holdings, and labor supply are:

∂Ct : C−γt = λtPt

∂Bt+1 : Qt+1λt = λt+1

∂Nt : −χN ξ
t +Wtλt = 0

where λt is the budget constraint multiplier. Combining these first order condi-

tions, I derive the Euler equation and labor supply equation:
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Euler : 1 = Etβ
1

Qt+1

Pt
Pt+1

(
Ct+1

Ct

)−γ

Labor Supply : χN ξ
t =

Wt

Pt
C−γt

I follow Nakamura and Steinsson 2010 and set the Frish labor supply elasticity

to infinity: ξ = 0. This parameter choice simplifies the labor supply equation to
Wt

Pt
= χCγ

t . This assumption allows firms to choose their prices without making a

prediction about Nt in the current period, making the model more computationally

tractable.

Given the optimal choice of aggregated consumption Ct, household demand for

each firm’s good Ci,k,t solves the following cost-minimization problem:

min
{Ci,k,t}

∫
i

Pi,k,t
Pt

Ci,k,tdi

such that

Ct ≤

(∫
i

C
η−1
η

i,k,t di

) η
η−1

Solving this problem gives the demand curve faced by firm i given aggregate

consumption Ct:

Ci,k,t =

(
Pi,k,t
Pt

)−η
Ct

3.2 Firms

The economy is populated by a continuum of firms i, each of which belongs to a

sector k. These firms are ex-ante the same except for the nominal rigidities between

sectors. Each firm maximizes the expected discounted value of its real dividends:
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E0

∞∑
t=0

M0,t
Di,k,t

Pt

where nominal dividends Di,k,t are profits from sales of the intermediate good

Yi,k,t produced by the firm minus nominal labor costs and a menu cost (scaled by the

price level) if the firm decides to change its price:

Di,k,t ≤ Pi,k,tYi,k,t −WtNi,k,t − PtκkI[κk paid]

The firm hires labor Nt, for which it pays the market wage Wt. The firm’s

production function has constant returns to scale for labor:

Yi,k,t = AtZi,k,tNi,k,t

At is aggregate technology, while Zi,k,t is firm-level, idiosyncratic technology. Each

of these technologes follows an exogenous AR(1) process in logs:

log(At) = ρAlog(At−1) + εAt

log(Zi,k,t) = ρZ log(Zi,k,t−1) + εZt

The firm faces the demand curve derived under the household’s problem:

Yi,k,t =

(
Pi,k,t
Pt

)−η
Ct

Finally, the firm’s per-period real dividend payments can be rewritten as

DR
i,k,t =

Di,k,t

Pt
=

(
Pi,k,t
Pt
− Wt

Pt

1

Zi,k,tAt

)(
Pi,k,t
Pt

)−η
Ct − κkI[κk paid]

After aggregate shocks occur at the beginning of each period, firms receive a free

price change with probability αk. If they do not receive a free price change, firms

choose whether to adjust their price Pi,k,t by paying the menu cost κk. If the firm
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changes its price either by getting a free price change or paying the menu cost, it

adjusts its price to the value that maximizes expected discounted dividend payments.

3.3 Monetary Authority

Following Nakamura and Steinsson 2010, the central bank sets nominal GDP accord-

ing to an exogenous process:

log
(
PtCt

)
= log

(
NGDPt

)
= log

(
NGDPt−1

)
+ µNGDP + εNGDPt

εNGDPt is a monetary policy shock, which is drawn each period from a normal dis-

tribution with mean 0 and standard deviation σNGDP . This formulation of nominal

shocks allows firms to predict only the price level in the current period, as opposed

to both the price level and aggregate real output separately. Once the price level Pt

is predicted, real output is simply Ct = NGDPt
Pt

.

3.4 The Dynamic Problem

Let P̂i,k,t =
Pi,k,t
Pt

denote the firm’s real price. At the beginning of each period, pro-

ductivity and monetary policy shocks εzt , ε
A
t , and εNGDPt are realized. The resulting

inflation from these shocks moves the firm’s real price to its beginning of period value

P̂−1. The firm then receives a free price change with probability αk. If it receives

a free price change, the firm changes its price to P̂ ∗(Z,A,C), which maximizes its

expected discounted value. If it does not receive a free price change, it then chooses

whether to change its price by paying the menu cost κk. It makes its decision based

on its sector-specific nominal rigidities, real price, idiosyncratic productivity, aggre-

gate productivity, and aggregate real consumption. If it pays the menu cost, the firm

changes its price to P̂ ∗(Z,A,C).

The firm’s value is given by:
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V k(P̂−1, Z, A,C) = αk

[
ΠR(P̂ ∗(Z,A,C), Z, A,C) + EM ′V k(P̂ ′−1, Z

′, A′, C ′)
]

︸ ︷︷ ︸
Free price change

+ (1− αk) max
[

ΠR(P̂−1, Z, A,C) + EM ′V k(P̂ ′−1, Z
′, A′, C ′)︸ ︷︷ ︸

No free price change, does not pay κk

,

ΠR(P̂ ∗(Z,A,C), Z, A,C)− κk + EM ′V k(P̂ ′−1, Z
′, A′, C ′)︸ ︷︷ ︸

No free price change, pays κk

]
(1)

The term after αk is real profit in the current period, ΠR(P̂ ∗(Z,A,C), Z, A,C),

plus the expected discounted future value of the firm, EM ′V N(P̂ ′−1, Z
′, A′, C ′), if

the firm is given a free random price change. If, with probability 1 − αk, the firm

does not receive a free price change, the firm chooses whether or not to pay the

menu cost. If it chooses not to pay the menu cost, it earns profits at the beginning

of period price ΠR(P̂−1, Z, A,C) and its discounted expected value at the start of

the next period is EM ′V N(P̂ ′−1, Z
′, A′, C ′). If it chooses to pay the menu cost, the

firm changes its price to the value-maximizing price, earning the same cashflows and

expected future value as in the case with a free price change. However, the firm must

pay the menu cost κk.

3.5 Predicting Consumption and Inflation

When making pricing decisions at the beginning of each period, firms must predict

the aggregate price level Pt in the current period. In principle, an infinite number of

state variables are required to predict Pt (each firms’ beginning of period price and

idiosyncratic technology). To make this problem tractable, firms predict inflation

using the Krusell-Smith procedure, where a small number of aggregate moments

provide an approximation to the variables being predicted. Firms predict log inflation

using a linear combination of log aggregate productivity, real consumption, and the

nominal GDP shock:
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log(Π̂t) = µNGDP + ζ0 + ζ1log(At) + ζ2log
(Ct−1

CSS

)
+ ζ3ε

NGDP
t (2)

I make an initial guess of ζ1, ζ2, and ζ3 using economic intuition on how optimal

prices move in response to changes in supply (aggregate technology At) and demand

(Ct−1 and εNGDPt ). I guess that ζ1 < 0 because higher productivity reduces marginal

costs, which makes the profit-maximizing price fall. ζ2 and ζ3 are greater than 0

because increases in demand raise the profit-maximizing price.

I simulate the economy with firms predicting inflation based on my initial guesses

of ζ1, ζ2, and ζ3. I then regress realized inflation on the three aggregate variables,

and simulate the economy based the updated ζ1, ζ2, and ζ3. This process converges

at a rule for predicting inflation that very closely approximates realized inflation.

In Figure 2 I plot realized vs predicted inflation. Regressing realized inflation on

predicted inflation once the coefficients converge yields an R2 of over 99%.The coeffi-

cient on predicted inflation, 0.997, is statistically indistinguishable from 1, while the

intercept, 0.000006, is statistically indistinguishable from 0. This tight one-to-one

relationship between predicted inflation and realized inflation suggests the rule in

Equation 2 provides an accurate approximation to the rational expectations equili-

birum inflation.

3.6 Equilibrium

The equilibrium of this economy consists of

1. Aggregate consumption C, aggregate technology A, a distribution of firms G

over idiosyncratic technology Z and real prices P̂ , and nominal GDP NGDPt.

2. Firm predictions of inflation as a function of observed aggregate variables

Γπ(A,C−1, ε
NGDP ).

3. A firm policy function for its real price P̂ = H(P̂ , Z, A,C).

such that
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1. The policy function H maximizes the firm’s value given the state variables.

2. Firm pricing decisions based on H, aggregated over distribution of firms G, are

consistent with predicted inflation: Π(G, A, C−1, ε
NGDP ) = Γπ(A,C−1, ε

NGDP ).

3. The variables Z, A, and NGDP evolve according to their given stochastic

processes.

4. The market for labor and the market for goods clear.

3.7 Calibration

I calibrate the model at quarterly frequency drawing on widely accepted moments

in the finance and macroeconomics literature. I set the time discount rate β to 0.99.

Relative risk aversion γ is set to 5, consistent with Jermann 1998 and Weber 2014.

The labor disutility parameter χ is chosen so that in the flexible price steady state

the labor supply is 1. I follow Hansen 1985, Rogerson 1988, and Nakamura and

Steinsson 2010 to set the inverse frisch labor supply elasticity ξ to 0. The elasticity

of substitution between goods η is 4, in line with the estimates of Berry, Levinsohn,

and Pakes 1995. Idiosyncratic shock volatiltiy σz is set to 0.075, close to the aver-

age idiosyncratic volatility of Nakamura and Steinsson 2010. Aggregate productivity

shock volatility σa is 0.0085, consistent with Weber 2014. The persistence of aggre-

gate productivity σa is set to 0.8, similar to persistence in Smets and Wouters 2007.

Aggregate monetary policy shock volatiltiy σNGDP is 0.0065, in line with Nakamura

and Steinsson 2010.

I group firms into four sectors with varying types of nominal rigidities. The

first sector has firms with purely Calvo pricing. Each subsequent sector has a lower

probability of a free price change, but a lower menu cost so that all sectors have

approximately the same unconditional frequency of price changes. The final sector

has no free price changes. The exact combinations of calvo probabilities αk and menu

costs κk are shown in Table 3.
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4 Model Predictions

I solve for the optimal price setting policy function given an initial guess of the

inflation prediction parameters ζ1, ζ2, and ζ3. Using this policy function, I simulate

an economy with 50,000 firms for 5,000 periods. Each period, firms adjust their price

according to their policy function, and I record aggregate inflation to fine-tune the

inflation prediction rule as discusssed in Section 3.5.

4.1 State Dependence and Kurtosis of Price Changes

I plot histograms of price changes within each sector in Figure 3. The distribution

of price changes for firms in the Calvo sector closely mirrors the normal distribution.

This is consistent with the intuition that the timing of these firms’ price changes is

a random draw from a normal distribution of price gaps of combined idiosyncratic

productivity, aggregate productivity, and monetary policy shocks.5. The last sector

has price changes that are heavily concentrated around a bimodal distribution. This

behavior is consistent with firms adjusting prices only when their cashflow losses

due to their price gap exceeds their menu cost. Sectors 2 and 3 have price change

distributions that are a mixture of the pure Calvo and pure menu cost cases.

The kurtosis of price changes accurately reflects the state dependence of the firms

in each sector. The Calvo sector with pure random price change timing has the high-

est kurtosis. As the probability of free price changes and menu costs fall, and state

dependence increases, the distribution of price changes becomes more highly con-

centrated around a bimodal distribution. This lowers the kurtosis of price changes.

In this model, lower kurtosis of price changes captures lower αk and κk (holding

unconditional frequency constant) and the state dependence of firms’ price change

timing.

