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Abstract

I propose an arbitrage-pricing approach to analyze how noise trading flows im-

pact asset prices. This approach uses no-arbitrage conditions to determine the

impact of these flows on the stochastic discount factor, and consequently, on the

cross-section of asset prices. By generalizing classic arbitrage theory, I show that

noisy flows impact asset prices through a few important factors. The result-

ing model features rich patterns of cross-asset substitution beyond traditional

mean-variance price impact models and logit demand systems. My theory also

addresses prevalent misconceptions regarding the aggregation of asset flows into

factor flows and the definition of factor-level price multipliers.
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1 Introduction

This paper studies the impacts of uninformed noise trading flows on asset prices. This is an

important issue given extensive empirical evidence showing that noise trading flows, such

as retail investor transactions or institutional investors’ mechanical trading, substantially

influence pricing across individual assets and the aggregate market.1 Theoretical models

suggest that arbitrageurs, constrained by their risk-bearing capacity, provide liquidity to

these flows. Consequently, uninformed noise trading alters arbitrageurs’ positions in risky

assets, so price impacts arise as arbitrageurs’ compensation for bearing extra risks.

The literature has a gap in structurally estimating self and cross-asset price impacts. Typ-

ically, empiricists investigate noise trading flows into individual assets to quantify their price

impacts. For example, suppose that uninformed retail investors buy $100 million of Google

and sell $50 million of Facebook within a month. Estimating the price impacts requires

understanding how Google’s trading influences not only its own price but also Facebook’s,

and vice versa.2 When extended to a large number of assets N , a reduced-form approach

encounters the curse of dimensionality, requiring the estimation of an N × N matrix for

self and cross-asset price impacts. This raises a critical question: how can one impose a

theoretically grounded and empirically flexible structure on these N ×N interactions?

This paper develops an arbitrage-pricing approach to answer this question. My theory

builds upon the core asset-pricing equation P = E[MX], with P representing the asset price,

M the stochastic discount factor (SDF), and X the asset payoff. The idea is that the impact

of noisy flow on the asset price P must be reflected by its impact on the SDF M , because

the flow is uninformed about the payoff X. Textbook theories offer various tools—portfolio

theory, the Sharpe ratio, Hansen-Jagannathan bound, and Ross’s arbitrage pricing theory

1See, for example, Coval and Stafford (2007), Lou (2012), Chang, Hong, and Liskovich (2015), Koijen
and Yogo (2019), Huang, Song, and Xiang (2021), Barber, Huang, Odean, and Schwarz (2022), Ben-David,
Li, Rossi, and Song (2022b), Gabaix and Koijen (2022), and Li and Lin (2022).

2Cross-asset price impacts are well-documented in studies like Boulatov, Hendershott, and Livdan (2013),
Pasquariello and Vega (2015), and Chaudhary, Fu, and Li (2023).
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Figure 1. The factor model of price impacts

flow into individual assets flow into factors

price of individual assets price of factors

Note: In the cross-section of assets, flows impacts prices through factors.

(APT)—to characterize how no-arbitrage conditions shape the SDF. This paper generalizes

these tools to characterize how no-arbitrage conditions shape the SDF’s response to noisy

flows, thereby structuring the price impacts in the cross-section of assets. Unlike models

limited to specific equilibria, my approach reveals the general cross-sectional constraints on

price impacts in arbitrage-free markets. My approach avoids making parametric assumptions

on utility function and payoff distribution, thereby improving upon equilibrium price impact

models that rely on quadratic utility and normally distributed payoffs.3

My approach shows that noisy flows impact asset prices through a few important factors.

(In this paper, “factors” refer to portfolios of assets.) The resulting factor model of price im-

pacts unfolds in three steps, as illustrated in Figure 1. First, asset-level flows are aggregated

into a few factors. Second, as flows impact prices by altering arbitrageurs’ risk exposures,

the price response of each factor to its own flow is quantified by the price change per unit

of flow-induced risk. This measure improves upon the traditional price multiplier by incor-

porating risk exposures and avoiding mathematical mistakes when applying the traditional

metric to long-short portfolios. Third, as factor prices change in response to flows, individual

asset prices adjust accordingly to eliminate arbitrage. Under this model, rich patterns of

3See the survey article by Rostek and Yoon (2020). The typical assumptions made include a quadratic or
CARA utility function and a multivariate normal payoff distribution. In many dynamic models with CRRA
utility, e.g., Koijen and Yogo (2019), each investor’s optimal portfolio problem effectively becomes static
quadratic-normal after log-linearization.
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cross-asset substitution emerge, beyond the traditional mean-variance price impact models

and logit demand systems. In what follows, I present the three steps of the model.

The first step tackles a crucial yet unresolved question: How should individual asset flows

be aggregated into flows into a given set of portfolios? This theoretical gap has led empirical

studies to employ ad hoc methods for constructing portfolio flows, typically aggregating asset

flows using portfolio weights, similar to calculating portfolio returns.4

I introduce a portfolio flow theory that refines flow aggregation in current literature.

Recognizing that flows impact prices by altering arbitrageurs’ risk exposures, a central prin-

ciple of my theory emerges: keeping flow-induced risk exposures invariant when forming

portfolios. Applying this principle, I show that portfolio flows equal the risk exposures (i.e.,

return betas) of the asset-level flows to the portfolios. This approach diverges from existing

literature, which primarily relies on portfolio weights for aggregation. Under the specific

assumption that each asset in the long leg of a long-short portfolio has a beta of 1 and each

in the short leg has a beta of −1, traditional methods agree with my method.

Building on the portfolio flow theory, I proceed to the second step of the model: struc-

turing the N × N matrix of price impacts for N assets through the lens of factors. This

step requires taking a stance on the origins of cross-asset price impacts, for which I exam-

ine two mechanisms. The first, supported by empirical findings from Andrade, Chang, and

Seasholes (2008) and Chaudhary, Fu, and Li (2023), is correlated payoffs. For instance,

should noise traders purchase Google, arbitrageurs selling Google might buy Facebook to

hedge against technology sector risk, creating a cross-impact. The second mechanism is cor-

related flows, backed by studies from Hasbrouck and Seppi (2001) and Ben-David, Li, Rossi,

and Song (2022b), where noise traders simultaneously buying or selling assets like Google

and Facebook induce cross-impacts.

