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Abstract

We develop an approach to determine whether a particular predictor represents

a proxy for fundamental risk. We build on the assumption that risk-based pre-

dictors should be linked to new information about economic conditions. We

show that most predictors forecast returns on either days with macroeconomic

announcements or the remaining days, indicating that sources of return pre-

dictability differ across predictors: few are driven by fundamental risk; most

have other origins. We show that Shiller’s excess volatility is confined to non-

announcement days, suggesting that the ability to forecast stock market’s noise

component underlies much of the predictability documented in the literature.
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1 Introduction

Stock returns are predictable, as shown by a large and still-growing literature.1 While

there exists little dispute about this basic result, the interpretation of many of the

best-known predictors is another matter, with proposed explanations ranging from

behavioral theories to various frictions to risk-based theories.

In this paper, we develop an approach for identifying predictors which represent proxies

for fundamental risk, which is based on an intuitive assumption that such predictors

should be linked to new information about economic fundamentals. We hypothesize

that days when important macroeconomic news is scheduled to be announced (an-

nouncement days) are more likely to coincide with releases of such information than

other days (non-announcement days).2 To support our assumption, we show that

both excess volatility (with respect to the dividend discount model, (Shiller, 1981))

and residual volatility (with respect to the conditional CAPM) are concentrated on

non-announcement days and virtually absent from announcement days. Building on

the work of Andrei, Cujean, and Wilson (2023), we show that disagreement about the

future fundamentals offers one potential explanation for our results. Consequently, pre-

dictors whose forecasting power is concentrated on announcement (non-announcement)

days are more (less) likely to represent proxies for fundamental risk and less (more)

likely to represent proxies for the excess volatility/noise component of stock market

movements.

As in Savor and Wilson (2013), we define as announcement days (A-days) those trading

days when news about inflation, unemployment, or Federal Open Market Committee

(FOMC) interest rate decisions is scheduled to be released and all other trading days

as non-announcement days (N-days). Using CRSP value-weighted returns aggregated

1See Cochrane (2007), Goyal and Welch (2007), Campbell and Thompson (2007), and Harvey, Liu,

and Zhu (2015), among others.
2Previous literature finds that announcement days are indeed special, both in terms of time-series

(Savor and Wilson, 2013) and cross-sectional (Savor and Wilson, 2014) return patterns.
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separately for A- and N-days, we revisit the 1980s excess volatility puzzle which claims

that the observed price movements cannot be justified by subsequent fundamentals.

In particular, they cannot be explained by the stream of subsequent dividends since

the realized prices move too much compared to the time-series of ex-post rational price

(fundamental value) realization (Shiller, 1981). We show that the excess volatility

puzzle defined in this way is very strong on N-days and limited on A-days. To this

end, we use multivariate regressions (Yt+1 = β0 + β1r
A
t + β2r

N
t ) of future log changes

in ex-post rational price (Yt+1) on past returns accrued on both A-days (rAt ) and N-

days (rNt ). Quarterly and annual returns accrued on A-days are positively related to

future changes in fundamental value with β1 = 0.01 (t(β1) = 1.81) and β1 = 0.046

(t(β1) = 1.7) in regressions using quarterly and annual frequency data, respectively.

This relation does not hold for their N-day counterparts with β2 not significantly

different from zero at any frequency. Hence, although it may be true that the price

movements on N-days are too big to be justified by subsequent dividends, this is not

the case for price movements experienced on A-days. Using the Campbell and Shiller

(1988) decomposition, we further show that both the excess volatility (with respect

to the dividend discount model) puzzle and the residual volatility (with respect to

the conditional CAPM) puzzles are confined to non-announcement days and absent

from announcement days. This further confirms our hypothesis that days when new

information about future economic fundamentals is learned by the market are more

likely to coincide with A-days than N-days. As a result, variables predicting A-day

returns and those predicting N-day returns are crucially different with respect to the

source of their ability to predict returns. While A-day predictors are driven by future

fundamentals, N-day predictors seem to be predicting the “noise” component of stock

market movements.

Building on the above, we find that many widely used stock market predictors fore-

cast returns only on N-days. For example, log price/dividend ratio (pdt, Campbell

(1996), Litzenberger and Ramaswamy (1979)), long government yield (lty, Fama and
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French (1989)), treasury bill yield (tbl, Campbell (1987)), investment-to-capital ratio

(i/k, Cochrane (1991)), production output gap (ogap, Cooper and Priestley (2009)),

cyclical consumption (pce, Atanasov, Moller, and Priestley (2020), consumption fluctu-

ations (skew, Colacito, Ghysels, Meng, and Siwasarit (2016)), and year-end economic

growth characteristics (gpce, gip, Møller and Rangvid (2015)) forecast future returns

accrued on N-days with a negative sign, while term spread (tms, Fama and French

(1989); Campbell (1987)), and long government return spread (ltr, Fama and French

(1989)) forecast future N-day returns with a positive sign. These predictors do not

exhibit comparable ability to predict A-day returns, and – most of the time – the

point estimates for these predictors have opposite signs (none are statistically signifi-

cant). By contrast, default yield spread (dfy, Fama and French (1989)), stock return

variance (sum of squared daily returns on the S&P 500, svar, Guo (2006)), and oil

price changes (wtexas, Driesprong, Jacobsen, and Maat (2008)) forecast stock returns

accrued on A-days with a positive sign but do not work on N-days. Similarly, although

nearness to 52-week Dow high (dtoy, Li and Yu (2012)) predicts next quarter’s stock

returns accrued on A-days with a negative sign, the variable lacks predictive power

for N-day returns. Only nearness to all-time Dow high (dtoat, Li and Yu (2012)) and

average correlation of stock returns (avgcor, Pollet and Wilson (2010)) predict returns

on both types of days. Even then, the magnitude of this relationship and its statistical

significance are much higher on N-days than on A-days.

The above evidence shows a clear dichotomy exists between A-days and N-days with

respect to their return predictors. Strikingly, overwhelming majority of stock market

predictors suggested in the literature forecast returns only on N-days (where excess

and residual volatility are concentrated) but lack predictive power for A-days (which

are more likely to be driven by new information about economic fundamentals). This

allows us to group predictors into those that are linked to economic news and those that

are not. The predictors that are based on direct measures of the amount of risk in the

economy (like svar), which according to asset pricing theory should forecast returns
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(but fail to do so in reality), forecast quarterly returns accrued on A-days (but not on

N-days). For the predictors historically documented to forecast future stock returns, we

show that while they forecast N-day returns, they do not exhibit explanatory power for

A-day returns. Overall, these findings are consistent with the hypothesis that sources

of return predictability differ across predictors, with direct risk-based measures driven

by economic fundamentals and most of the others having different origins. Since vast

majority of predictors do not forecast A-day returns, we conclude that new information

about future fundamentals is not at the heart of their ability to forecast returns.

We build on the work of Andrei et al. (2023) to show that disagreement about fu-

ture fundamentals can present a potential explanation for our results. We construct a

measure of disagreement about future stock market returns using IBES analysts’ ex-

pectations of next year’s prices as the cross-sectional variance of the difference between

each analyst’s expectation of the stock market return and the consensus expectation

of the stock market return. We show that the predictive power of such-constructed

disagreement measure is concentrated on N-days and missing from A-days for annual,

6-months, and quarterly returns. The methodology presented in this paper can be

applied to yet-to-be-discovered stock market predictors in order to evaluate whether

they forecast the economic fundamentals or excess volatility.

Related literature. This paper relates to a strain of literature documenting the dif-

ferential behavior of asset returns on A-days and N-days and the potential explanations

for these findings. Savor and Wilson (2014) show that stock returns on said A-days

are significantly higher and their patterns easier to reconcile with known asset pricing

theories than their N-day counterparts. In particular, they show that while the CAPM

holds on A-days, it fails to hold on N-days. Similarly Brooks, Katz, and Lustig (2018)

show that while the expectations hypothesis holds on A-days, it fails thereafter and

this failure increases in the length of the window considered. Attempts have been made

to reconcile these differences within standard asset pricing models (Savor and Wilson,

2014) and to find the drivers behind the phenomenon pointing to increases in the price

5



of risk as opposed to the quantity of risk on A-days (Savor, Wilson, and Puhl, 2015).

Meanwhile, other authors argued this differential behavior of A-day returns is only

a by-product of high ex-post returns on those days rather than an evidence of them

being in any way special (Ernst, Gilbert, and Hrdlicka, 2019). The results in our paper

add three additional dimensions to the startling dichotomy between returns accrued

on A-days and N-days. First, we show that excess (with respect to the dividend dis-

count model) and residual (with respect to conditional CAPM) volatility is an N-day

phenomenon and virtually missing from A-days. Second, we show that the widely-

documented ability of various variables to predict stock market returns is confined to

days when no new macroeconomic announcements are made. Finally, we show that

disagreement about future fundamentals is a strong preditor of N-day but not A-day

returns.

The paper also contributes to literature on stock market predictability. Goyal and

Welch (2007) offer an extensive overview of variables found to predict stock market

returns. Our work contributes to this strand of literature by showing that overwhelming

majority of stock market return predictors reported in the literature lack forecasting

power for the part of stock market returns earned on days when important information

about macroeconomic fundamentals is revealed into financial markets. Instead, such

predictors’ ability to forecast stock market returns is confined to days which are unlikely

to coincide with release of new information about future fundamentals. Since (as we

show) excess volatility of the stock market is confined to these days, we conclude that

it is the ability to forecast stock market’s noise component that underlies much of stock

market predictability documented in the literature.