5The kurtosis of price changes for these firms is counterfactually low–the highest tercile of
kurtosis in my sample is about 6. However, this is easily accounted for by including leptokurtic
idiosyncratic productivity shocks, as in Midrigan 2011. Furthermore, this exercise demonstrates
that it is not necessary for firms to experience different distributions of shocks to explain the
relationship between kurtosis of price changes and equity returns.
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4.2 Price Change Frequency after Aggregate Shocks

The mechanism by which state dependence decreases cashflow risk is that firms with

a higher state dependence are more likely to change prices after macroeconomic

shocks, controlling for their unconditional frequency of price changes. To show this

is the case, I regress the frequency of price changes for sector k in period t on the

unconditional frequency of sector k and the size of the monetary policy shock |εNGDPt |:

Freqk,t = β1Freqk + β2|εNGDPt |+ νi,t

In the first four columns of Table 2, I show the coefficients and standard errors of

this regression for each sector. In sector 1 with no state depdendence, the coefficient

on |εt|NGDP is statistically indistringuishable from 0, consistent with firms in this

sector changing prices at random times unrelated to the size of their price gaps. For

sectors 2-4, the coefficient on |εNGDPt | is increasing and highly significant, demon-

strating that firms with higher state dependence are more likely to adjust prices after

larger macroeconomic shocks.

Finally, I regress sector price change frequency at time t on the previous two

variables plus the kurtosis of price changes for sector k and the interaction between

this kurtosis and the monetary policy shock:

Freqk,t = β1Freqk + β2|εNGDPt |+ β3Kurtk + β4|εNGDPt | ×Kurtk + νi,t

The results are shown in the last column of Table 2. The interaction coefficient

is negative and statistically significant: the higher the kurtosis of a sector’s price

changes, the less its frequency of price changes in period t is affected by the size

of the aggregate shock. In particular, if the kurtosis of price changes for the sector

is approximately 3, the size of the aggregate shock has no effect on price change

frequency–consistent with the Calvo sector’s price changing behavior.
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4.3 Equity Returns

Finally, I calculate the mean real equity return
V kt

(
P̂i,k,t+1,Zi,k,t+1,At+1,Ct+1

)
V kt

(
P̂i,k,t,Zi,k,t,At,Ct

)
−Di,k,t/Pt

for each

firm in the economy. In Table 3, I show the mean frequency and kurtosis of price

adjustment for each sector, as well as the average equity return, probability of a free

price change, and menu cost. I compute standard errors for frequencies, kurtoses,

and mean equity returns, shown in parentheses. The spread for these three statistics

between firms in sectors 1 and 4 are shown in the final row, with standard errors

again in parentheses.

From sectors 1 to 4, the probabilities of free price changes fall and menu costs

fall, resulting in higher state dependence in firm’s pricing decisions. While frequency

falls slightly, kurtosis falls significantly. The decline in average equity returns from

sectors 1 to 4 demonstrates that firms with higher state dependence are less exposed

to systematic risk. This difference in risk cannot be explained by frequency alone, as

firms in sectors with higher frequencies of price changes earn higher average equity

returns.6 Instead, the proxy for state dependence–kurtosis of price changes–accounts

for the significant differences in systematic risk across sectors.

5 Data

I test the relationship between state dependence, conditional price change frequency,

and equity returns predicted by the model by constructing a new dataset that links

firms in Compustat to granular grocery store pricing data. I use weekly data on

prices and quantities from Nielsen to construct firm-level measures of price adjust-

ment frequency and kurtosis. I combine these measures with financial variables from

Compustat and equity returns from CRSP. My final sample contains monthly data

for 211 firms from 2006 to 2019.

6The slight increase in frequency from sectors 1 to 4 cannot explain the cashflow risk implied
by equity returns in each sector. Lower unconditional frequency causes higher cashflow risk, as
in Weber 2014 and Gorodnichenko and Weber 2016, and therefore implies higher average equity
returns.
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5.1 Weekly Pricing Data

The Nielsen’s Scanner Dataset contains prices of products referenced by 12-digit

barcodes (UPC), recorded each week across tens of thousands of supermarkets. UPCs

are a very fine level of classification for a good and using them effectively removes

concerns about changing prices due to changes in quality.7 Within each store, the

price of each UPC is recorded every week the UPC is present in the store from 2006

to 2019. I refer to a UPC-store combination as a good throughout this paper.

To link UPCs in the scanner data with firms in Compustat, I follow the procedure

used by Clara, Corhay, and Kung 2021 and Kim 2020 to link a related dataset, the

Nielsen Consumer Panel Data, to Compustat. Each UPC begins with a GS1 prefix

which uniquely identifies the brand selling the good. Using a Python webscraping

tool, I search for the companies that all 2.4 million UPCs in the Scanner Data belong

to in the GS1 Company Database. I then match GS1 company names to Compustat

names by comparing bigrams with a fuzzy match in Stata, and manually check the

results for false matches. Finally, I manually search through the 200 largest GS1

brands by sales volume and link these to Compustat by hand.

With the UPC to Compustat link, I collect pricing data for goods linked to firms

in Compustat. First, I remove good-year combinations where the good’s price is not

present in every week of the year.8 I then compute the total sales value of each good

that remains in my sample. I then aggregate total sales within the Nielsen data

to the firm level, calculating total firm sales across all goods. I extract the weekly

pricing data for goods that are at least 0.1% of a firm’s total sales volume in Nielsen.

In addition, I extract UPC-store combinations where the store’s sales of a particular

UPC is at least 0.5% of the sales value of the UPC’s total sales, and the UPC’s

total sales across all stores is at least 0.1% of the total value of the firm’s sales 9.

7Hottman, Redding, and Weinstein 2016 point out that products that are higher-quality versions
of old products are almost always given a new UPC.

8This is the data cleaning procedure of Karadi, Schoenle, and Wursten 2020, who also use an
extremely large dataset of prices, the IRI Marketing dataset. As they and Argente and Yeh 2022
point out, products introduced within a year are more likely to experience idiosyncratic pricing
behaviors at their introduction. Removing goods not present in the entire year also makes the
sample size more manageable.

9This procedure makes it more likely that UPCs with high sales volumes are included in my
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The pricing data from Nielsen matched to Compustat contains a total of 47,339,971

weekly price and quantity observations encompassing 262,612 unique goods. A good

is in my sample for an average of 3.8 years, and a median of 3 years. 10

With the weekly prices in hand, I compute the frequency and kurtosis of price

changes at the good level. I classify any movement in a good’s price greater than

$0.01 as a price change. The frequency of price changes for good j, Frequencyj, is

the ratio of the number of such price changes divided by the number of weeks j is

in my sample. To calculate the kurtosis of price changes for j, I follow the cleaning

method used in Alvarez, Le Bihan, and Lippi 2016 and Hong et al. 2021. I compute

log price changes ∆pj,t and drop those changes that are above the 99th percentile for

all log changes in my sample. I then demean each price change by the mean log price

change of good j. Finally, I divide by the standard deviation of log price changes

for good j, creating normalized log price changes ∆p̂j,t. The kurtosis of log price

changes for j is computed as

Kurtosisj =
1

Tj

∑
t∈j

(
∆p̂j,t

)4

where Tj is the number of periods in which a price change occurs for j. With

Frequencyj and Kurtosisj calculated for each good, I then take a weighted average

of each statistic to construct firm-level average pricing statistics Frequencyi and

Kurtosisi. The weights ωj are based on j’s total sales in the sample divided by the

sales of all goods that belong to firm i:

Frequencyi =
1

J

∑
j

ωjFrequencyj

sample, even if they are geographically dispersed and no specific UPC-store combination within
that UPC meets the 0.1% threshold.

10The median good in therefore is my sample for 156 months. At a median price change frequency
of 0.29, this implies I observe about 45 price changes for the median good. The relatively frequent
sampling frequency allows me to compute a more accurate measure of kurtosis than alternative
datasets with monthly prices, such as the BLS PPI microdata used in Gilchrist et al. 2017, Augustin
et al. 2021, and Weber 2014, at a disaggregated good level.
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Kurtosisi =
1

J

∑
j

ωjKurtosisj

ωj =

∑
t Pj,t ∗ Units Soldj,t∑

j∈Ji

(∑
t Pj,t ∗ Units Soldj,t

)
where Units Soldj,t is the number of units of j sold in week t, Ji is the set of

goods j that firm i sells, and Pj,t is the price of good j in week t.

5.2 Financial Data

I merge the pricing statistics with several financial variables to control for potentially

confounding factors. The controls are the same as those Weber 2014 uses, and are

measured using data from Compustat or CRSP. From Compustat, I compute Book

to Market Equity (BM) as the ratio of book equity to market equity. Book equity

is the sum of stockholder’s book equity (SEQ) plus deferred taxes and investment

(TXDB) minus preferred stock book value (PSTK). Market equity is the price of

shares at the end of the year (PRCC F) times the number of shares (CSHO). Market

capitalization is the log of market equity. Leverage is the sum of short-term (DLC)

and long-term debt (DLTT) divided by total debt plus stockholder equity (SEQ).

Cashflows is income before extraordinary items (IB) plus depreciation (DP) divided

by total assets (AT). The price-cost margin, a proxy for markups, is sales (SALE)

minus cost of goods sold (COGS), all divided by sales. To compute the Herfindal-

Hirschman Index (HHI) for the concentration of sales within an industry, I group

firms into the 48 Fama French industries in each year. For each year, I take the sum of

the squares of each firm share of sales within its industry to create the industry-year

HHI.

In addition to these accounting variables, I measure the rolling beta, share turnover,

and bid-ask spread using CRSP. The rolling beta for a firm is the coefficient of the

regression of its excess return over the past 60 months on the excess return of the Mkt-

Rf factor taken from Kenneth French’s website (see Fama and French 1993). Turnover

is the volume of shares sold (VOL) divided by shares outstanding (SHROUT). Spread
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is the daily difference between bids and asks for a stock, averaged each month. I also

download 3-, 4-, and 5- factor returns from Kenneth French’s website. I winsorize

all variables at the 1% level. In my main sample, I remove all goods with fewer than

5 price changes to remove low kurtosis measurements spuriously caused by a small

number of observations.

The summary statistics for the data are shown in Table 4. The pricing statistics

are very much in line with the prior literature studying grocery store prices: Midri-

gan 2011 finds a mean price change frequency of 0.34 compared to my 0.35, while

Alvarez, Le Bihan, and Lippi 2016 find a kurtosis of 4 compared to my mean of 4.08.

Correlations between pricing statistics and financial variables are shown in Table 5.

6 Empirical Results

With this dataset in hand, I test the hypotheses of the model that 1. firms with

higher state dependence have higher conditional frequencies of price changes after

large macroeconomic shocks and 2. this results in lower systematic cashflow risk and

average equity returns. As discussed in Section 4.1, a higher kurtosis of price changes

captures lower state dependence in my model. Therefore, the model predicts that

firms with a higher kurtosis of price changes will have lower conditional price change

frequencies after large shocks and higher average equity returns.

6.1 Short Term Price Responses to Monetary Policy Shocks

I first establish that firms with a higher kurtosis of price changes have price change

frequencies that are less responsive to the size of an aggregate shock. This result is

consistent with the hypothesis that a higher kurtosis of price changes indicates lower

state dependence. On average, larger aggregate shocks should move firms’ optimal

prices by more, widening their price gap. The frequency of price adjustment for firms

with high state dependence should therefore exhibit a higher sensitivity to the size

of the aggregate shock.

I examine changes in the weekly frequency of price changes at the firm level after
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monetary policy shocks. For each firm i and week w, I compute the frequency of the

firm’s price changes as the fraction of goods owned by i whose price changed from

week w − 1 to w. I denote this weekly frequency by Freqi,w. I use the monetary

policy surprises provided by Acosta and Saia 2020, who extend the series constructed

by Nakamura and Steinsson 2018 to cover the 2000-2020 sample. Nakamura and

Steinsson 2018 measure movements in the Federal Funds Rate (FFR) in a 30 minute

window around FOMC announcements. I denote a Federal Funds Rate surprise

occuring after the end of week w − 1 but before the end of week w as MPw.

I predict weekly frequency with unconditional frequency, kurtosis, and the abso-

lute size of MP shocks:

Freqi,w+h = δy + β1,hFreqi + β2,hKurti + β3,h|MPw|+ β4,hKurti × |MPw|+ εi,w,h

Where Freqi and Kurti are firm-level frequency and kurtosis of price changes

as described in the previous section. Freqi,w+h is the fraction of goods owned by i

whose price changed in week w + h. I run this regression for h = 0 (price change

frequency the week a FFR shock occurs) to h = 6 (price change frequency 6 weeks

after the shock has occured). δy are year fixed effects. The coefficient β̂4 captures

how a firm’s responsiveness to the size of FFR shocks depends on its kurtosis of price

changes. If kurtosis is a negative indicator of selection and state dependence, the

sign on β̂4 should be negative, i.e. a firm with a higher kurtosis of price changes has

a weekly price change frequency that is less sensitive to the size of a macroeconomic

shock. This is precisely the prediction of the model, shown in Table 2. I cluster

standard errors at the firm level.

