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ABSTRACT

The explanatory power of multi-factor models typically used to evaluate hedge fund

performance is effectively zero for a sizable number of funds (so-called zero-R2 funds). In

this study, we explore alternative approaches based on several machine learning techniques

to benchmark and evaluate individual hedge funds. In general, machine learning

algorithms significantly improve the ability to track fund performance, especially for

zero-R2 funds. We find that a Bayesian ensemble-of-trees approach is particularly valuable

in this context. The improvement in tracking performance enables more precise estimates

of fund alphas, resulting in more accurate identification of superior funds. As a result, the

proposed methodologies outperform the traditional multi-factor model in several contexts

including real-time fund selection, and fund failure prediction. Our results offer compelling

evidence that machine learning-based benchmark models can effectively capture the

nonlinearities and interaction effects among risk factors, which are crucial for accurately

characterizing the risks associated with hedge fund strategies. To further highlight the

benefit of such methods we re-examine the well-established positive relationship between

strategy distinctiveness and hedge fund performance. Our findings suggest that the

observed relationship stems from benchmark model errors that contaminate inference

based on the conventional factor models.
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I. Introduction

Evaluating hedge fund performance is challenging in view of the dynamic nature of their

strategies, operational flexibility in terms of asset class exposures, and the limited disclosure

requirements. One of the primary challenges lies in determining the appropriate benchmark

to be used in this context. Previous studies have made significant progress in addressing this

issue. Nevertheless, despite these methodological advancements, the commonly used multi-

factor benchmark models employed in hedge fund performance evaluation have a limited ability

to accurately capture the risk exposures of a significant portion of these funds.

As Bollen (2013) documents, customized benchmark models based on the 7 factors used in

the well-known Fung and Hsieh (2004) model have an R2 insignificantly different from zero for

more than 36% of a large sample of hedge funds. This result actually understates the severity of

the problem as the modelR2 is effectively zero for over 50% of the youngest funds with fewer than

36 monthly return observations. Such zero-R2 funds also have a much larger chance of failing,

which is potentially even more worrisome. Motivated by these findings, in this study we explore

several alternative approaches that rely on machine learning techniques to develop performance

benchmarks for individual hedge funds. Specifically, we consider benchmarks based on Elastic

Net, Random Forest, and a Bayesian ensemble-of-trees approach, namely, the Bayesian Additive

Regression Trees or BART (Chipman, George, and McCulloch, 2010). As we subsequently

describe in more detail, we find that machine learning methods are particularly well-suited to

the challenge of benchmarking hedge fund performance.

An appropriate hedge fund benchmark should successfully track the performance of the

hedge funds being evaluated. This naturally requires that the benchmark should capture (a)

the inherently nonlinear and dynamic nature of hedge fund strategies, and (b) the potential

interactions among the various risk factors that influence the strategy outcomes. It turns out

that machine learning-based benchmarks perform very well on these dimensions. In addition

to the ability to capture non-linear effects and interactions among the risk factors in a non-

parametric fashion, the methodologies perform well even for funds with short histories. This

is of course particularly relevant for hedge funds given the relatively high attrition rates in the

industry.

We use the machine learning methods to model hedge fund returns and identify the

benchmarks that optimally capture the risk-return profile of individual hedge funds. The

benchmarks are based on the 7 factors in the Fung and Hsieh (2004) model that is widely used

in this context. In addition to the Fung and Hsieh (2004) model we consider benchmarks

based on three machine learning methods that provide increasing levels of flexibility in
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modeling hedge fund returns: Elastic Net, Random Forest, and Bayesian Additive Regression

Trees (BART). 1 Among the various machine learning methods we consider, we find that the

BART model excels in terms of capturing a substantial portion of the return variation in

individual hedge fund monthly returns. Specifically, when incorporating the same set of 7

factors as the Fung and Hsieh (2004) model, the average fund R2 achieved by the BART

model reaches 52 percent, while the corresponding average fund R2 based on the Fung and

Hsieh (2004) model is notably lower at 34 percent. We next demonstrate the effectiveness of

BART model-implied benchmarks in capturing the risk-return tradeoff for funds that exhibit

practically zero R2 values when evaluated against the Fung and Hsieh (2004) model.

Specifically, we show that for such zero-R2 funds the average R2 based on the BART model is

as high as 35 percent. This finding provides compelling evidence for the improved effectiveness

of machine learning methods like BART in capturing the risks associated with funds whose

strategies and return profiles are difficult to track using traditional linear factor models.

The increased tracking performance of the machine learning algorithms naturally results

in more precise estimates of fund alphas, which should, in principle, improve one’s ability

to identify funds with superior performance. Accordingly, we next demonstrate the economic

value of the machine learning methods in benchmarking and evaluating hedge fund performance.

Specifically, we examine the performance of real-time strategies designed to invest in the top

decile portfolio of funds based on the different evaluation methods/models considered.2 We

compare the performance of strategies based on the machine learning methods to a fund selection

strategy that relies on the 7-factor Fung-Hsieh model. In general, we show that machine learning

strategies outperform based on a variety of performance measures including average returns,

Sharpe ratios, Fung-Hsieh model alphas, and the manipulation proof performance measure of

Goetzmann, Ingersoll, Spiegel, and Welch (2007). Importantly, the superior performance of

such strategies is also evident in the form of lower downside risk reflected in statistics like the

Sortino ratio, maximum drawdown, and maximum monthly loss.

Next, we show that the proposed machine learning framework is valuable in the context of

predicting fund failure. Specifically, consistent with prior literature we adopt the Cox

proportional hazards model to predict fund failure. We show that indicators based on the each

of the machine learning model-based alphas dominate competing measures, including those

based on the widely used (Fung and Hsieh, 2004) model.

Finally, to further illustrate the advantage offered by the machine learning-based

1In addition to the elastic net model with the 7 factors, we also consider an extended version of the model
that includes two-way interactions among the 7 factors.

2We also examine the performance of long-short strategies that invest in the top decile of funds while taking
a (hypothetical) short position in the bottom decile of funds.
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framework in a performance evaluation context, we re-examine the evidence regarding the

well-documented positive relationship between hedge fund strategy distinctiveness and fund

performance (see, e.g., Sun, Wang, and Zheng (2012)). Beyond its academic relevance, this

result has obvious practical implications for investors’ capital allocation decisions. Hence, it

naturally serves as an important application for an improved performance evaluation

methodology. Focusing on the Fung-Hsieh alphas of funds sorted by a measure of strategy

distinctiveness confirms the documented positive relation. However, we show that the Fung

and Hsieh (2004) model does a relatively poor job of characterizing the risks inherent in fund

strategies whose returns appear to be distinctive or unique relative to their peers. Assessing

fund alphas using the various machine learning model benchmarks we find no evidence of a

relation between fund strategy distinctiveness and future performance. We conclude that the

link between strategy distinctiveness and fund performance is largely an artifact of benchmark

model error.

Collectively, our results serve to confirm the value of machine learning-based benchmarks

in multiple contexts. In particular, they offer powerful evidence of the ability of machine

learning methods to capture the non-linearities and interaction effects among risk factors that

are important in fully characterizing the risks inherent in hedge fund strategies.

The rest of the paper proceeds as follows. Section II reviews the related literature while

Section III describes the general methodological framework for hedge fund performance

evaluation, including the use of machine learning methods in this context. Section IV presents

the details of the machine learning algorithms we consider. Section V describes the data and

Section VI presents the empirical results. Section VII re-examines the evidence on the relation

between strategy distinctiveness and hedge fund performance, while Section VIII concludes.

II. Related Literature and Contribution

Our paper is related to the literature on hedge fund performance evaluation. Fung and

Hsieh (1997) document the low correlation between the hedge fund returns and the traditional

asset classes and propose three additional “style” factors to extend the Sharpe (1992) model

for evaluating hedge fund performance. Motivated by this important early work subsequent

studies attempt to improve the benchmark performance evaluation model by incorporating

additional factors in the model. For example, Fung and Hsieh (2001) create ”style” factors

designed to mimic the characteristics of trend-following strategies in a number of asset classes.

Similarly, building on the theoretical framework of Glosten and Jagannathan (1994), Agarwal

and Naik (2004) propose a multi-factor model that incorporates option-based risk factors. The
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identification of the relevant risk factors is typically based on statistical techniques like factor

analysis (e.g., Fung and Hsieh (1997)) or stepwise regression (e.g., Liang (1999), Fung and Hsieh

(2000), Agarwal and Naik (2004), Bollen and Whaley (2009)).

A number of studies allow for variation in factor exposures over time as a way to improve

model performance. For example, Bollen and Whaley (2009) employ an optimal changepoint

regression framework which yields substantial improvements in performance over a model with

constant parameters. Patton and Ramadorai (2013) model the dynamics of hedge funds’

factor exposures using high frequency conditioning variables. They show that using daily

conditioning information to model hedge fund risk exposures results in significantly improved

model performance in terms of adjusted R2 relative to a model with monthly conditioning

information.

As shown by Bollen (2013), the traditional multi-factor modeling framework fails to

account for the risk exposures of a substantial proportion of hedge funds. As a result, the

seemingly high ‘alpha’ estimates for such funds may in fact represent compensation for

exposure to “hidden” risk factors, rather than managerial skill. Motivated by this finding, and

in the spirit of Box (1980), our paper recognizes that the earlier modeling innovations in the

literature are useful but imperfect, in the sense that they do not fully capture the relevant risk

exposures of hedge fund strategies. Accordingly, our paper fits in a growing literature related

to benchmark misspecification in fund performance evaluation.

A number of recent papers explicitly recognize that all hedge fund models are misspecified

and adopt different approaches to address this issue. For example, O’Doherty, Savin, and Tiwari

(2016) propose a model pooling framework in which the benchmark model represents a weighted

combination of the predictive return densities implied by several linear factor models. They

show that the resulting model pooling-based benchmark model yields significant improvements

in terms of fund selection and fund failure prediction. Ardia, Barras, Gagliardini, and Scaillet

(2022) propose a framework that evaluates candidate models by their ability to capture the

returns to hedge fund strategies. Specifically, the approach involves formally testing whether

the models deliver similar alphas as the CAPM, a model which is of course not equipped to

capture returns to alternative hedge fund strategies. Giglio, Liao, and Xiu (2021) develop a

multiple testing procedure for false discovery rate (FDR) control that is robust to omitted

factors in the benchmark model and missing returns data. They show that hedge fund returns

display substantial correlations even after controlling for exposure to the standard Fung-Hsieh

factors. By comparison to other FDR control methodologies, their methodology allows for the

identification of a larger number of “skilled” funds (subject to a 5% false discovery rate) with
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superior out-of-sample performance.

Our paper contributes to this literature by adopting a Bayesian machine learning

framework for benchmarking hedge fund performance. To our knowledge, this is the first

study to implement a machine learning approach to develop customized benchmarks for hedge

fund performance evaluation.3 As we discuss in more detail in the next section, the

methodology offers a number of advantages over conventional methods. The nonparametric

and flexible nature of the methodology allows us to efficiently capture nonlinear effects and

potentially high-order interactions among the relevant factors. Equally important, the

resulting performance benchmarks are successful in capturing the performance of hedge funds

with short return histories. This feature of the methodology is of course particularly

important in the context of hedge funds.

