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How Effective are Portfolio Mandates?

Abstract

We evaluate the effectiveness of portfolio mandates on the equilibrium allocation of
physical capital. We show that the impact of mandates crucially depends on firms’
demand elasticity of capital. In a production economy with constant returns to scale,
firms’ demand for capital is infinitely elastic, and mandates can significantly impact
the allocation of capital across sectors despite having a negligible impact on the cost
of capital. This is in contrast to an endowment economy where demand for capital
is inelastic, and therefore, equilibrium price reactions to mandates significantly reduce
their effectiveness. Within a canonical real-business-cycle model calibrated to match key
asset-pricing and macroeconomic moments, we estimate that the mandate is effective in
shaping equilibrium capital allocation in the long run, even when there is little disparity
in the cost of capital across sectors. Hence, our analysis challenges the common practice
of judging the effectiveness of portfolio mandates by their impact on firms’ cost of
capital. We also show that in the short run, the mandate is satisfied by the rebalancing
of financial portfolios in secondary markets, while in the long it is satisfied through
the reallocation of physical capital in primary markets, with the relative importance of
these two markets depending on capital adjustment costs and investors’ risk attitudes.

Keywords: ESG, cost of capital, capital allocation, green transition.
JEL Classification: D53, G11, G12.



1 Introduction

Responsible investing, a strategy aimed at generating social and environmental impact alongside

financial returns, has grown tremendously over the last decade. Portfolio “screens” or “mandates”

are common implementations of socially responsible investing strategies. Such policies aim to

restrict capital allocation to specific firms to increase target firms’ cost of capital and make it

more costly for them to fund their operations. PricewaterhouseCoopers (2022) forecasts that assets

under management that are screened by Environmental, Social, and Governance (ESG) criteria

are expected to increase from $18.4tn in 2021 to $33.9tn by 2026, with ESG assets on pace to

constitute 21.5% of total global assets under management. Bloomberg Intelligence (2021) expects

global ESG assets to exceed $53 trillion by 2025, representing more than a third of total assets

under management. On the other hand, partly on the grounds that it reduces investment returns,

several states in the US have introduced proposals against responsible investing (Donefer, 2023),

and twenty-five US states have sued the Biden Administration to halt a Department of Labor rule

that prioritizes ESG concepts into retirement-fund regulations (Mayer, 2023).

Despite the large sums of assets allocated to responsible investing and the controversy about

its costs and benefits, the academic literature to date provides a skeptical view of its effectiveness.

In their pioneering work, Heinkel, Kraus, and Zechner (2001) and, more recently, Berk and van

Binsbergen (2024) argue that responsible-investing policies have a negligible impact on targeted

firms’ cost of capital and are, therefore, ineffective in influencing capital allocation. There is also

a large literature that uses the change in the cost of capital to gauge the effectiveness of various

socially responsible policies.1

In this paper, we show that differences in the cost of capital across sectors are generally

not informative about differences in sectoral capital allocations. Employing both a simplified

theoretical model and a quantitative framework, we illustrate that portfolio mandates are likely to

lead to substantial disparities in sectoral capital allocation, even when the cost-of-capital differences

across sectors are minimal. Our analysis applies more broadly beyond socially responsible investing

1See, for instance, the article from McKinsey “Why ESG is Here to Stay,” which discusses how ESG scores are
related to the cost of capital. The article states “. . . there have been more than 2,000 academic studies, and around 70
percent of them find a positive relationship between ESG scores on the one hand and financial returns on the other,
whether measured by equity returns or profitability or valuation multiples. Increasingly, another element is the cost
of capital. Evidence is emerging that a better ESG score translates to about a 10 percent lower cost of capital.” For
a further discussion of the effect of ESG on the cost of capital, see Edmans (2023).
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and extends to situations where portfolio constraints are imposed to influence investor behavior for

various reasons, including, for example, regulatory compliance and economic sanctions.2

Heinkel et al. (2001), Berk and van Binsbergen (2024), and the literature using the cost of

capital to measure the effectiveness of ESG-related policies reach their conclusions based on the

analysis of an endowment economy. In such an economy, a firm’s dividends are exogenous, and only

its asset returns depend on market-clearing prices. In this paper, we revisit the conclusion that

responsible investment policies have a negligible impact on targeted firms’ cost of capital and are,

therefore, ineffective in influencing capital allocations by studying the equilibrium effect of portfolio

mandates in a model with production. In contrast to an endowment economy, in a production

economy both dividends (payoffs or output) and asset returns are determined endogenously in

equilibrium. We show that this has important implications for understanding the real effects of

portfolio mandates: in particular, portfolio mandates can lead to large differences in the equilibrium

sectoral allocation of physical capital despite negligible differences in the cost of capital.

To understand the intuition driving our result that portfolio mandates can lead to significant

changes in capital allocation despite a negligible effect on the cost of capital, we study two versions

of a production economy with two sectors, consisting of “green” and “brown” firms, and two groups

of investors: one group is constrained by a portfolio mandate, e.g., pension funds, while the other

is unconstrained, e.g., hedge funds. The first version of the model is a stylized single-period (two-

date) frictionless production economy that allows us to develop the key intuition for our findings

and qualitatively assess the effectiveness of portfolio mandates in equilibrium. The second version

of the model extends the stylized model to a multiperiod setting with realistic frictions that allow us

to match macroeconomic and asset-pricing moments in the data and hence quantitatively assess the

effectiveness of portfolio mandates in equilibrium. To highlight the equilibrium effect of mandates,

we assume that the green and brown assets are identical, other than the fact that one of the two,

e.g., the green asset, is favored by the mandate. Although, in reality, mandates may be imposed

in response to externalities, e.g., pollution, we abstract away from modeling the rationale for their

existence in the economy.

2For example, Article 5 of Regulation (EU) No 833/2014, enacted after the onset of the war between Russia and
Ukraine, states that “It shall be prohibited to directly or indirectly purchase, sell, provide investment services for or
assistance in the issuance of, or otherwise deal with transferable securities” https://eur-lex.europa.eu/legal-co

ntent/EN/TXT/PDF/?uri=CELEX:32022R0328.
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In the single-period version of the model, we consider an economy in which firms use capital

K supplied by investors to produce output Y according to the production function Y = AKα, with

A denoting an exogenous productivity shock, and α ∈ [0, 1] the returns-to-scale parameter. The case

of α = 1, where output is given by Y = AK, represents the typical “AK” model of a production

economy with constant returns to scale. The case of α = 0 represents an endowment economy, in

which output is exogenously given Y = AKα = A, and hence capital is not used in production.3

In this economy, the marginal productivity of capital, that is, R ≡ αAKα−1, represents the “cost

of capital”. The relationship between the cost of capital R and capital K represents firms’ demand

of capital. Suppose the economy has two sectors, green (G) and brown (B), and denote by RG and

RB the cost of capital in each sector, that is, the marginal productivity of sectoral capital. The

ratio of the cost of capital is then RG/RB = (AG/AB)× (KG/KB)α−1.

In an endowment economy, α = 0 and RG/RB = (AG/AB)× (KG/KB)−1. In this economy,

a portfolio mandate designed to increase KG relative to KB leads to a corresponding decrease in

RG relative to RB. Therefore, in this economy, the mandate is effective (KG � KB) if and only if

the difference in the cost of capital is large (RB � RG). Hence, the difference in the cost of capital

is informative about the difference in capital allocation and, therefore, about the effectiveness of

a mandate. When the difference in returns is large, unconstrained investors have an incentive

to shift their portfolio toward the B sector. In equilibrium, the response of the unconstrained

investors to the change in relative returns across sectors undoes a part of the intended effect of

the portfolio mandate, thus limiting the effectiveness of the mandate. In contrast, in the case of a

production economy with constant returns to scale, α = 1 and RG/RB = AG/AB. In this economy,

a portfolio mandate designed to increase KG relative to KB has no effect on the cost of capital

RG and RB. As a result, unconstrained investors have no incentive to shift their portfolio toward

the B sector. Therefore, in equilibrium, the unconstrained investors’ response does not offset the

portfolio mandate’s effect. Thus, mandates can be fully effective in shaping capital allocation even

though they have no impact on the sectoral cost of capital.

To measure the effectiveness of a portfolio mandate on the sectoral allocation of physical

capital in equilibrium, we introduce the concept of “mandate pass-through.” To illustrate the main

idea, consider an economy where both investors have equal wealth and both sectors have identical

risk-return tradeoffs so that the optimal unconstrained allocation for both investors is to hold 50%

3Appendix B shows formally that an endowment economy can be obtained as the limit of a production economy
when the returns-to-scale parameter α goes to zero.
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of their portfolio in each sector. Suppose now that a mandate requires constrained investors to have

75% of their portfolio in the green sector. If we were to ignore the mandate’s effect on equilibrium

asset prices, the capital allocated to the green sector would be (50% + 75%)/2 = 62.5%, instead of

the 50% in the absence of a mandate. We refer to this difference, 12.5%, as the maximum mandate

pass-through.

However, in equilibrium, the imposition of a mandate in favor of the green sector may raise

the price of green assets and lower that of brown assets, making the return on brown assets more

attractive. As a result of the higher return on brown assets, the unconstrained investor would then

invest more than 50% in the brown sector, undoing part of the effect of the portfolio mandate. If,

after accounting for general equilibrium effects, the overall allocation of capital to green assets is,

say, only 56.25%, then the equilibrium mandate pass-through is only 6.25%. Thus, the effective

mandate pass-through, defined as the ratio of the equilibrium to maximum mandate pass-through,

is 6.25%/12.5% = 50%; that is, 50% of the mandate survives the equilibrium effects. The mandate

pass-through generally depends on the unconstrained households’ capital supply elasticity and the

firms’ demand elasticity. In the single-period version of the general equilibrium production model,

we find that when α is close to one, firms’ demand elasticity is close to perfectly elastic, making

the households’ supply elasticity irrelevant and leading to a 100% pass-through.

One might think that a constrained investor could, upon facing a mandate, trade green

shares for brown shares with an unconstrained investor in the secondary market, thereby satisfying

the constraint without altering the physical quantity of capital. However, this argument overlooks

the fact that the unconstrained investor would become underdiversified and would therefore demand

a discount on the brown shares. With constant returns to scale and in the absence of capital

adjustment costs, the constrained investor could avoid this discount by simply being an “activist”

and directly shift physical capital from brown to green. This would allow the investor to meet the

mandate while keeping the unconstrained investor perfectly diversified. In this case, the mandate is

fully effective. On the other hand, when there are decreasing returns to scale or capital adjustment

costs, shifting physical capital is costly and therefore part of the mandate will be satisfied through

trades in the secondary market. However, even in this case, in equilibrium the mandate will have

an effect on the real capital allocation.4

4The discussion above highlights that the value of the returns-to-scale parameter, α, is important to assess the
effectiveness of a mandate. Empirical estimates from the macroeconomic literature indicate that returns to scale
are nearly constant in the US economy, i.e., α ≈ 1, see, e.g., Hall (1988, 1990), Ahmad, Fernald, and Khan (2019),
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To assess the quantitative effects of portfolio mandates on the financial and real sectors, in

the multiperiod version of the model, we study a dynamic general-equilibrium production economy

that we calibrate to match asset-pricing and macroeconomic moments in the US. For the case of

constant returns to scale, α = 1, and no portfolio constraints, our model is a canonical real-business-

cycle model, similar to that in King, Plosser, and Rebelo (1988) and Jermann (1998), among many

others. Just as in the simple single-period model, we consider an economy characterized by two

sectors with different technologies, “green” and “brown,” and two types of investors, “constrained”

and “unconstrained.” However, we relax many of the simplifying assumptions made in the single-

period model. In particular, we consider an infinite-horizon, overlapping-generations economy

in discrete time where investors have Epstein-Zin recursive preferences, consume at each date,

and are endowed with one unit of labor that they supply to firms inelastically. Firms are all-

equity financed, incur convex capital-adjustment costs (e.g., Hayashi, 1982), and choose labor and

investment to maximize shareholder value subject to a capital-accumulation constraint. We solve for

the equilibrium in this economy and then study the effect of a portfolio mandate on the equilibrium

stock returns (cost of capital) and capital allocations in the two sectors.

The calibrated multiperiod model confirms the intuition of the simple one-period model.

In equilibrium, the optimal portfolio decisions of the unconstrained investor “undo” some of the

effects of the portfolio mandate. This occurs because unconstrained investors face a trade-off. On

the one hand, the desire to diversify pushes the portfolio towards a 50/50 allocation. On the other

hand, the mandate makes the brown sector more attractive from a risk-reward perspective, which

induces unconstrained investors to tilt their portfolios toward it. We find, however, that portfolio

mandates retain a quantitatively significant impact in equilibrium under a realistic calibration

that matches asset-pricing and macroeconomic moments of the US economy. For example, under

our preferred model that is calibrated to the recent mandates favoring green assets, the effective

mandate pass-through is at least 50%. In contrast, the effect on the equilibrium cost of capital of

the two types of firms remains negligible, consistent with evidence in the existing literature. We

also solve several alternative versions of the multiperiod model. We find that the pass-through is

stronger when investors are more risk averse, when the mass of constrained investors is larger, when

the mandate is weaker but spread over a larger mass of investors, when returns to scale are high,

and when investors’ labor income is less correlated with investment income.

and Way, Ives, Mealy, and Farmer (2022). In Section 3.2, we explain in greater detail that estimates from the
macroeconomic literature suggest that α ≈ 1.
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In summary, our analysis suggests that in a dynamic general equilibrium production econ-

omy designed to match the macroeconomic and asset-pricing moments of the US economy, portfolio

mandates can have a quantitatively significant impact on aggregate capital allocation, even if their

effect on the cost of capital is negligible. This result sharply contrasts with the conclusion drawn

from studying endowment economies, where, because dividends are exogenous, there is a direct

relation between firms’ cost of capital and equilibrium capital allocations.

