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Abstract

We analyze a model of a monopolistic informed investor who receives private informa-

tion sequentially and faces a post-trading disclosure requirement. We show that this trading

model can be transformed into a fictitious consumption-saving model with a borrowing con-

straint. Hence, insights from the consumption-saving literature can be adapted for the trad-

ing model. For example, analogous to the insights from the permanent income hypothesis,

the informed investor “saves” more of his current information when expecting less future in-

formation advantage (“saving for rainy days”) or more uncertainty about it (“precautionary

saving”) and smooths his information “usage” over time (“consumption smoothing”).
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1 Introduction

How asset prices distill investors’ information is a central question in economics. Broadly

speaking, an investor’s information can be revealed in two ways. The first is through the

market mechanism. For example, as in Kyle (1985), the informed investor’s trades move

asset prices and partially reveals his information. The second is that the informed investor’s

trade size, which is either disclosed due to regulation or detected by other investors, further

reveals his information. In this paper, to capture both aspects of information revelation, we

analyze a dynamic model of a monopolistic informed investor who receives private informa-

tion sequentially and faces a post-trading disclosure requirement.

Our main result is to demonstrate that characterizing the equilibrium of this trading

model can be reduced to, somewhat unexpectedly, solving a fictitious consumption-saving

model. This mathematical equivalence suggests that we can borrow the ideas in the well-

established consumption-saving literature to apply them in the trading model. We illustrate

this by showing that various insights from the permanent income hypothesis (Friedman,

1957), can be adapted to offer new perspectives on the dynamic trading model.

Specifically, we analyze a model that includes both Kyle (1985) and Huddart et al.

(2001) as special cases. As in Kyle (1985), we consider an N -period economy with one risky

asset and one monopolistic risk neutral informed investor. The risky asset is a claim to an

uncertain cash flow in the final period. Each period, the informed investor receives a private

signal about the risky asset’s liquidation value. The informed investor trades against noise

traders and a risk-neutral market maker sets the price. After the transaction each period,

the informed investor’s trade is, potentially imperfectly, revealed. This could be due to the

post-trade disclosure policy modeled in Huddart et al. (2001), where the informed investor

perfectly disclose his trade size each period. This could also be due to regulatory filings

(such as the 13f filings by mutual funds and hedge funds), which provide imperfect signals

about the informed investor’s transactions. Finally, as modeled in (Yang and Zhu (2020)),
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this could also reflect the fact that some investors (such as high frequency traders) may have

the technology to partially detect the informed investor’s trades.

Our first contribution is methodological. We show that characterizing the equilibrium in

this dynamic trading model is mathematically equivalent to solving a fictitious consumption-

saving model. In our baseline model, where the informed investor fully discloses his transac-

tion after his trade each period, we reduce the characterization of the equilibrium to solving

the informed investor’s optimal information “usage” problem, which can be transformed into

a fictitious consumption-savings problem of an agent with a borrowing constraint.

The transformation is obtained by simply relabelling variables. In the trading model,

the informed investor receives a private signal each period and decides on how much in-

formation to “utilize” in the current period and how much to “dissimulate” for future use.

By relabeling the informed investor’s private signal as “income,” the utilized information as

“consumption,” the dissimulated information as “savings,” and the expected trading profit as

the “utility from consumption,” we transform the trading model into a consumption-saving

model. One notable feature of the trading model is that the informed investor can dissimulate

his current information for future use but cannot transfer his future information to utilize

today. This asymmetry manifests itself as a borrowing constraint in the consumption-saving

model: the agent can save his current wealth to consume in the future but cannot borrow

against his future income to consume today.

This mathematical equivalence implies that the insights from the consumption-saving lit-

erature can be adapted to our dynamic trading model and hence shed new light on informed

trading and its role in incorporating information into asset prices. To illustrate this, we con-

sider three prominent ideas inspired by the permanent income hypothesis of Friedman (1957)

and show how they can be adapted to our dynamic trading model. In the discussion below,

we focus on the implications of those ideas on the informed investor’s trading strategies. It

is easy to see that the trading strategies determine how much of the private information is

incorporated into asset prices.
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The first idea is the notion of “saving for rainy days.” When anticipating times of

scarcity, the agent would consume less today to save more of his wealth for the future. This

intuition manifests itself in the trading model as follows. In periods with abundant private

information, when anticipating less private information in the future, the informed investor

would save his current private information for future use. In contrast, when anticipating

abundant private information in the future, the informed investor utilizes all his current

information.

These results have direct implications on the informed investor’s trading strategy. In the

former case, similar to the result in Huddart et al. (2001), the informed investor adopts a

mixed strategy to dissimulate his current private information. In the latter case, however,

he adopts a pure strategy to fully utilize all his private information. These results extend

and sharpen the insight in Huddart et al. (2001), who focus on the special case in which

the informed investor possesses all his private information in the first period. Anticipating

no more private information in the future, the informed investor always adopt a mixed

strategy to dissimulate some of his current information. In our more generalized setup, the

informed investor’s strategy depends on his expectation of his future private information. If

future information is sufficiently abundant, he would adopt a pure strategy to fully utilize

his current private information.

The second, and related, idea is the notion of “consumption smoothing”: the agent tries

to minimize the fluctuation in his consumption over time. The counterpart of this insight in

our dynamic trading model is “information-usage smoothing.” We formally show that the

informed investor’s objective is to minimize the time variation in the amount of his private

information revealed through trading and disclosure each period.

In the consumption-saving model, perfect consumption smoothing is not always feasible.

The agent can save in periods of abundance but can only consume his current wealth in

periods of scarcity because, as noted earlier, he cannot borrow against his future income.

Parallel to this intuition, in our trading model, the informed investor would like to utilize the
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same amount of information each period (i.e., “walk down the demand curve” and have the

same price impact each period). However, this is not always possible because he can transfer

his current information to future periods but not the other way around. We show that, in

the equilibrium of the dynamic trading model, the informed investor minimizes the time

variation of his information usage over time, given the timing of his private information.

Related, this result implies that, in equilibrium, the informed investor smooths his price

impact by minimizing the variation of his price impact over time. In special cases, e.g. in

the model of Huddart et al. (2001), the informed investor’s price impact is a constant over

time. More generally, however, despite the insider’s effort to smooth his price impact, it

varies over time due to the timing of the insider’s private information.

The third idea explored in our analysis is the notion of “precautionary saving,” which

suggests that an agent would save more today if he anticipates more income uncertainty in the

future. To analyze the implications of this insight on trading, we extend our baseline model

in introduce uncertainty to the size of the informed investor’s future information advantage.

We show that, similar to the result on saving for rainy days in the baseline model, the

investor would utilize less of his current information if he expects less information advantage

in the future on average. Moreover, as suggested by the notion of precautionary saving, the

informed investor would save more of his current private information for future use, if there

is more uncertainty on how much private information he would receive in the future.

We extend our baseline model, where the disclosure fully reveals the informed investor’s

trades, to analyze the case of imperfect disclosure.1 That is, after the transaction each period,

the market maker observes a signal, which is the informed investor’s trade size plus a noise.

This extension accounts for some important scenarios, such as the periodic regulatory filings

by mutual funds and hedge funds, which do not fully disclose their transactions. Moreover,

1We also consider three other extensions of our baseline model. In one extension, the intensity of noise
trading varies over time. In another, the informed investor’s private information is like a perishable good:
it may become public knowledge in each period. Finally, we analyze the limiting case, in which the trading
frequency approaches infinity and hence the model converges to the continuous-time limit. We show that,
with minimal adjustments, the trading model in each case can be transformed into a consumption-saving
model.
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this extended model includes both Kyle (1985) and Huddart et al. (2001) as limiting cases.

As the variance of the noise in the signal approaches zero, the disclosure becomes perfect and

the extended setting converges to our baseline model, which is a generalization of the model

in Huddart et al. (2001). In the other limiting case, as the variance of the noise approaches

infinity, the disclosure reveals no information and the setting converges to a generalized

version of Kyle (1985).

We characterize the equilibrium in this generalized model and show that when the noise

in the disclosure is higher than a certain threshold, the informed investor always adopt a

pure strategy. The intuition is that due to the high noise level in the disclosure, the informed

investor does not need to add noise to his trade to hide his information. Note that the noise

in the disclosure is infinity in Kyle (1985). Hence, the informed investor never needs to hide

his information and always adopts a pure strategy.

Finally, to interpret the informed investor’s mixed strategy, we consider an alternative

setup whereby the informed investor commits to a strategy of adding noise to his demand

and deliberately chooses the variance of the noise to optimize his trading profits. The rest

of the setup remains identical to our baseline model. We find that the equilibrium in this

variation model with commitment is identical to that in our baseline model. That is, the

implications on whether to dissimulate and how much noise to add to demand are the same

across the two models. Hence, the mixed strategy in our baseline model can be interpreted

“as if” the informed investor actively chooses how much noise to add in each period.

Our paper adds to the literature on informed trading by corporate informed investors

and institutional investors in financial markets. This literature is voluminous and so we

discuss most related studies, organized according to the two important features in our set-

ting: mixed strategies and sequential information arrivals. In terms of the former, our paper

is most related to Huddart et al. (2001), who is the first study to demonstrate that, in a

Kyle (1985) model, the informed investor plays a mixed strategy when his trade is man-

dated to be disclosed. Yang and Zhu (2020) investigate the behavior of an informed investor
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who leaks a signal about the demand to back-runners. The informed investor can choose

between the pure and mixed strategies, and is more likely to choose the latter if the infor-

mation leakage is more severe. Back and Baruch (2004) analyze a variant of Glosten and

Milgrom (1985) model and show that an informed investor would adopt a mixed strategy

by randomizing over orders to buy, sell, and wait. Our paper complements these studies in

several ways. First, methodology wise, we transform the equilibrium characterization into a

simple consumption-saving problem. Second, we extend and sharpen the results in Huddart

et al. (2001) and characterize the condition for dissimulation in equilibrium. Third, we pro-

vide an interpretation of the mixed strategy played in a Kyle (1985) model and show that

commitment has no value in the linear equilibrium.

The second feature—sequential information arrivals—is relevant to many settings in prac-

tice. The information acquisition process may result from the dynamics of informational

events—such as IPOs (e.g., Welch, 1992; Lowry and Schwert, 2002), mergers (e.g. Ferreira

and Laux, 2007) and acquisitions (e.g., Denis and Macias, 2013)—or the dynamics of re-

search and learning activities (e.g. Banerjee and Breon-Drish, 2022; Johannes et al., 2014).

Numerous studies examine the effects of sequential information acquisition (e.g. Bernhardt

and Miao, 2004; Caldentey and Stacchetti, 2010; Chau and Vayanos, 2008; Foucault et al.,

2016; Sastry and Thompson, 2019). Disclosure requirement and the ensuing mixed strategy

distinguish our analysis from those studies.

2 Model

Our model is a generalization of Kyle (1985) and Huddart et al. (2001). In these two classic

studies, the informed investor obtains all his private information about the asset’s liquidation

value in the initial period and receives no further private information afterwards. In contrast,

our analysis focuses on the sequential arrival of private information.