I show that, irrespective of the flow and payoff correlation structures among the N assets,

it is always possible to uniquely identify N factors characterized by both uncorrelated flows

4For a summary of empirical studies, see Table 1 in Gabaix and Koijen (2022).
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and uncorrelated payoffs. Subsequently, I introduce the “Irrelevance of Uncorrelated Flows

(IUF)” assumption, positing that these specific factors do not have cross-impacts on each

other. To eliminate both channels of cross-impacts, it is pivotal to use the same set of

factors to orthogonalize both flows and payoffs. This approach differs from prior studies,

which analyze the factor structures of payoffs or flows in isolation.5

The IUF assumption simplifies the modeling of the N × N price impacts matrix to

just N parameters. Each of these parameters quantifies a factor’s price change per unit of

risk induced by its own flow, termed “the price of flow-induced risk.” For this parameter,

explicitly measuring risk exposures is crucial, as flows impact prices by altering arbitrageurs’

risk exposures. Traditionally, asset pricing models focus on the price of risk, defined as the

ratio of expected returns to risk exposures. The newly introduced price of flow-induced risk

represents how sensitive this traditional price of risk is to the flow for each factor.

Compared to the traditional price multiplier (∆P/P )/(∆Q/Q), the price of flow-induced

risk not only incorporates risk exposures but also avoids mathematical errors when the tra-

ditional metric is applied to long-short portfolios. For example, citing a series of empirical

studies, Table 1 of Gabaix and Koijen (2022) claims a factor-level price multiplier of approx-

imately 5, meaning that if noise traders buy 1% more of a factor, the factor price increases

by 5%. However, the correct portfolio theory (which differs from the formula that this lit-

erature uses) implies that the total market capitalization Q of long-short factor portfolios

is zero. This is because the market portfolio takes out the aggregate supply, so other long-

short portfolios are net zero.6 This results in a division by zero in the traditional formula, a

clear mathematical error. Thus, the concept of “buying 1% more of a long-short portfolio”

is fundamentally flawed, making any price multiplier estimate meaningless. It is erroneous

to mechanically extend the formula (∆P/P )/(∆Q/Q), which is well-defined for individual

5Ross (1976) models asset payoff and return factor structures. Lo and Wang (2000) and Hasbrouck and
Seppi (2001) study the factor structures of trading volume and order flow. Gârleanu and Pedersen (2022)
study the factor structures of both payoffs and flows, yet treat them separately in the analysis.

6The total amount outstanding of a long-short portfolio is not simply the difference between the sum of
the long and short legs. Refer to Section 4.3 for a detailed derivation.
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assets or aggregate markets, to long-short portfolios where it breaks down.

Equilibrium price impact models typically rely on quadratic utility and normally dis-

tributed payoffs. I show that the quadratic-normal model is a special case of my IUF model,

but with the extra restriction that all factors must have the same price of flow-induced risk.

This restriction arises because in typical equilibrium models, which considers a static setting

with representative arbitrageurs, the price of flow-induced risk equals the ratio of risk aversion

to the number of arbitrageurs—uniform across all factors.7 Empirical evidence challenges the

idea of a uniform price of flow-induced risk across different factors. Using mutual fund flows,

An, Su, and Wang (2023) reject this uniformity restriction for the Fama and French (1993)

three factors. In essence, standard quadratic-normal models have always implicitly assumed

my IUF without realizing it, while inadvertently bundling in a less defensible restriction—a

uniform price of flow-induced risk for all factors. By discarding this flawed restriction, the

IUF allows for greater empirical flexibility and richer cross-substitution patterns.

Simply put, the IUF assumes no cross-impacts among some factors, and is special because

it picks those factors with uncorrelated flows and uncorrelated payoffs. While this selection

is empirically grounded in two cross-impact channels, a deeper theoretical justification for

the optimality of IUF stands independently of any specific channel. I prove that, out of all

possible ways of selecting N factors and eliminating cross-impacts among them, the IUF is

the only way that keeps each factor’s price response to its flow unchanged and keeps the

arbitrageur’s expected utility unchanged for any specific utility function.

The model’s last step reduces the number of factors from N to a smallK. The motivation

is that in practice, N is usually large, and empirical researchers often use a small set of factors

to achieve robustness in estimation. Doing so requires generalizing the concept of arbitrage

to markets with noise trading. Traditionally, no arbitrage means that a portfolio with little

payoff risk should not have a high expected return. I generalize this principle for noise

7To relax this restriction in equilibrium models, two approaches are viable: firstly, introducing predictable
flows within a dynamic model, as detailed in Section 7.1; secondly, allowing for distinct arbitrageur groups
for different factors, as detailed in An, Su, and Wang (2023).
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trading scenarios, postulating that a small flow into a portfolio with little payoff risk should

not generate a high price impact.8 If such portfolios were to exist, arbitrageurs would earn

exceptionally favorable risk-return trade-offs for providing liquidity to these portfolios.

Equipped with the generalized concept of arbitrage, I proceed to develop the flow-based

APT. I prove that if the K factors’ flows explain common variations in the N assets’ flows,

then the N assets’ price impacts must align with the K factors’ price impacts in accordance

with the assets’ risk exposure to these factors.9 If this were not the case, one could identify an

asset, hedge out the factors, and end up with a portfolio with a small flow and little risk, yet a

significant price impact, contradicting the generalized concept of arbitrage. Importantly, my

theory does not rely on the assumption that noise traders understand factors or covariances.

Regardless of the underlying behavioral models of why noise traders generate flows, it is the

arbitrage force that aligns the price impacts of these flows with the modeled factor structure.

From an application perspective, my theory expands the class of tractable asset-pricing

models with trading flows. Provided a single-asset model is solvable, researchers can apply

my machinery to solve the general model with N assets featuring any correlation pattern

in both payoffs and flows. The existing literature’s need to impose stringent correlation

structures for tractability is now obsolete. This advancement not only facilitates theoretical

investigations into how trading flows impact cross-sectional asset prices in a more realistic

setting, but also provides a unified method for empirical estimation of such effects. To

illustrate, the paper presents two applications from subsequent works where flows either

exhibit dynamic predictability or are informed about asset payoffs.10

The prediction of the model—that noisy flows impact cross-sectional asset prices through

8In my theory, arbitrage still holds: two assets with identical payoffs should have the same price, even
though that same price can be affected by noise trading. My theory does not account for “noise trader
risks,” where two assets with identical payoffs can have different prices if noise trading itself becomes an
independent risk factor, as in De Long, Shleifer, Summers, and Waldmann (1990).

9Order flows indeed exhibit a pronounced factor structure, as empirically documented by Hasbrouck and
Seppi (2001). Their finding is motivated using optimization models of trading (Caballe and Krishnan, 1994;
Kumar and Seppi, 1994).

10In the microstructure literature, a technical trick involves rotating assets to portfolios with uncorrelated
payoffs, subsequently assuming that signals on these uncorrelated payoffs are also uncorrelated (see chapter
3.8 of Veldkamp, 2011). Section 7.2 explains the advantages of my rotation over the traditional approach.
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a few important factors—finds empirical support in An, Su, and Wang (2023). They estimate

the model using mutual fund flows data, applying it to the Fama-French 5×5 size and book-

to-market test assets, alongside the Fama-French three factors. Their results affirm that the

model, which relies solely on the estimated price of flow-induced risk of the three factors,

effectively explains the observed patterns of self- and cross-impacts among the 5×5 assets.