The main contribution of our paper is to study how much of the intended effect of portfolio

mandates is undone in equilibrium. Our paper makes two key points. First, we highlight that

studying the effects of portfolio mandates in an endowment economy, as most of the finance liter-

ature on portfolio mandates has done, is likely to lead to misleading conclusions. In particular, to

measure the effectiveness of portfolio mandates, it is essential to focus on the quantity of capital

flowing to the mandated sectors instead of the effect on the cost of capital. Second, we quan-

tify the impact of portfolio mandates on capital allocation. Specifically, in a general-equilibrium

production-economy model calibrated to match key macroeconomic and asset-pricing moments, we

show that the real effect of portfolio mandates can be substantial, even if their impact on the cost

of capital is negligible.

Our paper relates to the growing literature on socially responsible investing. This literature

consists of two main strands: exclusion (exit) and engagement (voice). The first strand of this

literature focuses on a “discount-rate channel” in that it studies the effects of limiting (or excluding

entirely) investment in certain firms from an investor’s portfolio on the cost of capital of targeted

firms. The key mechanism in this literature is reduced risk-sharing, which affects the cost of capital

in an endowment economy.5 Notably, Heinkel et al. (2001) and Berk and van Binsbergen (2024)

focus on the result that the effect on risk premia is small if profit-seeking investors can substitute for

the capital they are restricted from holding. This intuition implies that mandates are effective only

if they lead to significantly higher cost of capital for brown firms. Some empirical studies, e.g., Hong

and Kacperczyk (2009) and Bolton and Kacperczyk (2021a,b) find a higher cost of debt and equity

financing for “brown” (or “sin”) firms although the magnitudes are not substantial, especially for

5See, e.g., Heinkel et al. (2001); Zerbib (2019, 2022); Berk and van Binsbergen (2024); Pástor, Stambaugh, and
Taylor (2021, 2022); Pedersen, Fitzgibbons, and Pomorski (2021); Broccardo, Hart, and Zingales (2022); Sauzet and
Zerbib (2022); De Angelis, Tankov, and Zerbib (2023); and Cheng, Jondeau, Mojon, and Vayanos (2023).
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debt financing.6 Other studies find insignificant or even lower returns for brown firms.7 Our paper

revisits this evidence by considering a production economy and studies the quantitative effects of

portfolio mandates in a calibrated model designed to match key asset-pricing and macroeconomic

moments.

In a recent paper, Dangl, Halling, Yu, and Zechner (2023a) study how different types of

investor preferences affect equilibrium capital allocation. They find that if investments are endoge-

nous, the effect of social preferences on corporate decisions may be sizable even if the difference

in the cost of capital between the green and brown sectors is negligible. Dangl, Halling, Yu, and

Zechner (2023b) extend this analysis to the case of time-varying social preferences. Unlike them,

we show that portfolio mandates can affect capital allocations across sectors—despite small differ-

ences in the cost of capital across these sectors—in a standard macroeconomic framework with the

portfolio mandate imposed on only a fraction of investors. We also illustrate that the degree of the

returns to scale has a crucial impact on the ability of portfolio mandates to influence equilibrium

capital allocation.

Finally, Hong, Wang, and Yang (2023) introduce decarbonization capital in a representative-

agent dynamic stochastic general-equilibrium model and investigate the effectiveness of sustainable

finance mandates in mitigating externalities within the economy. In their economy, the mandate

affects all investors and is, therefore, by definition, effective. In contrast, we study an economy

where only a fraction of investors are constrained. Because unconstrained investors can trade

against constrained investors, in equilibrium, they can potentially undo the effect of mandates.

Our finding that mandates can substantially impact equilibrium capital allocation aligns with their

conclusion that mandates can effectively address externalities.

The second strand of literature focuses instead on the “cash-flow channel.” Broccardo et al.

(2022), following Hart and Zingales (2017), conclude that “voice” is more effective than “exit.”

Oehmke and Opp (2024) focus on activist investors who care about the social cost of investing in

brown firms and provide a corporate perspective on the economics of motivated investors: socially

responsible activists subsidize firms to adopt clean technologies. Chowdhry, Davies, and Waters

(2019) show that if a firm cannot credibly commit to social goals, such subsidies take the form

6See, e.g., Goss and Roberts (2011); Chava (2014); Zerbib (2019); Baker, Bergstresser, Serafeim, and Wurgler
(2022); Fatica, Panzica, and Rancan (2021); Huynh and Xia (2021); Seltzer, Starks, and Zhu (2022); Pástor et al.
(2022); El Ghoul, Guedhami, Kwok, and Mishra (2011); Aswani and Rajgopal (2022)

7See, e.g., Larcker and Watts (2020); Flammer (2021); Tang and Zhang (2020), and Kontz (2023).
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of investment by socially-minded activists. Our paper does not contribute directly to this strand

of literature; however, our focus on production economies allows us to consider jointly the cash-

flow and discount-rate channels emphasized separately by the engagement and exclusion literature,

respectively.

The rest of the paper proceeds as follows. In Section 2, we develop intuition in a simple

one-period (two-date) general equilibrium model that we can solve analytically. In Section 3,

we assess the real impact of portfolio mandates in a multiperiod general-equilibrium model with

heterogeneous investors that is calibrated to match asset-pricing and macroeconomic moments in

the US economy. Section 4 concludes. Appendix A contains detailed proofs for the results of the

single-period model studied in Section 2, Appendix B shows formally that the endowment economy

is the limit of a production economy when the returns-to-scale parameter goes to zero, and the

Internet Appendix provides details of the numerical solution of the multiperiod model studied in

Section 3.

2 A Single-Period Equilibrium Model with Portfolio Mandates

To understand the economic intuition driving our key results, in this section, we consider a single-

period general-equilibrium economy with several simplifying assumptions that make transparent

the economic forces at work. Then, to establish the quantitative implications of portfolio mandates,

in the next section, we consider a multiperiod model without these simplifying assumptions.

2.1 Setup

The economy consists of a continuum of firms and investors. Investors supply capital to firms.

There is one consumption good, which is used as a numéraire. Consumption can be costlessly

converted to capital.

2.1.1 Firms

We assume that there are two sectors in the economy, green and brown, and we refer to them using

the subscripts G and B, respectively. Each of these sectors consists of a large number of atomistic,

identical, all-equity-financed firms. There are no externalities. The key difference is that some

investors have a portfolio mandate to hold sector G’s equity. Output Yj in each sector j = G,B is

10



given by the production function8

Ỹj = ÃjK
α
j , j = G,B, (1)

where α ≥ 0 is the returns-to-scale parameter, Ãj denotes a random productivity shock, and Kj is

the aggregate capital invested in sector j. We assume that the productivity shocks Ãj are normally

distributed random variables, that is, Ãj ∼ N (µAj , σ
2
Aj

), j = G,B, and denote by ρ the correlation

between ÃG and ÃB.

Atomistic firms choose investment Kj in order to maximize their net present value (NPVj),

given by

NPVj = max
Kj

E[M̃Ỹj ]−Kj = max
Kj

E[M̃ÃjK
α
j ]−Kj , (2)

with M̃ denoting the stochastic discount factor (SDF) that firms take as given. Firm j’s optimal

choice of capital Kj must then satisfy

E[M̃αÃjK
α−1
j ] = 1. (3)

The Euler equation (3) implicitly defines the aggregate demand for capital from firms in sector j

and the return on invested capital,9

R̃j ≡ αÃjKα−1
j = α

Ỹj
Kj

, j = G,B. (4)

The return R̃j represents the cost of capital for firm j. Because in this simple model, capital is the

only input of production and can be adjusted costlessly, the realized profit is10

Π̃j = ÃjK
α
j − R̃jKj = (1− α)ÃjK

α
j . (5)

Constant returns to scale, α = 1, implies zero profits. Profits are positive (negative) when return

to scale are decreasing (increasing), α < 1 (α > 1).

The NPV in sector j is given by

NPVj = E[M̃ÃKα
j ]−Kj = Kj

(
1

α
− 1

)
. (6)

8Here we assume that capital is the only input of production. The model of Section 3 consider a more general
production function with capital and labor as inputs.

9Putting together equations (3) and (4) leads to the familiar asset-pricing equation, E[M̃R̃j ] = 1.
10Because capital can be adjusted costlessly, in this model, the marginal price of capital, or Tobin’s Q, is always

equal to 1. Section 3 generalizes the model to account for the case with convex adjustment costs.
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The NPV is zero for constant returns to scale, positive, for decreasing return to scale, and negative

for increasing returns to scale. As α→ 0, which corresponds to the case of an endowment economy

in which the output Yj = Ãj is entirely exogenous, the optimal demand for capital Kj → 0 and the

return to capital and NPV are well defined in the limit.

From equation (4), we can infer that firms’ demand for capital in sector j as a function of

the expected cost of capital E[Rj ] is

Kdemand
j =

(
αµAj

E[R̃j ]

) 1
1−α

. (7)

We see from equation (7) that for α ∈ (0, 1), firm j’s demand for capital is inversely related to

the expected cost of capital E[R̃j ]. From equation (4), when α → 1, E[Rj ] = µAj for all Kj , and

therefore the demand for capital is infinitely elastic. When α → 0, Kj → 0 for all E[Rj ], and the

demand for capital is infinitely rigid at Kj = 0.

2.1.2 Investors

There is a continuum of identical investors who live for one period (two dates). Each investor is

endowed with e0,i units of the consumption good. Consumption can be costlessly converted into

capital for sector j = G,B. A fraction x of investors faces a constraint that either requires a

minimum investment in green firms (“mandate”) or restricts the maximum investment in brown

firms (“screen”). We refer to the constrained investors using the subscript c. The remaining fraction

1− x of investors are unconstrained, and we refer to them using the subscript u. For tractability,

we assume that both types of investors have constant absolute risk aversion (CARA) preferences

with an identical coefficient of risk aversion γ.

At t = 0, each investor i = u, c chooses consumption c0,i. Unconstrained investors can

choose how to optimally allocate their savings in the G and B sectors and in the risk-free asset,

yielding a gross return Rf , to be determined as part of the equilibrium. Constrained investors are

restricted to holding a specific fraction of savings in each sector, with the residual invested in the

risk-free asset. We denote by wj,i the portfolio weights, as a fraction of savings, that agent i = u, c

allocate to sector j = G,B. For constrained agents, wj,c are set to

wG,c = wG, wB,c = wB, with wG + wB ≤ 1. (8)

12



At time 1, investors’ terminal consumption c̃1,i consists of (1) the return on capital invested,

which is determined by the firm’s optimality condition (4), and (2) a fraction of the total profit

Π̃j from each sector, defined in equation (5). Specifically, each investor i = u, c faces the following

intertemporal budget constraint

c̃1,i = (e0,i − c0,i)
(
Rf + wG,i(R̃G −Rf ) + wB,i(R̃B −Rf )

)
+ π̃G,i + π̃B,i, (9)

where π̃j,i is investor’s i claim to the total profit Π̃j . Because investors are atomistic, when choosing

their optimal portfolios wj,i, they take the profit share π̃j,i and the return on capital R̃j as given

because these are quantities that are decided by the firm’s optimization problem and, therefore,

are beyond the control of atomistic investors.

The unconstrained agent solves the following problem

max
{c0,u,wG,u,wB,u}

−e
−γc0,u

γ
− βE

[
e−γc̃1,u

γ

]
, (10)

where β is a time-preference parameter and where c̃1,u satisfies the intertemporal budget constraint

in equation (9). Constrained agents only choose their consumption at time 0 because their portfolio

weights are determined exogenously by the mandate. Specifically, the constrained agents solve the

following problem

max
c0,c
−e
−γc0,c

γ
− βE

[
e−γc̃1,c

γ

]
, (11)

where c̃1,c is given by the intertemporal budget constraint (9) in which wG,c = wG and wB,c = wB.

The following proposition characterizes the optimal consumption of both agents, and the

optimal portfolio of the unconstrained agent.

Proposition 1. Given the return on invested capital R̃j = αÃjK
α−1
j = αỸj/Kj, j = G,B from

equation (4) and the gross risk-free rate Rf , the unconstrained and constrained investors supply of

capital to sector j = G,B is

kj,u ≡ wj,u(e0,u − c0,u), (12)

kj,c ≡ wj(e0,c − c0,c), (13)

where

wu ≡ [wG,u, wB,u]> =
1

(e0,u − c0,u)

α

γ
Σ−1
R (E[R̃]−Rf1), (14)
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with ΣR denoting the covariance matrix of returns, R̃ ≡ [R̃G, R̃B]>, and 1 = [1, 1]>. The consump-

tion c0,i, i = u, c, satisfies equations (A14) and (A23) in Appendix A.

