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Abstract

We investigate the out-of-sample predictability of daily cryptocurrency returns using modern

machine-learning methods. We consider a large number of cryptocurrencies (41) and a rich set

of predictors relating to a cryptocurrency’s network value and activity, time-series momentum,

technical signals, and investor attention and sentiment. Our results indicate that return pre-

dictability is an important feature of the cryptocurrency market: machine-learning methods

significantly improve the statistical accuracy of cryptocurrency return forecasts and provide

substantial economic value to an investor. We find that a diverse set of predictors contribute to

cryptocurrency return predictability and that nonlinearities play a prominent role.
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1. Introduction

Cryptocurrencies are an asset class with a relatively short and checkered history. Cryptocurrencies

have experienced large swings in value, casting doubt on their ability to serve as new mediums

of exchange, and their comparatively weak regulatory oversight raises concerns about market ma-

nipulation and fraud (e.g., Gri�n and Shams 2020; Flitter and Ya↵e-Bellany 2023). Nevertheless,

cryptocurrencies and their underlying blockchain technologies have the potential to profoundly af-

fect the financial system and central banking (Prasad 2021), and they are now an important asset

class for investors (Harvey et al. forthcoming). Concomitant with the advent and growth of cryp-

tocurrencies, a burgeoning literature investigates asset pricing in the cryptocurrency market along

various dimensions, such as arbitrage across exchanges (e.g., Makarov and Schoar 2020), market

equilibrium (e.g., Cong, Li, and Wang 2021; Biais et al. forthcoming), and empirical risk factors

(e.g., Bhambhwani, Delikouras, and Korniotis 2021; Liu, Tsyvinski, and Wu 2022).

In this paper, we investigate the out-of-sample predictability of a large number of daily cryp-

tocurrency returns using modern machine-learning methods. Return predictability is a leading

topic in asset pricing, as it relates to, among other things, information processing in financial mar-

kets and the determinants of time-varying expected returns, and it has important implications for

investors. A number of studies analyze out-of-sample cryptocurrency return prediction, including

with machine-learning tools. For example, Huang, Huang, and Ni (2019), Detzel et al. (2021), and

Gradojevic et al. (2023) use technical indicators to predict daily and weekly Bitcoin returns, while

Cheah et al. (2020) and Chen et al. (2021) predict daily Bitcoin returns using a variety of predic-

tors. We contribute to the literature by undertaking a comprehensive analysis of cryptocurrency

return predictability. Our analysis simultaneously considers a large number of cryptocurrencies,

a broad array of predictors, and a diverse set of machine-learning techniques. We examine both

the statistical and economic significance of cryptocurrency return predictability and investigate the

sources of return predictability.

We start with daily data for 48 cryptocurrencies from CoinMetrics for which prices and data for

an extensive set of characteristics relating to network value and activity are available. After drop-

ping “stable coins” and “wrapped tokens” that behave very di↵erently from most cryptocurrencies,

we are left with 41 cryptocurrencies. In addition to predictors based on network value and activity
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(i.e., cryptocurrency “fundamentals”), we construct market-based predictors relating to time-series

momentum (Moskowitz, Ooi, and Pedersen 2012) and price-based technical signals. To consider

measures of investor attention and sentiment, we also download cryptocurrency search-volume data

from Google Trends as well as Reddit comments and Factiva articles relating to cryptocurrencies.

This provides us with a rich set of predictors from manifold categories.

We compute daily cryptocurrency return forecasts using various machine-learning methods. The

first forecast is based on elastic net (ENet, Zou and Hastie 2005) estimation of a linear model that

includes all of the predictors (linear-ENet forecast). Conventional ordinary least squares (OLS)

estimation of a large-scale linear model with correlated predictors is highly susceptible to in-sample

overfitting. To help guard against overfitting, the ENet employs penalized regression to shrink the

coe�cient estimates to zero. The other forecasts allow for general nonlinearities in the prediction

model, thereby increasing the scope of the forecasts to capture potentially important nonlinear-

ities in the data. We construct two forecasts based on decision trees: random forest (Breiman

2001) and XGBoost (Chen and Guestrin 2016). In addition, we use a deep neural network to fore-

cast cryptocurrency returns. Random forests, XGBoost, and deep neural networks are powerful

machine-learning techniques that perform well in a variety of domains. We investigate their ability

to forecast a large number of daily cryptocurrency returns based on a wide array of predictors.1

Because asset returns inherently contain a large unpredictable component, we are dealing with

noisy data, which makes it especially important to guard against overfitting when training the

machine-learning models. To help prevent overfitting, we tune multiple hyperparameters for each

machine-learning model; we also retune the hyperparameters and retrain the models on a regular

basis over time. We only use information available at the time of forecast formation when tuning

the hyperparameters and training the models, so the forecasts do not entail “look-ahead” bias.

In addition to forecasts based on the individual machine-learning methods, we consider ensemble

forecasts that combine the individual machine-learning forecasts.

We find that daily cryptocurrency return predictability is empirically important, both statisti-

cally and economically. In terms of out-of-sample mean squared error (MSE), the machine-learning

1Machine learning is growing in popularity in finance; for example, a spate of recent studies use machine-learning
methods to forecast stock returns, including Chinco, Clark-Joseph, and Ye (2019), Freyberger, Neuhierl, and Weber
(2020), Gu, Kelly, and Xiu (2020), Kozak, Nagel, and Santosh (2020), Dong et al. (2022), Avramov, Cheng, and
Metzker (forthcoming), and Chen, Pelger, and Zhu (forthcoming).
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forecasts outperform the prevailing mean benchmark forecast in the vast majority of cases for in-

dividual cryptocurrencies. The prevailing mean forecast assumes that returns are not predictable;

given the intrinsically large unpredictable component in asset returns, it constitutes a stringent

benchmark (e.g., Goyal and Welch 2008). The machine-learning forecasts also significantly outper-

form the prevailing mean benchmark in terms of MSE for all of the cryptocurrencies taken together.

Furthermore, the machine-learning forecasts that allow for nonlinearities—random forest, XGBoost,

and deep neural network—are significantly more accurate than the linear-ENet forecast, so accom-

modating nonlinearities in fitted prediction models improves out-of-sample cryptocurrency return

prediction. Ensemble forecasts also perform well.

In addition to improving statistical accuracy, the machine-learning forecasts are economically

valuable. We consider a mean-variance investor who allocates between an individual cryptocurrency

and risk-free Treasury bills. The investor realizes substantial utility gains by relying on machine-

learning forecasts to guide asset allocation compared to ignoring return predictability by relying

on the prevailing mean benchmark forecast. We also construct long-short portfolios that invest in

multiple cryptocurrencies guided by the machine-learning forecasts of daily cryptocurrency returns.

Specifically, we sort the available cryptocurrencies based on their return forecasts; the portfolio

goes long (short) the cryptocurrencies with the highest (lowest) return forecasts. The long-short

portfolios exhibit impressive performance in terms of Sharpe, Calmar, and Sortino ratios, and they

typically perform substantially better than passively holding a value-weighted market portfolio of

cryptocurrencies (as well as a value-weighted equity market portfolio). The long-short portfolios

based on the machine-learning forecasts also generate statistically significant and economically

sizable alphas in the context of the Liu, Tsyvinski, and Wu (2022) cryptocurrency three-factor

model. With regard to economic value, we again find that nonlinearities are important, as portfolios

based on the nonlinear forecasts usually generate larger economic gains than those based on the

linear-ENet forecast.

To glean insight into the sources of cryptocurrency return predictability, we use Shapley (1953)

values to interpret the fitted machine-learning models that generate the return forecasts. Shapley-

based variable-importance measures indicate that predictors from a variety of categories are relevant

for forecasting daily cryptocurrency returns. Among the most important predictors are time-series

momentum, network value, the address-to-network value ratio, the number of transactions, and
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Google Trends search volume. Investor attention to cryptocurrencies, as captured by the number

of Reddit comments and Factiva articles, appears more important than sentiment and uncertainty

in the comments and articles. Overall, we find that cryptocurrency return predictability emanates

from a diversity of sources. Plots of Shapley values reveal important nonlinearities in marginal

predictive relationships for the fitted models, further highlighting the relevance of nonlinearities for

forecasting cryptocurrency returns.

The remainder of the paper is organized as follows. Section 2 presents the data. Section 3

describes the machine-learning methods that we use to forecast cryptocurrency returns. Section 4

reports the out-of-sample results, focusing on statistic accuracy. Section 5 analyzes the economic

value of the cryptocurrency return forecasts. Section 6 uses Shapley values to investigate the sources

of cryptocurrency return predictability. Section 7 concludes.

2. Data

We use daily cryptocurrency prices in US dollars from CoinMetrics, a leading provider of cryp-

tocurrency data. We begin with 48 cryptocurrencies for which prices and data for a large number

of characteristics are available. Five of the cryptocurrencies are “stable coins” that are at least

putatively pegged to the US dollar. Two more cryptocurrencies are “wrapped tokens” that are

designed to trade 1:1 with Bitcoin. Because they behave quite di↵erently from other cryptocurren-

cies, we drop the five stablecoins. We also drop the two wrapped tokens, as they follow Bitcoin.

This leaves 41 cryptocurrencies.

CoinMetrics provides US dollar closing prices (“reference rates”) at midnight coordinated uni-

versal time for every day of the year. Each price is a volume-weighted average of prices across

exchanges that qualify as “constituent markets” according to criteria established by CoinMetrics.2

We compute the day-t return as the proportional change in the closing price from day t � 1 to t

and compute the excess return using the daily risk-free return from CRSP.3 The cryptocurrencies

come into existence at di↵erent dates, so data for di↵erent cryptocurencies start at di↵erent dates.

Our data extend through the end of 2021.

2The list of constituent markets varies across cryptocurrencies.
3CRSP does not provide risk-free return observations for weekends and holidays. We fill in each missing value

with the previous day’s value. Our out-of-sample forecasting results are similar if we use the simple return instead
of the excess return.
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Table 1: Summary Statistics

The table reports summary statistics for daily excess returns for the cryptocurrency in the first col-
umn. Cryptocurrency returns are computed using US dollar daily closing prices from CoinMetrics.
The market capitalization in the fourth column is for the end of the sample (2021-12-31). The
statistics in the fifth through tenth columns are computed after omitting the first 28 days of data.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Market Ann. Ann. Ann.
Sample cap. mean vol. Min. Max. Sharpe Auto-

Cryptocurrency start Obs. ($B) (%) (%) (%) (%) ratio corr.

1inch 2020-12-27 370 3.59 140.18 154.59 �35.75 42.66 0.91 �0.01

Aave 2020-10-11 447 4.10 251.38 141.91 �31.05 30.81 1.77 0.01

Algorand 2019-06-23 923 16.69 125.62 135.42 �46.72 48.00 0.93 �0.06

Balancer 2020-06-26 554 0.82 137.34 149.89 �29.21 58.25 0.92 �0.03

Basic Attention 2017-10-07 1,547 1.82 137.00 133.09 �42.14 46.61 1.03 �0.09
Token

Bitcoin 2011-01-01 4,018 876.86 152.45 96.30 �48.57 48.57 1.58 0.02

Bitcoin Cash 2017-08-02 1,613 8.17 77.74 131.19 �42.93 51.05 0.59 0.02

Bitcoin SV 2018-11-16 1,142 2.30 113.11 153.88 �43.81 144.08 0.74 �0.08

Cardano 2017-12-02 1,491 43.17 91.85 118.99 �38.89 34.00 0.77 �0.04

Chainlink 2017-09-30 1,554 19.62 207.95 143.81 �47.06 60.79 1.45 �0.05

Compound 2020-06-19 561 2.00 103.24 131.11 �25.72 23.05 0.79 �0.02

Crypto.com Coin 2019-03-21 1,017 55.95 133.21 113.52 �37.84 58.59 1.17 �0.09

Curve DAO Token 2020-08-16 503 8.97 245.86 188.96 �41.04 54.24 1.30 �0.03

Dash 2014-02-09 2,883 1.41 150.58 136.90 �37.78 107.00 1.10 �0.01

Decentraland 2017-08-26 1,589 7.19 334.39 245.93 �67.52 299.28 1.36 0.03

Decred 2016-05-18 2,054 0.96 155.39 135.59 �38.90 56.94 1.15 �0.11

Dogecoin 2014-01-24 2,899 22.62 177.98 181.45 �40.17 308.39 0.98 0.06

Ethereum 2015-08-09 2,337 433.79 193.48 117.34 �43.20 35.07 1.65 �0.04

Ethereum Classic 2016-07-26 1,985 4.52 136.98 129.93 �39.80 74.66 1.05 �0.01

FTX Token 2019-08-21 864 12.85 190.45 92.76 �24.99 32.21 2.05 �0.03

Gnosis 2017-05-03 1,704 5.31 94.52 126.45 �35.77 64.44 0.75 �0.03

Table 1 reports summary statistics for the 41 cryptocurrency excess returns. Bitcoin is the

oldest cryptocurrency, with a sample starting date of January 1, 2011, resulting in 4,018 daily

observations. Litecoin is the next oldest, with a sample starting date of April 2, 2013 (3,196

observations). The youngest cryptocurrency in the sample is Internet Computer, which has a

sample starting date of May 12, 2021 (234 days). The fourth column reports market capitalizations

at the end of 2021. Two cryptocurrencies stand out in terms of market capitalization: Bitcoin

($877B) and Ethereum ($434B). The third largest market capitalization is for XRP ($83B), which
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Table 1 (continued)

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Market Ann. Ann. Ann.
Sample cap. mean vol. Min. Max. Sharpe Auto-

Cryptocurrency start Obs. ($B) (%) (%) (%) (%) ratio corr.