III. Methodology

The objective of this paper is to develop a framework for performance evaluation of

individual hedge funds that addresses the shortcomings of the existing approaches based on

the use of linear factor models as benchmarks. Consistent with the typical performance

attribution framework our main goal is to decompose the fund return into two parts - a

portion that derives from exposure to a set of passive factors, and another that represents the

benefits of active management. The latter, component, termed “alpha”, is conventionally

viewed as representing managerial skill.

Identifying a benchmark to properly capture the investing style of a hedge fund is

challenging. First, hedge fund investment strategies are typically proprietary and not subject

to any public disclosure requirements. Second, the prior literature has identified a common set

of factors based on a general understanding of the nature of hedge fund strategies and the

associated payoffs. Using a benchmark factor model with a common set of factors for all hedge

funds can be problematic, as investing styles may differ considerably across funds even within

a particular category, and the style followed by a fund may change over time. The challenge is

to specify the proper set of factors for constructing the benchmark that closely mimics the

systematic risk the fund is exposed to. Third, the factors identified in the prior literature may

be correlated with each other, and fund returns may not always be linearly related to those

established factors. A linear benchmark model only captures the fund’s exposure to a linear

combination of the systematic risk factors. The potentially missing non-linear features are

likely to be important in characterizing a hedge fund’s investing style.

3Wu, Chen, Yang, and Tindall (2021) apply machine learning methods to predict hedge fund returns. However,
the focus of their study differs from ours as they are primarily interested in forecasting hedge fund returns.
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To address the aforementioned concerns, we use several alternative machine learning

algorithms to build flexible performance benchmarks for each hedge fund. This approach offers

several advantages over the traditional linear model-based benchmark based on a common set

of systematic risk factors. First, the machine learning-based benchmark models offer

additional flexibility in terms of modeling hedge fund returns that typically feature nonlinear

payoffs. Second, the tree-based machine learning methods that we consider can readily

capture the non-linearities, and potentially high-order interaction effects among factors. This

aspect of the methodology is particularly important in the context of factors with overlapping

information that are hard to disentangle using a linear model.4 Moreover, the machine

learning framework is well-suited to identifying a sparse set of factors, out of the full set,

which can help summarize a fund’s exposure to systematic risks in a more efficient manner.

A. Fund Performance Evaluation: Conventional Approach

We start by reviewing the conventional approach to assessing fund performance by

estimating its net alpha. Following Sharpe (1992), the conventional approach aims to

decompose the fund’s performance into a portion that is attributable to the fund’s exposure to

systematic risk factors, and a portion that is unrelated to sources of systematic risk. The

latter is termed the ‘alpha’ and is indeed the key selling point of ‘hedge’ funds, that in

principle, promise to deliver a return that is uncorrelated with traditional sources of risk.

Consider a standard candidate factor model that characterizes the fund’s exposure to the

investing style factors. In the typical linear benchmark model framework, the conditional

expectation of fund excess returns is assumed to be linear in the style (risk) factors. The net

alpha α∗
i,t of fund i at time t is:

α∗
i,t = E[ri,t]− β∗

i,tE[fi,t] (1)

where ri,t is the excess return of the fund i, fi,t is a vector of benchmark factor realizations

assigned to fund i, and β∗
i,t is a vector of risk exposures for fund i to the factor vector fi,t.

If we know the true model describing the return-generating process, then we can estimate

the net alpha from the linear regression:

ri,t = α∗
i,t + β∗

i,tfi,t + ϵ∗i,t, ϵ∗i,t
iid∼ N(0, σ2). (2)

4In a recent study Shu and Tiwari (2022) demonstrate that these features are particularly valuable in an asset
pricing context. In particular, their results highlight the advantage offered by the BART framework relative to
traditional machine learning methods in addressing the challenge posed by the ‘zoo’ of factors that appear to
be related to the cross-sectional variation in expected returns. For a more extensive recent review of the BART
methodology, please refer to Hill, Linero, and Murray (2020)
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A key part of the performance evaluation challenge is to identify the relevant factors, and

estimate the factor exposures, β∗
i,t. The standard procedure, if we allow for the exposure β∗

i,t

to update over time, is to estimate β̂i,t from a regression of the fund excess return on the

benchmark model factors over the period from t− s to t− 1:

ri,τ = αi,τ + βi,tfi,τ + ui,τ , τ = t− s, ..., t− 1. (3)

The vector of estimated risk exposures, β̂i,t, can then be used to estimate the fund’s net alpha:

α̂i,t = ri,t − β̂i,tfi,t. (4)

How close αi,t is to α∗
i,t depends on the accuracy of the specified benchmark factor model set,

fi,t, in terms of tracking the fund’s investing style.

As previously mentioned, a linear benchmark model with a fixed set of benchmark factors,

fi,t, common to all funds, may not be able to accurately capture the investing style of a specific

fund. Furthermore, a linear factor model may be inappropriate given the potential nonlinearities

and interaction effects among the factors, leading to significant bias in estimates of the factor

exposures, β̂i,t, and thereby contaminating inference about the fund’s alpha. In response to

these issues, we consider several machine learning-based methods in order to better track the

investing style for individual funds.

B. Fund Performance Evaluation: A Machine Learning-Based Approach

We now describe an alternative framework for fund performance evaluation based on

competing machine learning models that rely on the identical set of factors used in the linear

benchmark model.

To motivate a machine learning-based assessment of fund performance, consider a more

general model to characterize hedge fund excess returns:

ri,t = h∗(α∗
i,t;β

∗
i,t, fi,t) + ϵi,t (5)

where h∗(α∗
i,t;β

∗
i,t, fi,t) is a function consisting of two components. One component is the net

alpha α∗
i,t that measures the value added by the hedge fund management team relative to a

benchmark model. The other component is related to the factor attributes that reflect the

funds risk exposures β∗
i,t, to the systematic risk factors, fi,t. Notice that Equation (5) links the

factor exposures, β∗
i,t, and the vector of factors, fi,t with a general functional form h∗(·) that

allows for nonlinear terms of the systematic risk factors, which is a more flexible specification
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than Equation (1). It is also worth noting that the vector of benchmark factors fi,t is fund-

specific, which contains up to k factors that mirror fund i’s investment style.

The practical issues when applying the general model in Equation (5) are two-fold. First,

without prior knowledge we cannot specify the exact functional form involving the factor terms

(fi,t, f
2
i,t, fi,k1,t×fi,k2,t, etc.). Second, α

∗
i,t, and β∗

i,t cannot be directly observed or extracted from

the function h∗(α∗
i,t;β

∗
i,t, fi,t). Multiple machine learning models such as tree-based methods,

neural networks, etc., can capture the nonlinear effects and higher-order interactions among the

risk factors fi,t. However, the set of factors, fi,t, that is specific to fund i is hard to identify

based on the aforementioned machine learning methods. As for α∗
i,t and β∗

i,t, many machine

learning models are not easily interpretable which makes it difficult to estimate α∗
i,t and β∗

i,t.

Below we describe our proposed approach to addressing these issues in the context of several

popular machine learning algorithms.

B.1 Penalized Linear Regression Framework

First, consider modeling hedge fund returns via a penalized linear regression model, for

example, Elastic Net. We expand the linear benchmark model to allow for certain nonlinear

terms involving two way interactions among the factors (e.g., fi,k1,t × fi,k2,t) and higher order

terms (e.g., f2
i,t). Then, Equation (5) becomes a more general linear benchmark model as follows:

ri,t = α∗
i,t + β∗

i,tfi,t + λ∗
i,tgi,t +Ωi,t + ϵ∗i,t, ϵ∗i,t

iid∼ N(0, σ2), (6)

where β∗
i,tfi,t represents the linear combination of the product of risk exposures β∗

i,t and the

original factors fi,t, and λ∗
i,tgi,t represents the linear combination of the product of the risk

exposures (γ∗i,t) and the nonlinear extensions of the risk factors gi,t. To guard against the

problem of model over-fitting and the curse of dimensionality, we incorporate the penalty terms,

Ωi,t, in the above model. Another advantage of introducing Ωi,t is that it helps identify the

terms in fi,t and gi,t that are genuinely related to the returns of fund i.

B.2 Non-parametric Regression Framework

Next, consider a more general, non-parametric machine learning model such as a decision-

tree based model. In this case the evaluation of hedge fund performance proceeds in three steps.

In the initial step, we approximate h∗(α∗
i,t;β

∗
i,t, fi,t) with a machine learning method h:

ri,t = h(fi,t) + ϵi,t, ϵi,t ∼ N(0, σ2), (7)
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from which we can obtain the estimated fund return r̂i,t as

r̂i,t = h(fi,t). (8)

In the second step, we approximate the original machine learning model with a more

interpretable proxy linear model that can be used for performance attribution analysis. The

main aim of this step is to obtain an estimate of a fund’s factor risk exposures, which sets the

stage for computing the fund’s alpha. Specifically, we consider a linear projection of a fund’s

model-implied estimated return, r̂i,t, on the factor payoff space, and estimate the in-sample

coefficient estimates β̂i,t based on the following objective function:

β̂i,t = argmin
βi,t

1

T

t−1∑
τ=t−s

[
r̂i,τ − βi,τg(fi,τ )

]2
+Ωi,τ . (9)

In the above equation, 1
T

∑T
t=1

[
r̂i,t − βi,tg(fi,t)

]2
represents the mean squared error or

deviation between estimates of the fund return as per the original machine learning model and

the estimates based on the proxy model. The function g(fi,t) incorporates the original seven

factors, fi,t, and nonlinear terms involving the factors.5. Similar to (6), we also incorporate

the penalty terms Ωi,t.

In the third, and final step, we can estimate the net alpha at time t using data from t − s

to t− 1 as6:

α̂i,t = ri,t − β̂i,tg(fi,t) (10)

where fi,t contains the risk factor related terms with nonzero fund exposures, β̂i,t.

In the next section, we describe in more detail the specific modelling approaches that we

adopt for evaluating hedge fund performance.

IV. Models

A. Conventional Approach – Fung and Hsieh (2004) 7-Factor Model

We consider the widely used Fung and Hsieh (2004) 7-factor model as the primary linear

benchmark model for performance attribution analysis (Equation (1)-(4)). The seven factors

used in the Fung and Hsieh (2004) model include i) the market excess return (MKT ), ii) the

return on the equity size factor (SMB), iii) the Barclays Capital 7–10 year Treasury Index

return in excess of the risk-free rate (D10Y R), iv) the return spread of the Barclays Corporate

5For example, interactions among the factors (fi,k1,t × fi,k2,t, etc.), or higher powers of the factors, e.g., f2
i,t

6In the empirical analysis, we set s = 24.
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Bond Baa Index over the 7–10 year Treasury Index (DSPRD), and the Fung and Hsieh (2001)

factors representing Primitive Trend Following Strategies for v) bonds (PTFSBD), vi) foreign

exchange rates (PTFSFX), and vii) commodities (PTFSCOM).