The coefficients of this regression for each horizon are shown in Panel A of Table 6

and confirm the hypothesized connection between state dependence, kurtosis of price

changes, and conditional price adjustment frequency after macroeconomic shocks.

The coefficient on unconditional frequency of price changes, β̂1, is close to 1 and

highly significant. β̂2 is positive and statistically significant, consistent with the

intuition that a larger aggregate shock increases the frequency of price change for a
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state dependent firm. This effect is significant for price changes up to a month after

the initial MP shock, and attenuates farther out from the shock. Parallel with this

effect, β̂4 is negative and statistically significant and also attenuates as the horizon

increases. The interaction effect is economically significant: a firm with Kurti = 0

increases its price change frequency the week of a shock by 0.6% for each basis point

increase in the size of the MP shock, while a firm with Kurti = 6 experiences no

increase in price change frequency after a shock. These regressions provide strong

evidence that higher kurtosis of price changes indicates lower sensitivity of price

change probability to macroeconomic shocks, and thus greater cashflow exposure to

such shocks.

I rerun this analysis without year fixed effects in Panel B of Table 6. While the

coefficient on MP shocks is no longer statistically significant without controlling for

year effects, the interaction term β̂4 is almost unchanged. As additional robustness

checks, I replace firm-level frequency and kurtosis with a firm fixed effect in Table

A1. The initial strong effect of kurtosis on the effect of MP shocks on price change

frequencies remains, as does the pattern of this effect attenuating as the number of

weeks from the initial shock increases.

Overall, these tests provide strong evidence that supports the hypothesis of the

model that firms with a higher kurtosis of price changes are less likely to adjust their

prices after larger macroeconomic shocks, controlling for unconditional frequency.

This greater nominal rigidity in the face of such shocks makes firms with a higher

kurtosis of price changes have greater cashflow risk. In Section 6.2, I show that firms

with higher kurtoses of price changes earn an equity premium, consistent with the

mechanism of the model that links kurtosis to higher cashflow risk.

6.2 Equity Returns

6.2.1 Portfolio Sorts

The first test I perform is single-variable tercile portfolio sorts based on the frequency

and kurtosis of price changes. I group firms in my sample into three bins based on

each pricing statistic. Within each bin, I compute the monthly average return among
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firms. I then take the average of each bin’s return across time, and compute Newey-

West standard errors (Newey and West 1987) with twelve lags for each bin’s average

return. I also construct a series for the spread between the returns for the high and

low bins.

In addition to examining differences in average returns, I control for exposure

to the factors in the CAPM and 3-, 4-, and 5- factor models.11 I regress monthly

returns from each bin and the spread on the factors of each model separately to

compute the return not explained by exposure to these factors. I then compute the

mean returns and standard errors in the same way as described above. In addition to

equal-weighted returns, I calculate value-weighted returns for each bin by weighting

each firm’s return by its market capitalization.

As shown in Table 8, frequency of price changes does not have a clear relationship

with equity returns. In none of the equal-weighted or value-weighted sorts is there a

significant spread between the bins with high and low frequency. While this result

may seem surprising given the main result in Weber 2014, this lack of a relationship

is consistent with empirical results in the later Weber 2014 sample and with Clara

2019. In stark contrast to the lack of a relationship between frequency and returns,

there is a significant and robust difference in returns between firms with low kurtosis

and high kurtosis of price changes. As shown in Table 8, the differences between

kurtosis-based spreads for equal-weighted returns is statistically significant at the

5% level and economically meaningful at about 6.4%. The value-weighted spreads

continue to be statistically significant and are in the same range of magnitude as the

equal-weighted spreads, indicating this result is not driven only by small firms.

6.2.2 Double Sorts

Given the positive correlation between the kurtosis and frequency of price changes

seen in Table 5, it is possible that the relationship between kurtosis and average

equity returns is confounded by frequency. While this is unlikely given the lack of

a relationship between frequency and returns in my sample, I examine the relation-

11See Carhart 1997, Fama and French 1993, and Fama and French 2015.
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ship between kurtosis and returns controlling for frequency. I first group firms by

frequency into terciles, and then by kurtosis within each frequency tercile. The dou-

ble sort shown in Table 9 suggests that, controlling for frequency of price changes,

kurtosis of price changes still positively predicts equity returns. Consistent with the

intuition that a greater degree of state dependent pricing reduces cashflow risk more

for firms who change prices infrequently, the spread between high kurtosis and low

kurtosis firms is largest and statistically significant for the lowest frequency tercile.

For firms with more frequent price changes, kurtosis continues to be positively associ-

ated with kurtosis, although the effect is smaller and not statistically distinguishable

from 0.

I further sort kurtosis conditionally on the financial control variables. For each

control variable, I sort firms into terciles. Within each of these control variable

terciles, I then sort firms into terciles based on their kurtosis of price changes. I

then take the average return among firms in each month based on their conditional

kurtosis tercile, and compute the monthly spread. As in the single-variable portfolio

sorts, I calculate Newey-West standard errors with 12 lags to find the mean return

across time for each of the three conditional kurtosis bins. Table 10 shows the

average return in each conditional kurtosis bin as well as the high-low spread. For

every control variable, I find a statistically and economically significant difference

between the low and high conditional kurtosis bins.

6.2.3 Panel Regressions

To supplement the portfolio sorts, I test the relationship between frequency, kurtosis,

and the control variables with a series of panel regressions. The regressions take the

form

ri,t,t+1 = δy + β1Frequencyi + β2Kurtosisi + Γi,tXi,t + εi,t+1

where δy are year fixed effects, β1 and β2 are the coefficients on frequency and

kurtosis, and Xi,t are the financial control variables. The control variables’ timings

are chosen so that investors have information on the variables for the duration of the
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returns they are predicting. Following the convention used in Bretscher et al. 2020,

Compustat-based accounting variables (such as leverage) in December of year y − 1

are used to predict returns from July of year y to June of year t+1, and CRSP-based

variables (such as market capitalization) are measured in June of year y to predict

returns in the same time span.

The regression results are shown in Table 11. The first column regresses returns

on frequency and kurtosis without controls or fixed effects. The second column

adds fixed effects, and the third one of the control variables. Regressions are run

with individual control variables until the right-most column, where all controls and

year fixed effects are included in the regression. These panel regressions once again

demonstrate the positive relationship between kurtosis of price changes and equity

returns. The coefficient on kurtosis, β2, remains positive and statistically significant

regardless of the fixed effects or control variables used.

I repeat these panel regressions with different types of fixed effects in Tables A4,

A5, A6, and A7. The point estimates for β2 remain consistently positive across all

panel regressions, although for heavily saturated regressions (such as the inclusion

of industry and year fixed effects and control variables), it is no longer statistically

significant.

6.2.4 Robust Kurtosis

As pointed out by Alvarez, Le Bihan, and Lippi 2016, Hong et al. 2021, and Berger

and Vavra 2018, kurtosis is difficult measure in small samples and sensitive to outliers.

To check whether my results are specific to how kurtosis is measured, I compute a

measure of robust kurtosis. This measure of kurtosis, proposed by Moors 1988 and

described in Kim and White 2004, uses octiles to capture the dispersion of price

changes around the first and third quartiles:

KurtMoors =
(q̂7/8 − q̂5/8) + (q̂3/8 − q̂1/8)

q̂6/8 − q̂2/8

I calculate KurtMoors at the good level, and aggregate to the firm level in the same

way I compute firm-level frequency and kurtosis. At the UPC-store level, I find a
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Spearman’s rank correlation coefficient of 0.3960 between directly measured kurtosis

and KurtMoors. I sort firms into terciles by KurtMoors Table A3 and continue to find

a statsitically significant kurtosis premium.

6.2.5 1963-2019 Sample

To test the validity of these results outside my sample, I compare the average returns

of firms in each kurtosis tercile from 1963-2019 in Table A2. I find a positive, sta-

tistically significant relationship between kurtosis and equity returns over the longer

sample. The long-term equity earned by firms with a high kurtosis of price changes

is 2.681%, in line with the frequency premium of 2.74 in the 1963-2011 period found

by Weber 2014.

6.2.6 Aggregation at UPC Level

The above empirical tests, based on kurtosis of price changes measured at the UPC-

store level, provide strong evidence of a kurtosis risk premium. To test whether these

results hold when I change the unit at which I calculate the price change statistics, I

calculate frequency and kurtosis of price changes at the UPC-level, pooling together

price changes across stores. I then calculate Freqi and Kurti by weighting the

frequency and kurtosis of each UPC’s price changes by the total sales of that UPC

in my sample. I redo the portfolio sorts using the new aggregate pricing statistics,

shown in Section C.

I continue to find little evidence of a premium associated with frequency of price

changes. Instead, the kurtosis of price changes seems to be the key measure relating

nominal rigidities to exposure to systematic risk. The sorts on kurtosis continue to

show a monotonically positive relationship between kurtosis of price changes and

average equity returns. In the value-weighted sorts, this relationship is highly statis-

tically significant. Sorting firms by KurtMoors gives the same conclusion, with the

equal-weighted sorts monotonically increasing and a statistically significant spread

between high and low KurtMoors firms. The double sorts of kurtosis within frequency

demonstrate that kurtosis is positively associated with equity returns regardless of
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frequency, although this relationship is not statisically significant.

6.2.7 Regular Price Changes

Posted prices have a propensity to change frequently but return to their previous val-

ues after a short period of time (Eichenbaum, Jaimovich, and Rebelo 2011). Midrigan

2011 argues that the majority of price changes observed in the data are sales, and

that filtering sales from regular, non-sale prices is key to predicting the real effects

of nominal shocks. I use his two-sided regular price identification algorithm with a

window of 13 weeks to build regular price series for each good in my sample (I leave

the details of the algorithm to Midrigan 2011) and Kehoe and Midrigan 2015). I then

calculate frequency and kurtosis of price changes following the same procedure I use

for posted prices, and repeat my empirical tests on regular frequency and kurtosis.

I remove all goods with fewer than 5 regular price changes. This restriction reduces

my sample substantially from 211 firms to 145 firms.

As documented in Section D, the kurtosis of regular price changes continues to

positively predict returns in all tests, although this relationship is no longer statis-

tically significant in the single-variable sorts. This is consistent with evidence from

Carvalho and Kryvtsov 2021, who find that sales and temporary prices explain a

substantial proportion of the heterogeneity of price selection between different stores

within the United States.12 In light of that result, it is not surprising that removing

sales mitigates the relationship between state dependence and cashflow risk. Inter-

estingly, however, kurtosis continues to have statistically significant predictive power

on equity returns for firms with the lowest tercile of regular price change frequency,

as shown in the double sort. This provides some evidence that there is a modest

12Price selection refers to differences between the distribution of prices that change due to mon-
etary policy shocks, and those that would change in the absence of such a shock. High selection
implies that the increase in the probability of a price change after a nominal shock is greatest for
products whose price gaps are largest; higher selection amplifies price responses to monetary policy
shocks and dampens real responses. In my model, selection increases one to one with state de-
pendence. Price changes that occur due to a monetary policy shocks that would not have occured
without such a shock are due entirely to the monetary policy shock increasing the cost of the price
gap to exceed the menu cost. Therefore, the Calvo sector has no selection, while selection increases
across sectors to the pure menu cost case.
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effect of kurtosis on cashflow risk even when excluding sales.

I find a negative and statistically significant relationship between frequency of

regular price adjustments and returns in the value-weighted sorts. This suggests

that among the larger firms in my sample, there is a negative frequency premium

when focusing on real prices. This is in line with the results of Weber 2014, who

keeps firms in his sample only if they are listed on the S&P, focusing on larger firms.

