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Abstract

What quantity of reserves should the Fed supply to support effective monetary policy
implementation and an efficient interbank payment system? To answer this question,
I construct a model linking interbank intraday payment timing with monetary policy
implementation. I show that a low reserve supply causes banks to delay payments to
each other and strategically hoard reserves, which in turn disincentivizes banks from
providing liquidity to short-term funding markets, driving up the spreads between
overnight risk-free market rates and the central bank deposit rate, impeding monetary
policy implementation. As reserve balances get sufficiently low, even small reductions
in reserves can have large impacts on these spreads, mirroring the events observed
in September 2019. Fitted to data from 2019, my model predicts the funding rate
spikes of September 16-18, 2019 as an out-of-sample event. The model also provides
a counterfactual analysis of the sufficient reserve level that could have prevented the
September 2019 repo spike, offering insights into the current discussions about the
appropriate size of the Federal Reserve’s balance sheet and quantitative tightening
(QT).
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Our goal is to provide an ample supply of reserves to ensure that control of the federal funds rate
and other short-term interest rates is exercised primarily by setting our administered rates and not
through frequent market interventions [...] it is clear that without a sufficient quantity of reserves
in the banking system, even routine increases in funding pressures can lead to outsized movements
in money market interest rates. This volatility can impede the effective implementation of monetary
policy, and we are addressing it.

—Jerome Powell, “Data-Dependent Monetary Policy
in an Evolving Economy,” October 08, 20191

1 Introduction

What quantity of central bank deposits (“reserves”) is sufficient to support effective mone-
tary policy implementation and an efficient interbank payment system? As central banks,
particularly the US Federal Reserve, continue with balance sheet runoffs, the imperative
to understand this question has become ever more critical. This paper sheds light on
this issue through a quantitative framework based on game-theoretic modeling of the
strategic interactions of large US dealer banks. A low supply of reserves causes banks to
delay payments to each other, reinforced in equilibrium by strategic complementarity in
interbank intraday payment timing, leading to strategic hoarding of reserves. This in turn
disincentivizes banks from providing liquidity in wholesale funding markets, driving up
the spreads between wholesale funding market rates and the central bank’s deposit rate,
referred to as “IOR,”2 thereby disrupting the efficacy of monetary policy implementation
under the prevailing floor system. My model demonstrates that when reserve balances fall
below a critical threshold, even minor reductions can substantially impact these spreads,
a dynamic that cannot be captured by linear regression models. Using data from 2019, I
employ a method of moments procedure to quantify the model. My model successfully
predicts, out-of-sample, a liquidity crunch in the wholesale funding markets beginning
on September 16, a prediction corroborated by the famous repo-spike event of that year
(Fig. 6). Additionally, the model provides an estimate of the minimum level of reserves
that hypothetically could have prevented the September 2019 repo spike (Fig. 8)—a level
that would support effective monetary policy implementation, maintain an efficient in-
terbank payment system, and ensure liquid wholesale funding markets. Although the
model is based on historical data, it offers insights pertinent to ongoing discussions about

1Jerome Powell is the chair of the Federal Reserve. See his full speech here.
2“IOR” stands for “interest on reserves,” previously also known as “interest on excess reserves” or

“IOER.”

1

Electronic copy available at: https://ssrn.com/abstract=3721785

https://www.federalreserve.gov/newsevents/speech/powell20191008a.htm


the Federal Reserve’s balance sheet policy and quantitative tightening (QT). Admittedly,
due to the limitations of my dataset, the model does not capture every nuanced aspect
of monetary policy implementation, but a quantitative framework of this nature, capable
of predicting funding rate distortions out-of-sample, can be a useful policy tool for central
bankers, as it provides valuable guidance for precautionary interventions.

The aggregate quantity of reserves supplied by the Federal Reserve (Fed) is an impor-
tant policy concern: A sufficient level of reserve balances supports an efficient interbank
payment system as well as effective monetary policy implementation (pass-through of
the Fed-administered rate into risk-free overnight market rates). An efficient interbank
payment system relies on banks making large volumes of timely payments. Because those
payments are predominately settled with reserves, a sufficient quantity of reserves “lu-
bricates” the payment system (Atalay, Martin and McAndrews, 2010). Sufficient reserve
balances also support the current monetary policy implementation framework, known
as “the floor system,” by allowing banks to close the spreads between market rates and
IOR (Ihrig, Senyuz and Weinbach, 2020): When wholesale market risk-free rates, such
as Treasury repo rates, are higher than IOR, banks active in wholesale funding markets
(“dealer banks”) with extra reserves can in principle lend reserves in wholesale markets,
making an arbitrage profit. This forces the spreads between wholesale funding rates and
IOR close to zero, thereby enabling the Fed to control market interest rates by adjusting
IOR. When reserves are insufficient, however, banks may hoard reserves and not enforce
this arbitrage, impeding monetary policy implementation.

In 2019, as total reserve balances decreased,3 several risk-free funding rates, including
Treasury repo rates, sporadically increased above the Fed’s target range, as shown in
Fig. 1. Notably, on September 16-18, 2019, overnight repo rates spiked more than 300 basis
points, attracting considerable attention from global policymakers, academics, and market
participants.4 These spikes surprised the Fed, and necessitated emergency interventions.

3Total reserve balances reached a peak of about $2.8 trillion in October 2014. In 2017, the Federal Open
Market Committee began implementing balance sheet normalization and planned to reduce its assets and
liabilities, including reserves, to the greatest extent consistent with “efficient and effective monetary policy.”
System-wide reserve balances gradually declined to a low of about $1.4 trillion in early September 2019.
See Board of Governors of the Federal Reseve System (2019) for an overview of the Fed’s balance sheet
normalization policies.

4For examples of media reporting, see “Fed Preps Second $75 Billion Blast With Repo Market Still On
Edge," Bloomberg, September 17, 2019; “Why the U.S. Repo Market Blew Up and How to Fix It," Bloomberg,
January 6, 2020; “Fed Plans Second Intervention to Ease Funding Squeeze," Financial Times, September 17,
2019; “New York Fed Examines Banks’ Role in Money Market Turmoil," Financial Times, September 20, 2019;
“Wall Street Is Buzzing About Repo Rates. Here’s Why," New York Times, September 18, 2019; “Fed Intervenes
to Curb Soaring Short-Term Borrowing Costs,"Wall Street Journal, September 17, 2019.
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Figure 1: Reserve balances and the spread of the general collateral financing (GCF) repo rate over IOR. GCF
is an index of overnight Treasury general collateral interdealer repo rates. IOR, the interest rate paid on
reserves, is the Fed’s target policy rate. The reserve balances of the large repo-active banks are shown in
blue (right axis). The spread of GCF from IOR is shown in red (left axis). Sources: Fedwire Funds Service,
FRBNY, Copeland, Duffie and Yang (2020).

The Fed reacted quickly by announcing a series of repo operations and changed the course
of its balance sheet normalization process. On September 16-18, 2019, other overnight risk-
free funding markets also suffered from liquidity shortages (e.g., the overnight synthetic
dollar interest rateas documented by Correa, Du and Liao 2020. See also Fig. 18). These
disruptions rippled through various related securities markets (see Figs. 19 to 24). Low
reserve balances also reduced the efficiency of the intraday interbank payment system:
Copeland, Duffie and Yang (2020) document that the payment timing stress5 on September
17, 2019 reached its highest level since 2015. The observed link between payment timing
stress and funding market spikes is consistent with the mechanism of my paper, which I
explain as follows.

My model links two critical empirical facts. First, large dealer banks are the marginal
lenders in short-term funding markets, such as repo markets and FX swap markets (Avalos,
Ehlers and Eren, 2019; Correa, Du and Liao, 2020). Thus, the equilibrium funding rates
are closely related to large dealer banks’ marginal value of reserves.6 Second, in the

5Payment timing stress is measured by the payment time net of its sample mean when 50% of the day’s
total incoming value has been received by the 10 largest dealer banks over Fedwire. The later dealer banks
receive their incoming payments, the higher the payment timing stress.

6Most transactions in wholesale funding markets are settled using reserve balances at the central bank, so
lending in the funding markets causes an outflow of banks’ excess reserves (Bech, Martin and McAndrews,
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modern interbank payment system, large banks rely heavily on incoming payments from
other banks before being able to make the bulk of their own outgoing payments. This
reliance gives rise to strategic complementarity in banks’ payment timing decisions (Bech
and Garratt, 2003; McAndrews and Rajan, 2000; Afonso, Duffie, Rigon and Shin, 2022):
For any large bank—say, JPMorgan—incoming payments from other banks provide the
balances needed to cover its own outgoing payments, so when JPMorgan believes other
banks will send it payments early in the day, it will likewise tend to pay others early.
On the other hand, when JPMorgan believes other banks are paying it late—for example,
because of low reserve balances—JPMorgan will also pay late.

At the center of my mechanism is the aforementioned strategic complementarity in
interbank intraday payment timing. A sufficiently low supply of reserves causes banks
to suddenly hoard reserves, reinforced by a feedback effect stemming from the strategic
complementarity of intraday payment timing, and leads to intraday payment timing stress.
This results in high marginal values of reserves, and disincentivizes banks from efficiently
allocating liquidity into wholesale funding markets. As such, when reserves are close to
being insufficient, even small reductions in reserve balances can have strong nonlinear or
discontinuous impacts on short-term wholesale funding rates, mirroring observed market
events such as the wholesale funding rate spikes of September 2019.

To gauge the quantitative implications of this strategic complementarity, I calibrate the
parameters of my model using a method-of-moments procedure with data from 2019. My
sample comprises days leading up to August 31, 2019. My fitted model is able to predict
the funding rate spikes of September 16-18, 2019, as an out-of-sample event (see Fig. 6).
This confirms the validity of my model’s mechanism and underscores the importance of
incorporating strategic complementarity in payment timing when shaping central-bank
policy. I then utilize this model to compute a counterfactual estimate of the minimum
level of reserves required by large U.S. dealer banks that would have mitigated reserve
hoarding and kept the expected spread between GCF repo rates and IOR below 13 basis
points (see Fig. 8). To the best of my knowledge, this represents the first estimation of
its kind regarding adequate reserve supply in the academic literature under the current
policy framework. This quantitative analysis provides insights into the ongoing discourse
regarding the Federal Reserve’s quantitative tightening (QT) strategy.

2012; Correa et al., 2020).
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2 Background

The notion of reserve sufficiency has changed substantially since the GFC. Prior to the 2007-
2009 crisis, aggregate reserves typically remained below $50 billion, which was sufficient
for both the efficient functioning of wholesale funding markets and for banks to manage
their intraday liquidity needs. During this period, the Fed controlled interest rates by
actively managing the supply of reserves within the banking system. In contrast, today’s
post-GFC liquidity requirements mandate that large banks maintain substantial reserve
balances at the Fed throughout each day (see Appendix B.3 for more details). Additionally,
the level of aggregate reserves has significantly increased due to the Fed’s crisis facilities
and post-crisis quantitative easing programs. In this new regulatory and macroeconomic
environment, the Fed conducts monetary policy by adjusting the overnight interest rate on
reserves (IOR) held at the Fed. This approach necessitates that the Fed supplies adequate
reserves to dealer banks, yet the level of reserves required to ensure efficient funding
markets and a robust interbank payment system remains an unresolved issue.

The funding rate spikes of September 16-18, 2019 were surprising to policymakers and
market participants. Lorie Logan, manager of the System Open Market Account (SOMA)
for the Federal Open Market Committee (FOMC) at the time, stated on September 20,
2019 , that “the expectation had been that as repo rates rose, banks would withdraw excess cash
held at the Fed and lend it into the repo market... Instead the New York Fed had to step in to
provide that cash as banks remained on the sidelines.” From 2011 to 2019, total excess reserves
consistently exceeded $1.4 trillion, significantly surpassing pre-GFC levels. In addition,
according to Senior Financial Officer Surveys conducted by the Fed in September 2018
and February 2019 regarding the “lowest comfortable level of reserves,” there should still
have been ample reserve balances in early 2019 for any single large dealer bank (Andros,
Beall, Martinez, Rodrigues, Styczynski and Thorp, 2019).

A body of academic research and some finance industry commentaries underscore
the influence of supervisory and regulatory requirements—particularly Basel III liquid-
ity regulations—on reserve sufficiency. These regulations encourage large U.S. banks to
maintain significant reserve balances at the Fed throughout each day.7 These same regu-
lations, however, may have inadvertently weakened monetary policy implementation by
inhibiting banks from utilizing these reserves in short-term funding markets (see Anbil,
Anderson and Senyuz 2020b, d’Avernas and Vandeweyer 2020, and Nelson and Covas 2019

7See more details in Appendix B.3.
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among others). However, considering that banks’ actual reserves exceeded the levels re-
quired by regulations—as indicated by banks regulatory reports and the aforementioned
Senior Financial Officer Surveys—one might question the extent to which these regula-
tions actually restricted banks from lending in the repo market in September 2019. Indeed,
a NY Fed staff report, Afonso, Cipriani, Copeland, Kovner, La Spada and Martin (2020b),
points out that “it seems unlikely that regulation itself may have been a key contributing
factor to the money market stress of mid-September. Banks typically hold considerable
buffers above their regulatory minima, which means that the regulatory constraints were,
in all likelihood, not binding.”

My paper addresses the aforementioned puzzle by demonstrating that reserves can
suddenly become insufficient at levels well above those required by regulations. Although
banks’ liquidity positions and stress testing information are routinely available to policy-
makers, my model reveals that this data alone is inadequate for accurately gauging the
minimum aggregate reserve supply necessary for a well-functioning money market and
effective monetary policy implementation. Therefore, a comprehensive understanding
of how banks utilize reserves for making payments is essential to inform the Federal
Reserve’s policy regarding reserve supply.

3 Related literature

This paper is closely related to the empirical literature studying financial intermediaries
and the mechanism of wholesale funding markets such as the repo market. Large financial
intermediaries, especially large U.S. banks, play increasingly important roles in wholesale
funding markets. Post-crisis regulations thus have profound implications for wholesale
funding markets by influencing intermediaries’ balance sheets and liquidity management
decisions (Duffie, 2018; Adrian and Shin, 2011; Ranaldo, Schaffner and Vasios, 2020; Egel-
hof, Martin and Zinsmeister, 2017). Correa, Du and Liao (2020) examine the daily balance
sheet information of the large U.S. dealer banks and find they substantially increased
the liquidity provision in the FX swap markets and repo markets from 2016 to 2020.8
In particular, Correa, Du and Liao (2020) point out that post-GFC, key Basel III regula-
tory ratios such as SLR and GSIB capital surcharge scoring have significantly increased
banks’ balance sheet costs, so banks heavily rely on draining down their own reserves

8Fig. 9 shows the net liquidity provision (lending minus borrowing) of the large U.S. dealer banks to the
repo markets, in comparison with the liquidity provision by the money market funds (MMF).
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for liquidity provision. 9 Acharya, Chauhan, Rajan and Steffen (2022); Lopez-Salido and
Vissing-Jorgensen (2023) study the implications of Quantitative Tightening (QT) on banks’
liquidity needs and liquidity provisions respectively.

Concurrent empirical research by Adam Copland, Darrell Duffie, and Yilin (David)
Yang investigates the relationship between the total supply of reserves and repo rates.
Their key findings, illustrated in Fig. 14 and Table 3, indicate that lower aggregate reserves
among large dealer banks correlate with elevated repo rates. Consistent with my theory,
Fig. 14 demonstrates that Treasury repo rates as predicted by quantile regressions, becomes
increasingly sensitive to fluctuations in dealer balances. Notably, the quantile regression
predicts that a one standard deviation decrease in dealer banks’ reserves (250 billion
dollars) is associated with a rise of up to only 24 basis points in the 99th percentile of
the repo rate, which is considerably less than the spikes observed in September 2019.
This discrepancy underscores the limitations of reduced-form empirical models, which
are incapable of accounting for the feedback effects intrinsic to strategic complementarity,
in capturing significant market responses to minor reductions in reserves, highlighting
the value of theoretical models in understanding such dynamics. Copeland, Duffie and
Yang (2020) also find a strong relationship between interbank intraday payment timing
delays and repo rate spikes, as shown in Fig. 15. Additionally, in line with Correa, Du
and Liao (2020), Copeland, Duffie and Yang (2020) find evidence supporting the role of
demand factors such as Treasury issuance on repo rates. The repo spike of mid-September
2019 is a good example of the interplay between supply and demand factors, detailed
comprehensively by Afonso, Cipriani, Copeland, Kovner, La Spada and Martin (2020b),
Anbil, Anderson and Senyuz (2020a), Anbil, Anderson and Senyuz (2020b), Ihrig, Senyuz
and Weinbach (2020), Avalos, Ehlers and Eren (2019), and Martin, James, Palida and Skeie
(2020), among others.

While my work aligns with the above-mentioned empirical research, it stands out as
one of the first two papers to illustrate that minor reductions in reserve balances can cause
significant, discontinuous increases in wholesale funding rates. In a contemporaneous
work, d’Avernas and Vandeweyer (2020) focus on the repo rate spike event of September
2019, constructing a model that examines the impact of binding regulations such as inter-
nal Liquidity Stress Tests (LST) on repo rate spikes. They suggest a theoretical possibility
that anticipation of future funding market disruptions might have contributed to the un-

9Avalos, Ehlers and Eren (2019) show that large U.S. banks have become important net lenders in the
repo market since 2011.
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expected rise in Treasury spreads in March 2020. In contrast, my paper highlights the
central role of strategic complementarity in banks’ intraday payment timing on wholesale
funding rate spikes and delves into reserve sufficiency from the perspectives of an efficient
interbank payment system and effective monetary policy implementation.

My paper is related to the literature studying global games and their applications in
finance. In my paper, the central mechanism is the strategic complementarity in banks’
payment-timing decisions. The techniques of global games that incorporate strategic
complementarity in various forms are extensively applied to examine phenomena such
as currency attacks, bank runs, debt crises, and the determination of safe assets (Carlsson
and Van Damme, 1993; Morris and Shin, 1998, 2001; Goldstein and Pauzner, 2005; He and
Xiong, 2012; Heider, Hoerova and Holthausen, 2015; He, Krishnamurthy and Milbradt,
2019; Liu, 2016). A distinctive feature of my model, compared to standard global games
models, is that agents’ beliefs about the payoff-relevant states are endogenously deter-
mined in equilibrium. In this context, my model contrasts sharply with the findings of
Angeletos, Hellwig and Pavan (2006) and Angeletos and Werning (2006), who suggest
that endogenously generated information can lead to multiple equilibria in global games.
Conversely, under mild technical conditions, my model guarantees a unique equilibrium.
This uniqueness arises partly from the interaction between strategic substitutability and
complementarity within my model, a feature elaborated in Section 4.2. Such interactions
are novel and relatively underexplored in the literature, and introduce several new chal-
lenges to my model. Due to these challenges, standard techniques from global games
are not directly applicable to my setting; instead, I have devised a novel proof method to
characterize the equilibrium.

A strand of literature explores banks’ liquidity hoarding in the overnight funding
markets, attributing this behavior to adverse selection and counterparty risk (Heider,
Hoerova and Holthausen, 2015; Gorton and Metrick, 2012; Acharya and Merrouche, 2013).
In contrast, my model attributes precautionary hoarding of reserves in interbank intraday
payment systems to strategic complementarity.

Copeland, Duffie and Yang (2020) and this paper are the first to point out the close
connection between the intraday interbank payment mechanism and monetary policy
implementation in the post-GFC regulatory environment. Due to financial-stability con-
cerns, central banks and scholars worldwide have extensively studied reserve abundance
and intraday payment mechanisms among banks (see Afonso, Duffie, Rigon and Shin
(2022); Armantier, McAndrews and Arnold (2008); McAndrews and Rajan (2000); Bech
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(2008); Bech and Garratt (2003); Schoenmaker (1995); Zhou (2000); McAndrews and Potter
(2002); McAndrews and Rajan (2000) among others). The recent study by Goldstein, Yang
and Zeng (2023) examines the interbank payment system using tools from the repeated
games literature, and also explore equilibrium uniqueness in their setting. There is also a
substantial body of literature on monetary policy implementation with an ample supply
of reserves (Logan, 2019; Afonso, Kim, Martin, Nosal, Potter and Schulhofer-Wohl, 2020a;
Piazzesi, Rogers and Schneider, 2019; Lenel, Piazzesi and Schneider, 2019); however, in-
traday payment mechanisms were not previously considered relevant to monetary policy
implementation. This paper highlights that, following the introduction of post-crisis liq-
uidity regulations, banks have become reluctant to use the Fed’s intraday overdraft facility,
making their own reserves the most crucial liquidity source. Consequently, the effects of
strategic complementarity have intensified post-GFC, under current macroeconomic con-
ditions, forging a strong link between the intraday payment system and monetary policy
implementation.

The rest of the paper is organized as follows: Section 4 introduces the baseline model.
Section 5 characterizes equilibrium under different macroeconomic conditions. Section 6
explores how minor reductions in reserves can lead to sudden liquidity crunches, offering
a theoretical explanation for the repo spike in September 2019. Section 7 outlines the
data utilized in this study. Section 8 extends and calibrates the model using method of
moments. Section 9 presents the main findings: a counterfactual analysis of the sufficient
level of reserves necessary to support effective monetary policy implementation and an
efficient interbank payment system. Section 10 provides the concluding remarks.

4 Baseline model

There are two types of agents: n dealer banks active in liquidity provision in the overnight
USD wholesale funding markets10 and n overnight wholesale funding borrowers. The
timing of the model is shown in Fig. 2. Each business day is divided into four time
periods: 0, 1, 2, and 3. Initially, at time 0, bank i observes only Ri, its beginning reserve
balance, and borrower i observes only Di, its financing target to borrow. The day opens

10One prominent feature of the USD wholesale funding markets is the outsized importance of a few
large U.S. banks. Copeland, Duffie and Yang (2020) focus on 10 large repo-active dealer banks and show
the total reserve balances of large financial institutions outside these 10 were much less influential with
respect to repo rates. Similarly, Correa, Du and Liao (2020) study six global systemically important banks
(GSIBs)—Bank of America, Citi, Goldman Sachs, JP Morgan, Morgan Stanley, and Wells Fargo—and show
they are major liquidity providers in both the repo markets and the FX swap markets.
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0

Bank i learns Ri.
Borrower i learns Di.

1

Funding market opens.
Bank i trades

with borrower i.

2

Early payment:
Bank i learns total payment Ni to other banks

and makes early payment ai.

3

Late payment:
Bank i makes the remaining payment

Ni − ai. Game ends.

Trading game Payment game

Figure 2: The timeline of the model.

with trading in the wholesale funding markets at time 1. In this market, bank i and
borrower i play the trading game. For simplicity, I assume that whenever bank i lends
an amount, say Si, to borrower i in the overnight wholesale funding markets, bank i will
transfer Si quantity of reserves to the clearing bank of borrower i.

After making an overnight loan Si in the funding markets, at time t = 2, bank i

observes the total customer payment obligation Ni that bank i must send to other banks
by the end of the business day (t = 3). Subsequently, the banks play a payment game. In
this subgame, bank i can choose to pay any smaller amount ai early to the other banks at
t=2, and delivers the reminder Ni − ai later at t = 3.

The timeline is broadly consistent with the operational details of the USD wholesale
funding markets and the interbank payment system, specifically the Fedwire. For instance,
in the repo market—the principal wholesale funding markets—approximately 90% of the
trading volume is completed before 9 a.m. (EST), as documented by Copeland, Duffie and
Yang (2020). In contrast, about 50% of interbank intraday payments are not completed
before 1 p.m. (EST), as shown by Copeland, Molloy and Tarascina (2019). (To fix ideas,
consider t = 1 representing the period from 6 a.m. to 9 a.m., t = 2 from 9 a.m. to 2 p.m.,
and t = 3 from 2 p.m. to 7 p.m.)

To clarify the main ideas, I assume there are only two banks (bank 1 and bank 2) and
2 borrowers ( borrower 1 and borrower 2) in the baseline model.11 The random variables
N1 and N2 are assumed to be identically and independently distributed according to
a cumulative distribution function (cdf) FN(·), which has a finite mean and supports
[Nmin,∞), where Nmin > 0. The function FN(·) is atomless and strictly increasing over

11See Appendix D.2 for a general model with n > 2 banks and borrowers.
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(Nmin,∞). Additionally,R1 andR2, as well asD1 andD2, are assumed to be identically and
independently distributed with their respective cdfs FR(·) and FD(·). For simplification,
I assume these variables are independent, though my results extend to arbitrary joint
distributions over (R1, R2, D1, D2). The distributions of all random variables—R1, R2, D1,
D2, N1, and N2—are common knowledge, but their realizations are private information.
The model is described from the perspective of bank i, with the other bank denoted as
bank j. The setups and results are symmetric for both bank i and bank j.

4.1 Payment subgame from t = 2

In the modern interbank payment system, settlement of time-critical interbank payments
relies on reserves (McAndrews and Kroeger, 2016; Soramäki, Bech, Arnold, Glass and
Beyeler, 2007). The volume of payment requests far exceeds the amount of total reserves
in the banking system, as shown in Fig. 11. Large banks have to rely heavily on incoming
payments from other banks before being able to make the bulk of their own outgoing
payments, and therefore face a serious liquidity management problem when customers’
payment requests outbalance incoming payment flows, as detailed in Appendix B.2. From
the lens of my model, this means that Ni is likely to be much larger than Ri.

As documented by Bech, Martin and McAndrews (2012), once bank i transfers the
overnight loan Si to the clearing bank of borrower i, that those reserves becomes un-
available for settling customer payment requests. After observing Ni, bank i can pay any
positive amount ai ≤ Ni at time 2, deferring the remaining payments until time 3. The
amount ai must be measurable with respect to the bank i’s information set after trading
in the funding market. This information is fully represented by the reserve balances Li of
bank i after trading, net of the minimum required reserve balances of bank i before time
2. That is, Li = Ri − Si −Q, where Q > 0 represents an exogenous constant, denoting the
minimum level of reserves mandated by liquidity regulations.

It is worth mentioning that in the pre-crisis era, absent those liquidity regulations,
banks had often kept minimum reserve balances and relied heavily on borrowing from the
Fed’s intraday overdraft facility to meet ongoing payment demands (Fig. 13). Borrowing
from the Fed, however, signaled to bank supervisors that banks have negative intraday re-
serve balances.12 By contrast, the post-GFC new liquidity requirements incentivized large

12Large U.S. banks can in principle borrow additional reserves from other financial institutions, for
example, from money market funds in the Tri-party repo market, to make outgoing payments. However,
borrowing reserves increases the supplementary leverage ratio (SLR)—a more binding constraint—of these
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U.S. dealer banks to maintain substantial balances at the Fed and discouraged them from
incurring daylight overdrafts on their reserve accounts,13 highlighting a stark difference
from the pre-GFC era where such mechanisms played a less significant role in monetary
policy implementation.

After the payments at time 1, Li − ai + aj is the residual reserve balance of bank i.
Bank i bears a cost if this residual balance is below 0, modeled as a per-unit “regulatory
cost” of ψ > 0. In reality, banks are especially worried about the cost of a failure to satisfy
strict new supervision of liquidity sufficiency (Correa, Du and Liao, 2020; d’Avernas
and Vandeweyer, 2020), and the stigma in the eyes of their supervisors associated with
borrowing from the Fed’s intraday overdraft facility. This implies that ψ is very large.
Bank i also suffers a linear cost c · (Ni − ai)

+ caused by paying bank j late, for some late
payment cost coefficient c > 0. (I call c the “marginal cost of delay.”) Costs associated with
late payments are discussed extensively in the literature studying banks’ intraday liquidity
management, including work by Ashcraft, McAndrews and Skeie (2011), Afonso and Shin
(2011), Bech and Garratt (2003), and Bech (2008). The final cost to bank i associated with
payment timing is thus

ψ · (Li − ai + aj)
−︸ ︷︷ ︸

liquidity cost

+ c · (Ni − ai)
+︸ ︷︷ ︸

late payment cost

.

Here, I adopt the convention that

(Li − ai + aj)
− =

0 if Li − ai + aj ≥ 0,

|Li − ai + aj| if Li − ai + aj < 0.

The cost function to bank i captures the force of strategic complementarity in banks’
payment timing decisions (Afonso and Shin, 2011). That is, the higher the early payment
strategy aj of bank j conjectured by bank i, the higher the best-response early payment
ai of bank i. Given the payment strategy aj of bank j, bank i chooses ai to optimize the
conditional expected payoff,

U(Li, Ni) = E[−ψ (Li − ai + aj)
− − c (Ni − ai)

+
∣∣ Ni, Li]. (1)

Lemma 1. SupposeLi andLj are arbitrarily distributed such thatP(Li > 0) > 0 andP(Lj > 0) >

0. Then there is a Perfect Bayes payment game equilibrium of the form a∗i = min((Li + αi)
+, Ni),

banks, and the Tri-party market typically settles late in the day, from 3 p.m. to 6 p.m. EST. Consequently,
borrowing reserves is not particularly useful for the purpose of making interbank payments. For simplicity,
I assume banks cannot borrow reserves at time 2.