Proposition 1 can be used to infer households’ supply of capital to sector j, taking as given

the return R̃j and the risk-free rate Rf . To fix ideas, consider the simpler case of uncorrelated

productivity shocks. In this case, from equations (12), (13), and (14), the total supply of capital

to sector j = G,B can be written as

Ksupply

j = xwj(e0,c − c0,c)︸ ︷︷ ︸
supply of constrained investor

+ (1− x)
α

γ

(E[R̃j ]−Rf )

Var[R̃j ]︸ ︷︷ ︸
supply of unconstrained investors

. (15)

Equation (15) shows that, for α ∈ (0, 1] the supply of capital Ksupply

j increases with the expected

return, E[R̃j ]. Furthermore, the sensitivity of capital supply Ksupply

j to the expected cost of capital

E[R̃j ] decreases as risk aversion γ increases, as the return to scale parameter α decreases, as the

fraction of constrained agents x increases, and as the volatility of returns Var[R̃j ] increases. A low

sensitivity of capital supply to its costs imply a “steeper”, or less elastic, curve in the (E[R̃j ],Kj)-

space. In the same space, a stronger mandate, i.e., a higher wj corresponds to a shift of the supply

curve to the right (see the dashed line in Figure 1).

Figure 1 provides an intuitive way to understand how the returns-to-scale parameter α

influences the effectiveness of an increase in a portfolio mandate in favor of G capital even in

partial equilibrium. In this figure, the horizontal axis represents the aggregate capital stock in the

green sector, KG, and the vertical axis represents the expected costs of capital, E[RG]. The two

upward-sloping red lines represent capital supply from equation (15): the solid red line shows the

supply before the increase in the mandate, while the dashed red line shows the supply after the

increase in the mandate. Both supply functions are drawn for a particular value of α, taking as

given the returns investors face.

An increase in the mandate that requires some investors to increase their investments in

asset G leads to higher capital being supplied to sector G, represented in the figure by a shift from

the solid red line to the dashed red line. However, because the demand for capital from firms is

downward sloping, the effectiveness of the mandate depends on the elasticity of demand (blue lines).

When α = 1, the demand for capital from firms is perfectly elastic (flat blue line), implying that

the aggregate supply of capital to the green sector, KG, increases one-for-one with the constrained

14



Figure 1: Mandate effectiveness

The figure shows the firms’ demand for capital from equation (7) and the investors’ supply, from equation (15). The
solid red line shows the supply function before the increase in the mandate, while the dashed red line shows the
supply after the increase in the mandate, which increases the supple of capital to the green sector. Both supply
functions are drawn for a given value of α, taking as given the returns faced by investors. The firms’ demand for
capital is shown by the blue lines, which are drawn for two values of α: (1) α < 1 and (2) α = 1.
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agent’s investment (from K initial
G to Kα=1

G ), regardless of the capital supply elasticity. On the other

hand, when α < 1, firms’ demand for capital is less elastic (curved blue line), in which case the

increase in KG is smaller (from K initial
G to only Kα<1

G ) than it was for the case of perfectly elastic

demand (from K initial
G to Kα=1

G ). Thus, Figure 1 illustrates that, even ignoring equilibrium effects,

the effectiveness of a mandate to increase investment in the green sector will be reduced as the

returns-to-scale parameter α from 1 toward 0.

Figure 1 also indicates that the effect on E[RG], the cost of capital in the green sector, of a

change in the mandated investment in this sector, depends on the firms’ demand elasticity: when α

is close to 1, the effect of a change in the mandate on the cost of capital is close to zero; in contrast,

when α is close to 0, the effect on the cost of capital is larger.
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2.1.3 Equilibrium

Proposition 1 provides the optimal portfolio and consumption choices of atomistic investors, given

the return on capital, R̃j = αÃjK
α−1
j , and the risk-free rate, Rf . In equilibrium, these returns are

determined endogenously by imposing the market-clearing conditions that the aggregate supply of

capital from households equals the aggregate demand for capital from firms and that the aggregate

quantity of risk-free borrowing (or lending) is zero. The equilibrium aggregate capital Kj (and

hence the return R̃j) in sector j and the risk-free rate are determined by the following three

market-clearing conditions:

KG = xkG,c + (1− x)kG,u, (16)

KB = xkB,c + (1− x)kB,u, and (17)

0 = x(e0,c − c0,c − kG,c − kB,c)︸ ︷︷ ︸
constrained risk-free borrowing/lending

+ (1− x)(e0,u − c0,u − kG,u − kB,u)︸ ︷︷ ︸
unconstrained risk-free borrowing/lending

, (18)

where the portfolio weights wj,u and the consumptiona c0,u and c0,c are given in Proposition 1. The

above system of equations does not admit a closed-form solution. In what follows we analyze the

equilibrium numerically focusing on the effect of the return-to-scale parameter α.

2.1.4 Effective Mandate Pass-Through

To quantify the equilibrium effect of portfolio mandates, we introduce the concept of effective

mandate pass-through, a measure designed to capture the equilibrium impact of a portfolio mandate.

We define the effective pass-through as the fraction of the intended impact of a mandate that

survives in general equilibrium, that is,

Effective mandate pass-through ≡
wGE
G − w∗G

wPE
G − w∗G

. (19)

where w∗G is the ratio of green capital to total capital in an economy without mandates (0.50 when

both sectors are symmetric); wGE
G is the ratio of green capital to total capital in the economy

with constrained agents, determined in general equilibrium; and wPE
G is the ratio of green capital

if unconstrained agents do not change their portfolio shares in response to changes by constrained

agents and to equilibrium movements in expected returns; in other words, it is the share of green

capital in partial equilibrium. We define it as wPE
G ≡ x× wG + (1− x)× w∗G. Hence, the effective
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mandate pass-through in equation (19) measures the percentage of the maximum effect of the

mandate that is actually achieved in equilibrium.

For a specific example of the effective mandate pass-through measure, consider the case of

an economy where the green and brown sectors are perfectly symmetric so that, in the absence

of a mandate, it would be optimal for all investors to invest 0.50 in sector G and 0.50 in B.

Suppose now that x = 50% of investors are constrained to invest wG = 0.75 in the green sector and

wB = 0.25 in the brown sector, while 1 − x = 50% of the investors are unconstrained. Then, the

maximum allocation of capital to G as a result of the mandate imposed on half the investors would

be: wPE
G = 50% × 0.75 + 50% × 0.50 = 50%(0.75 + 0.50) = 62.50%, implying that the maximum

reallocation of capital is wPE
G − w∗G = 12.50%. Suppose, however, that in general equilibrium, the

actual reallocation of capital to G is only 6.25%. Then, the effective mandate pass-through would

be 6.25%
12.50% = 50%.

2.2 Results

In this section, we illustrate the properties of the general equilibrium in the simple model with

portfolio mandates described above. To do so, we consider an economy with two identical and

independent technologies, G and B, where the productivity shocks Ãj ∼ N (µj , σ
2
Aj

), with µAG =

µAB = 1.05 and σAG = σAB = 0.2. Investors have CARA preferences with absolute risk aversion

γ and are identically endowed with wealth e0,u = e0,c = 1. We set the time-preference parameter

to β = 0.99 (implying a per-period risk-free rate of 1/β = 1.01% in a deterministic, representative-

agent economy). We assume that x = 50% of the investors face a mandate to invest wG,c = wG =

0.75 of their savings in sector G and wB,c = wB = 0.25 in sector B. The quantities of interest

obtained from the numerical solution are illustrated in Figures 2 and 3. The panels on the left in

these figures refer to the case of low risk aversion, γ = 2, while the panels on the right refer to the

case of high risk aversion, γ = 10.

Panel A of Figure 2 shows the portfolio weights of investors who are constrained by the

portfolio mandate and who are unconstrained. The dotted red line represents the portfolio weights

of all investors if there were no mandates: in this case, each investor would have 0.50 invested

in the green asset and 0.50 in the brown asset. If a fraction of investors are constrained by the

portfolio mandate, their portfolio weights are displayed by the flat dashed lines—wG,c = wG = 0.75

for the green asset and wB,c = wG = 0.25 for the brown asset. The plot also shows the portfolio
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Figure 2: Equilibrium portfolio weights and expected returns

Panel A shows the equilibrium portfolio weights of the unconstrained and constrained investors that are allocated to
the G and B sectors. Panel B shows the equilibrium expected returns in excess of the risk-free rate. The dashed red
line represents the weights and expected returns in the absence of a portfolio mandate. In the left panels, agents’ risk
aversion is γ = 2, and in the right panels γ = 10. The other parameter values are: e0,u = e0,c = 1, µAG = µAB = 1.05,
σAG = σAB = 0.2, x = 50%, wG = 0.75, wB = 0.25.
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weights of the unconstrained investors. The solid green and brown lines represent wG,u and wB,u,

respectively. Panel B shows that the mandate increases the expected return of the brown asset

relative to that of the green in the region where α < 1. Because the mandate makes the brown

asset more attractive, the portfolio of the unconstrained investor overweights the brown asset and

underweights the green. Consequently, in equilibrium the portfolio chosen by the unconstrained

agent undoes part of the effect of the mandate.
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Comparing the left and right plots of Panel A, we see that when risk aversion is low (left

panel) the unconstrained agents are willing to hold a less diversified portfolio than when risk

aversion is high (right panel). Hence, all else being equal, when risk aversion is low, the portfolio

choice of unconstrained investors tends to “undo” the intended effect of the mandate. The key

takeaway is the magnitude of the effect of the mandate depends crucially on the level of the return-

to-scale parameter α. When α is small, the portfolio weights chosen by unconstrained investors

undo most of the benefits of the portfolio mandate; that is, the substantial decrease in wG,u undoes

the effect of the mandated increase in wG,c, relative to the no-mandated 0.50. However, if α ≈ 1,

the unconstrained agent holds the same portfolio as in the case of no mandate, regardless of the

level of risk aversion. In this case, the mandate is most effective.

Panel B of Figure 2 shows that the mandate, by creating excess demand for G capital,

increases its price and lowers its required return (cost of capital) relative to the B sector. This

effect is amplified by high risk aversion, as can be seen by comparing the left and right plots of

Panel B. However, the panel also shows that, in equilibrium, the spread E[RB] − E[RG] decreases

with α. In fact, for the case where the returns-to-scale parameter is α = 1, the difference in the cost

of capital between the two sectors is zero (Panel B), while the difference in the capital allocation

is extremely large (Panel A).

Figure 3 shows in Panel A the equilibrium aggregate sectoral capital allocation and in

Panel B the effective mandate pass-through, which is defined in equation (19). The figure shows

that the equilibrium allocation of physical capital varies substantially with the returns-to-scale pa-

rameter, α. In particular, the mandate increases the allocation of capital to the G sector relative to

the benchmark no-mandate case in which the allocation is 0.50. The equilibrium capital allocation

to the green sector is closer to the no-mandate case for low values of risk aversion (left plot) and

for low values of α. This is a direct implication of the portfolio decisions of unconstrained agents

discussed in Figure 2. As α increases, firms’ demand for capital becomes more elastic, the cost of

capital of G and B firms is more similar, and therefore mandates are effective in increasing the

capital allocated to the G sector.

The effectiveness of mandates is summarized in the pass-through measure shown in Panel B

of Figure 3. The effective mandate pass-through, defined in equation (19), is the capital allocated

to the G sector in equilibrium as a fraction of the maximum allocation that would result if we

ignored the equilibrium effects on asset prices. Consistent with the patterns of portfolio weights
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Figure 3: Equilibrium capital allocation and mandate pass-through

Panel A shows the equilibrium capital allocation across theG sector (green line) andB sector (brown line) as a function
of the returns-to-scale parameter, α. The dashed red line is the capital allocation without a portfolio mandate. Panel B
shows the equilibrium mandate pass-through, defined in equation (19). In the left panels, agents’ risk aversion is
γ = 2 and in the right panels γ = 10. The other parameter values are: e0,u = e0,c = 1, µAG = µAB = 1.05,
σAG = σAB = 0.2, ρ = 0, x = 0.5, wG = 0.75, wB = 0.25.
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and capital allocation described above, Panel B shows that the mandate’s effectiveness is small for

low values of the returns-to-scale parameter α but can be substantial as α approaches 1, reaching

a value of 100 percent when α = 1. Risk aversion significantly impacts mandate effectiveness. All

else being equal, a higher risk aversion (the plots on the right) increases the pass-through because

unconstrained investors are less willing to hold poorly diversified portfolios, thus increasing the
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effectiveness of mandates. However, risk aversion and, more generally, the elasticity of capital

supply, are irrelevant to the mandate’s effectiveness when α = 1.

In summary, Figures 2 and 3 show that to fully understand the effectiveness of portfolio

mandates, it is essential to consider production models. Models without production, such as the

endowment models of Heinkel et al. (2001) and Berk and van Binsbergen (2024), where output is

exogenous, can lead to the inference that a low cost-of-capital spread also implies a negligible effect

on the allocation of real capital across the G and B sectors, which is not true in general. As the

case of constant returns to scale shows, the difference in returns can be zero, yet the mandate’s real

effect can be substantial. Thus, studying the difference in cost of capital for firms in the G and B

sectors is generally not the best way to evaluate whether portfolio mandates are effective; instead,

one should directly measure the physical capital allocated to each sector.

So far, we have focused our analysis on the cost of capital of firms. But, one could also

discuss the implications of portfolio mandates for investors. Obviously, the expected return of

unconstrained investors’ portfolios is higher than that of constrained agents. The reason for this

is that when some investors are constrained by the portfolio mandate to invest in the green asset,

demand for the brown asset relative to that for the green asset decreases, so the relative price

of the brown asset decreases, leading to an increase in its expected return, and unconstrained

investors take advantage of this by tilting their portfolio toward brown assets. However, as α ≈ 1,

the difference in expected returns is small compared to the case without a mandate. In this case,

although mandates do affect equilibrium capital allocation, their effect does not have any impact

on the moments of asset returns or the portfolio weights of unconstrained investors.

The results of this section, obtained from a transparent model, are meant to illustrate

the qualitative impact of portfolio mandates in a general equilibrium production economy. To

assess these claims quantitatively, we now turn to a state-of-the-art dynamic general-equilibrium

production economy model.