B. Machine Learning Approach I – Elastic Net Regression Model

As specific examples of a machine learning-based benchmark model in Equation (6), we

consider two versions of the Elastic Net regression models. In one version, we only retain

the 7 factors in the Fung and Hsieh (2004) model (and do not include any nonlinear terms

of fi,t), which we denote as ENet. To identify the truly relevant factor terms in gi,t for fund

i, as well as to guard against the overfitting problem, we introduce L1 and L2 penalty terms

– γ1|βi| and γ2β
′
i,tβi,t, respectively. The resulting coefficient estimates β̂i,t are optimized to

approximate as closely as possible the machine learning model implied fund return estimations

conditional on the benchmark factors g(fi,t). Given the L2-norm based penalty term γ2β
′
iβi,t,

factors with greater contribution to characterizing the investing style of the fund are assigned

larger values. The L1-norm based penalty term γ1|βi,t| limits the factor vector fi,t by zeroing

out the coefficients for redundant factors.

In the other version, we add all 28 two-way interactions among the 7 factors,7 which we

denote as ENet*.8 These additional terms are designed to capture potential nonlinear payoffs

such as market timing strategies. In both versions of the Elastic Net model, Ωi,t contains L1

and L2 penalty terms for βi,t (and γi,t).

Therefore, the generalized equation in (6) can be re-expressed as follows:

ri,t = α∗
i,t + β∗

i,tfi,t + λ∗
i,tgi,t + γ1|βi,t|+ γ2β

′
i,tβi,t + ϵ∗i,t, ϵ∗i,t

iid∼ N(0, σ2), (11)

where λ∗
i,tgi,t is a nonzero term for ENet* and a zero term for ENet.

The period t estimate of fund alpha based on ENet and ENet* can be derived as

α̂i,t = ri,t − β̂i,tfi,t, (12)

where β̂i,t is estimated from (11).

7The interaction terms include i) 21 interaction terms between any two of the 7 factors, and ii) the power
terms of the 7 factors themselves.

8Technically, the model can contain many more nonlinear forms of the factors, but to keep the model
interpretable and compact, we only consider the interactions as the representative nonlinear structure in this
paper.
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C. Machine Learning Approach II – Bayesian Additive Regression Trees and Random Forest

As specific examples of the more general machine learning-based benchmark model

described earlier (Equation (7)-(10)), we consider two ensemble-of-trees models, namely,

Bayesian Additive Regression Trees (BART ) and Random Forest (RF ).

C.1 Bayesian Additive Regression Trees (BART)

In the BART specification, we consider approximating h∗(α∗
i,t;β

∗
i,t, fi,t) with a sum of m

regression trees h∗i (·) ≈ hi(·) ≡
∑m

j=1 gij (·), where each gij denotes a regression tree:

ri,t =
m∑
j=1

hij (fi,t) + ϵi,t, ϵi,t ∼ N(0, σ2). (13)

The BART model consists of two parts: a sum-of-trees model and a regularization prior on

the parameters of that model. Let T denote the tree structure consisting of a set of interior

nodes representing binary split decision rules of the form {fi,t ≤ c} vs. {fi,t > c} for continuous

fi,t, and a set of terminal nodes. Further, let M = {µ1, µ2, ..., µb} denote a set of parameter

values associated with each of the b terminal nodes of T . Each value of fi,t is associated with

a single terminal node of T by the sequence of decision rules from top to bottom, and is then

assigned the µi value associated with this terminal node. Thus,

ri,t = hi(fi,t;T,M) + ϵi,t, ϵi,t ∼ N(0, σ2
i ) (14)

is a single-tree model of the form considered by Chipman, George, and McCulloch (1998).

Under Equation (14), the conditional mean of ri,t given fi,t, E(ri,t|fi,t), equals the terminal

node parameter µi assigned by the regression tree function, hi(fi,t;T,M). With this notation,

the sum-of-trees model in Equation (13) can be more explicitly expressed as

ri,t =
m∑
j=1

hi(fi,t;Tj ,Mj) + ϵi,t, ϵi,t ∼ N(0, σ2
i ). (15)

Under Equation (15), E(ri,t|fi,t) equals the sum of all the terminal node values (µi,j ’s)

assigned by the regression functions, hi(fi,t;Tj ,Mj)’s. Furthermore, each µi,j represents a main

effect when hi(fi,t;Tj ,Mj) depends on only one component of fi,t (i.e., a single variable), and

represents an interaction effect when hi(fi,t;Tj ,Mj) depends on more than one component of

fi,t (i.e., more than one variable). Thus, the sum-of-trees model can incorporate both nonlinear

main effects and interaction effects. And, because Equation (15) may be based on trees of
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varying sizes, the interaction effects may be of varying orders. Importantly, unlike many other

flexible models, BART does not require the researcher to explicitly specify the main effect and

the potentially large set of interaction effects.

The BART model specification is completed by imposing a prior over all the parameters of

the sum-of-trees model, namely, (T1,M1), ..., (Tm,Mm) and σ. Specifically, the following serves

as the regularization prior as it ensures that the contribution of each component of the model

to the overall fit is small:

p((T1,M1), · · · (Tm,Mm), σ) =

ï∏
j

p(Tj ,Mj)

ò
p(σ)

=

ï∏
j

p(Mj |Tj)p(Tj)

ò
p(σ),

(16)

and

p(Mj |Tj) =
∏
i

p(µij |Tj), (17)

where µij ∈ Mj . Under such priors, the tree components (Tj ,Mj) are independent of each other

and of σ, and the terminal node parameters of every tree are independent. The independence

restrictions simplify the prior choice problem to the specification of prior forms for just the

three key components, p(Tj), p(µij |Tj) and p(σ). Following Chipman, George, and McCulloch

(2010) we consider identical forms for all p(Tj) and for all p(µij |Tj). We use the default priors

suggested by them as described below.9

The first element in the prior specification, p(Tj), controls the depth of the nodes within

the trees. The prior probability of a node of depth d being non-terminal is α(1 + d)−β where

α ∈ (0, 1), and β ∈ (0,∞). Default values of these hyperparameters recommended by Chipman,

George, and McCulloch (2010) are: α = 0.95, and β = 2. These values help regularize the

model fit by ensuring that the influence of individual tree on the overall fit is relatively small.

Another aspect of p(Tj) concerns the distribution on the assignment of variables to be used

for binary split decision rules ({fi,t ≤ c} vs. {fi,t > c}) at the interior nodes. We employ

the default uniform prior on the candidate variables for this purpose. Next, consider the prior

for the terminal node parameters, µi,j ’s. Note that under the sum-of-trees model structure,

E(ri,t|fi,t) equals the sum of m µi,j values. So, the prior specification for µi,j ’s is chosen to

ensure that a substantial prior probability is assigned to E(ri,t|fi,t) being between the minimum

and maximum observed values based on the training dataset. Accordingly, the prior p(µij |Tj)

is specified as the conjugate Normal distribution N(µµ, σ
2
µ). The hyperparameter µµ is chosen

9In our empirical applications we employ the default priors while implementing BART via the R package
bartMachine (Kapelner and Bleich, 2016).
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as the midpoint of the range of observed values of the target (hedge fund return) variable in the

training dataset. And, the hyperparameter σ2
µ is empirically chosen to ensure that µµ± l

√
mσµ

will cover 95% of the observed values in the training dataset, for l = 2. The third component

of the prior specification is the prior for the error variance, σ2, which is specified as an inverse

gamma distribution: σ2 ∼ InvGamma(ν/2, νλ/2). The hyperparameters ν and λ are chosen

via a data-based approach. Specifically, the degrees of freedom parameter ν is set equal to 3,

and the parameter λ is chosen such that 90% of the prior probability mass of σ lies below the

residual standard deviation from a linear regression model for E(ri,t|fi,t). Chipman, George,

and McCulloch (2010) confirm that the performance of BART is very robust with respect to

hyperparameter choices. Therefore, hyperparameter tuning is not necessary in a particular

application, which is useful in a real-world context in which prior beliefs may vary widely across

investors. Of course, in addition to a data-driven prior approach, the BART framework allows

for user-defined subjective priors, or theory-driven prior specifications.

C.2 Random Forest Regression Model

The Random Forest algorithm (Breiman (2001)) involves building an ensemble (forest) of

decision trees to predict the outcome of interest. Each tree is trained on a random subset of the

data, and features or predictor variables selected via bootstrapping, and the process is repeated

many times resulting in a forest of trees. The repeated random sampling from the data and

the variables helps ensure that the correlation among the trees is minimized. Given a set of B

such decision trees, the Random Forests prediction is given by the average of the predictions

provided by each of the trees.

C.3 Proxy Linear Model

In order to obtain the hedge fund alphas, we estimate a proxy linear model (described in

Equation (9)) that approximates the expected excess hedge fund returns implied by the BART

or Random Forest model. For the proxy model in Equation (9), g(fi,t) contains the original 7

factors in Fung and Hsieh (2004), and the 28 two-way interactions among the 7 factors. We

set Ωi,t to be a combination of L1 and L2 penalty terms. And r̂i,t is the estimated return from

either Random Forest or BART. Therefore, Equation (9) can be rewritten as

β̂i,t = argmin
βi,t

1

T

t−1∑
τ=t−s

[
r̂i,τ − βi,τg(fi,τ )

]2
+ γ1|βi,τ |+ γ2β

′
i,τβi,τ . (18)
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The estimated α̂i,t based on BART or Random Forest can then be derived based on Equation

(10).

V. Data Description

A. Hedge Fund Data

We obtain data on individual hedge funds from the Lipper TASS database for the period

from January 1994 to December 2021. For each sample fund, we collect the monthly returns,

the reported trading strategy (PrimaryCategory), the currency of reported returns

(CurrencyCode), information about the fund’s use of a high-water mark provision

(HighWaterMark), personal investment by managers (PersonalCapital), leverage

(Leveraged), and lockup provision (LockUpPeriod). We convert all returns to excess returns

by subtracting the monthly risk-free rate. We account for illiquidity-related smoothness in

hedge fund returns by adjusting the reported returns following the procedure described by

Getmansky, Lo, and Makarov (2004) to obtain the “un-smoothed” returns. In constructing

the sample, we require fund returns to be denominated in U.S. dollars (i.e., CurrencyCode of

“USD”) and exclude funds that only report returns on a quarterly basis, or report only

gross-of-fee returns. To mitigate the impact of backfill bias, we discard the first 24 months of

returns for every fund from the time the fund first starts reporting to the database.

We group the sample funds into five broad hedge fund categories: directional funds (i.e.,

dedicated short bias, emerging markets, global macro, and managed futures), nondirectional

funds (convertible arbitrage, equity market neutral, and fixed income arbitrage), semidirectional

funds (event driven, long/short equity hedge, and multistrategy), fund of funds and other funds

(option strategy, other and undefined). We remove funds that are not in any of the above

14 trading strategies. When conducting the fund-level performance analysis, we apply two

selection rules. First, we require the minimum number of monthly return observations to be 61.

Second, for most of our empirical analyses we also require a fund to have at least 60 months of

consecutive returns. This results in a final sample with 4,202 funds, of which 791 are live and

3,411 are defunct.