13This is corroborated by conversations with senior managers at several Global Systemically Important
Banks (GSIBs), as documented by Copeland, Duffie and Yang (2020).
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Bank i believes that
Rj − Sj is lower

Lower incoming aj
for bank i

Bank i
lowers ai

Lower incoming ai
for bank j

Bank j
lowers aj

Figure 3: Intuition for Lemma 1. A “vicious circle” causes banks to hoard reserves.

a∗j = min((Li + αj)
+, Nj) for some constants αi, αj such that

αi = inf

{
ϑ ≥ 0 : P(min((Lj + αj)

+, Nj) ≤ ϑ) ≥ c

ψ

}
αj = inf

{
ϑ ≥ 0 : P(min((Li + αi)

+, Ni) ≤ ϑ) ≥ c

ψ

}
.

In particular, whenLi andLj have the same distribution14 , thenαi = αj = α. If P(Lj ≤ 0) > c/ψ,
then α = 0. If P(Lj ≤ 0) ≤ c/ψ, then α ≥ Nmin and

α = inf

{
ϑ ≥ 0 : P(Nj ≤ ϑ) ≥

c
ψ
− P(Lj ≤ 0)

1− P(Lj ≤ 0)

}
. (2)

The equilibrium is unique, except for the knife-edge case where P(Lj ≤ 0) = P(Li ≤ 0) = c/ψ.

Proofs of all results, including Lemma 1, are in Appendix F. Intuitively, when
P(Lj ≤ 0) is high, bank i anticipates that bank j will not have sufficient liquidity to
make early payments. Consequently, bank i becomes conservative about paying bank j

early. Expecting a lower ai, bank j reasons along the same lines, leading to a lower aj .
Due to strategic complementarity, this caution reinforces itself: when bank i expects aj to
be lower, it is incentivized to further lower ai and so on, initiating a “vicious circle.” Ulti-
mately, when P(Lj ≤ 0) exceeds a certain threshold, both banks begin to hoard reserves,
resulting in α = 0. This intuition is illustrated in Fig. 3.

The force that makes the equilibrium unique is similar to the force in the standard
global games literature (Carlsson and Van Damme, 1993; Morris and Shin, 1998, 2001;
Goldstein and Pauzner, 2005). Here, the strategic complementarity in banks’ payment

14It turns out that on the equilibrium path, Li and Lj will always have the same distribution, which will
be proved by Theorems 1 and 2.
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strategies and the uncertainty of the other bank’s liquidity situation Lj and payment obli-
gationNj lead bank i to make the risk dominant payment action: ai = min((Li+αi)

+, Ni).15
However, it is worthwhile highlighting the difference between my model and the stan-
dard global games models. In those models, agents receive exogenous private signals of
the payoff-relevant states. Conversely, in my model, the payoff-relevant states Li, Lj are
endogenously determined by the trading outcome in the funding market: Li = Ri−Q−Si.
Hence, even though there is a unique equilibrium for the payment subgame, this does not
automatically imply that the entire game has a unique equilibrium (Angeletos, Hellwig
and Pavan, 2006; Angeletos and Werning, 2006).

To derive the banks’ optimal lending decisions in the funding market, I first need
to characterize the banks’ marginal value of reserves for the payment subgame. The
continuation value of bank i for reserve balances at the beginning of the payment game,
before observing its payment obligation Ni, is

V (Li) = E[U(Li, Ni)
∣∣ Li]. (3)

When well defined, the left-hand derivative of the value function, as specified in (3), at a
given reserve balance y is denoted by V ′

−(y) = limx↑y
V (x)−V (y)

x−y .

Lemma 2. Suppose that in the payment game, bank j makes payment aj = min((Lj + αj)
+, Ni)

and bank imakes payment ai = min((Li+αi)
+, Ni), for some constants αj, αi. WhenLi+αi > 0,

then for bank i,

V ′
−(Li) =

∫
n∈[L+

i ,(Li+αi))

ψP(aj ≤ n− Li) dFN(n) +

∫
n∈[(Li+αi),∞)

cdFN(n).

When Li + αi ≤ 0, for bank i,

V ′
−(Li) = ψP(aj ≤ −Li).

Also, V ′
−(·) weakly decreases.

Lemma 2 guarantees the existence of the left-hand derivative of the value function,
although V (·)may not be differentiable. Note that V ′

−(·) for bank idepends on the payment
strategy ai and aj . To make this dependence relationship explicit, I define the marginal
value of liquidity function Γi = V ′

−(Li) for bank i as follows:

Definition 1. Fix any payment strategy ai = min((Li + αi)
+, Ni) and the probability

distribution of Li for all i ∈ {1, 2}. Let j ∈ {1, 2} \ {i}. Define the marginal value of

15See Morris and Shin (2001) for a discussion of the risk dominant strategy.
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liquidity function for bank i to be the function Γi : R× R+ × R+ → R+ such that

Γi(y, αi, αj) =


∫

n∈[y+,(y+αi))

ψP(min((Lj + αj)
+, Nj) ≤ n− y) dFN (n) +

∫
n∈[(y+αi),∞)

c dFN (n), if y > −αi

ψP(min((Lj + αj)
+, Nj) ≤ −y), if y ≤ −αi

The function Γi(·) naturally arises when large dealer banks optimize the quantity of
reserves to lend in the funding market. The specifics of this process will be elaborated in
the following section.

4.2 Trading game at t = 1

In this paper, I focus on the overnight wholesale funding markets, although my model
can be extended to study other short-term funding markets as well. I model the overnight
wholesale funding markets as over-the-counter markets where borrower i is matched with
bank i, and they trade bilaterally. At the beginning of each business day, borrower i targets
a total borrowing demand ofDi. The net cost of borrower i associated with financing some
amount q at some funding rate r (endogenously determined in equilibrium) is16

qr +
ξ

2
((Di − q)+)2︸ ︷︷ ︸

cost of reduced financing

,

where the marginal value of financing, ξ, is a positive coefficient determining the sensitiv-
ity of the cost to borrower i of unmet financing needs. I assume Di > Dmin almost surely
for a constant Dmin, and P(Ri −Q−Dmin > 0) > 0.17

The exact form of the equilibrium funding rate r largely depends on the market
microstructure of the funding markets, such as the bargaining power between borrowers
and lenders. Nevertheless, the qualitative predictions of my main results remain robust
across various market microstructure configurations, provided that the funding rate is an
increasing function of Γi(y, αi, αj). This is not surprising, because the driving force is the
aforementioned strategic complementarity in the payment subgame. I discuss results for
one concrete example of competitive pricing in the baseline model, where both bank i

16For simplicity, I normalize the Fed’s policy rate benchmark, IOR, to be zero. When IOR is not zero,
r should be understood as the spread between the gross funding rates rgross and IOR, and the cost for
borrower i should be adjusted to qrgross + (Di − q)+ · IOR+ ξ

2 ((Di − q)+)2 = qr+ ξ
2 ((Di − q)+)2 +Di · IOR

(in equilibrium q < Di). The rest of my analysis does not change.
17Empirically, banks never have negative reserve balances before they start making interbank intraday

payments.
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and borrower i behave as price takers. In Appendix D.1, I include results under another
funding market structure—the case of monopolistic pricing, where bank i acts as a local
monopolist by offering a supply schedule g : R → R to screen the borrower’s demand and
maximize profit.

For the baseline model, I assume that bank i and borrower i are fully competitive.
Bank i takes the overnight funding rate ri as given and lends the quantity s, solving

sup
s

sri + V (Ri − s),

where sri is the interest paid by borrower i to bank i on the next business day. Borrower i
minimizes net cost by solving

inf
s
sri +

ξ
2
((Di − s)+)2.

The first-order conditions for bank i and borrower i imply the equilibrium funding rate r∗i
and quantity S∗

i satisfy

S∗
i = inf

{
s : Γi(Ri −Q− s, αi, αj) ≥ ξ(Di − s)

}
r∗i = ξ(Di − S∗

i ),
(4)

where the marginal value of liquidity Γi is defined in Definition 1. Clearly, ξ governs the
demand elasticity.

Throughout the paper, the equilibrium concept is a perfect Bayesian equilibrium. By
definition, the distribution of Li = Ri − Q − Si and Lj = Rj − Q − Sj is endogenously
determined by the equilibrium outcome of the trading game. From Eq. (4), the equilib-
rium outcome of the trading game depends on Γi and Γj , which in turn depend on the
distribution of Li = Ri − Q − Si and Lj = Rj − Q − Sj (Lemma 1). Thus, characterizing
the full equilibrium will necessarily involve solving a complicated fixed-point problem.
In particular, there is no a priori reason why the model has a unique equilibrium.

It is worthwhile to highlight the presence of strategic substitutability in banks’ lending
decisions, which interacts with the aforementioned strategic complementarity. This dual
interaction is rarely explored and introduces several new complications. For instance,
when bank iperceives that bank jwill choose an equilibrium strategy to offer a smaller loan
Sj in the funding market, it infers that bank j will retain more reserves, Lj = Rj − Sj −Q,
and therefore could afford a larger payment aj in the payment subgame. A larger aj
reduces the bank i’s marginal value of reserves for the subgame. Consequently, bank i is
incentivized to increase its own lending amountSi in the funding market. This mechanism
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implies that, even if Ri and Rj share the same probability distribution, the endogenous
distributions of Li and Lj in equilibrium may not be symmetrical. At first glance, it
appears that the equilibrium of the entire game might depend on an infinite hierarchy of
beliefs between the two banks: bank i’s decision to lend Si is contingent upon its beliefs
about bank j’s strategy, such as αj , which in turn depends on bank j’s belief about bank
i’s strategy, and so forth.

5 Liquidity stress index and equilibrium outcome

Any change in macroeconomic conditions, such as a reduction in reserve balances, an
increase in borrowing demand in the funding markets, or change in the regulatory re-
quirements, may change the distributions ofRi,Di and the value ofQ. Those changes will
eventually change banks’ beliefs, their strategies in the payment subgame, and the equilib-
rium funding rates. Nevertheless, I demonstrate that these complicated macroeconomic
conditions can be summarized by one index—the liquidity stress index.

Definition 2. Let FR be the cdf of Rj . The liquidity stress index is

m ≡ P
(
Rj −Dj −Q ≤ − c

ξ

)
− c

ψ
= E

[
FR

(
Dj +Q− c

ξ

)]
− c

ψ
,

The liquidity hoarding condition is when

m = E
[
FR

(
Dj +Q− c

ξ

)]
− c

ψ
> 0. (5)

The no hoarding condition is when

m = E
[
FR

(
Dj +Q− c

ξ

)]
− c

ψ
< 0. (6)

The liquidity hoarding condition applies whenever the probability distribution FR of
initial reserve balances is sufficiently low in the sense of first order stochastic dominance,
for given parameters Q, c, ξ, ψ,Dmin. Let FRD(y) = P(Rj −Dj −Q ≤ y). The next two key
theorems elucidate how the liquidity stress index determines the level of reserve hoarding
in equilibrium. Fig. 4 illustrates the intuition for the mechanism of the these results.

Theorem 1. Under the liquidity hoarding condition, there is a unique equilibrium. In this
equilibrium, bank i hoards reserves and pays a∗i = min(L+

i , Ni) in the payment subgame. The
marginal value of liquidity functions are the same for both banks Γi(y, 0, 0) = Γj(y, 0, 0) =

Γ(y, 0, 0) and are characterized as follows:
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1. When y > 0, Γ(y, 0, 0) = c(1− FN(y));

2. When y ≤ 0, Γ(y, 0, 0) = ψ
(
FN(−y) + (1− FN(−y))FRD(−y − Γ(−y,0,0)

ξ
)
)

.

Theorem 2. Under no hoarding condition, there always exists at least one equilibrium. Any
equilibrium must be symmetric (in the sense that αi = αj = α) with pure payment strategy
a∗i = min(Ni, (Li + α)+) for some α > Nmin. The marginal value of liquidity functions for both
banks (Γi(y, α, α) and Γj(y, α, α)) are identical, hence denoted by Γ(y, α, α). Furthermore, α and
Γ solve a system of integral equations:

P
(
Ri −Di −Q ≤ −Γ(0, α, α)

ξ

)
+ P(Ni ≤ α)

(
1− P

(
Ri −Di −Q ≤ −Γ(0, α, α)

ξ

))
=
c

ψ
;

Γ(y, α, α) =


ψ

∫
n∈(y+,(y+α))

FN (n− y) + (1− FN (n− y))FRD(n− y − α− Γ(n−y−α,α,α)
ξ )dFN (n)

+
∫

n∈[(y+α),∞)

c dFN (n), ∀y > −α;

ψ
(
FN (−y) + (1− FN (−y))FRD(−y − α− Γ(−y−α,α,α)

ξ )
)

∀y ≤ −α.

Eq. (4) and Theorems 1 and 2 together imply that the equilibrium funding rate depends
on (1) initial reserve balances Ri of bank i, (2) equilibrium trading quantity Si 18 and (3)
liquidity stress index m.

Whereas Theorem 2 does not show equilibrium uniqueness under the general dis-
tributional assumptions for the exogenous state variables, it does characterize all possible
equilibria by a system of non-standard integral equations. In particular, all equilibria
share the same prediction: the funding rate spikes when the liquidity stress index turns
from negative to positive (see Theorem 4, Theorem 5, and Fig. 5). The next theorem proves
the equilibrium is unique under some technical conditions.

Theorem 3. Assume Ni − Nmin (i = 1, 2) is exponentially distributed with parameter λN and
FRD is differentiable with density function fRD. Let fmRD = sup{fRD(t) : t ≤ 0}. If

√
2eξ
ψ

> fmRD,
the equilibrium is unique under the no hoarding condition.19

18It can be easily shown that conditional on Ri = ζ, there is a monotone relationship betweenDi and the
equilibrium trading quantity Si.

19The assumptions for Theorem 3 are likely to hold. Realistically, the marginal value of financing ξ cannot
be too small relative to the marginal cost of delay c (as confirmed by quantitative estimates from my sample).
Recall that under the no hoarding condition, FRD( cξ ) <

c
ψ <

√
2eξ
ψ , so

√
2eξ
ψ > fmRD is generally satisfied for

most common families of probability density functions. Moreover, if bank i has better information about the
other bank’s reserve condition, that is, uncertainty about Rj −Dj −Q is smaller, fmRD is smaller. Therefore,
the equilibrium is unique, especially when banks have more precise information about each other.
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Figure 4: Low supply of reserves causes ineffective monetary policy implementation and an inefficient
interbank payment system.

6 How small reductions in reserves trigger liquidity crunches

It is not surprising that significant shifts in macroeconomic conditions can substantially
influence banks’ equilibrium payment timing decisions and equilibrium wholesale fund-
ing rates. Nonetheless, I demonstrate that even small or moderate changes in these
conditions—in particular, minor reductions in reserve supply—can elicit strong nonlin-
ear or discontinuous impacts on wholesale funding rates, as evidenced by the events of
September 2019. To substantiate this claim, it is essential to formalize the concept of “small
changes” between two macroeconomic conditions. To begin, in this model, all exogenous
constants and functions together represent a macroeconomic condition.

Definition 3. A set of macroeconomic conditions, MC , is comprised of the constants and
probability distributions of the exogenous random variables in this economy, denoted by
MC = {FR(·), FN(·), Q, λ,Dmin, c, ψ, ξ}.

Generically, any minor alterations in macroeconomic conditions are likely to induce
slight changes in the liquidity stress index. Given that the liquidity stress index serves
as the sufficient statistic for determining equilibrium states, it is intuitive to measure
the proximity between two macroeconomic conditions in terms of differences in this
index. To formalize this idea, I propose the following definition of closeness between
macroeconomic conditions:
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Definition 4. We say that any two sets of macroeconomic conditions, denoted by M1
C =

{F 1
R(·), F 1

N(·), Q1, λ1, D1
min, c

1, ψ1, ξ1} and M2
C = {F 2

R(·), F 2
N(·), Q2, λ2, D2

min, c
2, ψ2, ξ2}, are

close with respect to the liquidity stress index if there is some constant O such that20

sup{ |c1 − c2|, |ψ1 − ψ2|, |ξ1 − ξ2|, |λ1 − λ2|, |D1
min −D2

min|, ||F 1
RD − F 2

RD||∞ } < O|m1 −m2|,

||F 1
N − F 2

N ||∞ = 0,

where m1 and m2 are the liquidity stress indexes under M1
C and M2

C , respectively.

By Definition 4, if M1
C and M2

C are close with respect to the liquidity stress index, and
|m1 −m2| is small, then the distances between any elements from M1

C and M2
C are also

close to zero. For ease of reference and with a slight abuse of notation, macroeconomic
conditions will be indexed by their liquidity stress index values. For example, M1

C will be
referred to as Mm1

C .

Aggregate reserves steadily yet slowly declined from March 2017 to September 2019
under the Fed’s balance sheet normalization policy. Day-to-day variations in macroeco-
nomic conditions during this period were minimal. Specifically, there were no significant
shocks between Friday, September 13, and Monday, September 16, 2019.21 Nevertheless,
even these minor differences were sufficient to trigger the liquidity hoarding condition,
significantly impacting the equilibrium wholesale funding rates, as demonstrated by The-
orems 4 and 5, providing an explanation for the abrupt spike in repo rates on September
16.

Theorem 4. Fix some realization ζ of beginning reserve balances Ri and a quantity S∗ traded in
the funding market such that ζ −S∗ ̸= Q. The equilibrium funding rate r∗ jumps up as a function
of the liquidity stress m at the threshold m = 0 that triggers liquidity hoarding. More specifically,
there exists some δ(ζ,S∗) > 0 such that

lim
ϵm↓0

r∗(ζ,S∗, ϵm)− r∗(ζ,S∗,−ϵm) > δ(ζ,S∗),

provided that the sets of macroeconomic conditions MC
ϵm and MC

−ϵm are mutually close with
respect to the liquidity stress index.22

20As usual, || · ||∞ is the sup-norm: ∥f∥∞ = sup { |f(x)|}
21Two factors—corporate tax payments and Treasury issuances—are often cited as explanations for the

repo rate spike in September 2019. However, the combined total of these factors between September 16 and
18, 2019, did not rank among the top ten largest for the year and was less than half the size of those on
January 31, 2019.

22The equilibrium funding rate function in this theorem is r∗ : R3 → R+, which determines the equi-
librium supply curve: given some beginning reserve balances Ri = ζ and the liquidity stress index m that
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Figure 5: Effects of changes in the liquidity stress index on the funding rate charged by bank i.
Both panels fix bank i’s beginning reserves at $40 billion. In the left panel, from right to left, the x-axis
represents the increase of liquidity stress index as bank j’s reserves decreases from $40 billion to $20 billion.
The lending quantity Si remains fixed at $10 billion in the left panel. This panel illustrates how slight
changes in the liquidity stress index can lead bank i to charge significantly higher rates. In the right panel,
the x-axis represents the lending quantity and displays bank i’s liquidity supply curves: the top red dashed
curve is under liquidity hoarding conditions (with m = 2.1× 10−22) and the bottom blue curve is under no
hoarding conditions (with m = −7.7 × 10−19). The macroeconomic conditions for both curves are almost
identical; however, when the tiny differences cause the liquidity stress index to turn positive, bank i’s supply
curve suddenly shifts from the lower to the upper curve.

Fixing the amount of the overnight loan at S∗ for one bank, Theorem 4 demonstrates
that the equilibrium funding rate charged by this bank may jump up discontinuously
in response to only minor shocks, such as (a) slight reductions in the reserve available
to other dealer banks, (b) an increase in lending by the counterpart bank in wholesale
funding markets, or (c) small increments in the per-unit liquidity cost ψ, among other
factors influencing the liquidity stress index (see the left panel of Fig. 5). Under the
liquidity hoarding condition, even if bank i possesses a substantial initial reserve amount
Ri = ζ ≫ 0, it will remain conservative in lending out reserves and will charge higher
funding rates due to concerns that the early payment aj by other banks is likely to be
low, as illustrated in the right panel of Fig. 5. The next theorem analyzes the general-
equilibrium effects on rates and quantities from changes in macroeconomic conditions as
reflected through the liquidity stress index.

Theorem 5. Fix some realization ζ of beginning reserve balances Ri and wholesale borrowing
demand D . The equilibrium trading quantity S∗(ζ,D ,m) decreases and the funding rate r∗ jumps
up as a function of the liquidity stress m at the threshold m = 0 that triggers liquidity hoarding.

depends on the macroeconomic conditions, r∗(ζ, s,m) is the funding rate that bank i will charge borrower
i for borrowing quantity Si = s in equilibrium.
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More specifically, there exists some δ(ζ,D) > 0 such that23

lim
ϵm↓0

S∗(ζ,D ,−ϵm)− S∗(ζ,D , ϵm) > δ(ζ,D)

lim
ϵm↓0

r∗(ζ,D , ϵm)− r∗(ζ,D ,−ϵm) > ξδ(ζ,D),

provided the sets of macroeconomic conditions MC
ϵm are mutually close to each other with respect

to the liquidity stress index, and ζ − S∗(ζ,D , 0)−Q ̸= 0.

When overall reserve balances are lower, banks not only anticipate receiving lower
early payments from their counterpart banks but also start with smaller opening reserves.
The equilibrium funding rates are influenced by a combination of two factors: (1) reduced
initial reserves of bank i increase its marginal value of liquidity, thereby nonlinearly
elevating the funding rates charged by bank i even under the no hoarding condition; (2)
diminished reserves of bank j lead bank i to worry about its liquidity management in the
payment subgame, causing equilibrium funding rates to spike once the liquidity hoarding
condition is triggered. Together, these effects provide a framework for understanding repo
rate dynamics throughout 2019.24

7 Data

To quantitatively understand the effect of strategic complementarity and calculate the
counterfactual sufficient reserves to support effective monetary policy implementation, I
estimate my model in the context of the GCF Treasury repo market. This section describes
the data I use for this exercise.

I use the GCF repo rate as the proxy for large U.S. dealer banks’ lending rate in
wholesale funding markets.25 GCF repo rates data are published by FICC.26 I obtain
two daily trading volume data from the New York Fed: The volumes for calculating the

23The equilibrium funding rate function in this theorem is r∗ : R3 → R+, which determines the equilib-
rium supply curve: given some beginning reserve balances Ri = ζ and the liquidity stress index m, which
depends on the macroeconomic conditions, r∗(ζ,D ,m) is the equilibrium funding rate at which bank i
lends to borrower i, who has a total financing need Di = D . Similar definitions apply to the equilibrium
trading function S∗ : R3 → R+.

24It is worth noting that, according to my data, the demand for repo financing exhibits significant
inelasticity. According to my theoretical model, the magnitude of the spikes would be smaller if the
demand were more elastic.

25The GCF repo market is an interdealer market where large dealers lend to smaller dealers. As a result,
the GCF-IOR spread measures the compensation that large dealers require when they provide liquidity by
draining reserves.

26The FICC-cleared sponsored repo market is a another major inter-dealer market; however, data on
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Secured Overnight Financing Rate (SOFR) index and the Triparty General Collateral Rate
(TGCR) index. I obtain the quarterly average Treasury repo lending quantity from largest
U.S. banks’ form 10-Q for a set of large U.S. banks (and large U.S. subsidiaries of foreign
banks) including JP Morgan, Bank of America, Goldman Sachs, Morgan Stanley, Citi,
Wells Fargo Bank, PNC Bank, Deutsche Bank Trust Company Americas, HSBC Bank USA,
and State Street. I combine those two data to estimate the daily repo lending quantity of
large dealer banks.

I use two types of information about reserve balances held at the Federal Reserve
Banks: daily opening balances and the timing of cash transfers between accounts within
each day. Both types of data are provided by Copeland, Duffie and Yang (2020), sourced
from the Fedwire Funds Service. Specifically, I observe the total opening reserve balances
of the largest 100 accounts managed by depository institutions, and the total opening
reserve balances of 10 dealer banks, as identified by Copeland, Duffie and Yang (2020).
The total opening reserve balances of 10 dealer banks are held by depository institutions
owned by bank holding companies that have a large presence in U.S. repo markets. The
total opening balances of these 10 dealer banks is about 40% of total opening balances
of the accounts of the 100 largest banks over 2018-19, and the total balances of the 100
accounts are about 85% of total reserves held at Federal Reserve Banks over 2018-19. I call
the banks of those 100 accounts other than the 10 dealer banks “other large banks.” I do
not observe the identities of any banks in my sample.

In addition to daily opening-balance information, Copeland, Duffie and Yang (2020)
provide statistics regarding the timing of payments sent over Fedwire within the day. In
particular, I observe the time stamp when 50% of the total value of transfers to the 10
dealer banks’ accounts has been received by the 10 dealer banks in the day. For example,
on September 3, 2019, 50% of the total transfers to the 10 dealer banks had been received
by 2:06 pm. I subtract this time stamp from 12:09 pm, the average of this statistic between
January 2, 2014, and October 9, 2020, to calculate a measure of payment timing stress,
which I call “median time of receives.”27

I obtain Treasury issuance and redemption data from the Treasury Department. I also

FICC-cleared repo rates are unavailable. Studies such as Senyuz, Anbil and Anderson (2023) provide
evidence that sponsored repo rates move closely with the GCF repo rate, particularly in 2019, suggesting
that GCF repo rates can serve as a reliable proxy for understanding dynamics within the broader repo
market.

27This measure is based on standard payment timing metrics used in previous research on intraday pay-
ments, such as Armantier, McAndrews and Arnold (2008), McAndrews and Kroeger (2016), and Copeland,
Molloy and Tarascina (2019).

23

Electronic copy available at: https://ssrn.com/abstract=3721785

https://fiscaldata.treasury.gov/datasets/daily-treasury-statement/public-debt-transactions


obtain total Treasuries outstanding from the U.S. Treasury Fiscal Data and the Treasuries
held by the Fed from the Federal Reserve Bank of St. Louis’s FRED database. Finally, I
obtain total payment volume data from Fedwire.28 Summary statistics of the key variables
are provided in Table 2.

8 Model calibration

The term “calibration” in the section title is selected with consideration. While the pa-
rameters of my model are derived using the method of moments—a technique commonly
associated with the estimation of model parameters—I am cautious of application of the
term "estimation" in the context of this study. This caution stems from the understanding
that models featuring endogenous regime shifts, such as the one under consideration,
may challenge the direct application of conventional statistical tests, potentially leading to
inferences that diverge from standard econometric properties, particularly in finite sam-
ples.29 Despite my meticulous efforts in managing the estimation process, an in-depth
study of the econometric properties of the estimators for my model’s parameters falls out-
side this paper’s scope. Consequently, the model’s quantitative success is assessed mainly
based on its out-of-sample prediction performance, in line with approaches commonly
found in much of the machine learning literature.

In this study, I focus on a sample spanning from January 3, 2019, to September 18,
2019. I divide this period into two subsamples: the first, from January 3, 2019, to August
31, 2019, which I refer to as the "training dataset," and the second, from September 1, 2019,
to September 18, 2019, which I designate as the "test dataset." I estimate the parameters
of my model using the method of moments on the training dataset. I chose not to include
data from days in previous years within my training dataset, because large dealer banks
annually adjust the assumptions underpinning their regulation YY stress testing and
resolution planning, which implies that parameterQ in my baseline model may vary from

28Without more detailed information, I assume that each of the large banks contributes an equal share
of the total payment volume made by the largest 15 banks, estimated at around 68% of the total payment
volume over the Fedwire, according to Afonso, Duffie, Rigon and Shin (2022). This implies that each of the
large dealer banks in my sample contributes an estimated 1/15 ∗ 68% = 4.53% of the total payment volume
on average each business day.

29For example, a common challenge encountered with estimating such models involves a departure from
the standard econometric assumption that objective functions exhibit continuity in a small neighborhood
of the true parameters. While an examination has verified the continuity of the objective function around
my point estimates in this case, there remains a possibility that the bootstrapped standard errors might not
fully capture the true variability, and that the finite-sample distribution of the estimators may deviate from
normality.
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year to year. Moreover, prior to 2019, total reserve balances were considerably higher,
diminishing the observable effects of strategic complementarity. To further refine my
dataset, I exclude observations from January 1-2, 2019, to avoid the distortive impact
of year-end capital requirements, as noted by (Correa, Du and Liao, 2020).30 I do not
include dates after September 18, 2019, in my test dataset, because the Fed reacted to the
September repo spikes by directly offering liquidity daily until June 2020.31 The Fed’s
reaction distorted the GCF-IOR spread in a way that is outside of my model.