The economy has one risky asset and lasts for N periods, denoted by n = 1, ..., N . The
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risky asset has a liquidation value at the final period N , which is denoted as F and has an ex

ante distribution of N (0, σ2
F ) with σF > 0. The market is populated by an informed investor,

a continuum of noise traders, and a market maker. Everyone is risk neutral. The informed

investor submits a market order to trade xn shares in period n. The market maker sets the

asset price to break even. The time line of events in period n is summarized in Figure 1.

n−

The informed

investor ob-

serves Fn.

n

• The informed investor and noise
traders submit xn and un respec-
tively;

• Market maker observes yn =

xn + un, sets price as Pn, and fills

all demands.

n+

• The informed investor an-
nounces publicly xn and market
maker updates the price to P ∗

n ;

• If n = N , F is announced.

time

Figure 1. The timeline of the events in period n.

The informed investor observes private information about the asset’s liquidation value

and, critical to our analysis, his information arrives over time. To capture this sequential

learning feature, we divide the asset’s liquidation value F into N elements as follows:

F =
N∑

n=1

Fn,

where Fn ∼ N (0, σ2
Fn
) with σFn ≥ 0 and is serially independent across n. One can think of

the asset as N projects. Fi represents the earnings from project i, which is realized in period

i. The assumption of independence is without loss of generality because if the earnings are

correlated across projects, we can orthognalize and redefine them to ensure independence

over time.

By construction, σ2
F =

N∑
n=1

σ2
Fn
. As shown by Figure 1, in each period n, for n = 1, ..., N ,

the informed investor observes Fn at time n−, which is before the trading time of the period,

as indicated by time n in Figure 1. Note that Fn is long-lived information in the sense that

it affects the asset’s final liquidation value and never becomes public before the final period.
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Moreover, the model in Huddart et al. (2001) can be viewed as a special case of our model

with σ2
F1

= σ2
F and σ2

Fn
= 0 for n > 1, which implies that the informed investor obtains all

his private information in the first period.

At time n, the trading time of period n, noise traders have an aggregate demand of un

shares, with un ∼ N (0, σ2
u) (with σu > 0) and un is independent across n and from Fn.

As standard in the literature, noise trading provides the randomness to hide the informed

investor’s trade from the market maker. Upon receiving the aggregate order flow from the

informed investor and noise traders, yn = xn+un, the market maker sets the price Pn to his

expectation of the liquidation value to execute the trade. As in Huddart et al. (2001), the

informed investor is required to disclose his trading ex post. That is, after the transaction in

period n but before the next trading period n+1 (denoted by n+ in Figure 1), the informed

investor publicly discloses his trade size xn.

Remark. Under this assumption, disclosure perfectly reveals the informed investor’s trade

xn. This assumption is made to simply the analysis. In Section ****, we relax this assump-

tion so that after the disclosure, other investors observe xn + ϵ, where ϵ ∼ N(0, σ2) and is

independent from all other variables. This assumption captures the fact that disclosure is

infrequent. For example, mutual funds and hedge funds only need to disclosure their posi-

tions each quarter. Naturally, those disclosures do not precisely reveal their trades. This

assumption also represents the fact some investors, such as high-frequency traders, can es-

timate the trade size of informed investors (Yang and Zhu (2020)). This generalized setting

includes both Kyle (1985) and HHL(2001) as special cases. As σ approaches 0, the disclo-

sure perfectly reveals xn and hence the setting converges to that in Huddart et al. (2001).

Similarly, as σ approaches ∞, the disclosure does not reveal any information about xn and

hence the setting converges to that in Kyle (1985).

In response to the informed investor’s disclosure, the market maker adjusts her break-

even price from Pn to P ∗
n . Specifically, in period n, the market maker’s information set is

IM
n ≡ {y1, ..., yn, x1, ..., xn−1} at the time of trading and is IM

n+ ≡ {y1, ..., yn, x1, ..., xn} after
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the informed investor’s disclosure of his trade xn. At the time of transaction, the market

maker sets the execution price to

Pn = E[F |IM
n ]. (1)

After the informed investor’s disclosure, the market maker adjusts the asset price to

P ∗
n = E[F |IM

n+]. (2)

When computing prices Pn and P ∗
n in equations (1) and (2), the market maker takes as given

the informed investor’s trading strategies.

The informed investor’s information set in period n is II
n ≡ {F1, ..., Fn, P1, ..., Pn−1, P

∗
1 , ..., P

∗
n−1}.

The informed investor maximizes his expected trading profits:

max
xn,...,xN

E

[
N∑

j=n

πj|II
n

]
, (3)

where πj ≡ xj(F − Pj) is his trading profit directly attributable to his period-j trade. In

computing his optimal trade in (3), the informed investor takes the market maker’s pricing

rules as given. Following Kyle (1985), we define an equilibrium as follows:

Definition 1. An equilibrium is defined as trading strategies and pricing rules (xn, Pn, P
∗
n),

for n = 1, ..., N , such that at period n: (a) the market maker sets prices according to (1)

and (2), taking the informed investor’s trading strategies as given; and (b) the informed

investor’s strategy {xn,...xN} solves (3), taking the market maker’s pricing rules as given.

3 Equilibrium

In Section 3.1, we follow Kyle (1985) and Huddart et al. (2001) to conjecture and verify

a linear equilibrium. We then show that characterizing this equilibrium is mathematically
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equivalent to solving a consumption-saving model in Section 3.2.

3.1 Equilibrium Characterization

We follow Kyle (1985) and Huddart et al. (2001) and consider linear equilibria. That is, in

period n, for n = 1, ..., N , the trading strategies and the pricing rules are given by

xn = βn(
n∑

i=1

Fi − P ∗
n−1) + zn, (4)

Pn = P ∗
n−1 + λnyn, (5)

P ∗
n = P ∗

n−1 + γnxn, (6)

where zn ∼ N (0, σ2
zn), P

∗
0 = 0, and the parameters {βn, λn, γn, σzn} will be determined in

equilibrium.

Intuitively,
n∑

i=1

Fi − P ∗
n−1 is the difference between the informed investor’s expected liq-

uidation value computed based on his private information and the asset price determined

based on the public information. The conjecture in equation (4) is that the informed in-

vestor’s trade is linear in this difference. Moreover, as pointed out in Huddart et al. (2001),

due to the disclosure requirement, the informed investor may play a mixed strategy, i.e., add

noise to his trade to dissimulate his private information. Mathematically, in period n, the

informed investor adopts a mixed strategy if σzn > 0 and a pure strategy if σzn = 0. The

pricing function in (5) reflects that the market maker adjusts the execution price in period

n based on the aggregate order flow yn. After the informed investor’s disclosure, as shown

in (6), the market maker further adjusts the asset price based on the disclosed informed

investor order flow xn.

One key decision that the informed investor makes is how much information to “utilize”
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each period. Specifically, let k2
n be the variance of the stock price change in period n:

k2
n ≡ V ar(P ∗

n − P ∗
n−1). (7)

Empirically, kn corresponds to return volatility. Nonetheless, in our analysis, we focus more

on its interpretation from an information perspective. The variance of the price change is

driven by the new information revealed by the informed investor’s trade in period n. If

the informed investor trades more aggressively in period n, then P ∗
n − P ∗

n−1 reveals more

new information and its variance k2
n is higher. Hence, k2

n can be interpreted as the amount

of private information utilized by the informed investor in period n. Moreover, the total

amount of private information utilized by the informed investor during the first n periods is

simply
n∑

i=1

k2
i . This is because, in equilibrium, price process is set by the risk-neutral market

maker and hence is a martingale and therefore price changes are independent over time.

We use Σn to denote the information advantage the informed investor has accumulated

after his disclosure in period n. That is, Σn is the total amount of the private information

that is possessed by the informed investor but not yet revealed after the disclosure of his

trade at period n:

Σn ≡ V ar

(
n∑

i=1

Fi|P ∗
1 , ..., P

∗
n

)
. (8)

This definition implies

Σn =
n∑

i=1

σ2
Fi
−

n∑
i=1

k2
i , (9)

because the first term on the right hand side is the total amount of private information that

the informed investor obtained in the first n periods while the second term, as noted earlier,

is the total amount utilized.
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The informed investor faces constraints on how much private information he can utilize:

k2
n ≤ Σn−1 + σ2

Fn
, (10)

for n = 1, ..., N , with Σ0 ≡ 0. Intuitively, Σn−1 is the unused private information the

informed investor has accumulated at the beginning of period n. He then observes private

signal Fn (which has a variance of σ2
Fn
) and so his balance of unused information increases

by σ2
Fn
. Hence, the total amount of private information available to the informed investor in

period n is Σn−1 + σ2
Fn
. Moreover, equation (9) implies that the dynamic of Σn is given by

Σn = Σn−1 + σ2
Fn

− k2
n, (11)

for n = 1, ..., N . Since the amount of private information revealed by the informed investor’s

trading and disclosure is k2
n, the unrevealed private information amount at the end of period

n, Σn, is given by (11). The following theorem characterizes the linear equilibrium.

Theorem 1. There exists a unique linear equilibrium in which the informed investor’s trad-

ing strategies and the market maker’s pricing rules are given by equations (4)–(6) with pa-

rameters characterized as follows: for n = 1, ..., N ,

βn =
knσu

Σn + k2
n

, (12)

λn =
kn
2σu

, (13)

γn =
kn
σu

, (14)

σ2
zn =

Σn

Σn + k2
n

σ2
u, (15)

where Σn is given by (9) and {k1, · · · , kN} are the unique non-negative solution to the fol-
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lowing maximization problem:

max
k1,··· ,kN

N∑
i=1

ki (16)

subject to
n∑

i=1

k2
i ≤

n∑
i=1

σ2
Fi
, for n = 1, ..., N. (17)

The above theorem shows that all equilibrium parameter values are pinned down by equa-

tions (12)–(15) once the values of {k1, · · · , kN} are determined. The values of {k1, · · · , kN}

can be computed from the constrained maximization problem in (16) and (17).

The objective in (16) is essentially to maximize the sum of the informed investor’s ex-

pected trading profits across N periods. Specifically, since the market maker is risk neutral

and breaks even, the informed investor’s expected profits in period n must be equal to the

noise trader’s expected loss in period n: E[πn] = λnσ
2
u. Combined with the expression of λn

in equation (13) in Theorem 1, we obtain E[πn] = knσu/2. Hence, the objective in (16) is

equivalent to maximizing the informed investor’s expected total trading profits.

Conditions in (17) are the informed investor’s “information budget constraint.” In each

period n, the total amount of information the informed investor has utilized during periods 1

through n should be no more than the total amount of information he has received by then.

These constraints are equivalent to those in (10) and (11). Specifically, in period n, the pri-

vate information available to the informed investor is the information accumulated from the

past Σn−1 and the information obtained in the current period σ2
Fn
. If the informed investor

chooses not to utilize all his private information (k2
n < Σn−1 + σ2

Fn
), the unused information

would be “saved” for future use. The essence of constraints in (10) and (11) is that the

informed investor can transfer his private information across time, but in an “asymmetrical”

way: he can “save” his private information for future use but cannot “borrow” his future

private information to utilize today.
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3.2 Equivalence to a Consumption-Saving Model

The previous discussion hints at the striking similarity between the informed investor’s max-

imization problem in (16)-(17) and a dynamic consumption-saving problem. We show in

this section that there is indeed an equivalence between the two problems. Specifically, we

will define an N -period consumption-saving problem and show that it is mathematically

equivalent to the informed investor’s optimization problem defined by (16)-(17).