Furthermore, the prices used in the PPI microdata have been found to be almost

completely devoid of sales (Nakamura and Steinsson 2008), suggesting that regular

prices in my data set provide a closer analogue to the prices Weber 2014 observes.

Nonetheless, more work is needed to understand the implications of regular vs posted

prices for stock returns.

6.3 Idiosyncratic Shocks

In my model, differences in firms’ kurtosis of price changes is due not to a difference

in the underlying distribution of firm-specific shocks, but due to differences in the

types of nominal rigidities firms face. In reality, it may be the case that firms do

not differ in their nominal rigidities and therefore exposure to systematic shocks, but

instead that firms all have roughly the same nominal rigidities and differences in the

distribution of price changes merely reflect firm-specific differences in idiosyncratic

shocks. If this is the case, the kurtosis of the distribution of idiosyncratic shocks

should be closely positively related to a firm’s kurtosis of price changes.

To test this possibility, I proxy idiosyncratic shocks by idiosyncratic equity re-

turns. I regress each firm’s excess returns on systematic factors:

rei,t,t+1 = αi + βi,Mkt−RfRi,t,t+1 + εidiosyncratici,t,t+1

I find the idiosyncratic returns using the CAPM as well as the 3- 4-, and 5- factor

models. I then compute the volatility and kurtosis of εidiosyncratici,t,t+1 for each firm i.

Finally, I examine the correlation and rank correlation between the volatilities and

kurtoses of εidiosyncratici,t,t+1 to the frequency and kurtosis of price changes.

In both linear and rank correlations, I find that firms with higher volatilities of
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idiosyncratic stock returns have higher price adjustment frequency and lower kur-

tosis of price changes. This is consistent with the predictions of Calvo Plus-style

nominal rigidities: firms with higher idiosyncratic shock volatilities will cross the

menu cost price change threshold more frequently than firms with lower volatilities

of idiosyncratic shocks. This greater number of price changes around the menu cost

threshold reduces kurtosis, and, compared to a firm with the same Calvo probability

and menu cost, result in more frequent price changes.

However, there is little evidence that the kurtosis of price changes is driven simply

by the differences in distributions of idiosyncratic shocks. Both the linear correla-

tion and rank correlation of kurtosis of price changes to these shocks is statistically

indistinguishable from 0, suggesting that the primary driver of the kurtosis of price

changes for a firm is not a mechanical by-product of firm-specific shocks, but instead

dependent on the type of nominal rigidity faced by the firm.

7 Conclusion

The implications of nominal rigidities for stock returns have recently come into focus

in the asset pricing literature. While there is substantial evidence for a frequency

premium in prior decades, recent work focusing on the post-2007 period has largely

failed to find such a premium. I reconcile these seemingly divergent results by study-

ing the importance of nominal rigidities conditional on macroeconomic shocks.

I show that how likely firms are to change prices conditional on their price-related

cashflow losses, a property known as state dependence, is a significant determinant

of systematic cashflow risk not explained by the unconditional frequency of price

changes. I build a multisector model with heterogeneous nominal rigidities to show

that firms with higher state dependence have higher frequencies of price changes after

large macroeconomic shocks. These firms have cashflows that have a corresponding

lower covariance with aggregate shocks, and higher state dependence therefore pre-

dicts lower average equity returns. I demonstrate that state dependence can be

proxied by the kurtosis of price changes in this model.

I take my model to the data by constructing a new dataset linking firms in Com-
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pustat to weekly pricing data from the Nielsen Scanner Data. I find strong evidence

that the kurtosis of price changes carries a risk premium, consistent with the model’s

prediction that lower state dependence increases systematic cashflow risk. Through

various portfolio sorts, panel regressions, and robustness checks, firms with a higher

kurtosis of price changes consistently earn higher average equity returns. I find this

effect is strongest for firms with the lower frequency of price changes, consistent with

these firms experiencing higher cashflow risk after macroeconomic shocks. I show

that firms with higher kurtosis are less likely to adjust prices after larger monetary

policy shocks, confirming the central mechanism of the model that links low state

dependence to lower conditional price change frequency after macroeconomic shocks

to greater cashflow risk.

This paper raises several avenues of future research into the implications of nom-

inal rigidities for asset pricing. A natural question arising from this work is what

determines whether firms have more or less state dependence in their price change

timing. The positive correlation between frequency and kurtosis of price changes, as

well as the negative correlation between kurtosis and the variance of idiosyncratic

stock returns, indicates that firms with more volatile price gaps have greater state

dependence. This pattern suggests a link between state dependence and exposure to

more volatile shocks, but more work is needed to identify a causal effect. Similarly,

the empirical results on regular prices vs posted prices suggest that the interaction

between frequency, state dependence, and sales is a fruitful area of research for im-

proving our understanding of nominal rigidities and systematic risk.
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Figure 1: Profits as a function of productivity At
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Expected profits as a function of technology for firms with different types of nominal rigidities as
a function of productivity. Cashflows for a firm without nominal rigidites are shown in blue
circles. Cashflows for a firm with free random price changes are shown in red. Cashflows for a
menu cost firm are shown in violet.
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Figure 2: Predicted vs Realized Inflation in the Model
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Predicted inflation vs realized inflation in the model. Firm predict inflation according to the rule
given in Equation 2. After updating their prices based on this predicted inflation, I calculate
realized inflation each period. Each point in the scatterplot represents predicted vs actual
inflation in a single period in the simulation of the model.
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Figure 3: Price Change Histograms
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(a) Sector 1
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(b) Sector 2

-0.3 -0.2 -0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
106

Kurtosis: 1.9431

(c) Sector 3
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(d) Sector 4
Histograms of price changes from all firms in each sector. The calvo and menu cost parameters, as
well as the frequencies and kurtoses of price changes for firms in each sector, are shown in Table 3.

37



Table 1: Model Calibration

Parameter

Time Discount Factor β 0.99
Relative Risk Aversion γ 5
Disutility from Labor χ 1.33

Inverse of Frisch Labor Supply Elasticity ξ 0
Elastity of Demand η 4

Idiosyncratic Productivity Persistence ρz 0.7
Idiosyncratic Productivity Shock Volatility σz 0.075

Aggregate Productivity Persistence ρa 0.8
Aggregate Productivity Shock Volatility σa 0.0085

Mean Nominal GDP Growth µNGDP 0.002
Monetary Policy Shock Volatility σNGDP 0.0065

Parameters of the multisector model. These parameters are calibrated according to the values
described in Section 3.7.
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Table 2: Frequency of Price Changes After Monetary Policy Shocks by Sector

Sector 1 2 3 4 All
αk 0.23 0.15 0.07 0
κk 1 0.067 0.042 0.021

Freqk 1.000 0.9998 0.9997 0.9997 0.9385
(0.0002) (0.0003) (0.0004) (0.0006) (0.0014)

|εNGDPt | -0.0009 0.5808 0.7194 0.7801 2.2879
(0.0090) (0.0112) (0.0133) (0.0196) (0.0420)

Kurtk 0.0043
(0.0001)

|εNGDPt | ×Kurtk -0.6900
(0.0174)

Frequency of price changes in period t regressed on the unconditional frequency of price changes
for sector k and the absolute value of the monetary policy shock at time t, |εNGDP

t |. The first four
columns show this regression for each sector. The last column regresses frequency of price changes
for sector k in period k on unconditional frequency of k, the monetary policy shock, the kurtosis
of price changes for sector k, and the interaction between the monetary policy shock and the
kurtosis of price changes.
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Table 3: State Dependence and Returns in the Model

αk κk Frequency Kurtosis Mean Annual Return

0.23 1 0.2300 3.2745 3.6333
(0.0000) (0.0000) (0.0000)

0.18 0.067 0.2218 2.6336 3.3790
(0.0000) (0.0000) (0.0000)

0.12 0.042 0.2103 1.9426 3.2594
(0.0000) (0.0000) (0.0000)

0.00 0.021 0.2084 1.3321 3.1168
(0.0000) (0.0000) (0.0000)

0.0215 1.9423 0.5166
(0.0000) (0.0000) (0.0002)

Sector-specific pricing moments and equity returns. The first column shows the probability of a
free price change for firms in each sector. The second column shows sector menu costs. The third
and fourth are the average frequency and kurtosis of price changes at the firm level within each
sector. The fifth column shows average annualized equity returns. The final row shows the spread
in frequency, kurtosis and average equity returns between firms in the highest vs lowest state
dependence sectors. Standard errors are shown in parentheses.
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Table 4: Summary Statistics: 2006-2019

Median Mean SD Min Max Firms
Price Change Statistics

Frequency 0.291 0.353 0.212 0.026 0.865 211
Kurtosis 3.810 4.077 2.002 1.073 12.076 211

Financial Variables
Market Cap 13.906 13.904 2.347 9.112 19.167 210
BM 0.466 0.505 0.368 -0.430 1.972 207
Beta 0.858 0.999 0.657 -0.445 3.462 210
Leverage 0.393 0.438 0.289 0.002 1.822 202
Cashflows 0.077 0.059 0.101 -0.445 0.264 209
Turnover 16.080 18.519 12.246 0.623 72.056 210
Bid-Ask Spread 2.502 4.316 5.487 1.000 41.644 210
Price-Cost Margin 0.352 0.361 0.174 0.044 0.844 209
HH Index 0.071 0.084 0.053 0.025 0.280 209
Annualized Returns 9.857 5.652 25.159 -183.424 79.795 211

Summary statistics for the main sample of firms linked from Compustat/CRSP to the Nielsen
Scanner Dataset. Frequency and kurtosis of price changes are computed for price changes at the
UPC-store level and aggregated using a weighted average to the firm level. Financial variables are
computed annually (if their source is Compustat) or monthly (if from CRSP); see Section 5 for
descriptions of how variables are constructed. Summary statistics are shown as unconditional firm
averages.

41



T
ab

le
5:

C
or

re
la

ti
on

s

P
ri

ci
n

g
S

ta
ti

st
ic

s
F

in
an

ci
al

V
ar

ia
b

le
s

F
re

q
K

u
rt

M
ar

ke
t

C
ap

B
M

B
et

a
L

ev
C

F
T

u
rn

ov
er

S
p

re
ad

P
C

M
H

H
R

et
F

re
q

1.
00

K
u

rt
os

is
0.

34
1.

00
M

ar
ke

t
C

ap
-0

.0
0

0.
18

1.
00

B
M

0.
03

-0
.0

5
-0

.2
8

1.
00

B
et

a
0.

09
-0

.1
6

-0
.2

0
0.

04
1.

00
L

ev
er

ag
e

0.
09

0.
09

0.
03

-0
.3

8
-0

.0
6

1.
00

C
as

h
fl

ow
s

0.
08

0.
22

0.
51

-0
.2

1
-0

.1
8

-0
.0

7
1.

00
T

u
rn

ov
er

0.
13

0.
02

0.
21

0.
02

0.
27

-0
.0

2
0.

09
1.

00
B

id
-A

sk
S

p
re

ad
-0

.1
1

-0
.0

8
-0

.4
6

0.
07

-0
.1

5
-0

.0
2

-0
.0

6
-0

.4
0

1.
00

P
ri

ce
-C

os
t

M
ar

gi
n

0.
03

0.
04

0.
29

-0
.1

9
-0

.1
4

-0
.0

1
0.

27
-0

.0
8

-0
.0

5
1.

00
H

H
In

d
ex

0.
13

0.
05

0.
02

0.
07

-0
.0

0
-0

.0
6

-0
.0

9
-0

.0
1

-0
.1

1
0.

10
1.

00
A

n
n
u

al
iz

ed
R

et
u

rn
s

0.
01

0.
09

0.
32

-0
.1

0
-0

.1
5

0.
03

0.
29

0.
15

-0
.0

7
0.

07
0.

01
1.