Table I reports the summary statistics for the sample funds. The average fund has a mean

(median) excess return of 0.42% (0.49%) per month with a standard deviation of 3.84%. The

sample funds have negatively skewed returns with thick tails. We also summarize the funds by

category. The major categories in our sample are Semidirectional (1,736 funds) and Fund of

Funds (1,239 funds) which together account for over 70% of the sample. In terms of the primary

categories, the Long/Short equity hedge fund category is the largest with 1,194 funds. There
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is considerable variation in the mean returns across different categories. The Semidirectional

category has the highest mean excess return of 0.53%, while the corresponding figure for the

Fund of Funds category is 0.21%. Consistent with the prior literature, the returns of funds in

the Nondirectional and Other categories are characterized by relatively high kurtosis, suggesting

they may exhibit higher than average losses and gains due to higher levels of gross leverage.

B. Factors

In constructing the various machine learning benchmarks we employ the seven factors from

the Fung and Hsieh (2004) model. These include two equity factors downloaded from Kenneth

French’s website10, namely, the the excess market return (MKT ) and the return on the size

factor (SMB). The set of factors also includes two bond market factors, namely, the Barclays

Capital 7–10 year Treasury Index return in excess of the risk-free rate, and the return spread of

the Barclays Corporate Bond Baa Index over the 7–10 year Treasury Index (DSPRD) available

at the St. Louis Federal Reserve Bank’s website,11. The factor set also includes three trend

following factors for bonds (PTFSBD), foreign exchange rates (PTFSFX ), and commodities

(PTFSCOM ), obtained from David Hsieh’s website.12 We also collect the risk-free rate from

Kenneth French’s website to calculate the excess returns of the funds. In the simulation exercise

(described below), we also introduce a nonlinear term involving the traded liquidity factor (LIQ)

(Pástor and Stambaugh, 2003), available through WRDS.13

Table II presents summary statistics for the seven Fung and Hsieh (2004) model factors.

There is substantial variation in mean excess returns and standard deviations across the factors.

Consistent with prior literature, the trend following factors have the highest standard deviations

ranging from 14.00% to 19.11%, followed by the two fixed-income related factors. The mean

and median return of the three trend following factors are low and negative, while the returns

of the other factors are close to zero.

VI. Empirical Results

A. Simulation Exercise

Before conducting empirical analysis with real data, we first compare the performance of

machine learning benchmark models with the linear benchmark Fung and Hsieh (2004) model

based on a simulation analysis.

10https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
11http://research.stlouisfed.org/fred2/
12https://people.duke.edu/~dah7/HFRFData.htm
13https://wrds-www.wharton.upenn.edu/
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To examine each model’s performance in terms of the ability to incorporate and track

nonlinear effects, we generate fund returns in accordance with a pre-specified model with

nonlinear terms. Specifically, we simulate fund returns in accordance with a model that

includes two additional terms in addition to the seven factors in the Fung and Hsieh (2004)

model. One of these terms is the square of the market excess return (MKT ), which captures a

fund’s potential market timing skill. The other additional term is in the form of the

interaction between the market excess return and the liquidity factor from Pástor and

Stambaugh (2003). So, for each fund i, we first estimate the following nine-factor (f̃i,t) model

ri,t = αi + βif̃i,t + ϵi,t, t = 1, ..., T, (19)

and obtain the risk exposure estimates β̂i, and the residuals ϵi,t.

We then generate simulated fund returns using a bootstrap exercise. In each iteration, we

randomly sample K time points14 with replacement from the time series of residuals, ϵi,t, t =

1, ..., Ti, along with the corresponding contemporaneous factors fi,t. The simulated fund returns

can be expressed as:

r∗i,t = α∗
i + βif̃i,t + ϵ̃i,t, t ∈ τ1, ..., τK , (20)

where α∗
i is a pre-specified value. We consider three values for α∗

i : i) zero (α∗ = 0, ii) the

median value of the distribution of the estimated Fung-Hsieh alphas across all funds in the

sample (α∗ ≈ 0.22%), and iii) the 95th percentile of the Fung-Hsieh estimated alphas across all

funds (α∗ ≈ 0.99%).

With the simulated fund returns, we examine the performance of the benchmark models

by fitting the models with fund returns along with Fung and Hsieh (2004) seven factors.15

We document the R2, estimated α̂ and its t-statistic for analysis. For each fund, we repeat

the process for M times16, and compute the mean of R2 (average R2), the median value of α̂

(median α̂), and count the proportion of iterations where α̂ is statistically significant based on

the significance level of 0.05. For α∗ = 0, an alpha is considered significant if the p-value of the

estimated alpha is lower than the significance level. For α∗ ≈ 0.22 and α∗ ≈ 0.99, an alpha is

considered significant if the p-value of the estimated alpha is lower than the cutoff threshold

and the estimated alpha is positive.

14We set K equal to Ti, the number of observations for the fund in the sample.
15Although the simulated returns are generated with liquidity factor, we do not include the liquidity factor when

estimating the models. This design allows us to simulate a realistic real-world scenario in which the researcher uses
an incomplete model with known parameters to model fund returns that are influenced by potentially unknown
risk factors.

16In our paper, we set the number of iterations in the bootstrapping process M = 500
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To highlight potential differences in the ability of different models to track the performance

of funds with stronger or weaker linear risk structures, we conduct analysis based on zero-R2

and nonzero-R2 fund groups separately. We classify a fund as either a zero-R2 or nonzero-R2

fund by comparing its actual Fung and Hsieh (2004) model R2 with the 95th percentile of the

simulated R2 distribution following Bollen (2013).17 Within each fund group, we randomly

draw 300 funds without replacement and conduct the simulation exercise. We then tabulate

and summarize the three performance measures in Table A1.

Panel A of Table A1 reports the median value of the average R2 across all funds. Consistent

with the findings in Bollen (2013), funds classified as zero R2 have effectively low R2 on average.

More pronounced is the dominance of the machine learning methods that could appropriately

capture and incorporate nonlinear effects. In both zero R2 and nonzero R2 groups, ENet*,

RF and BART generate higher average R2 values, as compared to the Fung and Hsieh (2004)

model. It is also worth noting that the machine learning-based models also dominate in terms

of the model R2 values across all three cases with different pre-specified α∗ values.

Next, we analyze the quality of the fund alpha estimates, and the Type I and Type II errors

for each of the models considered. For each simulation with a pre-specified value of α∗, we first

calculate the median estimated alpha for each fund. We then report the cross-sectional median

alpha estimated across the funds in Panel B. In a similar vein, Panel C reports proportion

of iterations with statistically significant estimated alpha values at the 5 percent level. As is

clear from Panel C, when the true value of α∗ = 0.22%, the machine learning models tend to

have lower Type II error, whereas the Fung and Hsieh (2004) model tends to under- reject the

null. The lower power of the Fung and Hsieh (2004) model against this particular alternative is

not surprising given the model’s inferior tracking performance. The estimated median α̂ values

reported in Panel B of the table are also effectively close to the true alpha value of 0.22%. When

the true value of α∗ = 0, the machine learning models tends to over-reject the null hypothesis

with slightly higher type I error. These results suggest that the machine learning models are

more sensitive and effective in detecting the funds with moderate levels of skill. For the case

when funds display considerable skill and the true value of α∗ = 0.99%, all models tend to

have low Type II error rates. This suggests that all models are capable of detecting the funds

with substantial skill, i.e., in cases where the departure(s) from the null are large economic

terms. However, it is of interest that machine learning models outperform in terms of the

17Specifically, for each fund i we collect the realized R2
i value based on the Fung and Hsieh (2004) 7-factor

benchmark model. We then obtain the 95th percentile critical value of R2
i by randomly simulating fund returns

from a standard normal distribution under the null hypothesis consistent with the Fung and Hsieh (2004) seven-
factor model, following Bollen (2013). We categorize a fund as a zero-R2 fund if its realized R2

i is lower than the
critical value, and nonzero-R2 fund otherwise.
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1st quartile of the distribution of the proportion of statistically significant alphas. This result

further underscores that machine learning models do a better job at detecting better performing

funds.

In summary, the simulation results confirm that flexible machine learning models that are

capable of capturing nonlinear effects exhibit superior performance in terms of tracking hedge

fund returns. Furthermore, the benefits offered by machine learning models are particularly

pronounced when funds have only moderate levels of skill, i.e., in settings characterized by low

signal-to-noise ratios.

B. Sample Evidence on Model Tracking Performance and Fund Alphas

In this sub-section we prsent evidence on the performance of the various benchmark models

in terms of their ability to track the performance of hedge funds, as judged by the respective

model R2 values. Bollen (2013) documents that 36% of the hedge funds in his sample exhibit

effectively zero R2 based on customized linear factor models based on the Fung and Hsieh (2004)

factors. Such zero-R2 funds have higher alphas compared to non-zero R2 funds, but they are

also more prone to failure. These findings underscore the limitations of traditional benchmarks

utilized for assessing hedge fund performance. Additional results documented by Bollen (2013)

further highlight the importance of improving existing benchmark models in order to adequately

characterize the systematic risks to which hedge funds are exposed.

We first demonstrate the significantly enhanced ability of the machine-learning-implied

benchmark models in capturing the systematic risks of hedge funds, based on an analysis

similar to Bollen (2013). Our primary findings present the fund R2 values derived from the

Fung and Hsieh (2004) benchmark model and the different machine learning-based benchmark

models. Additionally, in the appendix, we present model R2 values based on fund-specific

benchmark models that incorporate a maximum of three out of the seven Fung and Hsieh

(2004) model factors. These factors are identified using a stepwise linear regression procedure,

as outlined by Bollen (2013).

In order to obtain the model R2 values we estimate the machine learning models, i.e., ENet,

RF, and BART, based on the realized fund returns in conjunction with the seven Fung and Hsieh

(2004) factors. In addition, we estimate the ENet* model, which incorporates the augmented

set of factors (the seven risk factors plus the additional 28 two-way interaction terms). The RF

and BART model-implied R2
i values are based on a proxy linear model calculated as:

R2
i = corr(ri,t − r̂∗i,t)

2, (21)

19



where r̂∗i,t = β̂ifi,t+ ᾱi = β̂ifi,t+
1
T

∑T
t=1 α̂i,t, and α̂i,t = ri,t− β̂ifi,t is estimated over the whole

sample period from t = 1 to t = T based on the fund return ri,t and factors fi,t.

B.1 Model R2

Table III presents the tracking performance of the benchmark models, in terms of the average

fund R2 across all hedge funds in the sample, as well as for funds within a category. The results

are presented separately for the zero-R2 and the nonzero-R2 funds. Although not shown in the

table, 593 out of 4,202 funds are identified as zero-R2 funds. In the case of the zero-R2 funds,

it it is worth noting that the average R2 values for the ENet and RF models are quite low

at 7.2 percent and 4.5 percent, respectively, and in fact, slightly lower than the corresponding

average Fung-Hsieh model R2 of 9.3 percent. There are two primary limitations associated with

the ENet model. One, it is unable to accurately capture nonlinear effects, which hampers its

ability to reflect the complex relationships between fund returns and the relevant risk factors.