To avoid confusion in our discussion, we will refer to the agent in the consumption-

saving problem as a “consumer,” which is to contrast with the “informed investor” in our

model in Section 2. Intuitively, for a given period n, the informed investor receiving his

private information (which is measured by σ2
Fn
) corresponds naturally to a consumer receiving

an “income.” Similarly, the informed investor’s information usage k2
n corresponds to the

consumer’s “consumption.” As noted earlier, the informed investor can save his current

private information for future use but cannot borrow his future private information to use

today. This feature corresponds to a friction the consumer faces: he can save but cannot

borrow. Guided by the intuition above, we can transform the maximization problem in

(16)-(17) into a dynamic consumption-saving problem with a borrowing constraint.

Specifically, let Yn, Cn, and Sn denote the consumer’s income, consumption, and savings

in period n, respectively, for n = 1, ..., N . The consumer cannot borrow but can save his

income for future consumption:

Cn ≤ Sn−1 + Yn, (18)

Sn = Sn−1 + Yn − Cn, (19)

with S0 = 0. The constraint in (18) shows that the consumption in a given period cannot be

more than the consumer’s current income and savings. That is, the consumer cannot borrow

against his future income to consume. Equation (19) shows that the unconsumed resource

Sn−1 + Yn − Cn becomes the savings for the next period. Note that this equation implies
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that the interest rate is zero.

The above description suggests that the consumer’s income and consumption (Yn and

Cn) correspond to σ2
Fn

and k2
n in our trading-game model in Section 2. Comparison between

equations (11) and (19) shows that the consumer’s savings Sn corresponds to Σn in our

trading game. Finally, the correspondence between k2
n and Cn suggests that kn corresponds

to
√
Cn. Hence, the informed investor’s objective function (16) corresponds to the consumer

maximizing his utility from consumption over time, where his utility function is u(Cn) =
√
Cn. Therefore, we can transform the maximization problem in (16)-(17) into the following

consumption-saving problem:

max
{Cn,··· ,CN}

N∑
i=1

u(Ci), (20)

subject to (18) and (19).

Table 1 summarizes the correspondences between the variables in the trading game and

those in the consumption-saving problem and the following proposition establishes the math-

ematical equivalence between the two models.

Table 1. Transform the trading game into a consumption-saving problem.

Trading game Consumption-saving problem

Variable:
Information leakage k2n Consumption Cn

Expected profit knσu/2 Utility
√
Cn

Information endowment σ2
Fn

Income Yn
Unused information amount Σn Saving Sn

Friction:
Asymmetric information transfer Borrowing constraint
k2n ≤ Σn−1 + σ2

Fn
Cn ≤ Sn−1 + Yn

• If k2n < Σn−1 + σ2
Fn

: “mixed” • Cn < Sn−1 + Yn: “saving”

• If k2n = Σn−1 + σ2
Fn

: “pure” • Cn = Sn−1 + Yn: “consuming all”

Theorem 2. The maximization problem of (16) under constraints (10) and (11) is equivalent

to the consumption-saving problem in (20) subject to (18) and (19), if we relabel σ2
Fn
, k2

n,
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and Σn as Yn, Cn, and Sn, respectively.

The above proposition establishes the mathematical equivalence between our trading

game in Section 2 and a standard dynamic consumption-saving problem where the consumer

has a constant relative risk aversion utility function with a relative risk aversion coefficient

of 1/2 and face a borrowing constraint.

4 Kyle Meets Friedman

The transformation in Theorem 2 suggests that we can directly borrow the insights in

the consumption-saving literature to guide our analysis of the trading model. The per-

manent income hypothesis of Friedman (1957), arguably the most important insight in the

consumption-saving literature, highlights the role of expectations in shaping the consump-

tion behavior. In this section, we consider three prominent ideas inspired by this hypothesis

and show how they can be adapted to shed lights on our dynamic trading model.

4.1 Saving for Rainy Days

The idea of “saving for rainy days” suggests that when anticipating times of scarcity, the

agent would consume less today to save more for the future. This intuition manifests itself in

the trading game as follows. In periods with abundant private information, when anticipating

less private information in the future, the informed investor would save his current private

information for future use. In contrast, in periods of scarcity of private information, the

informed investor utilizes more or even all his current information.

This intuition is formally illustrated in a two-period example. Let us consider the case

of N = 2, that is, there are two rounds of trading in the economy and the informed investor

receives his private signals F1 and F2 before the first and second trading periods, respectively.

The following corollary characterizes the equilibrium for this case.

Corollary 1. If N = 2, the equilibrium is characterized in the following two cases:
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Case 1: If σ2
F1

> σ2
F2
, then the informed investor plays a mixed strategy in period 1 and

a pure strategy in period 2, and the equilibrium variables are given by

σ2
z1
=

σ2
F1

− σ2
F2

2σ2
F1

σ2
u, σ2

z2
= 0,

β1 =
σFσu√
2σ2

F1

, β2 =

√
2σu

σF

, k1 = k2 =
σF√
2
,

λ1 = λ2 =
σF

2
√
2σu

, γ1 = γ2 =
σF√
2σu

.

Case 2: If σ2
F1

≤ σ2
F2
, then the informed investor plays a pure strategy in both periods,

and the equilibrium variables are given by

σ2
z1
= σ2

z2
= 0,

βi =
σu

σFi

, λi =
σFi

2σu

, γi =
σFi

σu

, ki = σFi
, for i = 1, 2.

This corollary formally shows that the informed investor’s information usage in period 1

depends on not only his current information but also his expectation of future information.

The informed investor plays a mixed strategy in period 1 if and only if he receives

more private information in period 1 than second 2 (i.e., σF1 > σF2). This can be intuitively

understood from our consumption-saving analogy. Suppose a consumer’s total income across

two periods is $1. He would like to allocate his wealth equally across two periods, i.e.,

C1 = C2 = $0.5. However, whether this allocation is feasible depends on the timing of his

incomes in the two periods because the consumer can save but not borrow.

If the consumer receives $0.7 in period 1 and $0.3 in period 2, then he can achieve the

ideal allocation: He can consume $0.5 out of the first period income $0.7, and save the

remaining $0.2, so that he can also consume $0.5 in period 2. If he receives $0.3 in period 1

and $0.7 in period 2, then he will be forced to consume his income each period (i.e., C1 = $0.3
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and C2 = $0.7) because he cannot borrow to consume the ideal amount in period 1.

We can recast the above intuition into our trading game. Parallel to the example above,

the informed investor is endowed with a total amount of information of 1 (i.e., σ2
F1
+σ2

F2
= 1).

He would like to utilize the same amount of information each period, that is, k2
1 = k2

2 = 0.5.

However, whether this ideal allocation is feasible depends on the timing of information

arrival. If the informed investor receives more information in the first period, say, σ2
F1

= 0.7

and σ2
F2

= 0.3 (as in Case 1 of Proposition 1), then he can achieve his ideal allocation. He

plays a mixed strategy and chooses k2
1 = 0.5 in period 1. This leaves a balance 0.2 of unused

information (i.e., Σ1 = σ2
F1

− k2
1 = 0.7 − 0.5 = 0.2), so that he can choose k2

2 = 0.5 (i.e.,

k2
2 = Σ1 + σ2

F2
= 0.2 + 0.3 = 0.5) in the second period. By contrast, if the informed investor

receives less information in the first period, for instance, σ2
F1

= 0.3 and σ2
F2

= 0.7 (as in

Case 2 of Proposition 1), then the informed investor will use up his private information each

period (i.e., k2
1 = 0.3 and k2

2 = 0.7). In this case, he plays a pure strategy in both periods.

The above results illustrate that analogous to the permanent income hypothesis, the

informed investor’s current information usage depends on not only his current information

but also his future information. These results generalize and sharpen those in Huddart et al.

(2001). The model in Huddart et al. (2001) belongs to Case 1 with σ2
F1

= σ2
F and σ2

F2
= 0.

Our analysis in Case 1 shows that the dissimulation result in Huddart et al. (2001) holds

more generally, i.e., as long as σ2
F1

> σ2
F2
. The dissimulation result, however, disappears in

Case 2, where the informed investor receives less private information in the first period than

in the second (σ2
F1

< σ2
F2
). Anticipating the arrival of more information in the second period,

the informed investor does not dissimulate his information in the first period. Instead, he

utilizes all his private information available at that time.

These results have direct implications on the informed investor’s trading strategy. In the

former case, similar to the result in Huddart et al. (2001), the informed investor adopts a

mixed strategy to dissimulate his current private information. In the latter case, however,

he adopts a pure strategy to fully utilize all his private information. These results extend
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and sharpen the insight in Huddart et al. (2001), who focus on the special case in which the

informed investor possesses all his private information in the first period. With abundant

private information, the informed investor always adopt a mixed strategy to dissimulate his

information. In our more generalized setup, the informed investor’s strategy depends on his

expectation of his future private information. If future information is sufficiently abundant,

he would adopt a pure strategy to fully utilize his current private information.

At least since Friedman (1957), it has been recognized that one’s current consumption

depends on his future expectations. Adapting this insight to our trading model, we obtain

that the investor’s information usage in period n, kn, depends on not only his current infor-

mation but also his expectation of future information. This has direct implications on the

informed investor’s trading strategies and the equilibrium asset prices.

Note that, as in Huddart et al. (2001), if the informed investor plays a pure strategy,

disclosure would fully reveal his private information. This is illustrated in equation (4). If

the informed investor adopts a pure strategy in period n, i.e., zn = 0, then the disclosure of

xn reveals his information
n∑

i=1

Fi − P ∗
n−1. Hence, if the informed investor does not want to

utilize all his current information, he would adopt a mixed strategy: By adding noise to his

trading order, the informed investor can dissimulate his private information for future use.

What determines the informed investor’s trading strategy? The consumption-saving

model described in Section 3.2 offers a clear answer. In times of abundance (i.e., Sn−1+Yn is

high relative to future incomes), the consumer chooses to save his current resources for future

consumption. This, as noted in Proposition 2, corresponds to saving his current information

for future use in the trading model. If the informed investor has abundance of private

information in period n (i.e., Σn−1 + σ2
Fn

is high relative to future private information),

he would play a mixed strategy, i.e., save some private information for future use: k2
n <

Σn−1 + σ2
Fn
, which is equivalent to Σn > 0. If his private information is scarce in period

n, however, the informed investor would play a pure strategy to utilize all his information:

k2
n = Σn−1 + σ2

Fn
, which is equivalent to Σn = 0. Therefore, as summarized in the following
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proposition, Σn is an indicator of whether the informed investor plays a pure or mixed

strategy in equilibrium.

Proposition 1. In equilibrium, the informed investor plays a mixed strategy in period n if

and only if Σn > 0.

4.2 Consumption Smoothing

Consumption smoothing is a key insight in the consumption-saving literature. Its counterpart

in the trading model is that the informed investor would like to smooth his information

usage over time. Indeed, in the two-period example in the previous subsection, the informed

investor minimizes the difference between his information usage across the two periods. What

is the notion of information-usage smoothing in an N -period model? We formalize it in the

following proposition.