2 Data and summary statistics

The macroeconomic announcements considered are in line with those used by Sa-

vor and Wilson (2013) and Savor and Wilson (2014). As in these papers, inflation
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and unemployment announcement dates come form the US Bureau of Labor Statis-

tics (https://www.bls.gov/) with the available time series staring in 1958. We follow

the authors in using consumer price index (CPI) announcements up to and including

February 1972. Producer price index (PPI) announcements are used between March

1972 and January 2018 (inclusive). This is because in that time period PPI numbers

are reported a few days prior to the CPI ones thus diminishing the informational con-

tent of the CPI numbers. Between February 2018 and December 2019, for some months

CPI is again released before PPI. In our analysis we use the date of the earlier of these

two announcements. FOMC interest rate announcement days come from the Federal

Reserve website and are available from 1978 onward. Unscheduled FOMC meetings

are excluded from the sample.

Data on stock market returns comes from Center for Research in Security Prices

(CRSP). Data on risk-free interest rate comes from Professor Kenneth French’s website.

Our main stock market proxy is the CRSP NYSE, Amex, and Nasdaq value-weighted

index of all listed shares. We collect daily values of this index between January 1953

and December 2022. We use those valuations and the daily risk free rate to construct

log daily excess returns over this time period. These are then aggregated on a quarterly

basis for all trading days in the given quarter (rA&N
t ), all A-days in a given quarter

(rAt ), and all N-days in a given quarter (rNt ).

Panel A of Table 1 presents the summary statistics for these returns. Since the predictor

variables studied in this paper run between 1953Q1 and 2021Q4, we focus on that time

period here. We see that the average quarterly return on N-days over this time period

(1.2%) is almost twice as large as the average quarterly return on A-days (0.6%).

Compared to N-day quarterly returns, A-day returns are less volatile (0.03 vs. 0.08),

exhibit lower autocorrelation (-0.02 vs. 0.1), and are less negatively skewed (-0.64 vs.

-0.75).

We test a wide range of variables historically documented to be predictors of stock

returns. Table 2 provides a summary of those, their abbreviations used throughout the
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paper, references to papers that introduced them to the literature, and the frequency at

which the variables are computed. With the exception of the price dividend ratio, the

variables’ time series are courtesy of Amit Goyal, Ivo Welch, and Athanasse Zafirov,

who have kindly shared their data with us. Panels A trough D of Table 3 provide

summary statistics of the predictor variables considered.

Data on analysts’ one-year-ahead price expectations comes from IBES and covers the

period between January 2000 and December 2022.

3 Excess and residual volatility – an N-day puzzle

Shiller (1981) shows that realized stock prices move too much to be justified by the

subsequent changes in dividends. In this section we revisit the relationship between

these price changes and the subsequent dividends for A-days and N-days, indepen-

dently. We show that quarterly (annual) returns accrued on A-days forecast changes

in next quarter (year) ex-post rational price. The same is not true for quarterly (an-

nual) returns accrued on N-days. In regressions of fundamental value (understood as

sum of discounted ex-post realized dividends) changes on lagged returns accrued on

these two types of days, the coefficient for returns accrued on A-days is positive and

significantly higher than that for returns accrued on N-days.

In what follows, we use the Campbell and Shiller (1988) decomposition to show that

both the excess volatility puzzle (with respect to the dividend discount model) and the

residual volatility (with respect to the conditional CAPM) are strictly N-day puzzles.

This suggests that the price changes on the two types of days are driven by different

processes and allows us to later on argue that the predictability of A-day returns must

consequently have a different source to the predictability of N-day returns.
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3.1 Shiller’s excess volatility puzzle

We follow very closely Shiller (1981) methodology to calculate the real values of prices

and dividends, and their de-trended counterparts. However, unlike the original paper

we sample prices at the end of each period while the original paper records them for its

beginning. Since this slightly alters the formulas and as we acknowledge the time that

has passed since the original work, in what follows we briefly summarize the main idea

behind the original excess volatility puzzle and the steps taken in the original work to

arrive at it.

Revisiting Shiller (1981)’s approach. For the simple efficient markets model to

be correct the real price Pt at the end of time period t should be equal to:

Pt =
∞∑
k=1

γkEtDt+k,
3 (1)

where the Dt is the real dividend paid at time t and γ is a constant real discount factor.

As in the original work, we assume all dividends Dt occur at the end of the relevant

time period t. The constant real interest rate r is defined such that γ = 1/(1 + r)

and has the property that r = Et(Ht), where Ht is the holding period return Ht ≡

(∆Pt+1 +Dt+1)/Pt.
4

It is possible to restate the relationship in Equation (1) using detrended prices and

dividends. Such detrending is done by restating those time series as a proportion of

the long-run growth factor: pt = Pt/λ
t−T , dt = Dt/λ

t−T , 5 where T is the last period

for which we have observations (the base period) and λt−T is the growth factor. The

growth factor is calibrated by estimating a long-run exponential growth path for the

time series of real prices. To this end, we regress ln (Pt) on a constant and time and

set λ = eb, where b is the coefficient on time in ln (Pt) = a + b ∗ t. It can be shown

3Pt =
∑∞

k=0 γ
k+1EtDt+k in Shiller (1981).

4Ht ≡ (∆Pt+1 +Dt)/Pt in Shiller (1981).
5dt = Dt/λ

t+1−T in Shiller (1981).
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that the following holds for such detrended time series:

pt =
∞∑
k=1

γkEtdt+k,
6 (2)

where γ ≡ λγ is the constant discount factor appropriate for the detrended time series

of pt and dt. The corresponding discount rate r, γ = 1/(1+r), can be shown to be equal

to the mean detrended dividend divided by the mean detrended price:r = E (d) /E (p).7

The above relationship (2) can be re-written in terms of ex-post rational price series

p∗t . Such ex-post rational price is the present value of actual subsequent dividends:

p∗t =
∞∑
k=1

γkdt+k.
8 (3)

As pointed out in the original paper, although the summation extends to infinity, with

long enough time series we can observe a reasonably accurate approximation of p∗t .

Subject to the choice of terminal (base year) value of the ex-post rational price, p∗T ,

the entire time series can be determined recursively by

p∗t = γ
(
p∗t+1 + d∗t+1

)
9

working backwards from the base year.

Calibration. We follow the above process for the CRSP NYSE, Amex, Nasdaq value-

weighted index of all common shares. Prices (pt) are assumed to be the time series of

CRSP index level excluding dividends. We calculate dividends (dt) at monthly intervals

between January 1950 and December 2019. Both prices and dividends are deflated

using the CPI values provided by Professor Shiller on his website. We estimate the

long-run exponential growth path using daily frequency data in line with ln (Pt) = a+bt

and set λ as eb. r is estimated using monthly frequency data as the mean of the

6pt =
∑∞

k=0 γ
k+1Etdt+k in Shiller (1981).

7This follows from taking unconditional expectation of both sides of equation (2) and solving for

r. Compare: footnote 7, page 424 in (Shiller, 1981).
8p∗t =

∑∞
k=0 γ

k+1dt+k in Shiller (1981).
9p∗t = γ

(
p∗t+1 + d∗t

)
in Shiller (1981).
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detrended dividend divided by the mean of the detrended price. For the purpose of

calculating p∗t , the terminal value p∗T is set as the average of the detrended real price

over the sample. For the purpose of calculating P ∗
t , the terminal value P ∗

T is set to the

terminal value of the real price process: PT .

Excess volatility. Figure (1) shows the behaviour of detrended real prices (pt) and de-

trended ex-post rational prices (p∗t ) of the CRSP NYSE, Amex, Nasdaq value-weighgted

index between 1950 and 2022. This figure corresponds to Figures (1) and (2) in Shiller

(1981). As in the original work, we observe that the realized prices seem too volatile for

their movements to be driven by new information about the stream of subsequent div-

idends (i.e. for the efficient markets model as proposed by Equation (1) to accurately

describe the price process).

3.2 Which price changes forecast future fundamental value

changes?

Having computed the fundamental value (ex-post rational price) time series we are

now in a position to test whether there is a difference in the informational content of

changes in prices on A-days and N-days. In particular, we can now test which of them

is better able to forecast future changes in fundamental value.

Let P̃ ∗
t+1 = log(P ∗

t+1) − log(P ∗
t ) and p̃∗t+1 = log(p∗t+1) − log(p∗t ). These are the log

change in the real ex-post rational price and the log change in the detrended real

ex-post rational price, respectively. Setting Yt+1 to either P̃ ∗
t+1 or p̃∗t+1, we can run

the following regression to predict these changes at monthly, quarterly, and annual

frequencies:

Yt+1 = β0 + β1r
A
t + β2r

N
t , (4)

where rAt and rNt are the part of the lagged return of the relevant frequency accrued

on A-days and N-days, respectively. Since we are not only interested in the economic

and statistical significance of β1 and β2, but also in formally testing whether β1 > β2,
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we turn to the following regression:

Yt+1 = δ0 + δ1(r
A
t + rNt ) + δ2(r

A
t − rNt ). (5)

In the above, we observe that: β1 = δ1+ δ2 and β2 = δ1− δ2. As a result, the following

is true:

1. if β1 > β2, then δ1 + δ2 > δ1 − δ2, and so δ2 > 0

2. since δ1 = 0.5(β1 + β2) and δ2 = 0.5(β1 + β2), δ2 > 0 implies β1 > β2.

Hence, δ2 > 0 if and only if β1 > β2.

We estimate the relationships in Equation 4 and 5 at monthly, quarterly, and annual

frequencies for two time periods: 1953 – 2022 and 1953 – 2010. This is to account

for the fact that starting from January 2011 the terminal values of p∗T and P ∗
T become

non-negligible share of p∗t and P ∗
t . Table 4 summarizes the results for Yt+1 = P̃ ∗

t+1

i.e. the real ex-post rational price. Table 5 summarizes the results for Yt+1 = p̃∗t+1 i.e

the detrended real ex-post rational price. In the below, unless separately specified, we

summarize the regression estimates from the 1953 – 2010 time period.