My theoretical framework is capable of characterizing the n-bank model; however,
the numerical computation required to find a fixed point in the integral-equation system
that characterizes the n-bank equilibrium proves to be time-consuming. Therefore, in
this current study, I focus on estimating the two-bank baseline model. As discussed in
Appendix D.2, the theoretical outcomes for the n-bank scenario closely align with those
derived from the two-bank case.

Given the absence of specific information on bank identities or the distribution of
reserves among the largest dealer banks, I proceed with the assumption that the total
dealer reserve balances observed daily in my dataset are uniformly distributed across the
10 largest dealer banks. I then categorize these 10 banks into five identical payment pairs,
enabling each bank to focus exclusively on the payment strategy of its paired counterpart.
Consequently, the model estimation centers on a representative bank pair {i, j}, under the
presumption that they remain unconcerned with the payment strategies of any other large
dealer bank k /∈ {i, j}. This simplification significantly reduces computational complexity
while effectively preserving the dynamics of strategic complementarity. Specifically, from
my sample, on every business day t, I observe the following quantities that serve as inputs
to my model for calculating equilibrium:

• Total opening reserve balances Rt
D of 10 dealer banks.

• Total opening reserve balances Rt
O of other large banks.

• Net Treasury issuance T tI .
• Total Treasuries outstanding T tD.

30There are usually acute funding constraints at year-end when GSIBs adjust their balance sheets. This
adjustment is due to the scoring that predominantly takes place at year-end to determine the capital
surcharge for these institutions in the subsequent years.

31The Fed announced it would lend cash to borrowers after most repo trading had occurred on Septem-
ber 17, 2019. Market participants were uncertain about whether the New York Fed would continue its
intervention in the following days. Consequently, the GCF repo rates remained elevated until the morning
of September 18.
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• Total repo lending quantity St of the dealer banks.32
• Median time of receives Dt

P of the large dealer banks.
• Month-end date indicator Et

month.

To apply my model to the data, I introduce several additional assumptions. First, inspired
by empirical evidence presented by Copeland, Duffie and Yang (2020) on the effects of
Treasury issuance and other non-dealer bank reserves, I postulate that each dealer bank i
begins business day t with a usable reserve balance calculated as follows:

Rt
i =

1
10
(Rt

D − EIT
t
I︸ ︷︷ ︸

Impact from
Treasury issuance

+ EOR
t
O︸ ︷︷ ︸

Early incoming payment
from large non-dealer banks

)− Q︸︷︷︸
normalization

,

where EI , EO, and Q are parameters to be estimated, representing the payment effects
of Treasury issuance, early incoming payments from non-dealer banks, and a normaliza-
tion constant, respectively. Treasury issuance settlements result in cash transfers from
dealer banks’ accounts at the Fed to the TGA account, and these transfers must occur
near the beginning of the day (Copeland, Duffie and Yang, 2020), significantly draining
the reserve balances of large dealer banks. The term EITI captures this effect. In addi-
tion, the opening-of-day reserve balances of the other large non-dealer banks are closely
linked with early payments received by large dealer banks, evidencing a linear correlation
(Copeland, Duffie and Yang 2020, also illustrated in Fig. 16). Large dealer banks can treat
the incoming payments from other large banks as part of their usable reserve balances
for outgoing payments. The term EORO quantifies the effective augmentation of dealer
banks’ reserves by early incoming payments from non-dealer banks. The parameter Q
largely encapsulates the representative dealer bank’s lowest comfortable level of reserves,
predominantly influenced by liquidity regulations.33 However, Q may also incorporate
normalization constants related to Treasury issuance and inflows from non-dealer banks.
For instance, if the true impact of Treasury issuance can be expressed as Ec

I +EIT
t
I , where

Ec
I is a constant, then Ec

I will be effectively subsumed into the value of Q.

Second, I assume that bank i believes bank j’s beginning reserve balances follow a
normal distribution, Rt

j ∼ N (Rt
i, σr), and analyze the limiting equilibrium as σr → 0,

in line with the conventions of global game literature (Carlsson and Van Damme, 1993).
Consequently, bank i effectively knows the quantity of bank j’s reserve balance when day
t starts in the limiting equilibrium.34 Drawing on empirical evidence (Copeland, Duffie

32For details on how I calculate St, refer to Appendix E.
33For details see the Fed’s Senior Financial Officer Survey.
34I find that altering the value of uncertainty σr within a small neighborhood around zero has virtually
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and Yang (2020), also illustrated in Table 7) that shows a positive correlation between
increased Treasury outstandings (T tD) and repo trading volume, I hypothesize that bank
i anticipates the repo borrowing demand for borrower j to follow Dt

j − EDT
t
D ∼ exp(λ).

This assumption implies that borrowing demand increases linearly with T tD andED serves
as the linear coefficient capturing this relationship.

Third, I use the median time of receives, Dt
P , to infer early payment strategy a∗i ,

which is not directly observable. Intuitively, the median time of receives serves as a proxy
for measuring the payment delays encountered by large dealer banks on a daily basis,
effectively reflecting the early payment behaviors of large banks. Specifically, an increased
early payment aj from bank j to bank i on day t should correspondingly lead to an earlier
median time by which bank i receives 50% of its total incoming payments via Fedwire on
the same day. To quantify this relationship, I postulate and estimate a linear model for
day t as follows:

Dt
P − E[Dt

P ] = βe1(a
∗
i
t − E[a∗i

t])︸ ︷︷ ︸
early payment from

dealer banks

+ βe2(R
t
O − E[Rt

O])︸ ︷︷ ︸
early payment from
non-dealer banks

+ ϵtD.︸︷︷︸
noise on

day t

. (7)

By design, Eq. (7) ensures E[ϵtD] = 0.

Forth, under the assumption that Ri and Di possess atomless distributions, the equi-
librium funding rates (Eq. (4)) suggest an empirical relationship between GCF repo rates
and other observed quantities as follows:

(GCF − IOR)t = Γi(Ri −Q− Sti , α
∗
i
t, α∗

j
t) + ϑMEEt

month︸ ︷︷ ︸
month-end effect

+ ϑ︸︷︷︸
other market

factors

+ ϵtr︸︷︷︸
noise on

day t

. (8)

Here, Sti = 1
10
St represents the proportionate share of total repo lending attributable

to bank i on day t. The term ϑME is introduced to capture the month-end seasonality
observed in GCF repo rates,35 while ϑ is estimated to encapsulate the aggregate impact of
other market factors influencing GCF repo rates.

Lastly, in lieur of Eq. (4), unobserved repo borrowing demand of borrower i are related

no impact on the estimates and the model’s fit.
35Before 2020, GCF-IOR spread is usually elevated at month end and quarter end due to regulatory

capital requirements on foreign bank holding companies that cause them to reduce their provision of
liquidity to interdealer markets, (in particular, a subset of UK banks had their capital ratios calculated based
on a snapshot of their month-end balance sheets) as detailed in the studies by Correa, Du and Liao (2020),
Ranaldo, Schaffner and Vasios (2020), and Bassi, Behn, Grill and Waibel (2024), among others.
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to the equilibrium GCF repo rate and transaction amount as:

Dt
i = Sti +

(GCF − IOR)t

ξ
+ ϵtSm.︸︷︷︸

measurement error

(9)

The structural model has a total of 14 parameters, listed in Table 4. The parameters per-
tinent to daily payment obligations, λN andNmin, can be straightforwardly estimated using
the method of moments, utilizing payment volume data from Fedwire. The distribution of
Ni implies that its mean and variance areNmin+

1
λN

and 1
λ2N

, respectively, which are aligned
with the corresponding metrics observed in the payment data. Given a candidate set of
model parameters, observable inputs from day t, namelyRt

D, R
t
O, T

t
I , T

t
D, E

t
month, enable me

to calculate the equilibrium early payment strategies a∗i t, a∗j t and the corresponding values
of Γi,Γj , as delineated by Theorems 1 and 2. I then incorporate additional observable
equilibrium outcome variables, (GCF − IOR)t, Sti and Dt

P to fit two empirical equations
Eqs. (7) and (8). This process yields unexplained residuals ϵtr and ϵtD for each day t. My
identification assumption is that these residuals, ϵtr and ϵtD, are orthogonal to the above
quantities that I use to calculate fit the two empirical equations. This entails setting the
finite-sample-analogous expectations of the following moments to zero, effectively lever-
aging the dataset to ensure the model’s predictions correspond with observed behaviors
of GCF repo rates and payment system delays:

E
[
ϵtr
]
= E

[
ϵtrR

t
D

]
= E

[
ϵtrR

t
O

]
= E

[
ϵtrT

t
I

]
= E

[
ϵtrE

t
month

]
= E

[
ϵtrS

t
i

]
= 0

E
[
ϵtD(a

∗
i
t − E[a∗i

t])
]
= E

[
ϵtD(RO

t − E[RO
t])
]
= E

[
ϵtDR

t
D

]
= E

[
ϵtDE

t
month

]
= 0

I further assume that the measurement error ϵtSm
, as defined in Eq. (9), has a zero mean

and is uncorrelated with the outstanding Treasury debt T tD. These assumptions introduce
two additional moments that are crucial for identifying the parameters λ and ED.36

E
[
Sti + (GCF − IOR)t/ξ − EDT

t
D − λ−1

]
= E

[
(Sti + (GCF − IOR)t/ξ − EDT

t
D − λ−1)T tD

]
= 0

I estimate the model based on the test data set of my sample (business days from
January 3, 2019, to August 31, 2019). The point estimates are recorded in Table 4. Admit-
tedly, the GCF repo market is a complicated OTC market, featuring relationship trading
(Paddrik, Ramirez, McCormick et al., 2021), search frictions (Afonso and Lagos, 2015),

36Based on the assumptions regarding the probability distribution of the borrowing demandsDt
i andDt

j ,
it follows from Eq. (9) that E[−ϵtSm

] = E [Sti + (GCF − IOR)t/ξ] − E[Dt
i ]. Since ϵtSm

and demeaned Dt
i are

both uncorrelated withT tD,E[(−ϵtSm
+Dt

i−EDT tD−λ−1)T tD] = E[(Sti+(GCF−IOR)t/ξ−EDT tD−λ−1)T tD] =
0.

28

Electronic copy available at: https://ssrn.com/abstract=3721785



and market segmentation (Han, 2020; Avalos, Ehlers and Eren, 2019; Duffie and Krish-
namurthy, 2016). My model abstracts away from those frictions to focus only on the
relationship between the quantity of reserve supply and GCF-IOR spread. However, the
goal of my quantity exercise is not to provide the most accurate quantitative model to
describe the GCF repo market. Rather, my focus is on exploring the impact of strategic
complementarity on overnight wholesale funding rate spreads. Nevertheless, my model
fits the in-sample variations of GCF-IOR spread and median payment timing simultane-
ously reasonably well on my test data set. Table 5 compares the goodness of fit of my
model with three other types of models: (1) one linear model for the GCF-IOR spread
and one linear model for the median time of receives, (2) a machine learning model of
random forest trained using cross-validation, and (3) an otherwise identical model of
mine shutting down the effect of strategic complementarity (see details of this model in
Appendix D.3). The measures of goodness of fit include mean squared error, correlation
between the model-predicted and actual GCF-IOR spread, and correlation between the
model-predicted and actual median time of receives. For linear models, I calculate R2.37
My model is the only one that is able to simultaneously fit both the GCF-IOR spread and
the median time of receives, while achieving similar performance relative to other models
in each dimension.

Although I excluded the September repo spike events from my sample when esti-
mating my model, my quantitative model correctly predicts the repo spikes on September
16-19, 2019, as an out-of-sample event. Figs. 6 and 7 compare the performance across all
four models. In these two plots, the days to the left of the dashed vertical line are my
training dataset, and the days to the right are my test dataset. To study the out-of-sample
performance of all aforementioned models, I use the out-of-sample actual observable set
{Rt

D, R
t
O, T

t
I , T

t
D, E

t
month, S

t
i} from my test dataset as inputs into my model and three other

models with parameters estimated from the training dataset. It is important to note that
although the Fed does not observe these inputs on day t− 1, predicting these variables is
straightforward because they are either prescheduled or exhibit stable time series charac-
teristics. The predicted GCF-IOR spread generated by all four models tracks the variation
of the actual GCF-IOR spread closely in sample. However, only my model successfully
predicts significant spikes in the GCF-IOR spread from September 16 to September 19,
2019.38

37For completeness, I also calculate Pseudo-R2 defined by Schabenberger and Pierce (2001) for nonlinear
models, although Pseudo-R2 is not a great measure for comparing different nonlinear models.

38My model reasonably captures the GCF-IOR spikes on September 16 and September 19, 2019, with
prediction errors of approximately 20 basis points for each instance. However, it fails to replicate the
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The performance of my quantitative model on the test dataset validates the mechanism
of my theory. Without prior knowledge of how strategic complementarity in interbank
intraday payment timing works, simple statistical models and even machine learning
models are unlikely to capture the nonlinear or discontinuous reactions of short-term
wholesale funding rates when reserves balances are close to being insufficient. Thus,
those models tend to underestimate the level of sufficient reserves. Because the Fed has
access to granular data of intraday interbank payment timing, real-time changes of every
bank’s reserve account balance, and activities in the short-term funding markets, a good
understanding of strategic complementarity in interbank intraday payment timing could
have allowed the Fed to develop a full-fledged quantitative model to shape its policy
of reserve supply. An effective quantitative model of this nature, which helps predict
funding rate distortions out of sample, serves as a valuable tool for central bankers,
facilitating precautionary interventions.

9 What quantity of reserves would have been sufficient?

Copeland, Duffie and Yang (2020) note the reserve balances of the top 10 repo active
dealer banks are more important in directly determining the spreads of various repo rates
over IOR than reserve balances of other non-dealer large banks. My quantitative model
enables the estimation of the minimum reserve levels necessary for large dealer banks
to maintain short-term funding rates close to the Fed’s policy target and to support an
efficient payment system. This level may vary daily due to changes in macroeconomic
conditions, such as fluctuations in borrowing demands within the wholesale funding
markets, variations in Treasury issuance, and adjustments in the reserve balances of other
non-dealer large banks.

Fig. 8 shows the sufficient amount of reserves of large dealer banks required to keep
the expected GCF-IOR spread below 13 basis points, 26 basis points. and 52 basis points,

substantial spike on September 17—the actual spike was 390.7 basis points, but the model predicts only 91.8
basis points. This discrepancy is likely attributable to several factors: (1) The model assumes linear delay
and regulatory costs with coefficients c and ψ, whereas the actual cost function may be nonlinear. (2) Due
to limitations in my dataset, I have assumed that reserves are evenly distributed among the large dealer
banks; however, extra reserves, i.e., reserves beyond regulatory requirements, may became concentrated
in a few banks in 2019, as indicated by banks’ quarterly reports. This uneven distribution may have
exacerbated liquidity hoarding and driven up funding rates. (Interested readers can contact the author for
some theoretical results on reserve concentration effects.) (3) The baseline model abstracts away certain
market frictions, such as market power, which might have been particularly influential on September 17,
2019, when the concentration of extra reserves meant that only a few banks held sufficient liquidity.
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Figure 6: Comparison of in-sample and out-of-sample expected GCF-IOR spreads conditional on
{RtD, RtO, T tI , T tD, Sti , Etmonth} generated by three models: (1) my model incorporating strategic comple-
mentarity, (2) a linear regression model, and (3) a random forest machine learning model. The delineation
between in-sample (to the left) and out-of-sample (to the right) periods is marked by a dashed line, repre-
senting August 31, 2019.
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Figure 7: The fitted expected GCF-IOR spreads (conditional on {RtD, RtO, T tI , T tD, Sti , Etmonth}) from my
model with strategic complementarity and an otherwise identical model without strategic complementarity.
In-sample days are to the left of the dashed line; out-of-sample days are the days to the right. Dashed line:
August 31, 2019.
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Figure 8: Counterfactual minimum levels of reserves of large dealer banks required to maintain the
expected GCF-IOR spread below 13 bps, 26 bps, and 52 bps, respectively, holding other variables
({RtO, T tI , T tD, Sti , Etmonth}) at their actual historical levels. This analysis intentionally excludes month-end
days to focus solely on the influences of reserve supply and payment delays.

respectively, as predicted by my model.39 My estimated model suggests that beginning
in September 2019, the historical reserve balances of the large dealer banks became in-
sufficient to keep the expected GCF-IOR spread below 13 basis points, as confirmed by
the data. All three lines in the plot increase progressively, because, up to September 18,
2019, reserve balances of other large banks declined substantially, while repo borrowing
demand steadily increased throughout 2019. Treasury issuance also temporarily elevates
the level of necessary reserves.

Note that on July 1, 2019, dealer banks’ total reserve balances were lower than those of
September 17, 2019, but the GCF-IOR spread on July 1 was much lower than the spread on
September 17. This observation would be a puzzle through the lenses of models that study
the repo market in isolation. My model provides an explanation for this observation: The
reserve balances of other large banks were larger on July 1, so large dealer banks expected
they could rely on early incoming payments from other large banks to make their outgoing
payments. Therefore, large dealer banks did not hoard reserves in paying other banks
on July 1, and the GCF-IOR spread did not spike with a large magnitude (though with

39Due to noise that is not captured by my theoretical model, the actual GCF-IOR spread may fluctuate
above and below the expected GCF-IOR spread.
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a smaller amount of opening reserve balances, the dealer banks demanded higher repo
rates). On September 16, 2019, however, a combined effect of low reserve balances of
all large banks and increased repo borrowing demand triggered the liquidity hoarding
condition, consistent with my model’s prediction, thus causing the large repo spike on
that day. By integrating the interbank payment market and wholesale funding markets,
my model captures both events. Fig. 8 shows the sufficient level of reserves for large dealer
banks is higher on September 16-18 than on July 1.

10 Conclusion

The post-GFC liquidity rules and supervision significantly increase the incentives of large
U.S. dealer banks to maintain substantial intraday reserve buffers. I show that a sufficiently
low supply of reserves causes banks to suddenly hoard reserves, reinforced by a feedback
effect stemming from the strategic complementarity of intraday payment timing, and leads
to intraday payment timing stress.

My main results suggest that to avoid reserve hoarding and wholesale funding rate
spikes, the Fed would want to ensure banks have enough reserves to meet (1) intraday in-
terbank payment needs and (2) borrowing demand in wholesale funding markets (Anbil,
Anderson, Cohen and Ruprecht, 2023). I show that factors determining reserve sufficiency
can be summarized by one liquidity stress index. To reduce frictions in monetary policy
implementation and the interbank payment system, the Fed may also relax post-crisis liq-
uidity regulations to encourage the use of the Fed’s intraday overdraft facility and reduce
large banks’ dependence on incoming payments in sending their outgoing payments.

In July 2021, the Federal Reserve established the Standing Repo Facility (SRF) as
a backstop in the repo markets. However, borrowing from the SRF could expand the
balance sheets of large dealer banks, potentially exacerbating their capital constraints by,
for example, increasing their supplementary leverage ratio. There is also concern over
a potential "stigma" associated with borrowing from the Fed. Given the uncertainties
regarding the SRF’s effectiveness during financial stress and the Fed’s intention not to
intervene regularly in funding markets, it remains crucial for the Fed to ensure an adequate
reserve supply.

My paper is closely related to the current dialogue concerning the Federal Reserve’s
quantitative tightening strategy. During the March 2024 FOMC press conference, Federal
Reserve Chair Jerome Powell emphasized the goal to conclude QT once reserves reach "the
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lowest possible ample number." In light of this, my paper contributes a quantitative frame-
work to assess reserve ampleness with the objectives of ensuring an efficient interbank
payment system, effective monetary policy implementation, and liquidity in wholesale
funding markets.
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A Appendix: Tables and figures

Table 1: Summary statistics for sample used by Copeland, Duffie and Yang (2020)

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
dealer opening balances ($ billions) 2,046 819.3 251.3 362.0 664.4 744.4 1,051.3 1,378.0
other non-dealer large bank balances ($ billions) 2,046 1,266.6 277.5 652.4 1,067.3 1,265.9 1,477.9 1,836.1
Tbills outstanding ($ billions) 2,059 2,711.9 1,166.9 1,233.0 1,742.0 2,274.0 3,810.7 4,984.4
Bill issuance ($ billions) 2,059 40.1 61.7 −0.03 −0.001 0.0 92.0 272.9
Coupon issuance ($ billions) 2,059 12.6 40.4 −0.02 0.0 0.0 0.0 301.3
Treasuries redemption ($ billions) 2,059 47.1 65.6 0.0 0.0 0.0 101.5 342.6
median time of receives (minutes) 2,046 0.7 51.1 −107.4 −36.4 −4.4 39.6 154.6
SOFR - IOR (basis points) 2,061 −8.3 11.7 −29 −15 −10 −2 315
GCF - IOR (basis points) 2,059 −3.1 15.1 −47.4 −10.2 −5.4 2.7 390.7
Treasuries issuance ($ billions) 2,059 52.7 73.2 −0.03 0.0 0.0 107.6 470.1
quarter-end fixed effect 2,060 0.02 0.1 0 0 0 0 1
corporate tax to US treasury ($ billions) 2,060 1.3 5.5 −0.1 0.1 0.1 0.4 63.7
dealer bank deposits uninsured ($ billions) 2,061 2,214.0 478.2 1,685.8 1,828.7 1,933.3 2,773.1 3,039.9
Note: This table includes days from January 1, 2015, to March 31, 2023.

Table 2: Summary statistics for the sample used in Section 8

Statistic N Mean St. Dev. Min Pctl(25) Median Pctl(75) Max
dealer opening balances ($ billions) 179 469.9 27.7 362.0 452.0 475.7 489.8 525.4
other non-dealer large bank balances ($ billions) 179 831.4 66.5 652.4 782.5 810.8 890.4 975.2
Total Treasury outstanding ($ billions) 179 14,112.2 192.2 13,852.5 14,026.8 14,066.7 14120.4 14,621.1
Bill issuance ($ billions) 179 35.8 42.5 −0.01 −0.001 0.0 79.0 117.0
Coupon issuance ($ billions) 179 11.3 34.4 −0.003 0.0 0.0 0.0 156.9
Treasuries redemption ($ billions) 179 43.6 51.3 0.0 0.0 0.0 84.0 245.7
median time of receives (minutes) 179 74.5 25.4 −2.4 58.6 72.6 90.6 150.6
SOFR - IOR (basis points) 179 7.0 24.2 −3 1 4 7 315
GCF - IOR (basis points) 179 14.1 30.1 3.3 6.6 9.9 13.4 390.7
Treasuries issuance ($ billions) 179 47.1 55.1 −0.01 −0.001 25.0 84.5 253.0
quarter-end fixed effect 179 0.01 0.1 0 0 0 0 1
corporate tax to US treasury ($ billions) 179 1.1 4.2 0.02 0.05 0.1 0.3 34.7
dealer bank deposits uninsured ($ billions) 179 1,934.0 18.0 1,909.0 1,918.8 1,929.2 1,948.8 1,973.8
Note: This table includes days from January 3, 2019, to September 18, 2019.
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Table 3: Quantile regression for the 99th percentile of repo spreads

Dependent variable: SOFR - IOR GCF - IOR
(1) (2) (3) (4) (5) (6)

dealer opening balances −34.2∗∗∗ −77.3∗∗∗ −41.8∗∗∗ −49.4∗∗∗ −98.9∗∗∗ −46.6
(4.04) (12.4) (12.4) (10.1) (30.5) (28.9)

quarter-end fixed effect 39.8∗∗ 29.2 37.1∗∗∗ 240.0∗∗∗ 226.0∗∗ 240.0∗∗∗

(17.4) (22.1) (5.1) (48.5) (90.5) (14.8)

median time of receives 0.129∗∗∗ 0.179∗∗

(0.0415) (0.0742)

Tbills outstanding 3.01 −0.645 1.86 −2.63
(2.65) (2.98) (6.29) (6.45)

Treasuries redemption −25.1 1.52 −84.7 −73.2
(36.7) (61.8) (107.0) (102.0)

Bill issuance 30.6 11.4 84.2 71.6
(33.0) (55.4) (96.5) (92.6)

Coupon issuance 52.4 18.0 103.0 71.3
(35.6) (51.6) (116.0) (101.0)

dealer bank deposits uninsured 26.5∗∗∗ 13.4∗ 31.6 12.1
(8.54) (7.86) (20.1) (19.6)

corporate tax to US treasury −34.3 −12.4 716.0 828.0
(209.0) (189.0) (1939.0) (1412.0)

Constant 36.6∗∗∗ 4.76 13.8∗ 58.3∗∗∗ 24.5 34.6∗∗

(4.88) (6.59) (7.83) (12.5) (16.2) (17.1)

Observations 2046 2043 2039 2045 2042 2038
pseudo-R1 0.289 0.345 0.384 0.016 0.0811 0.141

SOFR is the secured overnight financing rate and IOR is interest on reserves. SOFR-IOR and GCF-IOR are in basis points. The units

of the explanatory variables are trillions of dollars and minutes. The left panel is from Copeland, Duffie and Yang (2020). The right

panel replicates the results using the GCF-IOR spread. The sample is from 01/01/2015 to 03/31/2023.
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Table 4: Calibrated parameters for the model detailed in Section 8

Parameters Meaning Point Estimate Bootstrap Standard Error
ξ governs demand elasticity 319.0 (basis point) 13.6

c late payment cost 278.4 (basis point) 10.1

Q regulatory minimum 16.2 (billion dollar) 4.74

1/λ E[Di −Dmin] 21.9 (billion dollar) 1.68

ϑME month-end effect 17.1 (basis point) 1.95

ψ regulatory cost $21325.1 180818.7

EI Treasury issuance effect 0.024 0.169

EO
early payment from
other banks is EORO

0.71 0.061

ED Dmin = EDTD 0.0317 0.00169

βe1 coefficient -32.5 6.94

βe2 coefficient -62.80 8.00

ϑ other factors 6.90 (basis point) 10.1

Nmin
minimum total
payment volume 29.1 ($bn) 1.45

1/λN E[Ni −Nmin] 8.4 (billion dollars) 1.47

Note: When configuring inputs for my model, parameter values—includingQ, λ, ψ,Nmin, and λN—should
be adjusted to reflect amounts in trillions of dollars (e.g., input Q as 0.0162). This adjustment ensures
consistency with the model’s input variables {RtD, RtO, T tI , T tD, Sti}, which are also specified in trillions of
dollars during execution.

For a clearer economic interpretation, the parameter ψ is listed in the table as the dollar penalty per unit
of overdraft, equating to a substantial value in basis points per trillion dollars. To determine the accuracy
of parameter estimators, I employ a bootstrap methodology, executed with 2,000 bootstrap samples. The
bootstrap distribution of ψ is characterized by right skewness and a pronounced fat tail, contributing to a
notably large bootstrap standard error.

Regarding the predictive accuracy of the model, approximately 9.2% of the bootstrapped parameter values
predict a spike in repo rates on September 11, 2019, 7.5% on September 12, 2019, 35.6% on September 13,
2019, 94.9% on September 16, 2019, 96.0% on September 17, 2019, and 94.7% on September 18, 2019. These
results suggest a non-trivial risk of a Type I error (false-positive prediction of a large spike) for September
13, 2019, according to the bootstrap statistics, with a minimal likelihood of Type II errors (false-negative
predictions) during September 16-19, 2019.
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Table 5: In-sample model fit and out-of-sample performance for four types of models:
linear models, my model with strategic complementarity, a model without strategic com-
plementarity, and a random forest machine learning model.

Panel A: In-sample fit

MSE for fitted
GCF-IOR

R2 for fitted
GCF-IOR

Correlation
between
fitted and actual
GCF-IOR

MSE for fitted
median time
of receives

R2 for fitted
median time
of receives

Correlation
between
fitted and actual
median time
of receives

model with
strategic

complementarity
17.86 0.60 0.78 0.64 0.36 0.60

model without
strategic

complementarity
19.10 0.58 0.76

linear model
for GCF-IOR 22.09 0.62 0.72

linear model for
median time
of receives

0.59 0.42 0.65

random forest 18.47 0.59 0.96
Note: R2 for nonlinear models is the Pseudo-R2 defined by Schabenberger and Pierce (2002).

MSE stands for mean squared error. For random forest, MSE and R2 are based on the out-of-bag prediction error.
The linear models used here correspond to the second and forth columns from Table 6 respectively.
The data for this panel is from 01/03/2019 to 08/31/2019.

Panel B: Out-of-sample mean squared error (MSE)

model with
strategic

complementarity

model without
strategic

complementarity

linear model
for GCF-IOR random forest

MSE 7548.63 12082.31 12185.35 12110.79

Note: Units are squared basis points for each column.
The data for this panel is from 09/01/2019 to 09/18/2019.