HedgeTrade 2019-11-03 790 0.71 291.80 291.28 �40.24 258.78 1.00 �0.05

Huobi Token 2019-03-07 1,031 4.70 99.16 104.71 �38.70 60.96 0.95 �0.06

Internet Computer 2021-05-12 234 11.67 �102.69 151.67 �22.37 43.53 �0.68 0.05

Litecoin 2013-04-02 3,196 10.15 118.39 131.31 �42.64 110.30 0.90 0.01

Livepeer 2018-12-21 1,107 0.98 256.31 198.43 �53.37 139.58 1.29 �0.01

Maker 2017-12-27 1,466 2.31 88.92 124.99 �56.84 51.77 0.71 �0.13

Neo 2017-07-16 1,630 2.57 72.32 127.85 �38.77 45.75 0.57 �0.05

OMGNetwork 2017-07-16 1,630 0.83 94.08 139.88 �42.61 69.18 0.67 �0.05

Perpetual Protocol 2021-02-05 330 1.31 195.64 170.70 �25.37 39.46 1.15 �0.06

Polkadot 2020-08-21 498 30.21 218.37 137.93 �35.06 39.07 1.58 �0.03

Quant 2019-03-17 1,021 4.37 257.47 147.47 �42.70 53.63 1.75 �0.07

Stellar 2015-10-01 2,284 28.19 186.93 157.16 �33.96 101.07 1.19 0.10

SushiSwap 2020-09-02 486 2.26 305.43 171.79 �34.96 37.19 1.78 �0.09

Synthetix 2020-04-10 631 1.32 211.81 142.76 �34.18 25.62 1.48 �0.05

Tezos 2018-07-01 1,280 3.80 97.37 123.47 �44.25 32.88 0.79 �0.06

UMA 2020-09-09 479 0.97 144.20 161.04 �33.29 70.66 0.90 0.03

Uniswap 2020-09-19 469 17.09 244.94 146.43 �29.87 45.94 1.67 �0.08

XRP 2014-08-16 2,695 83.09 166.83 149.10 �47.09 174.22 1.12 �0.02

yearn.finance 2020-07-26 524 1.22 181.94 157.92 �34.51 46.65 1.15 0.05

Zcash 2016-10-30 1,889 1.76 87.99 123.96 �38.42 64.73 0.71 �0.01

is around ten and five times smaller than those for Bitcoin and Ethereum, respectively. The vast

majority of the cryptocurrencies in the sample have market capitalizations above $1B at the end

of 2021; the exceptions are Balancer ($0.82B), Decred ($0.96B), HedgeTrade ($0.71B), Livepeer

($0.98B), OMGNetwork ($0.83B), and UMA ($0.97B).

The magnitudes of the annualized means and volatilities in the fifth and sixth columns, re-

spectively, of Table 1 are much higher than those typically seen for assets such as equities, bonds,

and currencies. The youngest cryptocurrency in the sample, Internet Computer, has an annualized

average excess return of �102.69%. The average excess returns are positive over the sample for the

remaining cryptocurrencies, ranging from 72.32% (Neo) to 334.39% (Decentraland). The average

excess return is above 100% (200%) for 31 (11) of the cryptocurrencies. All but two of the annual-

ized volatilities in the sixth column are above 100% and reach as high as 291.28% (HedgeTrade).
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Despite the high volatilities, the high average excess returns typically translate into sizable annu-

alized Sharpe ratios in the ninth column of Table 1. The Sharpe ratios are at least 0.57 for all of

the cryptocurrencies, with the exception of Internet Computer (�0.68), and over half (23) have

Sharpe ratios of one or more. The Sharpe ratios for the two oldest cryptocurrencies, Bitcoin and

Ethereum, are 1.58 and 1.65, respectively. The minimum and maximum values in the seventh and

eighth columns, respectively, clearly show that daily cryptocurrency returns are characterized by

quite extreme values, while the autocorrelations in the last column are small in magnitude.

Figure 1 depicts log cumulative excess returns for the cryptocurrencies, with each cryptocur-

rency identified by its symbol in the panel heading.4 In line with the volatilities and minimum and

maximum values in Table 1, the cryptocurrencies display large swings in value in Figure 1. There

is a tendency for the swings to correlate across cryptocurrencies; for example, numerous cryptocur-

rencies evince large appreciations followed by prolonged depreciations in late 2017 and throughout

2018, while many experience sizable appreciations with the advent of COVID-19 in 2020.

We consider a broad array of predictors for forecasting cryptocurrency returns. The first set of

predictors is based on data from CoinMetrics.5

Network value Supply of the cryptocurrency in US dollars at the end of that day (also known as

“market capitalization”). It is computed using the daily closing price on that day.

Network value-to-transaction ratio Network value divided by the adjusted transfer value for

that day. The adjusted transfer value is computed using the native units network value and

adjusted transaction volume.

Active address-to-network value ratio Number of unique addresses that are active in the net-

work (either as a destination or source of a ledger change) on that day divided by network value.

Address-to-network value ratio Number of unique addresses holding any amount of native

units at the end of that day divided by network value.
4The symbols for the 41 cryptocurrencies are as follows: 1inch (1INCH), Aave (AAVE), Algorand (ALGO),

Balancer (BAL), Basic Attention Token (BAT), Bitcoin (BTC), Bitcoin Cash (BCH), Bitcoin SV (BSV), Cardano
(ADA), Chainlink (LINK), Compound (COMP), Crypto.com Coin (CRO), Curve DAO Token (CRV), Dash (DASH),
Decentraland (MANA), Decred (DCR), Dogecoin (DOGE), Ethereum (ETH), Ethereum Classic (ETC), FTX Token
(FTT), Gnosis (GNO), HedgeTrade (HEDG), Huobi Token (HT), Internet Computer (ICP), Litecoin (LTC), Livepeer
(LPT), Maker (MKR), Neo (NEO), OMGNetwork (OMG), Perpetual Protocol (PERP), Polkadot (DOT), Quant
(QNT), Stellar (XLM), SushiSwap (SUSHI), Synthetix (SNX), Tezos (XTZ), UMA (UMA), Uniswap (UNI), XRP
(XRP), yearn.finance (YFI), Zcash (ZEC).

5See the documentation on the CoinMetrics website for more information on the predictors.
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Figure 1: Log Cumulative Excess Returns

Each panel depicts the log cumulative excess return for the cryptocurrency (denoted by its symbol)
in the panel heading.

Velocity Value transferred over the last year divided by the current supply on that day; a measure

of turnover.

Number of transactions Number of transactions on that day. Transactions are counted whether

or not they involve the transfer of native units from one ledger entity to another.
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Number of transfers Number of transfers on that day. Transfers constitute movements of native

units from one ledger entity to another.

Mean dollar size of transfers US dollar value of native units transferred divided by the number

of transfers on that day.

Median dollar size of transfers Median US dollar value transferred per transfer on that day.

Active supply Number of unique native units that transacted at least once in the last 30 days.

Realized network value US dollar value of the supply of the cryptocurrency at the end of that

day, based on the closing price on the day that a native unit last moved.

Current-to-realized ratio Network value divided by realized network value.

Supply equality ratio Supply of the cryptocurrency held by all addresses with less than one-

ten-millionth of the current supply of native units divided by the supply held by the top one

percent of addresses on that day.

Volatility Standard deviation of the log return over the last 30 days.

We use cumulative returns to measure time-series momentum (Moskowitz, Ooi, and Pedersen

2012) and prices to compute technical signals based on moving averages, which are popular with

trend-following traders.

7-day time-series momentum 7-day cumulative excess return.

28-day time-series momentum 28-day cumulative excess return.

Price signal Price-based moving-average signal.

We also construct predictors designed to measure attention and sentiment via online activity

and publications, beginning with Google Trends search volume.

Google Trends search volume Search-volume index for Google Trends searches involving the

cryptocurrency’s name or symbol for that day.
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For a given query, the Google Trends search-volume index is computed based on the number of

searches involving a term divided by the total number of searchers in a geographical region for a

specific time period. The search-volume index provided by Google Trends is an integer between

zero and 100, where the scale is determined using the smallest and largest values of the search

ratios for the query’s time period. Because Google Trends places limits on the amount of data

that can be downloaded for a given query, we need to download the search-volume index data in

batches. Due to the scaling of the search-volume index by Google Trends, figures for the index are

not comparable over time for di↵erent batches. To address this issue, we download daily data in

batches from January to July and July to January and use data from the overlapping months to

compute adjustment factors for splicing together series that are comparable over time.

In addition, we download Reddit comments that appear in the “Cryptocurrency” subreddit and

include the cryptocurrency’s name or symbol. We combine the text for all of the comments for

that day.

Number of Reddit comments Number of Reddit comments for that day.

Reddit sentiment score Number of positive words minus the number of negative words, all

divided by the total number of words, for Reddit comments for that day. The positive and

negative words are from the lists in Loughran and McDonald (2011).

Reddit uncertainty score Number of uncertainty words divided by the total number of words

for Reddit comments for that day. The uncertainty words are from the list in Loughran and

McDonald (2011).

Following standard practice, before calculating the sentiment and uncertainty scores, we eliminate

stop words (e.g., “a,” “I,” “and,” “or”). We also tokenize the text by applying the Porter (1980)

stemmer, which eliminates su�xes (e.g., “-tion”) from words to ensure that relevant words match

those in the Loughran and McDonald (2011) lists.
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Finally, we compute metrics based on articles from Factiva.6 Specifically, we download articles

from the “Cryptocurrency” category that contain the cryptocurrency’s name or ticker. We combine

the text for all of the articles for that day.

Number of Factiva articles Number of Factiva articles for that day.

Factiva article sentiment score Number of positive words minus the number of negative words,

all divided by the total number of words, for words appearing in the bodies of Factiva articles

for that day.

Factiva article uncertainty score Number of uncertainty words divided by the total number of

words for words appearing in the bodies of Factiva articles for that day.

Factiva headline sentiment score Number of positive words minus the number of negative

words, all divided by the total number of words, for words appearing in headlines of Factiva

articles for that day.

Factiva headline uncertainty score Number of uncertainty words divided by the total number

of words for words appearing in the headlines of Factiva articles for that day.

Table 2 lists the predictors, along with their abbreviations and transformations. We transform

each predictor by computing log deviations (or, in some cases, simple deviations) from 7- and 28-day

moving averages. This “feature engineering” helps to render the predictors stationary and provides

sharper signals for forecasting cryptocurrency returns.7 We also include the 7- and 28-day time-

series momentum in their levels (i.e., without transformation). After all of the transformations, we

have a total of 54 predictors.