At monthly frequency, we observe that although the relationship between the returns

and the future fundamental value changes is positive for the share of monthly returns

accrued on A-days (β1 = 0.003 when Yt+1 = p∗t ; β1 = 0.004 when Yt+1 = P ∗
t ) and

negative for the share of monthly returns accrued on N-days (β2 = −0.002 when

Yt+1 = p∗t ; β2 = −0.003 when Yt+1 = P ∗
t ), neither relationship is statistically significant.

Similarly, although positive (0.003 across both specifications), δ2 is not statistically

significant (t(δ2) equal to 1.3 and 1.28 for Yt+1 = P ∗
t and Yt+1 = p∗t , respectively).

There is no evidence that cumulative monthly A-day returns forecast future one-month-

ahead changes of fundamental value better than their N-day counterparts. The same

is, however, no longer true at quarterly and annual frequencies.

Quarterly frequency data shows that cumulative A-day returns forecast next quarter’s

log change of fundamental value with a positive sign. In the shorter time period (1953
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– 2012) β1 is equal to 0.010 and 0.014 when Yt+1 = p∗t and Yt+1 = P ∗
t , respectively.

This means that a one percentage point increase in the cumulative A-day return in a

given quarter leads to a 1.4 basis points (1 basis point) increase in the next quarter’s

log change in (de-trended) real ex-post rational price P ∗
t (p∗t ). This relationship is

statistically significant at 10% confidence level (t(β1) = 1.8 when Yt+1 = p∗t and t(β1) =

1.81 when Yt+1 = P ∗
t ). The relationship between N-day returns and future fundamental

value changes is negative but not statistically significantly so (t(β2) = −0.001 for both

Yt+1 = p∗t and Yt+1 = P ∗
t ). Estimates of equation (5) indicate that β1 > β2 at quarterly

frequency: δ2 = 0.006 for Yt+1 = p∗t and δ2 = 0.008 for Yt+1 = P ∗
t and statistically

significant at 10% level (t(δ2) = 1.78 using p∗t ; t(δ2) = 1.82 using P ∗
t ). This means

that, at quarterly frequency, A-day price changes are able to forecast next quarter’s

change in fundamental value better than N-day price changes.

We find similar results using annual frequency data. Cumulative A-day returns at

this frequency forecast next year’s changes in fundamental value with a positive sign:

β1 = 0.035 for Yt+1 = p∗t and β1 = 0.046 for Yt+1 = P ∗
t . Both estimates are significant at

10% confidence level. As such, a one percentage point increase in the cumulative A-day

return in a given year leads to a 4.6 (3.5) basis points increase in next year’s log change

in (detrended) real ex-post rational price P ∗
t (p∗t ). As in the quarterly returns case, the

relationship between cumulative annual N-day returns and next year’s fundamental

value changes is negative but not statistically significantly so. Finally, estimates of

equation (5) indicate that β1 > β2 at annual frequency: δ2 = 0.022 for Yt+1 = p∗t and

δ2 = 0.029 for Yt+1 = P ∗
t and statistically significant at 5% level (t(δ2) = 1.97 using p∗t ;

t(δ2) = 1.99 using P ∗
t ). Similarly to quarterly frequency, at annual frequency, A-day

price changes are able to forecast next quarter’s change in fundamental value better

than N-day price changes.

These results shed more light on the excess volatility puzzle (Shiller, 1981). Although it

is true that price movements in general are too big to be attributed to new information

about actual subsequent fundamental value changes, a clear dichotomy exists in this
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respect for aggregate movements on A-days and N-days. We show that, although

the aggregate price changes on N-days can not be justified by subsequent changes in

fundamental value, the same is not true for aggregate price changes accrued on A-days.

Quarterly returns accrued on A-days forecast future changes in ex-post rational price

(detrended or not) with a positive sign. Furthermore, at both quarterly and annual

frequency the ability to forecast such future changes in fundamental value is superior

for A-day compared to N-day returns. This suggests that the movements in prices on

A-days are not “too big relative to actual subsequent dividends” (Shiller, 1981).

3.3 Excess and residual volatility: an A/N-day decomposition

One well-known issue with Shiller (1981)’s fundamental value calculations is that they

do not allow for time-varying discount rates. This may make the reader suspicious of

the results derived above. Therefore, in what follows we use the Campbell and Shiller

(1988) decomposition to further showcase that the excess volatility (relative to the

Dividend Discount Model) and residual volatility (relative to the Conditional CAPM)

phenomena are confined to N-days and (almost) absent from A-days.

Derivations. Let us define the following variables:

pdt = ln

(
Pt

Dt

)
,

rt+1 = ln(1 +Rt+1),

∆dt+1 = ln

(
Dt+1

Dt

)
,

σ2
R = V ar[rt+1] = V ar[rAt+1 + rNt+1],

σ2
A = V ar[rAt+1],

σ2
N = V ar[rNt+1],

pd = E[pdt],

ρ = (1 + exp(−pd))−1,

k = − ln ρ− (1− ρ) ln(1/ρ− 1).
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Then, Campbell-Shiller derive:

rt+1 ≈ k +∆dt+1 + ρpdt+1 − pdt. (6)

Rearranging (6) gives us

pdt ≈ k +∆dt+1 − rt+1 + ρpdt+1,

which can be iterated forward to derive

pdt+1 ≈ k +∆dt+2 − rt+2 + ρpdt+2.

Substituting this last expression into (6) gives

rt+1 ≈ k +∆dt+1 + ρ(k +∆dt+2 − rt+2 + ρpdt+2)− pdt

= (1 + ρ)k +∆dt+1 + ρ∆dt+2 − ρrt+2 + ρ2pdt+2 − pdt

=
1− ρ1+1

1− ρ
k + Σ1

j=0ρ
j∆dt+1+j − Σ1

j=1ρ
jrt+1+j + ρ1+1pdt+1+1 − pdt.

Repeating these iterations T times gives:

rt+1 ≈
1− ρT+1

1− ρ
k + ΣT

j=0ρ
j∆dt+1+j − ΣT

j=1ρ
jrt+1+j + (ρT+1pdt+T+1 − pdt). (7)

Since, by construction

rt+1 = rAt+1 + rNt+1,

the following holds:

rt+1 = rAt+1 + rNt+1 ≈
1− ρT+1

1− ρ
k+ΣT

j=0ρ
j∆dt+1+j −ΣT

j=1ρ
jrt+1+j + (ρT+1pdt+T+1 − pdt).

Since the variance of the LHS of (7) equals the covariance of the LHS with the RHS,

and since dividing both sides by V ar[rt+1] yields both sides to equal (approximately)

one, it can be shown that the following holds true:
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Cov
[
rAt+1,Σ

T
j=0ρ

j∆dt+1+j

]
V ar[rAt+1]

V ar[rAt+1]

V ar[rt+1]
+

Cov
[
rNt+1,Σ

T
j=0ρ

j∆dt+1+j

]
V ar[rNt+1]

V ar[rNt+1]

V ar[rt+1]
(8)

−
Cov

[
rAt+1,Σ

T
j=1ρ

jrt+1+j

]
V ar[rAt+1]

V ar[rAt+1]

V ar[rt+1]
−

Cov
[
rNt+1,Σ

T
j=1ρ

jrt+1+j

]
V ar[rNt+1]

V ar[rNt+1]

V ar[rt+1]

+
Cov

[
rAt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rAt+1]

V ar[rAt+1]

V ar[rt+1]
+

Cov
[
rNt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rNt+1]

V ar[rNt+1]

V ar[rt+1]

≈ 1.

The expressions of the form

Cov[rkt+1, yt+1]

V ar[rkt+1]
, k ∈ [A,N ]

are just the betas from a univariate regression of the following type

yt+1 = αk + βkr
k
t+1 + εkt+1

or if Cov[rAt+1, r
N
t+1] = 0, they are also the betas from a bivariate regression of the

following type

yt+1 = α + βAr
A
t+1 + βNr

N
t+1 + εt+1.

The decomposition outlined by (8) allows us to measure the shares of A-day and N-day

returns in total stock market volatility. It also allows us to measure how much each

type of market return contributes to excess volatility. For a high value of T , the share

of excess (relative to the DDM) volatility of returns under each regime are given by

SA
EV =

Cov
[
rAt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rt+1]
−

Cov
[
rAt+1,Σ

T
j=1ρ

jrt+1+j

]
V ar[rt+1]

(9)

and

SN
EV =

Cov
[
rNt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rt+1]
−

Cov
[
rNt+1,Σ

T
j=1ρ

jrt+1+j

]
V ar[rt+1]

. (10)

This is not the end of the story. A-day returns will account for a positive share of excess

volatility under this measure. However, some of that share is likely due to changing
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measures of fundamental risk such as stock market return variance, which is somewhat

persistent, but nowhere near as persistent as dividend-price ratios. If, following the

Conditional CAPM, we believe that changing risk-free rates and changing measures

of stock market variance are not irrational drivers of changes in returns, then we can

further decompose these measures into shares due to risk-free rates, market return

variances, and a residual. It’s only the residual that requires explanation beyond the

CCAPM. This is the definition of residual volatility (with respect to CCAPM).

We show that the above residual volatility is indeed almost entirely due to N-day

returns. This is done by taking the CCAPM as a benchmark, and then allowing it to

vary across regimes:

rAt+1 = rAf,t+1 + γAV art[rt+1] + υA
t+1 (11)

rNt+1 = rNf,t+1 + γNV art[rt+1] + υN
t+1

where V art[rt+1] is the conditional expectation of the physical variance of market re-

turns and υt+1 is the residual.