00

C
or

re
la

ti
on

s
b

et
w

ee
n

p
ri

ce
ch

an
g
e

st
a
ti

st
ic

s
a
n

d
fi

n
a
n

ci
a
l

va
ri

a
b

le
s

a
t

th
e

fi
rm

le
ve

l.
F

ir
m

va
ri

a
b

le
s

a
re

co
m

p
u

te
d

a
s

av
er

a
g
e

ac
ro

ss
th

e
20

06
-2

01
9

sa
m

p
le

.

42



Table 6: Frequency of Price Changes after Monetary Policy Shocks

Panel A: Year Fixed Effects
Freqi,w+h h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6
Freqi 0.883*** 0.891*** 0.897*** 0.885*** 0.874*** 0.890*** 0.879***

(0.0258) (0.0273) (0.0287) (0.0278) (0.0262) (0.0266) (0.0263)
|MPw| 0.632*** 0.496** 0.694*** 0.680*** 0.681*** 0.459** 0.450*

(0.243) (0.222) (0.231) (0.229) (0.239) (0.233) (0.233)
Kurti -0.000335 -0.000503 -0.000836 9.84e-05 0.00212 0.000596 9.18e-05

(0.00276) (0.00279) (0.00284) (0.00282) (0.00289) (0.00286) (0.00270)
|MPw| ×Kurti -0.110** -0.114*** -0.121*** -0.102** -0.118*** -0.101** -0.0854*

(0.0455) (0.0437) (0.0451) (0.0464) (0.0453) (0.0448) (0.0453)
Year FE Y Y Y Y Y Y Y
Observations 14,080 14,080 14,080 14,080 14,080 14,080 14,080
R-squared 0.377 0.381 0.379 0.380 0.376 0.376 0.377

Panel B: No Year Fixed Effects
Freqi,w+h h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6
Freqi 0.899*** 0.909*** 0.915*** 0.904*** 0.892*** 0.907*** 0.897***

(0.0240) (0.0248) (0.0263) (0.0259) (0.0245) (0.0250) (0.0245)
|MPw| 0.294 0.258 0.338 0.285 0.321 0.220 0.151

(0.236) (0.230) (0.231) (0.232) (0.230) (0.228) (0.227)
Kurti 0.000369 0.000228 -0.000105 0.000906 0.00287 0.00130 0.000777

(0.00261) (0.00270) (0.00273) (0.00270) (0.00282) (0.00281) (0.00257)
|MPw| ×Kurti -0.110** -0.113** -0.120*** -0.102** -0.119** -0.0988** -0.0834*

(0.0454) (0.0438) (0.0452) (0.0466) (0.0460) (0.0452) (0.0458)
Year FE N N N N N N N
Observations 14,080 14,080 14,080 14,080 14,080 14,080 14,080
R-squared 0.337 0.337 0.338 0.332 0.332 0.334 0.333

*** p<0.01, ** p<0.05, * p<0.1
The fraction of goods whose price changed in week w+ h for each firm regressed on the absolute value of
monetary policy surprises, denoted by |MPw|, and the interaction between the monetary policy surprise
and firm kurtosis, |MPw| ×Kurti. Monetary policy surprises are measured as movements in the Federal
Funds Rate in a 30-minute window around Federal Open Market Committee announcements. The first
panel includes year fixed effects, while the second panel omits them. Standard errors are shown in
parentheses and clustered at the firm level.
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Table 7: Returns in Frequency Bins

Equal Weighted
Low 2 High High-Low

Excess Return 7.463 7.227 7.414 -0.049
(4.561) (4.490) (5.838) (2.450)

CAPM alpha -0.796 -0.530 -2.208 -1.412
(2.242) (2.012) (3.078) (2.263)

FF3 alpha 0.272 0.130 -0.827 -1.099
(1.918) (1.869) (2.876) (2.288)

FF4 alpha 0.429 0.212 -0.615 -1.044
(1.695) (1.842) (2.799) (2.325)

FF5 alpha -0.624 -0.951 -1.792 -1.169
(1.826) (1.880) (2.846) (2.278)

Value-Weighted
Low 2 High High-Low

Excess Return 8.545∗∗∗ 7.781∗∗ 13.253∗∗∗ 4.708
(3.010) (3.116) (4.538) (3.815)

CAPM alpha 2.950∗∗ 1.681 5.775∗ 2.825
(1.301) (1.446) (3.148) (3.787)

FF3 alpha 2.618∗ 1.141 4.570 1.952
(1.328) (1.462) (2.995) (3.603)

FF4 alpha 2.619∗ 1.121 4.543 1.924
(1.327) (1.485) (3.005) (3.608)

FF5 alpha 1.768 -0.952 2.251 0.483
(1.248) (1.344) (2.607) (3.269)

*** p<0.01, ** p<0.05, * p<0.1
Average equity returns among firms grouped into terciles based on frequency of price changes
from 2006 to 2019. Newey-West standard errors with 12 lags are computed for average returns.
The spread between the high and low frequency terciles is shown in the rightmost column.
Equal-weighted returns are shown in the top panel, and value-weighted returns in the bottom
panel.
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Table 8: Returns in Kurtosis Bins

Equal Weighted
Low 2 High High-Low

Excess Return 3.802 8.143∗ 10.226∗∗ 6.424∗∗

(5.921) (4.531) (4.397) (2.750)
CAPM alpha -6.200∗∗ 0.018 2.746 8.946∗∗∗

(2.443) (2.313) (2.492) (2.158)
FF3 alpha -4.907∗∗ 0.878 3.691 8.598∗∗∗

(2.181) (2.028) (2.381) (2.179)
FF4 alpha -4.622∗∗ 0.963 3.770 8.392∗∗∗

(2.127) (1.897) (2.355) (2.213)
FF5 alpha -5.169∗∗ -0.267 2.150 7.319∗∗∗

(2.156) (1.937) (2.332) (2.094)

Value-Weighted
Low 2 High High-Low

Excess Return 5.374 8.344∗∗∗ 12.040∗∗∗ 6.666∗

(5.059) (2.737) (3.798) (3.666)
CAPM alpha -3.437 2.720∗∗ 5.670∗∗ 9.107∗∗∗

(2.500) (1.249) (2.457) (3.361)
FF3 alpha -3.471 2.171 4.645∗ 8.116∗∗

(2.481) (1.381) (2.371) (3.406)
FF4 alpha -3.441 2.140 4.639∗ 8.080∗∗

(2.505) (1.400) (2.378) (3.453)
FF5 alpha -4.287∗ 0.513 2.607 6.895∗∗

(2.347) (1.356) (2.069) (3.092)
*** p<0.01, ** p<0.05, * p<0.1

Average equity returns among firms grouped into terciles based on kurtosis of price changes from
2006 to 2019. Newey-West standard errors with 12 lags are computed for average returns. The
spread between the high and low frequency terciles is shown in the rightmost column.
Equal-weighted returns are shown in the top panel, and value-weighted returns in the bottom
panel.
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Table 9: Double Sorts–Kurtosis within Frequency

Freq Kurtosis
Low 2 High High-Low

Low 4.825 5.849 11.855∗∗∗ 7.030∗∗

(5.986) (5.118) (3.302) (3.490)
2 5.206 8.999∗ 7.545∗ 2.339

(5.631) (4.808) (4.387) (4.191)
High 4.096 10.206 8.094 3.998

(6.507) (6.646) (5.459) (3.352)
HML -0.729 4.357 -3.761

(2.901) (3.870) (3.118)
*** p<0.01, ** p<0.05, * p<0.1

Firms are sorted into terciles based on their average frequency of price changes. Within each of
these frequency terciles, I then sorts firms into conditional terciles based on kurtosis of price
changes. Mean returns over the 2006-2019 sample for each kurtosis bin conditional on frequency
bins are shown. The spreads between high and low kurtosis firms within each frequency bin are
shown in the right column. The spreads between high and low frequency bins given each
conditional kurtosis bin are shown in the bottom row. Standard errors are computed using the
Newey-West procedure with 12 lags.
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Table 10: Double Sorts–Kurtosis

Low 2 High High-Low
Market Cap 3.993 8.903∗∗ 9.520∗ 5.528∗∗

(5.400) (4.484) (4.908) (2.141)
BM 4.072 8.483∗ 10.583∗∗ 6.511∗∗∗

(5.726) (4.556) (4.258) (2.427)
Beta 4.470 7.847 10.069∗∗ 5.599∗∗

(5.424) (4.848) (4.595) (2.470)
Leverage 4.810 7.900∗ 10.346∗∗ 5.536∗∗

(5.813) (4.297) (4.424) (2.631)
Cashflows 4.284 7.932∗ 10.286∗∗ 6.002∗∗∗

(5.456) (4.723) (4.628) (2.224)
Turnover 5.460 8.192∗ 11.697∗∗∗ 6.237∗∗

(5.312) (4.404) (4.489) (2.444)
Bid-Ask Spread 3.293 9.278∗∗ 9.877∗∗ 6.584∗∗

(6.014) (4.490) (4.298) (2.771)
Price-Cost Margin 3.589 8.984∗ 10.055∗∗ 6.466∗∗

(5.757) (4.732) (4.221) (2.635)
HH Index 4.546 7.459 10.531∗∗ 5.985∗∗

(5.724) (4.626) (4.459) (2.505)
*** p<0.01, ** p<0.05, * p<0.1

Average equity returns for firms based on kurtosis terciles conditional on several accounting and
financial control variables. Firms are firms sorted into terciles based on a control variable, then
into terciles again based on kurtosis of price changes within the control variable tercile. Equity
returns are then averaged across firms in the same control variable tercile, within each conditional
kurtosis tercile.
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Table 11: Panel Regressions: Frequency and Kurtosis

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Frequency -2.952 -2.905 -1.403 -2.088 -1.658 -2.823 -0.731 -2.004 -2.192 -0.826 -0.691 -5.269
(4.062) (3.962) (3.780) (4.432) (4.044) (3.520) (3.750) (3.950) (3.982) (3.820) (3.946) (3.777)

Kurtosis 1.096** 1.051** 0.870* 0.945* 0.968** 1.058** 0.835* 1.020** 0.998** 0.961** 0.992** 0.894*
(0.442) (0.433) (0.452) (0.507) (0.454) (0.408) (0.452) (0.436) (0.448) (0.436) (0.441) (0.472)

log mcap june 0.640* 0.407
(0.355) (0.422)

BM june 3.119 7.429**
(2.926) (3.154)

beta june -0.131 0.194
(1.370) (1.730)

leverage june -0.914 4.375
(3.076) (4.256)

cashflows june 17.54 11.81
(10.88) (14.71)

turnover june 0.0360 0.0152
(0.0626) (0.0724)

spread monthly june -0.130 -0.165
(0.149) (0.252)

pcm june 2.628 5.027
(3.895) (4.271)

HH index june -4.848 -4.289
(13.61) (14.18)

Observations 24,590 24,590 24,188 22,404 24,110 21,979 23,828 24,188 24,188 23,714 23,912 20,546
Firms 211 211 211 207 211 202 209 211 211 209 209 200
R-squared 0.000 0.025 0.025 0.024 0.025 0.026 0.026 0.025 0.025 0.026 0.025 0.025

Year FE N Y Y Y Y Y Y Y Y Y Y Y
*** p<0.01, ** p<0.05, * p<0.1

Panel regressions of monthly excess returns on frequency and kurtosis of price changes. Control
variables are included one at a time until the final column, when they are all included in the
regression. Year fixed effects are included.
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A Model Details

A.1 Consumer Demand

In this subsection I derive the consumer’s demand for product i and the expression for

the economy-wide price level Pt as an aggregation of indiviudal prices Pi,k,t. Given a

consumption basket Ct, the consumer chooses quantity demanded of each good Ci,k,t

to minimize costs:

min
{Ci,k,t}

∫
i

Pi,k,t
Pt

Ci,tdi

such that

Ct ≤
(∫

i

C
η−1
η

i,k,t di
) η
η−1

The first order condition for this problem is

Pi,k,t
Pt

= µt

(∫
i

C
η−1
η

i,k,t di
) 1
η−1
C
−1
η

i,k,t

Where µt is the multiplier on the consumption aggregation constraint. I can

rewrite this is

Pi,k,t
Pt

= µtC
1
η

t C
−1
η

i,k,t

Note that the multiplier µt is the same regardless of the good i the first order

condition is taken for. Therefore, I substitute it out with the FOC for another good

j:

Pi,k,t
Pt

=
Pj,k,t
Pt

C
−1
η

t C
1
η

j,k,tC
1
η

t C
−1
η

i,k,t

Simplifying,

Cj,k,t = P−ηj,k,tPi,k,tCi,k,t
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I now aggregate over all goods Cj,k,t to rewrite Ci,k,t as a function of the aggregate

price level Pt and aggregate consumption Ct. Aggregating Cj,k,t,(∫
j

C
η−1
η

j,k,tdj
) η
η−1

︸ ︷︷ ︸
Ct

=
(
P

1
1−η
j,k,t dj

) −η
1−η
P η
i,k,tCi,k,t

The aggregate price index is Pt =
(
P

1
1−η
j,k,t dj

) 1
1−η

. Therefore,

Ct = P−ηt P η
i,k,tCi,k,t

Finally,

Ci,k,t =

(
Pi,k,t
Pt

)−η
Ct

A.2 Steady State and Price Grid

Here I derive the the flexble price steady state value of consumption as well as the

maximum and minimum real profit-maximizing prices for a firm as a function of

idiosyncratic technology and the aggregate states. I repeat the firm’s profits:

Profits(P̂ , Z, A,C) = P̂ 1−ηC − χCγ−1P̂−η
1

ZA

Taking the first order condition,

P̂ ∗ =
ηχ

η − 1
Cγ 1

ZA
(3)

In a flexible price steady state, it must be the case that a firm’s relative price at

its deterministic steady state (that is, when Z = ZSS and A = ASS) is equal to 1.