6Articles from Factiva are drawn from the following 47 publications from around the world: The Cointelegraph,
CoinDesk.com, Blockonomi, Dow Jones Newswires, express.co.uk (UK), PR Newswire, CE NoticiasFinancieras (Latin
America), Investing.com, Financial Times, Reuters, iCrowdNewswire, The Wall Street Journal, M2 Presswire, The
Independent, Blockchain.News, The Times (UK), Investor’s Business Daily (US), The Telegraph (UK), MarketWatch,
Brave New Coin, Sputnik News Service (Russia), Benzinga.com, Mondaq Business Briefing, Business Insider, CNN,
Forbes, Business Wire, City AM (London), South China Morning Post, GlobeNewswire (US), Investment Weekly

News, The Economic Times, ACCESSWIRE, Postmedia Breaking News (Canada), Hedge Week, Daily Mail, The

Australian, Financial News (Europe), Exchange News Direct, Korea Times (South Korea), The Globe and Mail,
Agence France Presse, Institutional Asset Manager, The Canadian Press, Barron’s, Times of India, The New York

Times.
7The results are robust to the lengths of the moving averages; for example, log (or simple) deviations from 7- and

70-day moving averages produce similar results.
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Table 2: Predictors

The table lists the predictors used to forecast daily cryptocurrency excess returns. The predictors
are defined in the text. The third column gives the transformations applied to the predictors.

(1) (2) (3)

Predictor Abbreviation Transformations

Panel A: Network

Network value NV Log deviations from 7- and 28-day moving averages

Network value-to-transaction NVT Log deviations from 7- and 28-day moving averages
ratio

Active address-to-network value AdrActNV Log deviations from 7- and 28-day moving averages
ratio

Address-to-network value ratio AdrNV Log deviations from 7- and 28-day moving averages

Panel B: Transactions

Velocity Vel1y Log deviations from 7- and 28-day moving averages

Number of transactions NumTrx Log deviations from 7- and 28-day moving averages

Number of transfers NumTrf Log deviations from 7- and 28-day moving averages

Mean dollar size of transfers TrfSizeMean Log deviations from 7- and 28-day moving averages

Median dollar size of transfers TrfSizeMed Log deviations from 7- and 28-day moving averages

Active supply Sup30d Log deviations from 7- and 28-day moving averages

Realized network value RealNV Log deviations from 7- and 28-day moving averages

Current-to-realized ratio CRNV Log deviations from 7- and 28-day moving averages

Supply equality ratio SER Log deviations from 7- and 28-day moving averages

Panel C: Market

Volatility Vol30d Deviations from 7- and 28-day moving averages

7-day time-series momentum TSM7 Levels, deviations from 7- and 28-day moving
averages

28-day time-series momentum TSM28 Levels, deviations from 7- and 28-day moving
averages

Price signal PrcMA Log deviations from 7- and 28-day moving averages

Panel D: Online Activity

Google Trends search volume GTSrch Log deviations from 7- and 28-day moving averages

Number of Reddit comments RedNumCom Log deviations from 7- and 28-day moving averages

Reddit sentiment score RedSent Log deviations from 7- and 28-day moving averages

Reddit uncertainty score RedUnc Log deviations from 7- and 28-day moving averages

Number of Factiva articles FacNumArt Log deviations from 7- and 28-day moving averages

Factiva article sentiment score FacSentArt Deviations from 7- and 28-day moving averages

Factiva article uncertainty score FacUncArt Deviations from 7- and 28-day moving averages

Factiva headline sentiment score FacSentHdl Deviations from 7- and 28-day moving averages

Factiva headline uncertainty score FacUncHdl Deviations from 7- and 28-day moving averages

12



To aid in the interpretation of fitted models in Section 6, Table 2 divides the predictors into

four groups. The first group, “Network,” includes network value and valuation ratios relating

to network value. These ratios can be viewed as cryptocurrency counterparts to popular equity

valuation ratios (Liu, Tsyvinski, and Wu 2021), such as price-to-dividend and book-to-market

ratios. The second group is “Transactions” and is comprised of a variety of variables relating to

activity on a cryptocurrency’s network. The first two groups together can be viewed as constituting

“fundamentals” for forecasting cryptocurrency returns. The next group, “Market,” is made up of

return volatility, time-series momentum, and price-based technical signals in the form of moving-

average rules. Liu and Tsyvinski (2021) report in-sample evidence of time-series momentum in

cryptocurrency returns, while Huang, Huang, and Ni (2019), Detzel et al. (2021), and Gradojevic

et al. (2023) find that technical indicators are useful for forecasting Bitcoin returns. Finally, the

“Online Activity” group includes Google Trends search volume and Reddit- and Factiva-based

metrics. The variables in the last group reflect investor attention and sentiment surrounding a

cryptocurrency.

3. Forecasting Methods

We begin with the following general model for predicting the one-day-ahead cryptocurrency excess

return:

ri,t+1 = f(xi,t ;⌘) + "i,t+1, (3.1)

where ri,t is the day-t excess return for cryptocurrency i (i.e., the target), xi,t = [ xi,1,t · · · xi,k,t ]0

is a k-vector of predictors, f(xi,t ;⌘) is the conditional expectation (or prediction) function that

depends on a vector of parameters ⌘, and "i,t+1 is a zero-mean disturbance term. Observe that

Equation (3.1) is a panel model, as it assumes that the prediction function and its parameters are

the same across cryptocurrencies. The parameter homogeneity assumption substantially reduces

the number of parameters that we need to estimate (since we do not have to estimate a separate

set of parameters for each cryptocurrency), which helps to improve out-of-sample performance in

light of the bias-variance trade-o↵. In the context of asset return prediction using machine learning,
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Freyberger, Neuhierl, and Weber (2020) and Gu, Kelly, and Xiu (2020), among others, use a panel

approach to forecast individual stock returns, while Filippou et al. (2022) employ such an approach

to forecast exchange rate changes.

Based on Equation (3.1), the excess return forecast is given by

r̂i,t+1 = f̂(xi,t ; ⌘̂), (3.2)

where f̂(· ; ⌘̂) is the fitted prediction function based on data through day t. By fitting the prediction

function using data through day t, we ensure that there is no look-ahead bias in the forecast. We

consider di↵erent machine-learning methods for estimating the prediction function.8

3.1. Linear Model Estimated via the Elastic Net

We first consider a linear specification for the prediction function, where we fit the linear model

via the ENet (Zou and Hastie 2005). The linear-ENet excess return forecast (abstracting from the

intercept term) can be expressed as

r̂
LinENet

i,t+1 = x0
i,t⌘̂, (3.3)

where ⌘̂ is the vector of coe�cients for the linear model estimated via the ENet based on data

through t. By construction, conventional OLS estimation of a linear model maximizes the fit of the

model over the training sample. However, especially in the presence of a large number of correlated

predictors and a low signal-to-noise ratio, OLS estimation is highly susceptible to overfitting the

model to the training data, which harms out-of-sample performance. The ENet is an extension

of the well-known least absolute shrinkage and selection operator (LASSO, Tibshirani 1996). Like

the LASSO, the ENet uses penalized (or regularized) regression to shrink the parameter estimates

toward zero, thereby helping to guard against overfitting.

The ENet objective function for the linear model is given by

argmin
⌘

1

2(t� 1)n

"
nX

i=1

t�1X

s=1

�
ri,s+1 � x0

i,s⌘
�2
#
+ �P�(⌘), (3.4)

8We fit the prediction models and generate the forecasts in Python using the scikit-learn, XGBoost, and TensorFlow
packages.
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where

P�(⌘) = 0.5(1� �)k⌘k22 + �k⌘k1; (3.5)

� � 0 is a hyperparameter that governs the degree of shrinkage; k·k1 and k·k2 are the `1 and

`2 norms, respectively; 0  �  1 is a hyperparameter for blending the `1 and `2 components

in the penalty term; and n is the number of cryptocurrencies.9 The ENet objective function in

Equation (3.4) reduces to that for OLS when � = 0. If � = 1, then Equation (3.4) corresponds to the

LASSO objective function, while � = 0 corresponds to the ridge (Hoerl and Kennard 1970) objective

function. Because Equation (3.5) includes an `1 component (as in the LASSO), it permits shrinkage

to exactly zero, so the ENet also performs variable selection. To implement ENet estimation, we

need to tune the hyperparameters � and �. We describe the walk-forward cross-validation strategy

that we use to tune hyperparameters in Section 3.5.

3.2. Random Forest

The forecast in Equation (3.3) is based on a linear approximation to the prediction function for the

general model in Equation (3.1). Next, we consider three machine-learning techniques that provide

flexible nonlinear approximations to the prediction function, beginning with the random forest

(Breiman 2001). A random forest is based on decision trees, which allow for multiway interactions

and higher-order e↵ects of predictors. In essence, a decision tree partitions the predictor space

into non-overlapping regions and assigns a prediction (or score) for the target in each region. The

partitions are generated by a sequence of splitting rules, typically based on the classification and

regression tree (CART) algorithm (Breiman et al. 1984). The split at the top of a tree is the “root

node,” while the final set of subgroups defining the predictive regions at the bottom of a tree is

comprised of “terminal” or “leaf nodes”; the splits in between are “internal nodes.” For a regression

problem, the prediction is the average value of the target observations in a given leaf node. The

9For notational simplicity, Equation (3.4) assumes a balanced panel. For our application, the panel is unbalanced.
It is straightforward to modify the notation for an unbalanced panel.
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forecast corresponding to a regression tree with U leaf nodes can be expressed as

r̂
RegTree

i,t+1
=

UX

u=1

r̄u1u(xi,t ; ⌘̂u), (3.6)

where the indicator function 1u(xi,t ; ⌘̂u) = 1 if xi,t 2 Ru(⌘̂u) for the uth region denoted by Ru

(corresponding to the parameter vector ⌘̂u that is based on the splits defining the tree) and zero

otherwise, and r̄u is the average value of the target observations in Ru for the training sample.

A regression tree with a large number of leaves (i.e., a “deep” tree) can capture complex non-

linear predictive relationships in the data.10 Although a deep tree substantially reduces the bias

of the fitted tree, its high variance makes it susceptible to overfitting. To reduce the variance and

thereby improve out-of-sample performance in light of the bias-variance trade-o↵, a random forest

employs bagging (Breiman 1996) by averaging forecasts over many deep trees, where each tree is

constructed based on a bootstrap sample of the original training data. To further reduce the vari-

ance by decorrelating the trees, each split is based on a randomly selected subset of the predictors.

Indexing the bootstrap samples by b, the random forest forecast is given by

r̂
RanFor

i,t+1 =
1

B

BX

b=1

"
UX

u=1

r̄
(b)
u 1

(b)
u (xi,t ; ⌘̂u)

#
, (3.7)

where B is the number of bootstrap samples, and r̄
(b)
u and 1

(b)
u (xi,t ; ⌘̂u) are the analogs to r̄u

and 1u(xi,t ; ⌘̂u), respectively, in Equation (3.6) for the bth bootstrap sample. Using walk-forward

cross-validation, we tune the following hyperparameters for the random forest: maximum depth

of each tree, maximum number of predictors to consider for a split, minimum number of target

observations in a leaf node, minimum number of predictor observations needed to split an internal

node, impurity threshold for splitting a node, minimum number of predictor observations needed

for a leaf node, number of trees in the forest (B).11

10In the extreme, if the tree is grown so that there is only one target observation in each leaf node, then the
regression tree is “fully grown.” A fully grown tree perfectly fits (or interpolates) the training data.

11The sklearn.ensemble.RandomForestRegressor documentation provides details for the hyperparameters for the
random forest.
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3.3. XGBoost

A boosted tree is another approach for forecasting with a regression tree. It is based on gradient

boosting (Breiman 1997; Friedman 2001), a sequential ensemble method for improving out-of-

sample prediction. The idea is to fit the prediction function additively:

f̂(xi,t ; ⌘̂) =
MX

m=1

f̂m(xi,t ; ⌘̂m). (3.8)

Each function f̂m(xi,t ; ⌘̂m) on the right-hand-side of Equation (3.8) is “weak” learner (i.e., a rela-

tively simple model). Although relatively simple models help to guard against overfitting, they are

more likely to su↵er from biases and thus evince poor fit. Boosting improves the fit by adding an

f̂m(xi,t ; ⌘̂m) element to model the residuals from the previous function in the sequence. In this way,

boosting refines a sequence of simple models to reduce the bias. In the context of decision trees,

boosting entails constructing a sequence of relatively “shallow” trees, which are then combined into

an ensemble. Random forests and boosted trees follow di↵erent tacks to improve out-of-sample

performance: a random forest begins with a deep tree with low bias and uses bagging across a large

number of trees to reduce the variance; a boosted tree begins with a shallow tree with low variance

and refines the tree to reduce the bias.