And two, the penalty constraints imposed on (the coefficients of) the seven risk factors in the

ENet model can potentially lead to model under-fitting when considering the in-sample fit over

the entire sample period, compared to the unconstrained Fung and Hsieh (2004) model. By

contrast, the more flexible ENet* model performs better with an overall average R2 at 17.8

percent, which is nearly twice that of the corresponding figure for the Fung and Hsieh (2004)

model.

Although the tree-based RF model is in principle capable of capturing nonlinear effects, the

model performs poorly in the case of the zero-R2 funds with average fund R2 value of only 4.5

percent. On the other hand the theoretical model structure of the BART model is more flexible

that of RF. The BART model clearly dominates the other machine learning models and the

Fung and Hsieh (2004) model with an overall average R2 of 35.0 percent in the case of zero-R2

funds. Note that this is nearly twice as high as the next best performing model, namely, ENet*.

In the case of the nonzero-R2 funds, as expected each of the benchmark models does a better

job of tracking the hedge fund returns. The average fund R2 value for the Fung and Hsieh (2004)

model is 37.8 percent which is close to the corresponding figures for Enet (36.5 percent) and

RF (30.2 percent) models. Once again the BART model dominates with an average fund R2

of 54.4 percent, which significantly outpaces the corresponding figure of 43.5 percent for the

second best performing model (ENet* ). It is also worth highlighting that these results remain

qualitatively unchanged when we examine th erelative performance of the models across the

various fund categories.

Furthermore, we perform the Diebold-Mariano test to assess the model predictions, and the
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results are summarized in Table A2. The Diebold-Mariano test compares the performance of

the machine learning models to that of the Fung and Hsieh (2004) seven-factor model in terms

of the models’ abilities to fit the realized fund returns. For each fund, we calculate the residuals

as the discrepancy between the realized fund returns and the estimated returns obtained from

the benchmark models. We then compute the Diebold-Mariano test statistic to determine

whether the machine learning models exhibit significantly lower residuals compared to the Fung

and Hsieh (2004) 7-factor model. Table A2 reports the proportion of funds with a significant

Diebold-Mariano statistic. Panel A of the table presents results for zero-R2 funds while Panel B

presents results for funds designated as nonzero-R2 funds. Results in both Panel A and Panel B

highlight the superiority of the ENet* and BART models over the Fung-Hsieh 7-factor model,

as evidenced by lower estimation residuals. In many fund categories, more than 90% of the funds

exhibit a significant DM statistic, indicating the superior predictive performance of ENet* and

BART. Conversely, there are relatively few funds that demonstrate significantly lower residuals

based on the ENet and RF models. These findings align with the results presented in Table

III, reinforcing the consistency of our observations.

As a robustness check, following Bollen (2013), Table A3 presents results based on the

optimal fund-specific model that yields the highest realized R2 values using up to three (out

of seven) factors. Following the procedure employed by Bollen (2013), we employ a step-wise

regression approach for each fund to select the model with no more than three factors that yields

the highest R2. Next, we compute the 95th percentile of the simulated R2 distribution under

the null hypothesis as the critical value, which is then compared with the realized model R2.

Funds with model R2 values below the 95th percentile critical value are identified as zero-R2

funds.

In Table A3, we provide a summary of the average R2 from both the optimal model and four

machine learning models. Notably, based on the optimal fund-specific three-factor model, 690

out of 4,202 funds (16 percent) are classified as zero-R2 funds. Furthermore, consistent with the

results in Table III, the ENet* and BART R2 outperforms the Fung-Hsieh R2 for both zero-R2

and non-zero-R2 fund groups. The outperformance applies to all fund categories. However, it

should be noted that the fit of the ENet* and BART models using up to three factors is less

accurate compared to using all seven factors. This suggests that imposing a strict limitation on

the number of factors could potentially compromise the overall performance of the models.

In summary, the above findings strongly indicate that machine learning models, which have

the ability to capture factor interactions and nonlinear effects, outperform the linear Fung-Hsieh

model in effectively capturing the systematic risks inherent in hedge fund strategies.
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B.2 Estimates of Fund Alphas

Table IV presents estimates of hedge fund alphas based on the various benchmark models.

First, consider the estimates for the zero-R2 funds presented in Panel A of the table. The

monthly alpha estimates range from 0.41 percent based on the Fung and Hsieh (2004) model

to 0.51 percent for the BART model. The estimates based on the other 3 machine learning

algorithms/models, particularly in the case of Enet, are quite close to that for the Fung and

Hsieh (2004) model. In general, the results for the various fund categories are qualitatively

similar.

Panel B of Table IV presents estimates estimates for the nonzero-R2 funds. Overall, the

monthly alpha estimates range from 0.17 percent based on the BART model to 0.30 percent

for ENet* and RF models. Focusing on the category-specific results in Panel B, we note that

the Fung and Hsieh (2004) model-based alphas generally exceed estimates based on the BART

model, with the sole exception of the Fund of Funds category. For example, the Fung-Hsieh

average alpha for the Directional Funds is 0.30 percent, nearly 4 times the corresponding BART

estimate of 0.08 percent. In general, estimates based on other machine learning methods also

exceed the BART model-based estimates.

In interpreting the results in Table IV it is useful to recall that estimates of fund alphas are a

measure of the average (excess) hedge fund returns that are unrelated to systematic risk factors.

Hence, given the superior tracking performance of the BART model documented earlier, it is

reasonable to conclude that the BART estimates are a more accurate reflection of fund alphas,

i.e., the average excess hedge fund returns that are “skill-related.”

C. Explanatory Power of Benchmark Models By Length of Performance Record

Hedge fund databases contain several funds with short-lived performance records due to the

industry’s notoriously high attrition rate. Additionally, successful hedge firms may voluntarily

stop disclosing their results to data vendors. As a result, it is important to evaluate how sensitive

a benchmark model’s performance is to the duration of a fund’s track record. Accordingly, in this

subsection, we investigate how the explanatory power of the Fung and Hsieh (2004) model varies

in relation to the length of funds’ historical record, and compare these findings with the results

obtained from the machine learning models. The analysis consistently reveals the superiority of

the machine learning framework over the competing linear factor model framework. Notably,

the advantage of the machine learning models is even more pronounced for funds with shorter

historical records.

Table V presents the average R2 and α̂ values derived from both the Fung and Hsieh (2004)
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model and the machine learning models. The table also provides the total number of funds

categorized by their age groups. Consistent with previous research by Bollen and Whaley

(2009), a significant portion of the funds in our dataset exhibit relatively short historical records.

Notably, more than three-fourths of the funds have a history shorter than 156 months, while the

entire sample period in our study spans 312 months. The median duration of performance track

record for the funds in our sample is 76 months. It is evident from the table that that younger

funds are more likely to be identified as zero-R2 funds in comparison to their older counterparts

suggesting that the Fung and Hsieh (2004) benchmark model performs poorly in tracking the

performance of younger funds. The average R2 value based on the Fung and Hsieh (2004)

model is higher in the younger fund groups and decreases with fund age, for both zero- and

nonzero-R2 funds. The observed trend can be explained by the fact that as the return histories

of funds become longer, the critical value of R2 above (below) which a fund is categorized as a

nonzero-R2 (zero-R2) fund decreases. Consequently, funds with longer return histories tend to

have smaller average R2 values across both groups.

For zero-R2 funds, the average Fung-Hsieh R2 remains consistently close to zero across all

age groups. In contrast, nonzero-R2 funds demonstrate higher average Fung-Hsieh R2 values,

ranging from 0.356 to 0.420. In terms of machine learning models, the BART model dominates

the other models, and it significantly outperforms the Fung-Hsieh model displaying substantially

higher R2 values across all age groups. This divergence is particularly noticeable for younger

funds. For instance, zero-R2 funds with less than 60 months of return history exhibit an average

BART R2 value of 0.468, a significant improvement compared to the Fung-Hsieh R2 value of

0.128. Even in the case of zero-R2 funds with over 180 months of data, the average BART

R2 of 0.149 is still more than three times larger than the average Fung-Hsieh R2 for the same

age group. This pattern persists for nonzero-R2 funds, with the average BART model R2

consistently surpassing the average Fung-Hsieh R2 across all age groups.

To summarize, the results presented in this sub-section confirm that younger funds are more

likely to be classified as zero-R2 funds following the procedure suggested by Bollen (2013). This

can be attributed to the limitations of the linear factor model in adequately capturing the risk

sources associated with funds with short histories. On the other hand, flexible machine learning

models such as BART and ENet* effectively address this issue by incorporating nonlinearities

and interaction effects among the risk factors, even when considering a limited set of risk

factor candidates. Consequently, these models offer a more accurate representation of the risk

exposures of younger funds in particular, resulting in significantly higher R2 values across funds

of all age groups.
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D. Trading Strategies

The findings from the previous section demonstrate the superiority of machine learning

models in capturing nonlinear risk effects when characterizing hedge fund performance. A more

relevant and practical concern for investors is whether these improved models can help them

identify skilled fund managers in real time. Accordingly, in this section we assess the value of the

machine learning model framework in identifying superior funds through a real-time exercise.

To this end, we investigate the performance of strategies that select funds into portfolios

at the beginning of each year, based on their performance evaluated using one of the five

benchmark models. The models used for this purpose are as follows: i) the Fung and Hsieh

(2004) seven-factor model (FH ), ii) the Elastic Net with the same set of Fung-Hsieh 7 factors

(Enet), iii) Elastic Net with an extended set of factors (the original 7 factors plus all two-way

interaction terms involving the factors) (Enet* ), iv) Random Forest (RF ), and v) Bayesian

Additive Regression Trees (BART ).18

D.1 Portfolios Based on Alpha t-statistics

We adopt a sorting method following Fama and French (2010) and O’Doherty, Savin, and

Tiwari (2016) to create portfolios of hedge funds at the start of each year. Specifically, in

January of each year, we rank the hedge funds into decile portfolios based on the t-statistics

associated with their alphas estimated using one of the benchmark models. The funds are

retained in the respective decile portfolios during the subsequent 12 months. We then evaluate

the performance of the top decile portfolio using various performance measures. Although we

also report the performance of the hypothetical long-short hedge portfolio, our analysis focuses

primarily on the top decile portfolio since short selling hedge funds is impractical in real-world

scenarios.

Turning next to the details of the fund selection process, consider that the t-statistic of a

fund’s estimated alpha at time t based on the prior d periods (from τ = t− d+ 1 to τ = t) is

tα̂,i,t =
ᾱi,t

σα/
√
d
, (22)

where ᾱi,t is the average fund return in excess of the return attributed to the benchmark factor

model:

ᾱi,t =
1

d

t∑
τ=t−d+1

α̂i,τ =
1

d

t∑
τ=t−d+1

[
ri,τ − β̂

′
i,τg(fi,τ )

]
. (23)

18As previously described, in order to estimate fund alphas using the estimates from tree-based algorithms
(i.e., RF and BART ) we rely on their corresponding interpretable proxy linear models.
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In our analysis, we fix d = 24, which means that we compute the t-statistic based on the

estimated alpha using data from the prior 24 months. For the Fung and Hsieh (2004) model,

β̂i,τ is estimated based on the 7-factor model over a 36-month rolling window. For the machine

learning models, we estimate each β̂i,τ over a period of 36 months consisting of a 24-month

training period for model fitting, and a 12-month validation period for hyperparameter (i.e., γ1

and γ2 in Equations (13) and (18)) tuning. We then compute the estimate, α̂i, and calculate its

t-statistic following Equation (22) over the subsequent 24 months. We sort the funds based on

the alpha t-statistics and form equal-weighted decile portfolios. We then track the performance

of the decile portfolios over the subsequent year.19

Table VI presents the performance of the top decile portfolios (P10 ), and the hedge portfolios

(P1-P10 ) based on the various benchmark models considered by us. We consider the portfolio

performance in terms of the mean return in percent per year, standard deviation, annualized

Sharpe ratio, information ratio, maximum portfolio drawdown, and maximum 1-month loss.