Therefore,

CSS =
(
ZSSASS

η − 1

ηχ

)−γ
The minimum and maximum optimal relative prices P̂ are simply the optimal
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prices given by Equation 3 when Z, A, and C are at their minimum or maximum

gridpoints after discretization. My price grid therefore ranges from ηχ
η−1

Cγ
min

1
ZmaxAmax

to ηχ
η−1

Cγ
max

1
ZminAmin

.

A.3 Computationally Solving the Model

In this subsection, I describe in detail the procedure for calculating the value function

V k(P̂−1, Z, A,C). At the beginning of each period, the firm carries over its nominal

price from the previous period Pi,t−1. Shocks to nominal GDP εNGDPt , aggregate

productivity εat , and idiosyncratic prodcutivity εzt are realized. The firm predicts

inflation Π̂ based on the Krusell-Smith approximation given in Equation 2. The

firm starts the period with a real price P̂−1 that is last period’s end -of-period real

price minus predicted inflation: log(P̂−1) = log(P̂t−1)− log(Π̂). The firm then either

receives a free price change, or does not receive a free price change and chooses

whether or not to pay the menu cost. The value function is shown below again for

convenience:

V k(P̂−1, Z, A,C) = αk

[
ΠR(P̂ ∗(Z,A,C), Z, A,C) + EM ′V k(P̂ ′−1, Z

′, A′, C ′)
]

︸ ︷︷ ︸
Free price change

+ (1− αk) max
[

ΠR(P̂−1, Z, A,C) + EM ′V k(P̂ ′−1, Z
′, A′, C ′)︸ ︷︷ ︸

No free price change, does not pay κk

,

ΠR(P̂ ∗(Z,A,C), Z, A,C)− κk + EM ′V k(P̂ ′−1, Z
′, A′, C ′)︸ ︷︷ ︸

No free price change, pays κk

]
(4)

I use value function iteration to calculate V k(P̂−1, Z, A,C). Let Ω denote the state

of the firm at the beginning of the period, (P̂−1, Z, A,C). Within each iteration, I

first calculate the continuation value of each possible state , which is given by

EM ′V k(Ω′) =
∑
Ω′

M ′V k(Ω′)P (Ω′|Ω)
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The probability of starting in state Ω′ in the next period is given by

P (Ω′|Ω) = P (p̂′−1 = P̂ ′−1|P̂−1, A, C)×P (z′ = Z ′|Z)×P (a′ = A′|A)×P (c′ = C ′|C,A)

Transition probabilities for the state variables are discretized using the procedure

from Tauchen 1986. Lower case variables denote random realizations of the the states

at the beginning of the next period. Following Midrigan 2011, I drop future states Ω′

whose probability of occurence P (Ω′|Ω) is less than 0.001%. The continuation value

EM ′V k(Ω′) is then the weighted sum of future possible states M ′V k(Ω′).

With the continuation value in hand, I update the value function by calculating

Equation 1. I then begin the next iteration and compute continuation values based

on the updated value function. This iteration continues until the difference between

the previous and updated value functions are within a tolerance bound at every

state. Following the recommendation of Aruoba and Fernández-Villaverde 2015, I

use C++ to solve the firm’s problem. I use Matlab to simulate the economy.
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B More Tables and Figures

Table A1: Frequency of Price Changes after Monetary Policy Shocks with Firm
Fixed Effects

Panel A: Year Fixed Effects
Freqi,t+h h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6
|MPw| 0.546** 0.373 0.616** 0.613** 0.595** 0.376 0.395

(0.248) (0.229) (0.237) (0.238) (0.246) (0.231) (0.241)
|MPw| ×Kurti -0.0924** -0.0888** -0.105** -0.0881* -0.101** -0.0841* -0.0737

(0.0465) (0.0449) (0.0462) (0.0483) (0.0470) (0.0449) (0.0473)

Firm FE Y Y Y Y Y Y Y
Year FE Y Y Y Y Y Y Y
Observations 14,080 14,080 14,080 14,080 14,080 14,080 14,080
R-squared 0.418 0.424 0.421 0.422 0.420 0.420 0.420

Panel B: No Year Fixed Effects
Freqi,t+h h = 0 h = 1 h = 2 h = 3 h = 4 h = 5 h = 6

|MPw| 0.216 0.124 0.272 0.235 0.246 0.138 0.112
(0.247) (0.240) (0.240) (0.243) (0.242) (0.232) (0.241)

|MPw| ×Kurti -0.0981** -0.0934** -0.110** -0.0951* -0.108** -0.0874* -0.0775
(0.0471) (0.0456) (0.0463) (0.0486) (0.0480) (0.0458) (0.0484)

Firm FE Y Y Y Y Y Y Y
Year FE N N N N N N N
Observations 14,080 14,080 14,080 14,080 14,080 14,080 14,080
R-squared 0.372 0.374 0.373 0.368 0.371 0.373 0.371

*** p<0.01, ** p<0.05, * p<0.1
The fraction of goods whose price changed in week w+ h for each firm regressed on the absolute value of
monetary policy surprises, denoted by |MPw|, and the interaction between the monetary policy surprise
and firm kurtosis, |MPw| ×Kurti. Monetary policy surprises are measured as movements in the Federal
Funds Rate in a 30-minute window around Federal Open Market Committee announcements. The first
panel includes year fixed effects, while the second panel omits them. Standard errors are shown in
parentheses and clustered at the firm level.
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Table A2: Returns by Kurtosis Bin: 1963-2019

Equal Weighted
Low 2 High High-Low

Excess Return 8.264∗∗∗ 9.362∗∗∗ 11.085∗∗∗ 2.821∗∗

(2.677) (2.025) (2.192) (1.319)
CAPM alpha 1.573 3.669∗∗∗ 5.647∗∗∗ 4.074∗∗∗

(1.699) (1.299) (1.395) (1.264)
FF3 alpha -0.195 2.604∗∗ 4.790∗∗∗ 4.985∗∗∗

(1.197) (1.119) (1.271) (1.097)
FF4 alpha 1.299 3.103∗∗∗ 5.677∗∗∗ 4.378∗∗∗

(1.156) (1.110) (1.256) (1.090)
FF5 alpha -1.687 0.675 2.855∗∗∗ 4.542∗∗∗

(1.139) (0.959) (1.087) (1.072)

Value-Weighted
Low 2 High High-Low

Excess Return 5.244∗∗ 7.175∗∗∗ 9.292∗∗∗ 4.048∗∗

(2.448) (1.943) (2.015) (1.916)
CAPM alpha -1.469 1.978 4.139∗∗∗ 5.608∗∗∗

(1.625) (1.320) (1.308) (1.898)
FF3 alpha -2.204 2.893∗∗ 4.960∗∗∗ 7.164∗∗∗

(1.544) (1.285) (1.285) (1.769)
FF4 alpha -1.307 2.646∗∗ 4.833∗∗∗ 6.139∗∗∗

(1.548) (1.285) (1.285) (1.776)
FF5 alpha -3.287∗∗ 0.636 2.239∗∗ 5.526∗∗∗

(1.407) (1.181) (1.037) (1.740)
*** p<0.01, ** p<0.05, * p<0.1

Average equity returns among firms grouped into terciles based on kurtosis of price changes from
1963 to 2019. Newey-West standard errors with 12 lags are computed for average returns. The
spread between the high and low kurtosis terciles is shown in the rightmost column.
Equal-weighted returns are shown in the top panel, and value-weighted returns in the bottom
panel.
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Table A3: Returns in KurtMoors Bins

Equal Weighted
Low 2 High High-Low

Excess Return 4.652 8.737∗∗ 8.780∗ 4.128∗

(5.319) (4.418) (5.081) (2.216)
CAPM alpha -4.711∗∗ 0.794 0.466 5.177∗∗

(2.328) (2.071) (2.779) (2.152)
FF3 alpha -3.459∗ 1.559 1.545 5.004∗∗

(2.089) (1.876) (2.510) (2.173)
FF4 alpha -3.248 1.664 1.679 4.928∗∗

(2.178) (1.768) (2.327) (2.315)
FF5 alpha -3.772∗ 0.005 0.458 4.230∗∗

(2.068) (1.853) (2.414) (2.121)

Value-Weighted
Low 2 High High-Low

Excess Return 6.909∗∗ 12.932∗∗∗ 8.846∗∗∗ 1.937
(2.971) (4.775) (2.868) (1.926)

CAPM alpha 0.729 4.718∗ 3.841∗∗ 3.112
(1.720) (2.816) (1.530) (1.994)

FF3 alpha 0.607 3.385 3.412∗∗ 2.805
(1.743) (2.665) (1.485) (1.978)

FF4 alpha 0.585 3.394 3.382∗∗ 2.797
(1.733) (2.655) (1.495) (1.983)

FF5 alpha -1.488 1.309 2.019 3.507∗

(1.728) (2.356) (1.360) (2.005)
*** p<0.01, ** p<0.05, * p<0.1

Average equity returns among firms grouped into terciles based on robust kurtosis of Moors 1988.
Newey-West standard errors with 12 lags are computed for average returns. The spread between
the high and low robust kurtosis terciles is shown in the rightmost column. Equal-weighted
returns are shown in the top panel, and value-weighted returns in the bottom panel.
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Table A4: Panel Regressions: No Fixed Effects

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Frequency -2.952 -2.952 -1.419 -2.035 -2.246 -2.966 -0.535 -1.759 -2.455 -0.676 -0.922 -7.044*
(4.062) (4.062) (3.879) (4.576) (4.140) (3.640) (3.852) (4.015) (4.041) (3.878) (3.996) (4.123)

Kurtosis 1.096** 1.096** 0.986** 1.073** 1.116** 1.068*** 0.982** 1.082** 1.067** 1.041** 1.069** 1.008**
(0.442) (0.442) (0.451) (0.527) (0.455) (0.410) (0.458) (0.435) (0.454) (0.436) (0.437) (0.507)

log mcap june 0.418 0.293
(0.360) (0.467)

BM june 7.192** 12.14***
(3.059) (3.383)

beta june 0.929 1.197
(1.532) (1.782)

leverage june -0.619 6.350
(3.344) (4.553)

cashflows june 9.986 10.05
(11.52) (15.17)

turnover june 0.0173 -0.0271
(0.0643) (0.0762)

spread monthly june -0.204 -0.370
(0.185) (0.291)

pcm june 1.487 6.770
(4.050) (4.547)