To make boosting more robust, Friedman (2002) proposes stochastic gradient boosting. In the

spirit of bagging, instead of basing each f̂m(xi,t ; ⌘̂m) in the sequence on all of the training data,

each element is based on a randomly drawn (without replacement) subsample of the data. We fit

boosted trees via stochastic gradient boosting using the XGBoost algorithm (Chen and Guestrin

2016). We tune the following hyperparameters for the XGBoost algorithm using walk-forward

cross-validation: number of trees in the sequence (M), minimum number of target observations

in a child after splitting, maximum depth of a tree, step-size shrinkage for gradient boosting,

subsample ratio for the training data for each tree, subsample ratio of predictors for each tree,

minimum loss reduction needed to make a split, `1 and `2 regularization hyperparameters.12

12The XGBoost documentation provides details for the XGBoost algorithm, including its hyperparameters.
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3.4. Deep Neural Network

A feedforward neural network is another machine-learning technique that provides a flexible non-

linear approximation to the prediction function. A neural network is comprised of multiple layers.

The set of predictors makes up the first (or “input”) layer. Next, there are L � 1 “hidden” layers,

where each hidden layer l contains Pl neurons. Each neuron takes signals from the neurons in the

previous layer to generate a new signal:

h
(l)
m = g

0

@!
(l)
m,0 +

Pl�1X

j=1

!
(l)
m,jh

(l�1)

j

1

A for m = 1, . . . , Pl; l = 1, . . . , L, (3.9)

where h(l)m is the signal corresponding to themth neuron in the lth hidden layer13; !(l)
m,0,!

(l)
m,1, . . . ,!

(l)
m,Pl�1

are weights; and g(·) is a nonlinear activation function. The final layer is the “output” layer that

takes the signals from the last hidden layer and transforms them into a prediction:

r̂
Net

i,t+1 = !
(L+1)

0
+

PLX

j=1

!
(L+1)

j h
(L)
j . (3.10)

For the activation function, we use the popular rectified linear unit (ReLU) or “leaky” ReLU (Maas,

Hannun, and Ng 2013).14

The following diagram illustrates the basic structure of a simple feedforward neural network

with four inputs and two hidden layers with three and two neurons, respectively:

x1

x2

x3

x4

Input

h
(1)

1

h
(1)

2

h
(1)

3

Hidden(1)

h
(2)

1

h
(2)

2

Hidden(2)

r̂

Output

13For the first hidden layer, h(0)
j = xi,j,t for j = 1, . . . , k.

14The ReLU function is g(x) = max{x, 0}; for the leaky ReLU, g(x) = x if x > 0 and 0.01x if x  0. The leaky
ReLU adjusts the conventional ReLU to help prevent the neural network from “dying,” meaning that no neurons are
activated in the network.

18



The network interactions and activation function allow for complex nonlinearities as the inputs

feed through to the hidden layers and finally to the output layer. Although a single hidden layer

with enough neurons is theoretically su�cient for approximating any smooth function (e.g., Cy-

benko 1989; Funahashi 1989; Hornik, Stinchcombe, and White 1989; Hornik 1991), neural networks

with multiple hidden layers are commonly used, as there are performance advantages to including

multiple hidden layers (e.g., Goodfellow, Bengio, and Courville 2016; Rolnick and Tegmark 2018).

Accordingly, we consider a “deep” neural network with three hidden layers.15

Fitting a neural network entails estimating the weights. This is usually done via a stochastic

gradient descent algorithm. We fit the deep neural network by minimizing the training sample

MSE using the Adam stochastic gradient descent algorithm (Kingma and Ba 2015). We use walk-

forward cross-validation to tune the following: activation function (ReLU or leaky ReLU); dropout

rate (Srivastava et al. 2014); learning rate for stochastic gradient descent; number of neurons in

the first, second, and third hidden layers (up to 100, 50, and 30, respectively).16

3.5. Hyperparameter Tuning

We tune the hyperparameters via walk-forward five-fold cross-validation. The “walk-forward” as-

pect of the procedure respects the time-series dimension of our panel data. We divide the available

data at the time of forecast formation into initial training and validation samples, where the latter

is comprised of panel data observations for the last 300 days. The validation sample is further

divided into five folds comprised of the panel data observations for the first through fifth 60-day

periods of the validation sample.

For a given vector of hyperparameter values, we fit the model using the initial training sample,

generate forecasts for the first fold of the validation sample for the available cryptocurrencies, and

store the MSE. Next, we fit the model using panel data observations for the initial training sample

and the first fold of the validation sample, generate forecasts for the second fold of the validation

sample for the available cryptocurrencies and store the MSE. We proceed in this manner through

15A neural network with one or two (three or more) hidden layers is typically referred to as a “shallow” (“deep”)
network.

16For the Adam algorithm, we allow up to 100 epochs (with early stopping based on a validation loss) and use a
batch size of 128. To reduce the influence of weight initialization in the algorithm, we fit the model five times and
take an average of the forecasts generated by the five fitted models.

19



the remaining folds of the validation sample and compute the average MSE over the five folds.

Finally, we select the vector of hyperparameters that minimizes the average MSE.17

We typically consider a lengthy grid of values for each of the hyperparameters. For the random

forest, XGBoost, and deep neural network, it becomes computationally infeasible to compute the

cross-validation MSE for all possible combinations of hyperparameter values implied by the grids.

Instead, we use the Optuna (Akiba et al. 2019) framework, which employs a Bayesian approach to

smartly select a subset of vectors from among all possible combinations of hyperparameter values

so that we are more likely to select a vector of hyperparameter values that is nearly optimal. After

tuning the hyperparameters, we train the model using all of the available data at the time of

forecast formation to generate the forecasts. We tune the hyperparameters and train the models

every 30 days using data for the available cryptocurrencies at the time of forecast formation.

3.6. Ensembles

We also consider a pair of ensemble (or combination) forecasts:

Ensemble-nonlinear Average of the random forest, XGBoost, and neural network forecasts.

Ensemble-all Average of the linear-ENet, random forecast, XGBoost, and neural network fore-

casts.

Ensemble forecasts often perform nearly as well as or better than the best individual forecast, and

they are frequently used in machine-learning applications. Intuitively, averaging across multiple

forecasts can reduce the risk of relying on a single forecast—similarly to diversifying across assets to

reduce portfolio risk—which can improve out-of-sample performance (Timmermann 2006; Rapach,

Strauss, and Zhou 2010). Ensemble forecasts are also useful in a practical sense in that it is di�cult

to know a priori the best individual forecast.

4. Out-of-Sample Results

We compare cryptocurrency excess return forecasts based on the machine-learning methods de-

scribed in Section 3 to the prevailing mean benchmark forecast. The prevailing mean forecast for

17The results are robust to other fold patterns (e.g., ten folds comprised of panel data observations for the first
through tenth 30-day periods of the validation sample).
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cryptocurrency i is the average of the excess return observations available at the time of forecast

formation:

r̂
Bench

i,t+1 =

✓
1

t

◆ tX

s=1

rs. (4.1)

Equation (4.1) corresponds to the constant expected excess return model:

ri,t+1 = µi + "i,t+1. (4.2)

Equation (4.2) assumes that the excess return is unpredictable (apart from its unconditional mean).

Because asset returns contain an inherently large unpredictable component, the prevailing mean

benchmark is a relevant and stringent benchmark (e.g., Goyal and Welch 2008).18

We can conveniently compare the out-of-sample MSE for the prevailing mean benchmark to

that of a competing forecast via the out-of-sample R
2 statistic (Fama and French 1989; Campbell

and Thompson 2008):

R
2

i,OS = 1�
PT�tin

s=1
r̂
Compete

i,tin+sPT�tin
s=1

r̂
Bench

i,tin+s

, (4.3)

where r̂
Compete

i,t generically denotes a competing forecast and tin (T ) is the end of the initial in-

sample period (total sample). Equation (4.3) measures the proportional reduction in out-of-sample

MSE for the competing forecast vis-à-vis the prevailing mean benchmark. We use the Diebold and

Mariano (1995) and West (1996) (DMW) statistic to test whether the competing forecast delivers

a statistically significant reduction in MSE relative to the prevailing mean benchmark. The DMW

statistic can be computed via the t-statistic corresponding to the intercept ai in the following

time-series regression:

⇣
ri,t � r̂

Bench

i,t

⌘2
�
⇣
ri,t � r̂

Compete

i,t

⌘2

| {z }
di,t

= ai + "i,t for t = tin + 1, . . . , T, (4.4)

18We use the first 28 days of available excess return observations as an initial in-sample estimation period for
computing the prevailing mean.
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where di,t is the day-t loss di↵erential (i.e., the di↵erence between the squared errors for the bench-

mark and competing forecasts). We test the null hypothesis H0: ai  0 against the (one-sided,

upper-tail) alternative HA: ai > 0, which is tantamount to testing H0: R
2

i,OS
 0 against HA:

R
2

i,OS
> 0.

We also compute a pooled version of Equation (4.3) for the entire set of cryptocurrencies taken

together:

R
2

All,OS = 1�
Pn

i=1

PT�tin
s=1

r̂
Compete

i,tin+sPn
i=1

PT�tin
s=1

r̂
Bench

i,tin+s

, (4.5)

Equation (4.5) is the proportional reduction in out-of-sample MSE for the competing forecast via-

à-vis the benchmark forecast across all of the cryptocurrencies. In the context of Equation (4.5),

we compute the DMW statistic via the t-statistic corresponding to the intercept a in the following

pooled regression:

di,t = a+ "i,t for i = 1, . . . , n; t = tin + 1, . . . , T. (4.6)

We test H0: a  0 (R2

All,OS
 0) against HA: a > 0 (R2

All,OS
> 0). When computing the DMW

statistic using Equation (4.6), we account for cross-sectional dependency by clustering the standard

error by cryptocurrencies.

Table 3 reports R
2

OS
statistics for daily excess return forecasts for each cryptocurrency and

the di↵erent forecasting methods. Nearly all of the R
2

OS
statistics are positive, so the di↵erent

forecasting methods consistently outperform the prevailing mean benchmark in terms of out-of-

sample MSE.19 For the linear-ENet forecast, 39 of the 41 R
2

OS
statistics are positive, and 18 are

significant at conventional levels according to the DMW statistic. Turning to the decision trees, the

random forest and XGBoost forecasts both have a lower MSE than the prevailing mean benchmark

for 37 cryptocurrencies, and 18 and 26, respectively, of these improvements in MSE are significant.

For the neural network forecast, all 41 of the R
2

OS
statistics are positive, and 27 are significant.

Taking all of the cryptocurrencies together (see the “All” row in Table 3), the R
2

OS
statistics are

19In contrast, as anticipated (see Section 3.1), linear forecasts based on conventional OLS estimation substantially
underperform the prevailing mean benchmark for all of the cryptocurrencies.
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Table 3: R2

OS
Statistics

The table reports out-of-sample R
2 (R2

OS
) statistics in percent for daily excess return forecasts

for the cryptocurrency in the first column. The start of the out-of-sample period for forecast
evaluation is given in the second column; the end of the out-of-sample period is 2021-12-31 for all
of the cryptocurrencies. The “All” row reports R

2

OS
statistics for all 41 of the cryptocurrencies

taken together. The R
2

OS
statistic measures the proportional reduction in out-of-sample mean

squared error (MSE) for the competing forecast in the column heading vis-à-vis the prevailing
mean benchmark forecast; based on the Diebold and Mariano (1995) and West (1996) test, ⇤, ⇤⇤,
and ⇤⇤⇤ indicate that the reduction in out-of-sample MSE is significant at the 10%, 5%, and 1%
levels, respectively. The penultimate (last) row reports the number of positive (significant, at the
10% level) R2

OS
statistics for the 41 cryptocurrencies.