The remainder of this paper is organized as follows. Section 2 reviews related literature.

Section 3 presents the model setup. Sections 4, 5, and 6 present the three steps of the model.

Section 7 presents two applications. Section 8 concludes. The appendices provide proofs.

2 Related Literature

Cross-sectional asset pricing traditionally builds on factor models (Fama and MacBeth, 1973;

Merton, 1973a; Ross, 1976), while demand-based studies highlight how uninformed noise

trading flows can significantly impact asset prices.11 Although the significance of both factors

and demand in asset pricing is well-recognized, a unifying theoretical framework is absent.

My contribution is to fill this gap by generalizing classic factor-model theories to analyze

markets affected by noise trading. This generalization yields a new factor model that provides

a theoretically grounded and empirically flexible structure for the N × N self- and cross-

impacts. Importantly, existing literature, such as summarized by Table 1 of Gabaix and

Koijen (2022), makes mistakes on two key issues: 1) the construction of portfolio flows, and

2) the definition of price multipliers for long-short portfolios. My contribution is identifying

and correcting these mistakes.

Arbitrage theory centers around P = E[MX], which underpins portfolio theory, the

Sharpe ratio, Hansen-Jagannathan bound, and Ross’s APT. These tools characterize how

no-arbitrage conditions shape the SDF and, consequently, determine cross-sectional asset

11See, for example, Coval and Stafford (2007), Lou (2012), Boulatov, Hendershott, and Livdan (2013),
Chang, Hong, and Liskovich (2015), Pasquariello and Vega (2015), Koijen and Yogo (2019), Huang, Song,
and Xiang (2021), Barber, Huang, Odean, and Schwarz (2022), Ben-David, Li, Rossi, and Song (2022b),
Gabaix and Koijen (2022), Li and Lin (2022), and Chaudhary, Fu, and Li (2023).
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prices. My contribution is generalizing these tools to characterize how no-arbitrage con-

ditions shape the SDF’s response to noisy flows, thus structuring the cross-sectional price

impacts. Unlike models limited to specific equilibria, my approach reveals the general cross-

sectional constraints on price impacts in arbitrage-free markets, and avoids making paramet-

ric assumptions on utility function and payoff distribution. My theory complements Kozak,

Nagel, and Santosh (2018), who show that arbitrage leads to a factor structure in asset

returns in the presence of noise traders. Differing from their focus on asset returns, I study

the price impacts of noisy flows and derive a factor model for these impacts.

The standard quadratic-normal model implicitly assumes that all factors must have the

same price sensitivity per unit of flow-induced risk. My IUF improves over the standard

model by allowing heterogeneous price of flow-induced risk among different factors. Conse-

quently, the IUF model implies that the cross-substitution between two assets depends not

only on their factor risk exposures but also on the distinct price of flow-induced risk specific

to each factor. Hence, some cross-asset price impacts that do not show up in the quadratic-

normal model emerge under my model. The intuition is that flow into asset A can impact

the price of asset B by differentially impacting the factors that asset B is exposed to. The

risk-based cross-substitution distinguishes my model from existing models, such as Koijen

and Yogo (2019), which features proportional cross-substitution in the logit demand system,

and Buffa and Hodor (2023), where cross-substitution is determined by whether assets are

held in the same or different benchmarks.12

In my model, price impacts stem from arbitrageurs’ aversion to absorbing flow-induced

risk, not from microstructure or liquidity frictions. This feature distinguishes my model from

studies on the effects of commonality in liquidity on expected returns (Chordia, Roll, and

Subrahmanyam, 2000; Hasbrouck and Seppi, 2001; Pástor and Stambaugh, 2003). Unlike

models where common flows are intrinsic risk factors (Alvarez and Atkeson, 2018; Dou,

Kogan, and Wu, 2021; Kim, 2020), in my model, these flows alter the pricing of risk factors.

12Specifically, in Koijen and Yogo (2019), two assets experience positive cross-substitution if held by the
same institution. In Buffa and Hodor (2023), heterogeneous benchmark holdings lead to negative spillovers.
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3 Model Setup and Flow-Based SDF

In this section, I introduce the model setup and the flow-based SDF, a tool central to

characterizing the cross-section of price impacts.

3.1 Model Setup

The model unfolds over two periods, t = 0 and t = 1. Define the probability space as

(Ω,F ,P) = (Ω0 ×Ω1,F0 ×F1,P0 × P1). Let ω0 ∈ Ω0 and ω1 ∈ Ω1 represent the randomness

at times t = 0 and t = 1, respectively. To ensure clarity, I explicitly specify the dependence

of random variables on ω0 and ω1 when necessary. As a convention, I use bold font notation

for matrices and vectors, and A⊤ to denote the transpose of matrix A.

The model includes N assets. The flow into asset n = 1, . . . , N is represented by fn(ω0), a

random variable that realizes at time 0, grouped as vector f = (f1, f2, . . . , fN)
⊤. These flows

are measured in dollar values, relative to the asset prices before any flow occurs. The payoff

of asset n is denoted by Xn(ω1), a random variable that realizes at time 1, grouped as vector

X = (X1, X2, . . . , XN)
⊤. The flow is uninformed and noisy in the sense that f is independent

of the payoff X. The gross risk-free rate is a constant, RF , and does not depend on the flow.

Without loss of generality, I assume that var(X) and var(f) are full-rank matrices.13 Notably,

I do not assume any parametric distributions for flow or payoff.

I denote the time-0 price of asset n as Pn(f), grouped as vectorP(f) = (P1(f), P2(f), . . . , PN(f))
⊤.

In contrast to the equilibrium approach, the arbitrage approach does not model specific eco-

nomic agents. However, one can imagine a representative arbitrageur who absorbs the flow

f , allowing the price P(f) to depend on f . Figure 2 displays the model timeline.

Note that the flow f arrives at time 0. There could, in principle, also be flows arriving

between time 0 and 1, potentially affecting the “payoff” X at time 1. By assuming f is

independent of X, my analysis effectively conducts a comparative static exercise, varying

13Otherwise, one can select linearly independent portfolios and rotate the payoff X and flow f accordingly.
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Figure 2. Model timeline

time t = 0:
probability space: (Ω0,F0,P0)

flow: f(ω0)
asset price: P(f(ω0))

price impact: ∆p(f(ω0))

time t = 1:
probability space: (Ω1,F1,P1)

asset payoff: X(ω1)
fundamental return: R0(ω1)
flow-based SDF: ∆M(f , ω1)

Notes: The probability space is defined as (Ω,F ,P) = (Ω0 × Ω1,F0 × F1,P0 × P1). The flow f , asset price
P(f), and price impact ∆p(f) are random variables that realize at time 0. Asset payoff X and fundamental
return R0 are random variables that realize at time 1. For any flow f , the flow-based SDF ∆M(f) is a
random variable that realizes at time 1.

the time-0 flow f while holding all else equal. There might be concerns that the time-0 flow

f could dynamically predict future flows or that, in general, the flow f might be informed

about the payoff X. My theory can be generalized to accommodate both these possibilities,

as discussed in Sections 7.1 and 7.2, respectively.