As shown by Savor and Wilson (2013), γA is positive and significant while γN is not.

Moreover, rf,t+1 is slightly lower on A-days. Imposing (11) on (8) gives a rather lengthy

expression which can be used to back out the residual, as opposed to excess, volatility

of returns under each regime.

From the above,

rt+1 = rAt+1 + rNt+1

= rAf,t+1 + γAV art[rt+1] + υA
t+1 + rNf,t+1 + γNV art[rt+1] + υN

t+1

= rAf,t+1 + rNf,t+1 + γAV art[rt+1] + γNV art[rt+1] + υA
t+1 + υN

t+1.
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Then the middle two terms in (8) can each be replaced by:

Cov
[
rk=A,N
t+1 ,ΣT

j=1ρ
jrt+1+j

]
V ar[rk=A,N

t+1 ]

=
Cov

[
rk=A,N
t+1 ,ΣT

j=1ρ
jrAf,t+1+j

]
V ar[rk=A,N

t+1 ]
+

Cov
[
rk=A,N
t+1 ,ΣT

j=1ρ
jrNf,t+1+j

]
V ar[rk=A,N

t+1 ]

+
γACov

[
rk=A,N
t+1 ,ΣT

j=1ρ
jV art+j[rt+1+j]

]
V ar[rk=A,N

t+1 ]
+

γNCov
[
rk=A,N
t+1 ,ΣT

j=1ρ
jV art+j[rt+1+j]

]
V ar[rk=A,N

t+1 ]

+
Cov

[
rk=A,N
t+1 ,ΣT

j=1ρ
jυA

t+1+j

]
V ar[rk=A,N

t+1 ]
+

Cov
[
rk=A,N
t+1 ,ΣT

j=1ρ
jυN

t+1+j

]
V ar[rk=A,N

t+1 ]

The resulting variance decomposition contains sixteen terms, but many of them will

be zero. For example we know from previous results that the covariance of rA with

future returns at any horizon is zero once variance-driven effects have been removed.

According to this line of reasoning, residual volatility shares under each type of regime

are then:

SA
RV =

Cov
[
rAt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rt+1]
−

Cov
[
rAt+1,Σ

T
j=1ρ

jυA
t+1+j

]
V ar[rt+1]

(12)

and

SN
RV =

Cov
[
rNt+1, ρ

T+1pdt+T+1 − pdt
]

V ar[rt+1]
−

Cov
[
rNt+1,Σ

T
j=1ρ

jυN
t+1+j

]
V ar[rt+1]

. (13)

In line with previous results and our reasoning, we would expect SA
RV to be (almost)

zero and SN
RV to be (almost) one, for all T .

Evidence. Equipped with the above derivations and hypothesis we proceed to analyse

the A-day and N-day components of excess and residual volatility using the wider CRSP

universe index (spanning NYSE, Amex, and Nasdaq stocks) as a proxy.

Expected variance (V art[rt+1]) – the estimate of aggregate risk according to conditional

CAPM – is calculated in line with Savor and Wilson (2014) as the conditional expecta-

tion of one-quarter-ahead variance of daily market returns on the corresponding index.
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This conditional forecast is computed as a function of contemporaneous (quarter t)

excess returns accrued on A-days, excess returns accrued on N-days, realized variance

(annualized average squared daily excess market return), and a constant. The cor-

responding coefficients are calibrated using constrained least squares (where the RV

forecast is constrained to be non-negative) predictive regression of realized variance

on the lagged variables mentioned before using quarterly data between 1964Q1 and

2022Q4.10 Figure 2 compares the realized and expected variance between 1964 and

2022 computed for the wider CRSP universe index.

We then proceed to calculate the excess and residual volatility components given by

equations 9, 10, 12, and 13 using quarterly data and wider CRSP universe index.

Figure 3 shows the A-day and N-day components to excess volatility with respect to the

dividend discount model. Figure 4 shows the A-day and N-day components to residual

volatility with respect to conditional CAPM. The figures show that the contribution

of A-day returns to both excess volatility with respect to dividend discount model and

residual volatility with respect to the conditional CAPM is almost non-existent for

high values of T (i.e. the number of quarters). In fact both the excess and residual

volatility puzzles are almost entirely N-day phenomena.

The above results contribute to the literature showcasing differences in stock mar-

ket behaviour between announcement and non-announcement days (Savor and Wilson

(2013), Savor et al. (2015)). We show that while variance-in-mean relationship drives

A-day returns, these accrued on N-days are primarily reversal-driven. This motivates

the next section of our paper where we separate well-known stock market predictors

into “variance-in-mean” and “reversal” ones depending on which returns are they ca-

pable of predicting.

10Savor and Wilson (2014) explain the model selection in greater detail.
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4 Sources of return predictability

In this section we analyse the ability of various stock market predictors documented

in the literature to forecast future aggregate quarterly stock market returns, their part

accrued on A-days, and their part accured on N-days. Depending on whether a given

variable forecasts the part of quarterly returns accured on A-days or N-days, we clasify

it as a “variance-in-mean” or a “reversal” predictor, respectively.

Among the predictive variables summarized in Table 2, only svar constitutes a mea-

sure of the amount of physical risk on the market. As a result, it should be the only

variable able to explain future stock returns since according to fundamental asset pric-

ing theories the amount of physical risk should be the only driver behind stock market

returns. Although the remaining variables are not such proxies for the physical amount

of risk on the market, they have been historically found to predict returns.

Our analysis uses a univariate linear regression framework. We regress the relevant

quarterly returns on the various predictors lagged by one quarter. The regression can

be summarized as follows:

rit+1 = α + βixt, i = (A&N,A,N),

where rA&N
t+1 , rAt+1, and rNt+1 are the aggregate quarterly return, quarterly return accrued

on A-days in a given quarter, and quarterly returns accrued on N-days in a given

quarter, respectively. xt is one of the predictors outlined in Table 2.

Panel A of Table 6 summarizes the regression results for variables which were found to

be A-day but not N-day return predictors at quarterly frequency. We see that default

yield spread (dfy) and oil price changes (wtexas) forecast returns accrued on A-days

but lack predictive power for returns accrued over the whole quarter. A one percentage

point increase in dfy (wtextas) leads to 79 (4) basis points increase in next quarter’s

A-day return. On the other hand, stock return variance (svar) and nearness to 52-

week Dow high (dtoy) forecast returns accrued on A-days and over the entire quarter

20



as a whole despite lacking the predictive power for returns accrued on N-days (which

constitute the largest share of days in any given quarter). In fact a one percentage

point increase in svar (dtoy) leads to 58 (6) basis points increase (decrease) in next

quarter’s A-day return and 90 (14) basis points increase (decrease) in next quarter’s

return accrued on both types of days.

Panel B of Table 6 shows that in-sample return predictability (if at all present for a

given variable) is overwhelmingly an N-day phenomenon. Term spread (tms) and long

government return spread (ltr) are positively correlated with future quarterly N-day

returns. An increase of one percentage point in tms (ltr) leads to 52 (21) basis points

increase in next quarter’s N-day returns. The relationship between the remaining

predictors and future quarterly N-day returns is negative. In particular, some well-

established return predictors such as log price/dividend ratio (logPD), long government

yield (lty), treasury bill rate (tbl), and investment to capital ratio (ik) are negatively

correlated with future stock market returns. A percentage point increase in lty (tbl)

leads to a 31 (36) basis points decrease in next quarter’s N-day return. Similarly, a

percentage point increase in ik and logPD lead to 548 and 2 bps decrease in next

quarter’s N-day return, respectively. More recently discovered return predictors such

as production output gap (ogap), cyclical consumption (pce), consumption fluctuations

(skew), and year-end economic growth characteristics (gpce, gip) also forecast future

N-day returns with negative sign. Overwhelming majority of N-day return predictors

also forecast quarterly returns accrued on both types of days. This is unsurprising

since N-days constitute the vast majority of days in any given quarter.

Panel C shows that two of the predictors considered were statistically significant in

predicting the quarterly returns accrued on both A-days and N-days between 1953

and 2021. These were nearness to all-time Dow high (dtoat) and average correlation of

stock returns (avgcor). The magnitude of both relationships is higher for N-day returns

than for A-day returns with βA = −0.03, βN = −0.11 for dtoat and βA = 0.05 and

βN = 0.13 for avcor. Finally, Panel D shows that another fifteen variables historically
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found to predict stock market returns failed to do so in-sample between 1953 and 2021.

The results outlined above highlight a startling dichotomy between predictors of returns

accrued on A-days and those accrued on N-days. We observe that the vast majority of

variables historically documented to forecast stock market returns, if at all statistically

significant in univariate regressions between 1953 and 2021, predict the part of quarterly

returns accrued on N-days but lack predictive power for their part accrued on A-days.

On the contrary, variables which have roots in fundamental asset pricing theories and

are proxies for physical risk on the market, such as stock variance (svar) are both

economically and statistically significant predictors of future returns accrued on A-

days but not on N-days.

The above results allow us to determine the underlying sources of the widely docu-

mented in the literature stock market return predictability. Since the vast majority of

well-known return predictors fails to forecast quarterly A-day returns, we can conclude

that new information about market fundamentals is not at the heart of this predictabil-

ity. Most predictor variables are not driven by the “variance-in-mean” relationship but

have “reversal” behaviour of the stock market at their origin.

In the final section of this paper, we show that a basic model of disagreement about a

signal in line with Andrei et al. (2023) can explain our results.