(1) (2) (3) (4) (5) (6) (7) (8)

Out-of-sample Linear- Random Neural Ensemble- Ensemble-
Cryptocurrency start ENet forest XGBoost network nonlinear all

1inch 2021-01-24 1.31 1.53 1.72 1.75 1.98 1.95

Aave 2020-11-08 1.55⇤⇤ 3.01 3.71⇤ 1.75⇤⇤ 3.04⇤ 2.73⇤⇤

Algorand 2019-07-21 1.27 1.53⇤ 1.56 1.35 1.59⇤ 1.53⇤

Balancer 2020-07-24 0.94⇤⇤ 2.26⇤⇤ 2.21⇤⇤ 1.35⇤⇤ 2.10⇤⇤ 1.88⇤⇤

Basic Attention 2017-11-04 0.48⇤ 1.73⇤⇤ 2.11⇤⇤ 1.07⇤⇤⇤ 1.93⇤⇤⇤ 1.64⇤⇤⇤

Token

Bitcoin 2014-01-01 �0.05 0.22 1.98⇤⇤⇤ 1.06⇤⇤ 1.58⇤⇤⇤ 1.31⇤⇤⇤

Bitcoin Cash 2017-08-30 0.48 �0.78 �0.35 0.54 0.21 0.43

Bitcoin SV 2018-12-14 0.29⇤ 0.50 0.78⇤⇤ 0.78⇤⇤⇤ 0.81⇤⇤⇤ 0.73⇤⇤⇤

Cardano 2017-12-30 2.47⇤⇤ 2.80⇤⇤ 4.45⇤⇤⇤ 2.87⇤⇤ 3.64⇤⇤⇤ 3.40⇤⇤

Chainlink 2017-10-28 0.33 0.66 0.73 0.45 0.87⇤ 0.81⇤⇤

Compound 2020-07-17 0.40 0.95 1.40 0.75 1.25 1.14

Crypto.com 2019-04-18 0.41 0.64⇤ 1.52⇤ 0.63⇤⇤ 1.06⇤⇤ 0.92⇤⇤

Coin

Curve DAO 2020-09-13 1.40 0.12 0.39 1.66 0.97 1.19
Token

Dash 2014-03-09 4.72⇤⇤⇤ 4.77⇤⇤⇤ 6.16⇤⇤⇤ 6.32⇤⇤ 6.12⇤⇤⇤ 5.88⇤⇤⇤

Decentraland 2017-09-23 1.12⇤ 1.36⇤ 1.55⇤⇤ 1.64⇤⇤ 1.61⇤⇤ 1.51⇤⇤

Decred 2016-06-15 0.18 0.07 1.29⇤⇤ 0.81⇤ 0.94⇤⇤⇤ 0.79⇤⇤⇤

Dogecoin 2014-02-21 0.19 0.36 1.33⇤⇤ 0.52⇤⇤ 0.87⇤⇤⇤ 0.74⇤⇤

Ethereum 2015-09-06 0.14 1.72⇤⇤ 2.40⇤⇤ 0.38 2.09⇤⇤⇤ 1.72⇤⇤⇤

Ethereum 2016-08-23 3.29⇤⇤⇤ 4.02⇤⇤⇤ 4.74⇤⇤⇤ 3.52⇤⇤⇤ 4.33⇤⇤⇤ 4.12⇤⇤⇤

Classic

FTX Token 2019-09-18 0.37 2.32 1.77⇤ 0.46⇤ 1.71⇤ 1.43⇤

Gnosis 2017-05-31 0.50⇤ 0.68 1.04⇤ 0.94⇤⇤⇤ 1.07⇤⇤ 0.97⇤⇤

1.11%, 1.45%, 2.08%, and 1.54% for the linear-ENet, random forest, XGBoost, and neural network

forecasts, respectively, all of which are significant at the 1% level.

23



Table 3 (continued)

(1) (2) (3) (4) (5) (6) (7) (8)

Out-of-sample Linear- Random Neural Ensemble- Ensemble-
Cryptocurrency start ENet forest XGBoost network nonlinear all

HedgeTrade 2019-12-01 �0.01 0.14 0.76 0.17 0.51⇤ 0.42⇤

Huobi Token 2019-04-04 0.45 �0.51 �0.19 0.97 0.54 0.71

Internet 2021-06-09 4.12 3.42 3.95 3.66 3.86 4.00
Computer

Litecoin 2014-01-01 0.68⇤⇤ 0.77 2.11⇤⇤⇤ 0.85⇤ 1.55⇤⇤⇤ 1.43⇤⇤⇤

Livepeer 2019-01-18 0.98⇤⇤ 1.60⇤ 2.03⇤⇤ 1.21⇤⇤ 1.69⇤⇤ 1.55⇤⇤

Maker 2018-01-24 0.13 0.41 1.41⇤⇤ 0.40⇤ 0.94⇤⇤⇤ 0.78⇤⇤

Neo 2017-08-13 2.54⇤⇤⇤ 3.35⇤⇤⇤ 3.64⇤⇤⇤ 3.31⇤⇤⇤ 3.67⇤⇤⇤ 3.48⇤⇤⇤

OMGNetwork 2017-08-13 5.15⇤⇤⇤ 6.40⇤⇤⇤ 6.22⇤⇤⇤ 5.58⇤⇤⇤ 6.31⇤⇤⇤ 6.11⇤⇤⇤

Perpetual 2021-03-05 0.96⇤⇤⇤ 0.16 �0.45 1.50⇤⇤⇤ 1.03 1.19
Protocol

Polkadot 2020-09-18 0.77 0.53 1.98 1.38 1.58 1.54

Quant 2019-04-14 0.32 1.25 1.80⇤⇤ 0.64⇤ 1.34⇤⇤ 1.11⇤⇤

Stellar 2015-10-29 0.17 �0.02 0.86⇤⇤⇤ 0.05 0.45⇤⇤⇤ 0.41⇤⇤⇤

SushiSwap 2020-09-30 2.43⇤⇤ 3.81⇤⇤ 4.04⇤⇤ 3.11⇤⇤ 3.82⇤⇤ 3.52⇤⇤

Synthetix 2020-05-08 0.30 0.60 1.20 0.47 0.87 0.75

Tezos 2018-07-29 0.35 �0.30 �0.08 0.18 0.15 0.31

UMA 2020-10-07 1.54⇤ 2.49⇤ 1.38 1.60⇤ 1.95⇤ 1.91⇤

Uniswap 2020-10-17 1.82⇤⇤ 5.15⇤ 4.21 2.81⇤⇤ 4.28⇤ 3.76⇤⇤

XRP 2014-09-13 0.29 0.64⇤ 1.71⇤⇤⇤ 0.85⇤⇤ 1.31⇤⇤⇤ 1.11⇤⇤⇤

yearn.finance 2020-08-23 3.52 5.55⇤ 6.27⇤⇤ 4.26⇤ 5.49⇤ 5.06⇤

Zcash 2016-11-27 1.00⇤ 1.87⇤⇤ 2.11⇤⇤ 1.95⇤⇤⇤ 2.23⇤⇤ 2.01⇤⇤

All 2014-01-01 1.11⇤⇤⇤ 1.45⇤⇤⇤ 2.08⇤⇤⇤ 1.54⇤⇤⇤ 1.91⇤⇤⇤ 1.78⇤⇤⇤

Number > 0 39 37 37 41 41 41

Number sig. 18 18 26 27 31 31

According to the last two columns of Table 3, the ensemble forecasts provide e↵ective strategies

for forecasting daily cryptocurrency excess returns. The ensemble-nonlinear forecast—an average

of the random forest, XGBoost, and neural network forecasts—generates positive R2

OS
statistics for

all of the cryptocurrencies, 31 of which are significant. Taking the cryptocurrencies together, the

R
2

OS
for the ensemble-nonlinear forecast is 1.91% (significant at the 1% level). Like the ensemble-

nonlinear forecast, the ensemble-all forecast outperforms the prevailing mean benchmark for all of

the cryptocurrencies, and again 31 of the R
2

OS
statistics are significant. When we take all of the

cryptocurrencies together, the ensemble-all produces an R
2

OS
statistic of 1.78% (significant at the

1% level).
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Because daily asset returns inherently contain a large unpredictable component, the R2

OS
statis-

tics will naturally be limited in magnitude. Nevertheless, they are often relatively sizable in many

cases; furthermore, we show in Section 5 that the degree of out-of-sample excess return predictabil-

ity indicated by the R
2

OS
statistics translates into substantial economic value. Many of the R

2

OS

statistics in Table 3 are above 1%, and they range from approximately 2.5% to well above 6% for

cryptocurrencies such as Cardano, Dash, Ethereum Classic, Internet Computer, Neo, OMGNet-

work, SushiSwap, and yearn.finance. These cryptocurrencies became available in 2017, 2014, 2016,

2021, 2017, 2017, 2020, and 2020, respectively, so it is not the case that only relatively young or

old cryptocurrencies evince the strongest return predictability.

Overall, the results in Table 3 demonstrate that machine-learning techniques provide an e↵ective

means of extracting information from a wide range of predictors to improve daily cryptocurrency

return prediction. All of the forecasts in Table 3 perform well, so the out-of-sample gains are robust

across the di↵erent machine-learning methods as well as the ensemble forecasts.

While both the linear and nonlinear forecasts perform well in Table 3, the R
2

OS
statistics in

the “All” row of Table 3 suggest that nonlinearities are important for improving out-of-sample

performance. Specifically, the R
2

OS
statistic for the linear-ENet forecast (1.11%) is lower than that

for the nonlinear random forest, XGBoost, and neural network forecasts (1.45%, 2.08%, and 1.54%,

respectively) as well as the ensemble-nonlinear forecast (1.91%) that is an average of the three

nonlinear forecasts. Thus, allowing for nonlinearities improves the accuracy of daily cryptocurrency

return forecasts in terms of out-of-sample MSE. We test for a significant di↵erence between MSEs

for the linear-ENet and a nonlinear forecast via a pooled DMW statistic, which corresponds to the

t-statistic for the intercept a in a modified version of Equation (4.6):

�
ri,t � r̂

LinENet

i,t

�2 �
⇣
ri,t � r̂

Nonlin

i,t

⌘2
= a+ "i,t for i = 1, . . . , n; t = tin + 1, . . . , T, (4.7)

where r̂
Nonlin

i,t generically denotes a nonlinear forecast. The left-hand side of Equation (4.7) is

the loss di↵erential between the linear-ENet and nonlinear forecasts. We continue to account for

cross-sectional dependency by clustering the standard error by cryptocurrencies.

The t-statistics corresponding to a in Equation (4.7) are reported in Table 4. We reject the

null hypothesis in the upper tail at the 1% level for the random forest, XGBoost, neutral network,
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Table 4: Linear-ENet Versus Nonlinear Forecasts

The table reports the t-statistic corresponding to a for the following regression:

�
ri,t � r̂

LinENet

i,t

�2 �
⇣
ri,t � r̂

Nonlin

i,t

⌘2
= a+ "i,t for i = 1, . . . , n; t = tin + 1, . . . , T,

where ri,t is the day-t cryptocurrency excess return, r̂LinENet

i,t is the linear-ENet forecast, and r̂
Nonlin

i,t
is the nonlinear forecast in the column heading. The unbalanced panel sample includes 41 cryp-
tocurrencies, and the forecast evaluation period is 2014-01-01 to 2021-12-31. The t-statistic is a
pooled Diebold and Mariano (1995) and West (1996) statistic for comparing the predictive accuracy
of two forecasts; ⇤, ⇤⇤, and ⇤⇤⇤ indicate significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4)

Random forest XGBoost Neural network Ensemble-nonlinear

3.69⇤⇤⇤ 8.51⇤⇤⇤ 5.29⇤⇤⇤ 9.83⇤⇤⇤

and ensemble-nonlinear forecasts, so the nonlinear forecasts significantly reduce out-of-sample MSE

compared to the linear forecast. In sum, there is significant evidence that allowing for nonlinearities

in the prediction model improves the accuracy of daily cryptocurrency excess return forecasts. We

explore the role of nonlinearities further in Section 6.