2.3 Primary vs. secondary markets

One might think that trade in the secondary market would render our argument moot. For instance,

a constrained investor could, upon facing a constraint, simply offer to trade green shares for brown

shares with an unconstrained investor, thereby satisfying the constraint without altering the phys-
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ical quantity of capital. However, this argument overlooks the fact that the unconstrained investor

would become underdiversified and would therefore demand a discount on the brown shares.

Consider a scenario with no capital adjustment costs and constant returns to scale. In this

case, the only way for the constrained investor to avoid the discount on the sale of brown shares

is by directly shifting physical capital from brown to green. This will allow the investor to meet

the mandate while keeping the unconstrained investor perfectly diversified.11 Since there are no

adjustment costs and returns to scale are constant, this capital shift would be costless and the

mandate pass-through will be 100%. On the other hand, when there are decreasing returns to scale

or capital adjustment costs, physically shifting capital becomes costly, resulting in less than a full

pass-through. In Section 3, we examine more realistic cost scenarios.

3 A Multiperiod Equilibrium Model with Portfolio Mandates

In this section, we embed portfolio mandates in a canonical neoclassical general equilibrium model

with production that is then calibrated to match empirical macroeconomic and asset-pricing mo-

ments. Our model, when returns to scale are constant (α = 1) and there are no portfolio constraints,

is a canonical real-business-cycle model, similar to King et al. (1988) and Jermann (1998), among

many others.12 We use this model to assess quantitatively the impact of portfolio mandates in

equilibrium.

In the baseline version of the multiperiod model, we assume that the technologies for the

firms in the green and brown sectors are identical. In the absence of mandates, the equilibrium

in this economy implies that each investor allocates an equal fraction of its risky portfolios to the

two sectors. As a result, in equilibrium, capital is equally distributed between the green and brown

sectors. Portfolio mandates distort this allocation directly, through the portfolio constraint, and

indirectly through the equilibrium effect on prices. Solving for the equilibrium in this economy

allows us to assess the magnitudes of these distortions quantitatively. The analysis in this section

highlights that the qualitative effects identified in the simple model of Section 2 are also quanti-

11For example, constrained investors might be “activists” by pressuring the brown firms they own to transition to
green. Alternatively, they could raise financing for green firms, use those funds to purchase physical capital from
brown firms, and then pay themselves a dividend from the proceeds. This transaction ultimately reduces the physical
capital of the brown sector.

12For example, our model is identical to King et al. (1988) if we shut down capital-adjustment costs and set
the utility of leisure to zero, and is similar to Jermann (1998) with the only difference being the adjustment-cost
specification—we use quadratic adjustment costs, as in Hayashi (1982).
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tatively substantial. In particular, portfolio mandates can significantly impact the allocation of

real capital even when the difference in the cost of capital in the two sectors is negligible. Finally,

we also study the transition from an equilibrium without portfolio mandates to one with portfolio

mandates. Our analysis shows that, although portfolio mandates can have a large impact in the

long term, the transition may be very slow if capital adjustment costs are substantive.

3.1 Setup

Below, we describe how we model investors, firms, and labor. We conclude this section by specifying

the conditions for equilibrium.

3.1.1 Investors

We consider an infinite-horizon, overlapping generation (OLG) economy in discrete time t =

{0, 1, . . .}. The economy is populated by a continuum of measure-one “perpetual youth” investors

with a per-period probability of survival p, following Blanchard (1985). There is no bequest mo-

tive, and each newborn investor inherits the average wealth of the dead investor.13 Investors supply

labor and invest in firms with one of two production technologies: G and B. A fraction x of agents

are born constrained (c) and they stay constrained throughout their life. Constrained investors are

subject to a portfolio mandate to hold the risky assets in a given fixed proportion. The remaining

fraction 1 − x of investors are unconstrained (u). When investors die, they are replaced by new

investors whose wealth is the average of the wealth of both constrained and unconstrained deceased

investors. Because the wealth levels of constrained and unconstrained investors are not significantly

different, this has a minimal impact on the wealth distribution within each period. However, over

the long term, this mechanism prevents the model from drifting towards a wealth share of 1 or 0.

Let Wi,t, Ci,t, and Li,t represent, respectively, the net worth, consumption, and labor supply

of investor i = {u, c}. Investors are endowed with one unit of labor that they supply inelastically,

that is, Li,t = 1 for all i and t for the wage ωt. Let Bu,t+1 denote the face value at time t+ 1 of the

one-period risk-free bond held by the unconstrained investors and by Rf,t the risk-free rate; hence,

Bu,t+1/Rf,t represents the time t value of the holdings of the risk-free bond. We denote by wG,i,t

13Allowing for an OLG setup with such transfers helps with the stability of the numerical solution. Without this,
the constrained investors’ share of wealth can drift toward zero or one for long periods. We have experimented with
alternative values for the probability of death, including probabilities very close to zero, and our key results on the
effect of mandates are fairly insensitive to this parameter.
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and wB,i,t the share of the investible wealth of investor i that is invested in the G and B sectors,

respectively. The cum-dividend time-t values of the green and brown firms are, respectively, VG,t

and VB,t, with dividends DG,t and DB,t.

We assume investors have Epstein-Zin recursive preferences with risk aversion γ, elasticity

of intertemporal substitution ψ, and time-discount parameter β. The unconstrained investors solve

Uu(Wu,t) = max
{Cu,t,wG,u,t,wB,u,t}

{
C

1−1/ψ
u,t + p× β

(
Et[Uu(Wu,t+1)1−γ ]

) 1−1/ψ
1−γ

} 1
1−1/ψ

, (20)

subject to the intertemporal budget constraint

Wu,t+1 = (Wu,t + ωtLu,t − Cu,t) (Rf,t + wG,u,t(RG,t+1 −Rf,t) + wB,u,t(RB,t+1 −Rf,t)) , (21)

where the return Rj,t+1 = Vj,t+1/(Vj,t − Dj,t), j = {G,B}, with Vj,t and Dj,t denoting firm j’s

value and dividend, defined below in equations (23) and (25). The optimality conditions for the

problem (20)–(21) result in three standard Euler equations, one for each of the three financial

assets, that is, the bond and the stocks for G and B firms.

The constrained investors’ problem is identical to that of unconstrained investors, with the

only difference being that constrained investors cannot choose their equity shares; instead, they

face a mandate to invest in the G and B sectors in given proportions, wj,c ∈ (0, 1), j = {G,B}.14

As a result, the optimality conditions for constrained investors consist of a single Euler equation,

characterizing the optimal consumption decision.

3.1.2 Firms

There are two types of firms, G and B, which make optimal hiring and investment decisions to max-

imize shareholders’ value. As in a standard neoclassical model, we assume that firms incur convex

capital-adjustment costs when making investment decisions (e.g., Hayashi, 1982). We assume that

firms are all-equity financed, with investors being the shareholders. Investors’ consumption and

portfolio decisions result in a supply of capital Kj,t, j = {G,B} to the two sectors of the economy.

Firms operate in a perfectly competitive market and produce identical goods but are subject to

different productivity shocks.

14In our baseline model, the constrained agent makes no portfolio choice at all because the risk-free share is simply
equal to 1 − wG,c − wB,c which is fixed. We have also solved a version of the model where constrained agents can
choose the risky vs. risky share of the portfolio but are constrained as to the brown vs. green fraction within the
risky portfolio. The results are quantitatively similar to our baseline case in Table 3, although the effective mandate
pass-through is slightly weaker.
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Firms produce output Yj,t according to a Cobb-Douglas production function

Yj,t = (Kj,t)
αθ(Aj,tLj,t)

(1−θ), (22)

where θ ∈ [0, 1] controls the relative importance of capital in the production and α ∈ [0, 1] is a

returns-to-scale parameter. The production function exhibits constant returns to scale if α = 1 and

declining returns to scale if α < 1. The quantity Aj,t in equation (IA3) denotes a stochastic process

representing neutral (TFP) productivity shocks. This shock may contain aggregate or firm-specific

components; the aggregate component may have stationary and non-stationary components.

Firms choose labor Lj,t and investment Ij, to maximize shareholder value. Formally, firm j’s

value Vj,t results from the solution of the following problem

Vj,t(Kj,t) = max
Lj,t,Ij,t

Dj,t(Kj,t) + Et
[
M̃u,t+1Vj,t+1(Kj,t+1)

]
, (23)

where M̃u,t+1 is the stochastic discount factor (SDF) of the unconstrained investors, who are the

marginal investors in this economy. When maximizing shareholder value, firms take M̃u,t+1 as

given. The optimization in (23) is subject to the capital accumulation equation, which, using δ > 0

to denote capital depreciation, is

Kj,t+1 = (1− δ)Kj,t + Ij,t. (24)

As is well known, when α = 1 the firm value Vj,t(Kj,t) can be written as Vj,t(Kj,t) = Kj,t×Qj,t, with

Qj,t denoting Tobin’s Q, or the market-to-book ratio. In the presence of adjustment costs, there is

a wedge between the price of installed capital (firm value) and uninstalled capital (consumption),

and therefore, Tobin’s Q will, in general, be different from one.

3.1.3 Labor

In equation (23), Dj,t(Kj,t) represents the dividends firm j distributes to its shareholders. To

define this quantity, we need to describe how wages are set in the model. If labor markets were

perfectly flexible, the aggregate wage would be far too volatile, having the same properties as

output; this would also counterfactually imply that profits and dividends are counter-cyclical and

that equity volatility is too low. As shown by Favilukis and Lin (2016), introducing wage rigidity

into a production-economy model makes wages, profits, and dividends behave more like in the
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data and improves the model’s asset-pricing performance. Because asset prices are crucial for our

mechanism, we introduce wage rigidity in a reduced-form manner.

Specifically, we assume that firms must hire at least labor L < Lj,t at a rigid wage ωt, but

are free to choose how much remaining labor, Lj,t−L, to hire, and that labor is paid a competitive

spot wage ω̃t that clears labor markets.15 Because labor supply is inelastic and set to Lj,t = 1, the

average wage paid is therefore ωtLj,t = ωtL+ ω̃t(Lj,t−L), which, in equilibrium, is smoother than

ω̃t. Note that the firm’s first-order condition for investment is independent of L; therefore, this

reduced-form way of modeling wage rigidity does not affect the firm’s investment choice. However,

it does affect dividends, wages paid, firm value, and equity returns. Firm j’s dividends are therefore

given by

Dj,t(Kj,t) = Yj,t − ωtLj,t − Ij,t − η
(
Ij,t
Kj,t

− δ̂
)2

Kj,t, η > 0, δ̂ > 0, (25)

where Yj,t is output, defined in equation (IA3), δ̂ = δ + ĝ is capital depreciation δ gross of the

growth rate g, and the term η
(
Ij,t
Kj,t
− δ̂
)2
Kj,t represents a quadratic adjustment-cost function.16

3.1.4 Equilibrium

An equilibrium of this economy consists of the following: (i) investors’ consumption and portfolio

policies, {Ci,t, wG,i,t, wB,i,t}; (ii) firms’ investment and hiring policies, {Ij,t, Lj,t}; (iii) wages ω̃t;

(iv) prices of the two risky assets, {VG,t, VB,t}, and the risk-free rate, Rf,t, such that: investors

maximize their lifetime utility in equation (20), firms maximize shareholder value in equation (23),

and the markets for labor, the two risky assets, and the risk-free asset clear. By Walras’ law, the

goods market automatically clears; that is, the aggregate budget constraint holds.

3.2 Calibration

We solve numerically for an equilibrium in the economy described above using dynamic program-

ming. We calibrate the model’s parameters at an annual frequency to match key macroeconomic

15The reason for the subscript t on the rigid wage ωt is that, as we discuss below, productivity in our model grows at
rate g, which implies that along the balanced growth path, most variables in the model grow at rate ĝ = (1 + g)α−1.
In the detrended version of the model, the rigid wage is constant and equal to the unconditional average of the
detrended wage, which we define as ω = E[ωt]. However, because the economy is growing, the rigid wage must grow
too, therefore ωt = ω(1 + g)αt.

16Because we set gross depreciation to δ̂ = δ + ĝ, adjustment costs are zero in the steady state.
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and asset-pricing moments. Table 1 shows the parameter values used in our baseline calibration.

In our baseline case, we consider a coefficient of relative risk aversion γ = 5. However, we also solve

the model with higher risk aversion, up to γ = 50, to explore the model’s implications with a more

realistic value of the equity risk premium. We set the elasticity of intertemporal substitution (EIS)

to ψ = 0.2 so that for the benchmark case of γ = 5, the investors’ preferences are time-separable

CRRA. We set β = 1.025 to target a ratio of capital to output K/Y of around 2.9 in the steady

state and an aggregate productivity growth rate of g = 1.5%, which implies that most variables

along the balanced growth path grow at a rate ĝ = (1+g)α−1.17 We assume that 50% of investors

are subject to a portfolio mandate (x = 0.5) requiring them to hold their wealth in the ratio 75%

to 25% between the G and B sectors. We set the probability of survival p to be 99% per period.

We choose parameters for the Markov chain describing the TFP process to match the

volatility and autocorrelation of Hodrick-Prescott (H-P) filtered output.18 Specifically, we assume

that the firm’s productivity is separated into aggregate and industry-level components: Ajt = AtZ
j
t .

The aggregate component At = (1 + g)t captures the growth trend. The industry component Zjt

drives the business cycle. We assume that the industry TFP shocks Zjt , j = G,B are uncorrelated

and follow a 2-state Markov chain with values ZjL and ZjH , with probability q = 0.82 of remaining

in the current state.