5 Disagreement

5.1 Heterogeneous signals and predictability

Andrei et al. (2023) show that the CAPM holds for heterogeneous investors with re-

spect to their individual expectations even when it does not hold with respect to the

consensus expectations (i.e. the empiricist discovers a flat security market line using

variables’ consensus aggregates). The authors also show that disagreement matters

for the securities market line. On days when public information is revealed to the

22



market (thus decreasing signal disagreement) the securities market line an empiricist

can discover using consensus aggregates is stronger. In what follows we show that

disagreement about a signal also explains the results presented in this paper.

Andrei et al. (2023) start with the following identity. Given a vector of excess returns

R̃e, market weightsM and market excess return R̃e
M = M ′R̃e the Law of Total Variance

states that with respect to different investors with different information sets Fi:

V ar[R̃e] = E[V ar[R̃e|Fi]] + V ar[E[R̃e|Fi]]

The assumptions made by the authors imply that everyone has the same posterior

variance of returns conditional on their information, so

E[V ar[R̃e|Fi]] = V ar[R̃e|Fi] ≡ V ari[R̃
e].

Consensus expectations are defined as the (continuous analog of) the cross-sectional

mean of individual expectations

E[R̃e] =
1

N

N∑
i=1

E[R̃e|Fi] =
1

N

N∑
i=1

Ei[R̃
e].

and finally further (very mild) assumptions are made which imply that there is zero

covariance between consensus expectations and the cross-sectional dispersion in expec-

tations (essentially Gaussian signals and a large number of investors). Then, the Law

of Total Variance implies:

V ar[R̃e] = V ari[R̃
e] + V ar[E[R̃e]] + V ar[Ei[R̃

e]− E[R̃e]].

In this paper, we work with and are interested in the behaviour of the return on the

aggregate stock market. Multiplying every variable before and after by the vector of

market weights M and adding time subscripts (i.e. conditioning on an information set

of investor i at date t):

V art[R̃
e
M,t+1] = V ari,t[R̃

e
M,t+1] + V art[E[R̃e

M,t+1]] + V art[Ei[R̃
e
M,t+1]− E[R̃e

M,t+1]].
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Rearranging gives

V ari,t[R̃
e
M,t+1] = V art[R̃

e
M,t+1]− V art[E[R̃e

M,t+1]]− V art[Ei[R̃
e
M,t+1]− E[R̃e

M,t+1]].

The above expression shows that the variance of the market given any agent’s informa-

tion set Fi,t equals the uncondtional date−t variance minus the conditional variance of

consensus returns (likely to be extremely small over short time intervals) and minus

the cross sectional variance of expected market returns. The variance of consensus

market returns is an entirely time series magnitude, while the last term is mainly

cross-sectional (although it may also vary over time).

Finally suppose a conditional CAPM holds with respect to each agent’s information

set Fi,t. That is

Ei[R̃
e
M,t+1] = γV ari,t[R̃

e
M,t+1].

Then with respect to consensus beliefs

E[R̃e] =
1

N

N∑
i=1

Ei[R̃
e] =

γ

N

N∑
i=1

V ari,t[R̃
e
M,t+1] = γV ari,t[R̃

e
M,t+1]

since all prior variances are the same by assumption. Then with respect to consensus

beliefs, a condtional CAPM holds, but with respect to the conditional market variance

of each agent given their information set. Plugging in from our Law of Total Variance

for the market portfolio gives

E[R̃e] = γV art[R̃
e
M,t+1]− γV art[E[R̃e

M,t+1]]− γV art[Ei[R̃
e
M,t+1]− E[R̃e

M,t+1]].

Standard tests for a variance-in-mean relation for market returns include only the first

term on the RHS but not the second two. In small time intervals such as monthly or

quarterly data, the second term is unlikely to be large, while the third term is likely

to be large when there is dispersion of beliefs, and also somewhat variable over time.

However, for our purposes, what is even more striking is that when agents observe

dispersed signals Fi,t which vary across agents, this last term is likely to be much

24



larger than when they observe a common signal. Therefore the standard variance-

in-mean regression of realized market returns on date-t market variance is likely to

perform much better on announcement days than at other times, just as discovered by

Savor and Wilson (2013). In general, to test for a Conditional CAPM, we should also

include a measure of dispersion of beliefs V art[Ei[R̃
e
M,t+1]− E[R̃e

M,t+1]].

What about reversal? Over time infomation gets updated and disagreement disap-

pears in a rational Bayesian framework. Since there is only disagreement on non-

announcement days, all the reversal occurs on those days. According to this inter-

pretation, things which predict A-day returns but not N-day returns are proxies for

V art[R̃
e
M,t+1] while things that predict N-day returns but not A-day returns are proxies

for V art[Ei[R̃
e
M,t+1]− E[R̃e

M,t+1]] (or conceivably V art[E[R̃e
M,t+1]] + V art[Ei[R̃

e
M,t+1]−

E[R̃e
M,t+1]] or even V art[E[R̃e

M,t+1]]+V art[Ei[R̃
e
M,t+1]−E[R̃e

M,t+1]]−2Covt[Ei[R̃
e
M,t+1]−

E[R̃e
M,t+1], E[R̃e

M,t+1]]).

5.2 Disagreement

Following the derivations above, we know that conditional CAPM holds with respect

to consensus beliefs, but with respect to the conditional market variance of each agent

given their information set:

E[R̃e
M,t+1] = γV art[R̃

e
M,t+1]−γV art[E[R̃e

M,t+1]]−γV art[Ei[R̃
e
M,t+1]−E[R̃e

M,t+1]]. (14)

Consequently, for our empirical tests we would ideally require (in order of appearance):

unconditional date-t variance, conditional variance of consensus returns, and the cross-

sectional variance of expected market returns.

We calculate the unconditional date-t variance (V art[R̃
e
M,t+1]) as in Savor and Wilson

(2013) as the annualized average squared daily excess return for the last quarter (i.e.

value for March 2000 uses all daily returns between January 1st 2000 and March 31st

2000).

25



Measures of conditional variance of consensus returns (V art[E[R̃e
M,t+1]]) face a major

challenge. Most, if not all of them, require time series of options’ returns to extract

consensus expectations of stock market returns. These are highly correlated with the

returns on the stock market on which these options are written. This results in a high

positive correlation between measures of V art[E[R̃e
M,t+1]] and measures of V art[R̃

e
M,t+1]

mentioned before. Consequently, we skip V art[E[R̃e
M,t+1]] from our regressions.11

Dispersion of beliefs (V art[Ei[R̃
e
M,t+1]−E[R̃e

M,t+1]]) is the time-t variance of deviations

of brokers’ expected returns on the market from the consensus expectation of the

market return. To construct this variable we use IBES analysts’ price point forecasts.

The forecast’s length is 12 months and the lookback period is 6 months. This means

that in June 2010 any forecasts of 12 month price for a given company made in the

first half of the year are included in our calculations. Table 7 summarizes the IBES

coverage we rely on in our calculations. We observe that no broker covers the whole

market and that the coverage varies across the various brokers included in the sample.

For example, at the end of December 2019 we have 198 brokers (estimids). On average,

they cover 93 individual stocks (cusips). However, 25% of them do not cover more than

3 entities and 50% of them do not cover more than 18 entities.

We refer to the N stocks that the analyst covers as her quasi -market as opposed to

the true market, which is the market index calculated in line with usual industry

and academic practice. This quasi-market will differ across agents thus calling into

question the interpretation of V art[Ei[R̃
e
M,t+1] − E[R̃e

M,t+1]] for low N. Therefore, we

find it reasonable to trim our sample in such a way that each broker i included in the

calculation in the dispersion of beliefs covers at least N = 100 stocks. Please note: even

with such coverage threshold, low-N brokers’ expectations still impact the consensus

expectation on the true market as they are incorporated in the consensus expectation

of the return on the individual stocks that these brokers do cover.

11In unreported analysis we use the residual from the regression of V art[E[R̃e
M,t+1]] on V art[R̃

e
M,t+1].

Our conclusions do not change.
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Figure 5 shows that the number or brokers considered for the calculation of the dis-

agreement measure as a result of trimming our analysts’ quasi market at N = 100

stocks will vary between 10 and 20 analysts during the time period considered. It also

shows the potential coverage for other values of threshold N . Granted, 100 can be

considered a high cut-off, but given the returns used in what follows are on the SP500

index, not an unreasonable one. The results are both quantitatively and qualitatively

similar for N ≥ 70.

5.3 Evidence

We take the simplified version of equation 14 to data using SP500 returns accrued at

various frequencies on the two types of days analysed in this paper: announcement and

non-announcement days:

rtypet+1 = α + β1V art[R̃
e
M,t+1] + β2V art[Ei[R̃

e
M,t+1]− E[R̃e

M,t+1]]. (15)

Table 8 reports the results. Panel A shows that for annual and semiannual returns

both the unconditional date-t variance and disagreement are statistically significant

drivers of stock market returns. The relationship between the unconditional variance

and returns is positive (β1 > 0) while the relationship between disagreement and

returns is negative (β2 < 0). There is no statistically significant relationship for either

variable and quarterly returns. Panel B shows that there is a statistically significant

positive relationship between the unconditional stock market variance and stock market

returns accrued on A-days for annual, semiannual, and quarterly frequency. At the

same time, there is no statistically significant relationship between disagreement and

A-day returns for any of these frequencies. As evidenced by Panel C, disagreement is

a significant driver of returns accrued on N-days but not on A-days. This is in line

with the hypothesis outlined above that disagreement plays far greater a role for stock

market returns in the presence of dispersed signals (N-day) than it does in the presence

of a common signal (A-days).
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6 Conclusion

In this paper, we develop an approach to determine whether stock market predic-

tors represent proxies for fundamental risk (i.e. are linked to new information about

economic conditions) or excess volatility. Our methodology is based on the intuitive

assumption that risk-based predictors should be linked to new information about eco-

nomic conditions. As our proxy for such new information being released we use days

when important macroeconomic announcements are made public to the markets. In

support of this hypothesis we show, that both excess volatility (with respect to the div-

idend discount model) and residual volatility (with respect to the conditional CAPM)

are phenomena limited to N-days and virtually absent from A-days. Furthermore, A-

day returns are positively related to future changes in fundamental value (understood

as a discounted sum of ex-post realized dividends in line with Shiller (1981)) while

N-day returns are not. We use this multifaceted dichotomy to infer about the source

of return predictability.