HH index june 7.999 2.570
(13.01) (14.80)

Constant 3.699* 3.699* -2.420 0.410 2.518 4.299** 2.744 3.023 4.483** 2.786 2.553 -9.739
(2.024) (2.024) (5.492) (3.066) (2.471) (1.927) (2.032) (2.197) (2.209) (2.580) (2.151) (9.145)

Observations 24,590 24,590 24,188 22,404 24,110 21,979 23,828 24,188 24,188 23,714 23,912 20,546
R-squared 0.000 0.000 0.000 0.001 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.002

*** p<0.01, ** p<0.05, * p<0.1

Panel regressions of monthly excess returns on frequency and kurtosis of price changes. Control
variables are included one at a time until the final column, when they are all included in the
regression. No fixed effects are included.
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Table A5: Panel Regressions: Industry Fixed Effects

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Frequency -2.952 -1.631 0.0943 -1.104 -1.298 -0.846 1.248 -0.444 -1.170 1.251 1.656 -3.258
(4.062) (4.532) (4.473) (5.179) (4.654) (4.432) (4.425) (4.556) (4.552) (4.416) (4.610) (5.501)

Kurtosis 1.096** 0.852* 0.757* 0.963** 0.936** 0.715 0.768* 0.836* 0.826* 0.840** 0.813* 0.727
(0.442) (0.433) (0.429) (0.483) (0.424) (0.456) (0.429) (0.428) (0.444) (0.425) (0.427) (0.521)

log mcap june 0.327 0.391
(0.380) (0.508)

BM june 9.786*** 15.16***
(2.864) (3.607)

beta june 2.131 2.522
(1.611) (1.941)

leverage june 0.00858 8.044*
(3.459) (4.701)

cashflows june 6.239 5.210
(10.67) (13.53)

turnover june 0.0195 -0.0456
(0.0667) (0.0776)

spread monthly june -0.218 -0.365
(0.181) (0.285)

pcm june 0.640 15.70***
(5.075) (5.808)

HH index june -13.27 -22.70
(18.01) (20.84)

Observations 24,590 24,590 24,188 22,404 24,110 21,979 23,828 24,188 24,188 23,714 23,912 20,546
R-squared 0.000 0.001 0.001 0.002 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.003

Industry FE N Y Y Y Y Y Y Y Y Y Y Y
*** p<0.01, ** p<0.05, * p<0.1

Panel regressions of monthly excess returns on frequency and kurtosis of price changes. Control
variables are included one at a time until the final column, when they are all included in the
regression. Industry fixed effects are included.
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Table A6: Panel Regressions: Industry Fixed Effects and Year Fixed Effects

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Frequency -2.952 -1.587 0.343 -0.790 -0.739 -0.490 1.278 -0.623 -0.873 1.173 2.500 -0.527
(4.062) (4.352) (4.297) (4.960) (4.487) (4.214) (4.218) (4.414) (4.424) (4.282) (4.445) (4.901)

Kurtosis 1.096** 0.807* 0.635 0.823* 0.791* 0.724 0.622 0.774* 0.756* 0.770* 0.727* 0.614
(0.442) (0.426) (0.435) (0.474) (0.434) (0.462) (0.430) (0.436) (0.447) (0.429) (0.434) (0.491)

log mcap june 0.576 0.525
(0.375) (0.463)

BM june 5.399** 9.929***
(2.564) (3.337)

beta june 0.845 1.406
(1.471) (1.888)

leverage june -0.235 5.972
(3.159) (4.389)

cashflows june 14.79 7.651
(9.808) (13.04)

turnover june 0.0366 0.00243
(0.0641) (0.0738)

spread monthly june -0.143 -0.158
(0.143) (0.240)

pcm june 1.997 12.57**
(4.628) (5.465)

HH index june -34.65* -36.17*
(17.90) (18.97)

Observations 24,590 24,590 24,188 22,404 24,110 21,979 23,828 24,188 24,188 23,714 23,912 20,546
R-squared 0.000 0.026 0.026 0.025 0.026 0.027 0.026 0.026 0.026 0.026 0.026 0.027

Year FE N Y Y Y Y Y Y Y Y Y Y Y
Industry FE N Y Y Y Y Y Y Y Y Y Y Y

*** p<0.01, ** p<0.05, * p<0.1

Panel regressions of monthly excess returns on frequency and kurtosis of price changes. Control
variables are included one at a time until the final column, when they are all included in the
regression. Year and industry fixed effects are included.
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Table A7: Panel Regressions: Industry by Year Fixed Effects

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Frequency -2.952 -1.914 0.121 -0.383 -0.873 -0.304 0.748 -0.840 -1.002 0.637 2.330 0.512
(4.062) (4.367) (4.281) (4.968) (4.446) (4.066) (4.199) (4.392) (4.410) (4.277) (4.403) (4.754)

Kurtosis 1.096** 0.784* 0.593 0.771* 0.744* 0.713* 0.584 0.733* 0.715* 0.755* 0.682* 0.676
(0.442) (0.412) (0.413) (0.454) (0.413) (0.423) (0.404) (0.417) (0.426) (0.405) (0.410) (0.456)

log mcap june 0.585 0.589
(0.364) (0.468)

BM june 3.881 7.703**
(2.518) (3.332)

beta june 0.681 1.238
(1.383) (1.753)

leverage june -0.462 3.843
(2.943) (4.216)

cashflows june 14.57 -0.227
(9.927) (13.42)

turnover june 0.0344 -0.00959
(0.0673) (0.0793)

spread monthly june -0.117 -0.144
(0.139) (0.243)

pcm june 0.741 9.549*
(4.540) (5.150)

HH index june -35.32** -34.89*
(17.81) (18.57)

Observations 24,590 24,590 24,188 22,404 24,110 21,979 23,828 24,188 24,188 23,714 23,912 20,546
R-squared 0.000 0.036 0.036 0.037 0.036 0.036 0.036 0.036 0.036 0.037 0.036 0.038

Industry X Year FE N Y Y Y Y Y Y Y Y Y Y Y
*** p<0.01, ** p<0.05, * p<0.1

Panel regressions of monthly excess returns on frequency and kurtosis of price changes. Control
variables are included one at a time until the final column, when they are all included in the
regression. Industry by year fixed effects are included.
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Table A8: Pricing Statistics and Idiosyncratic Return Volatility Correlation

Frequency Kurt CAPM Vol FF3 Vol FF4 Vol FF5 Vol
Freq 1.00
Kurtosis 0.32 1.00
CAPM Idiosyncratic Vol 0.14 -0.13 1.00
FF3 Idiosyncratic Vol 0.14 -0.13 1.00 1.00
FF4 Idiosyncratic Vol 0.14 -0.13 1.00 1.00 1.00
FF5 Idiosyncratic Vol 0.15 -0.12 1.00 1.00 1.00 1.00

Correlations between firm-level pricing statistics and idiosyncratic volatility at the firm level.
Idiosyncratic shocks are identified as the residuals of regressions of firms’ equity returns on
systematic factors, which range from the CAPM to the Fama French 5 models.

Table A9: Pricing Statistics and Idiosyncratic Return Kurtosis Correlation

Frequency Kurt CAPM Kurt FF3 Kurt FF4 Kurt FF5 Kurt
Freq 1.00
Kurtosis 0.32 1.00
CAPM Idiosyncratic Kurt 0.02 0.03 1.00
FF3 Idiosyncratic Kurt 0.02 0.03 1.00 1.00
FF4 Idiosyncratic Kurt 0.02 0.03 1.00 1.00 1.00
FF5 Idiosyncratic Kurt 0.02 0.03 1.00 1.00 1.00 1.00

Correlations between firm-level pricing statistics and idiosyncratic volatility at the firm level.
Idiosyncratic shocks are identified as the residuals of regressions of firms’ equity returns on
systematic factors, which range from the CAPM to the Fama French 5 models.

Table A10: Pricing Statistics and Idiosyncratic Return Volatility Rank Correlation

Frequency Kurt CAPM Vol FF3 Vol FF4 Vol FF5 Vol
Freq 1.0000
Kurtosis 0.3646 1.0000
CAPM Idiosyncratic Vol 0.1307 -0.2539 1.0000
FF3 Idiosyncratic Vol 0.1309 -0.2538 0.9986 1.0000
FF4 Idiosyncratic Vol 0.1306 -0.2520 0.9969 0.9987 1.0000
FF5 Idiosyncratic Vol 0.1348 -0.2502 0.9980 0.9995 0.9985 1.0000

Correlations between firm-level pricing statistics and idiosyncratic volatility at the firm level.
Idiosyncratic shocks are identified as the residuals of regressions of firms’ equity returns on
systematic factors, which range from the CAPM to the Fama French 5 models.
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Table A11: Pricing Statistics and Idiosyncratic Return Kurtosis Rank Correlation

Frequency Kurt CAPM Kurt FF3 Kurt FF4 Kurt FF5 Kurt
Freq 1.0000
Kurtosis 0.3646 1.0000
CAPM Idiosyncratic Kurt -0.0358 0.0088 1.0000
FF3 Idiosyncratic Kurt -0.0358 0.0088 1.0000 1.0000
FF4 Idiosyncratic Kurt -0.0358 0.0088 1.0000 1.0000 1.0000
FF5 Idiosyncratic Kurt -0.0358 0.0088 1.0000 1.0000 1.0000 1.0000

Correlations between firm-level pricing statistics and idiosyncratic volatility at the firm level.
Idiosyncratic shocks are identified as the residuals of regressions of firms’ equity returns on
systematic factors, which range from the CAPM to the Fama French 5 models.
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C Statistics Aggregated at UPC Level

In this section, I compute frequency and kurtosis at the UPC level, treating all price

changes within a UPC across stores as occuring to a single good. I use only UPCs

with at least 5 price changes. My sample consists of 213 firms, only slightly more

than the 211 in the main sample based on UPC-store level statistics.

Table A12: Summary Statistics: 2006-2019

Price Change Statistics
Median Mean SD Min Max Firms

Frequency 0.267 0.317 0.216 0.016 0.851 213
Kurtosis 5.523 6.404 4.398 1.356 25.596 213

Financial Variables
Market Cap 13.897 13.884 2.348 9.119 19.167 212
BM 0.466 0.505 0.365 -0.395 1.972 209
Beta 0.858 0.996 0.653 -0.416 3.384 212
Leverage 0.393 0.437 0.289 0.002 1.822 204
Cashflows 0.077 0.059 0.101 -0.445 0.264 211
Turnover 15.971 18.404 12.251 0.623 72.056 212
Bid-Ask Spread 2.511 4.419 5.728 1.000 43.402 212
Price-Cost Margin 0.352 0.361 0.173 0.044 0.844 211
HH Index 0.071 0.084 0.053 0.025 0.280 211
Annualized Returns 9.857 5.677 25.053 -183.282 79.847 213

Summary statistics for firms when price change statistics are computed at the UPC level.
Frequency and kurtosis of price changes are computed for price changes within a UPC, averaging
across stores, and aggregated using a weighted average to the firm level. Financial variables are
computed annually (if their source is Compustat) or monthly (if from CRSP); see Section 5 for
descriptions of how variables are constructed. Summary statistics are shown as unconditional firm
averages.
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Table A14: Returns in Frequency Bins

Equal Weighted
Low 2 High High-Low

Excess Return 6.791 7.198 8.018 1.228
(4.757) (4.399) (5.571) (2.076)

CAPM alpha -1.772 -0.446 -1.288 0.484
(2.253) (2.074) (2.803) (1.995)

FF3 alpha -0.608 0.327 -0.140 0.468
(1.804) (1.948) (2.623) (1.982)

FF4 alpha -0.438 0.394 0.067 0.505
(1.516) (1.931) (2.552) (2.017)

FF5 alpha -1.943 -0.446 -1.068 0.875
(1.698) (1.936) (2.594) (1.982)

Value-Weighted
Low 2 High High-Low

Excess Return 8.116∗∗∗ 8.124∗∗∗ 13.331∗∗∗ 5.215
(3.011) (3.078) (4.533) (3.793)