We set the capital adjustment cost η = 5 to match investment volatility. We set the fraction

of labor receiving a fixed wage L = 0.50 so that the volatility of wages is about half that of output,

which also implies reasonable values for the volatility and procyclicality of dividends and profits.

We set depreciation δ = 0.06, a standard value in the literature. We set capital share θ = 0.35 so

that 65% of output is paid to labor.

Empirical estimates from the macroeconomics literature indicate that returns to scale are

nearly constant in the US economy. Hall (1988, 1990) argues that market power and increasing

17A β of 1.025 may appear to be high. Note that if we were to shut down all risk, the model’s steady state would
be analytically solved for by two equations: the Euler equation 1 = β × p × (1 + g)−1/ψ × R where (1 + g)−1/ψ

is the growth rate of aggregate consumption, and the definition of return as the marginal product of capital R =
θ(K(1 + g))θ−1 + 1 − δ. Thus, if the capital share θ = 0.35 and the depreciation rate δ = 0.06, then the only way to
target an average return on capital of R ≈ 1.058 (equivalently K/Y ≈ 3), is to set β × p = (1/1.058) × (1 + g)1/ψ,
which implies β = 1.015 when g = 0.015 and γ = 1/ψ = 5. This is the preference parameter of a representative
agent. In the real world, households face various uninsurable idiosyncratic risks (income, health, death) that lead
to precautionary saving, implying that an individual’s β should be lower than the representative agent’s. One may
also be concerned that with β > 1 equation (20) does not define a contraction mapping. However, note that we
numerically solve the detrended model, which is isomorphic to a model where g = 0 and the time discount factor is
β × p× (1 + g)1−1/ψ = 0.966.

18We use a filtering parameter of 100, as proposed by Backus and Kehoe (1992).
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Table 1: Parameter values

The table reports the values for the parameters used in the benchmark calibration of the multiperiod model described
in this section.

Parameter Symbol
Baseline
Economy

Current Green
Economy

Investors

Relative risk aversion γ 5.00
Elasticity of intertemporal substitution ψ 0.20
Time discount rate β 1.025
Survival probability p 0.99
Fraction of constrained investors x 0.50 0.126
Portfolio mandate (wG, wB) (0.75,0.25) (1.0,0.0)

Faction of labor receiving government fixed L 0.50
Fraction of labor income to investors λ 1.00 0.25

Firms

Aggregate growth rate g 0.015
Green TFP shock realization (ZGL , Z

G
H) (0.912, 1.088) (0.923 1.082)

Brown TFP shock realization (ZBL , Z
B
H) (0.912, 1.088) (0.914 1.071)

Probability of remaining in current state q 0.82
Depreciation rate δ 0.06
Capital adjustment cost η 5.00
Parameter controlling the capital share θ 0.35
Return to scale α 1.00

returns to scale can explain procyclical productivity in the US. Subsequent work by Basu and Fer-

nald (1997) estimates constant or slightly decreasing returns to scale but notes varying estimates

at different industry levels, with typical industries showing decreasing returns while total manufac-

turing shows increasing returns.19 In light of this evidence, in our baseline model, we set returns

to scale to be constant, that is, α = 1.0. Then, in Section 3.4, we allow for both decreasing and

increasing returns to scale.

In our calibration, we allow for the existence of a government sector, which enables us to

distinguish between total and private-sector GDP. It is well known that the latter is much more

volatile than the former. To model the government in a simple way, we assume that the actual

amount of labor supplied by investors is 1.35 instead of 1.0, as described in the model section above,

19Ahmad et al. (2019) present new estimates for 1989-2014, finding constant or slightly decreasing returns to scale
at the aggregate level but not ruling out increasing returns in specific industries or due to factors like technological
progress. For instance, Way et al. (2022) argue that clean-energy technologies show increasing returns to scale because
of learning curves.
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Table 2: Macroeconomic and asset-pricing moments

Panel A shows macroeconomics moments from the model and compares them to corresponding quantities in the data.
All variables, other than the Share of GDP, are H-P filtered. Volatility is in annual percentage units. GDP-P refers
to private sector GDP. The values in the “Model” columns are obtained by solving a version of the model with a
portfolio mandate that constrains 50% of investors to invest 75% of their wealth in firms in the G sector and 25% in
firms in the B sector. The model is calibrated at an annual frequency. Panel B shows the annual mean and volatility
of the risk-free rate, E[Rf ] and σ(Rf ), and of the market risk premium, E[RM −Rf ] and σ(RM −Rf ) obtained from
a model with a portfolio mandate that constrains 50% of investors to invest 75% of their wealth in firms in the G
sector and 25% in firms in the B sector. The model is calibrated at an annual frequency. The equity return is levered
using a leverage ratio of 2. Values in the Data column are based on the sample period 1950–2021 and are from Ken
French’s website. Parameter values are reported in Table 1.

Panel A: Macroeconomic moments

Share of GDP Volatility (%) Corr with GDP Autocorr
Data Model Data Model Data Model Data Model

GDP 1.00 1.00 2.33 2.32 1.00 1.00 0.54 0.35
GDP-P 0.80 0.81 2.74 2.85 0.91 1.00 0.48 0.35
Consumption 0.63 0.64 1.72 1.60 0.91 0.99 0.53 0.34
Investment 0.17 0.18 7.60 7.42 0.78 0.99 0.45 0.34
Wages — — 1.17 1.42 0.49 1.00 0.58 0.35

Panel B: Asset-pricing moments

Model
Data γ = 5 γ = 50

E[Rf ] 0.91 5.78 4.17
σ(Rf ) 2.27 3.27 3.29
E[RM −Rf ] 8.99 1.42 4.36
σ(RM −Rf ) 17.89 16.32 16.28

with 1.0 working in the private sector and 0.35 in government. Unlike private-sector employees,

government employees are paid a constant wage adjusted for growth. That is, the government

wage rate is set to ω(1 + ĝ)t where ω is the unconditional average of the detrended market-clearing

wage. Hence, total government expenses are equal to 0.35 × ω and total labor income is then

(ωt × 1) + (ω × 0.35). We assume that government expenditure equals a lump-sum tax levied on

total labor income. With this assumption, the problem’s solution is independent of government

size. The only quantity affected by government expenditure is total GDP, which is equal to the

sum of private-sector GDP and government expenditure. The choice of 1.35 for total labor implies

that private sector GDP is 80% of total GDP, as in the data.20

20Note that labor is approximately 65% of output, so if private labor is 1.0, then private output is 1.0/0.65=1.54.
Government labor, which equals government output, is 35%. Therefore private output as a share of total output is
1.54/(1.54+0.35)=81%.
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Panel A of Table 2 compares macroeconomic moments in the data to corresponding quan-

tities in the baseline model with mandates, under the assumption that 50% of investors face a

mandate to invest 75% of their wealth in firms in the G sector and 25% in the B sector. The values

reported in the table are obtained by simulating the model for 10,000 years and using a 100-year

burn-in period. The table reports five quantities: total GDP, private-sector GDP (GDP-P), Con-

sumption, Investment, and Wages. For each quantity, we compute the share of GDP, the volatility,

the correlation with GDP, and the autocorrelation and compare them to the corresponding values

in the data. The table shows that the model matches key macroeconomic moments reasonably well

under the baseline parameters given in Table 1. The only moments significantly different from the

data are the correlations of investment and wages with GDP, which, in the data, are much smaller

than in the model. This is not surprising because, with only one aggregate shock, model correlation

with GDP tends to be close to 1. We also solve several other models with different values of risk

aversion, alternative calibrations, or additional features. Those models will be discussed below in

the results section. However, for all models, the macroeconomic moments are very similar to the

ones presented in Panel A of Table 2.

Panel B of Table 2 reports four asset-pricing moments: the annual mean and volatility

of the risk-free rate and of the equity-market risk premium. As with Panel A, we only present

results for the baseline model in Panel B because, conditional on a choice of risk aversion, the

financial moments are very similar across models. The equity return used to compute the market

risk premium is levered using a factor of two, equivalent to an economy-wide 50/50 debt/equity

ratio. The table shows that the model does a good job of matching the volatility of the risk-free

rate and of the equity risk premium in the data. However, not surprisingly, for the case of low risk

aversion, γ = 5, the risk-free rate is too high, and the equity risk premium is too low. This is just

a manifestation of the equity-premium puzzle. With a risk aversion of γ = 50, the equity premium

and risk free rate are closer to the data.21 Finally, note that even though we assume that the TFP

shocks for the G and B sectors are uncorrelated, equity returns have a correlation of about 0.82 in

our baseline calibration, similar to the values observed in the data.

21Note that as we change risk aversion, EIS stays constant, which explains why the macroeconomic moments do
not change much.
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3.3 Results in the Baseline Economy

In this section, we study the equilibrium effects of portfolio mandates in the multiperiod production

economy described in Section 3.1 for the parameter values discussed in Section 3.2 and also for

several alternative economies.

Table 3 contains our main quantitative results. The table reports the equilibrium effective

mandate pass-through (first two columns) and the cost of capital spread between Brown and Green

sectors (last two columns) for two values of the risk aversion parameter, γ = 5 and γ = 50. Although

risk aversion γ = 50 is clearly unreasonable, we considered this case as a reduced-form way of

capturing high risk premia in the economy arising from, e.g., limited participation, idiosyncratic

labor income risk, taxes, and intermediary frictions.22 We define the cost-of-capital spread as the

difference in the “Brown-Minus-Green” (BMG) expected return spread in the constrained economy,

RcBMG, and the BMG spread in the unconstrained economy, R∗BMG.

The first row in Table 3 refers to the baseline economy whose parameters are described

in the first column of Table 1. The remaining seven rows refer to alternative economies that are

constructed as variations of the baseline and are discussed further below.

In the baseline economy, the technologies of firms in the two sectors are identical and

therefore, when all investors are unconstrained, the optimal portfolio is equally weighted between

the G and B sectors. Hence, in an otherwise unconstrained economy where there are no mandates,

the equilibrium fraction of capital allocated to G is w∗G = K∗G/(K
∗
G +K∗B) = 0.50. To evaluate the

magnitude of the equilibrium effect of mandates on capital allocation, we follow the construction of

the “effective mandate pass-through” in equation (19) of Section 2 and report the values in the first

two columns of Table 3. Specifically, we first compute the maximum effectiveness of a mandate,

ignoring any equilibrium consideration. In our setting, because the constrained investor represents

50% of the entire mass of investors, a portfolio mandate of 75% in G and 25% in B implies that

wPE
G = 62.5% (= 0.5× 75% + 0.5× 50%) of the entire capital should be allocated to the G sector.

Under this “partial equilibrium” intuition, the maximum deviation from the unconstrained 50/50

allocation is, therefore, 12.5% = 62.5%− 50%.

The values of the effective mandate pass-through in the first two columns of Table 3 show

that, although general-equilibrium effects undo part of the mandate, a significant part remains

22For example, in standard habit models, (e.g., Campbell and Cochrane, 1999), while the curvature parameter in
the utility function is 2, the average effective risk aversion is around 80.
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Table 3: Equilibrium effects of portfolio mandates

The table shows the mandate pass-through, defined in equation (19), and the difference in the cost of capital spread
between the B and G sector, RcBMG − R∗

BMG, with RcBMG denoting the spread in an economy with mandates that
constrain the portfolios of some investors and R∗

BMG the spread in an otherwise unconstrained economy (i.e., without
mandates). The Baseline economy is obtained using the parameters reported in Table 1. In Economy 1, we assume
the existence of “hand-to-mouth” workers; in Economies 2 and 3, we consider respectively the case of decreasing
and increasing returns to scale; in Economy 4 the mass of constrained investors is only 25% instead of 50%, with
constrained investors mandated to hold 75% of their wealth in the Green asset; in Economy 5, constrained agents
represent only 25% of the entire population, but they are mandated to hold 100% of their wealth in the Green asset;
Economy 6 considers a benchmark unconstrained economy where the G capital share is 73%, consistent with Berk and
van Binsbergen (2024). Economy 7 is the “Current Green Economy”, calibrated to capture representative moments
of the US economy in 2010 (See Section 3.5 for details).

Pass-through (%) Cost of capital spread
RcBMG −R∗BMG (%)

γ = 5 γ = 50 γ = 5 γ = 50

Baseline economy 31.4 80.0 0.010 0.031

Alternative economies
1. Hand-to-mouth workers 61.0 111.8 0.024 0.297
2. Decreasing return to scale (α = 0.90) 2.1 18.1 0.017 0.13
3. Increasing return to scale (α = 1.005) 47.4 87.5 −0.010 0.090
4. Fewer constrained investors 22.2 72.2 0.003 0.064
5. More concentrated mandate 22.0 61.8 0.009 0.095
6. Higher share of green capital 31.1 87.9 0.007 0.074
7. Current Green Economy 51.4 154.7 0.008 0.119

effective. For example, in the baseline economy, with a risk aversion of 5 and constant returns to

scale (α = 1), 31.4% of the mandate remains effective. For relative risk aversion of γ = 50, the pass-

through is more than 2.5 times larger, at 80%. This implies that the share of G capital rises from

50% to 53.9% (= 0.314×0.125+0.5) when risk aversion is γ = 5, and to 60.0% (= 0.8×0.125+0.5)

when risk aversion is γ = 50. Intuitively, by increasing the cost of capital of firms in the B sector,

the mandate makes them more attractive to unconstrained investors who trade off higher returns

for worse diversification. As risk aversion increases, the mandate pass-through is larger because the

unconstrained agent finds it more costly to deviate from the well-diversified unconstrained 50/50

allocation in response to the increase in risk-premium in the B sector.