We also report the annualized 7-factor alpha and its t-statistic, which we compute via the

time-series regressions of the portfolio’s realized excess returns on the Fung and Hsieh (2004)

model factors. The last row in the table reports the manipulation-proof performance measure

(MPPM) of Goetzmann, Ingersoll, Spiegel, and Welch (2007) based on the risk aversion level

of 3.

To begin, consider the performance of the top decile portfolios labeled P10. It is evident that

the machine learning models outperform the Fung and Hsieh (2004) model in terms of decile

portfolio performance across multiple measures. The top decile portfolio based on the Fung

and Hsieh (2004) model earns an average excess return of 4.494% per year. In contrast, the top

decile portfolios based on the ENet, ENet*, RF and BART models achieve average annual excess

returns of 5.013%, 5.570%, 5.045% and 5.136%, respectively. The corresponding Sharpe ratios

of the top decile portfolios based on the four machine learning models are 1.003, 1.160, 0.971

and 0.972, respectively. All of these Sharpe ratios comfortably exceed the corresponding value

of 0.829 for the top decile portfolio based on the Fung and Hsieh (2004) model. Interestingly,

the superior performance of the machine learning model-based portfolios is not accompanied by

increased downside risk. In fact, the maximum drawdown and maximum 1-month loss figures

for these machine learning model-based portfolios are lower compared to the equivalent figures

for the top portfolio based on the Fung and Hsieh (2004) model. Additionally, the annualized

19For instance, we train the machine learning models with data spanning from January 1997 to December
1998, then validate these models using data from January 1999 to December 1999. At the start of January
2002, we compute the t-statistic of the alpha estimated from January 2000 to December 2001, sort funds into
equal-weighted decile portfolios, and track their performance in the subsequent 12 months until December 2002.
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Sortino ratio20 for the top decile portfolio based on the Fung and Hsieh (2004) model is 1.318,

whereas the top portfolios based on the four machine learning models deliver Sortino ratios of

1.584,1.901, 1.512 and 1.543, respectively. The reported seven-factor alpha estimates further

confirm the efficacy of the machine learning model framework in evaluating fund performance.

The top decile portfolios relying on ENet, ENet*, RF and BART exhibit annualized alphas of

3.420%, 3.932%, 3.349% and3.395% (with corresponding t-statistic of 4.430, 4.430, 4.243 and

5.532, respectively). In economic terms, these alphas comfortably exceed the Fung-Hsieh model

top decile portfolio alpha of 2.809%. The MPPM values for the top decile portfolios based on

the four machine learning models are 2.921, 3.507, 2.922 and 3.000, respectively. These values

all exceed the corresponding MPPM value of 2.334 for the top decile portfolio selected based

on the Fung-Hsieh model alphas.

Next, consider the performance of the hypothetical hedge portfolio based on the long-short

strategy. The hedge portfolio based on the Fung-Hsieh model exhibits a mean excess return of

0.205%. On the other hand, the long-short hedge portfolio based on machine learning models

all have higher mean excess returns of around 1%. The outperformance of the hedge portfolios

based on machine learning models is also quite pronounced when considering other performance

measures like the Sharpe ratio, and the Sortino ratio. The four machine learning model-based

hedge portfolios exhibit superior Sortino ratios of 0.303, 0.680, 0.424 and 0.248, surpassing

the Sortino ratio of 0.083 for the Fung-Hsieh model-based hedge portfolio. Additionally, the

alphas of the machine learning-based hedge portfolios are significantly higher compared to the

Fung-Hsieh model-based hedge portfolio. The downside risk measures, such as the maximum

drawdown and maximum 1-month loss, are consistently lower for the machine learning model-

based hedge portfolios.

Figure 1 illustrates the cumulative growth of a $1 investment in the top decile portfolios

during the period from January 1999 to December 2021. The top decile portfolios are determined

based on either the Fung-Hsieh model-based alpha t-statistics, or the four machine learning-

based alpha t-statistics. At the end of December 2021, an investor following the top decile

strategy based on the ENet* model would have witnessed their initial investment of $1 grow to

$3.31. The cumulative wealth increase based on the investment strategies guided by ENet, RF

and BART models is slightly lower, at $2.92, $2.99, and $2.94, respectively. In comparison, an

investment in the Fung-Hsieh model-based top decile portfolios would have concluded the sample

period with only $2.60. Notably, the growth rate of the Fung-Hsieh model top decile portfolio

aligns with the other portfolios until the 2008 financial crisis. It closely follows the machine

20The Sortino ratio is calculated as the average excess portfolio return divided by the semi-variance.
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learning-based top decile portfolios and even outperforms the four machine learning portfolios

before 2002. However, its performance suffers during the post-crisis period and remains sluggish

thereafter.

Additionally, we conduct a thorough evaluation of portfolio performance within each hedge

fund category, including directional, nondirectional, semidirectional, fund of funds, and the

‘other’ category. This analysis ensures that the observed results are not driven by funds following

a specific trading style. Table A5 presents the results of this analysis.

For directional funds (Panel A in Table A5), the strategy based on the ENet model

demonstrates superior performance compared to the Fung-Hsieh model across several

performance measures. Both the top decile portfolio and the hedge portfolio of ENet

outperform the corresponding Fung-Hsieh portfolio in terms of mean excess return, Sharpe

ratio, Sortino ratio, information ratio, and seven-factor alpha. Conversely, the performance of

other machine learning methods falls short in comparison to ENet or the Fung and Hsieh

(2004) model. These results indicate that the linear machine learning-based benchmark

models perform better in characterizing the risk factors associated with directional funds and

identifying funds with superior performance. T

When considering semidirectional funds (Panel B in Table A5), all four machine

learning-based top decile portfolios outperform the Fung-Hsieh model-based top portfolio.

The superiority of machine learning models becomes even more evident within nondirectional

funds (Panel C in Table A5) and fund of funds (Panel D in Table A5), as all four machine

learning-based top decile and hedge portfolios outperform their corresponding Fung-Hsieh

model-based counterpart portfolios. The machine learning-based portfolios consistently

outperform the Fung-Hsieh portfolios across various performance metrics. This suggests that

the ability of machine learning methods to identify and capture nonlinear effects is of great

importance for accurately modeling fund performance.

An exception to the generally superior performance of fund selection strategies based on

machine learning models can be observed for funds categorized as “Others”. The results indicate

a preference for using the Fung and Hsieh (2004) model in capturing the risk exposures of these

funds. In other words, a linear factor model appears to be sufficient for risk characterization

and performance evaluation of such funds.

D.2 Subperiod Analysis

Bollen, Joenväärä, and Kauppila (2021) document a significant decline in hedge fund

performance during the post-financial crisis period (2008–2016) compared to the period from
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1997 to 2007. Motivated by their findings, this section explores the performance of benchmark

models over different sample periods. Specifically, following Bollen, Joenväärä, and Kauppila

(2021), the sample is split into two subperiods: the pre-financial crisis period (1998-2007) and

the post-financial crisis period (2008-2021). The performance of strategies that select funds

into portfolios based on the fund alphas estimated using the various benchmark models is

examined in both sub-periods.

The performance of the selection strategies relying on the Fung-Hsieh model experiences a

dramatic decline after 2008. In Panel A of Table VII, the top decile portfolio based on the Fung-

Hsieh model demonstrates an excess return of 6.305%, an annualized Sortino ratio of 2.632, an

information ratio of 2.260, and an annualized 7-factor alpha of 5.039% prior to 2008. However,

during the post-2008 period, these metrics decline to 3.240% for excess return, 0.818 for Sortino

ratio, 0.392 for information ratio, and 1.086% for the 7-factor alpha. In contrast, the decline

in performance is relatively mild for the machine learning-based top portfolios. Furthermore,

all four machine learning model-based top decile portfolios outperform the corresponding Fung-

Hsieh model-based portfolio by a large margin after 2008.

Although the hedge portfolio is non-tradable, the performance improvement of the ENet* -

based hedge portfolios after 2008 is worth noting. For instance, the Sortino ratio of the ENet*

hedge portfolio increases from 0.465 pre-2008 to 0.843 post-2008, and the Sharpe ratio doubles

after 2008. The annualized 7-factor alpha also increases from 1.592% pre-2008 to 4.474% post-

2008. Additionally, it is worth highlighting that the MPPM of the four machine learning-based

hedge portfolios all reverse in sign from being negative pre-2008, to turning positive post-

2008. These improvements are primarily driven by the sharp decline in the performance of

the bottom decile portfolios, indicating that the machine learning-based strategies are quite

effective at identifying poorly performing funds. It is widely recognized that several hedge

funds experienced failure during the financial crisis and the subsequent period. The machine

learning model framework appears to be particularly valuable in screening out underperforming

funds during the post-financial crisis period.

In summary, our results complement the findings in Bollen, Joenväärä, and Kauppila (2021).

The performance of hedge fund portfolios selected based on the Fung-Hsieh 7-factor benchmark

model deteriorates during the period following the financial crisis. On the other hand, machine

learning-based models suffer much less from the performance decline. Despite the overall decline

in hedge fund performance since 2008, machine learning-based models prove to be more efficient

in identifying better-performing funds compared to the Fung-Hsieh model.
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E. Failure Prediction

This subsection examines the role of the machine learning-implied benchmark models in

predicting hedge fund failures. Fund failure is considered a more straightforward indicator of

poor performance compared to returns-based analyses, as funds with persistently poor

performance tend to cease reporting (Bollen, 2013). Accordingly, following Liang and Park

(2010) and Bollen (2013), we examine the ability of the various benchmark models to predict

fund failure using the Cox (1972) proportional hazards model. The analysis controls for other

known determinants of fund failure, along with yearly fixed effects to capture time-series

variation in failure rates caused by market conditions. Since some funds in the TASS database

stop reporting their returns several months prior to failure, the hazard analysis is conducted

on a fund-year basis, following O’Doherty, Savin, and Tiwari (2016).

It is assumed that the failure rate of a given fund depends on fund age t and a vector of

covariates z(t):

h(t, z) = h0(t) exp(β
′z(t)), (24)

where h0(t) is the baseline hazard rate that depends only on age t, and z(t) is the set of time-

varying covariates. A fund is identified as failing if it stops reporting its performance to the

TASS database. Following Liang and Park (2010), we employ an additional performance filter

requiring the fund’s average excess return over the prior 12 months to be below the median

value across all funds during the same period. Funds are considered “live” if they either remain

in the database or were dropped from the database but had an average excess return over the

prior 12 months above the median hedge fund return during the same period.