We study a wide range of well-known predictors and find that (with very few exceptions)

they forecast returns accrued either on days with macroeconomic announcements (A-

days) or on days when no such announcements are made (N-days). In the limited

cases when the predictor forecasts returns on both types of days, both the magnitude

and the statistical significance of this relationship are overwhelmingly concentrated

on N-days. These results allow us to group predictors into those that are linked to

economic fundamentals and those that are not. More specifically, predictors based

on direct measures of the amount of risk in the economy, which according to asset

pricing theory should forecast returns, forecast the share of quarterly returns accrued

on A-days but not their share accrued on N-days. The opposite holds for predictors

historically documented to forecast future stock market returns – they forecast only

the part of returns accrued on N-days but lack predictive power for their share accrued

on A-days.
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Together, these results suggest that the sources of return predictability differ across

predictors. While direct risk-based measures are backed by future economic funda-

mentals, the remaining ones have different origins. We argue our excess and residual

volatility results suggest that the N-day returns predictors possess superior ability to

explain the “noise” component of stock market returns. Building on the work of An-

drei et al. (2023), we show that disagreement about the future fundamentals offers one

potential explanation for our results.

The methodology presented can be further used to evaluate other predictors of asset

returns in order to differentiate whether they forecast the economic fundamentals or

the noise (i.e. volatility) component of the stock market.
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Figures

Figure 1: Deflated and detrended market price (p) and fundamental value (p*)

This figure shows the behaviour of detrended real prices (pt) and corresponding ex-post rational prices (p∗t ) for the CRSP NYSE, Amex, Nasdaq

value-weighted index between 1950 and 2022. It corresponds to figures (1) and (2) in Shiller (1981).
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Figure 2: Expected and Realized Variance computed using wider CRSP index

The figure plots the realized variance of quarterly log excess market returns (RV) and its one-quarter-ahead forecast (EV) between 1964 and

2022. EV is a linear combination of RV, A-day, and N-day log excess returns.
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Figure 3: Excess variance of the CRSP index – A- and N-day components

The figure shows the contribution of quarterly A-day and N-day returns to the excess volatility of aggregate quarterly returns and its components

as defined in equations 9 and 10 for various values of T. The returns and dividends correspond to the CRSP value-weighted index. Returns

and dividends data cover the period between 1964 and 2022.
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Figure 4: Residual variance of the CRSP index – A-day and N-day components

The figure shows the contribution of quarterly A-day and N-day returns to the residual volatility of aggregate quarterly returns and its

components as defined in equations 12 and 13 for various values of T. The returns and dividends correspond to the CRSP value-weighted index.

Returns and dividends data cover the period between 1964 and 2022.
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Figure 5: IBES coverage – number of brokers covering at least N stocks

This figure shows over time the number of brokers (estimids) who cover at least N companies (cusips) in a given month.
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Tables

Table 1: Summary Statistics – quarterly returns – 1953 through 2021

The table reports summary statistics of quarterly returns, quarterly returns accrued on A-days, and quarterly

returns accrued on N-days. Since predictor variables studied in this paper run between 1953Q1 and 2021Q4,

we focus on this time period here. We report the summary statistics of the relevant time series: mean,

standard deviation, minimum value, maximum value, first order autocorrelation, and skewness.

Variable N Start End Mean SD Min Max Autocorr skew

Panel A: Returns

r 276 19530331 20211231 0.02 0.08 −0.30 0.22 0.04 −0.77

rA 276 19530331 20211231 0.01 0.03 −0.18 0.13 −0.02 −0.64

rNA 276 19530331 20211231 0.01 0.07 −0.28 0.18 0.10 −0.75
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Table 2: Variables definition

This table presents definitions of variables used to forecast stock market returns on A-days and N-days and the source of the data used.

Most variables and content of this table are courtesy of Amit Goyal and co-authors.

OurName Descr Authors Freq

GWZ Q pce consumption/trend Atanasov, Møller, Priestley Quarterly

GWZ M vp variance premium Baekert, Hoerova Monthly

GWZ M impvar implied σ2 Bakshi, Panayotov, Skoulakis Monthly

GWZ M vrp σ2 risk premium Bollerslev, Tauchen, Zhou Monthly

GWZ Q govik public sector investmt Belo, Yu Quarterly

GWZ M lzrt 9 illiq measures Chen, Eaton, Paye Monthly

GWZ S skew skewness Colacito, Ghysels, Meng, Siwasarit Semiannual

GWZ Q crdstd credit standards Chava, Gallmeyer, Park Quarterly

GWZ M ogap prdctn-output gap Cooper, Priestley Monthly

GWZ M wtexas oil price changes Driesprong, Jacobsen, Maat Monthly

GWZ A accrul accruals Hirshleifer, Hou, Teoh Annual

GWZ A cfacc accruals (CFO) Hirshleifer, Hou, Teoh Annual

GWZ M sntm distilled sentiment Huang, Jiang, Tu, Zhou Monthly

Continued on next page
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Table 2: – continued from previous page

OurName Descr Authors Freq

GWZ M ndrbl new order-ship durables Jones, Tuzel Monthly

GWZ M skvw avg stock skewness Jondeau, Zhang, Zhu Monthly

GWZ M tail x-sect tail risk Kelly, Jiang Monthly

GWZ M fbm b/m x-sect factor Kelly, Pruitt Monthly

GWZ M dtoy to Dow 52-week high Li, Yu Monthly

GWZ M dtoat to Dow all-time high Li, Yu Monthly

GWZ M ygap stock-bond yield gap Maio Monthly

GWZ M rdsp stock return dispersion Maio Monthly

GWZ M svix scaled risk-neutral vix Martin Monthly

GWZ A gpce yearend econ growth Møller, Rangvid Annual

GWZ A gip yearend econ growth Møller, Rangvid Annual

GWZ M tchi 14 technical indicators Neely, Rapach, Tu, Zhou Monthly

epbound M3 low. bound on 3m exp. r. premium Martin Monthly

GWZ A house housing/consumption Piazzesi, Schneider, Tuzel Annual

epbound M6 low. bound on 6m exp. r. premium Martin Monthly

GWZ M avgcor acvg corr stock returns Pollett, Wilson Monthly

Continued on next page
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Table 2: – continued from previous page

OurName Descr Authors Freq

epbound M12 low. bound on 12m exp. r. premium Martin Monthly

GWZ M shtint short interest Rapach, Ringgenberg, Zhou Monthly

GWZ M disag analyst disagreement Yu Monthly

logPD dividend price ratio Campbell, Shiller Monthly

logSP500e12p earnings price ratio Campbell, Shiller Monthly

logSP500d12e12 dividend payout Campbell, Shiller Monthly

svar σ2 Guo Monthly

bm b/m Kothari, Shanken Monthly

ntis net equity issuance Boudoukh, Michaely, Richardson, Roberts Monthly

BW eqis pct equity issuance Baker, Wurgler Annual

tbl t-bill Campbell Monthly

lty long govt yield Fama, French Monthly

ltr long govt return Fama, French Monthly

tms term spread Fama, French Monthly

dfy default yield spread Fama, French Monthly

dfr default return spread Fama, French Monthly

Continued on next page
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Table 2: – continued from previous page

OurName Descr Authors Freq

inflscsp inflation Fama, Schwert Monthly

ik invstmt/capital Cochrane Quarterly

cayGW cnsm, wlth, incm Lettau, Ludvigson Quarterly
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Table 3: Summary Statistics – 1953 through 2021

The table reports summary statistics of stock market predictors analysed. Panel A (B) reports summary statistics of

variables that have been found to be A-day (N-day) returns’ predictors in univariate linear regressions using quarterly

data. Panel C (D) reports summary statistics of variables which have been found to predict returns accrued on both

(neither) A-days and (nor) N-days. For each of the variables we report the length of its time series and the first and last

month for which the data is available. We then report the summary statistics of the relevant time series: mean, standard

deviation, minimum value, maximum value, first order autocorrelation, and skewness.