3.2 Flow-Based SDF

To characterize how flow impacts price for the cross-section of assets, I introduce the flow-

based SDF. Intuitively, because the flow changes the asset price P(f) but does not change

the future payoff X, the SDF bridging asset price to payoff must consequently adjust. Specif-

ically, the law of one price (LOOP) implies that for any given flow f , there exists a standard

SDF M(f), which is a random variable that realizes at time 1, such that14

P(f) = E[M(f)X]. (1)

Note that the expectation on the right-hand side is taken over time-1 random variables M(f)

and X for any given flow f . When the flow f equals zero, I obtain

P(0) = E[M(0)X]. (2)

14My theory requires only the LOOP, ensuring the existence of an SDF. I do not require the additional
no-arbitrage condition to guarantee a strictly positive SDF (see chapter 4.2 of Cochrane, 2009).
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In this context, whether the flow f , asset price P(f), SDF M(f), and payoff X are

“exogenous” or “endogenous” is irrelevant. Regardless of their nature, equation (1) must

hold in any equilibrium that satisfies LOOP. This arbitrage-pricing logic, which has been

developed since the works of Black and Scholes (1973), Merton (1973b), and Ross (1976),

enables the characterization of the price impact of flows across various market equilibria,

extending beyond specific models.

For any flow f , I define price impact as

∆p(f) :=

(
P1(f)− P1(0)

P1(0)
,
P2(f)− P2(0)

P2(0)
, . . . ,

PN(f)− PN(0)

PN(0)

)⊤

, (3)

which represents the percentage price change at time 0 with and without flow f . I define

fundamental return as

R0 :=

(
X1

P1(0)
,

X2

P2(0)
, . . . ,

XN

PN(0)

)⊤

, (4)

which represents asset return when there is no flow and is independent of the flow f . I define

the flow-based SDF (F-SDF) as the difference between two standard SDFs with and without

flow f ,

∆M(f) := M(f)−M(0), (5)

which captures the flow-induced changes in the standard SDF.15

Taking the difference between (1) and (2) and dividing element-wise by P(0), I obtain

∆p(f) = E[∆M(f)R0]. (6)

Since the fundamental return R0 is independent of flow f , equation (6) implies that flow

generates price impact only by varying the F-SDF ∆M(f). The insight is that to characterize

15The term “flow-based SDF” was first introduced in section 5.3 of Gabaix and Koijen (2022), where they
solve a general equilibrium model and express the model’s solutions using an SDF that depends on flows.
Many papers also presuppose certain functional forms for how flow influences the SDF. In contrast, my
approach derives how flow changes the SDF through no-arbitrage conditions, independent of any particular
equilibrium model. This new approach leads to the derivation of my F-SDF pricing equation (6), which
forms the foundation for all my subsequent analyses.
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the multi-asset price/quantity relationship ∆p(f), it is only necessary to determine how the

flow f changes the SDF ∆M(f) = M(f) − M(0), rather than tackling the more complex

question of how the entire SDF M(f) depends on f . Economically, all the risk preferences of

how the arbitrageur responds to flows are encoded by the F-SDF mapping,

M̃(·) : f ∈ RN −→ M̃(f , ω1) ∈ L2(Ω1,F1,P1), (7)

where L2(Ω1,F1,P1) is the set of square-integrable time-1 random variables. Mathematically,

the mapping M̃(·) is called a random field. The technical challenge lies in tracking multi-

asset flows and returns, as well as their relationship, while the standard arbitrage pricing

tracks only returns. Therefore, I use a random field to characterize the F-SDF, similar to

how a random variable is used to characterize the standard SDF.

The following proposition summarizes the key equations for the F-SDF.

PROPOSITION 1. For any flow f , the F-SDF ∆M(f) satisfies

E[∆M(f)R0] = ∆p(f), (8)

E[∆M(f)] = 0. (9)

Equation (8) simply restates (6), which is a consequence of the LOOP. Equation (9)

implies that the F-SDF has zero mean and follows from the assumption that the risk-free

rate RF does not depend on the flow f .

In summary, this section establishes the foundational linkages between the F-SDF ∆M(f)

and the price impact ∆p(f). In subsequent sections, I leverage a series of axiomatic principles

to characterize the F-SDF, which in turn enables me to determine the price impacts.
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4 Portfolio Theory for Flows

This section presents the first step of the model, which tackles a fundamental yet unresolved

question: How should individual asset flows be aggregated into flows into a given set of

portfolios? Section 4.1 establishes the foundational principle of the portfolio flow theory:

the flow-induced risk exposures should remain invariant when forming portfolios. Section

4.2 applies this principle to construct portfolio flows. Section 4.3 compares my formula with

those found in the literature, demonstrating how my formula both generalizes and corrects

the existing approaches.

4.1 Invariance Principle

This section establishes the foundational principle of the portfolio flow theory: the overall risk

exposures induced by flows should remain invariant under portfolio formation. To understand

this, consider that when the arbitrageur absorbs flow f , the change in wealth is given by16

∆W (f) = RF f
⊤∆p(f)− f⊤(R0 −RF1). (10)

Here, the inner product between flow and price impact, f⊤∆p(f), represents the total com-

pensation to the arbitrageur for absorbing the risk induced by the flow. Meanwhile, the

inner product between flow and excess fundamental return, f⊤(R0 − RF1), represents the

payoff risk absorbed by the arbitrageur.

Portfolio formation is simply a different way to look at the same problem. This implies

that regardless of whether individual assets or aggregated portfolios are considered, the ar-

bitrageur’s wealth change ∆W (f) should stay invariant. According to equation (10), this

requires keeping the inner product f⊤(R0 − RF1− RF∆p(f)) invariant under portfolio for-

16To derive this equation, note that the flow f is measured per dollar, which allows expressing the flow in
units of shares as h = (f1/P1(0), . . . , fN/PN (0))⊤. The arbitrageur sells h units of shares at time 0 at price
P(f). Consequently, ∆W (f) = RFh

⊤P(f)− h⊤X, simplifying to (10) by using equations (3) and (4).
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mation. The term R0 − RF1 − RF∆p(f) is approximately the excess fundamental return

from the time-0 price P(f) to the time-1 payoff17 X. Denoting this excess return as R,

the principle of the portfolio flow theory is to keep the inner product f⊤R invariant, which

represents the overall risk exposures induced by flows.