44

Electronic copy available at: https://ssrn.com/abstract=3721785



Table 6: Linear models for GCF-IOR and payment delays

GCF-IOR median time of receives
(1) (2) (3) (4)

dealer opening balances −124.0∗∗∗ −118.0∗∗∗ −1.75 −2.00
(28.3) (27.2) (2.15) (2.18)

large non-dealer bank balances −29.5∗∗∗ −47.1∗∗∗ −9.27∗∗∗ −7.76∗∗∗

(4.38) (6.29) (1.12) (1.58)

net Treasury issuance 68.4∗∗ 94.1∗∗∗ −9.64∗∗ −11.4∗∗

(32.2) (33.3) (4.33) (4.50)

Treasuries outstanding −11.7∗∗∗ 0.655
(2.48) (0.637)

repo lending quantity 8.96 2.88
(12.1) (2.45)

month-end fixed effect 15.7∗∗∗ 14.5∗∗∗ 0.297 0.273
(2.16) (2.27) (0.349) (0.346)

constant 93.5∗∗∗ 267.0∗∗∗ 11.6∗∗∗ 0.316
(13.4) (44.5) (1.02) (9.87)

Observations 166 166 166 166
R2 0.58 0.618 0.376 0.386
Adjusted R2 0.569 0.603 0.361 0.363
Residual Std. Error 4.41 4.23 0.80 0.798

Note: Standard errors are adjusted for heteroskedasticity. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
Units are trillions of dollars and minutes. Sample period: 01/03/2019-08/31/2019.

Table 7: Basic regression models for repo trading volume.

Volume
(1) (2) (3)

Treasuries Outstanding 0.0799∗∗∗ 0.0312∗∗∗ 0.0295∗∗∗

(0.00633) (0.0102) (0.0102)

Large Banks’ Reserve Balances −0.186∗∗∗ −0.183∗∗∗

(0.0372) (0.0385)

Treasury Issuance 0.108
(0.173)

Treasury Redemptions −0.00915
(0.193)

Observations 153 153 153
R2 0.571 0.623 0.626
Adjusted R2 0.568 0.618 0.616
Residual Std. Error 62.8 59.1 59.2

Note: Standard errors are adjusted for heteroskedasticity. ∗p < 0.1; ∗∗p < 0.05; ∗∗∗p < 0.01.
Constant included for each specification. Sample: biweekly 09-28-2016 to 09-18-2019.
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Figure 9: Liquidity provided by MMF is quarterly average of the money market mutual fund (MMF)
investments in the overnight Treasury repo less MMF RRP facility usage. Liquidity provided by large U.S.
banks is the quarterly average of net lending of all repo products and all tenors (reverse repos + Fed Funds
lent - repos - Fed Funds borrowed). There is no exact data on the net lending of large U.S. banks in the
overnight Treasury repo, but based on information from large banks’ 10-Q, a lower bound is about 49%
of the total net lending of all repo products. The set of large U.S. banks includes JPMorgan Chase, Bank
of America, Goldman Sachs, Morgan Stanley, Citibank, Wells Fargo, and State Street. Data: FFIEC Call
Reports, OFR, 10-Q.

Figure 10: Source: Avalos, Ehlers and Eren (2019)
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Figure 11: Quarterly average daily payments: the average daily payment value calculated every quarter
by the Fedwire Funds Service. The reserve balances of the large repo-active dealer banks are shown in
blue. Large repo-active dealer banks are the total reserve balances of the 10 large and repo-active account
holders. Other large banks are the total reserve balances of the other large account holders of the largest 100
reserve accounts. Most of the payment activities are concentrated among the large banks (e.g. Soramäki et
al. (2007)). Data: Fedwire Funds Service, FRBNY, Copeland, Duffie and Yang (2020).
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Figure 12: Quarterly average daily payments is the average daily payment value calculated every quarter by
the Fedwire Funds Service. Total reserve balances average daily level of reserve balances of all depository
institutions calculated every week by the Fed. Sources: Federal Reserve and Fedwire Funds Service.
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Figure 13: Peak intraday overdrafts are calculated over two-week periods and published by the Federal
Reserve. The peak daylight overdraft for a given day is the greatest value reached by the sum of the daylight
overdrafts for all institutions at the end of each operating minute of the day. Sources: Federal Reserve and
Fedwire Funds Service.
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Figure 14: Quantile regression results for dealer-bank balances and payments timing. Note: Solid lines
represent the coefficients of dealer-bank opening balances (unit: trillion dollars) and the median time of
receives (unit: minutes) across each percentile from 65% to 99%, as specified in column (3) of Table 3.
The shaded regions depict the range of one standard deviation from the point estimates. The standard
deviations of dealer-bank opening balances and median time of receives in 2019 were 0.027 trillion dollars
and 25.4 minutes, respectively. Source: Copeland, Duffie and Yang (2020).
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Figure 15: Payment time net of sample mean when 50% of the day’s total incoming value has been received
by dealer banks over Fedwire against the repo rate spread (VWATR). VWATR is the value-weighted average
of the Treasury general collateral repo rate calculated from Tradition transaction data. Because of the log
scale, I drop the observations for which this rate spread is negative. The upper-right dot corresponds to
September 17, 2019, when repo rates had a huge spike. Clearly, payment timing had been significantly
delayed on this day. Source: Copeland, Duffie and Yang (2020). Data: FRBNY and Tradition.
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Figure 16: Non-dealer bank reserve balances and the median payment to large dealer banks. “Other large
bank balances” for a given day is the total of the opening-of-day reserve balances of all accounts in our
sample, except for the ten dealer banks. The payment timing measure is the half-received time of payments
to the dealer banks. The date corresponding to the red dot in the upper-left corner is September 17, 2019,
on which GCF− spiked to its sample-record high and the total opening balances of the other large banks
reached its sample-record low. Data source: Fedwire Funds Service.
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B Appendix: Institutional background

B.1 The repo market

Repo transactions are economically similar to collateralized loans. Unlike traditional
collateral, repo collateral is not pledged but rather sold and then repurchased at maturity,
which gives the lender greater control over the collateral. A general collateral (GC) repo
is a transaction whereby the cash investor agrees to accept any security within an asset
class, such as U.S. Treasuries. This paper focuses on overnight GC repo transactions
collateralized by Treasuries, which constitute the largest segment of the repo market. The
GC repo rates with Treasury collateral are typically free of counterparty risk and repo
specialness.40

The repo market is among the most important global money markets. Financial
institutions participating in the repo market include securities dealers, primary dealers,
domestic and international banks, insurance companies, asset managers, money market
funds, mutual funds, pension funds, and hedge funds. The repo market redistributes
liquidity among these financial institutions, and in doing so allows other financial markets
to function more efficiently. Disruptions in the repo market may undermine the efficiency
and stability of the financial system.

The initial leg of an overnight repo market has “T+0” settlement, meaning settlement
of the exchange of collateral and reserves occurs on the day the transaction is negotiated.
Importantly, banks and borrowers are unable to sell other assets to provide same-day
liquidity, because they are unable to obtain cash settlement for asset sales on the same
day in most cases. The “T + 0” settlement makes the repo market essential for intraday
funding needs.

The repo market is critical to the implementation of monetary policy. The Federal
Reserve makes heavy use of repos to manage its balance sheet and to target short-term
rates, including its official target rate (i.e., the federal funds rate). After the Global Finan-
cial Crisis (GFC) of 2007-2009, the repo market supplanted the federal funds market by
becoming the dominant market in which U.S. banks and dealers borrow from and lend
reserves to each other. Currently, more than $5 trillion in repo products of various tenors
and collateral types are traded every day.41 One component of the market, the overnight
funding market collateralized by Treasury securities and covered by SOFR, had a daily
average trading volume of $1.08 trillion between January 1, 2019, and July 10, 2020. By
contrast, the concurrent daily average trading volume for the federal funds market is only
$0.071 trillion.42 As a result, the Treasury-collateralized repo rate has become the most
important indicator of U.S. short-term money market conditions. In addition, the Secured

40On occasion, one cash lender may seek a specific security as collateral in the repo market. In this case,
the cash lender is willing to earn a below-market rate on the loan because the securities posted as collateral
are “special,” meaning they have an intrinsic value that the cash lender will attempt to monetize. This
adjustment of repo rates is known as the repo specialness premium (Duffie, 1996).

41See Baklanova, Copeland and McCaughrin (2015) and US Repo Market Fact Sheet for more details.
42These estimates are based on daily-volume data from NYFed and from Fred .
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Figure 17: Stylized overview of the U.S. GC Treasury repo market. Arrows denote the flow of cash, from
net cash lenders to net cash borrowers.

Overnight Financing Rate (SOFR) is replacing LIBOR as the main benchmark interest rate
in U.S. money markets.43 Therefore, an understanding of the factors that determine repo
rates, especially the supply of reserves provided by the Fed, is critical to the conduct of
U.S. monetary policy in the post-GFC regulatory environment.

Fig. 17 provides a stylized overview of the U.S. GC Treasury repo market. Large U.S.
banks are central intermediaries in this market. On the one hand, large U.S. banks chan-
nel liquidity from ultimate cash lenders (e.g., MMFs, government-sponsored enterprises,
and exchange-traded funds) to ultimate cash borrowers, including hedge funds, smaller
banks, and foreign institutions.44 In this mechanism, every dollar lent by large U.S. banks
is financed by a corresponding one dollar increase in liabilities such as repo borrowing.
I follow Correa, Du and Liao (2020) and call this mechanism the “matched-book inter-
mediation” of large U.S. banks. On the other hand, large U.S. banks run down their
reserve balances to provide additional liquidity in the U.S. GC Treasury repo market—so-
called “reserve-draining intermediation” (Correa, Du and Liao, 2020). As demonstrated
by Fig. 9, reserve-draining intermediation has played an increasingly important role in
liquidity provision in short-term wholesale funding markets.

The term “repo” is usually associated with the activity of borrowing liquidity. Liq-
uidity provision by large U.S. banks increases their reverse repo position. The market
segment where large, high-quality, dealer banks borrow from U.S. money market funds
is called the “triparty repo market.” The market where large dealer banks lend to smaller

43More details of the transition from LIBOR can be found on the Alternative Reference Rates Committee’s
(ARRC) webpage.

44Foreign banks also function as dealers between lenders and borrowers, but they are primarily net cash
borrowers in the GC Treasury repo market (Kahn and Olson, 2021).
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dealers is called the “GCF repo market.” Therefore, in a fully competitive market, the
GCF- spread represents the marginal value of liquidity for large dealer banks.

The New York Fed (NY Fed) publishes SOFR as one important broad measure of the
cost of borrowing cash overnight collateralized by Treasury securities. The SOFR is a
volume-weighted median of transaction-level triparty repo data (collected from the Bank
of New York Mellon) as well as GCF repo transaction data and data on bilateral Treasury
repo transactions cleared through FICC’s DVP service, which is filtered to remove a portion
of transactions considered “specials.” Due to its complicated composition, SOFR is not
a good measure of the marginal value of liquidity for large U.S. banks, but it is highly
related and typically co-moves with GCF repo rates.

B.2 The interbank payment system details

The clearing and settlement system for U.S.-dollar-denominated wholesale transactions
is the largest in the world. It is highly complex and consists of a multitude of platforms
that form an intricate network, connecting multiple financial institutions. The center of
the network is the interbank payment system—the system that commercial banks use to
send large-value or time-critical payments to each other across the accounts of the Federal
Reserve, which is called the “Federal Reserve’s Fedwire Funds Service” (Fedwire Funds).
Fedwire Funds is a real-time gross settlement (RTGS) system and processes payments
individually, immediately, unconditionally, and with finality during 22 hours of any given
business day.45 Transactions on all other platforms in the wholesale clearing and settle-
ment system almost always involve a payment from one bank to another in the Fedwire
Funds system (Bech, Martin and McAndrews, 2012). Therefore, banks face real-time de-
mand for payment services by their clients, who wish to send money to their business
counterparts who may hold accounts at other banks. Often, clients have urgent payment
requests (e.g., settling foreign exchange transactions) and desire settlement by banks of
potentially very large payments with minimal delay. In such a case, postponing making
those payments is costly for banks because clients might either demand compensation
for late settlement or take their business elsewhere in the future. In general, a bank has
little control over the arrival of its customers’ outgoing payment requests and the flow
of its incoming funds transfers that depend on other banks’ timing decisions of payment
initiation. However, banks can strategically delay sending those payments (albeit delaying
is costly) to smooth non-synchronized payment flows and to economize on their use of
reserves throughout the day. The reason is that under post-crisis liquidity regulations
and supervision, large U.S. banks appeared to have become extremely averse to allowing
their intraday reserve balances to drop below a certain desired level. (See Appendix B.3
for more details.) Throughout each business day, large banks face both sizable incoming
payment flows and outgoing payment requests (see Figs. 11 and 12). Therefore, they
have to rely heavily on incoming payments from other banks to meet their own payment
requests, and they face a serious liquidity-management problem when payment requests
outbalance incoming payment flows.

45A more detailed description can be found here
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B.3 Post-GFC liquidity regulations

I summarize some relevant liquidity rules and supervision that constrain the large dealer
banks as follows:

• The Federal Reserve created the Large Institution Supervision Coordinating Com-
mittee (LISCC) supervisory program in 2010, which supervises the intraday liquidity
risk of large banks. The Federal Reserve Board stated, “In 2019, LISCC liquidity su-
pervision is focusing on the adequacy of a firm’s cash-flow forecasting capabilities,
practices for establishing liquidity risk limits, and measurement of intraday liquidity
risk” (May, 2019 Report on Supervisory Developments).

• The Federal Reserve Board’s Regulation YY, Enhanced Prudential Standards, in-
cludes rules covering intraday liquidity exposures, which state, “If the bank holding
company is a global systemically important BHC, Category II bank holding com-
pany, or a Category III bank holding company, these procedures must address how
the management of the bank holding company will: (i) Monitor and measure ex-
pected daily gross liquidity inflows and outflows; (ii) Manage and transfer collateral
to obtain intraday credit; (iii) Identify and prioritize time-specific obligations so that
the bank holding company can meet these obligations as expected and settle less crit-
ical obligations as soon as possible; (iv) Manage the issuance of credit to customers
where necessary; and (v) Consider the amounts of collateral and liquidity needed
to meet payment systems obligations when assessing the bank holding company’s
overall liquidity needs."46

• Resolution Liquidity Adequacy and Positioning (RLAP) under the Dodd-Frank Act-
includes the intraday “resolution” liquidity requirement. The associated FDIC and
Federal Reserve Board guidance states that banks must “ensure that liquidity is read-
ily available to meet any deficits. . .Additionally, the RLAP methodology should take
into account (A) the daily contractual mismatches between inflows and outflows; (B)
the daily flows from movement of cash and collateral for all inter-affiliate transac-
tions; and (C) the daily stressed liquidity flows and trapped liquidity as a result
of actions taken by clients, counterparties, key FMUs,47 and foreign supervisors,
among others."

The Liquidity Coverage Ratio (LCR) is another frequently mentioned regulatory constraint
that may have prevented banks from lending their excess reserves to take advantage of
higher repo rates, but LCR is unlikely to present a hurdle. The LCR requires banks to hold
high-quality liquid assets (HQLA) equal to a projected 30-day net cash outflow under

46According to the Federal Reserve Board’s August 2019 Senior Financial Officer Survey, “satisfying
internal liquidity stress metrics, meeting routine intraday payment flows, and meeting potential deposit
outflows were important or very important determinants” of banks’ holdings of excess reserves. In a related
BIP survey, over three-quarters of the banks to which the Regulation YY liquidity buffer is applicable
indicated this consideration to be “important” or “very important.”

47An FMU is a designated financial market utility, such as a designated payment system or a settlement
system.
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stress. Excess reserves and the Treasury securities received in a reverse repo as collateral
count equally as HQLA by LCR, so trading one for the other leaves a bank’s HQLA
unchanged. Moreover, the reverse repo is assumed to roll over 100% for 30 days, so net
cash outflows are unaffected. Consequently, any bank’s LCR is unchanged regardless of
the amount of reserves it lends in the repo market.

Numerous industry reports and academic work have documented how the set of
liquidity regulations constrained the large banks (Pozsar, 2019a,b; Younger, John and
Aggarwal, 2020; Nicolae, 2020). Jamie Dimon, the Chairman and CEO of JP Morgan,
commented on the September 2019 repo market disruption during J.P. Morgan’s third-
quarter 2019 earnings call, by saying,

. . . we have a checking account at the Fed with a certain amount of cash in it. Last year [2018]
we had more cash than we needed for regulatory requirements. So when repo rates went up, we
went from the checking account, which was paying IOR into repo. Obviously makes sense, you
make more money. But now the cash in the account, which is still huge. It’s $120 billion in the
morning and goes down to $60 billion during the course of the day and back to $120 billion at the
end of the day. That cash, we believe, is required under resolution and recovery and liquidity stress
testing. And therefore, we could not redeploy it into repo market, which we would have been happy
to do. And I think it’s up to the regulators to decide they want to recalibrate the kind of liquidity
they expect us to keep in that account. Again, I look at this as technical; a lot of reasons why those
balances dropped to where they were. I think a lot of banks were in the same position, by the way.
But I think the real issue, when you think about it, is what does that mean if we ever have bad
markets? Because that’s kind of hitting the red line in the Fed checking account, you’re also going
to hit a red line in LCR, like HQLA, which cannot redeployed either. So, to me, that will be the
issue when the time comes. And it’s not about JPMorgan. JPMorgan will be fine in any event. It’s
about how the regulators want to manage the system and who they want to intermediate when the
time comes.
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Figure 18: Reserve balances and the spread of the overnight synthetic dollar interest rates over (FX- spread).
Synthetic dollar interest rate is the implied dollar interest rate in the foreign exchange (FX) swap (borrowing
dollars by first borrowing in foreign currency and swapping this foreign funding for dollars, and entering
into an FX forward contract to hedge the exchange-rate risk) is the interest rate paid on reserves. The reserve
balances of the large repo-active banks are shown in blue (right axis). The spread of the overnight synthetic
dollar funding rate by swapping the ECB deposit rate over the Fed (EUR) is shown in green (left axis).
Source: Fedwire Funds Service, FRBNY, Correa, Du and Liao (2020).
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Figure 19: Reserve balances and the spread of the one-week synthetic dollar interest rates over the Overnight
Index Swap (OIS) rates (left axis). For each currency, the synthetic dollar rates are calculated as the forward
premium minus maturity-matched foreign currency OIS rate as in Wallen (2020). The reserve balances of the
large repo-active banks are shown in blue (right axis). Source: Fedwire Funds Service, FRBNY, Bloomberg.

Note: Unlike Treasury repo loans, lending dollars in the FX markets incurs large balance sheet costs for
dealer banks, especially the global systemically important banks. Due to the balance sheet constraints of
international large dealer banks, the spreads of synthetic dollar interest rates over OIS (FX-OIS spread)
usually spike with large magnitudes near quarter-ends and are generally more volatile (Du, Tepper and
Verdelhan, 2018; Ivashina, Scharfstein and Stein, 2015; Wallen, 2020). Nevertheless, when reserve balances
were low, borrowing in the FX markets became more costly.
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Figure 20: Reserve balances and the spread of the two-week synthetic dollar interest rates over the Overnight
Index Swap (OIS) rates (left axis). For each currency, the synthetic dollar rates are calculated as the forward
premium minus maturity-matched foreign currency OIS rate as in Wallen (2020).The reserve balances of the
large repo-active banks are shown in blue (right axis). Source: Fedwire Funds Service, FRBNY, Bloomberg.
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Figure 21: Reserve balances and the spread of the three-week synthetic dollar interest rates over the
Overnight Index Swap (OIS) rates (left axis). For each currency, the synthetic dollar rates are calculated as
the forward premium minus maturity-matched foreign currency OIS rate as in Wallen (2020). The reserve
balances of the large repo-active banks are shown in blue (right axis). Source: Fedwire Funds Service,
FRBNY, Bloomberg.
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Figure 22: Reserve balances and the spreads of overnight commercial paper rates over (left axis). The reserve
balances of the large repo-active banks are shown in blue (right axis). Data: Federal Reserve Board.
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Figure 23: Reserve balances and the spreads of seven-day commercial paper rates over (left axis). The
reserve balances of the large repo-active banks are shown in blue (right axis). Data: Federal Reserve Board.
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Figure 24: Reserve balances and the spreads of 15-day commercial paper rates over (left axis). The reserve
balances of the large repo-active banks are shown in blue (right axis). Data: Federal Reserve Board.
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D Internet Appendix: Model extensions

D.1 Monopolistic pricing

Many wholesale funding markets feature relationship trading and central-peripheral net-
work structures. Dealer banks usually have market power over the borrowers. In this
section, I extend my baseline model to encapsulate the scenario where dealer banks func-
tion as local monopolies to their respective borrowers.

As in the baseline model, in the funding market, borrower i is matched with bank i.
The net cost of borrower i associated with financing amount q at funding rate r (which is
endogenously determined in equilibrium), is captured by:

qr + ξ
2
((Di − q)+)2︸ ︷︷ ︸

cost of reduced financing

,

For simplicity, assume the quantities Di to be financed by borrowers have a density
fD(x) = λe−λ(x−Dmin) on [Dmin,∞).

Bank i and borrower i bilaterally negotiate the quantity-rate pair (Si, ri), where Si is
the quantity of reserves that bank i provides to borrower i, and ri is the funding rate. The
bilateral negotiation is modeled as a monopolistic screening model (Mussa and Rosen,
1978). Bank i acts as the local monopolist by offering a supply schedule48 g : R → R,
which may depend on the initial balance Ri of bank i. That is, for some measurable
G : R × R+ → R, bank i is willing to charge, at any quantity s chosen by the borrower,
the funding rate of g(s) = G(s, Ri). After observing Di, given the supply schedule g
announced by bank i, borrower i picks its desired quantity Si by solving

inf
s

ξ

2

(
(Di − s)+

)2
+ gi(s)s, (10)

or leaves the market without trading. To define the problem of bank i, I temporarily
assume that there is a unique measurable solution ρ(Di, gi) to (10), and that borrower
i prefers obtaining ρ(Di, gi) in funding at rate gi(ρ(Di, gi)) to the alternative of leaving
the market without trading. I show in Lemma 3 that these assumptions are satisfied in
equilibrium. Having observed Ri, bank i thus chooses the supply schedule gi to solve

sup
g

E
[
V
(
Ri −Q− ρ(Di, g)

)
+ g
(
ρ(Di, g)

)
ρ(Di, g)

∣∣ Ri

]
. (11)

In summary, an equilibrium of the trading game consists of contingent supply sched-
ule G and quantity of funding Si such that given G( · , Ri), Si solves the problem (10)
of borrower i, and the funding schedule G( · , Ri) solves problem (11) of bank i. The
equilibrium funding rate is ri = G(Si, Ri).

48As usual, R = R ∪ {∞,−∞}.
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Lemma 3. Fix any strategy ai = min((Li + αi)
+, Ni) and aj = min((Lj + αj)

+, Nj) for the
payment subgame. There is a unique equilibrium of the trading game which is determined by the
equations

Si = S (Di)
def
= inf

{
s : Γi(Ri −Q− s, αi, αj) ≥ ξ(Di − s− 1−FD(Di)

fD(Di)
)
}

Ti = T (Di)
def
= −ξ

2

(
Di − S (Di)

)2
+
ξ

2
Dmin

2 +

Di∫
Dmin

ξ(x− S (x)) dx

ri =
Ti
Si
,

(12)

where FD is the cumulative distribution function of Di.

This formulation reflects consistent beliefs and rational expectations by bank i about
the equilibrium in the subsequent payment subgame. The term 1−FD(Di)

fD(Di)
= λ−1 in Eq. (12)

is usually called the borrower’s “information rent” in the mechanism design literature.

Lemma 4. Fix the payment subgame equilibrium strategy profile {a∗i = min((Li + αi)
+, Ni)}.

For any o ∈ R, and reserve balances after trading game Lj = Rj −Q−Sj possible in equilibrium,

Lj < o ⇐⇒ Rj −Q−Dj +
Γj(o, αj, αi)

ξ
+ λ−1 < o

Lj ≥ o ⇐⇒ Rj −Q−Dj +
Γj(o, αj, αi)

ξ
+ λ−1 ≥ o.

Let Γ+
j (o, αj, αi) = limx↓o Γj(x, αj, αi), then

P(Lj ≤ o) = P(Rj −Q−Dj +
Γ+
j (o, αj, αi)

ξ
+ λ−1 ≤ o) = E

[
FR

(
Dj +Q−

Γ+
j (o, αj, αi)

ξ
− λ−1

)]
.

The lemma is important because it almost bridges the endogenous state variable Lj
for the payment subgame at t = 1 and the exogenous state variable Rj and Dj at t = 0
under monopolistic pricing, under which I need to revise the definition of the liquidity
stress index to incorporate the information rent of borrower j:

Definition 5. The liquidity stress index is

m = P
(
Rj −Dj −Q+ λ−1 ≤ − c

ξ

)
− c

ψ
= E

[
FR

(
Dj +Q− c

ξ
− λ−1

)]
− c

ψ
,

where FR is the cumulative distribution function of Ri.
The liquidity hoarding condition is when

m = E
[
FR

(
Dj +Q− c

ξ
− λ−1

)]
− c

ψ
> 0. (13)
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The no hoarding condition is when

m = E
[
FR

(
Dj +Q− c

ξ
− λ−1

)]
− c

ψ
< 0. (14)

For a given probability distribution of reserves satisfying a non-degeneracy condi-
tion, liquidity hoarding occurs whenever λ is sufficiently low, Q is sufficiently high, c is
sufficiently low, ξ is sufficiently high, or ψ is sufficiently high.

Theorem 6. Under the liquidity hoarding condition, there is a unique equilibrium. In this
equilibrium, bank i hoards liquidity and pays a∗i = min(L+

i , Ni) in the payment subgame. The
marginal value of liquidity functions are the same for both banks Γi(y, 0, 0) = Γj(y, 0, 0) =
Γ(y, 0, 0) such that

1. When y > 0, Γ(y, 0, 0) = c(1− FN(y));

2. When y ≤ 0, Γ(y, 0, 0) = ψ
(
FN(−y) + (1− FN(−y))FRD(−λ−1 − y − Γ(−y,0,0)

ξ
)
)

.

Theorem 7. Under no liquidity hoarding, there always exists at least one equilibrium. Any
equilibrium must be symmetric (in the sense that αi = αj = α) with pure payment strategy
a∗i = min(Ni, (Li + α)+) for some α > Nmin. The marginal value of liquidity functions are the
same for both banks Γi(y, α, α) = Γj(y, α, α) = Γ(y, α, α). In addition, α and Γ solve a system of
integral equations:

P
(
Ri −Di −Q ≤ −Γ(0, α, α)

ξ

)
+ P(Ni ≤ α)

(
1− P

(
Ri −Di −Q ≤ −Γ(0, α, α)

ξ

))
=
c

ψ
;

Γ(y, α, α) =


ψ

∫
n∈(y+,(y+α))

FN (n− y) + (1− FN (n− y))FRD(−λ−1 + n− y − α− Γ(n−y−α,α,α)
ξ ) dFN (n)

+
∫

n∈[(y+α),∞)

c dFN (n), ∀y > −α;

ψ
(
FN (−y) + (1− FN (−y))FRD(−λ−1 − y − α− Γ(−y−α,α,α)

ξ )
)

∀y ≤ −α.

I find the equilibrium is unique under the same technical conditions as in Section 4.2.

Theorem 8. Assume Ni − Nmin (i = 1, 2) is exponentially distributed with parameter λN , and
FRD is differentiable with density function fRD. Let fmRD = sup{fRD(t) : t ≤ 0}. If

√
2eξ
ψ

> fmRD,
the equilibrium is unique under the no hoarding condition.

Theorem 6 and Theorem 8 imply the equilibrium is unique under both the liquidity
hoarding condition and the no hoarding condition. Once the payment subgame and the
marginal value for liquidity are determined, the equilibrium funding rate can be solved
directly:

Theorem 9. Given realizations of Ri and Di, equilibrium trading quantity Si = S (Di) is
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determined by Eq. (12) in Lemma 3. The equilibrium funding rate ri is

ri =

Ri−Q−S (Dmin)∫
Ri−Q−S (Di)

Γ(y, α, α) dy + T (Dmin)− ξλ−1 S (Dmin)

S (Di)
+ ξλ−1,

where the marginal value Γ(y, α, α) of reserves is solved explicitly in Theorem 6 and Theorem 7,
case by case.