Unlike the single-period model of Section 2, the mandate pass-through for α = 1 is sig-

nificantly less than 100%. The reason why it is lower here is because of households’ desire to

hedge labor income risk. If the constrained agent overweights G and the unconstrained does not

overweight B in response, overall output in the economy is more correlated with shocks to G than
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shocks to B. Because labor income is perfectly correlated with output in the baseline economy,

labor income is also more correlated with G shocks. Thus, the unconstrained agent can hedge

labor income risk by overweighting asset B, thus reducing the effectiveness of the mandate. This

mechanism may be less relevant in the real world than in our model because (i) labor income tends

to be imperfectly correlated with output, and (ii) the marginal investor tends to be different from

the average labor-income earner. Therefore, our model may be underestimating the mandate pass-

through. Below, in Section 3.4, we explore the effect of imperfectly correlated labor income and

output by analyzing a more realistic economy with “hand-to-mouth” workers (Economy 1).

The last two columns of Table 3 report the effect of mandates on the firms’ cost of capital.

Unlike the significant values of the mandate pass-through in the first two columns, the effect on

the cost of capital is minimal. Recall that for the baseline economy R∗BMG = 0, and therefore

the difference RcBMG − R∗BMG is exactly the difference in the cost of capital between the B and

G sectors. In the baseline economy, when γ = 5, this spread is 1 basis point. This negligible

difference in the cost of capital contrasts with the significant effective mandate pass-through of

31.4% reported in the first column. The contrast between the mandate’s “real” and “financial”

effects is even stronger when risk premia are closer to their value in the data (γ = 50). In this case,

the difference in the cost of capital under constant returns to scale is 3.1 basis points, while the

effective mandate pass-through is 80%.

In summary, the quantitative result from the our baseline economy support the central

intuition developed in the simple model of Section 2. First, in an economy with production, the

difference in the cost of capital is a poor metric to assess the real impact of portfolio mandates in

equilibrium. Second, mandates can have a quantitatively significant impact on capital allocation,

despite having a negligible effect on firms’ cost of capital. These findings caution against using

the cost of capital to measure the effectiveness of portfolio mandates in equilibrium; instead, one

should measure the flow of capital.

3.4 Results for Alternative Economies

The analysis of alternative economies 1–7 in Table 3 provides deeper insights into the economic

mechanisms that can enhance or diminish the effectiveness of mandates in equilibrium. In Econ-

omy 1, we assume that, unlike the baseline economy, some workers are “hand-to-mouth”, and do

not participate in financial markets. This is a more realistic characterization of the economy than
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the baseline, in which all workers are also investors. To do so, in the intertemporal budget con-

straint equation (21) we replace labor income ωtLi,t with λωtLi,t, where λ = 0.25 represents the

fraction of total labor income earned by equity investors.23 The rest of the labor income is earned

by “hand-to-mouth” workers who play no role in the optimization problem. The presence of hand-

to-mouth workers significantly increases the mandate pass-through, which is now roughly double

that in the baseline case. The mandate’s intent is to make the G sector larger. When workers are

also investors, the mandate implies a high correlation between their labor income and the return

in the G sector. In response, households hold the B asset to hedge, thereby “undoing” some of the

mandate’s effect on the share of green capital. This hedging motive is particularly strong when

workers are investors, as in the baseline case. Allowing for some workers to be hand-to-mouth,

makes labor income less important for investors, thus reducing their incentive to hold asset B for

hedging purposes. As a result we observe less “undoing” of the mandate, leading to an increase in

the effective mandate pass-through. Note that for the case of γ = 50, the pass-through is larger

than 100%. This happens because the wealth share of the constrained agent increases in this case.

In Economies 2 and 3 we consider, respectively, the case of decreasing (α = 0.9) and

increasing (α = 1.005) returns-to-scale production technologies. Consistent with the main intuition

from the simple model of Section 2, in an economy with decreasing returns to scale, the pass-

through is significantly smaller than the baseline economy with constant return to scale and it is

larger in economies with increasing returns to scale.

Economies 4 and 5 explore the effect of mandate design. Specifically, in Economy 4, we

assume that the mass of constrained agents is smaller (25%) than in the baseline economy (50%).

In Economy 5 we consider the case of a “concentrated” constraint, that is, we lower the mass of

constrained investor from 50% to 25% but we assume that each has to hold 100% of their wealth

in the G asset, as opposed to 75%. In this economy, the amount of excess capital committed to the

Green assets is the same as in the baseline economy because 0.25× (1.0−0.5) = 0.5× (0.75−0.5) =

0.125. The results in Table 3 show that both modifications slightly lower the effectiveness of the

mandate for both levels of risk aversion. In the economy with fewer constrained agents (Economy 4),

the effective mandate pass-through is smaller simply because the mass of constrained agents is

23To choose the value of λ, for each year in the Survey of Consumer Finances (once every 3 years from 1986–2019),
we sort households from lowest to highest according to their equity investments (defined as the sum of IRAs, mutual
fund, and directly held equity). We then identify the holdings cutoff such that households above this cutoff jointly
own 90% of all equity. On average (across all years), these households make up 10.2% of the population, but their
labor income makes up λ = 25.2% of all labor income.
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smaller, and therefore, less capital is mandated to the G sector. In the economy with a more

concentrated constraint (Economy 5), the pass-through is lower because while the size of excess

demand is the same as in the baseline case, it is being spread out among a larger number of

unconstrained investors. Therefore, per investor, the unconstrained agents are absorbing less of

this excess asset. Because their excess undiversified risk is smaller, they undo more of the mandate,

resulting in a lower pass-through.

In Economy 6, we target a benchmark unconstrained economy in which the share of green

capital is set to 73%, instead of 50%, following the estimated value reported in Berk and van Bins-

bergen (2024).24 The result in Table 3 confirms that this alternative benchmark has a negligible

effect on the equilibrium mandate pass-through, relative to the benchmark case. The overall mes-

sage from the analysis in Table 3 is that, across several alternative specifications of the economy,

mandates can have significant capital allocation impact, as emphasized by the values of the equi-

librium pass-through, while affecting only negligibly the equilibrium cost of capital across sectors.

3.5 Results in the Current Green Economy

For transparency, the baseline economy in Table 3 is calibrated to have symmetry between the

fraction of Green versus Brown capital (when both investors are unconstrained), as well as the

fraction of constrained versus unconstrained investors. In this section, we instead calibrate the

economy to moments we believe represent roughly the US economy in 2010, a time period before

there was serious discussion of portfolio constraints for Green investments. We refer to this case as

the “Current Green Economy.”

Most parameters remain identical to the baseline economy, with the exception of three

changes. First, identical to Economy 2, we set the fraction of labor income received by investors to

be λ = 0.25 because, as discussed above, this is a better representation of reality than λ = 1.0 in

the baseline model. Second, we set the fraction of constrained investors to be x = 12.6% and the

fraction of their portfolio invested in Green versus Brown assets to be (wG, wB) = (100%, 0%)—

we do this based on estimates inferred from the Global Sustainable Investment Alliance (2022)

24 To do this, we increase the productivity of the green sector and simultaneously decrease that of the brown sector,
while keeping average productivity at 1. We also reduce the spread between the high and low state of the Markov
chain for Zjt to match the volatility of GDP. The corresponding values of the Markov chain for the Green and Brown
TFP are identical to “Current Green Economy” values reported in the last column of Table 1.
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report.25 Third, identical to Economy 6 and explained in footnote 24, we set the fraction of Green

capital in the unconstrained economy to be w∗G =73% by increasing the productivity of Green assets

and decreasing the productivity of Brown assets. We do this based on estimates in Berk and van

Binsbergen (2024). Together, these values imply that the maximum Green capital in the absence of

general-equilibrium forces is wmaxG = 0.764 (= 0.126×1.0+(1−0.126)×0.73). Thus, in the absence

of general-equilibrium forces, this constraint would lead to Green capital increasing from 73% to

76.4% of all capital. The results from this economy are presented in the last row of Table 3. When

risk aversion is 5, the share of Green capital increases from 73% to 74.75%, implying a pass-through

of 51.4%. This is quantitatively similar to Economy 1, which also has hand-to-mouth workers but

slightly weaker because the mandate is more concentrated. When risk aversion is 50, the share of

Green capital increases from 73% to 78.26%, implying a pass-through of 154.7%. As in the previous

section, the cost of capital differences remain small.

3.6 Transition Dynamics

So far, the analysis has compared unconditional averages across steady states. In order to un-

derstand the mechanism through which mandates achieve their goal, in this section we study the

transition dynamics upon the imposition of a mandate on a fraction of investors.

We start from the average steady state of the Current Green Economy with only uncon-

strained investors. Specifically, we set the Green share of capital to be 0.73, and the total capital to

be equal to the unconditional average of the unconstrained model. We then assume that 12.6% of

investors are required to satisfy a portfolio mandate that requires them to hold only green assets.

We then simulate the model for 100 years using policy functions from the constrained version of

the economy. We assume that the imposition of a mandate is an unanticipated “shock”, frequently

referred to in the literature as an “MIT shock.”26

Figure 4 shows the transition dynamics for three quantities: the green share of aggregate

physical capital (Panel A), the effective mandate pass-through (Panel B), and the green share of

unconstrained investors’ portfolio (Panel C). The dotted lines in Panel A refer to the steady state

25In Appendix 1, p. 43 the Global Sustainable Investment Alliance (2022) report estimates that $8.4tr out of
$66.6tr of professionally managed assets are subject to a sustainability mandate. This implies an estimate for x of
8.4/66.6 = 12.6%.

26Specifically, we start the productivity process in each of the four possible TFP realizations. For each of the four
initial realizations, we run 500 simulations for 100 years. In each simulation, the realized TFP shocks are random.
We then compute the average across all simulations and all initial realizations.
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Figure 4: Dynamics of green transition

Panel A of the figure shows the dynamics of the green share of aggregate physical capital, KG,t/(KG,t + KB,t),
Panel B shows the effective mandate pass-through, and Panel C shows the green share of unconstrained investors’
portfolio, following the imposition of a portfolio mandate at time 0. Specifically, we set the wealth of constrained
agents to be x = 0.126, the share of green capital to be 0.73, and the total capital to be equal to the unconditional
average of the unconstrained model. We start the productivity process in each of the four possible TFP realizations.
For each of the four initial realizations, we run 500 simulations for 100 years. In each simulation, the realized TFP
shocks are random. We then compute the average across all simulations and all initial realizations.
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green capital share of the constrained economy, with the top blue line indicating that for risk aver-

sion 50 it is 78.26% and the lower red line indicating that for risk aversion 5 it is 74.75%. The three

increasing lines in Panel A, drawn for different combinations of risk aversion and capital adjustment

costs, show how these two forces drive the transition to a more green economy.27 Unconstrained

investors trade off the diversification benefits of a fast transition versus the adjustment costs. As

one would expect, the higher the adjustment costs the slower is the transition to the steady state.

This can be seen by comparing the black line, where adjustment costs are high, to the red line,

where adjustment costs are lower.

Comparing the black and red lines in Panel B, we see that the effective mandate pass-

through is much smaller when adjustment costs are high. The reason for this is that, in the short

run, changing the scale of capital is costly and consequently investors facing the mandate find it

optimal to satisfy it by rebalancing their portfolio in the secondary market. Panel C illustrates

this by showing that, upon the imposition of the mandate, there is a large decrease in the share of

the unconstrained investors’ portfolio invested in the green sector to accommodate the increase in

demand for green assets from the investors facing the mandate. Prior to the shock, all investors

are unconstrained and their portfolio share in the green asset is 73%, that is, the same as the green

share of aggregate physical capital. Upon the imposition of the mandate, the unconstrained in-

vestors’ share falls significantly to approximately 69% to accommodate the jump in the constrained

investors’ portfolio. If the unconstrained investor were to do nothing in the secondary market, to

satisfy the mandate, a large fraction of capital would need to immediately shift from the Brown to

the Green sector, thus incurring large adjustment costs. Over time, the aggregate capital stock will

respond to the mandate (Panel A), the effective mandate pass-through will increase (Panel B), and

consequently the unconstrained investors’ share of green assets in their portfolio rises, eventually

reaching its long-term stochastic steady state (Panel C).

When investors are more risk averse, unconstrained investors are less willing to accommo-

date the increase in portfolio demand for green assets from the constrained investors. Consequently,

the mandate is much more effective in shifting physical capital from the brown to the green sector.

27As discussed in Section 3.2, the adjustment cost in the baseline model is η = 5 and is calibrated to match the
ratio of aggregate investment volatility to aggregate output volatility, which is 3.25. In the model with lower costs,
we set η = 1.5, which implies a ratio of 3.7. In principle, this parameter may also depend on the industry or the type
of sanction. For example, after Russia’s invasion of Ukraine in 2022, many firms exited Russia, leaving all of their
physical capital behind and receiving zero compensation. Thus, they were unable to shift any physical capital out of
Russia. In this case, the long-term steady state will be reached only through the depreciation of assets in Russia and
the simultaneous building up from scratch of assets outside of Russia.
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This can be seen by comparing the blue line (for risk aversion equal to 50) to the black line (for

risk aversion equal to 5), where both lines are drawn for the same level of capital adjustment cost.

For both the case of low and high risk aversion and the case of low and high adjustment costs, the

impact of the mandate on the cost of capital in the green and brown sectors along the transition

path remains negligible, consistent with the cost of capital spreads across the green and brown

sectors reported in the last two columns of Table 3.