Proposition 2. Denote k ≡
∑N

i=1 ki/N and λ ≡
∑N

i=1 λi/N . The informed investor’s max-

imization problem in (16) and (17) is equivalent to either of the following two minimization

problems:

(1) Smoothing information usage over time:

min
{k1,··· ,kN}∈RN

≥0

N∑
i=1

(ki − k)2, (21)

subject to
n∑

i=1

k2
i ≤

n∑
i=1

σ2
Fi
, for n = 1, ...N − 1, (22)

N∑
i=1

k2
i =

N∑
i=1

σ2
Fi
. (23)

(2) Smoothing price impact over time:

min
{λ1,··· ,λN}∈RN

≥0

N∑
i=1

(λi − λ)2, (24)

subject to (22) and (23).
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Moreover, information usage kt and price impact λt are weakly increasing over time:

kt ≤ kt+1 and λt ≤ λt+1 for t = 1, ..., N − 1. (25)

The objective function (21) shows that the informed investor aims to minimize the time

variation of his information usage across periods. Moreover, the objective function (24)

shows that minimizing the variation of information usage is equivalent to minimizing the

variation in price impact. Intuitively, the informed investor’s private information usage is

closely linked to his price impact, and indeed, these two are proportional to each other in our

model (see (13)). So, smoothing information usage across periods is the same as smoothing

price impact over time.

The proposition also shows that the informed investor’s information usage and price

impact is weakly increasing over time (equation (25)). This is a direct consequence from

information smoothing in (21). Ideally, the informed investor would like to keep his infor-

mation usage kt constant over time. Hence, kt > kt+1 is never optimal because the informed

investor can increase his expected trading profit by saving his information in period t to use

in the next period (i.e., reducing kt to increase kt+1). On the other hand, because the in-

formed investor cannot transfer future private information to utilize today, kt < kt+1 can be

sustained in equilibrium if the informed investor’s information budget constraint is binding

(i.e., he utilizes all available private information in period t). As noted in (13), since the price

impact and information usage are closely related, the informed investor using information at

a weakly increasing rate implies that the price impact is also weakly increasing, λt ≤ λt+1.

These results are in contrast to those in previous studies, where the price impact is usually

either a constant (e.g., Kyle (1985), Huddart et al. (2001)) or tends to decrease over time

(e.g. Caldentey and Stacchetti (2010)).2

This proposition generalizes the insight in Kyle (1985) and Huddart et al. (2001), where

2One notable exception is Collin-Dufresne and Fos (2016), where the price impact tends to increase over
time due to a liquidity-timing option.
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the informed investor utilizes his private information at a constant rate (i.e., minimizes the

time variation of his information usage to zero). In our model, the total amount of the

private information is σ2
F . Hence, the best possible scenario is to utilize σ2

F/N each period.

This scenario, however, is not always feasible, as illustrated in the two-period example in

Proposition 1. When is perfect information-usage smoothing possible? We characterise the

general condition for perfect information smoothing in the following corollary.

Corollary 2. The necessary and sufficient condition for perfect information-usage smoothing

(i.e., k2
n = σ2

F/N for n = 1, · · · , N) is

n∑
i=1

σ2
Fi

≥ n

N
σ2
F , for n = 1, · · · , N. (26)

Under condition (26), the equilibrium in period n has the following properties:

λn =
σF

2
√
Nσu

, (27)

E[πn] =
σFσu

2
√
N
, (28)

Un = (1− n/N)σ2
F , (29)

where Un is the uncertainty of the liquidation value conditional on asset prices till period n:

Un ≡ V ar (F |P ∗
1 , ..., P

∗
n) .

If the inequalities in (26) hold strictly for n ≤ N − 1, the informed investor adopts a mixed

strategy in all but the last period.

Condition (26) is such that the informed investor can always “afford” to utilize σ2
F/N

private information each period. Specifically, if sufficient private information arrives early,

the informed investor always has no less than σ2
F/N unused information available in each

period. Hence, he achieves perfect information smoothing by utilizing σ2
F/N private infor-
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mation each period. Consequently, his price impact and expected trading profit are also

constants across periods, as shown in equations (27) and (28), respectively. Since the in-

formed investor’s private information is revealed at a constant rate, as shown in equation

(29), the stock price uncertainty decreases linearly over time. If the inequalities in (26) hold

strictly for n ≤ N−1, they guarantee that the informed investor always has more than σ2
F/N

private information in each period. To utilize σ2
F/N private information each period, the

informed investor needs to dissimulate his private information (i.e., adopt a mixed strategy)

in all but the last period.

It is interesting to compare the above results with those in Huddart et al. (2001), where

the informed investor receives all his private information in the first period: σ2
F1

= σ2
F and

σ2
Fi

= 0 for i = 2, ...N . This is a special case of (26). In equilibrium, the informed investor

adopts a mixed strategy and utilizes the same amount of private information each period.

Proposition 2 shows that these results hold more generally under the conditions in (26).

To further illustrate the implications in Proposition 2, we consider the following two

cases. In Case 1, the informed investor’s information arrives at a decreasing rate, that is

σ2
Fn

> σ2
Fn+1

for n = 1, ..., N − 1. (30)

In Case 2, the informed investor’s information arrives at an increasing rate, that is

σ2
Fn

< σ2
Fn+1

for n = 1, ..., N − 1. (31)

These two cases are a generalized version of the two cases in the two-period example

in Propostion 1. Condition (30) in Case 1 is a special case of (26). Hence, as shown in

Proposition 2, the informed investor adopts a mixed strategy in all but the last period and

perfectly smooths his information usage over time k2
n = σ2

F/N , for n = 1, ..., N . Perfect

smoothing is not feasible in Case 2. Since the private information arrives at an increasing

rate, the informed investor does not possess enough private information in early rounds to
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utilize σ2
F/N information each period. The equilibrium in this case is summarized in the

following corollary.

Corollary 3. Under the conditions in (31), the informed investor adopts a pure strategy in

every period and the equilibrium in period n, for n = 1, ..., N , has the following properties:

kn = σFn , (32)

λn =
σFn

2σu

, (33)

E[πn] =
σFnσu

2
, (34)

Un > (1− n/N)σ2
F , n ̸= N. (35)

Anticipating more private information in the future, as shown in (32), the informed

investor utilizes all his private information (i.e., adopts a pure strategy) each period. It

has been noted in the literature that a monopolistic informed investor has the incentive to

minimize the price impact by either breaking down his order into small ones (Kyle, 1985)

or by adding noise to his order (HHL, 2001) to “go down” the market maker’s demand

curve. Proposition 3 shows that the anticipation of future private information expedites

the informed investor’s usage of his private information. It generalizes the results in the

two-period example in Proposition 1 and shows that when private information arrives at an

increasing rate, the informed investor chooses to fully utilize his private information each

period. Moreover, since the informed investor utilizes information at an increasing rate, his

price impact and expected trading profits also increase over time, as shown in equations (33)

and (34). Finally, relative to the equilibrium in Case 1, the informed investor utilizes less

private information and hence the stock price informativeness is lower (i.e., Un is higher) in

all but the final periods (see (29) and (35)).

To further illustrate the equilibrium, we analyze a numerical example of Cases 1 and

2. Specifically, we set N = 10, σ2
F = 1, and σ2

u = 0.1. The informed investor’s private
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information arrives at a linearly decreasing rate in Case 1:

σ2
Fn

=
2(N − n+ 1)

N(N + 1)
σ2
F , (36)

and at a linearly increasing rate in Case 2:

σ2
Fn

=
2n

N(N + 1)
σ2
F . (37)

The equilibria in these two cases are summarized in Figure 2. The upper left panel

plots the trading intensity βn against the trading period n. The dashed line and solid line

represents Cases 1 and 2 , respectively. In all but the final period, the informed investor trade

less aggressively in Case 1 than in Case 2. This is because, in Case 1, the informed investor

anticipates less private information in later periods and hence trades less aggressively to

save his information for future use. In contrast, when anticipating more private information

in Case 2, the informed investor would exploit his current information more aggressively in

early periods.

The upper right panel plots the price impact. As shown in Proposition 2, in Case 1

(illustrated by the dashed line), the informed investor utilizes the same amount of information

each period, leading to a constant price impact. The solid line shows that the price impact

increases over time in Case 2. This is because the informed investor’s information arrives

at an increasing rate and, as shown in Proposition 3, the informed investor utilizes all his

information each period.

The lower left panel reports how the informed investor dissimulates his private informa-

tion. The dashed line shows that in Case 1, the case with a decreasing information arrival

rate, the informed investor adopts a mixed strategy (i.e., σ2
zn > 0) in all but the last period.

In contrast, as shown by the solid line, the informed investor always adopts a pure strategy

(i.e., σ2
zn = 0) in Case 2.

Finally, the lower right panel plots Un, the uncertainty about the liquidation value con-
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Figure 2. Equilibrium under Monotonic Information Arrivals
This figure plots the trading intensity βn, price impact λn, the noise in the informed investor’s
demand σ2

zn , and price uncertainty Un respectively, for the case with a decreasing information
arrival rate as in equation (36) (dashed line) and the case with an increasing information
arrival rate as in equation (37) (solid line). Parameter values: σ2

F = 1, σ2
u = 0.1, and N = 10.
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ditional on asset price history till period n, against time n. The dashed line shows that

in Case 1, the informed investor utilizes the same amount of information each period and

hence the uncertainty decreases linearly. In Case 2, where the informed investor’s possesses

less private information in earlier periods. Although all private information is revealed each

period, the uncertainty still decreases more slowly than in Case 1 (i.e., the solid line is above

the dashed line).

4.3 Precautionary Savings

Precautionary saving is a key insight in the consumption-saving literature. It suggests that

a consumer would reduce his consumption today if he anticipates more income uncertainty

in the future. The counterpart of this idea in our trading model is that the informed in-
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vestor would utilize less of his current information if he anticipate more uncertainty in his

information advantage in the future. To analyze this idea, we need to introduce uncertainty

to the informed investor’s future information advantage.

To simplify the analysis, we consider the two-period model that is analyzed in Proposition

1. The only modification is the uncertainty in the informed investor’s advantage in second

period:

σ2
F2

=


σ2
F2

+∆, with probability 1
2
,

σ2
F2

−∆, with probability 1
2
.

(38)

That is, in period 1, there is uncertainty in the informed investor’s advantage in period 2,

which is either σ2
F2

+∆ or σ2
F2

+∆, with equal likelihood. This uncertainty is resolve after

period 1 before the informed investor receives his signal for the second period.

To best illustrate the notion of precautionary saving, we focus on the case σ2
F1

> σ2
F2
.3

We characterize the equilibrium of this modified economy in the appendix and summarize

the implications on precautionary savings in the following proposition.

Proposition 3. In the equilibrium of the economy described in this subsection and in the

case σ2
F1

> σ2
F2
, the informed investor’s information usage in period 1 is increasing is the

expectation of his second period information:
∂k21
∂σ2

F2

> 0, but is decreasing in the uncertainty

∂k21
∂∆

> 0.