Table 3 shows that daily cryptocurrency return forecasts based on our rich set of predictors

outperform the prevailing mean benchmark over the full forecast evaluation period available for

each cryptocurrency. To get a sense of the consistency of the out-of-sample gains over time, Figure 2

depicts the cumulative di↵erence in squared forecast errors for the prevailing mean benchmark vis-

à-vis the ensemble-all forecast. To conserve space, we focus on the ensemble-all forecast in Figure 2;

as shown in Figures A1 to A5 in the Online Appendix, the plots are qualitatively similar for the

other forecasts. The cumulative di↵erence in squared forecast errors is an informative graphical

device suggested by Goyal and Welch (2003, 2008) for comparing the predictive accuracy of a

competing forecast to that of a benchmark over time. We can determine if the competing forecast

outperforms the benchmark in terms of out-of-sample MSE for any subsample by comparing the

height of the curve at the beginning and end of the interval corresponding to the subsample. If

the curve is higher (lower) at the end of the interval relative to the beginning, then the competing

forecast outperforms (underperforms) the benchmark during the subsample. A uniformly positively

sloped curve indicates that the competing forecast always outperforms the benchmark. While such

an outcome is infeasible in practice with regard to daily asset return forecasting, more realistically,
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Figure 2: Cumulative Di↵erences in Squared Forecast Errors

Each panel depicts the cumulative di↵erence in squared forecast errors for the prevailing mean
vis-à-vis the ensemble-all excess return forecast for the cryptocurrency (denoted by its symbol) in
the panel heading.

we seek a curve with a predominantly positive slope that avoids long segments with steeply negative

slopes.

Figure 2 indicates that the ensemble-all forecast outperforms the prevailing mean benchmark

consistently over time for the di↵erent cryptocurrencies. The slopes are positive the vast majority
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of the time, and there are many segments with steeply positive slopes, so the information in the

predictors substantially improves out-of-sample accuracy. The curve initially has a quite steeply

positive slope for some cryptocurrencies, such as Ethereum Classic (ETC), Neo (NEO), OMGNet-

work (OMG), and UMA. However, it is not the case that return predictability is always strongest

at the outset of the out-of-sample period near the introduction of a cryptocurrency. For example,

numerous cryptocurrencies that were introduced relatively early exhibit strong predictability from

late 2017 through 2018. Interestingly, this period coincides with the substantial appreciation and

subsequent depreciation evident for many cryptocurrencies during this same period in Figure 1.

Numerous cryptocurrencies in Figure 2 also have steeply positive slopes in early 2020, correspond-

ing to the substantive appreciations for many cryptocurrencies seen in Figure 1 during the advent

of COVID-19. Thus, it appears that the information in the predictors becomes especially useful for

predicting returns when cryptocurrencies experience large swings in value. Furthermore, the out-

of-sample gains are very consistent for many cryptocurrencies in Figure 2, as the negatively sloped

segments of the curve are short-lived and not very steep. This is the case for some of the oldest

and best-known cryptocurrencies, including Bitcoin (BTC), Ethereum (ETH), Litecoin (LTC), and

XRP.

We further examine how cryptocurrency return prediction changes over time based on financial

market conditions. We measure financial market conditions using the VIX and TED spread, which

are two of the most popular variables for tracking uncertainty in financial markets. To investigate

how cryptocurrency return predictability varies with financial market uncertainty, we estimate

a panel version of Equation (4.4) that includes fixed e↵ects and the VIX or TED spread as an

explanatory variable:

di,t = ai + bzt + "i,t+1 for i = 1, . . . , n; t = tin + 1, . . . , T, (4.8)

where di,t is the loss di↵erential in Equation (4.4), and zt is the VIX or TED spread. We transform

the VIX and TED spread using the deviation from a 7- or 28-day moving average, which reduces the

substantial persistence in the daily VIX and TED spread. If b > (<) 0 in Equation (4.8), then the

competing forecast becomes more (less) accurate vis-à-vis the benchmark in terms of out-of-sample
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MSE as financial uncertainty increases. We continue to account for cross-sectional dependency by

clustering the standard error for b by cryptocurrencies.

Table 5: Return Predictability and Financial Market Uncertainty

The table reports the estimate of b for the following fixed-e↵ects panel regression:

di,t = ai + bzt + "i,t+1 for i = 1, . . . , n; t = tin + 1, . . . , T,

where di,t is the day-t loss di↵erential for the prevailing mean benchmark forecast vis-à-vis the
competing forecast in the column heading, and zt is the VIX or TED spread. The VIX and TED
spread are transformed by computing the deviation from a 7- or 28-day moving average. The
unbalanced panel sample includes 41 cryptocurrencies, and the forecast evaluation period is 2014-
01-01 to 2021-12-31. If b > (<) 0, then the competing forecast becomes more (less) accurate vis-à-vis
the benchmark in terms of out-of-sample mean squared error as zt increases. Standard errors are
in parentheses; ⇤, ⇤⇤, and ⇤⇤⇤ indicate significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7)

Linear- Random Neural Ensemble- Ensemble-
Transformation ENet forest XGBoost network nonlinear all

Panel A: VIX

Deviation from 7-day moving 0.04 �0.05 0.13⇤ 0.09⇤ 0.06 0.05
average (0.05) (0.05) (0.06) (0.05) (0.05) (0.05)

Deviation from 28-day moving 0.01 0.01 0.11⇤⇤⇤ 0.04⇤⇤ 0.05⇤⇤⇤ 0.04⇤⇤

average (0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

Panel B: TED spread

Deviation from 7-day moving 1.15⇤⇤⇤ �2.07⇤⇤ 6.04⇤⇤⇤ 0.09⇤ 1.64⇤⇤ 1.50⇤⇤⇤

average (0.40) (0.80) (0.92) (0.05) (0.62) (0.52)

Deviation from 28-day moving 0.32 �0.48 1.61⇤⇤⇤ 0.07 0.49 0.46
average (0.27) (0.35) (0.43) (0.28) (0.33) (0.31)

Table 5 reports estimates of b in Equation (4.8) for the two uncertainty measures and their two

transformations. Of the 24 estimates of b, 21 are positive. The estimate of b is only significantly

negative (at the 5% level) for the random forest forecast and the TED spread when it is transformed

using the deviation from a 7-day moving average. The estimate of b is significantly positive at the

10%, 5%, and 1% levels in twelve, nine, and six cases, respectively. In general, Table 5 indicates

that an increase in financial uncertainty—as captured by an increase in the VIX or TED spread

relative to its recent average—is associated with an increase in the degree of cryptocurrency return

predictability.
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5. Economic Value

In this section, we examine the economic value of machine-learning forecasts of cryptocurrency

excess returns in an investment context. We first consider a mean-variance investor who allocates

between an individual cryptocurrency and risk-free Treasury bills. At the end of day t, the investor

determines their allocations based on the following objective function:

arg max
wi,t+1

wi,t+1r̂i,t+1 � 0.5�w2

i,t+1�̂
2

i,t+1, (5.1)

where � is the coe�cient of relative risk aversion; wi,t+1 and 1�wi,t+1 are the day-(t+1) allocations

to cryptocurrency i and risk-free bills, respectively, which are determined at the end of day t;

and r̂i,t+1 (�̂2

i,t+1
) generically denotes the investor’s forecast of the cryptocurrency excess return

(variance), which are based on data available through day t. The well-known solution to equation

(5.1) is given by

w
⇤
i,t+1 =

✓
1

�

◆ 
r̂i,t+1

�̂
2

i,t+1

!
. (5.2)

We assume that the investor uses an exponentially weighted moving-average estimator for �̂
2

i,t+1
,

which is a popular variance estimator among practitioners.20 To prevent the allocations from

becoming implausible, we impose the restriction that �1  wi,t+1  2. We assume that � = 3; the

results are similar for reasonable alternative values for �.

We consider two cases. In the first, the investor uses the prevailing mean benchmark to forecast

the cryptocurrency excess return in Equation (5.2); in the second, the investor instead uses a

machine-learning forecast of the cryptocurrency excess return.21 The average utility (or certainty

equivalent return) realized by the investor is given by

Ū
j
i = r̄

j
i � 0.5��̂2,j

i for j = Bench,Compete, (5.3)

20We use a value of 0.94 for the decay parameter.
21The investor always uses the exponentially weighted moving-average estimator to forecast the variance.

30



where r̄
Bench
i (r̄Compete

i ) and �̂
2,Bench

i (�̂2,Compete

i ) are the mean and variance, respectively, for the

portfolio excess return over the out-of-sample period when the investor uses the prevailing mean

benchmark (competing machine-learning) forecast of the cryptocurrency excess return. The average

utility gain for the investor when they use the machine-learning forecast in lieu of the prevailing

mean benchmark is then given by

�i = Ū
Compete

i � Ū
Bench

i . (5.4)

After multiplying the average utility gain in Equation (5.4) by 365, it can be interpreted as the

annualized portfolio management fee that the investor would be willing to pay to have access to the

information in the competing machine-learning forecast vis-à-vis the prevailing mean benchmark.

In this way, Equation (5.4) measures the economic value of return predictability to the investor.

Table 6 reports annualized average utility gains (in percent) for each of the cryptocurrencies and

the di↵erent forecasting methods. Of the 246 average utility gains, 228 (93%) are positive. Thus,

in the vast majority of cases, the investor benefits from relying on a machine-learning forecast in

lieu of the prevailing mean benchmark to guide asset allocation. Furthermore, the positive gains

are extremely large in general. They are typically above 20%, and a number are well above 100%.22

Focusing on the two largest and best-known cryptocurrencies, Bitcoin and Ethereum, the average

utility gains range from 3.86% (linear-ENet) to 111.31% (XGBoost) for the former and 30.62%

(linear-ENet) to 78.47% (XGBoost) for the latter. Thus, return predictability has substantive

economic value for the most familiar cryptocurrencies.

Figure 3 plots log cumulative excess returns for the portfolios based on the ensemble-all and

prevailing mean benchmark forecasts. We focus on the ensemble-all forecast in Figure 3 to conserve

space; as shown in Figures A6 to A10 in the Online Appendix, the pictures are qualitatively similar

for the other machine-learning forecasts. For the vast majority of cryptocurrencies, the cumulative

excess return profile for the portfolio based on the ensemble-all forecast appears clearly superior

to that based on the prevailing mean benchmark forecast, consistent with the results in Table 6.

Figure 3 provides further evidence of the value of machine-learning forecasts for cryptocurrency

return prediction.

22Such large gains easily survive even sizable transaction costs. However, transaction costs are usually relatively
low in cryptocurrencies.
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Table 6: Average Utility Gains

The table reports annualized average utility gains in percent for a mean-variance investor with
a coe�cient of relative risk aversion of three who allocates daily between the cryptocurrency in
the first column and risk-free Treasury bills. The utility gain corresponds to the case where the
investor allocates their portfolio based on the forecast of the daily cryptocurrency excess return in
the column heading instead of the prevailing mean benchmark forecast. The investor always uses
an exponentially weighted moving average estimator (with a decay parameter of 0.94) to forecast
the variance. The start of the out-of-sample period for forecast evaluation is given in the second
column; the end of the out-of-sample period is 2021-12-31 for all of the cryptocurrencies.