4.2 Formula for Portfolio Flows

This section applies the invariance principle to construct portfolio flows. Suppose that one

forms K ≤ N portfolios using N assets. I denote the N × K portfolio weight matrix

as B = (b1,b2, . . . ,bK), where bk = (b1,k, b2,k, . . . , bN,k)
⊤ is the k-th portfolio’s weight,

meaning that portfolio k holds bn,k dollars of asset n. The goal is to construct the flow

q = (q1, q2, . . . , qK)
⊤ into the K portfolios. Because the number K of portfolios may be

less than the number N of assets, it is unrealistic to expect a complete recovery of the

flow-induced risk exposure f⊤R using the K portfolios. Instead, a reasonable objective to

minimize the variance of the difference between the N assets and K portfolios. Recall that

standard portfolio theory implies that the returns of the K portfolios are B⊤R (i.e., the

return of portfolio k is
∑N

n=1 bn,kRn). Therefore, I have

q = argmin var(f⊤R− q⊤B⊤R) = var(B⊤R)−1cov(B⊤R, f⊤R). (11)

Equation (11) implies that the portfolio flows q1, q2, . . . , qK result from projecting the

flow-induced risk exposure f⊤R onto the returns of K portfolios, b⊤
1 R,b⊤

2 R, . . . ,b⊤
KR. In

other words, portfolio flows q are the return betas of the asset flows f to the portfolios

b1,b2, . . . ,bK , which is equivalently the projection of f onto B within the space of return.18

17Using equations (3) and (4), we have R0 − RF1 − RF∆p(f) = ((X1 − RFP1(f))/P1(0), . . . , (XN −
RFPN (f))/PN (0))⊤. Here, the denominator is Pn(0) instead of Pn(f) because returns are measured relative
to the asset prices before any flow occurs.

18An alternative approach is to directly project f onto B using the equation q = (B⊤B)−1B⊤f , which
does not need to use the return R. While this method does not minimize the objective in (11), it main-
tains the projected risk exposure on the portfolios B as invariant. This is because f⊤B(B⊤B)−1B⊤R =
((B⊤B)−1B⊤f)⊤B⊤R, with B(B⊤B)−1B⊤ being the projection matrix.
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To help readers better understand equation (11), I write

q = var(B⊤R)−1cov(B⊤R, f⊤R) =
N∑

n=1

fnvar(B
⊤R)−1cov(B⊤R, Rn), (12)

where var(B⊤R)−1cov(B⊤R, Rn) is the return betas of asset n to the K portfolios. Equation

(12) implies that the portfolio flows q are obtained by aggregating the asset flows fn. Rather

than simply accumulating these flows based on portfolio weights, they are weighted by each

asset’s risk exposures (i.e., return betas) to the portfolios. Economically, the portfolio flow

qk measures how the asset-level flow f changes risk exposures for portfolio k.

In the special case of forming K = N portfolios using N assets, equation (11) simplifies

to

q = B−1f or, equivalently, f = Bq =
N∑
k=1

bkqk, (13)

which has a more intuitive interpretation. Portfolio flows qk first enter portfolio k and are

then allocated to individual assets based on portfolio weights bk. That is, if portfolio-k

flow increases by $1, asset-n flow rises by $bn,k. Therefore, if the N portfolio flows are

q1, q2, . . . , qN , the resulting flow into asset n is
∑N

k=1 bn,kqk, which implies f =
∑N

k=1 bkqk.

Consequently, to aggregate asset flows into portfolio flows, one should project asset flows

onto portfolio weights, explaining the inverse B−1.

4.3 Comparison with the Literature’s Formula

This section compares my formula (12) with the literature’s formula, which directly sums

asset flows based on portfolio weights. This comparison highlights the improvements of my

formula over existing literature, particularly for long-short portfolios.

First, my formula implies that the flow into a portfolio can depend on the weights of

other portfolios. As per (12), this is because the return beta to a portfolio can depend on

whether other portfolios are controlled for, a standard intuition in asset pricing. This is

in stark contrast to the literature’s formula, where the flow into a portfolio solely depends

15



on its own portfolio weights. Nonetheless, in the special case that the K portfolios have

uncorrelated returns (i.e., cov(b⊤
k R,b⊤

j R) = 0 for k ̸= j), my formula can also be simplified

to a portfolio-by-portfolio construction, i.e., qk = var(b⊤
k R)−1cov(b⊤

k R, f⊤R).

Second, for the market portfolio, my formula coincides with the literature’s formula under

an additional assumption. I denote the market portfolio weights as b
{MKT}
n = Qn/

∑N
n=1 Qn,

where Qn is the market capitalization of asset n. The literature’s formula aggregates the

market-capitalization-normalized flow fn/Qn in accordance with the portfolio weight b
{MKT}
n ,

N∑
n=1

b{MKT}
n

fn
Qn

=

∑N
n=1 fn∑N
n=1Qn

. (14)

The numerator
∑N

n=1 fn measures the “aggregate flow into the market.” It is conceptually

different from q{MKT} that I measure, which is the “flow into the market portfolio.” Under

an extra assumption that asset-level flows are solely driven by the flow into market portfolio

(fn = b
{MKT}
n q{MKT} for all n), my measure q{MKT} equals the literature’s measure

∑N
n=1 fn.

Third, the literature (see Table 1 of Gabaix and Koijen (2022) for a summary) also

extends formula (14) to measure flows into long-short portfolios, leading to a mistaken in-

terpretation. Consider a long-short portfolio, in which the portfolio weight for the long

leg is b
{LS}
n = Qn/

∑
n∈{L}Qn if n ∈ {L} and the portfolio weight for the short leg is

b
{LS}
n = −Qn/

∑
n∈{S}Qn if n ∈ {S}. Note that this construction aligns with the standard

practice in long-short portfolios, wherein the sum of the weights in the long leg is equal to

1 and in the short leg is equal to −1. By applying equation (14), one obtains

N∑
n=1

b
{LS}
n fn
Qn

=

∑
n∈{L} fn∑
n∈{L}Qn

−
∑

n∈{S} fn∑
n∈{S}Qn

̸= q{LS}

Q{LS} . (15)

Under the additional assumption that asset-level flows are solely driven by the flow into the

long-short portfolio (fn = b
{LS}
n q{LS} for all n), one has q{LS} =

∑
n∈{L} fn = −

∑
n∈{S} fn.

However, even under this strong assumption, the last step in (15) is still not an equality,

because it is implausible to assume that the total market capitalization of the long-short
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portfolio Q{LS} satisfies 1/
∑

n∈{L}Qn + 1/
∑

n∈{S}Qn = 1/Q{LS}.

Due to this error in the denominator, the literature incorrectly interprets the left-hand

side of equation (15) as the “percent change in shares outstanding purchased or sold” for long-

short portfolios. However, this interpretation is not well-founded, because the underlying

calculations in (15) do not support it.