4 Conclusion

In this paper, we examine the impact of portfolio mandates on the allocation of physical capital

in a general-equilibrium economy with production and heterogenous investors. In contrast to the

existing literature that has studied responsible investing in models of an endowment economy, we

consider a production economy that, we show, nests the endowment economy as a special case.

To assess the quantitative importance of the effect of portfolio mandates, we study a dy-

namic general equilibrium production economy. Under a realistic calibration of the multiperiod

model that matches asset-pricing and macroeconomic moments of the US economy, we find that

the effect of portfolio mandates on the allocation of physical capital across sectors can be substan-

tial in the long run. In contrast, the impact on the equilibrium cost of capital and Sharpe ratios of

firms in the two sectors remains negligible, consistent with existing evidence.

A key takeaway of our analysis is that judging the effectiveness of portfolio mandates by

studying their effect on the cost of capital of affected firms can be misleading: small differences

in the cost of capital across sectors can be associated with significant differences in the allocation

of physical capital across these sectors. Furthermore, we demonstrate the relative importance of

trading in the primary and secondary markets for satisfying the mandate. While in the short run

the mandate is satisfied by the rebalancing of financial portfolios in secondary markets, in the long

it is satisfied through the reallocation of physical capital in primary markets. We show that the

relative importance of these two markets depends on capital adjustment costs and investors’ risk

attitudes, however, the impact of mandates on the cost of capital across sectors remains negligible

in both the short and long run.
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A Proofs

Proof of Proposition 1

Unconstrained agents. Because productivity shocks are normally distributed, we can explicitly

write the expectation in equation (10) as follows

max
{c0,u,wu}

−1

γ
e−γc0,u − β

γ
e−γE[c̃1,u]+ γ2

2
Var[c̃1,u], (A1)

where, from the intertemporal budget constraint in equation (9)

c̃1,u = (e0,u − c0,u)(Rf + w>u (R̃−Rf1)) + 1>π̃u, (A2)

with wu ≡ [wG,u, wB,u]> the vector of portfolio weights, R̃ ≡ [R̃G, R̃B]> the vector of returns on

capital, and π̃u ≡ [π̃G,u, π̃B,u]> the vector of realized profits accruing to the unconstrained agent.

Each unconstrained investor is entitled to a fraction of the total profit Π̃j that is proportional

to k̂j,u/Kj , the share of capital invested in sector j, that is,

π̃j,u =
k̂j,u
Kj

Π̃j , j = G,B, (A3)

where, by equation (5), the total realized profit in sector j is Π̃j = (1−α)ÃjK
α
j , j = G,B. Because

investors are atomistic, when choosing their optimal portfolio weights wu in equation (A1), they

take the vector of returns R̃ and profits π̃u as given.

From equation (4), the return on capital is R̃j = αÃjK
α−1
j , and, therefore, we can write

the profit π̃j,u as follows

π̃j,u = k̂j,u
1− α
α

R̃j , j = G,B. (A4)

To emphasize that the profit π̃j,u is beyond the control of the atomistic investor, we indicate the

invested capital k̂j,u as follows

k̂j,u ≡ ŵj,u(e0,u − c0,u), j = G,B, (A5)

where the portfolio weights ŵu ≡ [ŵG,u, ŵB,u]> are taken as given in the optimization (A1). Of

course, in equilibrium, it must be that ŵu equals the optimal portfolio w∗u.

Under these assumptions, we can rewrite the intertemporal budget constraint in equa-

tion (A2) as follows

c̃1,u = (e0,u − c0,u)

(
Rf (1− w>u 1) +

(
wu +

1− α
α

ŵu

)>
R̃

)
, (A6)
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from which obtain

E[c̃1,u] = (e0,u − c0,u)

(
Rf (1− w>u 1) +

(
w>u +

1− α
α

ŵ>u

)
E[R̃]

)
(A7)

Var[c̃1,u] = (e0,u − c0,u)2

(
wu +

1− α
α

ŵu

)>
ΣR

(
wu +

1− α
α

ŵu

)
, (A8)

with ΣR denoting the covariance matrix of return, i.e., Cov(R̃j , R̃`) = α2ρσAjσA`K
α−1
j Kα−1

` , with

j, ` ∈ {G,B}.

Taking the first-order conditions with respect to wu in equation (A1), and using equations

(A7) and (A8), we obtain

−Rf1 + E[R̃]− γ
(

(e0,u − c0,u)ΣR

(
wu +

1− α
α

ŵu

))
= 0. (A9)

Imposing the equilibrium condition ŵu = wu we obtain that the optimal portfolio of the uncon-

strained agent is

w∗u =
1

(e0,u − c0,u)

α

γ
Σ−1
R (E[R̃]−Rf1), (A10)

which is equation (14). Setting wu = ŵu = w∗u in equations (A7) and (A8) we obtain

E[c̃1,u] = (e0,u − c0,u)Rf +
α

γ

(
E[R̃]−Rf1

)>
Σ−1
R

(
E[R̃]

α
−Rf1

)
, and (A11)

Var[c̃1,u] =
1

γ2

(
E[R̃]−Rf1

)>
Σ−1
R

(
E[R̃]−Rf1

)
. (A12)

Taking the first-order condition with respect to c0,u in equation (A1), we obtain

e−γc0,u = e−γE[c̃1,u]+ γ2

2
Var[c̃1,u]β

(
−∂E[c̃1,u]

∂c0,u
+
γ

2

∂Var[c̃1,u]

∂c0,u

)
= e−γE[c̃1,u]+ γ2

2
Var[c̃1,u]βRf , (A13)

where the second equality follows directly from equations (A11) and (A12). Substituting the

expressions of E[c̃1,u] Var[c̃1,u] from equations (A11) and (A12) and simplifying we obtain the

following expression for the optimal consumption of the unconstrained agent:

c∗0,u =
1

1 +Rf

(
e0,uRf +

1

2γ

(
E[R̃]−Rf1

)>
Σ−1
R

(
E[R̃]− (2α− 1)Rf1

)
−

lnβRf
γ

)
. (A14)

Equations (A10) and (A14) represent the solution of the unconstrained agent problem defined in

equation (A1).
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Constrained agents. Constrained agents solve only an intertemporal consumption/saving prob-

lem, because their portfolio weights are fixed by the mandate at wc ≡ [wG, wB]>. Specifically, they

solve

max
c0,c
−1

γ
e−γc0,c − β

γ
e−γE[c̃1,c]+

γ2

2
Var[c̃1,c], (A15)

where

c̃1,c = (e0,c − c0,c)(Rf + w>(R̃−Rf1)) + 1>π̃c. (A16)

Following the same steps as for the unconstrained agents’ problem, we can rewrite the

intertemporal budget constraint in equation (A16) as

c̃1,c = (e0,c − c0,c)

(
Rf (1− w>1) +

(
w +

1− α
α

ŵc

)>
R̃

)
(A17)

= (e0,c − c0,c)

(
Rf + w>

(
R̃

α
−Rf1

))
. (A18)

From equation (A18) we obtain

E[c̃1,c] = (e0,c − c0,c)

(
Rf + w>

(
E[R̃]

α
−Rf1

))
, and (A19)

Var[c̃1,c] = (e0,c − c0,c)
2w
>ΣRw

α2
. (A20)

Taking the first-order condition with respect to c0,c in equation (A15), we obtain

e−γc0,c = e−γE[c̃1,c]+
γ2

2
Var[c̃1,c]β

(
−∂E[c̃1,c]

∂c0,c
+
γ

2

∂Var[c̃1,c]

∂c0,c

)
= e−γE[c̃1,u]+ γ2

2
Var[c̃1,u]βΓc, (A21)

where

Γc ≡ Rf + w>

(
E[R̃]

α
−Rf1

)
− γ(e0,c − c0,c)

w>ΣRw

α2
. (A22)

Hence the optimal consumption c∗0,c of the constrained agent is defined implicitly as the solution of

the following non-linear equation

c∗0,c = E[c̃1,c]−
γ

2
Var[c̃1,c]−

log βΓc
γ

, (A23)

where E[c̃1,c] and Var[c̃1,c] are given in equations (A19) and (A20), respectively.
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B Endowment Economy as the Limit of a Production Economy

In this appendix, we show that an endowment economy is the limit of a production economy when

the returns-to-scale parameter goes to zero.

We first solve for the equilibrium in a representative-agent economy with no uncertainty

and log-utility investors for which we can obtain the equilibrium in closed form. We then solve

for the decentralized equilibrium and show that it corresponds to the social-planners equilibrium.

Finally, we show that in both the representative-agent economy and its decentralized counterpart,

the equilibrium for the production economy converges to the equilibrium in an endowment economy

as the returns-to-scale parameter goes to zero.

We consider an economy in which agents have log utility functions and live for two dates,

t = 0 and t = 1. Agents are endowed with wealth W0 and have access to a deterministic production

technology Y = AKα.

B.1 Social Planner’s Problem

The social planner chooses capital allocation K to solve the following problem

max
K,b

logC0 + β logC1, (B1)

where

C0 = W0 −K − b/Rf (B2)

C1 = AKα + b, (B3)

with b denoting the amount of lending (or borrowing) at time 0 and Rf the risk-free rate, which

will be determined as part of the equilibrium.

The first-order condition with respect to b yields

1

W0 −K − b/Rf
1

Rf
=

β

AKα + b
. (B4)

In equilibrium, there is no borrowing or lending, and therefore, we set b = 0, which leads to

Rf =
1

β

AKα

W0 −K
. (B5)

The first-order condition with respect to K yields

1

W0 −K − b/Rf
=
αβAKα−1

AKα + b
. (B6)
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Setting b = 0 we obtain

K(1 + αβ) = αβW0, (B7)

implying that in equilibrium the amount of capital invested is

K∗ =
αβ

1 + αβ
W0. (B8)

Substituting K∗ in the expression for the risk-free rate (B5), we have that the equilibrium risk-free

rate is

R∗f =
1

β

A

W 1−α
0

(αβ)α

(1 + αβ)α−1
. (B9)

Note that, because limα→0(αβ)α = 1,

lim
α→0

R∗f =
1

β

A

W0
, (B10)

and, from (B8),

lim
α→0

K∗ = 0. (B11)

Hence, as α→ 0, the production economy becomes an endowment economy in which both C0 = W0

and C1 = A are exogenous. The ratio A/W0 in the equation for the risk-free rate, (B10), therefore,

represents consumption growth.

B.2 Decentralized Economy

We now consider the decentralized economy, which consists of atomistic firms owned by atomistic

households.

Firms. Firms take the discount rate R as given and choose capital K to maximize the firm’s

profit, which is the difference between the output Y = AKαand the cost of capital RK, that is,

max
K

Π = AKα −RK. (B12)

The first-order condition with respect to K yields

R = αAKα−1, (B13)

and the firm’s profit is

Π = AKα −RK = (1− α)AKα. (B14)

Hence, the firm earns positive profits if the returns to scale are declining, α < 1, and zero profit if

the returns to scale are constant, α = 1.
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Households. Households take as given the risk-free rate Rf from lending (or borrowing), the

return R from investing in the firm, and the profit π distributed by the firm. Households solve the

problem

max
C0,w

logC0 + β logC1, (B15)

where

C1 = (W0 − C0)(Rf + w(R−Rf )) + Π. (B16)

Note that as the profit Π is non-zero when α 6= 1, we need to include it in the consumption

of households because they receive it in the form of dividends as a result of owning the firm.

Households, however, take this profit as given.

The first-order conditions with respect to w and C0 yield,

β

(Rf + w(R−Rf )) + Π
(R−Rf ) = 0 and

1

C0
=

β

C1
(Rf + w(R−Rf )). (B17)

The first condition implies that R = Rf , as it should be given that there is no uncertainty in

this economy. Because in equilibrium there cannot be any borrowing or lending, it must be that

C0 = W0−K, where K is the amount of households’ capital investment. Hence, from the first-order

condition (B17) and the budget constraint(B16) we have

1

W0 −K
=

βRf
KRf + Π

. (B18)

Because Rf = R, using the definition of returns from equation (B13), we obtain

K∗ =
αβ

1 + αβ
W0. (B19)

Therefore, the optimal investment K∗ in the decentralized economy, given by (B19), corresponds to

that in the social-planner economy, given in equation (B8). This is just an implication of the First

Fundamental Theorem of welfare economics (see, e.g., Mas-Colell, Whinston, and Green, 1995).

Substituting K∗ from equation (B19) in the expression for the risk-free rate (B13), we have

that the equilibrium risk-free rate is

R∗f = αA

(
αβ

1 + αβ
W0

)α−1

=
1

β

A

W 1−α
0

(αβ)α

(1 + αβ)α−1
, (B20)

which corresponds to the equilibrium risk-free rate derived in equation (B9) for the social planner.

Just as for the social-planner’s problem, as α → 0, we see from (B13), (B19), and (B20)

that π∗ → A, K∗ → 0, and R∗f → A/(βW0). That is, the production economy converges to an

endowment economy where consumption at t = 0 and t = 1 are exogenous: C0 = W0 and C1 = A.
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Online Appendix: Details of Solving the Multiperiod Model

In this Online Appendix, we explain how we solve the multiperiod model described in Section 3

of the manuscript. First, we explain how we detrend the model so that the resulting model is

stationary. Then, we describe the numerical algorithm used to solve the stationary model.

IA.1 Detrending

The model is non-stationary because the aggregate component of TFP, At, grows at the rate g.