5 Extensions

In this section, we consider three extensions. Section 5.1 examines the case in which the

intensity of noise trading varies over time. Section 5.2 analyzes the case in which the informed

investor’s private information may be leaked to the public in each period. Finally, in Section

5.3, we explore the limiting case, in which the trading frequency approaches infinity and

3This corresponds to Case 1 in Proposition 1, where the informed investor’s decision is an interior solution.
In contrast, the informed investor’s choice is a corner solution in Case 2. That is, he always utilizes all his
information in period 1, making the analysis of savings trivial.
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hence the model converges to the continuous-time limit. We show that, in each case, the

trading game can be transformed into a consumption-saving problem. Hence, the analysis of

each extension can be easily accommodated by adjusting the consumption-saving problem.

Finally, in Section 5.4, we extend the baseline model to consider the case of imperfect

disclosure. That is, after the transaction each period, the market maker observes an imperfect

signal about the informed investor’s trade size.

5.1 Time-Varying Noise Trading

In this extension, the variance of noise trading is time-varying. Specifically, in period n,

noise traders have an aggregate demand of un shares, with un ∼ N (0, σ2
un
), with σun > 0,

and un is independent across n and from Fn. The following proposition characterizes the

equilibrium in this case.

Proposition 4. 1) In the equilibrium of the economy with time-varying noise trading, the

informed investor’s trading strategies and the market maker’s pricing rules are given by

equations (4)–(6) with parameters characterized by equations (A.22)–(A.25) in the appendix,

and {k1, · · · , kN} are the unique non-negative solution to the following maximization problem:

max
k1,··· ,kN

N∑
i=1

kiσui
(39)

subject to (17).

2) The maximization problem defined in (39) and (17) is equivalent to

min
{k1,··· ,kN}∈RN

≥0

N∑
i=1

[
ωi(k

′
i − k′)2

]
, (40)

subject to (22) and (23), where ωi ≡ σ2
ui
/
∑N

j=1 σ
2
uj
, k′

i ≡ ki/σui
, and k′ ≡

∑N
i=1 ωik

′
i. The
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maximization problem defined in (39) and (17) is also equivalent to

min
{λ1,··· ,λN}∈RN

≥0

N∑
i=1

[
ωi(λi − λ)2

]
, (41)

subject to (22) and (23), where λ ≡
∑N

i=1 ωiλi.

3) The maximization problem defined in (39) and (17) is equivalent to the following

consumption-saving problem

max
{Cn,··· ,CN}

N∑
i=1

u(Ci/pi), (42)

subject to (18) and (19), where pi ≡ 1/σ2
ui

is the price level in period i, if we relabel σ2
Fi
, k2

i ,

and Σi as the nominal income, consumption, and saving, Yi, Ci, and Si, respectively.

The above proposition shows three main results. First, as in Theorem 1, all equilibrium

quantities can be written as functions of the informed investor’s information usage ki, for

i = 1, ..., N , which are determined by a maximization problem. The objective function of

this maximization problem, (39), is a generalized version of its counterpart in the baseline

model (equation (16)). As noted in the baseline model, the informed investor’s expected

trading profits from his trading in period i is given by kiσui
. Hence, the objective in (39)

has the same economic meaning as in the baseline case: maximizing the informed investor’s

expected trading profits.

Second, as in the baseline case, the informed investor tries to smooth his information usage

and price impact over time. As shown in (40), the informed investor tries to minimize the time

variation in k′
i, which is the informed investor’s normalized information usage ki/σui

. The

normalization accounts for the fact that the informed investor’s trading is more profitable

when there is more noise trading. Moreover, in both the objective function (40) and the

definition of k′, the observation in period i is weighted by ωi, noise trading variance in

period i divided by the total noise trading variance across N periods. In this generalize
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case, “perfect smoothing” is achieved if k′
i is a constant over time. That is, if the informed

investor’s information usage in a given period is proportional to the noise trading size in that

period. As is the case in the baseline model in Section 4.2, perfect smoothing is feasible if

sufficient private information arrives in early periods. Similarly, the objective in (41) shows

that the informed investor tries to minimize the time variation in price impact across time.

These results are a generalized version of those in the baseline model. If we set σui
= σu

for i = 1, ...N , the two minimization problems in (40) and (41) become those in the baseline

model ((21) and (24)).

Finally, as in the baseline case, the informed investor’s information usage problem can be

transformed into a consumption-saving problem. The only modification is that the income

consumption and savings are nominal variables with a price level 1/σ2
ui

to account for the

fact that the informed investor’s trading is more profitable when there is more noise trading.

5.2 Potential Information Leakage

In this extension, we introduce the possibility of information leakage into the baseline model

in Section 2. Specifically, before trading takes place each period, the fundamental information

F may become public with a probability 1 − q ∈ [0, 1]. The rest of the model is identical

to that in the baseline model. After the information leakage, the informed investor has

no incentive to trade, and the model becomes degenerate. Hence, we will focus on the

equilibrium when the information leakage has not yet occurred. We use the same set of

variables as in the baseline model in Section 2 to denote their counterparts in the current

setting under the condition that the information leakage has not occurred yet. For example,

we use k2
n and Σn to denote the informed investor’s information usage and unused information

in period n if the information leakage has not yet occurred. The following proposition

characterises the equilibrium along the path where the information leakage does not occur.

Proposition 5. 1) In the equilibrium of the economy with information leakage, conditional

on the information leakage not occurring, the informed investor’s trading strategies and the
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market maker’s pricing rules are given by equations (4)–(6) with parameters characterized by

equations (12)–(15), and {k1, · · · , kN} are the unique non-negative solution to the following

maximization problem:

max
k1,··· ,kN

N∑
i=1

qi−1ki (43)

subject to (17).

2) The maximization problem defined in (43) and (17) is equivalent to

min
{k1,··· ,kN}∈RN

≥0

N∑
i=1

(ki − qi−1k)2, (44)

subject to (22) and (23), where k ≡
N∑
i=1

qi−1ki/N . It is also equivalent to

min
{λ1,··· ,λN}∈RN

≥0

N∑
i=1

(λi − qi−1λ)2, (45)

subject to (22) and (23), where λ ≡
N∑
i=1

qi−1λi/N .

3) The maximization problem defined in (39) and (17) is equivalent to the following

consumption-saving problem:

max
{Cn,··· ,CN}

N∑
i=1

qi−1u(Ci), (46)

subject to (18) and (19), if we relabel σ2
Fn
, k2

n, and Σn as Yn, Cn, and Sn, respectively.

The above proposition shows that the equilibrium in this case is similar to that in the

baseline model. One notable change is the objective function (43), whereby information

usage in period n is discounted by qn−1. This is because that, each period, the trading

game continues to the next period with a probability q. Once the games stops (i.e., the

information revelation occurs), the informed investor can no longer benefit from trading on
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his information. Hence, the benefit from future information usage is discounted by q each

period.

Moreover, as in the baseline case, the informed investor tries to smooth his information

usage and price impact. The modifications in the minimization problems (44) and (45)

account for the fact that, each period, the trading game continues with a probability q. In

fact, the objectives in (44) and (45) suggest that the informed investor achieves “perfect

information smoothing” and “perfect price-impact smoothing” if kn/q
n−1 is a constant for

all n.

Finally, also similar to the result in the baseline case, the informed investor’s information

usage problem can be transformed into a consumption-saving problem. As shown in (46),

the only adjustment relative to the baseline result in that the utility from the consumption

in period n is discounted by qn−1.

5.3 Continuous-Time Limit

To study the equilibrium in the continuous-time limit, we normalize the total duration of

the N periods in our baseline model as 1 and assume that the length of each period is h.

Hence, the nth period refers to the time interval ((n − 1)h, nh] and the n-th trade occurs

at the end of the period, i.e., at the moment t = nh. In the limit, as N approaches ∞, the

length of each period h approaches 0 and hence our model converges to a continuous-time

limit. This treatment is standard in the literature (e.g., Kyle, 1985; Vayanos, 1999).

Let u(n) denote the cumulative noise trading until the end of the n-th period. That

is, ∆u(n) ≡ u(n) − u(n − 1) is the size of the noise trading during the n-th period and

its distribution is ∆u(n) ∼ N (0, σ2
uh). As h approaches 0, the process u(n) approaches its

continuous-time limit u(t) such that

du(t) = σu(t)dBu(t), (47)
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where Bu(t) is a standard Brownian motion.

The stock’s fundamental value in the final period, F (1), follows N (0, σ2
F ). It consists of

N components: F (1) =
∑N

n=1∆F (nh), where ∆F (nh) ≡ F (nh)−F ((n−1)h) ∼ N (0, σ2
Fn
h)

for n = 1, ..., N and F (0) = 0. The informed investor observes ∆F (nh) in period n. As h

approaches 0, we obtain

dF (t) = σF (t)dBF (t), (48)

where BF (t) is a standard Brownian motion that is independent of Bu(t) with
∫ 1

0
σ2
F (t)dt =

σ2
F .

4 The linear equilibrium conjectured in equations (4)–(6) converges to

dx(t) = βt(F (t+ dt)− P ∗(t))dt+ σz(t)dBz(t), (49)

P (t+ dt) = P ∗(t) + λ(t)(dx(t) + du(t)), (50)

dP ∗(t) = γ(t)dx(t), (51)

where Bz(t) is a standard Brownian motion that is independent of Bu(t) and BF (t), P
∗(0) =

0, and {β(t), λ(t), γ(t), σz(t)} are determined in equilibrium.

Similar to the definitions of information usage and unrevealed information in the baseline

model (i.e., equation (7) and (8)), we define their continuous-time counterparts as

k2(t)dt ≡ V ar(dP ∗(t)), (52)

Σ(t) ≡ V ar[F (t)|{P ∗(s), for 0 ≤ s ≤ t}]. (53)

During (t, t + dt], the amount of private information obtained by the informed investor is

4For simplicity, we adopt the diffusion specification in (48). That is, the informed investor’s information
acquisition is “smooth” over time. It is straightforward to generalize the model to allow for the situation
where the informed investor acquires a “bulk” of information at certain times. This can be accommodated
by assuming that F (t) follows a jump diffusion process.
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σ2
F (t)dt and the amount revealed by his trading and disclosure is k2(t)dt, leading to

dΣ(t) = (σ2
F (t)− k2(t))dt. (54)

Finally, the budget constraints (18) and (19) of the consumption-saving problem become

C(t)dt ≤ S(t) + Y (t)dt, (55)

dS(t) = (Y (t)− C(t))dt, (56)

for 0 ≤ t ≤ 1. The equilibrium in the limit case is characterized by the following proposition.

Proposition 6. As the trading period length h approaches 0, the equilibrium in Theorem 1

converges to the following: For 0 ≤ t ≤ 1, x(t), P (t) and P ∗(t) are given by (49)–(51), and

if Σ(t) = 0, then

β(t) =
σu

k(t)
, λ(t) =

k(t)

2σu

, γ(t) =
k(t)

σu

, σz(t) = 0; (57)

if Σ(t) > 0, then

β(t) =
k(t)σu

Σ(t)
, λ(t) =

k(t)

2σu

, γ(t) =
k(t)

σu

, σz(t) = σu, (58)

where Σ(t) is given by (54) and k(t) is determined by the following maximization problem

max
k(t)≥0

∫ 1

0

k(t)dt (59)

subject to

∫ t

0

k2(s)ds ≤
∫ t

0

σ2
F (s)ds, for t ∈ [0, 1]. (60)

The maximization problem (59) is equivalent to the following consumption-saving problem

max
C(t)≥0

∫ 1

0

u(C(t))dt, (61)
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subject to (55) and (56), if we relabel σ2
F (t), k

2(t), and Σ(t) as Y (t), C(t), and S(t), respec-

tively.