Moreover, I demonstrate a concerning point: the total market capitalization Q{LS} of the

long-short portfolio is zero. This is because the market portfolio takes out the aggregate

supply, so other long-short portfolios are net zero. Therefore, phrases like “buying 1% more

of a long-short portfolio” are economically meaningless, as they imply division by zero—a

mathematically indefensible operation. To see this, I apply equation (11) to total market

capitalization. Let Q = (Q1, Q2, . . . , QN)
⊤ represent the total market capitalization of N

assets. The total market capitalization of the portfolios is

Q{portfolio} = var(B⊤R)−1cov(B⊤R,Q⊤R) = var(B⊤R)−1cov(B⊤R, (b{MKT})⊤R)
N∑

n=1

Qn,

(16)

where the last step uses the fact that the market portfolio weight b{MKT} is proportional to

the total market capitalization Q. This equation shows that the total market capitalization

of any portfolio is the return beta of the market portfolio to that portfolio, multiplied by the

total market capitalization of all assets.

For the market portfolio, its return beta to itself is by definition one. So the market

portfolio’s total market capitalization Q{MKT} equals the sum of the capitalization across

all assets
∑N

n=1 Qn, a result that aligns with common intuitions. However, most long-short

portfolios, such as the Fama-French factors, are constructed to achieve zero return correlation

with the market. As shown by equation (16), this zero correlation implies that the total

market capitalization Q{LS} of such long-short portfolios is zero, making phrases like “buying

1% more of a long-short portfolio” economically meaningless.
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In summary, by contrasting my formula with the flawed formula in the literature, I

highlight the importance of a rigorous theoretical foundation for aggregating flows, partic-

ularly for long-short portfolios. Furthermore, since ∆Q/Q is not economically meaning-

ful for long-short portfolios, the conventional IO approach of defining price multipliers as

(∆P/P )/(∆Q/Q) also fails for long-short portfolios. A major motivation for the remainder

of this paper is to address this issue. I achieve this by introducing risk, the central concept

of asset pricing, into the characterization of the price/quantity relationship.

5 Factor Model of Price Impacts

This section presents the second step of the model, using factors to characterize the N ×N

matrix of self and cross-asset price impacts. Section 5.1 derives the factor model of price

impacts. Section 5.2 explains how this model improves upon the literature’s quadratic-

normal models. Section 5.3 highlights the rationale behind the selection of factors as the

unique optimal choice.

5.1 Model Derivation

This section proposes a set of axiomatic assumptions to derive the factor model of the F-SDF

and price impacts.

ASSUMPTION 1. Linearity of price impact

For any a1 ∈ R, a2 ∈ R, f1 ∈ RN , and f2 ∈ RN , I assume

∆p(a1f1 + a2f2) = a1∆p(f1) + a2∆p(f2). (17)

The linearity of price impact is an assumption, not a consequence of the LOOP. The

LOOP does not apply when comparing economies with different flows f1 and f2. Linearity

implies that price impact doubles if flow doubles and that price impact is additive for two

flows. The linearity assumption is substantiated by both theoretical and empirical rationales:
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theoretically, it nests quadratic-normal models in the literature; empirically, researchers often

approximate price impacts as linear, at least locally, when estimating the price’s sensitivity

to flow.

ASSUMPTION 2. Positive compensation for risk

For any f ̸= 0, I assume f⊤∆p(f) > 0.

Recall that equation (10) demonstrates that f⊤∆p(f) quantifies the arbitrageur’s risk

compensation for absorbing flow f . Assumption 2 asserts that this compensation must be

strictly positive for any non-zero flow. Intuitively, this implies that when there is an inflow

into an asset, the asset’s price should increase rather than decrease.

Furthermore, as shown in Hansen and Jagannathan (1991), while multiple SDFs can

explain a specific set of prices, only one SDF is uniquely defined within the return space.

Analogously, in my theory, while multiple F-SDFs can explain a specific set of price impacts,

only one F-SDF is uniquely defined within the demeaned return space spanned by R0 −

E[R0]. Consequently, the projection onto the demeaned return space is useful to streamline

the characterization of the F-SDF. (Section 6.1 provides a deeper characterization of this

projection and its connection to the traditional theory.) The aforementioned assumptions

allow for a linear expression of the F-SDF. Appendix A.1 contains a proof.

PROPOSITION 2. There exists a unique F-SDF that satisfies the following conditions:

i. pricing equation: E[∆M(f)R0] = ∆p(f) for every f ∈ RN ;

ii. zero-mean property: E[∆M(f)] = 0 for every f ∈ RN ;

iii. projection: ∆M(f) belongs to the return space spanned by R0−E[R0] for every f ∈ RN ;

iv. linearity in Assumption 1.

v. positive compensation for risk in Assumption 2.
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Specifically, this unique F-SDF can be written as

∆M(f) = (Yf)⊤(R0 − E[R0]), (18)

where Y is an N ×N matrix that ensures var(R0)Y is positive definite.

The F-SDF ∆M(f) in (18) has N2 free parameters Y, and implies a price impact model

∆p(f) = E[∆M(f)R0] = var(R0)Yf . (19)

Intuitively, the model (19) contains the right components, as var(R0) represents fundamental

payoff risk and f corresponds to flow. However, the N × N matrix Y as free parameters

means that flow into any asset can impact the price of any other asset under this model.

This matrix Y is both hard to interpret theoretically and estimate empirically. Hence, the

remainder of this section introduces an economic restriction that uses factors to characterize

the N ×N price impacts.

Doing so requires taking a stance on what types of cross-asset price impacts are plausible

and what types are not. I examine two mechanisms. The first, supported by empirical

findings from Andrade, Chang, and Seasholes (2008) and Chaudhary, Fu, and Li (2023), is

correlated payoffs. For instance, should noise traders purchase Google, arbitrageurs selling

Google might buy Facebook to hedge against technology sector risk, creating a cross-impact.

The second mechanism is correlated flows, backed by studies from Hasbrouck and Seppi

(2001) and Ben-David, Li, Rossi, and Song (2022b), where noise traders simultaneously

buying or selling assets like Google and Facebook induce cross-impacts.

Conversely, for two assets with both uncorrelated flows f and uncorrelated fundamental

returns R0, one should not expect the flow into the first asset to impact the price of the

second asset. The following Irrelevance of Uncorrelated Flows (IUF) assumption formalizes

this intuition. While the economic logic is simple, the technical specifics of IUF are more

involved, which I will examine next.
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ASSUMPTION 3. Irrelevance of Uncorrelated Flows (IUF)

I define the set of matrices,

C :=
{
C ∈ RN×N | var(R0)var(f)C = Cvar(f)var(R0)

}
. (20)

For any given portfolio a ∈ RN and flow s, I construct the portfolio,

d = (cov(f1, s), cov(f2, s), . . . , cov(fN , s))
⊤ . (21)

If a⊤Cd = 0 for all C ∈ C, then cov(a⊤∆p(f), s) = 0.