The primary question of interest is the informativeness of the performance relative to each

benchmark model in predicting fund failures. Accordingly, we create failure indicators based

on each benchmark model. For each of the models, (FH, ENet, ENet*, RF, and BART ), we

rank sample funds at the beginning of each year based on the respective model-implied alpha t-

statistics computed using the prior two years of fund returns. Assuming that poorly performing

funds are more likely to fail, we create a model-specific failure indicator for each fund. The

failure indicator equals one for funds ranked in the lowest quintile based on the fund alpha

t-statistics derived from a particular model. Thus, based on each model, we obtain a failure

indicator for each fund at the start of each year. Additionally, a ZeroR2 flag indicator inspired

by Bollen (2013) is created. A fund is flagged with a value of 1 if its realized R2 from the

7-factor Fung and Hsieh (2004) model over the prior 60 months falls below the 95th percentile

of the simulated R2 distribution under the null hypothesis.

29



The remaining covariates in z(t) are constructed for each fund-year following Liang and Park

(2010), andO’Doherty, Savin, and Tiwari (2016). Dummy variables are included to identify

funds with a high-water mark provision, personal investment by fund managers, leverage, and

lockup provisions. To control for recent past performance, we include a fund’s percentile rank

based on the prior 12-month average excess returns relative to all funds (return rank). We also

control for a fund’s downside risk by computing the expected shortfall, which involves forming

the monthly excess return distribution using all prior observations and averaging the returns

that are below than the 5th percentile cutoff. We also include as controls dummy variables for

the five broad investment styles (i.e., directional, nondirectional, semidirectional, fund of funds,

and others). The log of fund age in months is also added as an explanatory variable, along with

year-fixed effects. All variables are constructed and updated at the beginning of each year and

are used to predict fund failure during the year. Thus, the model characterizes fund failures

from January 1999 to December 2021.

The results of the fund failure analysis are presented in Columns (1) - (4) of Table VIII.

The models in this case include one of the machine learning model-based faiure indicators, a

failure indicator based on the Fung-Hsieh model, and the ZeroR2 indicator, along with the

aforementioned control variables and fixed effects. The table reports the parameter estimates

and hazard ratios (in brackets) for each covariate. All four machine learning-based failure

indicators are statistically significant predictors of hedge fund failure. The coefficient estimate

is 0.563 for ENet* with a corresponding hazard ratio of 1.757, suggesting that funds classified

in the bottom quintile according to the ENet* model have a 75.7% higher probability of failure

compared to other funds, after controlling for the fund’s prior returns and downside risk. In

contrast, the indicators based on the Fung and Hsieh (2004) model and the ZeroR2 classification

(Bollen (2013)) show no predictive ability regarding fund failure, at the margin. Regarding the

other covariates, the results align with prior studies. As expected, a higher prior return rank is

significantly negatively related to the probability of failure, indicating that better-performing

funds are more likely to survive. The estimated coefficient of Shortfall is significantly positive,

suggesting that funds with higher downside risk are more prone to failure.

Next, we estimate the individual models that include only one failure indicator at a time,

along with the control variables. Columns (5) - (10) of Table VIII report the coefficient estimates

and hazard ratios of the respective failure indicators. The coefficient estimates for the machine

learning-based indicators in columns (5) through (8) of the table remain significantly positive.

The estimates range from 0.366 for the Enet* model to 0.444 for the RF model. In economic

terms, based on the hazard ratio, funds classified in the bottom quintile according to the RF
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model have a 55.9% higher chance of failure relative to other funds, after controlling for prior

performance and downside risk. On the other hand, the ZeroR2 indicator, when included by

itself in the model with other control variables, remains statistically insignificant.21 Finally, the

Fung-Hsieh indicator has a coefficient of 0.099 which is statistically significant at the 1% level.

Interestingly, the coefficient and the associated hazard ratio of 1.105 imply a notably weaker

predictive value for the Fung-Hsieh failure indicator compared to the failure indicators based

on the four machine learning-based models, in economic terms .

To summarize, the machine learning model-based approach yields better performance in

terms of fund failure prediction compared to failure indicators based on the conventional linear

factor models (e.g., the Fung and Hsieh (2004) model). Thanks to the ability to capture

nonlinear and high-order interaction effects among risk factors, the machine learning framework

can more accurately characterize the investment style and capture the risks to which funds are

exposed. Consequently, the resulting alpha measure is an efficient means to identify the worst-

performing funds that have an elevated probability of failing subsequently.

VII. Re-examining the Value of Hedge Fund Strategy Distinctiveness

The previous empirical findings demonstrate the effectiveness of machine learning-based

benchmarks in capturing the investment styles of individual hedge funds, even for funds that

the traditional Fung and Hsieh (2004) model fails to explain. These results also highlight the

superior ability of the machine learning framework to identify skilled funds compared to the

Fung and Hsieh (2004) benchmark model. Building upon these findings, we revisit a well-known

result first documented by Sun, Wang, and Zheng (2012) to further illustrate the value of the

machine learning framework.

In their study, Sun, Wang, and Zheng (2012) explore the relationship between a fund’s

strategy distinctiveness and its subsequent performance, motivated by the idea that skilled fund

managers often employ innovative and unique trading strategies. They find striking results,

showing that funds ranked in the top quintile of their Strategy Distinctiveness Index (SDI)

outperform funds in the bottom quintile by 3.5% the following year, based on the 7-factor Fung

and Hsieh (2001) alphas. Given the limitations of the traditional benchmark model, as discussed

in this paper, it is important to reexamine this issue.

21We note that our results in this regard contrast with those of Bollen (2013), which we attribute to the
difference in our respective samples and time periods. Furthermore, to align with the design of the machine
learning model, we compute the ZeroR2 flag indicator based on its R2 and simulated critical value calculated
from a regression of fund returns on the factors over the prior 60 months. In an unreported test where we
follow Bollen (2013) and use the prior 24 months to construct the ZeroR2 indicator, the associated p-value for
its coefficient marginally clears the 5% significance level.
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One key concern arising from our previous findings is the explanatory power of a linear

factor model, especially when it comes to benchmarking the performance of funds that follow

unique strategies defying the usual style classifications. The more unique a strategy appears

to be, the more likely it is that the conventional benchmark model will fail to capture the

relevant risks associated with the strategy. It becomes difficult to distinguish the effect of

strategy distinctiveness on performance if the Fung and Hsieh (2004) model poorly captures

the risks inherent in the fund’s strategy. Funds following more distinctive or unique strategies

relative to their peers are also exposed to potentially unique risks that may be overlooked by the

benchmark model, which is otherwise well-suited for benchmarking typical or “average” funds.

To address this issue, we replicate the main findings of Sun, Wang, and Zheng (2012) and go

further by assessing fund performance using both the machine learning model-based alphas and

the Fung and Hsieh (2004) alphas. We also control for the effects of potentially omitted risks by

separately analyzing zero-R2 funds. For each fund, we construct the Strategy Distinctiveness

Index (SDI) as described by Sun, Wang, and Zheng (2012). The SDI is estimated as (1 - corr),

where corr represents the correlation between a fund’s return and the average return of funds

within the same investment style over the prior 24 months. Thus, the SDI reflects the lack of

correlation between a fund’s return and its peers within the same category. We create fund

quintile portfolios based on the end-of-period SDI values and calculate the portfolio alphas

relative to both the Fung and Hsieh (2004) model and the machine learning-based benchmark

models. We update the portfolios every 6 months, and report the results over short- and long-

term holding periods of 6 months and 24 months, respectively.22

We begin by examining the results for the full sample, as presented in Table IX. The table

reports the R2 and α̂ values of the quintile portfolios based on Fung and Hsieh (2004) and

machine learning models.23 The average fund’s Fung-Hsieh model R2 declines from 0.692 to

0.370 as we move from the lowest to the highest SDI portfolio. This result aligns with our

previous findings, indicating that the Fung and Hsieh (2004) model fails to effectively capture

the risks associated with high SDI funds. In contrast, the machine learning-based models are

less vulnerable to this limitation. The average R2 values of all five SDI portfolios based on

the ENet* and BART models consistently exceed the corresponding values for the Fung-Hsieh

model. Remarkably, the averageR2 values for high SDI funds based on the ENet* and the BART

model are as high as 0.440 and 0.443, respectively. The other two machine learning models

exhibit qualitatively similar or slightly higher R2 relative to the Fung-Hsieh model. In other

22We also experimented with an alternative design by updating the portfolios every 3 months, while varying
the holding period from 3 to 36 months. The results are qualitatively similar.

23The R2 results of the portfolio based on the holding period of 24 months are qualitatively the same.
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words, the machine learning models more accurately track the risks associated with strategies,

including those that appear to be unique or distinctive. This is an important consideration as

we next evaluate the alphas based on the machine learning model framework.

As observed, the monthly Fung-Hsieh alpha of the High-Low portfolio with a 6-month buy-

and-hold period is 0.192% with a t-statistic of 1.687. The results are qualitatively similar

and more pronounced at the longer holding period of 24 months. The Fung-Hsieh alpha is

0.186% with a t-statistic of 1.749. Overall, these results are qualitatively consistent with the

findings of Sun, Wang, and Zheng (2012) and support the positive relationship between strategy

distinctiveness and fund performance.

To delve deeper into this issue, we further investigate whether “strategy distinctiveness”

serves as a proxy for omitted risks in the standard benchmark Fung and Hsieh (2004) model.

To accomplish this, we control for the effect of omitted risks by conducting the aforementioned

analysis separately for zero- and nonzero-R2 funds identified using the method proposed by

Bollen (2013). We expect that the positive relationship between SDI and performance will not

persist in the nonzero-R2 fund group, for which the benchmark Fung and Hsieh (2004) model

adequately captures the risks and does not suffer from the “omitted risks” issue.

The results presented in Table X confirm our expectations. Panel A and B report the average

R2 and α̂ values for two groups of funds classified as zero- or nonzero-R2 funds, respectively.

In the zero-R2 fund group, the average Fung-Hsieh R2 values within each SDI portfolio group

are notably lower compared to the R2 values of the SDI portfolio based on nonzero-R2 funds.

Specifically, the Fung-Hsieh average R2 value is 0.071 for the highest SDI portfolio in the zero-

R2 fund group. The corresponding average R2 value for the highest SDI group of funds among

the nonzero-R2 funds is 0.496. As expected, the Fung and Hsieh (2004) model performs much

better in explaining the performance of the nonzero R2 funds. The machine learning models, on

the other hand, generally improve the tracking (R2) performance, but do not alter the pattern

of higher (lower) average R2 for nonzero (zero) R2 funds.

The results of estimated alpha in Table X further support our hypothesis that the SDI

measure serves as a proxy for the omitted risk. Notably, the significance of estimated alphas is

only observed within the zeroR2 fund groups. In Panel B, the alphas are nearly indistinguishable

across the three lowest SDI quintile portfolios, along with the High-Low portfolio. Moreover, it

is worth noting that the average machine learning model R2 does not decrease monotonically

with the SDI level. Its value does not suffer from dramatic decrease from low to high SDI either.