Theorem 7 and Theorem 9 state that when banks expect other banks to have abundant
opening reserves, they have a better incentive to send more payments early in the day and
to lend more liberally in the funding market. Theorem 6 and Theorem 9 predict that when
market conditions (including the probability distribution of reserve levels) change slightly,
yet enough to trigger the hoarding condition Eq. (13), the marginal value of liquidity Γ
can jump up from Γ(Ri −Q− Si, α, α) to Γ(Ri −Q− Si, 0, 0), causing short-term funding
rates to spike:

Theorem 10. Fix some outcome ζ of beginning reserve balances Ri and a quantity S∗ traded in
the funding market. The equilibrium funding rate r∗ jumps up as a function of the liquidity stress
m at the threshold m = 0 that triggers liquidity hoarding. More specifically, there exists some
δ(ζ,S∗) > 0 such that

lim
ϵm↓0

r∗(ζ,S∗, ϵm)− r∗(ζ,S∗,−ϵm) > δ(ζ,S∗),

provided that the sets of macroeconomic conditions MC
ϵm are mutually close to each other with

respect to the liquidity stress index.

D.2 General case: n dealer banks

In this section, I present and solve the model for n > 2dealer banks. For simplicity, assume
n dealer banks are symmetric.49 Assume the random variables of total payment needs
for each bank N1, N2, · · · Nn are identically and independently distributed according to a
probability distribution function (pdf) fN(·) on the support [Nmin,∞) for some Nmin > 0.
In addition, assume the initial reserve balances for each bankR1,R2, · · · ,Rn are identically
and independently distributed with pdf fR(·). Similarly, assume the borrowing demands
from each short-term borrower D1, D2, · · · and Dn are identically and independently
distributed with pdf fD(·). Let FRD(x) = P(Ri − Di − Q ≤ x). Under stated conditions,
FRD is differentiable with pdf fRD.

Suppose bank i makes an early payment ai,j to bank j, and gets incoming early
payment aj,i from bank j. Then in the payment subgame the cost to bank i associated with

49Although numerically solving the model with asymmetric banks is possible, the lack of granular data
prevents us from examining empirically the implications of asymmetric banks.
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payment timing is

ψ(Li −
∑
j ̸=i

ai,j +
∑
j ̸=i

aj,i)
− + c(Ni −

∑
j ̸=i

ai,j)
+ = ψ(Li − ai + a−i)

− + c(Ni − ai)
+,

where

ai
def
=

∑
j ̸=i

ai,j, and a−i
def
=

∑
j ̸=i

aj,i,

and Li is the reserve balances of bank i after the lending in the funding market. Clearly,
bank i is indifferent regarding how to split its total outgoing payment to other banks
as long as the total payment ai is the same. To simplify the analysis, I assume each of
the large dealer banks has the same business relationship with all other dealer banks.
(Soramäki, Bech, Arnold, Glass and Beyeler (2007) show 25 large banks form a densely
connected sub-graph, or clique, in the payment network of the Fedwire system.) Therefore,
ai,j = ai,k =

a−i

n−1
for any j, k ̸= i.

Given the payment strategy a−i of all other banks, bank i chooses ai to optimize the
conditional expected payoff in the payment subgame

U(Li, Ni) = E[−ψ (Li − ai + a−i)
− − c (Ni − ai)

+
∣∣ Ni, Li]. (15)

Lemma 5. Suppose that either
∏

j ̸=i P(Lj ≤ 0) > c
ψ

for all i, or
∏

j ̸=i P(Lj ≤ 0) < c
ψ

for all i.
Then there is a unique Perfect Bayesian payment game equilibrium. In this equilibrium, each bank
i chooses the payment a∗i = min((Li + αi)

+, Ni), where (αi) solves

αi = inf

{
ϑ ≥ 0 : P(

∑
j ̸=i

min((Lj + αj)
+, Nj) ≤ ϑ) ≥ c

ψ

}
(16)

In particular, if Li are i.i.d. distributed, then there is a Perfect Bayesian payment game equilibrium
of the form a∗i = min((Li + α)+, Ni), for some constants α such that

α = inf

{
ϑ ≥ 0 : P(

∑
j ̸=i

min((Lj + ϑ)+ − ϑ,Nj − ϑ) ≤ 0) ≥ c

ψ

}
.

The equilibrium is unique, except for the knife-edge case, where P(Lj ≤ 0) =
n−1
√
c/ψ.

The funding market is modeled as an OTC market where bank i and borrower i are
matched and are price-takers, as in Section 4.2: The cost to borrower i of borrowing Si
at funding rate ri is Siri + (Di − Si)

+r + ξ
2
((Di − Si)

+)2. Bank i’s payoff for lending Si at
funding rate ri is Si(ri − r) + V (Ri − Si). Because I assume the distribution functions of
Ri and Di are atomless, the equilibrium funding rate r∗ and trading quantity S∗

i satisfy

V ′(Ri − S∗
i ) = r∗i − r = ξ(Di − S∗

i ),

where the marginal value of liquidity Γ = V ′ depends on the strategy profile of all other
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banks in the payment subgame and can be calculated directly:

Lemma 6. Given the payment subgame strategy profile {ai = min((Li + αi)
+, Ni)} and some

joint probability distribution for {Li}, let α−i = (αj)j ̸=i. Then, the marginal value of liquidity
function for bank i to be the function Γi : R× R+n → R+ such that

Γi(y, αi, α−i) =


∫

η∈(y+,(y+αi))

ψP(
∑

j ̸=i min((Lj+αj)
+,Ni)

n−1 ≤ η − y) dFN (η) +
∫

η∈[(y+αi),∞)

cdFN (η), ∀y > −αi

ψP(
∑

j ̸=i min((Lj+αj)
+,Ni)

n−1 ≤ −y), ∀y ≤ −αi.

With identical proof as in the two-banks case, we have

Lemma 7. Fix the payment subgame equilibrium strategy profile {a∗i = min((Li + αi)
+, Ni)}.

For any o ∈ R, and reserve balances after trade Lj = Rj −Q− Sj possible in equilibrium,

Lj < o ⇐⇒ Rj −Q−Dj +
Γj(o, αj, α−j)

ξ
< o

Lj ≥ o ⇐⇒ Rj −Q−Dj +
Γj(o, αj, α−j)

ξ
≥ o.

LetΓ+
j (o, αj, α−j) = limx↓o Γ

+
j (x, αj, α−j), thenP(Lj ≤ o) = P(Rj−Q−Dj+

Γ+
j (o,αj ,α−j)

ξ
≤ o).

Recall that, by assumption, {Ri} and {Di} are i.i.d. As in the two-banks case, Lemma 7
motivates the following definitions:

Definition 6. The liquidity hoarding condition for n banks is

P(Ri −Di −Q ≤ − c
ξ
) > (

c

ψ
)1/(n−1). (17)

The no hoarding condition for n banks is

P(Ri −Di −Q ≤ − c
ξ
) < (

c

ψ
)1/(n−1). (18)

Note the liquidity hoarding condition for n banks is less stringent than the liquidity
hoarding condition for two banks, due to the diversification benefits. Each bank receives
incoming payments from n − 1 > 1 other banks, so it is not as concerned about the
liquidity condition of any particular bank. When n → ∞, bank i knows it will receive
a positive amount of incoming payments: a−i =

∑
j ̸=i min((Lj+αj)

+,Nj)

n−1
> 0 almost surely if

P(Rj −Dj − Q ≤ − c
ξ
) < 1. In this case, bank i will never hoard liquidity in the payment

game. In other words, liquidity hoarding condition for n banks will never hold as n → ∞
when P(Rj −Dj −Q ≤ − c

ξ
) < 1.

Apparently, it is useful to consider the probability distribution of a−i for bank i.
Fix some payment subgame equilibrium strategy profile {a∗i = min((Li + αi)

+, Ni)}. By
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assumption, the joint probability distribution of {a∗i } is common knowledge for all banks.
Let

Faj(x)
def
= P(min((Lj + αj)

+, Nj) ≤ x).

Lemma 7 implies that for any x ≥ 0,

Faj(x) = FN(x) + (1− FN(x))P(Rj −Dj −Q ≤ x− αj −
Γj(x− αj, αj, α−j)

ξ
).

Under the stated conditions, when x > 0, Faj(x) is differentiable. Let faj(·) be the pdf for
aj . Direct calculation gives

Lemma 8. Given some payment subgame strategy profile {ai = min((Li + αi)
+, Ni)} and some

joint probability distribution for {Li}, then for any x ≥ Nmin,

faj(x) =
dFaj(x)

dx
=(1− FN(x))fRD(x− αj −

Γj(x− αj)

ξ
)(1−

Γ′
j(x− αj)

ξ
)

+ fN(x)(1− FRD(x− αj −
Γj(x− αj)

ξ
)),

and for any 0 < x < Nmin,

faj(x) = fRD(x− αj −
Γj(x− αj)

ξ
)(1−

Γ′
j(x− αj)

ξ
).

For any x ≥ 0,

Fa−i
(x)

def
= P(

∑
j ̸=imin((Lj + αj)

+, Nj)

n− 1
≤ x) =

∏
j ̸=i

Faj(0) +

(n−1)x∫
0

f∑
j ̸=i aj

(t)dt,

where f∑
j ̸=i aj

(·) is the pdf for the random variable
∑

j ̸=i aj that can be calculated using the
convolution operation on {faj}j ̸=i.

With Lemma 8, the equilibrium can be characterized by the following theorems:

Theorem 11. Under the liquidity hoarding condition for n banks, there is a unique equilibrium,
in which bank i pays a∗i = min(Ni, L

+
i ) in the payment subgame. The marginal value of liquidity

functions are the same for all banks Γi(y, 0, 0) = Γ(y, 0, 0). In addition,

1. When y > 0, Γ(y, 0, 0) = c(1− FN(y));

2. When y ≤ 0, Γ(y, 0, 0) = ψFa−i
(−y).

Theorem 12. Under no liquidity hoarding, there always exists at least one equilibrium. Any
equilibrium must be symmetric with pure payment strategy a∗i = min(Ni, (Li + α)+) for some
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α > Nmin. The marginal value of liquidity functions are the same for both banks Γi(y, α, α) =
Γj(y, α, α) = Γ(y, α, α). In addition, α and Γ solve the following system of integral equations:

Fa−i
(α) =

c

ψ

Γ(y, α, α) =

{ ∫
n∈(y+,(y+α))

ψFa−i
(n− y) dFN(n) +

∫
n∈[(y+α),∞)

c dFN(n), ∀y > −α

ψFa−i
(−y), ∀y ≤ −α.

(19)

Finally, Theorems 11 and 12 imply the Theorems 4 and 5 hold for the n−banks case.
The proofs are almost identical to the two-banks case.

D.3 A quantitative model without strategic complementarity

To highlight the important role of strategic complementarity, I examine an analogous
model without strategic complementarity. I follow the same data processing approach
detailed in Section 8, presuming a linear impact of Treasury issuances on large dealer
banks’ reserve balances and posits that large non-dealer banks’ early payments are linearly
related to their total reserve balances. From the observed dealer balance RD, I calculate:

Ri =
1
10
(RD − ENC

I TI︸ ︷︷ ︸
Impact from

Treasury issuance

+ ENC
O RO)︸ ︷︷ ︸

Early incoming payment
from other banks

−QNC ,

where ENC
I , ENC

O andQNC are constants to be estimated, representing the payment effects
of Treasury issuance, early incoming payments from non-dealer banks, and a normaliza-
tion constant, respectively.

Following the benchmark model described in Section 4.2, I maintain the timeline and
the assumption of competitive funding markets. After deploying Si in the funding market,
bank i’s remaining reserve balance for the payment subgame isRi−Si. For the exercise in
this section, I exclude the element of strategic complementarity by assuming that bank i
does not strategically factor in bank j’s optimal payment strategy as outlined in Section 4.1.
Instead, bank i presumes bank j’s early payment to be a constant fraction of bank j’s
projected total reserve balances, less expected loans in the funding markets. Specifically,
bank i non-strategically posits a∗j = [min(Ei[Rj − Sj] + ENC

R , Nj)]
+ and Ei[Sj] = ENC

D TD,
where TD indicates the total outstanding Treasuries (also normalized by dividing by 10),
and ENC

R , ENC
D are constants determined through estimation. Consistent with Section 4.2,

I posit reservesRD are symmetrically distributed among large dealer banks, leading bank
i’s simple belief that Ei[Rj] = Ri.

For the payment subgame, bank i can make any non-negative payment ai ≤ Ni at
time 1, deferring any remaining payment to time 2. Given bank i’s perception of bank j’s
payment strategy a∗j , bank i seeks to optimize its conditional expected payoff by selecting
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ai:

U =Ei[−ψNC (Ri − Si − ai + a∗j)
− − cNC (Ni − ai)

+
∣∣ Ni, Ri, Si]

=− ψNC (Ri − Si − ai + [min(Ri − ENC
D TD + ENC

R , Nj)]
+)− − cNC (Ni − ai)

+.

Following the approach outlined in Section 8, I model the deviation of bank i’s payment
obligation from its minimum, Ni − Nmin, as following an exponential distribution with
parameter λN , where both λN and Nmin are estimated from the payment data. Nj and Ni

have the same distribution. I keep the assumption that ψNC > cNC , so the optimal strategy
for bank i is thus a∗i = min((Ri − Si + α∗)+, Ni) for some α∗ such that

α∗ = inf

{
ϑ ≥ 0 : P([min(Ri − ENC

D TD + ENC
R , Nj)]

+ ≤ ϑ) ≥ cNC

ψNC

}
.

Let NC = Nmin +
log(ψNC)−log(ψNC−cNC)

λN
, so P(Nj ≤ NC) = cNC

ψNC . Consequently, α∗ is charac-
terized as follows:

α∗ = min((Ri − ENC
D TD + ENC

R )+, NC).

The continuation value of bank i for reserve balances at the beginning of the payment
game before observing its payment obligation Ni is given by:

V (Ri − Si) =Ei[−ψNC (Ri − Si − a∗i + a∗j)
− − cNC (Ni − a∗i )

+
∣∣ Ri, Si, TD]

=E[−ψNC
(
a∗i − (Ri − Si)−min(Ei[Rj − Sj] + ENC

R , Nj)
)+

− cNC (Ni − a∗i )
+
∣∣ Ri, Si, TD].

A direct calculation of the left-hand derivative of V with respect to reserve balances,
denoted Γ(y) ≡ V ′

−(y), yields

Γ(y) = lim
x↑y

V (x)−V (y)
x−y

=


∫

n∈[y+,(y+α∗))

ψNCP(a∗j ≤ n− y)dFN(n) +

∫
n∈[(y+α∗),∞)

cNCdFN(n) when y + α∗ > 0;

ψNCP(aj ≤ −y) otherwise.

Γ(y) is the marginal value of liquidity, which determines the whole funding rates in a
competitive market. Throughout 2019, large banks consistently complied with liquidity
regulations every day, ensuring Ri − Si − ai > 0 within my dataset (Afonso, Cipriani,
Copeland, Kovner, La Spada and Martin, 2020b). Banks also understand that their coun-
terparts are also very unlikely to breach liquidity requirements, implying Ei[Rj − Sj] > 0.
My analysis, therefore, concentrates on parameters ensuring Ri − ENC

D TD + ENC
R ≥ 0 for

the training sample. We further simplify the marginal value Γ(y) when y ≥ 0, because
this is the relevant case as empirically y = Ri − Si ≥ 0 throughout my sample: Given the
empirical observation that y = Ri − Si ≥ 0 consistently across the dataset, our analysis
will concentrate on scenarios where y ≥ 0. This allows for a further simplification of the
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marginal value Γ(y), detailed as follows:

Γ(y) =

∫
n∈[y,(y+α∗))

ψNCP(min(Ri − ENC
D TD + ENC

R , Nj) ≤ n− y)dFN(n) +

∫
n∈[(y+α∗),∞)

cNCdFN(n)

Sincen−y < α∗ = min(Ri−ENC
D TD+E

NC
R , NC) ≤ Ri−ENC

D TD+E
NC
R whenn ∈ [y, (y+α∗)),

Γ(y) =

∫
n∈[y,(y+α∗))

ψNCP(Nj ≤ n− y)dFN(n) +

∫
n∈[(y+α∗),∞)

cNCdFN(n)

=ψNCλN

y+α∗∫
y+min(Nmin,α∗)

(1− e−λN (n−y−Nmin))e−λN (n−Nmin)dn+ cNCe−λN (y+α∗−Nmin)
+

=
1

2
ψNCe−λN (y)(e−λN (α∗−Nmin)

+ − 1)2 + cNCe−λN (α∗−Nmin)
+

(20)

Following Section 8, this model is estimated within the context of the GCF Treasury
repo market, using a training sample from January 3, 2019, to August 31, 2019. In
competitive funding markets, the repo rates are determined by the marginal continuation
value for large dealer banks in the payment subgame. Thus, according to Eq. (20), the
empirical relationship under this model—excluding strategic complementarity—for day
t can be expressed as follows:

(GCF−)t

=
1

2
ψNCe−λN (Ri−Si)(e−λN (α∗−Nmin)

+ − 1)2 + cNCe−λN (α∗−Nmin)
+

+ ϱNCEt
month + ϑNC + ϵtr

=
1

2
ψNCe−λN (

RD−ENC
I TI+E

NC
O RO

10
−QNC−Si)(e−λN (min((

RD−ENC
I TI+E

NC
O RO

10
−QNC−ENC

D TD+ENC
R )+,NC)−Nmin)

+

− 1)2

+ cNCe−λN (min((
RD−ENC

I TI+E
NC
O RO

10
−QNC−ENC

D TD+ENC
R )+,NC)−Nmin)

+

+ ϱNCEt
month + ϑNC + ϵtr.

Here, Et
month represents the month-end indicator, while ϱNC and ϑNC are constants to

be estimated. The parameter QNC ’s impact is effectively encapsulated by adjustments
in ψNC and ENC

R , rendering it unidentifiable on its own. Therefore, in alignment with
Section 8, I pick the value ofQNC = Q = $16.19 billion dollars. Importantly, given that the
estimation procedures can freely adjust ψNC andENC

R , settingQNC = Q does not influence
the model’s behavior regarding in-sample fit and out-of-sample predictions—after all, the
primary goal of this exercise is to compare the performance of the two quantitative models
with and without strategic complementarity.

Using the same procedure outlined in Section 8, I identify Nmin = $29.1 billion and
λN = 118.4 from payment volume data. The undetermined parameters (ENC

R , ENC
O , ENC

I ,
ENC
D , cNC , ψNC , ϱNC , ϑNC) are inferred using the method of moments. This entails setting

the finite-sample-analogous expectations of the following moments to zero, effectively
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leveraging the data to align the model’s predictions with observed GCF repo rate behav-
iors:

E



ϵtr
ϵtrR

t
D

ϵtrR
t
O

ϵtrT
t
I

ϵtrT
t
D

ϵtrS
t
i

ϵtrE
t
month


= 0.

An additional moment ties bank i’s beliefs to ensure that ENC
D TD adequately reflects the

variability in the realized lending quantities Sj . This is operationalized by setting the
covariance between the error term from Stj − ENC

D T tD and T tD itself to zero:

COV[(Stj − ENC
D T tD), T

t
D] = E

[(
(Stj − E

[
Stj
]
)− ENC

D (T tD − E
[
T tD
]
)
)
(T tD − E

[
T tD
]
)
]
= 0.

Consequently, the estimation procedure employs 8 moments to estimate 8 parameters.

In the absence of strategic complementarity, the model does not utilize information
from payment delays. Furthermore, the assumptions regarding bank i’s beliefs about
bank j’s repo lending practices are streamlined into a single parameter, ENC

D . Despite
these simplifications, this model adeptly captures the dynamic interactions among all
other observable variables, maintaining consistency with the comprehensive approach
outlined in Section 8. The estimated parameters are detailed in Table 8 and the model’s
performance is illustrated in Fig. 7.
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Table 8: Estimated parameters for the model without strategic complementarity

Parameters Meaning Estimates
cNC late payment cost 102.3 (bps)

ψNC overdraft cost 124.1 (bps)

ENC
R

early payment strategy
of bank j 0.648

ENC
I Treasury issuance effect 0.637

ENC
D

Bank i believes
lending quantity for
bank j is ENC

D TD

0.0878

ENC
O

early payment from
non-dealer banks is ENC

O RO
0.322

ϱNC month-end effect 13.4 (bp)

ϑNC other factors -5.75 (bp)

QNC regulatory minimum 16.2 ($bn)

Nmin
minimum total
payment volume 29.1 ($bn)

1/λN E[Ni −Nmin] 8.4 ($bn)

E Internet Appendix: Estimating repo lending quantity of
large dealer banks

To estimate the daily repo lending quantity of the large U.S. dealer banks, I obtain
daily transaction volume underlying the calculation of Secured Overnight Financing Rate
(SOFR) and Tri-Party General Collateral Rate (TGCR) from the New York Fed. Let V olumet
be the difference between the underlying volume of SOFR and the underlying volume of
TGCR. By construction, V olumet contains the total reserves lent by large U.S. dealer banks
(i.e., the total reserve-draining intermediation in Fig. 17) on day t. However, because
dealers are borrowing from and lending to each other, V olumet double counts the total
repo lending quantity of the large dealer banks; V olumet also contains liquidity provided
by other lenders in the repo market. Therefore, V olumet overstates the reserves lent by
large U.S. dealer banks on day t. To estimate the fraction of V olumet that comes from
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reserves lent by large dealer banks, I use form 10-Q and call reports.50 of the largest U.S.
repo-active banks and U.S. subsidiaries of foreign banks that are subject to the same U.S.
regulations. I extract the daily-average net overnight repo lending quantity of each U.S.
GSIB in quarter q from those reports. I then take the sum of these quantities over all
U.S. GSIBs in quarter q to get SGSIBq . I assume SGSIBq approximates the daily average of
total repo lending quantity of all large dealer banks in quarter q. Let V olumeq be the
daily average of V olumet in quarter q. I assume the ratio φq = S

GSIB

q /V olumeq is constant
every day in quarter q. Thus, on day t in quarter q, the total repo lending quantity can be
approximately calculated as St = φqV olumet.

F Internet Appendix: Proofs

This appendix contains proofs.

F.1 Proof of Lemma 1

Consider bank i’s decision problem. Conditional on the realizations of Ni and Li, when
Ni ≤ Li, the optimal strategy is ai = Ni. Thus, for the remainder, I only consider the
case in which Ni > Li. The equilibrium strategy ai of bank i is permitted to be a mixed
strategy conditional on Ni and Li. Any such mixed strategy ai can be represented in the
form A(Ni, Li, ϵi) for some measurable, A : [Nmin,∞)× R× [0, 1] → R and some uniform
random variable ϵi independent of {Ni, Li, Nj, Lj, aj}. Letting A denote the space of mixed
payment strategies of this form, and given the payment strategy aj of bank j, bank i solves

ess inf
A∈A

E[ψ(A(Ni, Li, ϵi)− Li − aj)
+ + c(Ni − A(Ni, Li, ϵi))

+
∣∣ Ni, Li].

subject to
A(Ni, Li, ϵi) ≥ 0 almost surely
A(Ni, Li, ϵi) ≤ Ni almost surely.

An optimal A must satisfy A(Ni, Li, ϵ) ≥ Li almost surely for all Ni, since aj ≥ 0 almost
surely. In other words, any strategy A of bank i satisfying A(Ni, Li, ϵi) < Li with positive
probability is dominated. Since bank j faces the same problem, bank i can correctly infer
that aj ≥ Lj by eliminating the dominated strategies of bank j.

Let z = A(Ni, Li, ϵi) − Li. We have shown that z ≥ 0 almost surely. The problem of

50The set of banks I use include JP Morgan Chase, Bank of America, Goldman Sachs, Morgan Stanley,
Citi Bank, Wells Fargo Bank, PNC Bank, Deutsche Bank Trust Company Americas, HSBC Bank USA, and
State Street.

72

Electronic copy available at: https://ssrn.com/abstract=3721785



bank i can be expressed as

ess inf
z

E
[
E
[
ψ(z − aj)

+
∣∣ z]]+ c(Ni − (E[z] + Li)) (21)

subject to
z ≥ (−Li)+ almost surely (22)
z + Li ≤ Ni almost surely, (23)

First we observe that when constraint (22) binds, z = (−Li)+ and ai = L+
i . Likewise, when

constraint (22) binds, z = Ni − Li and ai = Ni.

Let us consider the case when neither constraint (22) nor constraint (23) binds. Since
(z − aj)

+ is increasing and convex in z for all realizations of aj , the mapping from real x
to E

[
ψ(x− aj)

+
]

is also convex. Thus, by Jensen’s inequality, replacing z by E[z] weakly
decreases the objective function (21). This implies that conditional on Li, Ni, if bank i
optimally chooses some z with support Iz ⊂ [−Li, Ni − Li], then for any υ1 and υ2 in Iz
and any v′ ∈ [−Li, Ni − Li],

E
[
ψ(υ1 − aj)

+
]
+ c(Ni − (υ1 + Li)) = E

[
ψ(υ2 − aj)

+
]
+ c(Ni − (υ2 + Li)) (24)

E
[
ψ(υ1 − aj)

+
]
+ c(Ni − (υ1 + Li)) ≥ E

[
ψ(υ′ − aj)

+
]
+ c(Ni − (υ′ + Li)). (25)

The first order condition for optimality in problem (10) implies that for any υ ∈ Iz,

P(aj ≤ υ) ≥ c

ψ
.

If there does not exist υ such that P(aj ≤ υ) = c/ψ, then Iz must be a singleton, and any
optimal z is a constant function. We summarize the above arguments in the following
lemma.

Lemma 9. Suppose bank j choose any strategy aj , the best response actions of bank i are of the
form

ai = min((Li + υi)
+, Ni),

where υi is some non negative random variable with support Iz. For any υ ∈ Iz,

P(aj ≤ υ) ≥ c

ψ
.

Moreover, if there does not exist υ⋆ such that P(aj ≤ υ⋆) = c/ψ, then Iz = {υ∗} is a singleton
and υ∗ = inf{ϑ ≥ 0,P(aj ≤ ϑ) > c

ψ
}. If there is an υ⋆ such that P(aj ≤ υ⋆) = c/ψ, then for any

υ ∈ Iz, P(aj ≤ υ) = c/ψ.

We first the characterize the class of pure strategy equilibrium.

Lemma 10. There exists an equilibrium in the class of equilibria in which Iz is a singleton. In this
equilibrium, bank i chooses the payment a∗i = min((Li + αi)

+, Ni), and bank j chooses payment
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a∗j = min((Lj + αj)
+, Nj), where αi and αj solve

αi = inf

{
ϑ ≥ 0 : P(min((Lj + αj)

+, Nj) ≤ ϑ) ≥ c

ψ

}
αj = inf

{
ϑ ≥ 0 : P(min((Li + αi)

+, Ni) ≤ ϑ) ≥ c

ψ

}
.

In particular, when Li and Lj have the same distribution, then αi = αj = α where

α = inf

{
ϑ ≥ 0 : P(Nj ≤ ϑ) ≥

c
ψ
− P(Lj ≤ 0)

1− P(Lj ≤ 0)

}
.

Proof. If Iz = {αi} is a singleton, taking constraints (22) and (23) into account, a∗i =
min((Li + αi)

+, Ni). Given a∗i , a similar analysis shows that a∗j = min((Lj + αj)
+, Nj).

Under the conditions of Lemma 1, Ni and Nj have the same distribution. When Li and Lj
also have the same distribution, then if 0 ≤ αi < αj ,

c

ψ
≤ P(min((Lj + αj)

+, Nj) ≤ αi) ≤ P(min((Li + αi)
+, Ni) ≤ αi)

< P(min((Li + αi)
+, Ni) ≤ αj) =

c

ψ
.

This is a contradiction. The last inequality follows from that FN strictly increases on the
interior of its support. Hence αi ≥ αj . A symmetric argument shows that it must be that
αi = αj . Denote this common value by α. By Lemma 9,

α = inf

{
ϑ ≥ 0 : P(min((Lj + α)+, Nj) ≤ ϑ) ≥ c

ψ

}
.

When P(Lj ≤ 0) ̸= c
ψ

, the solution is unique. Since Ni, Nj ∈ R++,

P(min((Lj + α)+, Nj) ≤ α) =P(min(Lj + α,Nj) ≤ α)

=P(Lj + α ≤ α) + P(Nj ≤ α)(1− P(Lj + α ≤ α)).

This shows that α is determined by

α = inf

{
ϑ ≥ 0 : P(Nj ≤ ϑ) ≥

c
ψ
− P(Lj ≤ 0)

1− P(Lj ≤ 0)

}
.

By Lemma 9, when Li and Lj have different distributions, αi and αj solve

αi = inf

{
ϑ ≥ 0 : P(min((Lj + αj)

+, Nj) ≤ ϑ) ≥ c

ψ

}
αj = inf

{
ϑ ≥ 0 : P(min((Li + αi)

+, Ni) ≤ ϑ) ≥ c

ψ

}
.