The IUF posits that there should be no cross-impacts between two portfolios with weights

a ∈ RN and d ∈ RN , if they meet certain conditions. Here, s denotes the flow into portfolio

d, and thus cov(a⊤∆p(f), s) = 0 implies that the flow into portfolio d does not affect the

price changes in portfolio a.

The complexity of the IUF arises in detailing the conditions that the portfolios a and d

must satisfy. While the core concept requires these portfolios to exhibit uncorrelated flows

and fundamental returns, the scenario is more complex in multi-asset markets due to the

possibility of indirect correlations via a third asset. To be precise, portfolios a and d are

required to be in distinct eigenspaces corresponding to both the fundamental returns R0 and

the flows f .

The application of commuting matrices is pivotal in this analysis. Specifically, square

matrices A and B commute (i.e., AB = BA) if and only if they share the same eigenvectors.

This property underpins the construction of the matrix set C as defined in equation (20).

Essentially, each matrix C within C represents a potential way that portfolios a and d could

correlate via a third portfolio. The condition “a⊤Cd = 0 for all C ∈ C” ensures that

portfolios a and d are truly uncorrelated, both in terms of fundamental returns and flows,

even when accounting for all possible indirect correlations.

Another detailed aspect of the IUF concerns how portfolio flow s aligns with port-
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folio weights d, as shown by equation (21). The sensitivity of asset flow fn to port-

folio flow s is quantified by the beta coefficient cov(fn, s)/var(s). The portfolio weights

d = (d1, d2, . . . , dn)
⊤ specify how a one-dollar flow into the portfolio gets allocated: dn dol-

lars go to asset n. Hence, by setting dn = cov(fn, s)/var(s), d becomes the exact portfolio

into which s flows. To further simplify equation (21), we normalize all portfolio weights by

var(s). This concept of portfolio weights being the covariance between asset flows and port-

folio flows also appears in equation (13), which is part of the broader discussion on portfolio

flow theory.

Using IUF to characterize F-SDF and price impacts. Following the explanation

of the IUF, I show how it leads to a factor model for the F-SDF and price impacts. To

simplify exposition in the main text, I introduce a technical assumption.

ASSUMPTION 4. Let the Cholesky decomposition of the fundamental risk matrix be

var(R0) = U⊤U, where U is an N × N upper triangular matrix. I assume that the matrix

var(Uf) has distinct eigenvalues.

Recall that in introductory linear algebra courses, distinct eigenvalues typically lead to

general and straightforward cases. In contrast, duplicate eigenvalues are associated with more

complex and nuanced cases. This principle also applies to my theory. Online Appendix A

studies scenarios where var(Uf) may have duplicate eigenvalues. Under such circumstances,

the IUF does not restrict how flows impact the price of portfolios within the same eigenspace.

This occurs because the commonality in flows and fundamental risks fails to uniquely pin

down N asset-pricing factors. Consequently, the theory acknowledges data limitations, and

the resulting price impact model is less restrictive.

The following lemma shows that, regardless of the correlation structures in flows and

fundamental returns for the N assets, one can always uniquely identify N factor portfolios

with uncorrelated flows and uncorrelated fundamental returns. As will be shown, the IUF

implies that these specific portfolios have no cross-impacts with each other, so they serve as

the basis for constructing the factor model for the F-SDF and price impacts. Appendix A.2
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provides a proof.

LEMMA 1. There exist N uniquely defined portfolios (up to sign) bn = (b1,n, b2,n, . . . , bN,n)
⊤,

satisfying:

i. Factor decomposition of flow:

f =
N∑

n=1

bnqn, (22)

where qn is the flow into portfolio n.

ii. Uncorrelated fundamental risk:

cov(b⊤
nR0,b

⊤
mR0) = 0 for all n ̸= m, and var(b⊤

nR0) = 1 for all n. (23)

iii. Uncorrelated flow:

cov(qn, qm) = 0 for all n ̸= m, and var(qn) = πn for all n. (24)

where π1 > π2 > · · · > πN > 0.

I refer to the portfolios b1,b2, . . . ,bN as factor portfolios and the corresponding flows

q1, q2, . . . , qN as factor flows. The factor decomposition (22) justifies this interpretation,

which follows from the portfolio theory introduced in equation (13). As shown in equation

(23), factor portfolios have uncorrelated and unit fundamental risk. Furthermore, equation

(24) shows that factor flows are uncorrelated with variances ordered from largest to smallest.

The uniqueness of these factors arises from their construction, which is explicitly designed

to orthogonalize both the flows and fundamental returns.

To better understand these factors, I compare my approach with the standard principal

component analysis (PCA) performed on the flows f =
∑N

n=1 bnqn. Both approaches require

uncorrelated flows as in equation (24). However, the standard PCA imposes the orthogonal-

ization condition b⊤
nbm = 0 for all n ̸= m, ensuring that the portfolio weights of different
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factors are orthogonal. This condition, unfortunately, does not hold economic significance. In

contrast, the factors in this paper are constructed under the condition cov(b⊤
nR0,b

⊤
mR0) = 0

for all n ̸= m, which ensures that the fundamental returns of different factors are uncorre-

lated. It is evident that orthogonal portfolio risks are more economically meaningful than

orthogonal portfolio weights.

The following theorem shows that if the IUF assumption holds, then the F-SDF can be

succinctly expressed using the factors b1,b2, . . . ,bN . Conversely, if the F-SDF is expressible

in this form, then the IUF must hold. Simply put, the IUF completely characterizes the

factor model, and vice versa. Appendix A.3 provides a proof.

THEOREM 1. The F-SDF satisfies all restrictions in Proposition 2 and the IUF Assump-

tion 3 if and only if it can be written as

∆M(f) =
N∑

n=1

λnqnb
⊤
n (R0 − E[R0]) (25)

for some parameters λn > 0 for all n. The corresponding price impact model is

∆p(f) = E[∆M(f)R0] =
N∑

n=1

λnqncov(R0,b
⊤
nR0). (26)

To understand the factor model of the F-SDF (25) and price impacts (26), it is helpful to

first examine the price impacts of the factors bn. Because different factors have uncorrelated

fundamental returns as required by equation (23), I have

b⊤
n∆p(f) = λnqnvar(b

⊤
nR0). (27)

The key thing to note is that the price impacts of the factor bn depend only on its

own flow qn and fundamental return b⊤
nR0, but not on other factors. This is the key eco-

nomic restriction imposed by the IUF assumption—no cross-impacts between the carefully

constructed factors b1,b2, . . . ,bN . This restriction allows reducing the number of free pa-
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rameters from N2 in Proposition 2 to N in Theorem 1. This simplification not only makes

the model more tractable but also more robust by reducing the potential for overfitting and

enhancing the interpretability of the factors.