However, it is possible to rewrite the model as a stationary model by detrending by the balanced

growth path. Along the balanced growth path, the variables Yj,t, Kj,t, Dj,t, Vj,t, Ij,t, Ci,t, Wi,t,

wt all vary around the trend Gtλt = (1 + g)t
1−θ
1−αθ , thus we can define xt = XtG

−tλ
t for any of these

variables, with lower case letters indicating detrended values.28 To get λ, we simply apply this

detrending to equation (IA3) and solve for the λ that makes this equation hold. One can then

guess and verify that Ui(Wi,t) also varies around the same trend. The variables M̃i,t+1, Rj,t, wj,i,t,

and Lj,t do not need to be detrended as they are stationary in the original model. We can then

rewrite the model’s key equations in terms of their stationary versions.

The investors solve

ui(xi,t) = max
{cu,t,wG,i,t,wB,i,t}

{
c

1−1/ψ
i,t + p× βGλ(1−1/ψ)

(
Et[ui(xi,t+1)1−γ ]

) 1−1/ψ
1−γ

} 1
1−1/ψ

, (IA1)

subject to the intertemporal budget constraint

xi,t+1 = G−λ
(
xi,t + ωdtLu,t − ci,t

)
(Rf,t + wG,i,t(RG,t+1 −Rf,t) + wB,i,t(RB,t+1 −Rf,t)) , (IA2)

where the return is Rj,t+1 =
Gλvj,t+1

vj,t−dj,t . Firms produce output yj,t according to a Cobb-Douglas

production function

yj,t = (kj,t)
αθ(Zj,tLj,t)

(1−θ). (IA3)

The firm’s value is the discounted value of its dividends,

vj,t(kj,t) = max
Lj,t,ij,t

dj,t(kj,t) + Et

[
M̃u,t+1Gvj,t+1(kj,t+1)

]
, (IA4)

where M̃u,t+1 is the stochastic discount factor (SDF) of the unconstrained investors. The optimiza-

tion in (IA4) is subject to the capital accumulation equation, which, using δ > 0 to denote capital

28Because in the main text, we used the lower case variable ω to refer to wages, we denote the detrended wage by
ωd. Also, to avoid confusing the portfolio share (lower case w, which does not need detrending) with wealth, we will
use the variable x to refer to detrended wealth.
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depreciation, is

kj,t+1 = G−λ ((1− δ)kj,t + ij,t) . (IA5)

Firm j’s dividends are therefore given by

dj,t(kj,t) = yj,t − ωdtLj,t − ij,t − η
(
ij,t
kj,t
− δ̂
)2

kj,t, η > 0, δ̂ > 0. (IA6)

IA.2 Numerical algorithm

In this section, we describe the algorithm to numerically solve the problem in Section 3. Broadly,

we start with beliefs about the relevant variables in the model (e.g., wages, asset prices, etc.), as

functions of the state, that the household needs to solve its problem. Next, we solve in partial

equilibrium the problem for both constrained and unconstrained households using dynamic pro-

gramming. Then, starting at each point in the state space, we simulate the problem for one period

in order to update the beliefs about the relevant variables. Finally, we solve again the households’

problem with these updated beliefs and continue until the beliefs converge. Once the beliefs have

converged, we simulate the model for many periods to compute the moments of interest. Below,

we describe these steps in greater detail.

Step 1: Defining the state and initial beliefs

The aggregate state space consists of the discrete Markov productivity state (ZG,t, ZB,t), which

takes four values, the quantity of aggregate capital kt = kG,t + kB,t, the share of capital that is

green, SG,t =
kG,t
kt

, and the share of wealth that is constrained, SC,t =
xC,t

xC,t+xU,t
. We discretize the

three continuous variables on grids of sizes 11, 13, and 7, respectively; we have also experimented

extensively with grid sizes and found that finer grids did not change our results. We define the

aggregate state space as the vector Ωagg
t = (ZG,t, ZB,t, kt, SG,t, SC,t), which can take 4×11×13×7 =

4004 values. Each household’s state space consists of its wealth xt, which we discretize on a grid

of size 37, and an indicator for whether the household is constrained or not.

We begin by initializing beliefs about all the relevant aggregate variables as a function of

the state. Specifically, we initialize beliefs about the risk free rate Rf (Ωagg
t ), firm values vj(Ω

agg
t ),

investment ij(Ω
agg
t ), wage ω(Ωagg

t ), and consumption ci(Ω
agg
t ). We also initialize beliefs about

the evolution of the state variables as a function of the current state and of the realized shocks:

kt+1(Ωagg
t , ZG,t+1, ZB,t+1), SG,t+1(Ωagg

t , ZG,t+1, ZB,t+1), and SC,t+1(Ωagg
t , ZG,t+1, ZB,t+1).29

29Defining the belief about kt+1 = G−λ((1 − δ)kt + iG,t + iB,t) and SG,t+1 =
G−λ((1−δ)kt+iG,t

kt+1
is trivial if one has

beliefs about ij,t, therefore the only additinal belief is SC,t+1.
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Additionally, we define an auxillary state space for asset price deviations from beliefs Ωaux
t =

(ṽG,t, ṽB,t, R̃
f
t ) with size 5 × 5 × 5 = 125, where ṽj,t ≡ vj,t − vj(Ωagg

t ) is the deviation of the price

from the beliefs. Note that Ωaux
t is not an actual state space because in equilibrium, all prices and

aggregate quantities are functions of the aggregate state Ωagg
t , and therefore, in equilibrium (i.e.,

once the model has converged), Ωaux
t = (0, 0, 0). However, as will be explained below, defining Ωaux

t

is needed by our solution algorithm before it converges to equilibrium.

Step 2: Solving for the firm’s optimal investment in partial equilibrium

Given beliefs about the consumption of the unconstrained households at t and the evolution of the

state at t + 1, we can compute beliefs about the realized stochastic discount factor at t + 1. For

example, if utility is CRRA, this involves computing M(Ωagg
t , ZG,t+1, ZB,t+1) = β

(GλcU (Ωaggt+1)

cU (Ωaggt )

)−γ
.

This requires interpolating cU (Ωt+1) over the state at t + 1 because the predicted values of Ωt+1

may not lie exactly at the gridpoints. More generally, for Epstein-Zin utility, we must iterate the

beliefs about cU to compute the stochastic discount factor.

Next, at each point in the aggregate state space Ωagg
t , we compute the firm’s investment

by satisfying the firm’s Euler equation, Et[Mt+1Rj,c,t+1] = 1, where Rj,c,t+1 is the firm’s marginal

return on capital.30

Rj,c,t+1 =

∂Πj,t+1

∂kj,t+1
+ 1− δ + 2η(1− δ + δ̂)

(
ij,t+1

kj,t+1
− δ̂
)

+ η
(
ij,t+1

kj,t+1
− δ̂
)2

1 + 2η
(
ij,t
kj,t
− δ̂
) , (IA1)

∂Πj,t+1

∂kj,t+1
=

θ

1− (1− θ)α
Φj,t+1k

θ
1−(1−θ)α−1

j,t , and (IA2)

Φj,t+1 = (1− (1− θ)α)

(
(1− θ)αZj,t+1

ωt+1

)λ
. (IA3)

To find investment such that Et[Mt+1Rj,c,t+1] = 1, we start with a guess for investment, compute

Et[Mt+1Rj,c,t+1]− 1, and increase (decrease) investment if this quantity is positive (negative).

Step 3: Solving for household’s consumption and portfolio in partial equilibrium

Given beliefs about dividends at t, firm values at t, and the evolution of the state at t+ 1, we can

compute beliefs about returns Rj(Ω
agg
t , ZG,t+1, ZB,t+1) =

Gλvj(Ω
agg
t+1)

vj(Ω
agg
t )−dj(Ωaggt )

as a function of the state

30When return to scale is constant (α = 1) then there is no difference between firm j’s marginal return on capital
and the equity return Rj,t+1. However, in general the two are not the same and the firm optimal choice of investment
satisfies the Euler equation with the marginal return on capital.
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at t and the realized state at t + 1. This requires interpolating vj(Ωt+1) over the state at t + 1

because the predicted values of Ωt+1 may not lie exactly at the gridpoints.

Then, using beliefs about returns, the wage at t, and the evolution of the state, we solve

the household’s problem using value-function iteration on equation (IA1). This is a standard and

relatively fast computation, given modern computing power and parallel processing. This gives us

policies as functions of the aggregate state for consumption ci(Ω
agg
t ) and portfolio choice wj,i(Ω

agg
t ).

In addition, in the last iteration, we solve the model over the extended state space Ωagg
t ×

Ωaux
t . When Ωaux

t = (0, 0, 0) this leads to identical policies as the original calculation. However,

for example if Ωaux
t = (ε, 0, 0), we solve for a policy where everything is exactly as in the original

calculation, but the current price of the Green firm is bigger than the belief: vG,t = vG(Ωagg
t ) + ε.

This implies that the return on investing in Green firms is smaller than the equilibrium belief, and

the household will invest less in Green firms.

Step 4: Updating the beliefs

Starting from every point on the aggregate state space Ωagg
t = (ZG,t, ZB,t, kt, SG,t, SC,t), we simulate

the model one period forward. This implies that the aggregate capital is kt, the aggregate capital of

green firms is ktSG,t, and the constrained households own a fraction SC,t of all wealth are determined

at the start of the period.31

At this stage, there is one important complication. To solve for households’ policies, we

need to know the wealth of each household. However, to do that, we need to know aggregate wealth,

which is the sum of the values of the green and brown firms (vG,t + vB,t), because the supply of

shares is normalized to one and the aggregate supply of the risk-free asset is zero. While we have

beliefs about vG,t, vB,t, and Rft as functions of the state Ωagg
t , if the model has not yet converged

to equilibrium, then setting prices equal to these beliefs would leave us no way to update beliefs.

Furthermore, setting prices equal to these beliefs may result in markets not clearing—for example,

if the belief about the price of green firms is too low, then the demand for green shares will exceed

supply.

31Numerically, during this step, all constrained households are assigned exactly the same wealth, and separately
all unconstrained households are assigned exactly the same wealth. In the long simulation, all households of the
same type will not necessarily own exactly the same wealth because newborns are born with the average wealth of
all of the dead (constrained and unconstrained), therefore the wealth of a newborn unconstrained household is not
necessarily the same as a one year old unconstrained household. As discussed in the main text, this mixing prevents
either type from dominating the wealth distribution. However, this mixing is very slow and therefore, in practice,
the cross-sectional differences in wealth across agents of the same type are very small. Therefore, the mean wealth
of each type is approximately a sufficient state variable. Krusell and Smith (1998) show that even in models with
significantly larger cross-sectional variation in wealth, average wealth is approximately a sufficient state variable.
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This is the reason we introduced the auxiliary state Ωaux
t . At each point in the state space

Ωagg
t , we solve for the price vj,t = vj(Ω

agg
t ) + ṽj,t that clears markets. For example, if for a given

vG(Ωagg
t ) the demand for green firms is too high, we increase vG,t by shifting higher on the grid for

ṽG,t. Because we have solved the household’s problem for Ωagg
t × Ωaux

t , it presents no difficulty to

solve for policies at higher or lower prices than the belief. Market clearing is an iterative process

because when the price vG,t increases, so does aggregate wealth, which causes a change in the

households’ policies. Clearing markets means finding the prices (vG,t, vB,t, R
f
t ) such that aggregate

demand for shares of each type of firm is one, and the demand for bonds is zero.

Once we have cleared markets at a particular point on the state space, we use the market-

clearing prices to update beliefs about the risk-free rate Rf (Ωagg
t ) and firm values vj(Ω

agg
t ). We

also use the equilibrium quantities in the one-period simulation to update the beliefs about invest-

ment ij(Ω
agg
t ), wage ω(Ωagg

t ), and household consumption ci(Ω
agg
t ), and the evolution of the state

kt+1(Ωagg
t , ZG,t+1, ZB,t+1), SG,t+1(Ωagg

t , ZG,t+1, ZB,t+1), and SC,t+1(Ωagg
t , ZG,t+1, ZB,t+1).

We update the beliefs slowly, putting a weight of 0.95 on the old beliefs, so that the model

converges smoothly. With an updated set of beliefs, we go back to Step 2 and continue until

convergence. Once the model has converged, Step 2 ensures that the firm’s Euler equation is

satisfied, and the maximization in Step 3 ensures that the households’ Euler equations are satisfied.

We then simulate the model over many periods to compute the moments of interest. To confirm

that the solution algorithm converged correctly, in the long simulation, we compute the Euler

equation errors for the unconstrained household, that is, Avg[MRj ] − 1. In the baseline model

with γ = 5, these are 0.0000, −0.0001, and 0.0002 for the risk-free rate, green return, and brown

return, respectively; in the model with γ = 50, these are −0.0005, −0.0004, and −0.0005. We also

compute the pseudo-R2 between the beliefs and the simulated values of the key quantities in the

model. In the baseline model with γ = 5, these are 0.9998, 1.0000, 0.9999, 0.9998, and 0.9999

for the stochastic discount factor, constrained households’ share of wealth, value of the green firm,

value of the Brown firm, and the risk free rate, respectively; in the model with γ = 50, these are

0.9999, 1.0000, 0.9996, 0.9996, and 0.9990.32

32We do not report the R2 for aggregate capital or green capital share because they are 1.0000 by construction.
This is because the investment function is determined optimally in Step 2 (conditional on the other beliefs), and
investment in the simulation is set based on the investment in Step 2. We do not report the R2 for consumption
because what matters is the stochastic discount factor belief, not consumption itself. However, the consumption R2

is even higher than the one for the stochastic discount factor.
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