(1) (2) (3) (4) (5) (6) (7) (8)

Out-of-sample Linear- Random Neural Ensemble- Ensemble-
Cryptocurrency start ENet forest XGBoost network nonlinear all

1inch 2021-01-24 83.85 48.94 38.50 95.43 72.26 83.10

Aave 2020-11-08 78.83 55.62 108.45 82.93 93.12 97.04

Algorand 2019-07-21 103.87 100.76 101.31 114.88 110.50 110.00

Balancer 2020-07-24 32.23 41.34 66.47 53.68 61.35 60.05

Basic Attention 2017-11-04 19.51 32.67 27.24 35.36 46.34 45.88
Token

Bitcoin 2014-01-01 3.86 34.98 111.31 46.16 81.25 61.69

Bitcoin Cash 2017-08-30 10.17 �45.46 �25.09 6.17 �6.00 �0.09

Bitcoin SV 2018-12-14 32.52 12.57 47.81 66.25 55.40 52.83

Cardano 2017-12-30 22.85 33.94 94.08 44.05 71.36 62.51

Chainlink 2017-10-28 17.16 17.71 47.07 17.89 38.14 36.57

Compound 2020-07-17 17.99 16.69 15.04 23.18 19.76 24.44

Crypto.com 2019-04-18 18.12 17.52 50.04 26.92 44.66 39.41
Coin

Curve DAO 2020-09-13 81.64 25.39 4.20 92.28 48.60 62.93
Token

Dash 2014-03-09 119.27 117.74 149.60 58.13 118.89 135.66

Decentraland 2017-09-23 196.36 185.61 166.24 210.41 202.18 205.58

Decred 2016-06-15 14.24 �0.69 30.99 35.95 32.99 30.84

Dogecoin 2014-02-21 �19.27 �34.90 �18.80 1.15 4.70 6.12

Ethereum 2015-09-06 30.62 35.05 78.47 40.83 77.38 70.87

Ethereum 2016-08-23 90.47 98.83 93.12 99.78 117.06 114.84
Classic

FTX Token 2019-09-18 32.54 28.38 23.75 36.71 36.83 36.82

Gnosis 2017-05-31 �17.92 �6.68 26.14 23.85 24.57 14.92

Next, we construct a zero-investment long-short portfolio that invests in multiple cryptocur-

rencies. We form the portfolio by sorting the available cryptocurrencies in our sample using their

excess return forecasts based on one of the machine-learning methods. Specifically, at the end of

day t, we compute excess return forecasts for all of the available cryptocurrencies for day t + 1
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Table 6 (continued)

(1) (2) (3) (4) (5) (6) (7) (8)

Out-of-sample Linear- Random Neural Ensemble- Ensemble-
Cryptocurrency start ENet forest XGBoost network nonlinear all

HedgeTrade 2019-12-01 72.55 84.64 �33.34 84.23 77.85 82.45

Huobi Token 2019-04-04 37.82 14.34 34.79 54.72 37.11 40.93

Internet 2021-06-09 109.12 88.22 132.00 77.68 108.81 110.78
Computer

Litecoin 2014-01-01 44.75 41.50 79.59 57.62 74.68 70.80

Livepeer 2019-01-18 39.85 �6.86 �34.82 60.13 13.18 31.00

Maker 2018-01-24 �10.27 �5.56 33.99 7.32 25.13 19.02

Neo 2017-08-13 66.28 69.38 90.95 86.65 93.09 89.70

OMGNetwork 2017-08-13 136.43 132.95 183.50 142.58 164.10 164.07

Perpetual 2021-03-05 103.76 52.38 32.18 115.38 85.14 99.69
Protocol

Polkadot 2020-09-18 84.13 38.04 38.82 67.25 52.91 70.23

Quant 2019-04-14 23.44 24.51 18.67 27.31 29.36 31.62

Stellar 2015-10-29 44.66 33.47 47.41 27.76 52.18 53.39

SushiSwap 2020-09-30 110.36 100.57 101.35 130.96 112.36 117.77

Synthetix 2020-05-08 44.09 26.19 66.33 42.10 51.81 51.34

Tezos 2018-07-29 12.68 2.23 �8.45 �4.68 7.86 6.78

UMA 2020-10-07 142.24 150.07 101.15 143.89 138.21 143.91

Uniswap 2020-10-17 128.54 98.48 67.42 156.65 104.25 108.82

XRP 2014-09-13 44.05 49.83 103.22 74.23 98.66 91.64

yearn.finance 2020-08-23 150.12 105.39 132.36 178.47 152.23 162.58

Zcash 2016-11-27 13.94 26.60 �3.35 57.43 43.95 43.12

using a machine-learning method and sort the cryptocurrencies based on the return forecasts. The

portfolio goes long (short) the 30% of cryptocurrencies with the highest (lowest) return forecasts.23

When forming the long and short legs, we consider both value and equal weighting.

Table 7 reports performance metrics for long-short portfolios constructed using the sorted

machine-learning cryptocurrency excess return forecasts. In addition, the table reports metrics for

a cryptocurrency market portfolio based on the available cryptocurrencies in our dataset. Specifi-

cally, we compute the excess return for a value-weighted portfolio that invests in all of the available

cryptocurrencies on a given day. We also report metrics for the CRSP value-weighted aggregate

equity market portfolio based on daily excess return data from Kenneth French’s Data Library for

23For some days, a tree-based forecast gives the same excess return forecast for all of the available cryptocurrencies,
so we cannot sort the cryptocurrencies by the forecasts. For such days, we assume that the portfolio does not invest
in cryptocurrencies, so the excess return for the long-short portfolio is zero.
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Figure 3: Portfolio Log Cumulative Excess Returns

Each panel depicts the portfolio log cumulative excess return for a mean-variance investor with a
coe�cient of relative risk aversion of three who allocates daily between the cryptocurrency (denoted
by its symbol) in the panel heading and risk-free Treasury bills. The investor allocates their portfolio
based on the ensemble-all or prevailing mean benchmark forecast.

January 1, 2014 to December 31, 2021 (matching the forecast evaluation period). To facilitate com-

parisons across portfolios, we scale the long-short portfolios based on the machine-learning forecasts
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Table 7: Performance Metrics

The table reports performance metrics for zero-investment long-short portfolios that invest in multi-
ple cryptocurrencies. The long-short portfolio is constructed by sorting cryptocurrencies according
to their excess return forecasts for the available cryptocurrencies in our dataset on a given day
based on the machine-learning method in the first column; the portfolio goes long (short) the 30%
of cryptocurrencies with the highest (lowest) excess return forecasts. The long and short legs use
value (equal) weighting in Panel A (B). Panel C reports performance metrics based on the excess
return for a cryptocurrency market portfolio; it is a value-weighted portfolio that invests in all of
the available cryptocurrencies on a given day. Panel D reports performance metrics based on the
excess return for the CRSP value-weighted aggregate equity market portfolio. The portfolios are
scaled to have the same annualized volatility as the equity market portfolio (17.58%). The forecast
evaluation period is 2014-01-01 to 2021-12-31.

(1) (2) (3) (4) (5) (6) (7)

Ann.
Ann. Ann. Maximum Ann. downside Ann.
mean Sharpe drawdown Calmar risk Sortino

Forecast (%) ratio (%) ratio (%) ratio

Panel A: Value weighting

Linear-ENet 21.34 1.21 17.81 1.20 11.43 1.87

Random forest 22.54 1.28 18.58 1.21 17.23 1.31

XGBoost 39.00 2.22 12.39 3.15 12.83 3.04

Neural network 18.64 1.06 32.26 0.58 15.84 1.18

Ensemble-nonlinear 37.00 2.10 23.97 1.54 12.66 2.92

Ensemble-all 39.84 2.27 13.40 2.97 10.62 3.75

Panel B: Equal weighting

Linear-ENet 18.05 1.03 27.83 0.65 13.67 1.32

Random forest 25.23 1.44 14.34 1.76 16.90 1.49

XGBoost 47.20 2.68 9.57 4.93 11.30 4.18

Neural network 20.00 1.14 35.59 0.56 15.84 1.26

Ensemble-nonlinear 45.17 2.57 15.91 2.84 11.58 3.90

Ensemble-all 43.33 2.46 11.95 3.63 10.74 4.04

Panel C: Cryptocurrency market portfolio

Excess return 19.08 1.09 33.37 0.57 13.67 1.40

Panel D: Equity market portfolio

Excess return 14.41 0.82 34.35 0.44 15.28 0.94

and the cryptocurrency market portfolio to have an annualized volatility of 17.58%, corresponding

to that for the equity market portfolio.24

24Equity market excess return observations are not available for weekends and holidays. The performance metrics
for the equity market portfolio in Table 7 are computed using the available observations.
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The annualized average excess return for the cryptocurrency market portfolio in Panel C is

19.08%, which over 450 basis points higher than that for the equity market portfolio in Panel D.

With the exception of the neural network (linear-ENet) forecast in Panel A (B), the machine-

learning forecasts generate higher average excess returns than the cryptocurrency market portfolio.

Indeed, the average excess returns are approximately twice as large or larger for the XGBoost,

ensemble-nonlinear, and ensemble-all forecasts for both value and equal weighting. The annualized

Sharpe ratio is 1.09 (0.82) for the cryptocurrency (equity) market portfolio. Nearly all of the

long-short portfolios based on the machine-learning forecasts generate larger Sharpe ratios than

the cryptocurrency market portfolio, and numerous forecasts produce Sharpe ratios that are well

above two.

The maximum drawdown for the cryptocurrency market portfolio is 33.37%, which is just

below that (34.35%) for the equity market portfolio. With one exception (the neural network

forecast in Panel B), the maximum drawdowns for the long-short portfolios are below that for

the cryptocurrency market portfolio; in a number of cases, they are less than half as large. The

average excess returns and maximum drawdowns typically translate into large Calmar ratios in

the fifth column of Table 7. The annualized Calmar ratio for the cryptocurrency (equity) market

portfolio is 0.57 (0.44), while the Calmar ratios are much higher for the XGBoost and ensemble-

all (XGBoost, ensemble-nonlinear, and ensemble-all) forecasts in Panel A (B), with values of 3.15

and 2.97 (4.93, 2.84, and 3.63), respectively. In many cases, the annualized downside risks for the

long-short portfolios in Panels A and B are smaller than those for the cryptocurrency and equity

market portfolios (13.67% and 15.28%, respectively). The average excess returns and downside

risks lead to annualized Sortino ratios in the last column of Table 7 that are often considerably

larger in Panels A and B than those for the cryptocurrency and equity market portfolios (1.40 and

0.94, respectively), especially for the XGBoost, ensemble-nonlinear, and ensemble-all forecasts. In

general, Table 7 indicates that the machine-learning forecasts generate substantive improvements

in portfolio performance relative to passively holding a value-weighted cryptocurrency or equity

market portfolio.

We also test whether the long-short portfolios based on sorted machine-learning forecasts of

cryptocurrency returns generate significant alpha in the context of the Liu, Tsyvinski, and Wu

(2022) cryptocurrency three-factor model. From a list of leading equity market characteristics,
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Liu, Tsyvinski, and Wu (2022) compute cryptocurrency analogs and find that a three-factor model

comprised of market, size, and momentum factors can account for cross-sectional cryptocurrency

excess returns. We construct cryptocurrency market, size, and momentum factors for the available

cryptocurrencies in our dataset along the lines of Liu, Tsyvinski, and Wu (2022). The market factor

(CMKT) is the value-weighted excess return for the cryptocurrency market portfolio previously

described. The size factor (CSMB) is formed by sorting the available cryptocurrencies according to

their market capitalization at the end of the previous day; the size factor is the return on a portfolio

that goes long (short) the 30% of cryptocurrencies with the smallest (largest) market capitalization,

where the long and short legs are based on value weighting. Finally, for the momentum factor

(CMOM), we sort cryptocurrencies according to their cumulative returns over the previous 21 days

and compute the return on a portfolio that goes long (short) the 30% of cryptocurrencies with the

highest (lowest) cumulative returns, where again use value weighting in the long and short legs.

Multifactor model estimation results are presented in Table 8.25 For value weighting in Panel A,

all of the long-short portfolios based on the machine-learning forecasts evince statistically significant

exposures to the market factor, but the estimated betas are fairly moderate, ranging from 0.06

(random forecast) to 0.24 (XGBoost). All of the long-short portfolios have significantly negative

exposures to the size factor, so the portfolios have a large-cap tilt. In addition, the exposures to

the momentum factor are all significantly positive, so the portfolios also have a momentum tilt.

The significant factor exposures, however, are typically unable to explain the average excess returns

for the long-short portfolios, as the portfolios deliver significant risk-adjusted excess returns. In

particular, the portfolio alphas are significant at the 5% level for the neural network forecast and

the 1% level for the XGBoost, ensemble-nonlinear, and ensemble-all forecasts; for the latter three

forecasts, the annualized alphas are 208%, 196%, and 186%, respectively.

The results for long-short portfolios based on equal weighting in Panel B are similar to those

in Panel A, in that the portfolios exhibit significantly positive (negative) exposures to the market

and momentum (size) factors and typically generate significant alpha. With the exception of the

linear-ENet forecast, the alphas in Panel B are larger than the corresponding values in Panel A,

with the XGBoost, ensemble-nonlinear, and ensemble-all forecasts delivering alphas of 248%, 240%,

and 204%, respectively, in Panel B.

25The long-short portfolio volatilities are not scaled in Table 8.
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Table 8: Multifactor Model Estimation Results

The table reports multifactor model estimation results for zero-investment long-short portfolios
that invest in multiple cryptocurrencies. The long-short portfolio is constructed by sorting cryp-
tocurrencies according to their excess return forecasts for the available cryptocurrencies in our
dataset on a given day based on the machine-learning method in the first column; the portfolio
goes long (short) the 30% of cryptocurrencies with the highest (lowest) excess return forecasts. The
long and short legs use value (equal) weighting in Panel A (B). The multifactor model includes
the cryptocurrency market (CMKT), size (CSMB), and momentum (CMOM) factors. The forecast
evaluation period is 2014-01-01 to 2021-12-31. Standard errors are in parentheses; ⇤, ⇤⇤, and ⇤⇤⇤

indicate significance at the 10%, 5%, and 1% levels, respectively.