The above proposition shows that the equilibrium in the continuous-time limit is similar

to that in Theorem 1. For example, the informed investor’s demand function and the market

maker’s price rule have similar functional forms as those in Theorem 1. The proposition also

shows that the stock price achieves the strong-form efficiency when the informed investor

adopts a pure strategy. As noted in Section ??, the post-disclosure stock price fully reveals

the informed investor’s private information when she adopts a pure strategy. Moreover, in

this limiting case, the pre- and post-disclosure prices are infinitely close to each other, that

is, limh→0 P (t)−P ∗(t) = 0 almost surely for 0 ≤ t ≤ 1. Hence, the stock price is strong-form

efficient. This result is reminiscent to those in Chau and Vayanos (2008) and Foucault et al.

(2016), where in the limiting case as the trading frequency approaches infinity, the stock

price becomes efficient while the informed investor still earns trading profits. Parallel to the

result in Section 3, the informed investor’s maximization problem can be transformed into a

continuous-time consumption-saving problem in (61). Finally, we show in the appendix that

the equilibrium in the continuous time model is the same as the equilibrium in Proposition

6, the limit of the discrete-time equilibrium as the trading frequency approaches infinity.

5.4 Partial Disclosure

In the analysis so far, the disclosure perfectly reveals the insider’s trade xn. More generally,

however, there are reasons why the disclosure may be imperfect. For example, financial

institutions such as hedge funds and mutual funds are only required to report their stock

holdings at the end of each quarter. Hence, the disclosure only reveals their trades imper-

fectly. Alternatively, as noted in Yang and Zhu (2020), some investors such as high frequency

traders can partially infer informed investors’ trades ex post. To capture this feature, we

modify our model such that after the trade in period n, the market maker observes a signal
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dn

dn = xn + ϵn,

where ϵn ∼ N (0, σ2
ϵ ), ϵn is serially independent and independent of all other variables. The

rest of the model remains the same as described in Section 2.

This formulation not only captures the scenarios mentioned above, but also generalizes

our model to include some classic models as special cases. For example, as σ2
ϵ approaches zero,

the disclosure perfectly reveals the informed investor’s trade. Hence, our model converges to

a generalized version of the setting in Huddart et al. (2001). In the other limiting case, as

σ2
ϵ approaches ∞, the disclosure does not contain any information and our model converges

to a generalized version of Kyle (1985).

Proposition 7. In the N-periods model, prices are

Pn = E[F |P ∗
1 , · · · , P ∗

n−1, xn + un] = P ∗
n−1 + λn(xn + un), (62)

P ∗
n = E[F |P ∗

1 , · · · , P ∗
n−1, xn + un, xn + ϵn] = P ∗

n−1 + λ′
n(xn + un) + γn(xn + ϵn). (63)

Insider strategy has the form

xn = βn(
n∑

i=1

Fi − P ∗
n−1) + zn, with zn ∼ N (0, σ2

zn). (64)

Insider profits are recursive as

E[
N∑

i=n+1

πi|F1, · · · , Fn+1, P
∗
1 , · · · , P ∗

n ] = αn(
n+1∑
i=1

Fi − P ∗
n)

2 + δn. (65)
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Coefficients satisfy

λn =
βn(Σn−1 + σ2

Fn
)

β2
n(Σn−1 + σ2

Fn
) + σ2

zn + σ2
u

, (66)

λ′
n = λn −

γn(β
2
n(Σn−1 + σ2

Fn
) + σ2

zn)

β2
n(Σn−1 + σ2

Fn
) + σ2

zn + σ2
u

, (67)

Σn =
1

β2
n(Σn−1 + σ2

Fn
) + σ2

zn + σ2
u

[(σ2
u + σ2

zn)(Σn−1 + σ2
Fn
)−

(βn(Σn−1 + σ2
Fn
)σ2

u)
2

(β2
n(Σn−1 + σ2

Fn
) + σ2

zn)σ
2
u + σ2

ϵ (β
2
n(Σn−1 + σ2

Fn
) + σ2

zn + σ2
u)
], (68)

γn =
βn(Σn−1 + σ2

Fn
)σ2

u

(β2
n(Σn−1 + σ2

Fn
) + σ2

zn)σ
2
u + σ2

ϵ (β
2
n(Σn−1 + σ2

Fn
) + σ2

zn + σ2
u)
, (69)

αn−1 = αn(1− (λ′
n + γn)βn)

2 + (1− λnβn)βn, (70)

δn−1 = δn − λnσ
2
zn + αn(σ

2
Fn+1

+ λ′
n
2
σ2
u + γn

2σ2
ϵ + (λ′

n + γn)
2σ2

zn). (71)

When insider chooses pure strategy, σ2
zn = 0 and

βn =
1− 2αn(λ

′
n + γn)

2λn − 2αn(λ′
n + γn)2

, (72)

with SOC

2λn − 2αn(λ
′
n + γn)

2 > 0. (73)

When insider chooses mixed strategy, σ2
zn > 0 and

1− 2αn(λ
′
n + γn) = 0, (74)

λn − αn(λ
′
n + γn)

2 = 0. (75)
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6 Interpretation of the Mixed Strategy

When describing the mixed strategy played by an informed trader in Kyle-type models,

researchers such as Huddart et al. (2001) and Yang and Zhu (2020) often loosely interpret

it as the informed trader adding noise through randomization. This interpretation has the

flavor that the trader consciously randomizes by actively choosing the amount of noise in

his strategy.5 Although this interpretation is intuitive and appealing, it is well recognized

in the game theory literature that this interpretation— dubbed as a “naive” interpretation

of “mixed strategies as objects of choices” by Osborne and Rubinstein (1994, p. 37)—is not

entirely satisfactory.6 When the informed investor plays a mixed strategy in equilibrium,

although he does introduce a noise component into his order, it is implemented as a passive

action, as opposed to a deliberate choice. The informed investor is just indifferent across all

orders given the market maker’s pricing rules, and he is not actively choosing the size of the

noise. The value of σzn is pinned down by the equilibrium conditions, in particular, by the

market maker’s equilibrium behavior.

To formally accommodate the usual and intuitive interpretation of the informed investor

deliberately randomizing, we consider an alternative game in which the informed investor

can commit to a linear trading strategy in each period as specified in equation (4) and then

chooses its parameters {βn, σzn}Nn=1 at the beginning of the economy, say, in period 0 before

any trading occurs.7 The commitment is common knowledge in the game. The rest of the

5For instance, when defining dissimulation as the mixed strategy, HHL (2001, p. 666) state that “(t)he
strategy balances immediate profits from informed trades against the reduction in future profits following
trade disclosure and, hence, revelation of some of the informed investor’s information. Our results show the
optimality of adding a random noise component to informed trades, thereby diminishing the market maker’s
ability to draw inferences from the public record.”

6When discussing mixed strategies, Rubinstein (1991, p. 912-913) wrote: “The concept of mixed strat-
egy has often come under heavy fire. To quote Aumann (1987a): ‘Mixed strategy equilibria have always
been intuitively problematic.’” The literature has suggested ways of interpreting mixed strategies based on
purification, beliefs, large populations, and evolution (see the discussions in Osborne and Rubinstein (1994)
and Oechssler (1997)).

7Under this specification, the informed investor chooses all trading parameters simultaneously before
observing any information. Alternatively, we can also assume that the informed investor chooses those
parameters sequentially after observing information each period. For instance, in the two-period economy,
the informed investor chooses {β1, σz1} in period 1 after observing F1 and chooses {β2, σz2} in period 2 after
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model remains the same as the baseline model in Section 2. In our context, such a committed

trading strategy can be interpreted as a predetermined trading plan that specifies in advance

the trading rule according to an algorithm. The equilibrium in this variation game is such

that the informed investor chooses βn and σzn to maximize his expected total trading profit

over N periods and the market maker takes commitment (4) as given and sets asset prices

according to his expected liquidation value of the risky asset.

Proposition 8. The equilibrium in the variation game with commitment is identical to that

characterized in Theorem 1.

The above proposition shows that the mixed strategy analyzed in Section ?? can be

thought of as the outcome of an optimization problem where the informed investor chooses

the optimal amount of noise in his demand to dissimulate his private information, which

therefore formalizes the idea of “mixed strategies as objects of choice.”

Note that, in the variation game with commitment, in the worst case scenario, the in-

formed investor can commit to the equilibrium trading strategy and hence earn the same

expected profits as the informed investor in the baseline model. Hence, this commitment

should have a non-negative value, and the equivalence between the equilibrium in this varia-

tion game and that in our baseline model implies that the commitment does not have value.

This result is consistent with the recent paper by Bernhardt and Boulatov (2023), who show

that commitment has no value in a one-period Kyle model.8 We analyze a multi-period

setting with mixed strategies, and use the finding to interpret the mixed strategies in our

baseline model as predetermined trading plans implemented by algorithms.

observing {P ∗
1 , F1, F2}. Our results remain the same under this alternative assumption.

8Bernhardt and Boulatov (2023) also show that in games in which shocks are not normally distributed
and so the equilibrium is nonlinear, commitment does have value. Moreover, they consider a Stackelberg
setting in which the parameters chosen by the informed investor are observable to the market maker. Our
result in Proposition 8 holds independent of whether the parameters of the informed investor’s strategy are
observable or not.
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7 Conclusion

We analyze a dynamic model of a monopolistic informed investor who receives private in-

formation on an ongoing basis and is subject to a post-trading disclosure requirement each

period. We show that solving the equilibrium of this trading game is equivalent to solving

a fictitious consumption-saving problem. Hence, we can adopt the existing methods in that

literature, such as dynamic programming, to construct the equilibrium of our trading game.

Analogous to the “consumption-smoothing” intuition in the consumption-saving litera-

ture, the informed investor in our trading game “smooths” his information usage over time

given the dynamic constraints imposed by the sequential arrival of his private information.

If the informed investor expects a reduction in his information advantage in the future, con-

sistent with the insight in the existing literature, he would dissimulate his current private

information through mixed strategies. Conversely, if the informed investor expects more

information advantage in the future, he would adopt a pure strategy, which reveals all his

private information after disclosure. We also consider various extensions of the trading

game in our baseline model and find that solving each extension is equivalent to solving a

generalized version of the fictitious consumption-saving problem in the baseline model.