Additionally, the machine learning models consistently generate lower estimates of α̂ compared

to Fung-Hsieh alpha. Therefore, for nonzero R2 funds, when the strategy risks are adequately
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captured by the benchmark model, the apparent positive link between strategy distinctiveness

and fund performance vanishes. This finding remains consistent across both the 6-month and

24-month holding periods.

In summary, our results establish that the the function of SDI is only effective when the

benchmark model is unable to appropriately capture risk exposures of the funds. Machine

learning-based benchmark models outperform in capturing the risks inherent in hedge fund

strategies that appear to be distinctive or unique. Results based on the machine learning model

alphas suggest that the documented positive relationship between strategy distinctiveness and

fund performance largely stems from model errors that contaminate inference based on the

conventional Fung and Hsieh (2004) model.

VIII. Concluding Remarks

The assessment of hedge fund performance is challenging given the flexibility of hedge fund

strategies in terms of asset class exposures and leverage, along with the relative absence of

disclosure requirements. This paper proposes the use of performance benchmarks based on

machine learning techniques to address the challenge of hedge fund performance evaluation.

In general, machine learning models offer the advantage of flexibility in in terms of estimating

a benchmark that can successfully track hedge fund performance. The superior tracking

performance of the machine learning models results in more precise estimates of fund alphas

compared to traditional linear factor models. The precision of estimated fund alphas, in turn,

leads to an improved ability to ex ante identify better performing funds, as well as funds likely

to fail. We demonstrate that these features are valuable in the context of tracking the

performance of individual hedge funds. Importantly, we show that the machine learning-based

benchmark models can successfully characterize the risks of funds that have near-zero R2

values with respect to traditional performance attribution models (e.g., Fung and Hsieh (2004)

model), and funds with short return histories. In particular, a Bayesian ensemble-of-trees

framework (BART) is particularly valuable in this context. A key reason for the success of the

methodology is its ability to account for the nonlinearities and high-order interaction effects

among risk factors that are important in determining hedge fund strategy payoffs. We further

show that machine learning-based models offer significant advantage over the traditional

approach in selecting superior performing funds in real-time. The machine learning methods

we consider also dominate in terms of the ability to predict fund failure.

As a further illustration of the advantage offered by machine learning methods in a

performance evaluation context, we re-examine the evidence regarding the well-documented
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positive relation between hedge fund strategy distinctiveness and fund performance. Our

results suggest that the documented link between strategy distinctiveness and fund

performance is an artifact of benchmark model error.
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Table I

Summary Statistics: Monthly Excess Returns of Hedge Funds

Live Defunct Mean Median Std Kurtosis Skewness

All 791 3,411 0.42 0.49 3.84 -0.34 7.32

Dedicated Short Bias 0 23 -0.18 -0.40 6.61 0.18 6.14
Emerging Markets 61 267 0.54 0.65 6.28 -0.23 7.03
Global Macro 32 137 0.47 0.35 4.25 0.21 6.34
Managed Futures 2 2 0.17 0.13 3.25 -0.08 3.03
All Directional 95 429 0.48 0.50 5.62 -0.07 6.74

Event Driven 52 271 0.43 0.53 3.31 -0.49 8.24
Long/Short Equity Hedge 244 950 0.59 0.61 4.99 -0.01 5.68
Multi-Strategy 97 231 0.40 0.46 3.17 -0.57 8.32
All Semidirectional 393 1,452 0.53 0.57 4.37 -0.19 6.60

Convertible Arbitrage 7 90 0.42 0.46 3.70 -0.76 11.36
Equity Market Neutral 17 123 0.37 0.38 2.96 -0.32 8.40
Fixed Income Arbitrage 8 106 0.39 0.40 2.53 -0.75 12.64
All Nondirectional 32 319 0.39 0.41 3.02 -0.58 10.60

Fund of Funds 178 1,061 0.21 0.38 2.73 -0.60 7.09

Options Strategy 4 20 0.29 0.35 3.59 -0.27 14.68
Other 80 122 0.51 0.54 2.62 -0.45 10.65
Undefined 9 8 0.41 0.51 3.67 -0.19 3.46
All Others 93 150 0.48 0.52 2.79 -0.41 10.55

Note : This table reports the summary statistics for all sample hedge funds, and for funds
grouped by category. The summary statistics include the mean and median monthly excess
return (expressed as a percent) along with the standard deviation, skewness, and excess kurtosis.
We also count the number of live and defunct funds in each category. Within a given category,
the figures represent the equal weighted averages of the statistics across sample funds. The
sample includes funds in the Lipper TASS database with at least 60 months of consecutive
monthly net-of-fee returns, and a currency code of “USD” (U.S. dollar). The sample period
extends from January 1994 to December 2021.
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Table II

Summary Statistics of Factors

Mean Median Std Skewness Kurtosis

MKT 0.68 1.31 4.29 -0.75 1.25
SMB 0.11 0.05 3.07 0.45 4.65

D10YR -0.06 0.00 7.74 0.19 2.31
DSPRD 0.24 0.00 7.01 1.03 3.41
PTFSBD -1.39 -4.49 15.71 1.35 2.29
PTFSFX -1.06 -5.30 19.11 1.38 2.63
PTFSCOM -0.50 -3.05 14.02 1.10 1.69

Note : This table reports the summary statistics for the (Fung and Hsieh, 2004) model risk
factors. The summary statistics include the mean and median monthly returns expressed in
percent, standard deviation, skewness, and excess kurtosis. The sample period extends from
January 1994 to December 2021. For additional details regarding the factors please refer to the
text.
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Note : This figure presents the growth of $1 investment in the top decile portfolios of hedge
funds. The portfolios are equally-weighted and contain hedge funds ranked in the top decile
on the basis of estimated fund alphas at the start of each year. The portfolios are updated
annually. The alphas are based on the Fung and Hsieh (2004) model, or three versions of the
BART model. At the start of each year we sort funds based on the alpha t-statistics computed
using data over the prior 24 months.

Figure 1. Growth of $1 Investment in the Top Decile Portfolios
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Table A1

Simulation Results

Panel A – R2

Zero R2 Funds Nonzero R2 Funds
FH Enet Enet* RF BART FH Enet Enet* RF BART

α=0 0.165 0.138 0.415 0.299 0.421 0.396 0.380 0.588 0.482 0.591
α=0.22% 0.161 0.136 0.411 0.297 0.413 0.391 0.386 0.590 0.481 0.588
α=0.99% 0.168 0.139 0.416 0.297 0.418 0.389 0.379 0.589 0.484 0.591

Panel B – Estimated α

Zero R2 Funds Nonzero R2 Funds
FH Enet Enet* RF BART FH Enet Enet* RF BART

α=0 0.011 0.034 0.033 0.027 0.038 0.019 0.027 0.104 0.114 0.104
α=0.22% 0.227 0.234 0.248 0.246 0.243 0.216 0.230 0.301 0.312 0.300
α=0.99% 1.011 1.019 1.020 1.029 1.016 0.997 1.009 1.097 1.109 1.092

Panel C – Proportion of iterations with significant estimated α

Zero R2 Funds Nonzero R2 Funds
FH Enet Enet* RF BART FH Enet Enet* RF BART

α=0

1st. Q 14% 9% 17% 19% 18% 13% 9% 21% 24% 22%
Median 6% 5% 12% 13% 13% 6% 5% 15% 15% 15%
Mean 10% 8% 15% 15% 15% 10% 9% 17% 18% 18%
3rd. Q 4% 3% 9% 9% 9% 4% 3% 10% 10% 10%

α=0.22%

1st. Q 5% 3% 8% 6% 9% 4% 4% 9% 9% 9%
Median 14% 11% 20% 20% 20% 11% 11% 23% 25% 23%
Mean 24% 23% 28% 28% 28% 20% 19% 28% 30% 28%
3rd. Q 31% 32% 41% 44% 43% 31% 30% 44% 47% 44%

α=0.99%

1st. Q 58% 57% 65% 62% 66% 59% 64% 64% 61% 65%
Median 94% 96% 94% 92% 95% 97% 98% 93% 95% 93%
Mean 77% 76% 78% 77% 79% 78% 78% 77% 78% 78%
3rd. Q 100% 100% 100% 100% 100% 100% 100% 100% 100% 100%

Note : This table presents the performance of the Fung-Hsieh 7-factor model and machine learning models based on
a simulation exercise. We randomly select 300 funds (without replacement) from each of the zero-R2 and nonzero-
R2 fund groups. Fund returns are generated as the sum of pre-specified alpha values and the product of estimated
factor loadings and factor realizations, plus the re-sampled residuals from a benchmark model. The benchmark
model comprises 9 factors, including the 7 factors from Fung and Hsieh (2004) model, the squared market excess
return, and the interaction term between the market excess return and the traded liquidity factor (Pástor and
Stambaugh, 2003). Three pre-specified alpha values are considered: zero, the median value (α ≈ 0.22%), and
the 95th percentile (α ≈ 0.99%) value of the cross-sectional distribution of Fung-Hsieh estimated alphas across
all funds. We estimate the Fung and Hsieh (2004) model and machine learning models using the simulated fund
returns. We obtain the model R2 values, estimated alphas, and their corresponding t-statistics. The machine
learning models include Elastic Net with the same set of Fung-Hsieh 7 factors (Enet), Elastic Net with an extended
set of factors (the original 7 factors plus all two-way interactions of the factors) (Enet* ), Random Forest (RF ), and
Bayesian Additive Regression Tree (BART ). In the case of the RF and BART models fund alphas are estimated
based on proxy linear models described in the text. For each model, Panel A reports the median R2 value across
funds, computed using the median R2 value for each fund across 500 simulations. Similarly, we compute the
median alpha across the 500 simulations for each fund, and report the cross-sectional median alpha (in percent)
in Panel B. In Panel C, summary statistics are provided for the proportion of iterations (out of 500) in which
the estimated alpha is significantly different from zero at the 5% level (for the case when the true α = 0), or the
estimated alpha is positive and significantly different from zero at the 5% level (for the cases where true α ≈ 0.22
and true α ≈ 0.99).
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B. Appendix: Figures

Tree 1: g(fi,t;T1,M1) {ri,t; fi,t}

SMB> C11

µ11

SMB≤ C11

MktRF≤ C12

µ12

MktRF> C12

µ13

Tree 2: g(fi,t;T2,M2) {ri,t; fi,t}

DSPRD> C21

EXUSA> C22

µ21

EXUSA≤ C22

µ22

DSPRD≤ C21

EM≤ C23

µ23

EM> C23

µ24

...

Tree m: g(fi,t;Tm,Mm) {ri,t; fi,t}

MktRF> Cm1

HML> Cm2

µm1

HML≤ Cm2

µm2

MktRF≤ Cm1

D10YR≤ Cm3

µm3

D10YR> Cm3

µm4

The return of fund i in month t:

r̂i,t =
∑m

j=1 g(fi,t;Tj ,Mj)

Figure A1. Example of Regression Trees: g(fi,t;Tj ,Mj)
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