Variable N Start End Mean SD Min Max Autocorr skew

Panel A: A-day return predictors

dfy 276 19530331 20211231 0.01 0.00 0.00 0.03 0.87 1.87

svar 276 19530331 20211231 0.01 0.01 0.00 0.11 0.38 6.74

GWZ M wtexas 276 19530331 20211231 0.01 0.08 −0.54 0.45 0.03 −0.41

GWZ M dtoy 276 19530331 20211231 0.93 0.08 0.58 1.00 0.64 −1.75

Panel B: N-day return predictors

logPD 275 19530630 20211231 4.96 0.39 4.09 5.95 0.94 0.24

lty 276 19530331 20211231 0.06 0.03 0.01 0.15 0.98 0.74

tbl 276 19530331 20211231 0.04 0.03 0.00 0.15 0.95 0.88

tms 276 19530331 20211231 0.02 0.01 −0.04 0.05 0.84 −0.15

Continued on next page
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Table 3: – continued from previous page

Variable N Start End Mean SD Min Max Autocorr skew

ltr 276 19530331 20211231 0.02 0.05 −0.15 0.24 −0.05 0.89

ik 276 19530331 20211231 0.04 0.00 0.03 0.04 0.97 0.44

GWZ M ogap 276 19530331 20211231 0.00 0.07 −0.16 0.14 0.95 0.08

GWZ Q pce 273 19531231 20211231 0.00 0.04 −0.11 0.08 0.94 −0.20

GWZ S skew 275 19530630 20211231 −0.21 0.61 −1.29 1.28 0.50 0.43

GWZ A gpce 273 19531231 20211231 0.00 0.00 −0.01 0.02 0.78 0.03

GWZ A gip 273 19531231 20211231 0.01 0.02 −0.05 0.05 0.70 −0.90

Panel C: Predictors of returns on both types of days

GWZ M dtoat 276 19530331 20211231 0.90 0.10 0.54 1.00 0.79 −1.15

GWZ M avgcor 276 19530331 20211231 0.27 0.11 0.03 0.71 0.53 1.00

Panel D: Variables which do not predict returns

cayGW 276 19530331 20211231 0.00 0.04 −0.28 0.05 0.86 −3.33

ntis 276 19530331 20211231 0.01 0.02 −0.05 0.05 0.94 −0.76

dfr 276 19530331 20211231 0.00 0.03 −0.15 0.16 −0.13 −0.52

Continued on next page
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Table 3: – continued from previous page

Variable N Start End Mean SD Min Max Autocorr skew

bm 276 19530331 20211231 0.50 0.25 0.13 1.20 0.98 0.75

logSP500d12e12 276 19530331 20211231 −0.74 0.30 −1.24 1.38 0.89 2.81

logSP500e12p 276 19530331 20211231 −2.84 0.42 −4.81 −1.90 0.94 −0.72

GWZ M lzrt 276 19530331 20211231 −1.76 0.35 −4.69 −1.20 0.71 −4.40

GWZ M skvw 276 19530331 20211231 0.03 0.05 −0.38 0.16 −0.01 −2.56

GWZ M tail 276 19530331 20211231 0.42 0.05 0.30 0.53 0.90 −0.66

GWZ M fbm 276 19530331 20211231 0.17 0.11 −0.10 0.62 0.85 1.10

GWZ M ygap 275 19530630 20211231 −2.90 0.41 −4.84 −2.02 0.93 −0.83

GWZ M rdsp 276 19530331 20211231 0.03 0.01 0.01 0.12 0.66 3.60

GWZ M tchi 276 19530331 20211231 −0.02 1.45 −2.68 1.06 0.60 −0.94

GWZ Q govik 276 19530331 20211231 0.03 0.01 0.03 0.06 0.97 1.09

GWZ A house 273 19531231 20211231 −0.25 0.01 −0.26 −0.22 0.95 0.37
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Table 4: Forecasting changes in fundamental value using real ex-post rational

price P ∗
t+1 as its proxy

This table reports the results of regressing the change in real ex-post rational price P̃ ∗
t+1 on lagged

returns accrued on A-days and N-days at various frequencies. The left-hand side of the table presents

results of estimating equation (4): Yt+1 = β0+β1r
A
t +β2r

N
t . The right-hand side of the table presents

results of estimating equation (5): Yt+1 = δ0+ δ1(r
A
t + rNt )+ δ2(r

A
t − rNt ). In both cases Yt+1 = P̃ ∗

t+1.

For each of the equations two time periods are considered: 1953 – 2022 and 1953 – 2010. This is

to account for the fact that starting from January 2011 the terminal value of P ∗
T is becoming non-

negligible share of P ∗
t . t-statistics are reported in the second row below each coefficient value. Since

Yt+1 are constructed using non-overlapping windows, standard unadjusted t-statistics are reported.

Eq.(4): Yt+1 = β0 + β1r
A
t + β2r

N
t Eq.(5): Yt+1 = δ0 + δ1(r

A
t + rNt ) + δ2(r

A
t − rNt )

β0 β1 β2 Adj.R2 N δ0 δ1 δ2 Adj.R2 N

Panel A: Monthly data 1953 – 2022 Panel A: Monthly data 1953 – 2022

0.003 0.002 -0.002 0.00% 839 0.003 0.000 0.002 0.00% 839

[39.96] [0.60] [-1.31] [39.96] [0.03] [1.05]

Panel B: Monthly data 1953 – 2010 Panel B: Monthly data 1953 – 2010

0.003 0.004 -0.003 0.08% 695 0.003 0.001 0.003 0.08% 695

[31.49] [0.85] [-1.37] [31.49] [0.26] [1.30]

Panel C: Quarterly data 1953 – 2022 Panel C: Quarterly data 1953 – 2022

0.008 0.007 0.000 -0.32% 279 0.008 0.003 0.004 -0.32% 279

[40.62] [1.05] [-0.13] [40.62] [0.98] [0.98]

Panel D: Quarterly data 1953 – 2010 Panel D: Quarterly data 1953 – 2010

0.008 0.014 -0.001 0.61% 231 0.008 0.006 0.008 0.61% 231

[34.61] [1.81] [-0.53] [34.61] [1.56] [1.82]

Panel E: Annual data 1953 – 2022 Panel E: Annual data 1953 – 2022

0.033 0.032 -0.005 -0.67% 69 0.033 0.013 0.018 -0.67% 69

[18.34] [1.17] [-0.46] [18.34] [0.93] [1.24]

Panel F: Annual data 1953 – 2010 Panel F: Annual data 1953 – 2010

0.030 0.046 -0.012 3.72% 57 0.030 0.017 0.029 3.72% 57

[16.02] [1.70] [-1.16] [16.02] [1.19] [1.99]
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Table 5: Forecasting changes in fundamental value using detrended real ex-

post rational price p∗t+1 as its proxy

This table reports the results of regressing the change in detrended real ex-post rational price p̃∗t+1 on

lagged returns on A-days and N-days at various frequencies. The left-hand side of the table presents

results of estimating equation (4): Yt+1 = β0+β1r
A
t +β2r

N
t . The right-hand side of the table presents

results of estimating equation (5): Yt+1 = δ0+ δ1(r
A
t + rNt )+ δ2(r

A
t − rNt ). In both cases Yt+1 = p̃∗t+1.

For each equation two time periods are considered: 1953 – 2022 and 1953 – 2010. This is to account

for the fact that starting from January 2011 the terminal value of p∗T is becoming non-negligible share

of p∗t . t-statistics are reported in the second row below each coefficient value. Since Yt+1 are calculated

using non-rolling windows, standard unadjusted t-statistics are reported.

Eq.(4): Yt+1 = β0 + β1r
A
t + β2r

N
t Eq.(5): Yt+1 = δ0 + δ1(r

A
t + rNt ) + δ2(r

A
t − rNt )

β0 β1 β2 Adj.R2 N δ0 δ1 δ2 Adj.R2 N

Panel A: Monthly data 1953 – 2022 Panel A: Monthly data 1953 – 2022

0.000 0.002 -0.002 0.05% 839 0.000 0.000 0.002 0.05% 839

[-2.66] [0.66] [-1.46] [-2.66] [0.03] [1.16]

Panel B: Monthly data 1953 – 2010 Panel B: Monthly data 1953 – 2010

0.000 0.003 -0.002 0.07% 695 0.000 0.001 0.003 0.07% 695

[-4.34] [0.83] [-1.36] [-4.34] [0.24] [1.28]

Panel C: Quarterly data 1953 – 2022 Panel C: Quarterly data 1953 – 2022

0.000 0.006 0.000 -0.21% 279 0.000 0.003 0.003 -0.21% 279

[-3.25] [1.19] [-0.15] [-3.25] [1.11] [1.11]

Panel D: Quarterly data 1953 – 2010 Panel D: Quarterly data 1953 – 2010

-0.001 0.010 -0.001 0.56% 231 -0.001 0.005 0.006 0.56% 231

[-5.47] [1.80] [-0.46] [-5.47] [1.57] [1.78]

Panel E: Annual data 1953 – 2022 Panel E: Annual data 1953 – 2022

-0.002 0.025 -0.005 0.11% 69 -0.002 0.010 0.015 0.11% 69

[-1.66] [1.29] [-0.67] [-1.66] [0.98] [1.43]

Panel F: Annual data 1953 – 2010 Panel F: Annual data 1953 – 2010

-0.004 0.035 -0.009 3.69% 57 -0.004 0.013 0.022 3.69% 57

[-2.81] [1.67] [-1.20] [-2.81] [1.14] [1.97]
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Table 6: Univariate regressions - predicting quarterly returns

This table reports the results of univariate regressions of quarterly returns on predictor variables. All regressions are of the following

type:

rit+1 = α+ βxt, i = (A&N,A,N),

where rit+1 is the quarterly return (columns (2) through (4)), quarterly return accrued on A-days (columns (5) through (7)), or quarterly

return accrued on N-days (columns (8) through (10)). In the interest of readability we only report the values of the β coefficient,

it’s t-statistics, and the R2 for each of the regressions. Panel A (B) reports regression results for variables that have been found to

be A-day (N-day) returns’ predictors. Panel C (D) reports regression results for variables which have been found to predict returns

accrued on both (neither) A-days and (nor) N-days. Variables are summarized in Table 2. Period covered: 1953 – 2021.