(26)
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Clearly any possible solutionsαi, αj is less thanF−1
N ( c

ψ
). Consider a mapT α : [0, F−1

N ( c
ψ
)]2 →

[0, F−1
N ( c

ψ
)]2, where T α(x, y) = (ai, aj) such that

ai = inf

{
ϑ ≥ 0 : P(min((Lj + y)+, Nj) ≤ ϑ) ≥ c

ψ

}
aj = inf

{
ϑ ≥ 0 : P(min((Li + x)+, Ni) ≤ ϑ) ≥ c

ψ

}
.

It is easy to check that T α is continuous. By Schauder fixed-point theorem there is at least
one fixed point of T α.

Next, I rule out the possibility of mixed equilibria. Suppose that there is a mixed
strategy equilibrium such that ai = min((Li + zi)

+, Ni) and aj = min((Lj + zj)
+, Nj). Let

I iz denote the support of zi. Since I iz and Ijz are bounded, let

υi
def
= inf I iz, υj

def
= inf Ijz ,

υi
def
= sup I iz, υj

def
= sup Ijz .

At least one of I iz and Ijz must have more than one element, for otherwise it is a pure
strategy equilibrium. Say I iz has at least two elements, then υi > υi and for any υ ∈ [υi, υi),

P(aj ≤ υ) =
c

ψ
. (27)

Lemma 11. There is no mixed strategy equilibrium.

Proof. Suppose that there is a mixed strategy equilibrium. If υi ≥ Nmin Pick any Nmin ≤
υ′i < υ′′i in I iz. Since FN strictly increases,

P(Nj ≤ υ′′i ) > P(Nj ≤ υ′i),

so if it is the case that

P(aj ≤ υ′′i ) = P(min((Lj + zj)
+, Nj) ≤ υ′′i ) = P(min((Lj + zj)

+, Nj) ≤ υ′i) = P(aj ≤ υ′i),

then it must be that

P((Lj + zj)
+ ≤ υ′i

∣∣ Nj ∈ (υ′i, υ
′′
i ]) = 1.

Thus, υj ≤ max(υi, Nmin) − max(Lj) < max(υi, Nmin) as P(Lj > 0) > 0. If υj = υj (i.e.
zj is degenerate), then P(min((Li + zi)

+, Ni) ≤ zj) = 1 > c
ψ

. Thus, υj < υj . By a similar
argument, υi < max(υj, Nmin). It follows that υi < Nmin and υj < Nmin. Now if υi ≤ υj ,

P(aj ≤ υi) = P(Lj + zj ≤ υi) ≤ P(Lj ≤ 0) <
c

ψ
.

This contradicts Eq. (27), so υi > υj , but a symmetric argument shows that υi < υj ,
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contradiction. Thus, I iz and Ijz must be singletons.

It is easy to check that when P(Lj ≤ 0) = c/ψ, there are infinitely many equilibrium
strategy profiles of the form ai = min((Li + α)+, Ni) for any α ∈ [0, Nmin).

Lemma 12. Suppose Li and Lj are arbitrarily distributed. There is a unique equilibrium to the
payment game when

1. P(Li ≤ 0) > c/ψ and P(Lj ≤ 0) > c/ψ, in which case αi = αj = 0;

2. P(Li ≤ 0) < c/ψ and P(Lj ≤ 0) < c/ψ, in which case αi > Nmin and αj > Nmin.

Proof. Suppose that P(Li ≤ 0) > c/ψ and P(Lj ≤ 0) > c/ψ. If αi ≥ αj and αi > 0, then

P(Lj + αj ≤ αi) ≥ P(Lj ≤ 0) >
c

ψ
,

Bank i can be better off to deviate by making payment min(L+
i , Ni). Thus, in this case

both αi = αj = 0. Suppose that P(Li ≤ 0) < c/ψ and P(Lj ≤ 0) < c/ψ. Without loss of
generality, assume αi ≥ αj . If αj < Nmin, then

P(min((Li + αi)
+, Ni) ≤ αj) = P(Li ≤ αj − αi) <

c

ψ
,

a contradiction to Lemma 9. Thus, αj > Nmin and αi > Nmin. It can be easily checked that
this case there can be only one solution to Eq. (26).

F.2 Proof of Lemma 2

Let Faj(o) = P(a∗j ≤ o) where a∗j is bank j’s equilibrium strategy, then

V (L) =

∫
n∈(L+,(L+α)+]

∫
o∈[0,n−L]

−ψ(n− L− o)dFaj(o)dFN(n)+

∫
n∈((L+α)+,∞)

∫
o∈[0,(L+α)+−L]

−ψ
(
(L+ α)+ − L− o

)
dFaj(o)dFN(n)+

∫
n∈((L+α)+,∞)

−c
(
n− (L+ α)+

)
dFN(n)
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Let ϵ be a small positive real number.

V (L− ϵ) =

∫
n∈((L−ϵ)+,(L−ϵ+α)+]

∫
o∈[0,n−(L−ϵ)]

−ψ(n− (L− ϵ)− o)dFaj(o)dFN(n)+

∫
n∈((L−ϵ+α)+,∞)

∫
o∈[0,(L−ϵ+α)+−(L−ϵ)]

−ψ
(
(L− ϵ+ α)+ − (L− ϵ)− o

)
dFaj(o)dFN(n)+

∫
n∈((L−ϵ+α)+,∞)

−c
(
n− (L− ϵ+ α)+

)
dFN(n)

Direct calculation yields

Γ(L) = lim
ϵ→0

V (L)− V (L− ϵ)

ϵ

= lim
ϵ→0

∫
n∈[L+,(L−ϵ+α)+]

∫
o∈[0,n−L]

ψ dFaj(o)dFN(n)

+ P(aj ≤ (L+ α)+ − L)P(N = (L+ α)+)ψ lim
ϵ→0

(L− ϵ+ α)+ − (L+ α)+ + ϵ

ϵ

+ lim
ϵ→0

cP(N = (L+ α)+)
((L+ α)+ − (L− ϵ+ α)+)

ϵ

+ lim
ϵ→0

∫
n∈((L+α)+,∞)

ψ ((L− ϵ+ α)+ − (L+ α)+ + ϵ)Faj ((L+ α)+ − L)

+ c ((L+ α)+ − (L− ϵ+ α)+)

ϵ
dFN(n).

Which can be further simplified to the desired results.

F.3 Proofs of results in Section 4.2

In Section 4.2 I study the competitive equilibrium in the wholesale funding markets, and
in Appendix D.1 I study monopolistic pricing. It turns out that the proofs for the com-
petitive case are the simpler version of the proofs for the monopolistic pricing case. From
Appendix F.4 to Appendix G.1, I state the detailed proofs for all results in Appendix D.1.
To save space, I will only briefly state how to change those proofs to prove the results
stated in Section 4.2 here.

I first state an important lemma that links the endogenous distribution of Li and Lj
with the exogenous state variables, given the payment subgame strategy profile.

Lemma 13. Fix the payment subgame equilibrium strategy profile {a∗i = min((Li + αi)
+, Ni)}.
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For any o ∈ R, and reserve balances after trade Lj = Rj −Q− Sj possible in equilibrium,

Lj < o ⇐⇒ Rj −Q−Dj +
Γj(o, αj, αi)

ξ
< o

Lj ≥ o ⇐⇒ Rj −Q−Dj +
Γj(o, αj, αi)

ξ
≥ o.

Let Γ+
j (o, αj, αi) = limx↓o Γj(x, αj, αi), then

P(Lj ≤ o) = P(Rj −Q−Dj +
Γ+
j (o, αj, αi)

ξ
≤ o) = E

[
FR

(
Dj +Q−

Γ+
j (o, αj, αi)

ξ

)]
.

Proof. The proof is identical to the proof of Lemma 4 after we set λ−1 = 0 in the proof of
Lemma 4.

Comparing Lemma 13 and Lemma 4, we see same results except that in the compet-
itive case, we omit the term λ−1. The information rent λ−1 for borrower is zero under
competitive pricing, but is positive under monopolistic screening, as discussed in Ap-
pendix D.1. In fact: the case of competitive pricing where bank i and borrower i acts as
price takers in Section 4.2 is a simpler version of case of monopolistic screening.

Proof of Theorems 1 to 3. Rewrite λ−1 as zero in Appendices F.6 to F.8. The rest of the proofs
are exactly the same.

For the proofs of Theorems 4 and 5, I abuse notations and write Γ(y, α, α) as Γ(y ; m)
to denote the marginal value of liquidity at y when the liquidity stress index is m under
some macroeconomic condition Mm

C . Under macroeconomic condition M0
C , there could

be multiple equilibria. For the following analysis, we select the equilibrium with the
α = Nmin, because this equilibrium is the limiting equilibrium of a sequence of economies
under no hoarding condition such that m ↑ 0.

Proof of Theorem 4. In the following proof, we fix the parameters c, Q, and ψ from one
set of macroeconomic conditions with liquidity stress index 0, denoted by M0

C . We will
consider a sequence of Mϵm

C with ϵm ↓ 0. (Given that M0
C and Mϵm

C are close with respect
to the liquidity stress index, differences in their constants and functions become negligible
for small ϵm. Therefore, whether under hoarding equilibrium or no hoarding equilibrium,
the effects of those differences on equilibrium funding rates diminish. The distinctions
between these sets are primarily significant for their influence on the liquidity stress
index, which subsequently determines different equilibrium states, as illustrated below.)
It suffices to show that for all small ϵm > 0, there is some δ0(ζ, s) ≥ 0 and constant O1 ≥ 0
such that

Γ(ζ −Q− s ; ϵm)− Γ(ζ −Q− s ; 0) > δ0(ζ, s)−O1ϵm.
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In addition, whenever ζ − Q − s ̸= 0, δ0(ζ, s) > 0. Recall that under no hoarding con-
dition, a∗j = min((Lj + α)+, Nj) for some α ≥ Nmin. Under no hoarding condition,
a∗j = min(L+

j , Nj). Note that Γ(y ; 0) ≥ Γ(y ; ϵ) for any ϵ. We discuss Γ(y ; ϵ)−Γ(y ; 0) case
by case. First, when y ≥ 0, by directly calculation the assumption that two macroeconomic
conditions are close with respect to liquidity stress index, there is some constant O3 > 0
such that

Γ(y ; ϵm)− Γ(y ; 0) ≥
y+α∫
y

c− ψP(min{(Lj + α)+, Nj} ≤ n− y) dFN(n)−O3ϵm.

When y ≥ Nmin,

y+α∫
y

c− ψP(min{(Lj + α)+, Nj} ≤ n− y) dFN(n)

=

y+
Nmin

2∫
y+

c− ψP(min{Lj + α,Nj} ≤ n− y) dFN(n) +

y+α∫
y+

Nmin

2

c− ψP(min{Lj + α,Nj} ≤ n− y) dFN(n)

≥

y+
Nmin

2∫
y+

c− ψP(Lj + α ≤ Nmin

2
) dFN(n) +

y+α∫
y+

Nmin

2

c− ψP(min{Lj + α,Nj} ≤ n− y) dFN(n).

Since c− ψP(min{Lj + α,Nj} ≤ α) = 0 and P(min{Lj + α,Nj} ≤ ϑ) strictly increases in ϑ,
there is some δ1(ζ, y) such that

y+
Nmin

2∫
y+

c− ψP(Lj + α ≤ Nmin

2
) dFN(n) > δ1(ζ, y) > 0,

and
y+α∫

y+
Nmin

2

c− ψP(min{Lj + α,Nj} ≤ n− y) dFN(n) ≥ 0.

Thus,

y+α∫
y

c− ψP(min{(Lj + α)+, Nj} ≤ n− y) dFN(n) > δ1(ζ, y) > 0,
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Hence, when y ≥ Nmin,

Γ(y ; ϵm)− Γ(y ; 0) > δ1(ζ, y)−O3ϵm.

When Nmin > y > 0,

Γ(y ; ϵm)− Γ(y ; 0) ≥
y+α∫

Nmin

c− ψP(min{(Lj + α)+, Nj} ≤ n− y) dFN(n)−O3ϵm

>

y+α∫
Nmin

c− ψP(min{(Lj + α)+, Nj} ≤ n−Nmin) dFN(n)−O3ϵm.

When y = 0, clearly Γ(y ; ϵm)− Γ(y ; 0) ≥ −O3ϵm. When 0 > y ≥ −α, ∃O4 > 0 such that

Γ(y ; ϵm)− Γ(y ; 0)

≥ ψ Pϵm(min(L+
j , Nj) ≤ −y)− ψ

y+α∫
0

P(a∗j ≤ n− y)dFN(n)− cP(Ni > y + α)−O4ϵm

> δ2(ζ, y) + c− ψ

y+α∫
0

P(a∗j ≤ n− y ; T + ϵ)dFN(n)− cP(Ni > y + α)−O4ϵm > δ2(ζ, y)−O4ϵm.

where the second inequality derives from the fact that under liquidity hoarding condition,
ψ Pϵm(Lj ≤ 0) > c. Finally, when y < −α, then

Γ(y ; ϵm)− Γ(y ; 0) = ψ Pϵm(min(L+
j , Nj) ≤ −y)− ψ P(min((Lj + α)+, Nj) ≤ −y)

> ψ Pϵm(min(L+
j , Nj) ≤ −y)− ψ P(min(L+

j , Nj) ≤ −y)

+ ψ
(
P(min((Lj + α)+, Nj) ≤ −y)− ψ P(min(L+

j , Nj) ≤ −y)
)

> ψ
(
P(min((Lj + α)+, Nj) ≤ −y)− ψ P(min((Lj)

+, Nj) ≤ −y)
)
> δ3(ζ, y)

for some δ3(ζ, y) > 0 regardless of ϵ. Let δ0(ζ, ζ − Q − y) be the corresponding δi(ζ, y) in
each case corresponding to different y. This finishes the proof.

Proof of Theorem 5. Based on the proof above, for all small ϵm, there is some δ0(ζ,S∗(ζ,D , 0)) ≥
0 and constant O1 ≥ 0 such that Γ(ζ −Q− S∗(ζ,D , 0) ; ϵm)− Γ(ζ −Q− S∗(ζ,D , 0) ; 0) >
δ0(ζ,S∗(ζ,D , ϵm)) − O1ϵm and δ0(ζ,S∗(ζ,D , 0)) > 0. For ϵm small enough, ∃δ1(ζ,D) > 0
such that

Γi(ζ −Q− S∗(ζ,D , 0) ; ϵm) + ξS∗(ζ,D , 0) > Γi(ζ −Q− S∗(ζ,D , 0) ; 0) + ξS∗(ζ,D , 0) + δ1(ζ,D).

From Eq. (4), this implies that

S∗(ζ,D , 0)− S∗(ζ,D , ϵm) > δ(ζ,D)
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for some δ(ζ,D) > 0. Since r∗(ζ,D , ϵm) = ξ(D − S∗(ζ,D , ϵm)), the result follows.

F.4 Proof of Lemma 3

First consider the following relaxed version of the problem for bank i. Suppose that bank
i designs a mechanism for selecting the transaction quantity Si and repo rates ri. By the
revelation principle (Myerson, 1986), we can focus on direct mechanisms without loss of
generality. I will characterize the optimal direct mechanism and show that the optimal
direct mechanism can be implemented by a supply schedule.

The type space of a repo borrower is [Dmin,∞). A direct mechanism consists of
functions Q : [Dmin,∞) → R and T : [Dmin,∞) → R. The direct mechanism design
problem of bank i is

sup
Q,T

E[V (Ri −Q−Q(D)) + T (D)],

subject to the incentive-compatibility (IC) constraint

−ξ
2

(
(D −Q(D))+

)2 − T (D) ≥ −ξ
2

(
(D −Q(θ))+

)2 − T (θ), (D, θ) ∈ [Dmin,∞)2,

and the individually rational (IR) constraint

−ξ
2

(
(D −Q(D))+

)2
− T (D) ≥ −ξ

2
D2.

Lemma 14. Under any optimal contract, Q(D) ≤ D for all D in [Dmin,∞).

Proof. When Q(D) > D for some D, bank i can set Q(D) = D without changing the cost
of the repo borrower, thus respecting the IC constraints of all types. However, this would
weakly increase the payoff of bank i.

By Lemma 14, we can focus without loss of generality on a mechanism (Q, T ) satisfy-
ing Q(D) ≤ D. In the following lemma, I characterize the set of allocations and payment
strategies that satisfy the IC constraint. This simplifies the subsequent analysis.

Lemma 15. For any mechanism (Q, T ), any incentive compatible allocation rule Q is weakly
increasing with D.

Proof. Consider two borrower types D and D′ with D > D′. Incentive compatibility
requires that

−ξ
2

(
(D −Q(D))+

)2
− T (D) ≥ −ξ

2

(
(D −Q(D′))+

)2
− T (D′)
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and that

−ξ
2

(
(D′ −Q(D′))+

)2
− T (D′) ≥ −ξ

2

(
(D′ −Q(D))+

)2
− T (D).

Adding these inequalities, we see that

−ξ
2

(
(D −Q(D))+

)2
− ξ

2

(
(D′ −Q(D′))+

)2
≥ −ξ

2

(
(D′ −Q(D))+

)2
− ξ

2

(
(D −Q(D′))+

)2
.

Rearranging and invoking Lemma 14, we get(
(D′ −Q(D))

+
+ (D −Q(D))

)(
D −Q(D)− (D′ −Q(D))

+
)
≤

(D′ +D − 2Q(D′)) (D −D′) .
(28)

If Q(D) < Q(D′), then Q(D) < D′ and(
(D′ −Q(D))

+
+ (D −Q(D))

)(
D −Q(D)− (D′ −Q(D))

+
)
=(

D′ −Q(D) +D −Q(D)
)
(D −D′) > (D′ +D − 2Q(D′)) (D −D′) ,

contradicting inequality (28). Thus, it is necessary that Q(D) ≥ Q(D′).

Let u : R → R be the value function of a repo borrower under a given mechanism
(Q, T ), in that

u(D)
def
= sup

θ∈[Dmin,∞)

−ξ
2

(
(D −Q(θ))+

)2
− T (θ).

Lemma 16. Any incentive compatible truthful mechanism (Q, T ) must satisfy

u(D) = −ξ
2

(
(D −Q(D))+

)2
− T (D) = u(Dmin)−

D∫
Dmin

ξ(x−Q(x)) dx.

Proof. By Lemma 14, we can focus on an IC mechanism (Q, T ) with Q(D) ≤ D. We first
show that u is absolutely continuous on any bounded interval. Let M > 0. We claim
that u( · ) is absolutely continuous on (−M,M). Indeed, a truthful incentive compatible
mechanism must satisfy

u(D) = −ξ
2

(
(D −Q(D))+

)2
− T (D) ≥ −ξ

2

(
(D −Q(θ))+

)2
− T (θ)

u(θ) = −ξ
2

(
(θ −Q(θ))+

)2
− T (θ) ≥ −ξ

2

(
(θ −Q(D))+

)2
− T (D),
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whenever −M < θ < D < M . Thus,

u(D)− u(θ) ≤− ξ

2

(
(D −Q(D))+

)2
+
ξ

2

(
(θ −Q(D))+

)2
=
ξ

2

(
(θ −Q(D))+ − (D −Q(D))

)(
(θ −Q(D))+ + (D −Q(D))

)
≤ 0

and

u(D)− u(θ) ≥− ξ

2

(
(D −Q(θ))+

)2
+
ξ

2

(
(θ −Q(θ))+

)2
=
ξ

2

(
θ −D

)(
θ +D − 2Q(D))

)
.

Thus, ∣∣∣∣u(D)− u(θ)

D − θ

∣∣∣∣ ≤ ξ

2

(
θ +D − 2Q(D))

)
≤ ξ

2

(
2M − 2Q(−M))

)
,

where the last inequality holds due to the monotonicity of Q shown in Lemma 15. The
above inequality holds true whenever −M < θ < D < M .

Finally, since the above argument holds for arbitrary M > 0, the envelope theorem
(Milgrom and Segal, 2002) implies that for all D, u′(D) = −ξ(D − Q(D)). By the funda-
mental theorem of calculus,

−ξ
2

(
(D −Q(D))+

)2
− T (D) = u(D) = u(Dmin)−

D∫
Dmin

ξ(x−Q(x)) dx.

Lemma 17. A direct mechanism (Q, T ) satisfying Q(D) ≤ D for all D is incentive-compatible if
and only if

1. Q(D) is weakly increasing in D.

2. T (D) = − ξ
2

(
(D −Q(D))+

)2
− u(Dmin) +

D∫
Dmin

ξ(x− S(x)) dx.

Proof. We just need to show the “if” part. We need to show the IC condition

u(D) ≥ −ξ
2

(
(D −Q(θ))+

)2
− T (θ).

Substituting T (D), the IC condition holds if and only if

−
D∫
θ

ξ(x−Q(x)) dx ≥ −ξ
2

(
(D −Q(θ))+

)2
+
ξ

2

(
(θ −Q(θ))+

)2
,

which holds since Q(D) is weakly increasing.

83

Electronic copy available at: https://ssrn.com/abstract=3721785



We now turn to a bank’s problem. The bank will take D as random. Since T is
determined by Q, we substitute T (D) from Lemma 3 to get

sup
Q

E

V (R0 −Q−Q(D))− ξ

2

(
(D −Q(D))+

)2
− u(Dmin) +

D∫
Dmin

ξ(x−Q(x)) dx

, (29)

subject to the condition that Q(D) is weakly increasing.

Using standard trick of integration by part as in Börgers (2015), we get

E

V (R0 −Q−Q(D))− ξ

2

(
(D −Q(D))+

)2
− u(Dmin) +

D∫
Dmin

ξ(x−Q(x)) dx


= E

[
V (R0 −Q−Q(D))− ξ

2

(
(D −Q(D))+

)2
− u(Dmin)

]
+

∞∫
Dmin

D∫
Dmin

ξ(x−Q(x)) dxfD(D)dD

= E
[
V (R0 −Q−Q(D))− ξ

2

(
(D −Q(D))+

)2
− u(Dmin)

]
+

∞∫
Dmin

∞∫
x

ξ(x−Q(x))fD(D) dDdx

= E
[
V (R0 −Q−Q(D))− ξ

2

(
(D −Q(D))+

)2
− u(Dmin)

]
+

∞∫
Dmin

ξ(x−Q(x))
1− FD(x)

fD(x)
fD(x) dx

= E
[
V (R0 −Q−Q(D))− ξ

2

(
(D −Q(D))+

)2
− u(Dmin)

]
+

∞∫
Dmin

ξ(D −Q(D))
1− FD(D)

fD(D)
fD(D) dD

= E
[
V (R0 −Q−Q(D))− ξ

2

(
(D −Q(D))+

)2
− u(Dmin) + ξ(D −Q(D))

1− FD(D)

fD(D)

]
.

Thus, the solution to (29) must satisfy

Q(Di) = inf
{
s : Γ(Ri −Q− s) ≥ ξ(Di − s− 1−FD(Di)

fD(Di)
)
}

T (Di) = − ξ

2

(
D −Q(D)

)2
+
ξ

2
Dmin

2 +

Di∫
Dmin

ξ(x−Q(x)) dx,
(30)

where FD is the cumulative distribution function ofD. The mapping fromD toD− 1−F (D)
f(D)

is strictly increasing by the assumed form of the density f( · ). Thus, Q( · ) is weakly
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increasing. Finally, the IR condition is satisfied because

u(D) =u(Dmin)−
D∫

Dmin

ξ(x−Q(x)) dx = −ξ
2
D2
min −

D∫
Dmin

ξ(x−Q(x)) dx

≥− ξ

2
D2
min −

D∫
Dmin

ξx dx = −ξ
2
D2.

Lemma 18. The repo game has a unique equilibrium. This unique equilibrium is fully separating.
The outcome (ri, Si) is the same as that implied by the direct mechanism (Q, T ) defined by Eq. (30).

Proof. The direct mechanism can be implemented by posting a schedule. This is implied
by the taxation principle (Mussa and Rosen, 1978). Indeed, by the IC constraint, if Q(D) =
Q(D′), then T (D) = T (D′). The mapping D 7→ (Q(D), T (D)) generates a graph on
R2 whose trace defines an associated supply schedule g. More specifically, let Q−1 :
Q([Dmin,∞)) → R be the inverse function of quantity defined by

Q−1(t) = inf
{
ϑ ∈ [Dmin,∞) : Q(ϑ) = t

}
.

Then the supply schedule g is defined on Q([Dmin,∞)) by

g(s) =
T (Q−1(s))

s
.

When s /∈ Q([Dmin,∞)), define g(s) = ∞. Since the direct mechanism (Q, T ) maximizes
the payoff of bank i, the associated supply schedule g also maximizes the payoff of bank
i. This direct mechanism is dominant implementable. Thus, the repo game has a unique
equilibrium. This unique equilibrium is separating.

F.5 Proof of Lemma 4

Fix any o ∈ R. By Lemma 2 Γj(y, αj, αi) is weakly decreasing in y. By Lemma 3, Γj(Rj −
Q− Sj, αj, αi) ≥ ξ(Dj − Sj − λ−1) in equilibrium. Hence, when Lj = Rj −Q− Sj ≥ o,

Γj(Rj −Q− Sj, αj, αi) ≤ Γj(o, αj, αi) ⇒ Dj − Sj − λ−1 ≤ Γj(o, αj, αi)

ξ
⇒

Rj −Q− Sj ≤
Γj(o, αj, αi)

ξ
−Dj +Rj −Q+ λ−1 ⇒

o ≤ Li ≤
Γj(o, αj, αi)

ξ
−Dj +Rj −Q+ λ−1.

Claim 1. Suppose Sj is the equilibrium trading quantity. Then for any S ′ < Sj , Γj(Rj −
Q− S ′, αj, αi) ≤ ξ(Dj − Sj − λ−1).
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Suppose o ∈ R such that Lj = Rj −Q− Sj < o. Let So = Rj −Q− o < Sj = Rj −Q− Lj.
Claim 1 implies that Γj(o, αj, αi) = Γj(Rj −Q− So, αj, αi) ≤ ξ(Dj − Sj − λ−1). Thus,

Rj −Q−Dj +
Γj(o, αj, αi)

ξ
+ λ−1 ≤ Rj −Q− Sj = Lj < o.

Thus,

Lj = Rj −Q− Sj ≥ o ⇐⇒ Rj −Q−Dj +
Γj(o, αj, αi)

ξ
+ λ−1 ≥ o

Lj = Rj −Q− Sj < o ⇐⇒ Rj −Q−Dj +
Γj(o, αj, αi)

ξ
+ λ−1 < o.

Finally, since probability measure is continuous from above, P(Lj ≤ o) = P(Rj−Q−Dj+
Γ+
j (o,αj ,αi)

ξ
+ λ−1 ≤ o).

Proof of Claim 1. By definition, Sj = inf
{
s : Γj(Rj − Q − s, αj, αi) ≥ ξ(Dj − s − λ−1)

}
.

Thus, Γj(Rj −Q− Sj, αj, αi) + ξSj ≥ ξ(Dj − λ−1). In addition, for any S ′′ < Sj ,

Γj(Rj −Q− S ′′, αj, αi) + ξS ′′ < ξ(Dj − λ−1) ⇒ lim
s↑Sj

(Γj(Rj −Q− s, αj, αi) + ξs) ≤ ξ(Dj − λ−1) ⇒

lim
s↑Sj

Γj(Rj −Q− s, αj, αi) + ξSj ≤ ξ(Dj − λ−1).

Since Γj(y, αj, αi) is weakly decreasing in y, for any S ′ < Sj , Γj(Rj −Q−S ′, αj, αi)+ ξSj ≤
ξ(Dj − λ−1).

F.6 Proof of Theorem 6

Suppose that liquidity hoarding condition Eq. (13) holds for j ∈ {1, 2}. We prove by
contradiction that banks hoard liquidity in equilibrium at time 1. Assume that bank
j does not hoard liquidity, i.e. bank j pays min(L+

j + zj, Nj) at time 1 for some non-
degenerate random variable zj ≥ 0. Let i ∈ {1, 2} \ {j}. Let Ij be the support of zj .
Trivially, Ij is bounded above. By Lemma 9, for any υj ∈ Ij ∩ (0,∞), either P(ai ≤ υj) =

c
ψ

or υj = inf{ϑ ≥ 0,P(aj ≤ ϑ) > c
ψ
}. Let V ′

j,−(y) = E[Γ+
j (y, zj, zi)] be the marginal value of

liquidity for bank j, where the expectation is taken over the random realizations of the
mixed strategy profile. By Lemma 2, V ′

j,−(0) ≤ c. Then by Lemma 4 and Eq. (13),

P (Lj ≤ 0) = P
(
Rj −Dj −Q+ λ−1 ≤ −

V ′
j,−(0)

ξ

)
> P

(
Rj −Dj −Q+ λ−1 ≤ − c

ξ

)
>
c

ψ
.