(1) (2) (3) (4) (5) (6) (7)

Linear- Random Neural Ensemble- Ensemble-
Coe�cient ENet forest XGBoost network nonlinear all

Panel A: Value weighting

↵̂ (annualized %) 37.65 46.97 207.60⇤⇤⇤ 91.50⇤⇤ 196.00⇤⇤⇤ 185.63⇤⇤⇤

(43.47) (29.07) (48.25) (44.31) (48.79) (44.07)

�̂CMKT 0.16⇤⇤⇤ 0.06⇤⇤⇤ 0.24⇤⇤⇤ 0.15⇤⇤⇤ 0.22⇤⇤⇤ 0.23⇤⇤⇤

(0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

�̂CSMB �0.12⇤⇤⇤ �0.15⇤⇤⇤ �0.48⇤⇤⇤ �0.15⇤⇤⇤ �0.44⇤⇤⇤ �0.43⇤⇤⇤

(0.02) (0.02) (0.03) (0.02) (0.03) (0.02)

�̂CMOM 0.65⇤⇤⇤ 0.27⇤⇤⇤ 0.31⇤⇤⇤ 0.09⇤⇤⇤ 0.32⇤⇤⇤ 0.39⇤⇤⇤

(0.02) (0.01) (0.02) (0.02) (0.02) (0.02)

R
2 (%) 32.83 16.50 16.33 2.58 15.09 21.24

Panel B: Equal weighting

↵̂ (annualized %) 29.46 55.17⇤⇤ 247.55⇤⇤⇤ 99.57⇤⇤ 240.12⇤⇤⇤ 203.98⇤⇤⇤

(43.35) (26.84) (42.57) (41.83) (43.35) (41.16)

�̂CMKT 0.06⇤⇤ 0.04⇤⇤ 0.21⇤⇤⇤ 0.09⇤⇤⇤ 0.17⇤⇤⇤ 0.18⇤⇤⇤

(0.03) (0.02) (0.03) (0.03) (0.03) (0.03)

�̂CSMB �0.16⇤⇤⇤ �0.20⇤⇤⇤ �0.59⇤⇤⇤ �0.20⇤⇤⇤ �0.56⇤⇤⇤ �0.54⇤⇤⇤

(0.02) (0.02) (0.02) (0.02) (0.02) (0.02)

�̂CMOM 0.51⇤⇤⇤ 0.23⇤⇤⇤ 0.23⇤⇤⇤ 0.06⇤⇤⇤ 0.23⇤⇤⇤ 0.30⇤⇤⇤

(0.02) (0.01) (0.02) (0.02) (0.02) (0.02)

R
2 (%) 22.80 16.68 20.92 2.88 18.59 22.16

Complementing the evidence in Tables 3 and 4, Table 8 suggests that nonlinearities are impor-

tant for forecasting cryptocurrency excess returns. Long-short portfolios based on the linear-ENet

forecast fail to produce significant alpha. In contrast, with the exception of the random forest in

Panel A, the other forecasts—all of which incorporate nonlinearities in the prediction models—

generate significant alpha. Indeed, the alphas are usually much larger in magnitude for forecasts
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that incorporate nonlinearities. We investigate nonlinearities in marginal predictive relationships

in fitted models in Section 6.

6. Interpretation

Sections 4 and 5 show that machine-learning methods based on a rich set of predictors lead to

significant excess return predictability—both statistically and economically—for a large number

of cryptocurrencies. In this section, we analyze the role of the predictors in producing out-of-

sample forecasts, which allows us to glean insight into the economic sources of cryptocurrency

return predictability. We focus on the XGBoost forecast, as it is the most accurate for all of

the cryptocurrencies taken together in Table 3; as shown in Tables A1 to A5 and Figures A11 to

A15 in the Online Appendix, the conclusions are similar for the other forecasts that incorporate

nonlinearities. We use model-interpretation tools based on Shapley (1953) values. Utilizing the

analogy between players in a cooperative game earning a payo↵ and predictors in a model generating

a forecast, Štrumbelj and Kononenko (2010, 2014) and Lundberg and Lee (2017) develop Shapley-

based measures for interpreting fitted machine-learning models. Because Shapley values have a set

of appealing properties, they are generally viewed as providing the best basis for interpreting fitted

models (Molnar 2022). We use Shapley-based measures to assess variable (or predictor) importance

as well as the strength of nonlinearities in marginal predictive relationships in a fitted model. We

compute Shapley-based measures for the fitted XGBoost model that generates the final set of daily

cryptocurrency excess return forecasts (for December 31, 2021), as this is the fitted XGBoost model

based on the largest training sample of panel data in our application.

First, we compute the variable importance in the fitted XGBoost model for each of the predic-

tors in Table 2. The results are reported in Table 9. To facilitate the interpretation of the model,

we combine variable-importance measures across the two transformations (log or simple deviations

from 7- and 28-day moving averages), as indicated by “(7,28)” appended to the predictor abbrevia-

tions in the first and fourth columns. We also combine the variable-importance measures for the two

time-series momentum predictors in levels (TSM7 and TSM28). We scale the variable-importance

measures to sum to 100.
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Table 9: Variable Importance

The table reports Shapley-based variable-importance (VI) measures for the predictors in the final
fitted XGBoost prediction model for cryptocurrency excess returns. The predictors are denoted by
their abbreviations in Table 2. We combine the VI measures for TSM7 and TSM28 in levels; we
combine the VI measures for all of the predictors when they are transformed using log or simple
deviations from 7- and 28-day moving averages, as indicated by “(7,28).” The VI measures are
scaled to sum to 100. The second and fifth columns give the category for the predictor in Table 2.

(1) (2) (3) (4) (5) (6)

Predictor Category VI Predictor Category VI

TSM7, TSM28 Market 17.19 RealNV(7,28) Transactions 1.44

NV(7,28) Network 15.69 SER(7,28) Transactions 1.29

AdrNV(7,28) Network 10.12 TrfSizeMean(7,28) Network 1.15

TSM28(7,28) Market 8.59 NVT(7,28) Transactions 1.07

TSM7(7,28) Market 7.82 Sup30d(7,28) Transactions 1.02

GTSrch(7,28) Online Activity 5.22 TrfSizeMed(7,28) Online Activity 0.94

CRNV(7,28) Transactions 5.14 FacSentArt(7,28) Online Activity 0.93

NumTrx(7,28) Transactions 4.34 FacSentHdl(7,28) Transactions 0.90

FacNumArt(7,28) Online Activity 3.66 NumTfr(7,28) Network 0.81

RedNumCom(7,28) Online Activity 3.63 RedUnc(7,28) Online Activity 0.72

Vol30d(7,28) Market 3.10 AdrActNV(7,28) Online Activity 0.63

Vel1y(7,28) Transactions 2.86 FacUncArt(7,28) Online Activity 0.18

RedSent(7,28) Market 2.10 FacUncHdl(7,28) Online Activity 0.11

PrcMA(7,28) Transactions 1.45

Time-series momentum in levels is the most important predictor for the fitted XGBoost model.

This aligns with Liu and Tsyvinski (2021), who find significant evidence of time-series momentum

in cryptocurrency returns on an in-sample basis. Network value (NV) is the next most important

predictor, followed by the address-to-network value ratio (AdrNV). These network-related variables

can be regarded as capturing aspects of a cryptocurrency’s fundamental value. The importance of

NVT is consistent with Liu, Tsyvinski, and Wu (2021), who find evidence of a “value e↵ect” in cross-

sectional cryptocurrency returns. TSM7 and TSM28, after transforming them to deviations from

7- and 28-day moving averages, are the fourth and fifth most important predictors, respectively,

reinforcing the relevance of time-series momentum. The sixth most important predictor is Google

Trends search volume (GTSrch), an attention-based measure that points to the pertinence of online

searches for future cryptocurrency returns. The current-to-realized ratio (CRNV) and the number
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of transactions (NumTrx) are next. These two predictors reflect activity on a cryptocurrency’s

network. Rounding out the top ten are the number of Factiva articles (FacNumArt) and the

number of Reddit comments (RedNumCom), further highlighting the relevance of investor attention

for cryptocurrency return prediction. Note that the attention-based measures for Reddit and

Factiva relating to the number of comments and articles are more important than the sentiment or

uncertainty of the comments and articles.

Interestingly, the top ten predictors in Table 9 include multiple predictors from each of the

four categories in Table 2. There are three predictors each from the Market and Online Activity

categories and two each from the Network and Transactions categories. Thus, cryptocurrency return

predictability appears to emanate from a diversity of influences. This is perhaps not surprising.

Cryptocurrencies are a new asset class and inherently di�cult to value relative to traditional asset

classes such as equities and bonds (e.g., Detzel et al. 2021). This creates scope for a variety of

predictors to anticipate cryptocurrency returns, as prices take time to move to “fair” values that

are di�cult to pin down relative to more established asset classes. Along this line, cryptocurrencies

are subject to large swings in value and bubble-like behavior relating to investor fads. Indeed, the

results in Section 4 indicate that cryptocurrency return predictability tends to be relatively strong

around large swings in value.

Finally, we compute Shapley values for the predictors to provide perspective on the importance

of nonlinearities in the fitted XGBoost model. The Shapley values are plotted in Figure 4. For

each observation in the training sample, the Shapley value measures the contribution of a given

predictor to the predicted target value for that observation.26 The Shapley values give a sense of

how a fitted model’s prediction changes as the predictor changes. As such, they are informative for

helping to identify nonlinearities in a fitted model’s prediction function.

The Shapley values in Figure 4 reveal important nonlinearities in the fitted XGBoost model. In

particular, there are a number of strong threshold e↵ects that often characterize fitted models based

on decision trees. For example, there is a sharp jump in the predicted return for the smallest values

of TSM7, indicating a reversal in the future return when a cryptocurrency experiences a relatively

large cumulative loss over the last seven days. As another example, the predicted return increases

26Because there are a very large number of observations (54,535) in the final training sample that is used to fit the
XGBoost model, we smooth the plots in Figure 4 using 200 bins.
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Figure 4: Shapley Values

Each panel depicts Shapley values for the predictor (denoted by its abbreviation in Table 2) in
the panel heading. Parentheses indicate that the predictor is transformed using the log or simple
deviation from a 7- or 28-day moving average. The Shapley values in the plots are smoothed using
200 bins.

markedly when AdrNV(7) moves above zero to around 0.3, pointing to a strong value e↵ect in this

interval. For an example relating to investor attention, the Shapley plot for GTSrch(28) displays

a sharp increase near ten, so there is a substantive increase in the predicted return when Google

search volume (in log deviation from a 28-day moving average) crosses a threshold of approximately
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Figure 4 (continued)

ten. In sum, Figure 4 highlights strong nonlinearities, often in the form of threshold e↵ects, in

the fitted XGBoost model. Results in Sections 4 and 5 indicate that such nonlinearities improve

cryptocurrency return forecasts relative to the linear-ENet forecast.

43



7. Conclusion

This paper provides an in-depth investigation of the out-of-sample predictability of a large number

of daily cryptocurrency excess returns. Our analysis uses a large set of predictors from diverse

categories and employs modern machine-learning methods to generate cryptocurrency return fore-

casts. Incorporating the information in the predictors via machine learning substantially improves

out-of-sample forecasts of daily cryptocurrency excess returns. Machine-learning forecasts are sig-

nificantly more accurate in terms of out-of-sample MSE, and relying on machine-learning forecasts

to guide asset allocation provides substantive economic value. Machine-learning methods that al-

low for nonlinearities in fitted prediction models are especially useful for generating out-of-sample

gains. Based on the interpretation of fitted models, a variety of predictors appear relevant for

forecasting daily cryptocurrency returns, including predictors relating to time-series momentum,

network valuation and activity, and online attention paid to cryptocurrencies. Our results indicate

that cryptocurrency return predictability based on a variety of sources is an important stylized fact,

at least to this point. The cryptocurrency market is a relatively young market that has experienced

fast growth but also large swings in value as well as concerns about its reliability and trustworthi-

ness. As the market matures—assuming that it survives—and investors become more familiar with

this new asset class, it will be interesting to monitor the future evolution of cryptocurrency return

predictability.
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