Quarterly returns A-day quarterly returns N-day quarterly returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Variable β t(β) R2 β t(β) R2 β t(β) R2

Panel A: Announcement day return predictors

dfy 1.36 [ 1.18] 0.1% 0.79 [1.90] 0.9% 0.57 [ 0.55] −0.3 %

svar 0.90 [1.94] 1.0% 0.58 [3.54] 4.0% 0.32 [ 0.76] −0.2 %

GWZ M wtexas 0.02 [ 0.33] −0.3 % 0.04 [1.77] 0.8% −0.02 [−0.35 ] −0.3 %

GWZ M dtoy -0.14 [-2.05] 1.2% -0.06 [-2.42] 1.7% −0.08 [−1.32 ] 0.3%

Panel B: Non-announcement day return predictors

Continued on next page
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Table 6: – continued from previous page

Quarterly returns A-day quarterly returns N-day quarterly returns

Variable β t(β) R2 β t(β) R2 β t(β) R2

logPD −0.02 [−1.42 ] 0.4% 0.00 [ 0.45] −0.3 % -0.02 [-1.78] 0.8%

lty -0.30 [-1.74] 0.7% 0.01 [ 0.19] −0.4 % -0.31 [-2.03] 1.1%

tbl -0.38 [-2.39] 1.7% −0.01 [−0.22 ] −0.3 % -0.36 [-2.59] 2.0%

tms 0.63 [1.78] 0.8% 0.11 [ 0.87] −0.1 % 0.52 [1.64] 0.6%

ltr 0.22 [2.40] 1.7% 0.01 [ 0.30] −0.3 % 0.21 [2.57] 2.0%

ik -5.31 [-3.34] 3.6% 0.17 [ 0.29] −0.3 % -5.48 [-3.89] 4.9%

GWZ M ogap -0.31 [-4.25] 5.9% 0.00 [−0.17 ] −0.4 % -0.30 [-4.73] 7.2%

GWZ Q pce -0.47 [-3.49] 4.0% −0.06 [−1.11 ] 0.1% -0.41 [-3.45] 3.9%

GWZ S skew −0.01 [−1.39 ] 0.3% 0.00 [ 0.70] −0.2 % -0.01 [-1.84] 0.9%

GWZ A gpce -3.62 [-3.57] 4.2% −0.28 [−0.76 ] −0.2 % -3.34 [-3.70] 4.5%

GWZ A gip -0.91 [-3.49] 4.0% −0.03 [−0.32 ] −0.3 % -0.88 [-3.80] 4.7%

Panel C: Announcement and non-announcement day return predictors

GWZ M dtoat -0.15 [-2.87] 2.6% -0.03 [-1.77] 0.8% -0.11 [-2.49] 1.9%

GWZ M avgcor 0.18 [4.17] 5.6% 0.05 [3.00] 2.8% 0.13 [3.41] 3.7%

Continued on next page
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Table 6: – continued from previous page

Quarterly returns A-day quarterly returns N-day quarterly returns

Variable β t(β) R2 β t(β) R2 β t(β) R2

Panel D: Variables not predicting either announcement or non-announcement returns

cayGW −0.03 [−0.23 ] −0.35 % 0.04 [ 0.92] −0.06 % −0.08 [−0.63 ] −0.22 %

ntis −0.25 [−0.99 ] −0.01 % −0.04 [−0.39 ] −0.31 % −0.22 [−0.95 ] −0.04 %

dfr 0.08 [ 0.40] −0.31 % −0.04 [−0.54 ] −0.26 % 0.12 [ 0.67] −0.20 %

bm 0.01 [ 0.26] −0.34 % 0.00 [−0.59 ] −0.24 % 0.01 [ 0.53] −0.26 %

logSP500d12e12 0.02 [ 1.25] 0.20% 0.01 [ 1.62] 0.59% 0.01 [ 0.74] −0.16 %

logSP500e12p 0.00 [ 0.26] −0.34 % −0.01 [−1.34 ] 0.29% 0.01 [ 0.83] −0.11 %

GWZ M lzrt −0.01 [−0.51 ] −0.27 % −0.01 [−0.91 ] −0.06 % 0.00 [−0.20 ] −0.35 %

GWZ M skvw −0.06 [−0.61 ] −0.23 % −0.01 [−0.14 ] −0.36 % −0.06 [−0.62 ] −0.22 %

GWZ M tail 0.13 [ 1.41] 0.36% 0.00 [ 0.12] −0.36 % 0.13 [ 1.53] 0.49%

GWZ M fbm 0.02 [ 0.38] −0.31 % 0.02 [ 1.06] 0.04% 0.00 [−0.01 ] −0.37 %

GWZ M ygap 0.01 [ 0.44] −0.30 % −0.01 [−1.37 ] 0.32% 0.01 [ 1.05] 0.04%

GWZ M rdsp −0.06 [−0.15 ] −0.36 % 0.18 [ 1.21] 0.17% −0.24 [−0.66 ] −0.20 %

GWZ M tchi 0.00 [ 0.46] −0.29 % 0.00 [−0.67 ] −0.20 % 0.00 [ 0.79] −0.14 %

GWZ Q govik 0.24 [ 0.33] −0.33 % −0.16 [−0.59 ] −0.24 % 0.40 [ 0.61] −0.23 %

Continued on next page
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Table 6: – continued from previous page

Quarterly returns A-day quarterly returns N-day quarterly returns

Variable β t(β) R2 β t(β) R2 β t(β) R2

GWZ A house 0.60 [ 1.12] 0.10% −0.11 [−0.56 ] −0.25 % 0.71 [ 1.49] 0.45%
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Table 7: IBES coverage

This table reports the IBES coverage over time for our chosen 12-months-ahead price forecast with a

6 months’ lookback period. For each December, we report the number of analysts (estimids) in our

sample and the summary statistics for the number of companies (cusips) that they cover.

cusips covered

date estimids mean std min 25% 50% 75% max

12/29/2000 166 47.2 85.3 1 3 11 46 535

12/31/2001 122 77.6 105.7 1 8 33 91 526

12/31/2002 156 61.8 105.1 1 4 19 73 706

12/31/2003 199 52.9 93.7 1 4 15 54 640

12/31/2004 224 49.8 93.7 1 4 15 52 627

12/30/2005 215 54.7 100.2 1 4 15 53 639

12/29/2006 219 54.6 105.4 1 4 16 45 664

12/31/2007 213 56.4 112.1 1 3 13 48 687

12/31/2008 217 62.4 118.9 1 4 13 52 654

12/31/2009 232 60.9 117.6 1 4 12 54 703

12/31/2010 254 59.5 115.5 1 2 10 62 719

12/30/2011 232 69.2 127.4 1 2 14 69 718

12/31/2012 217 70.4 129.1 1 2 14 77 737

12/31/2013 215 81.7 148.7 1 2 14 82 750

12/31/2014 198 85.8 149.0 1 4 20 89 720

12/31/2015 202 87.4 155.5 1 3 19 92 748

12/30/2016 199 86.9 154.4 1 3 21 83 722

12/29/2017 193 92.6 163.1 1 3 22 90 736

12/31/2018 187 95.9 165.2 1 4 22 95 762

12/31/2019 198 93.3 168.6 1 3 18 91 885

12/31/2020 208 94.3 182.0 1 2 14 79 934

12/31/2021 216 94.8 186.5 1 3 16 73 1051

12/30/2022 207 106.4 205.6 1 3 14 94 1036
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Table 8: Disagreement and stock market returns

This table reports the results of univariate regressions of annual, 6-months, and quarterly SP500

returns on unconditional date-t variance and dispersion of beliefs for various types of days:

rtypet+1 = α+ β1V art[R̃
e
M,t+1] + β2V art[Ei[R̃

e
M,t+1]− E[R̃e

M,t+1]].

Panel A reports results for returns accrued on all days in the given period, while Panel B (C) reports

the results for returns accrued on days when important information is (not) released onto the market

i.e. A-days (N-days). Unadjusted standard errors are reported since observations do not overlap.

Panel A: Returns accrued on all days

Annual Semiannual Quarterly

α -0.01 0.16 0.18 0.01 0.07 0.08 0.01 0.03 0.03

-0.11 1.80 2.49 0.36 2.21 2.45 0.92 1.43 1.41

β1 17.43 58.64 1.24 11.30 -2.57 -1.31

0.92 3.10 0.21 1.77 -0.96 -0.45

β2 -121.24 -271.91 -58.80 -89.32 -22.30 -19.05

-1.62 -3.49 -2.19 -2.85 -1.38 -1.07

N 19 19 19 38 38 38 76 76 76

R2(%) -0.91 8.31 39.08 -2.65 9.27 14.32 -0.09 1.18 0.10

Panel B: Returns accrued on A-days

Annual Semiannual Quarterly

α -0.01 0.00 0.00 -0.01 0.00 0.01 -0.01 0.00 0.00

-0.62 -0.08 0.08 -0.78 0.18 0.47 -1.05 -0.40 -0.33

β1 11.88 15.70 5.62 7.72 3.17 3.35

1.64 1.67 2.22 2.56 2.76 2.65

β2 15.14 -25.21 2.22 -18.63 5.55 -2.73

0.48 -0.65 0.17 -1.26 0.75 -0.35

N 19 19 19 38 38 38 76 76 76

R2(%) 8.63 -4.49 5.42 9.56 -2.70 11.02 8.09 -0.58 6.98

Panel C: Returns accrued on N-days

Annual Semiannual Quarterly

α 0.01 0.16 0.18 0.02 0.07 0.07 0.02 0.03 0.03

0.13 2.15 2.67 0.75 2.28 2.31 1.61 1.85 1.82

β1 5.55 42.94 -4.38 3.58 -5.74 -4.67

0.32 2.46 -0.80 0.58 -2.53 -1.89

β2 -136.37 -246.70 -61.02 -70.69 -27.85 -16.32

-2.13 -3.44 -2.44 -2.33 -1.97 -1.07

N 19 19 19 38 38 38 76 76 76

R2(%) -5.26 16.49 35.66 -0.98 11.77 10.11 6.72 3.70 6.92
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