CAPM alpha 2.494∗ 2.147∗ 5.875∗ 3.382
(1.445) (1.260) (3.129) (3.744)

FF3 alpha 2.089 1.713 4.636 2.547
(1.470) (1.254) (2.966) (3.544)

FF4 alpha 2.093 1.700 4.610 2.517
(1.469) (1.269) (2.977) (3.551)

FF5 alpha 0.772 0.075 2.340 1.568
(1.363) (1.160) (2.583) (3.268)

*** p<0.01, ** p<0.05, * p<0.1
Average equity returns among firms grouped into terciles based on frequency of price changes
from 2006 to 2019. Newey-West standard errors with 12 lags are computed for average returns.
The spread between the high and low frequency terciles is shown in the rightmost column.
Equal-weighted returns are shown in the top panel, and value-weighted returns in the bottom
panel.
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Table A15: Returns in Kurtosis Bins

Equal Weighted
Low 2 High High-Low

Excess Return 5.147 8.248∗∗ 8.644∗ 3.496
(6.199) (4.167) (4.447) (3.023)

CAPM alpha -5.014∗ 0.719 0.841 5.854∗∗

(2.858) (2.159) (2.335) (2.539)
FF3 alpha -3.644 1.533 1.741 5.385∗∗

(2.499) (1.885) (2.258) (2.412)
FF4 alpha -3.349 1.576 1.846 5.196∗∗

(2.232) (1.850) (2.234) (2.281)
FF5 alpha -4.203∗ 0.472 0.319 4.522∗

(2.444) (1.840) (2.261) (2.446)

Value-Weighted
Low 2 High High-Low

Excess Return 5.539 7.981∗∗∗ 12.926∗∗∗ 7.387∗∗

(5.052) (2.817) (3.634) (3.574)
CAPM alpha -3.878∗ 2.310∗ 6.744∗∗∗ 10.622∗∗∗

(2.010) (1.265) (2.429) (3.036)
FF3 alpha -3.548∗ 2.011 5.420∗∗ 8.968∗∗∗

(2.037) (1.299) (2.337) (3.019)
FF4 alpha -3.506∗ 2.003 5.392∗∗ 8.898∗∗∗

(2.082) (1.306) (2.365) (3.123)
FF5 alpha -4.027∗∗ 0.168 3.572∗ 7.599∗∗∗

(1.946) (1.188) (2.025) (2.690)
*** p<0.01, ** p<0.05, * p<0.1

Average equity returns among firms grouped into terciles based on kurtosis of price changes from
2006 to 2019. Newey-West standard errors with 12 lags are computed for average returns. The
spread between the high and low kurtosis terciles is shown in the rightmost column.
Equal-weighted returns are shown in the top panel, and value-weighted returns in the bottom
panel.
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Table A16: Returns in KurtMoors Bins

Equal Weighted
Low 2 High High-Low

Excess Return 5.183 7.688 9.131∗ 3.948∗∗

(5.067) (4.664) (4.881) (1.722)
CAPM alpha -3.984∗ -0.338 0.824 4.808∗∗∗

(2.155) (2.352) (2.372) (1.696)
FF3 alpha -2.705 0.715 1.578 4.283∗∗

(1.792) (2.082) (2.233) (1.667)
FF4 alpha -2.469 0.805 1.694 4.163∗∗

(1.781) (2.023) (2.084) (1.852)
FF5 alpha -2.832 -1.412 0.796 3.628∗∗

(1.798) (2.100) (2.123) (1.624)

Value-Weighted
Low 2 High High-Low

Excess Return 5.174 12.764∗∗∗ 8.906∗∗∗ 3.732
(4.666) (3.857) (2.921) (3.002)

CAPM alpha -3.919∗ 6.018∗∗ 3.744∗∗ 7.663∗∗∗

(1.989) (2.642) (1.546) (2.447)
FF3 alpha -3.643∗ 4.687∗ 3.378∗∗ 7.021∗∗∗

(1.998) (2.558) (1.497) (2.390)
FF4 alpha -3.620∗ 4.663∗ 3.365∗∗ 6.985∗∗∗

(2.018) (2.585) (1.501) (2.424)
FF5 alpha -4.930∗∗ 2.325 1.996 6.925∗∗∗

(1.946) (2.148) (1.364) (2.386)
*** p<0.01, ** p<0.05, * p<0.1

Average equity returns among firms grouped into terciles based on robust kurtosis from Moors
1988. Newey-West standard errors with 12 lags are computed for average returns. The spread
between the high and low robust kurtosis terciles is shown in the rightmost column.
Equal-weighted returns are shown in the top panel, and value-weighted returns in the bottom
panel.
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Table A17: Double Sorts–Kurtosis within Frequency

Freq Kurtosis
Low 2 High High-Low

Low 4.577 7.379∗ 8.416∗∗ 3.839
(7.196) (4.196) (3.982) (5.337)

2 4.757 8.195∗∗ 8.734∗∗ 3.977
(5.980) (4.000) (4.303) (3.926)

High 5.315 9.657∗ 9.206 3.891
(6.465) (5.367) (5.644) (3.375)

HML 0.738 2.278 0.789
(3.413) (2.896) (3.815)

*** p<0.01, ** p<0.05, * p<0.1
Firms are sorted into terciles based on their average frequency of price changes. Within each of
these frequency terciles, I then sorts firms into conditional terciles based on kurtosis of price
changes. Mean returns over the 2006-2019 sample for each kurtosis bin conditional on frequency
bins are shown. The spreads between high and low kurtosis firms within each frequency bin are
shown in the right column. The spreads between high and low frequency bins given each
conditional kurtosis bin are shown in the bottom row. Standard errors are computed using the
Newey-West procedure with 12 lags.
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D Regular Prices

In this section, I perform portfolio sorts using regular prices identified by the Kehoe

and Midrigan 2015 algorithm. This algorithm filters out sales and temporary price

increases by calculating the modal price for a good within a 13-week window. For

the details of the algorithm, see Midrigan 2011 and Kehoe and Midrigan 2015.

Table A18: Summary Statistics: 2006-2019

Price Change Statistics
Median Mean SD Min Max Firm-Months

Regular Frequency 0.033 0.037 0.017 0.010 0.104 145
Regular Kurtosis 1.621 1.657 0.483 1.000 3.064 145

Financial Variables
Market Cap 13.978 14.074 2.312 9.197 19.046 144
BM 0.472 0.496 0.340 -0.312 1.938 142
Beta 0.740 0.903 0.569 -0.445 3.034 144
Leverage 0.447 0.468 0.300 0.002 1.901 139
Cashflows 0.079 0.071 0.074 -0.296 0.217 144
Turnover 15.943 17.234 10.081 0.623 44.321 144
Bid-Ask Spread 2.504 4.270 5.764 1.012 44.252 144
Price-Cost Margin 0.357 0.368 0.180 0.065 0.851 144
HH Index 0.071 0.089 0.053 0.030 0.271 144
Annualized Returns 11.616 8.712 24.005 -177.860 78.003 145

Summary statistics for firms in the regular price change sample. Frequency and kurtosis of regular
price changes are computed for price changes within a UPC-store and aggregated using a
weighted average to the firm level. Financial variables are computed annually (if their source is
Compustat) or monthly (if from CRSP); see Section 5 for descriptions of how variables are
constructed. Summary statistics are shown as unconditional firm averages.
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Table A20: Returns in Frequency Bins

Equal Weighted
Low 2 High High-Low

Excess Return 8.998∗∗ 8.947∗ 8.536∗ -0.462
(4.321) (4.722) (4.657) (1.906)

CAPM alpha 2.069 0.791 0.091 -1.978
(2.630) (2.395) (2.593) (1.875)

FF3 alpha 2.534 1.610 1.504 -1.030
(2.545) (2.290) (2.016) (1.624)

FF4 alpha 2.657 1.713 1.678 -0.978
(2.464) (2.155) (1.858) (1.620)

FF5 alpha 1.317 0.889 0.415 -0.901
(2.545) (2.202) (1.943) (1.640)

Value-Weighted
Low 2 High High-Low

Excess Return 9.637∗∗∗ 7.826∗∗ 5.648 -3.989∗∗

(2.801) (3.131) (3.774) (1.992)
CAPM alpha 4.337∗∗∗ 2.831 -1.707 -6.045∗∗∗

(1.431) (1.853) (2.008) (1.834)
FF3 alpha 3.741∗∗ 2.364 -1.776 -5.516∗∗∗

(1.473) (1.755) (2.024) (1.728)
FF4 alpha 3.691∗∗ 2.368 -1.771 -5.462∗∗∗

(1.497) (1.752) (2.022) (1.723)
FF5 alpha 2.094 0.752 -2.360 -4.454∗∗

(1.417) (1.554) (2.067) (1.751)
*** p<0.01, ** p<0.05, * p<0.1

Average equity returns among firms grouped into terciles based on frequency of price changes
from 2006 to 2019. Newey-West standard errors with 12 lags are computed for average returns.
The spread between the high and low frequency terciles is shown in the rightmost column.
Equal-weighted returns are shown in the top panel, and value-weighted returns in the bottom
panel.
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Table A21: Returns in Kurtosis Bins

Equal Weighted
Low 2 High High-Low

Excess Return 8.413 8.007∗ 10.060∗∗ 1.647
(5.511) (4.148) (3.960) (2.570)

CAPM alpha -1.456 0.734 3.717 5.173∗∗∗

(2.650) (2.306) (2.488) (1.882)
FF3 alpha -0.115 1.250 4.549∗ 4.664∗∗∗

(2.240) (2.194) (2.346) (1.781)
FF4 alpha 0.125 1.375 4.580∗∗ 4.455∗∗

(2.117) (2.050) (2.309) (1.964)
FF5 alpha -0.476 0.076 3.032 3.508∗∗

(2.259) (2.080) (2.213) (1.636)

Value-Weighted
Low 2 High High-Low

Excess Return 6.113 8.103∗∗∗ 9.023∗∗∗ 2.910
(5.159) (3.030) (2.983) (3.818)

CAPM alpha -2.581 2.175 4.051∗∗ 6.631∗

(3.436) (1.542) (1.705) (3.567)
FF3 alpha -2.856 1.820 3.481∗∗ 6.337∗

(3.432) (1.565) (1.704) (3.646)
FF4 alpha -2.819 1.829 3.416∗ 6.234∗

(3.462) (1.558) (1.748) (3.755)
FF5 alpha -1.749 -0.085 2.098 3.847

(3.438) (1.562) (1.537) (3.564)
*** p<0.01, ** p<0.05, * p<0.1

Average equity returns among firms grouped into terciles based on kurtosis of price changes from
2006 to 2019. Newey-West standard errors with 12 lags are computed for average returns. The
spread between the high and low kurtosis terciles is shown in the rightmost column.
Equal-weighted returns are shown in the top panel, and value-weighted returns in the bottom
panel.

71



Table A22: Double Sorts–Kurtosis within Frequency

Freq Kurtosis
Low 2 High High-Low

Low 5.914 9.572∗∗ 11.535∗∗∗ 5.621∗

(5.759) (4.121) (3.773) (3.268)
2 10.719∗ 7.104 9.132∗ -1.587

(5.571) (4.669) (5.123) (3.333)
High 6.603 9.924∗ 9.253∗∗ 2.650

(5.647) (5.630) (4.082) (4.007)
HML 0.689 0.352 -2.282

(3.767) (3.378) (2.986)
*** p<0.01, ** p<0.05, * p<0.1

Firms are sorted into terciles based on their average frequency of regular price changes. Within
each of these frequency terciles, I then sorts firms into conditional terciles based on kurtosis of
regular price changes. Mean returns over the 2006-2019 sample for each kurtosis bin conditional
on frequency bins are shown. The spreads between high and low kurtosis firms within each
frequency bin are shown in the right column. The spreads between high and low frequency bins
given each conditional kurtosis bin are shown in the bottom row. Standard errors are computed
using the Newey-West procedure with 12 lags.
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