If bank i does not hoard liquidity either, then P (Li ≤ 0) > c
ψ

as well. However, as
shown in Lemma 12, when P (Li ≤ 0) > c

ψ
and P (Lj ≤ 0) > c

ψ
, banks must both hoard

liquidity, a contradiction. If bank i hoard liquidity but bank j does not hoard liquidity,
then P (Lj ≤ 0) > c

ψ
. Since bank j is best responding, it must still hold that for any υj ∈

Ij ∩ (0,∞), either P(ai ≤ υj) =
c
ψ

, or P(ai ≤ υj) >
c
ψ

and υj = inf{ϑ ≥ 0,P(aj ≤ ϑ) > c
ψ
}.
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Note that

P(ai ≤ υj) = P(min((Li)
+, Ni) ≤ υj) ≥ P(Li ≤ υj) = P

(
Ri −Di −Q+ λ−1 ≤ υj −

V ′
i,−(υj)

ξ

)
.

From Lemma 2, V ′
i,−(υj) ≤ c when υj > 0. Thus,

P(Li ≤ υj) = P
(
Ri −Di −Q+ λ−1 ≤ υj −

V ′
i,−(υj)

ξ

)
≥ P

(
Ri −Di −Q+ λ−1 ≤ − c

ξ

)
>
c

ψ
.

If P(ai ≤ υj) = c
ψ

, then c
ψ
> c

ψ
, a contradiction. If P(ai ≤ υj) >

c
ψ

and υj = inf{ϑ ≥
0,P(aj ≤ ϑ) > c

ψ
}, then pick a very small ϵ > 0. Since FN(·) is strictly increasing,

P(ai ≤ υj) ≥ P(ai ≤ υj − ϵ) > c
ψ

, a contradiction.

F.7 Proof of Theorem 7

Suppose that the no hoarding condition Eq. (14) holds for j ∈ {1, 2}. By Lemma 4, the
assumption P(Ri−Q−Dmin > 0) > 0 and Lemma 1, no banks will not play mixed strategy
in the payment subgame in equilibrium. Furthermore, bank i pays ai = min((Li+αi)

+, Ni)
and bank j pays aj = min((Lj + αj)

+, Nj) and

αi = inf{ϑ ≥ 0,P(aj ≤ ϑ) ≥ c

ψ
}, αj = inf{ϑ ≥ 0,P(ai ≤ ϑ) ≥ c

ψ
}.

Our first goal is to show that the real numbers αi, αj ≥ Nmin. First, by Lemma 2 and
Definition 1,

Γj(αi − αj , αj , αi) =


∫

n∈((αi−αj)+,αi)

ψP(min((Li + αi)
+, Ni) ≤ n+ αj − αi) dFN (n) +

∫
n∈[αi,∞)

cdFN (n), if αi > 0;

ψP(min((Li + αi)
+, Ni) ≤ αj − αi), if αi ≤ 0.

Thus, if αi < Nmin, Γj(αi − αj, αj, αi) ≥ c. If αi ≤ αj , then Eq. (14) implies that

P(Rj −Q−Dj +
Γj(αi − αj, αj, αi)

ξ
+ λ−1 ≤ αi − αj) < P(Rj −Q−Dj +

c

ξ
+ λ−1 ≤ 0) <

c

ψ
.

Recall that bank i is optimizing in the payment subgame: by Lemma 9 and Lemma 4,

P(aj ≤ αi) = P(Lj + αj ≤ αi) = P(Rj −Q−Dj +
Γj(αi − αj, αj, αi)

ξ
+ λ−1 ≤ αi − αj) ≥

c

ψ
.

This is a contradiction. Thus, αi < Nmin ⇒ αi > αj . It further implies that when
αi < Nmin, αj < Nmin. However, a symmetric argument shows that when αj < Nmin,
αj > αi, a contradiction. Thus, αi ≥ Nmin and αj ≥ Nmin.
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Our next goal is to show αi = αj . By Lemma 9 and Lemma 4,

c

ψ
≤ P(ai ≤ αj) =P(min((Li + αi)

+, Ni) ≤ αj)

=P(Li ≤ αj − αi) + P(Ni ≤ αj)(1− P(Li ≤ αj − αi))

=P
(
Ri −Di −Q+ λ−1 ≤ αj − αi −

Γi(αj − αi, αi, αj)

ξ

)
+ P(Ni ≤ αj)

(
1− P

(
Ri −Di −Q+ λ−1 ≤ αj − αi −

Γi(αj − αi, αi, αj)

ξ

))
and

c

ψ
≤ P(aj ≤ αi) =P

(
Rj −Dj −Q+ λ−1 ≤ αi − αj −

Γj(αi − αj, αj, αi)

ξ

)
+ P(Ni ≤ αi)

(
1− P

(
Rj −Dj −Q+ λ−1 ≤ αi − αj −

Γj(αi − αj, αj, αi)

ξ

))
.

By Lemma 2 and Definition 1,

Γj(αi − αj, αj, αi) =

∫
n∈((αi−αj)+,αi)

ψP(ai ≤ n− (αi − αj)) dFN(n) +

∫
n∈[αi,∞)

cdFN(n),

Γi(αj − αi, αi, αj) =

∫
n∈((αj−αi)+,αj)

ψP(aj ≤ n− (αj − αi)) dFN(n) +

∫
n∈[αj ,∞)

cdFN(n).

Lemma 19. Suppose that (Ri, Di, Ni) and (Rj, Dj, Nj) have the same distribution. If in equilib-
rium bank i pays ai = min((Li + αi)

+, Ni) and bank j pays aj = min((Lj + αj)
+, Nj) in the

payment subgame and αj > αi, then

P(aj ≤ n) ≤ P(ai ≤ n).

for all n ∈ [Nmin, αi).

The proof of this lemma is very technical and is postponed in Appendix G.1. In
nontechnical terms, when αj > αi bank j pays more than bank i. Therefore, Γj(y, αj, αi)
is larger than Γi(y, αi, αj) for y in some relevant range. Thus, bank j quotes higher
funding rates and lends out less liquidity in the funding market, so Lj is higher than Li.
This confirms that aj = min((Lj + αj)

+, Nj) is larger than ai = min((Li + αi)
+, Ni), so

P(aj ≤ n) ≤ P(ai ≤ n).

With Lemma 19 we are ready to show that αj − αi = 0. Suppose that αj − αi > 0. By
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Lemma 19,

Γi(0, αi, αj) =

∫
n∈[Nmin,αi)

ψP(aj ≤ n) dFN(n) +

∫
n∈[αi,∞)

cdFN(n)

≤
∫

n∈[Nmin,αi)

ψP(ai ≤ n) dFN(n) +

∫
n∈[αi,∞)

cdFN(n)

≤
∫

n∈[Nmin,αi)

ψP(ai ≤ n+ (αj − αi)) dFN(n) +

∫
n∈[αi,∞)

cdFN(n)

= Γj(αi − αj, αj, αi)

Therefore,

P
(
Ri −Di −Q+ λ−1 ≤ −Γi(0, αi, αj)

ξ

)
≥P
(
Rj −Dj −Q+ λ−1 ≤ αi − αj −

Γj(αi − αj, αj, αi)

ξ

)
.

This implies that bank j can deviates to choose to pay a′j = min((Lj + αi)
+, Nj) and still

satisfies

P(ai ≤ αi) =P(min((Li + αi)
+, Ni) ≤ αi)

=P
(
Ri −Di −Q+ λ−1 ≤ −Γi(0, αi, αj)

ξ

)
+ P(Ni ≤ αi)

(
1− P

(
Ri −Di −Q+ λ−1 ≤ −Γi(0, αi, αj)

ξ

))
≥P
(
Rj −Dj −Q+ λ−1 ≤ αi − αj −

Γj(αi − αj, αj, αi)

ξ

)
+ P(Ni ≤ αi)

(
1− P

(
Rj −Dj −Q+ λ−1 ≤ αi − αj −

Γj(αi − αj, αj, αi)

ξ

))
= P(aj ≤ αi) ≥

c

ψ
.

In addition, ai < aj ⇒ P(ai ≤ αi) < P(ai ≤ αj). This contradicts with Lemma 9.

Similarly, it cannot be the case thatαi > αj . Thus, αi = αj . Letαi = αj = α. Lemma 19
also implies that Γi = Γj = Γ for some function Γ. To sum up, the value of α and the
function Γ are jointly determined in the following way:

1. Fix the function Γ in equilibrium. Then α satisfies

α = inf

{
ϑ ≥ Nmin, P

(
Ri −Di −Q+ λ−1 ≤ −Γ(0, α, α)

ξ

)
+ P(Ni ≤ ϑ)

(
1− P

(
Ri −Di −Q+ λ−1 ≤ −Γ(0, α, α)

ξ

))
≥ c

ψ

}
.
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When FN is atomless, then

P(Ni ≤ α) =

c
ψ
− P

(
Ri −Di −Q+ λ−1 ≤ −Γ(0,α,α)

ξ

)
1− P

(
Ri −Di −Q+ λ−1 ≤ −Γ(0,α,α)

ξ

) . (31)

2. Fix the value of α. Define functional

Fa−i
(y, α,Γ) = FN(y) + (1− FN(y))P(Rj −Dj −Q+ λ−1 ≤ y − α− Γ(y − α, α, α)

ξ
).

In equilibrium, when y + α > 0,

Γ(y, α, α) =

∫
n∈(y+,(y+α))

ψFa−i
(n− y, α,Γ) dFN(n) +

∫
n∈[(y+α),∞)

cdFN(n). (32)

When y + α ≤ 0,

Γ(y, α, α) = ψFa−i
(−y, α,Γ). (33)

The equilibrium α and Γ is the fixed point of the above system of integral equations.

Lemma 20. There is at least one pair of α and Γ that satisfies the above system.

(Proof see Appendix G.2.)

Lemma 20 implies that there is at least one equilibrium under the no hoarding con-
dition.

F.8 Proof of Theorem 8

First, we explore properties for any equilibrium (α,Γ) under the given conditions. When
Ni −Nmin is exponentially distributed, from Eq. (31),

c
ψ
− P

(
Ri −Di −Q+ λ−1 ≤ −Γ(0,α,α)

ξ

)
1− P

(
Ri −Di −Q+ λ−1 ≤ −Γ(0,α,α)

ξ

) = P(Ni ≤ α) = 1− e−λN (α−Nmin).

Thus,

eλN (α−Nmin) =
1− P

(
Ri −Di −Q+ λ−1 ≤ −Γ(0,α,α)

ξ

)
1− c

ψ

> 0 (34)

From Eq. (32) and Eq. (33), when L ≤ −α
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Γ(L, α, α) =ψFa−i
(−L, α,Γ)

=ψ

(
eλN (L+Nmin)P

(
Ri −Di −Q+ λ−1 ≤ −L− α− Γ(−L− α, α, α)

ξ

)
+ 1− eλN (L+Nmin)

)
;

(35)

when −α < L ≤ Nmin − α,

Γ(L, α, α) =

∫
n∈(L+,(L+α))

ψFa−i
(n− L) dFN(n) +

∫
n∈[(L+α),∞)

cdFN(n) = c;

when Nmin − α < L ≤ Nmin,

Γ(L, α, α) =

∫
n∈[Nmin,(L+α))

ψFa−i
(n− L) dFN(n) +

∫
n∈[(L+α),∞)

cdFN(n) < c;

when Nmin < L

Γ(L, α, α) =

∫
n∈(L,(L+α))

ψFa−i
(n− L) dFN(n) +

∫
n∈[(L+α),∞)

cdFN(n).

Therefore, when −α < L ≤ Nmin − α,

Γ′(L, α, α) = 0.

Fix α and consider changing L for Γ(L, α, α) and Fa−i
(L, α,Γ). To simplify notations, write

Γ(L, α, α) as Γ(L) and Fa−i
(L, α,Γ) as Faj(L) when there is no confusion. Our next step is

to transfer the integral equation into a non-standard ODE when L > Nmin − α. Note by
assumption Faj(L) is differentiable. Let faj(L) = F ′

aj
(L).

When Nmin − α < L ≤ Nmin,

Γ′(L) =

∫
n∈[Nmin,(L+α))

−ψfaj(n− L) dFN(n) + ψFaj(α)fN(L+ α)− cfN(L+ α)

=

∫
n∈[Nmin,(L+α))

−ψfaj(n− L) λNe
−λN (n−Nmin)dn.

Since

d

dn
ψFaj(n− L)λNe

−λN (n−Nmin) = −ψFaj(n− L)λ2Ne
−λN (n−Nmin) + ψfaj(n− L)λNe

−λN (n−Nmin),
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we have

Γ′(L) =−
∫

n∈[Nmin,(L+α))

d

dn
ψFaj(n− L)λNe

−λN (n−Nmin)dn−
∫

n∈[Nmin,(L+α))

ψFaj(n− L)λ2Ne
−λN (n−Nmin)dn

= ψFaj(Nmin − L)λN − λNΓ(L).

When 0 < L ≤ Nmin, Nmin − L < Nmin and Γ(Nmin − L− α) = c, so

Γ′(L) =− λNΓ(L) + ψλNP(Rj −Dj −Q+ λ−1 ≤ Nmin − L− α− Γ(Nmin − L− α)

ξ
)

=− λNΓ(L) + ψλNP(Rj −Dj −Q+ λ−1 ≤ Nmin − L− α− c

ξ
).

When Nmin − α < L ≤ 0, Nmin − L ≥ Nmin, so

Γ′(L) =− λNΓ(L) + ψλNFaj(Nmin − L)

=− λNΓ(L) + ψλN((1− eλNL) + eλNLP(Rj −Dj −Q+ λ−1 ≤ Nmin − L− α− Γ(Nmin − L− α)

ξ
)).

Define H(k) = eλNkΓ(k). Then

H ′(k) =eλNkΓ′(k) + λNe
λNkΓ(k) = eλNkψλNFaj(Nmin − k)

=eλNkψλN
(
(1− eλNk) + eλNkP(Rj −Dj −Q+ λ−1 ≤ Nmin − k − α− Γ(Nmin − k − α)

ξ
)
)

(36)

so

H(L) = eλNLΓ(L) = Γ(0) + ψλN

L∫
0

eλNkFaj(Nmin − k)dk.
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Thus Γ(L) is uniquely determined by Γ(0) when 0 < L ≤ Nmin. Next, when Nmin < L,

Γ′(L) =

∫
n∈[L,(L+α))

−ψfaj(n− L)λNe
−λN (n−Nmin)dn− ψFaj(0)fN(L)

= −
∫

n∈[L,(L+α))

d

dn
ψFaj(n− L)λNe

−λN (n−Nmin)dn

−
∫

n∈[L,(L+α))

ψFaj(n− L)λ2Ne
−λN (n−Nmin)dn− ψFaj(0)fN(L)

= ψFaj(L− L)λNe
−λN (L−Nmin) − ψFaj(α)λNe

−λN (L+α−Nmin) − ψFaj(0)fN(L)

− λN

∫
n∈[Nmin,(L+α))

ψFaj(n− L)λNe
−λN (n−Nmin)dn

= − cλNe
−λN (L+α−Nmin) − λNΓ(L) + λNce

−λN (L+α−Nmin)

= − λNΓ(L).

Thus, Γ(L) is uniquely determined by Γ(Nmin) when L > Nmin. Therefore, Γ(0) uniquely
determines Γ(L) for all L ≥ 0. By Eq. (35), Γ(L) for L ≥ 0 in turn uniquely determines the
value of Γ(L) for L ≤ −α. Thus it suffices to show that the system of integral equations
has a unique solution Γ(L) for L ∈ [Nmin − α, 0].

Suppose there are two equilibria, characterized by (α1, Γ1) and (α2, Γ2). Assume
that Γ1(0, α1, α1) > Γ2(0, α2, α2), then it follows that α1 > α2. We want to establish a
contradiction. Define H1(L) = eλNLΓ1(L) and H2(L) = eλNLΓ2(L). Then H1(0) > H2(0)
and

H1(Nmin − α1) = eλN (Nmin−α1)c ≤ eλN (Nmin−α2)c = H2(Nmin − α2),

H1(Nmin − α2) = eλN (Nmin−α2)Γ1(Nmin − α2) ≤ eλN (Nmin−α2)c = H2(Nmin − α2).

Similarly, we can show H ′
1(Nmin − α2) < H ′

2(Nmin − α2) and H ′
1(0) < H ′

2(0). Note that H ′
1

and H ′
2 are continuous.

Since H1(Nmin − α2) ≤ H2(Nmin − α2) and H1(0) > H2(0), there must be x ∈ (Nmin −
α2, 0) such thatH ′

1(x) > H ′
2(x). Then there exists t1 such thatH ′

1(Nmin−α2+x) < H ′
2(Nmin−

α2 + x),∀0 ≤ x < t1 and H ′
1(Nmin − α2 + t1) = H ′

2(Nmin − α2 + t1). Since H ′
1(0) < H ′

2(0),
there also exists t0 such that H ′

1(x) < H ′
2(x), ∀0 ≥ x > −t0 and H ′

1(−t0) = H ′
2(−t0).

First, −t0 > Nmin−α2

2
. If not, then Γ1(x) > Γ1(x),∀0 ≥ x > Nmin−α2

2
. This implies

H ′
1(x) < H ′

2(x),∀Nmin − α2 ≤ x ≤ Nmin−α2

2
, so H1(Nmin − α2) > H2(Nmin − α2), a contra-

diction. Second, by H ′
1(Nmin − α2 + t1) = H ′

2(Nmin − α2 + t1) and Eq. (36),

Γ1(−t1 − (α1 − α2)) + ξ(α1 − α2) = Γ2(−t1).
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Also Γ1(−x− (α1 − α2)) + ξ(α1 − α2) > Γ2(−x),∀0 ≤ x < t1. Similarly,

Γ1(Nmin − α2 + t0 − (α1 − α2)) + ξ(α1 − α2) = Γ2(Nmin − α2 + t0)

and Γ1(Nmin − α2 + x − (α1 − α2)) + ξ(α1 − α2) < Γ2(Nmin − α2 + x),∀0 ≤ x < t0. Thus
−t1 < −t0.

Since H1(0) > H2(0) and H ′
1(x) < H ′

2(x), ∀0 ≥ x > −t0, H1(−t0) > H2(−t0) and
Γ1(−t0) − Γ2(−t0) > 0. Let J1 = sup{Γ1(x) − Γ2(x)

∣∣ x ∈ [−t1,−t2]}. By continuity,
∃t2 ∈ [t0, t1] such that Γ1(−t2)−Γ2(−t2) = J1 andH ′

1(−t2) = H ′
2(−t2). Since Γ1(−t1− (α1−

α2)) + ξ(α1 − α2) = Γ2(−t1),

H2(−t1)−H1(−t1) =e−λN t1(Γ2(−t1)− Γ1(−t1))
≥e−λN t1(Γ2(−t1)− Γ1(−t1 − (α1 − α2))) = e−λN t1ξ(α1 − α2).

Then by mean value theorem, ∃t3 ∈ (t2, t1) such that

(t1 − t2)(H
′
1(−t3)−H ′

2(−t3)) =(H1(−t2)−H2(−t2))− (H1(−t1)−H2(−t1))
≥e−λN t1ξ(α1 − α2) + e−λN t2J1.

By Eq. (36),

H ′
1(−t3)−H ′

2(−t3) = ψλNe
−2λN t3

(
FRD(−λ−1 +Nmin − α1 + t3 −

Γ1(Nmin − α1 + t3)

ξ
)

−FRD(−λ−1 +Nmin − α2 + t3 −
Γ2(Nmin − α2 + t3)

ξ
)
)
,

Then by mean value theorem the previous two equations imply that

(−α1 −
Γ1(Nmin − α1 + t3)

ξ
+ α2 +

Γ2(Nmin − α2 + t3)

ξ
)fRD(Nmin − λ−1 − α2 −

Γ2(Nmin − α2 + t3)

ξ
+ s̄)

≥ eλN (2t3−t1)ξ(α1 − α2) + eλN (2t3−t2)J1
ψλN(t1 − t2)

for some s̄ ∈ [0, (−α1 − Γ1(Nmin−α1+t3)
ξ

− (−α2 − Γ2(Nmin−α2+t3)
ξ

))]. Since fRD(t) ≤ fmRD when
t ∈ (−∞, 0],

Γ2(Nmin − α2 + t3)− Γ1(Nmin − α1 + t3)

ξ
≥ α1 − α2 +

eλN (2t3−t1)ξ(α1 − α2) + eλN (2t3−t2)J1
fmRD ψλN(t1 − t2)

.

Again by mean value theorem, ∃t4 ∈ (t2, t3) such that

Γ2(Nmin − α2 + t3)− Γ1(Nmin − α1 + t3)

=Γ2(Nmin − α2 + t2)− Γ1(Nmin − α1 + t2) + (t3 − t2)(Γ
′
2(Nmin − α2 + t4)− Γ′

1(Nmin − α1 + t4))

=ξ(α1 − α2) + (t3 − t2)(Γ
′
2(Nmin − α2 + t4)− Γ′

1(Nmin − α1 + t4)).
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Thus,

ψλN

(
eλN (Nmin−α1+t4) − eλN (Nmin−α2+t4) + eλN (Nmin−α2+t4)FRD(−t4 −

Γ2(−t4)
ξ

− λ−1)

− eλN (Nmin−α1+t4)FRD(−t4 −
Γ1(−t4)

ξ
− λ−1)

)
≥ eλN (2t3−t1)ξ2(α1 − α2) + ξeλN (2t3−t2)J1

fmRD (t3 − t2)ψλN(t1 − t2)
.

In other words,

eλN (Nmin−α1+t4)(FRD(−t4 −
Γ2(−t4)

ξ
− λ−1)− FRD(−t4 −

Γ1(−t4)
ξ

− λ−1)) ≥

(eλN (Nmin−α2+t4) − eλN (Nmin−α1+t4))(1− FRD(−t4 −
Γ2(−t4)

ξ
− λ−1))

+
eλN (2t3−t1)ξ2(α1 − α2) + ξeλN (2t3−t2)J1

fmRD (t3 − t2)ψ2λ2N(t1 − t2)

Thus,(
Γ1(−t4)

ξ
− Γ2(−t4)

ξ

)
fmRD >

eλN (2t3−t1−t4+α1−Nmin)ξ2(α1 − α2) + ξeλN (2t3−t2−t4+α1−Nmin)J1
fmRD (t3 − t2)ψ2λ2N(t1 − t2)

.

Note that

eλN (t3−t2−t4+α1−Nmin)

(t3 − t2)λ2N(t1 − t2)
= eλN (t3−t4) eλN (t3−t2)

(t3 − t2)λN

eλN (α1−Nmin)

(t1 − t2)λN
> 2e2.

Thus,

Γ1(−t2)− Γ2(−t2) ≥ Γ1(−t4)− Γ2(−t4) > (
1

fmRD
)2
2e2ξ2J1
ψ2

> J1.

The last line follows from the assumption of Theorem 8. Then we have J1 = Γ1(−t2) −
Γ2(−t2) > J1, a contradiction. Thus, there cannot be two (α1, Γ1) and (α2, Γ2) that solves
the system of integral equations defined in Theorem 7. In other words, the equilibrium is
unique.

F.9 Proof of Theorem 9

For simplicity, I suppress notation and write Γ(y) as Γ(y, α, α). Repo trading is character-
ized by Eq. (12). Immediately, we have the following lemma.

Lemma 21. S (D) is almost everywhere differentiable, and

S (D) = S (Dmin) +

D∫
Dmin

S ′(θ) d θ.
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Proof. Consider θ1 < θ2 in the support of Dj . By Lemma 3, S (θ1) < S (θ2) and

S (θ1) = inf
{
s : Γ(Ri −Q− s) + ξs ≥ ξ(θ1 − λ−1)

}
S (θ2) = inf

{
s : Γ(Ri −Q− s) + ξs ≥ ξ(θ2 − λ−1)

}
.

Since Γ(Ri −Q− s) is right continuous,

Γ(Ri −Q− S (θ1)) + ξS (θ1) ≥ ξ(θ1 − λ−1)

Γ(Ri −Q− S (θ2)) + ξS (θ2) ≥ ξ(θ2 − λ−1).

We notice that

Γ(Ri −Q− (S (θ1) + θ2 − θ1)) + ξ(S (θ1) + θ2 − θ1) ≥ ξ(θ1 + θ2 − θ1 − λ−1) = ξ(θ2 − λ−1).

Since S (θ2) = inf
{
s : Γ(Ri −Q− s) + ξs ≥ ξ(θ2 − λ−1)

}
,

S (θ1) ≤ S (θ2) ≤ S (θ1) + θ2 − θ1.

Thus,

|S (θ2)− S (θ1)| ≤ θ2 − θ1.

Hence S (θ) is absolute continuous. By Lebesgue differentiation theorem, S (D) is differ-
entiable almost everywhere, and

S (D) = S (Dmin) +

D∫
Dmin

S ′(θ) d θ.

By Eq. (12),

Γ(Ri −Q− S (D)) ≥ ξ(D − S (D)− λ−1)

T (D) = − ξ

2

(
D − S (D)

)2
+
ξ

2
Dmin

2 +

D∫
Dmin

ξ(x− S (x)) dx

ri =
T (D)

S (D)
.

By Lemma 21, S (D) is differentiable for all D ∈ [Dmin,∞), so T (D) is differentiable
almost everywhere (a.e):

T ′(D) = ξ(D − S )S ′(D) a.e.
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Lemma 22. Suppose that for some θ1, Γ(Ri − Q − S (θ1)) > ξ(θ1 − S (θ1) − λ−1), then there
is an θ2 > θ1 such that

Γ(Ri −Q− S (θ2)) = ξ(θ2 − S (θ2)− λ−1)

S (θ2) =S (θ1)

S ′(x) =0,∀x ∈ (θ1, θ2).

Moreover, there are at most countably many θ such thatΓ(Ri−Q−S (θ1)) > ξ(θ1−S (θ1)−λ−1).

Proof. Suppose that for some θ1, Γ(Ri −Q− S (θ1)) > ξ(θ1 − S (θ1)− λ−1), then

Γ(Ri −Q− S (θ1)) + ξS (θ1) > ξ(θ1 − λ−1).

Since ξ(x− λ−1) is strictly increasing in x, there is a θ2 > θ1 such that

Γ(Ri −Q− S (θ1)) + ξS (θ1) = ξ(θ1 − λ−1).

For any x ∈ [θ1, θ2], Γ(Ri − Q − S (θ1)) + ξS (θ1) ≥ ξ(x − λ−1) and for any s < S (θ1)
Γ(Ri − Q − s) + ξs < ξ(θ1 − λ−1) < ξ(x − λ−1). Thus, S (x) = S (θ1), ∀x ∈ [θ1, θ2]. It
follows that S ′(x) = 0, ∀x ∈ (θ1, θ2). Finally, the function x 7→ Γ(Ri−Q−S (x)) + ξS (x)
is strictly increasing in x, so it has at most countably many discontinuity.

Following Lemma 22, ξ(x−S (x))S ′(x) =
(
Γ(Ri −Q−S (x)) + ξλ−1

)
S ′(x) almost

everywhere. Thus,

T (D) = T (Dmin) +

D∫
Dmin

ξ(x− S (x))S ′(x) dx

= T (Dmin) +

D∫
Dmin

(
V ′
−(Ri −Q− S (x)) + ξλ−1

)
S ′(x) dx

= T (Dmin) +

S (D)∫
S (Dmin)

Γ(Ri −Q− s) ds+ ξ λ−1 (S (D)− S (Dmin)).

(37)

Plug the calculation of T (D) into Eq. (12) and we get the desired result.

F.10 Proof of Theorem 10

By Lemma 3, Theorem 6 and Theorem 7, the equilibrium outcome variables Si, Ti and ri of
the trading game depends on the realizations of Ri, Di and m. Let S(ζ,D(S∗,m),m) and
T (ζ,D(S∗,m),m) be the equilibrium amount of financing and total transfer respectively,
in the trading game in the state of the world such that the realization of Ri is ζ and the
realization of Di is D(S∗,m). Obviously, D(S∗,m) has to satisfy S(ζ,D(S∗,m),m) = S∗.
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Abuse notations and write Γ(y, α, α) as Γ(y ; m) to denote the marginal value of liquidity
at y when the liquidity stress index is m. Let ℓ = ζ − Q − S∗. By Eq. (37), under the
macroeconomic conditions indexed by m,

T (ζ,D(S∗,m),m) =T (ζ,Dmin,m) +

S(ζ,D(S∗,m),m)∫
S(ζ,Dmin,m)

Γ(ζ −Q− s,m) ds

+
ξm

λm
(
S(ζ,D(S∗,m),m)− S(ζ,Dmin,m)

)
.