Finally, we show that the mixed strategy in our model can be interpreted as the informed

investor deliberately dissimulating his private information—i.e., actively choosing the size of

the noise in his trading order to conceal his private information—via predetermined trading

plans implemented with algorithms. This result also suggests that commitment has no value

in boosting the informed investor’s profits in our model.
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Appendix: Proofs

Proof of Theorem 1. The proof is by backward induction. We first claim that prior to

the (n+1)th trade, the expected future profits have the following quadratic form in the linear

equilibrium:

E(
N∑

i=n+1

πi|F1, ..., Fn+1, P
∗
1 , ..., P

∗
n) = αn(

n+1∑
i=1

Fi − P ∗
n)

2 + δn, (A.1)

where αn and δn are constants with αN = δN = 0. Then with the linear pricing functions

(5) and (6) (or more generally, Pn = P ∗
n−1 + λnyn + f(x1, ..., xn−1) and P ∗

n = P ∗
n−1 + γnxn +

g(x1, ..., xn−1) where f and g are measurable functions and turn to be zero, as in Kyle’s

proof), moving backward by one step yields

E(
N∑
i=n

πi|F1, ..., Fn, P
∗
1 , ..., P

∗
n−1)

= E[xn(F − Pn) + αn(
n+1∑
i=1

Fi − P ∗
n)

2 + δn|F1, ..., Fn, P
∗
1 , ..., P

∗
n−1]

= xn(
n∑

i=1

Fi − P ∗
n−1 − λnxn) + αn(

n∑
i=1

Fi − P ∗
n−1 − γnxn)

2 + δn + αnσ
2
Fn+1

. (A.2)

Before proceeding with the maximization problem, we examine the semi-strong efficiency

condition to get that,

Pn = E(F |P ∗
1 , ..., P

∗
n−1, xn + un)

= P ∗
n−1 + E[

n∑
i=1

Fi − P ∗
n−1|βn(

n∑
i=1

Fi − P ∗
n−1) + zn + un]

= P ∗
n−1 + λn(xn + un)
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with

λn =
βn(Σn−1 + σ2

Fn
)

β2
n(Σn−1 + σ2

Fn
) + σ2

zn + σ2
u

. (A.3)

Analogously, p∗n = p∗n−1 + γnxn with

γn =
βn(Σn−1 + σ2

Fn
)

β2
n(Σn−1 + σ2

Fn
) + σ2

zn

. (A.4)

In deriving (A.3) and (A.4), we have used the relationship E(
n∑

i=1

Fi − P ∗
n−1)

2 = Σn−1 + σ2
Fn

resulting from the independence between Fn and {F1, ..., Fn−1, P
∗
n−1}. In the following, results

of Theorem 1 would be verified separately for Case (i) in which the informed investor employs

a pure strategy and Case (ii) in which the informed investor employs a mixed strategy for

the nth trade.

Case (i). In the pure strategy case, σ2
zn = 0. From the formula for the informed investor’s

trading strategy (4) and the market maker’s pricing rule (2), we have

P ∗
n =

n∑
i=1

Fi, Σn = 0. (A.5)

Consequently,

n∑
i=1

Fi − P ∗
n−1 = P ∗

n − P ∗
n−1 = γnxn = γnβn(

n∑
i=1

Fi − P ∗
n−1)

from which, we obtain

γn =
1

βn

. (A.6)
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In this case, we have

k2
n ≡ V ar(P ∗

n − P ∗
n−1) = Σn−1 + σ2

Fn
, (A.7)

which, combined with (A.5) ensures that Σn = Σn−1 + σ2
Fn

− k2
n = 0. This means that (9)

holds for n once it holds for n− 1. In other words, pure strategy can ensure that (9) holds if

the mixed strategy also ensures it (which will be shown to be the case shortly in Case (ii)).

From (A.5), the second term in (A.2) is zero, since
n∑

i=1

Fi−P ∗
n−1−γnxn =

n∑
i=1

Fi−P ∗
n = 0,

and thus the first-order condition (FOC) yields xn = βn(
n∑

i=1

Fi − P ∗
n−1) with

βn =
1

2λn

. (A.8)

The second-order condition (SOC) requires λn ≥ 0 which is equivalent to kn ≥ 0 in equilib-

rium. With σ2
zn = 0, from (A.3), (A.6), (A.7), and (A.8), we have

λn =

√
Σn−1 + σ2

Fn

2σu

=
kn
2σu

,

βn =
σu√

Σn−1 + σ2
Fn

=
σu

kn
,

γn =
kn
σu

.

Finally, from these expressions, we can compute

E[πn] = βn(1− λnβn)(Σn−1 + σ2
Fn
) =

kn
2
σu.

Case (ii). In the mixed strategy case, σ2
zn > 0. Note that we discuss this case only for
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n < N . The FOC of (A.2) gives

2(−λn + αnγ
2
n)xn + (1− 2αnγn)(

n∑
i=1

Fi − P ∗
n−1) = 0.

Since this holds for all realizations of zn in xn, it requires

− λn + αnγ
2
n = 0, (A.9)

1− 2αnγn = 0, (A.10)

from which, we obtain

γn = 2λn. (A.11)

From (A.3), (A.4) and (A.11),

β2
n(Σn−1 + σ2

Fn
) + σ2

zn = σ2
u, (A.12)

λn =
βn(Σn−1 + σ2

Fn
)

2σ2
u

. (A.13)

In this case, we have

k2
n = γ2

nV ar(xn) = γ2
n[β

2
n(Σn−1 + σ2

Fn
) + σ2

zn ] = γ2
nσ

2
u

from which

γn =
kn
σu

. (A.14)

We have used the fact γn ≥ 0 which is equivalent to kn ≥ 0 (note that if kn < 0, then

γn = −kn/σu and replacing kn with −kn would not change anything). Indeed αn ≥ 0 since

otherwise, for some realized variables, the informed investor would get negative profits which
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would be dominated by not trading. So, from (A.10), γn ≥ 0.

From (A.11) and (A.14),

λn =
kn
2σu

. (A.15)

Substituting (A.15) in (A.13) yields

βn =
knσu

Σn−1 + σ2
Fn

. (A.16)

Then substituting (A.16) in (A.12) can deliver the volatility of the random component in

the order flow:

σ2
zn = (1− k2

n

Σn−1 + σ2
Fn

)σ2
u. (A.17)

We need to verify that σ2
Fn

is positive in this case, i.e., k2
n < Σn−1 + σ2

Fn
. Indeed,

k2
n = V ar(P ∗

n − P ∗
n−1)

< V ar[(
n∑

i=1

Fi − P ∗
n) + (P ∗

n − P ∗
n−1)]

= V ar(
n−1∑
i=1

Fi − P ∗
n−1) + σ2

Fn

= Σn−1 + σ2
Fn
,

where the inequality follows from the fact that (
n∑

i=1

Fi−P ∗
n) is independent of P

∗
n −P ∗

n−1 and

that V ar(
n∑

i=1

Fi−P ∗
n) > 0 when σ2

zn > 0 (since V ar(
n∑

i=1

Fi−P ∗
n) = V ar(

n∑
i=1

Fi−P ∗
n−1|βn(

n∑
i=1

Fi−

P ∗
n−1) + zn), positive when zn is nondegenerate).

Now, from the projection theorem of normal variables, together with equations (A.12)
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and (A.17), we obtain

Σn = V ar(
n∑

i=1

Fi|P ∗
1 , ..., P

∗
n , xn)

= V ar[
n∑

i=1

Fi − P ∗
n−1|βn(

n∑
i=1

Fi − P ∗
n−1) + zn]

=
(Σn−1 + σ2

Fn
)σ2

zn

σ2
u

= Σn−1 + σ2
Fn

− k2
n,

which verifies equation (9) for the mixed strategy case.

Furthermore, from (A.15), (A.16), and (A.17),

E[πn] = βn(1− λnβn)(Σn−1 + σ2
Fn
)− λnσ

2
zn =

kn
2
σu.

In this case, note that the informed investor strategy parameter βn in equation (12) is well

defined, since kn is uniquely determined which would be shown later.

Finally, for both cases (i) and (ii), conjecture (A.1) can be justified by backward induction

argument since when n = N , αN = δN = 0 and when n is replaced by n − 1, it still holds,

with recursions

αn−1 = βn(1− λnβn) + αn(1− γnβn)
2, δn−1 = δn − λnσ

2
zn + αn(σ

2
Fn+1

+ γ2
nσ

2
zn). (A.18)

In conclusion, all results given by equations (4)–(9) hold for both cases.

We now show how kn is determined. First, from the pricing rule (1), what the informed

investor obtains is what noise traders lose, that is

E[πn] = λnσ
2
u =

kn
2
σu.

Hence, the maximization objective of informed investor’s life-time profits in expectation can
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be written in reduced form as

max
{k1,··· ,kN}∈RN

≥0

k1 + · · ·+ kN (A.19)

with budgets (22). The solution is unique from the convex optimization theory.

Proof of Proposition 2. The correspondence is obvious.

Proof of Proposition 1. The fact that Σn > 0 (= 0) corresponds to the mixed (pure)

strategy have been shown in the proof of Theorem 1.

Proof of Proposition 1. We solve for the equilibrium dynamically. Let N = 2. In period

2, with unused information scale Σ1 and the information endowment σ2
F2
, the informed

investor’s problem is:

max
k22≤Σ1+σ2

F2

k2. (A.20)

Solving this problem, we obtain k∗
2 = V2(Σ1) =

√
Σ1 + σ2

F2
. Hence, from (11), Σ2 = Σ1 +

σ2
F2

− k2
2 = 0. According to Proposition 1, σ2

z2
= 0.

Now consider period 1. With information endowment σ2
F1
, since Σ1 = σ2

F1
− k2

1, the

informed investor’s problem becomes

max
k21≤σ2

F1

k1 +
√
σ2
F1

+ σ2
F2

− k2
1. (A.21)

The optimal solution has two cases:

Case 1. If σF1 > σF2 , the optimum is k1 = σF/
√
2. In this case, Σ1 = σ2

F1
− k2

1 =

(σ2
F1

− σ2
F2
)/2 > 0, which according to Proposition 1 means σ2

z1
> 0. Specifically, from (15),

σ2
z1
=

σ2
F1

−σ2
F2

2σ2
F1

σ2
u.

Case 2. If σF1 ≤ σF2 , the optimum is k1 = σF1 . In this case, Σ1 = σ2
F1

− k2
1 = 0. Hence
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σ2
z1
= 0 according to Proposition 1. Results about β, λ, and γ are direct from (12), (13), and

(14) respectively.

Proof of Proposition 2. From the maximization problem defined by (16) and (22), the

final constraint is an equality
N∑
i=1

k2
i =

N∑
i=1

σ2
Fi
. With this equality, we can show that

(k1 − k)2 + ...+ (kN − k)2 =
N∑
i=1

k2
i −Nk

2
= σ2

F − (k1 + ...+ kN)
2

N
,

from which we can observe that the maximization problem defined by (16) and (22) is

equivalent to the minimization problem (21) subject to (22) and (23). Since λn = kn/(2σu),

problem in Part (2) is equivalent to problem in Part (1).

Proof of Proposition 2. The necessity is obvious. Now for sufficiency, from Theorem

1 , we only need to show that k2
n = σ2

F/N is feasible for all n ≤ N . Firstly, k2
1 = σ2

F/N

is feasible since the information available satisfies σ2
F1

≥ σ2
F/N . In general, if strategies

k2
t−1 = σ2

F/N, t ≤ n are all feasible and have been taken by the informed investor, then the

feasible space for k2
n is [0, σ

2
Fn
+Σn−1] with Σn−1 =

n−1∑
i=1

(σ2
Fi
− σ2

F

N
). The condition n

N
σ2
F ≤

n∑
i=1

σ2
Fi

is equivalent to
σ2
F

N
≤ σ2

Fn
+ Σn−1 which precisely establishes the feasibility of k2

n =
σ2
F

N
.