(38)

By Lemma 3,

T (ζ,Dmin,m) =− ξm

2

(
Dmin − S(ζ,Dmin,m)

)2
+
ξm

2
Dmin

2

= ξmDminS(ζ,Dmin,m)− ξm

2
S(ζ,Dmin,m)2.

Thus,

T (ζ,Dmin,m)− ξm

λm
S(ζ,Dmin,m)

= (ξmDmin −
ξm

λm
)S(ζ,Dmin,m)− ξm

2
S(ζ,Dmin,m)2.

(39)

By definition,

r∗(ζ,S∗,m) =
T (ζ,D(S∗,m),m)

S∗ .

Combining Eqs. (38) and (39), we can simplify the equilibrium funding rate as

r∗(ζ,S∗,m) =
1

S∗

(
(ξmDmin −

ξm

λm
)S(ζ,Dmin,m)− ξm

2
S(ζ,Dmin,m)2

+

ζ−Qm−ℓ∫
S(ζ,Dmin,m)

Γ(ζ −Qm − s ; m) ds

)
+
ξm

λm
.

To simplify notations, let{FR(·), FN(·), Q, λ,Dmin, c, ψ, ξ} = {F 0
R(·), F 0

N(·), Q0, λ0, D0
min, c

0, ψ0, ξ0}.
When m = 0, there could be multiple equilibria. For the following analysis, we select the
equilibrium with the maxα = Nmin, because, by continuity, this equilibrium is the limiting
equilibrium of a sequence of economies under no hoarding condition such that m ↑ 0. In
other words, pick the equilibrium such that r∗(ζ,S∗, 0) = limϵm↓0 r

∗(ζ,S∗,−ϵm).

Fix some ϵm > 0. Since all the macroeconomic conditions considered here are close
with respect to liquidity stress index, there exists some constants O, ϵm > 0 such that for
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all ϵm < ϵm,(
r∗(ζ,S∗, ϵm)− r∗(ζ,S∗, 0)

)
S∗

≥ (ξDmin − ξλ−1)S(ζ,Dmin, ϵ
m)− ξ

2
S(ζ,Dmin, ϵ

m)2 − (ξDmin − ξλ−1)S(ζ,Dmin, 0) +
ξ

2
S(ζ,Dmin, 0)

2

+

S∗∫
S(ζ,Dmin ; 0)

Γ(ζ −Q− s ; ϵm)− Γ(ζ −Q− s ; 0) ds+

S(ζ,Dmin ; 0)∫
S(ζ,Dmin ; ϵ)

Γ(ζ −Q− s ; ϵm) ds−Oϵm

=

S∗∫
S(ζ,Dmin ; 0)

Γ(ζ −Q− s ; ϵm)− Γ(ζ −Q− s ; 0) ds−Oϵm

+

S(ζ,Dmin ; 0)∫
S(ζ,Dmin ; ϵ)

−(ξDmin − ξλ−1) + ξs+ Γ(ζ −Q− s ; ϵm) ds.

Since

Γ
(
ζ −Q− S(ζ,Dmin ; ϵm) ; ϵm

)
≥ ξ(Dmin − λ−1)− ξS(ζ,Dmin ; ϵm)

and the mapping s 7→ Γ(ζ −Q− s ; γ) + ξs is monotonically increasing in s for any γ,

S(ζ,Dmin ; 0)∫
S(ζ,Dmin ; ϵ)

−(ξDmin − ξλ−1) + ξs+ Γ(ζ −Q− s ; ϵ) ds ≥ 0.

Thus,

(
r∗(ζ,S∗, ϵ)− r∗(ζ,S∗, 0)

)
S∗ ≥

S∗∫
S(ζ,Dmin ; 0)

Γ(ζ −Q− s ; ϵ)− Γ(ζ −Q− s ; 0) ds−Oϵm.

(40)

Lemma 23. For all ϵm < ϵm, there is some δ0(ζ, s) ≥ 0 and constant O1 ≥ 0 such that

Γ(ζ −Q− s ; ϵm)− Γ(ζ −Q− s ; 0) > δ0(ζ, s)−O1ϵm.

In addition, whenever ζ −Q− s ̸= 0, δ0(ζ, s) > 0.

Lemma 23 and Eq. (40) imply that for all ϵm < ϵm, there is some δ(ζ,S∗) such that
r∗(ζ,S∗, ϵm) − r∗(ζ,S∗, 0) > δ(ζ,S∗) − O2ϵm for some constant O2. This proves the Theo-
rem 10.

Proof of Lemma 23. Recall that under no hoarding condition, a∗j = min((Lj + α)+, Nj) for
some α ≥ Nmin. Under no hoarding condition, a∗j = min(L+

j , Nj). We discuss Γ(y ; ϵ) −
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Γ(y ; 0) case by case.

First, when y ≥ 0, by directly calculation the assumption that two macroeconomic
conditions are close with respect to liquidity stress index, there is some constant O3 > 0
such that

Γ(y ; ϵm)− Γ(y ; 0) ≥
y+α∫
y

c− ψP(min{(Lj + α)+, Nj} ≤ n− y) dFN(n)−O3ϵm.

When y ≥ Nmin,

y+α∫
y

c− ψP(min{(Lj + α)+, Nj} ≤ n− y) dFN(n)

=

y+
Nmin

2∫
y+

c− ψP(min{Lj + α,Nj} ≤ n− y) dFN(n) +

y+α∫
y+

Nmin

2

c− ψP(min{Lj + α,Nj} ≤ n− y) dFN(n)

≥

y+
Nmin

2∫
y+

c− ψP(Lj + α ≤ Nmin

2
) dFN(n) +

y+α∫
y+

Nmin

2

c− ψP(min{Lj + α,Nj} ≤ n− y) dFN(n).

Since c− ψP(min{Lj + α,Nj} ≤ α) = 0 and P(min{Lj + α,Nj} ≤ ϑ) strictly increases in ϑ,
there is some δ1(ζ, y) such that

y+
Nmin

2∫
y+

c− ψP(Lj + α ≤ Nmin

2
) dFN(n) > δ1(ζ, y) > 0,

and
y+α∫

y+
Nmin

2

c− ψP(min{Lj + α,Nj} ≤ n− y) dFN(n) ≥ 0.

Thus,

y+α∫
y

c− ψP(min{(Lj + α)+, Nj} ≤ n− y) dFN(n) > δ1(ζ, y) > 0,
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Hence, when y ≥ Nmin,

Γ(y ; ϵm)− Γ(y ; 0) > δ1(ζ, y)−O3ϵm.

When Nmin > y > 0,

Γ(y ; ϵm)− Γ(y ; 0) ≥
y+α∫

Nmin

c− ψP(min{(Lj + α)+, Nj} ≤ n− y) dFN(n)−O3ϵm

>

y+α∫
Nmin

c− ψP(min{(Lj + α)+, Nj} ≤ n−Nmin) dFN(n)−O3ϵm.

When y = 0, clearly Γ(y ; ϵm)− Γ(y ; 0) ≥ −O3ϵm. When 0 > y ≥ −α, ∃O4 > 0 such that

Γ(y ; ϵm)− Γ(y ; 0)

≥ ψ Pϵm(min(L+
j , Nj) ≤ −y)− ψ

y+α∫
0

P(a∗j ≤ n− y)dFN(n)− cP(Ni > y + α)−O4ϵm

> δ2(ζ, y) + c− ψ

y+α∫
0

P(a∗j ≤ n− y ; T + ϵ)dFN(n)− cP(Ni > y + α)−O4ϵm > δ2(ζ, y)−O4ϵm.

where the second inequality derives from the fact that under liquidity hoarding condition,
ψ Pϵm(Lj ≤ 0) > c. Finally, when y < −α, then

Γ(y ; ϵm)− Γ(y ; 0) = ψ Pϵm(min(L+
j , Nj) ≤ −y)− ψ P(min((Lj + α)+, Nj) ≤ −y)

> ψ Pϵm(min(L+
j , Nj) ≤ −y)− ψ P(min(L+

j , Nj) ≤ −y)

+ ψ
(
P(min((Lj + α)+, Nj) ≤ −y)− ψ P(min(L+

j , Nj) ≤ −y)
)

> ψ
(
P(min((Lj + α)+, Nj) ≤ −y)− ψ P(min((Lj)

+, Nj) ≤ −y)
)
> δ3(ζ, y)

for some δ3(ζ, y) > 0 regardless of ϵ. Let δ0(ζ, ζ − Q − y) be the corresponding δi(ζ, y) in
each case corresponding to different y. This finishes the proof.

F.11 Proof of Lemma 5

Similar analysis as in the proof for Lemma 1 gives the following result:

Lemma 24. Given all other banks’ strategy a−i, the best response actions of bank i are of the form

ai = min((Li + zi)
+, Ni),
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where zi is some non negative random variable with support Iz. For any υ ∈ Iz,

P(a−i ≤ υ) ≥ c

ψ
.

Moreover, if there does not exist υ⋆ such that P(a−i ≤ υ⋆) = c/ψ, then Iz = {υ∗} is a singleton
and υ∗ = inf{ϑ ≥ 0,P(a−i ≤ ϑ) > c

ψ
}. If there is an υ⋆ such that P(a−i ≤ υ⋆) = c/ψ, then for

any υ ∈ Iz, P(a−i ≤ υ) = c/ψ.

Lemma 25. Suppose that
∏

j ̸=i P(Lj ≤ 0) > c
ψ

for all i, then there is a unique pure strategy
equilibrium. In this equilibrium, each bank i chooses the payment a∗i = min(L+

i , Ni).

Proof. When
∏

j ̸=i P(Lj ≤ 0) > c
ψ

for all i, then P(
∑

j ̸=imin(L+
j , Nj) ≤ 0) > c

ψ
. This

implies that αi = 0. If not, assume bank i makes payment min((Li + αi)
+, Ni) for some

αi ≥ 0. WOLG assume α1 = max{αi} > 0. Then P(
∑

j ̸=imin((Lj + αj)
+, Nj) ≤ (n −

1)α1) ≥ P(
∑

j ̸=imin((Lj + αj)
+ − α1, Nj − α1) ≤ 0) > P(

∑
j ̸=imin(L+

j , Nj) ≤ 0) > c
ψ

, a
contradiction.

Lemma 26. Suppose that
∏

j ̸=i P(Lj ≤ 0) < c
ψ

for all i, then there is a unique pure strategy
equilibrium. In this equilibrium, each bank i chooses the payment a∗i = min((Li + αi)

+, Ni). For
each i, αi > 0 and P(

∑
j ̸=imin((Lj + αj)

+, Nj) ≤ αi) =
c
ψ

.

Proof. Consider a map T α : [0, F−1
N ( c

ψ
)]n → [0, F−1

N ( c
ψ
)]n, where T α(x1, x2, · · · , xn) =

(a1, a2, · · · , an) such that

ai = inf

{
ϑ ≥ 0 : P(

∑
j ̸=i

min((Lj + xj)
+, Nj) ≤ (n− 1)ϑ) ≥ c

ψ

}
.

It is easy to check that T α is continuous. By Schauder fixed-point theorem there is at least
one fixed point (αi)ni=1 for T α. When P(Lj < 0) = 0 for all j, then (n− 1)αi ≥ Nmin. To see
that, suppose αk = min{αi} < Nmin

n−1
. Then

P(
∑
j ̸=i

min((Lj + αj)
+, Nj) ≤ (n− 1)αk) = P(

∑
j ̸=i

Lj + αj ≤ (n− 1)αk) < P(
∑
j ̸=i

Lj ≤ 0) <
c

ψ
,

a contradiction. Suppose there are two different fixed points, (α1
i )
n
i=1 and (α2

i )
n
i=1, for

T α. Without loss of generality (WLOG), assume that α1
1 < α2

1. By assumption Nj has
continuous cdf, so

P(min((L2 + α1
2)

+, N2) +
∑
j>2

min((Lj + α1
j )

+, Nj) ≤ (n− 1)α1
1) =

c

ψ

P(min((L2 + α2
2)

+, N2) +
∑
j>2

min((Lj + α2
j )

+, Nj) ≤ (n− 1)α2
1) =

c

ψ
.

102

Electronic copy available at: https://ssrn.com/abstract=3721785



Thus, it cannot be the case that α2
j = α1

j = 0 for all j > 1. Assume that α2
2, α

1
2 > 0, then

P(min((L1 + α1
1)

+, N1) +
∑
j>2

min((Lj + α1
j )

+, Nj) ≤ (n− 1)α1
2) =

c

ψ

P(min((L1 + α2
1)

+, N1) +
∑
j>2

min((Lj + α2
j )

+, Nj) ≤ (n− 1)α2
2) =

c

ψ
.

Since {Lj}, {Nj} are i.i.d, the above equations imply that α2
2 ≥ α1

2. Replacing α2
2, α

1
2

with α2
j , α

1
j , the same argument shows that α2

j ≥ α1
j . WLOG, assume that α2

1 − α1
1 =

maxj{α2
j − α1

j}. Then

P(
∑
j>1

min((Lj + α1
j )

+, Nj) ≤ (n− 1)α1
1) =

c

ψ
= P(

∑
j>1

min((Lj + α2
j )

+, Nj) ≤ (n− 1)α2
1) ⇒

P(
∑
j>1

(min((Lj + α1
j )

+, Nj) + α2
1 − α1

1) ≤ (n− 1)α2
1) = P(

∑
j>1

min((Lj + α2
j )

+, Nj) ≤ (n− 1)α2
1).

Note that min((Lj +α
1
j )

+, Nj)+α
2
1−α1

1 ≥ min((Lj +α
2
j )

+, Nj) almost surely. Suppose that
P(Lj < 0) > 0 for some j, then P(min((Lj +α

1
j )

+, Nj)+α
2
1−α1

1 > min((Lj +α
2
j )

+, Nj)) and
LHS < RHS. This is a contradiction. When P(Lj < 0) = 0 for all j, then by the previous
argument, (n − 1)α1

1 ≥ Nmin and (n − 1)α2
1 ≥ Nmin. However, when this happens, since

FN strictly increases, LHS < RHS. This is a contradiction.

Suppose that there is a mixed strategy equilibrium such that ai = min((Li + zi)
+, Ni).

Let I iz denote the support of zi. Since I iz and Ijz are bounded, let υi
def
= inf I iz and

υi
def
= sup I iz. At least one of I iz must have more than one element, for otherwise it is a

pure strategy equilibrium. Say I1
z has at least two elements, then υ1 > υ1 and for any

υ ∈ [υ1, υ1),P(a−1 ≤ υ) = c
ψ
.

Lemma 27. There is no mixed strategy equilibrium.

Proof. Suppose that there is a mixed strategy equilibrium. If υ1 ≥ Nmin Pick any Nmin ≤
υ′1 < υ′′1 in I1

z . Since FN strictly increases, for any j > 1, P(Nj ≤ υ′′1) > P(Nj ≤ υ′1). Thus, if

P(a−i ≤ υ′′i ) = P(a−1 ≤ υ′1) ⇒

P(
∑
j>2

min((Lj + zj)
+, Nj) ≤ (n− 1)υ′′1) = P(

∑
j>2

min((Lj + zj)
+, Nj) ≤ (n− 1)υ′1).

This is impossible, since bank j cannot choose her strategy based on the the state variable
of bank k ̸= j. In other words, {min((Lj + zj)

+, Nj)} are independent of each other. Since
Nj is strictly increasing, the cdf of

∑
j>2min((Lj + zj)

+, Nj) is strictly increasing. Thus,
LHS > RHS.

Finally, similar analysis as in the proof for Lemma 1 shows that when Li are i.i.d, then
banks’ payment strategies are symmetric: αi = α for all i.
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F.12 Proof of Theorem 11

Suppose that liquidity hoarding condition for n banks holds. We prove by contradiction
that banks hoard liquidity in equilibrium at time 1. By Lemma 27 there is no mixed strategy
equilibrium for the payment subgame. By Lemma 24 and Lemma 6, Γ+

i (y, αi, α−i) ≤ c for
any y ≥ 0 when αi = 0; Γ+

i (y, αi, α−i) < c for any y ≥ 0 when αi > 0. Assume that bank
j does not hoard liquidity, i.e. bank j pays min(L+

j + αj, Nj) at time 1 for some αj > 0.
WOLG, let αj = max{αi}. Since bank j is best responding, it must still hold that

P(a−j ≤ αj) = P(
∑
i ̸=j

min((Li + αi)
+, Ni) ≤ (n− 1)αj) =

c

ψ
⇒

P(
∑
i ̸=j

min((Li + αi)
+ − αj, Ni − αj) ≤ 0) =

c

ψ
⇒

∏
i ̸=j

P(Li ≤ 0) = P(
∑
i ̸=j

min(L+
i , Ni) ≤ 0) < P(

∑
i ̸=j

min((Li + αi)
+ − αj, Ni − αj) ≤ 0) =

c

ψ
.

By Lemma 7,

P (Li ≤ 0) = P
(
Ri −Di −Q ≤ −Γ+

i (0, αi, α−i)

ξ

)
≥ P

(
Ri −Di −Q ≤ − c

ξ

)
> (

c

ψ
)1/(n−1) ⇒∏

i ̸=j

P(Li ≤ 0) >
c

ψ
,

a contradiction. Thus, αi = 0 and the marginal value of liquidity functions for all banks
are the same.

F.13 Proof of Theorem 12

Suppose that Eq. (18) holds. By Lemma 27 there is no mixed strategy equilibrium for
the payment subgame. Suppose that bank i pays ai = min((Li + αi)

+, Ni), our goal is
to show αi = αj,∀i, j. First, since c

ψ
>
∏

i ̸=j P(Li ≤ 0) = P(
∑

i ̸=j min(L+
i , Ni) ≤ 0) ≥

P(
∑

i ̸=j min((Li + αi)
+, Ni) ≤ 0), αi > 0 for all i. Thus, by Lemma 24 and Lemma 7,

c

ψ
= P(a−j ≤ αj) =P(min((Li + αi)

+, Ni) +
∑
k ̸=i,j

min((Lk + αk)
+, Nk) ≤ (n− 1)αj).
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Let K̃ =
∑

k ̸=i,j min((Lk + αk)
+, Nk), then

c

ψ
=P(a−j ≤ αj) =

(n−1)αj∫
0

P(min((Li + αi)
+, Ni) ≤ (n− 1)αj − κ) dFK̃(κ)

=

(n−1)αj∫
0

P
(
Ri −Di −Q ≤ (n− 1)αj − αi − κ− Γi((n− 1)αj − αi − κ, αi, α−i)

ξ

)
+ P(Ni ≤ (n− 1)αj − κ)

(
1− P

(
Ri −Di −Q ≤ (n− 1)αj − αi − κ− Γi((n− 1)αj − αi − κ, αi, α−i)

ξ

))
dFK̃(κ)

and

c

ψ
=

(n−1)αi∫
0

P
(
Rj −Dj −Q ≤ (n− 1)αi − αj − κ− Γj((n− 1)αi − αj − κ, αj , α−j)

ξ

)
+ P(Nj ≤ (n− 1)αi − κ)

(
1− P

(
Rj −Dj −Q ≤ (n− 1)αi − αj − κ− Γj((n− 1)αi − αj − κ, αj , α−j)

ξ

))
dFK̃(κ)

Lemma 28. Suppose that (Ri, Di, Ni) and (Rj, Dj, Nj) have the same distribution. If in equilib-
rium bank i pays ai = min((Li + αi)

+, Ni) and bank j pays aj = min((Lj + αj)
+, Nj) in the

payment subgame and αj > αi, then P(a−i ≤ η) ≤ P(a−j ≤ η) for all η ∈ [Nmin, αj).

The proof is omitted since it is similar to the proof for Lemma 19 with slight modifica-
tions. Lemma 28 implies that Γj((n−1)αi−αj−κ, αj, α−j) ≥ Γi((n−1)αj−αi−κ, αi, α−i),
for any κ ∈ [0, (n− 1)αi]. However, this means

c

ψ
>

(n−1)αi∫
0

P
(
Ri −Di −Q ≤ (n− 1)αj − αi − κ− Γi((n− 1)αj − αi − κ, αi, α−i)

ξ

)
+ P(Ni ≤ (n− 1)αj − κ)

(
1− P

(
Ri −Di −Q ≤ (n− 1)αj − αi − κ− Γi((n− 1)αj − αi − κ, αi, α−i)

ξ

))
dFK̃(κ)

≥
(n−1)αi∫

0

P
(
Rj −Dj −Q ≤ (n− 1)αi − αj − κ− Γj((n− 1)αi − αj − κ, αj , α−j)

ξ

)
+ P(Nj ≤ (n− 1)αi − κ)

(
1− P

(
Rj −Dj −Q ≤ (n− 1)αi − αj − κ− Γj((n− 1)αi − αj − κ, αj , α−j)

ξ

))
dFK̃(κ) =

c

ψ
,

a contradiction. Thus, αi = αj . Let αi = αj = α. This also implies that Γi = Γj = Γ for
some function Γ. Also, Γ and α is jointly determined by Eq. (19).

Lemma 29. There is at least one pair of α and Γ that satisfies Eq. (19).

The proof is omitted for it is similar to the proof of Lemma 20.
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G Internet Appendix: Additional proofs

G.1 Proof of Lemma 19

Fix any αi, αj ∈ [Nmin,∞) such that αi < αj . Assume bank i pays ai = min((Li + αi)
+, Ni)

and bank j pays aj = min((Lj+αj)
+, Nj). Banks optimize in the trading game so Lemma 4

holds.
Lemma 30. Fix any x ≥ y and x > Nmin. If y ≤ Nmin then P(ai ≤ x) ≥ P(aj ≤ y). If y > Nmin

and ∀n ∈ [Nmin, y), P(ai ≤ n− (y−αj)) ≥ P(aj ≤ n− (x−αi)), then P(ai ≤ x) ≥ P(aj ≤ y).

Proof. By Lemma 9, in equilibrium ψP(aj ≤ αi) ≥ c and for any ϑ < αi, ψP(aj ≤ ϑ) ≤ c.
When y ≤ −αj , then by Lemma 2,

Γj(y − αj, αj, αi) =ψP(ai ≤ −y) ≥ c

≥
∫

n∈[Nmin,x)

ψP(aj ≤ n− (x− αi)) dFN(n) + cP(Ni ≥ x) = Γj(x− αi, αi, αj)

When −αj < y ≤ Nmin, then by Lemma 2,

Γj(y − αj, αj, αi) = c ≥
∫

n∈[Nmin,x)

ψP(aj ≤ n− (x− αi)) dFN(n) + cP(Ni ≥ x) = Γi(x− αi, αi, αj).

When y > Nmin and ∀n ∈ [Nmin, y),

P(ai ≤ n− (y − αj)) ≥ P(aj ≤ n− (x− αi)).

Then∫
n∈[Nmin,y)

ψP(ai ≤ n− (y − αj)) dFN(n) ≥
∫

n∈[Nmin,y)

ψP(aj ≤ n− (x− αi)) dFN(n).

Therefore, by Lemma 2

Γj(y − αj, αj, αi) =

∫
n∈[Nmin,y)

ψP(ai ≤ n− (y − αj)) dFN(n) + cP(Ni ≥ y)

≥
∫

n∈[Nmin,x)

ψP(aj ≤ n− (x− αi)) dFN(n) + cP(Ni ≥ x) = Γi(x− αi, αi, αj)

In any case,

x− αi −
Γi(x− αi, αi, αj)

ξ
≥y − αj −

Γj(y − αj, αj, αi)

ξ
.
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Since Ri −Di and Rj −Dj have the same distribution,

P
(
Ri −Di −Q+ λ−1 ≤ x− αi −

Γi(x− αi, αi, αj)

ξ

)
≥ P

(
Rj −Dj −Q+ λ−1 ≤ y − αj −

Γj(y − αj , αj , αi)

ξ

)
.

Lemma 4 and this inequality imply that P(Li ≤ x − αi) ≥ P(Lj ≤ y − αj). Since P(Ni ≤
x) ≥ P(Nj ≤ y),

P(ai ≤ x) =P(Li + αi ≤ x) + P(Ni ≤ x)− P(Ni ≤ x)P(Li + αi ≤ x)

≥P(Li + αi ≤ x) + P(Ni ≤ y)− P(Ni ≤ y)P(Li + αi ≤ x)

=P(Li + αi ≤ x) + P(Nj ≤ y)− P(Nj ≤ y)P(Li + αi ≤ x)

≥P(Lj + αj ≤ y) + P(Nj ≤ y)− P(Nj ≤ y)P(Lj + αj ≤ y)

=P(aj ≤ y).

Define set I0 = [Nmin, αi), and functions A0, B0 : I0 → R such that A0(n0) = n0, and
B0(n0) = n0. Define correspondence I1(n) = [Nmin, B0(n)), and functions A1(n0, n1) =
n1 − B0(n0) + αj and B1(n0, n1) = n1 − A0(n0) + αi on domain D1 = {(n0, n1)

∣∣ n0 ∈
I0, n1 ∈ I1(n0)}. Iteratively, given ℓ ∈ N+, Iℓ(n0, n1, · · · , nℓ−1), Aℓ(n0, n1, · · · , nℓ) and
Bℓ(n0, n1, · · · , nℓ), define

Iℓ+1(n0, n1, · · · , nℓ) = [Nmin, Bℓ(n0, n1, · · · , nℓ)).

Then define functionsAℓ+1(n0, n1, · · · , nℓ, nℓ+1),Bℓ+1(n0, n1, · · · , nℓ, nℓ+1)on domainDℓ+1 =
{(n0, n1, · · · , nℓ, nℓ+1)

∣∣ n0 ∈ I0, n1 ∈ I1(n0), · · · , nℓ ∈ Iℓ(n0, n1, · · · , nℓ−1), nℓ+1 ∈ Iℓ+1(n0, n1, · · · , nℓ)}
such that

Aℓ+1(n0, n1, · · · , nℓ, nℓ+1) = nℓ+1 −Bℓ + αj

Bℓ+1(n0, n1, · · · , nℓ, nℓ+1) = nℓ+1 − Aℓ + αi.

It is easy to check that

Aℓ(n0, n1, · · · , nℓ)−Bℓ(n0, n1, · · · , nℓ) = ℓ(αj − αi).

In addition, Bℓ(n0, n1, · · · , nℓ) ≤ αi and Aℓ(n0, n1, · · · , nℓ) ≥ Nmin for all ℓ on their domain
Dℓ.

Because Aℓ(n0, n1, · · · , nℓ) − Bℓ(n0, n1, · · · , nℓ) → ∞ as ℓ → ∞, there is one T ∈ N+

such that

P(ai ≤ AT (n0, n1, · · · , nT )) ≥ P(aj ≤ BT (n0, n1, · · · , nT ))

on domain DT . Then by Lemma 30

P(ai ≤ AT−1(n0, n1, · · · , nT−1)) ≥ P(aj ≤ BT−1(n0, n1, · · · , nT−1))
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on domain DT−1. Apply Lemma 30 repeatedly, we will arrive

P(ai ≤ A0(n0)) = P(ai ≤ n0) ≥ P(aj ≤ B0(n0)) = P(aj ≤ n0)

for all n0 ∈ [Nmin, αi).

G.2 Proof of Lemma 20

Let L be the set of continuous decreasing functions defined on (−∞, 0].

L = {f : (−∞, 0] → [0, c]
∣∣ f(x) is decreasing and continuous. }

Consider a map T : L → L such that for any Γ0 ∈ L, we have T (Γ0) = Γ. Γ is characterized
by a constant α, defined as

α = inf

{
ϑ ≥ Nmin, FR

(
−Γ0(0)

ξ

)
+ FN(ϑ)

(
1− FR

(
−Γ0(0)

ξ

))
≥ c

ψ

}
,

in the following way: for all −α +Nmin ≤ y ≤ 0,

Γ(y) =

∫
n∈(Nmin,(y+α))

ψ
(
FN(n− y) + (1− FN(n− y))FR(n− y − α− Γ0(n− y − α)

ξ
)
)
fN(n)dn

+ c(1− FN(y + α))

and for for all y ≤ −α + Nmin, Γ(y) = c. We first show that T is well-defined. Since
FR is monotone, FR only has a finite number of discontinuous points. Thus, when Γ0

is continuous, Γ is continuous. In addition, by definition α ∈ [Nmin, N̂ ]. Note that by
construction,

FR

(
−Γ0(0)

ξ

)
+ FN(ϑ)

(
1− FR

(
−Γ0(0)

ξ

))
<
c

ψ

for all ϑ < α. Also note that when n = y + α,

ψ
(
FN(n− y) + (1− FN(n− y))FR(n− y − α− Γ0(n− y − α)

ξ
)
)
= c.

It follows that Γ decreases on R−. Hence Γ ∈ L and T is well-defined.

Let L be endowed with L∞ norm. It follows that L is a closed and compact space, and
T is continuous. Schauder fixed-point theorem implies that there exist at least one fixed
point.
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