If (26) holds, in equilibrium kn = σF√
N
. Equations (27) and (28) follow directly. By

definition, Un = Σn + V ar(Fn+1 + · · · + FN) = (1 − n/N)σ2
F . If (26) holds strictly, with

kn = σF√
N
, Σn =

n∑
i=1

(σ2
Fi

− σ2
F/N) > 0 for n ≤ N − 1 and ΣN = 0. From Proposition 2,

informed investor adopts mixed strategies before the last period and pure strategy in the

last period.

Proof of Proposition 3. Suppose otherwise, if the informed investor does not always play

pure strategies, then let us consider the first mixed one. Formally, denote

n0 = inf{n, σ2
zn > 0}.
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Then from Theorem 1 , k2
n = σ2

Fn
and Σn = 0 for n ≤ n0 − 1 (if n0 = 1, denote k2

0 =

σ2
F0

= Σ0 = 0). Moreover, k2
n0

< σ2
F0

since σ2
zn0

> 0 and Σn0−1 = 0. Thus there must exist

some n1 > n0, such that k2
n1

> σ2
Fn1

to ensure that
N∑

n=n0

k2
n =

N∑
n=n0

σ2
Fn
. Now claim that in

this case, if kn0 and kn1 are replaced by
√
k2
n0

+ ϵ and
√

k2
n1

− ϵ respectively, with ϵ positive

and small enough, and with other kn unchanged, then
N∑

n=n0

kn can be larger. In fact, since

k2
n1

> σ2
Fn1

≥ σ2
Fn0

> k2
n0
, we can let ϵ ∈ (0, k2

n1
− k2

n0
). Then it is direct to show that

√
k2
n0

+ ϵ+
√

k2
n1

− ϵ > kn0 + kn1 .

This contradicts the maximization objective (16). Hence, informed investor always adopts

pure strategies. From Proposition 1 and (11), k2
n = σ2

Fn
always hold. Equations (32)-(34)

follow directly. From Σn = 0 and that σ2
Fn

increases with n, Un = σ2
Fn+1

+ · · · + σ2
FN

>

(1− n/N)σ2
F , n ̸= N .

Proof of Proposition 4. It is easy to check that Theorem 1 still holds when we replace

σ2
u with σ2

un
for all expressions. Thus (4)- (6) hold with with parameters:

βn =
knσun

Σn + k2
n

, (A.22)

λn =
kn
2σun

, (A.23)

γn =
kn
σun

, (A.24)

σ2
zn =

Σn

Σn + k2
n

σ2
un
, (A.25)

where Σn is characterized by (8),(9) and (11).

Further, from

Eπn = λnσ
2
un

=
knσun

2
,

the informed investor’s aim prior to the nth trade becomes the maximization problem (39)
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subject to (17).

From the maximization aim (39), we also have the equality
N∑
i=1

k2
i = σ2

F . With this

equality, a calculation shows directly

N∑
i=1

(ki −
σui

(k1σu1 + · · ·+ kNσuN
)

σu1
2 + · · ·+ σuN

2
)2 = σ2

F − (k1σu1 + · · ·+ kNσuN
)2

σu1
2 + · · ·+ σuN

2
.

The LHS can be transformed to the form (with a constant coefficient)

N∑
i=1

[
ωi(k

′
i − k′)2

]
,

where ωi ≡ σ2
ui
/
∑N

j=1 σ
2
uj
, k′

i ≡ ki/σui
, and k′ ≡

∑N
i=1 ωik

′
i. Then the maximization problem

(39) subject to (17) has the same solution as the minimization problem (40) subject to (22)

and (23). With (A.23), (41) is direct. Part (3) is obvious.

Proof of Proposition 5. Along the path where information leakage never happens (but

still with the probability it happens), the equilibrium can be solved for by the proof of

Theorem 1 with only parameters αn and δn replaced by qαn and qδn respectively in (A.2)

and following relationships. Thus, Theorem 1 still holds for this path. Since

Eπn = qn−1λnσ
2
u = qn−1knσu/2,

the informed investor’s aim is (43), subject to (17. Other results can be shown by the same

techniques used in the proof of Proposition 4.

Proof of Proposition 6 and continuous time equilibrium. We discuss equilibrium in

two different cases, as we have done in the proof of Theorem 1.

50



Mixed strategy case. The partially revealing strategy xt is a mixed one, as

dxt = βt(F (t+ dt)− P ∗(t))dt+ dzt,

where zt is a Brownian Motion independent of BF and Bu. When Σ(t) > 0, the limit results

βt, λt, γt, σzt can follow directly from Theorem 1.

Pure strategy case. Σ(t) = 0. Note that the limit of kn and σu in the discrete time

framework correspond to kt
√
dt and σu(t)

√
dt respectively. Then from expressions (12)-(15),

in the limit,

β(t) =
σu

k(t)
, λ(t) =

k(t)

2σu

, γt =
k(t)

σu

, σz(t) = 0.

Mixed strategy case. σ(t) > 0. Then from expressions (12)-(15), in the limit,

β(t) =
k(t)σu

Σ(t)
, λ(t) =

k(t)

2σu

, γ(t) =
k(t)

σu

, σz(t) = σu.

Other results are natural generalizations of those of discrete time version.

We now show the continuous time equilibrium. F (t), x(t), P (t), P ∗(t) and Σt are

defined the same as (48)-(51) and (53) respectively. The informed investor strategy x =

x(F (t), t) aims to maximize the life-time profits as

E

∫ 1

0

(F − P (t+ dt))dx = E

∫ 1

0

(F − P ∗(t)− λdx)dx =

∫ 1

0

λtσ
2
u(t)dt. (A.26)

Similarly, we discuss the equilibrium by two cases.

The mixed strategy case. Consider an interval with mixed strategies where Σ(s) > 0,

s ∈ [t, t+ dt]. From the projection theory,

P (t+ dt)− P ∗
t = E[F (t+ dt)− P ∗

t |dx(t) + du(t)] = λt(dx(t) + du(t))
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with

λt =
β(t)Σt

σ2
z(t) + σ2

u(t)
. (A.27)

From Kalman filtering theory (refer to Kallianpur (2013, p. 269)),

dΣt

dt
= σ2

f (t)−
(β(t)Σ(t))2

σ2
z(t)

. (A.28)

So the life-time profits (A.26) can be written as

∫ 1

0

λtσ
2
u(t)dt =

∫ 1

0

β(t)Σtσ
2
u(t)

σ2
z(t) + σ2

u(t)
dt =

∫ 1

0

(σ2
f −

dΣt

dt
)1/2

σz(t)σ
2
u(t)

σ2
z(t) + σ2

u(t)
dt, (A.29)

from which the optimal noisiness is

σz(t) = σu(t). (A.30)

Substituting (A.30) and (54) in (A.29), we can get the life-time profits over intervals Ω where

informed investor takes mixed strategy, as

∫
Ω

ktσu(t)

2
dt. (A.31)

The pure strategy case. Consider an interval with pure strategies where Σ(s) = 0, s ∈

[t, t + dt]. In this case, the future profits Vt+dt(0) would be irrelevant to the trading in this

interval, as long as it keeps pure. From dynamic programming theory, xt only needs to

maximize the instantaneous profits, as

max
xt

(F (t+ dt)− P ∗(t)− λtdxt)dxt (A.32)
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which yields

dxt = β(t)(F (t+ dt)− P ∗(t))

with

βt =
1

2λt

. (A.33)

From the projection theory,

λt =
β(t)σ2

f (t)

β2
t σ

2
f (t) + σ2

u(t)
. (A.34)

Combining (A.34) and (A.33),

λt =
σf (t)

2σu(t)
=

σk(t)

2σu(t)
. (A.35)

In sum, the life-time profits in this case can also have the form (A.31) with Ω replaced as

Ωc. Thus, the expected life-time profits have the expression

∫ 1

0

ktσu(t)

2
dt.

Other results are similar to those in the previous steps.

Proof of Proposition 8. In this proof, we consider the 2-periods model, and the N-periods

cases are similar.

Recall that before all trading begins, the informed investor commits to the following

strategies in period-1 and 2, respectively,

xi = βi(F − P ∗
i−1) + zi, i = 1, 2, (A.36)
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The noise zi is normally distributed and independent of all other variables. Trading param-

eters βi and V ar(zi)(≡ σ2
zi
)) are decision variables chosen by the informed investor at the

beginning of the economy. The informed investor’s aim is to maximize the life-time profits

in ex ante expectation:

max
{βi,σ2

zi
}i=1,2

E[π1 + π2], (A.37)

where πi = (F − Pi)(βi(F − P ∗
i ) + zi), for i = 1, 2.

With (A.36), the market maker knows that market orders are normally distributed with

zero-mean and hence from projection theorem, they set pricing functions as

Pi = P ∗
i−1 + λi(xi + ui), i = 1, 2, and P ∗

1 = P ∗
0 + γ1x1 (A.38)

with

λi =
βi(Σi−1 + σ2

Fi
)

β2
i (Σi−1 + σ2

Fi
) + σ2

zi
+ σ2

u

, i = 1, 2, and γ1 =
β1(Σ0 + σ2

F1
)

β2
1(Σ0 + σ2

F1
) + σ2

z1

. (A.39)

Now, we compute the profits in (A.37). With the committed trading strategies (A.36)

and corresponding pricing functions (A.38), we can compute

E[π]1 = E[(F − P1)(β1(F − P ∗
0 ) + z1)] = (1− λ1β1)β1σ

2
F1

− λ1σ
2
z1
, (A.40)

and

E[π2] = E[(F − P2)(β2(F − P ∗
1 ) + z2)] = (1− λ2β2)β2E(F − P ∗

1 )
2 − λ2σ

2
z2
, (A.41)

where

E(F − P ∗
1 )

2 = σ2
F2

+ E(F1 − P ∗
1 )

2 = σ2
F2

+ (1− γ1β1)
2σ2

F1
+ γ2

1σ
2
z1
. (A.42)
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With (A.40), (A.41), and (A.42), we can express the informed investor’s problem (A.37)

as

max
{βi,σ2

zi
}i=1,2

(1− λ1β1)β1σ
2
F1

− λ1σ
2
z1
+ (1− λ2β2)β2[σ

2
F2

+ (1− γ1β1)
2σ2

F1
+ γ2

1σ
2
z1
]− λ2σ

2
z2

The maximization about σ2
z2

yields, σ2
z2
= 0 under the condition λ2 > 0. The FOC about β2

yields β2 = 1/(2λ2). With these results, from (A.39),

β2 =
σu√

Σ1 + σ2
F2

and λ2 =

√
Σ1 + σ2

F2

2σu

. (A.43)

The FOC about σ2
z1

yields

−λ1 +
γ2
1σu

2
√

Σ1 + σ2
F2

= 0. (A.44)

Note that we focus on the case σ2
z1

> 0 here (so FOC works). Another case σ2
z1

= 0 can be

given similarly. With (A.44), the FOC about β1 gives

1− γ1σu√
Σ1 + σ2

F2

= 0. (A.45)

All SOCs are satisfied. (A.44) and (A.45) together give the same result as in the main setup

γ1 = 2λ1.

These are key steps. Other results including the determination of kn are the same as those

in Theorem 1 and Proposition 1.
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