It is also important to examine the parameter λn. As discussed in Section 4.3, the

traditional price multipliers cannot be applied to long-short portfolios. The parameter λn

in equation (27) is a proper measure for factor-level price response to flows. Specifically,

λn measures how much the factor price changes for each unit of risk var(b⊤
nR0) induced by

the flow qn. Hence, λn is termed “the price of flow-induced risk.” For this parameter, it is

crucial to explicitly measure risk exposures, because flows impact prices by changing the risk

exposures of arbitrageurs. Recall that traditional asset pricing focuses on the price of risk,

expressed as the ratio of expected returns to risk exposures. The price of flow-induced risk

λn represents the sensitivity of the traditional price of risk to the flow for each factor.

Having established the factor-level price impacts in (27), the derivation of asset-level

price impacts as shown in (26) follows from the standard arbitrage-pricing logic. Specifically,

individual asset prices adjust in response to changes in factor prices, reflecting their respective

risk exposures to the factors, cov(R0,b
⊤
nR0).

One can express the F-SDF in (25) and the price impact model (26) using a different

set of factors than the ones constructed in Lemma 1. However, because those factors gen-

erally do not have uncorrelated flows and uncorrelated fundamental returns, they still have

cross-impacts between each other. The IUF implies a structural restriction on these cross-

impacts, and the resulting model is more complicated. Appendix B provides the model under

alternative factors.

5.2 Improvement Upon Quadratic-Normal Models

In this section, I show how my model improves upon the literature’s quadratic-normal models.

While my arbitrage approach to price impacts does not require any parametric as-

sumptions on utility function and the payoff distribution, the literature typically resorts
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to quadratic-normal setups. Specifically, the utility function is assumed to be quadratic or

CARA, while the payoff distribution is assumed to be multivariate normal. Appendix C

shows that the static quadratic-normal price impact model is a special case of my factor

model (26), with an additional restriction that λ1 = λ2 = · · · = λN = γ/(µRF ), where γ is

the arbitrageurs’ risk aversion parameter, µ is the mass of arbitrageurs, and RF is the gross

risk-free rate.

The price of flow-induced risk λn endogenously emerges through my arbitrage approach.

It also gets at the core of equilibrium models: the ratio of risk aversion to the mass of

arbitrageurs. The static quadratic-normal model requires this ratio to be the same for all

factors. Not only is this restriction empirically rejected by An, Su, and Wang (2023), but

it also disappears in a dynamic quadratic-normal model with predictable flows, as I show in

Section 7.1. My factor model (26) improves upon the quadratic-normal model by allowing

heterogeneous price of flow-induced risk among different factors. Theorem 1 shows that,

even without the uniform price of flow-induced risk, the quadratic-normal model retains

a structured N × N price impact matrix. The IUF condition precisely characterizes this

structure.

Simply put, the static quadratic-normal model uses one free parameter to characterize

the N × N cross-substitution patterns, while my model (26) uses N parameters. In the

static quadratic-normal model, the cross-substitution between two assets depends on their

factor risk exposures, but these factors must have the same price of flow-induced risk. In

my model, the factors’ price of flow-induced risk can differ from each other. Therefore, some

cross-asset price impacts that do not show up in the static quadratic-normal model emerge

under my model. The intuition is that flow into asset A can impact the price of asset B by

differentially impacting different factors that asset B is exposed to.

I now present the precise mathematics for this new channel of cross-impacts. I consider N

portfolios b̃1, b̃2, . . . , b̃N with uncorrelated fundamental returns, i.e., cov(b̃⊤
nR0, b̃

⊤
mR0) = 0

for n ̸= m. Unlike the factors b1,b2, . . . ,bN constructed in Theorem 1, the portfolios
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b̃1, b̃2, . . . , b̃N may have correlated flows. The question is, holding all else equal, does flow q̃m

into portfolio m impact the price b̃⊤
n∆p(f) of portfolio n for m ̸= n? Importantly, “holding

all else equal” controls for the portfolio-n flow q̃n, and thus eliminates the mechanical cross-

impact arising from q̃m changing q̃n. My model answers yes to this question, while the

quadratic-normal model answers no.

To see this, by Proposition 5, the price impact of portfolio b̃n under my factor model is

b̃⊤
n∆p(f) =

N∑
m=1

λ̃n,mq̃mvar(b̃
⊤
nR0), (28)

where the price-of-flow-induced-risk matrix Λ̃ = {λ̃n,m} is given by

Λ̃ = OΛO−1 = Odiag(λ1, λ2, . . . , λN)O
−1. (29)

The matrixO rotates the portfolios b̃1, b̃2, . . . , b̃N to the factor portfolios b1,b2, . . . ,bN that

have both uncorrelated fundamental returns and uncorrelated flows in Theorem 1. Equation

(29) shows that the off-diagonal term λ̃n,m is generally nonzero for m ̸= n. Therefore, by

(28), flow q̃m into portfolio m impacts the price b̃⊤
n∆p(f) of portfolio n.

The static quadratic-normal model, requiring λ1 = λ2 = · · · = λN , is a special case of my

factor model. In this case, equation (29) implies that

Λ̃ = Odiag(λ1, λ1, . . . , λ1)O
−1 = diag(λ1, λ1, . . . , λ1) (30)

is diagonal, i.e., λ̃n,m = 0 for m ̸= n. Therefore, flow q̃m into portfolio m does not impact

the price b̃⊤
n∆p(f) of portfolio n. The absence of cross-impacts is because flow q̃m impacts

different factors that portfolio n is exposed to in the same magnitude λ1.

Comparing equations (29) and (30), one sees that whether the cross-asset price impacts

arise depends precisely on whether all λn are equal to each other, which is the key improve-

ment of my factor model over the quadratic-normal model. Hence, by empirically rejecting
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the hypothesis that all λn are equal, An, Su, and Wang (2023) support the new channel.

In summary, while the static quadratic-normal model rules out cross-impacts between

any two portfolios with uncorrelated fundamental returns, even in cases where these port-

folios have correlated flows, my IUF approach adopts a more general stance. It only elimi-

nates cross-impacts between portfolios that exhibit both uncorrelated fundamental returns

and uncorrelated flows, thereby enriching the cross-substitution pattern. In a similar vein,

Buffa and Hodor (2023) show that cross-impacts can occur between assets with uncorrelated

fundamental returns in scenarios featuring heterogeneous benchmarking. Furthermore, the

cross-substitution pattern implied by my IUF model markedly differs from that of the logit

demand system in Koijen and Yogo (2019). For instance, according to my IUF model, a

flow into an asset A with a positive beta would decrease the price of another asset B with

a negative beta, reflecting the arbitrageurs’ risk hedging incentive. Conversely, the logit

demand system, which does not account for return covariances, would suggest an increase

in the price of asset B due to its proportional cross-substitution pattern.19

5.3 Optimality of Chosen Factors

Having established that the IUF assumes no cross-impacts among certain factors, it stands

out for selecting factors with uncorrelated flows and uncorrelated fundamental returns. While

this selection is empirically grounded in two cross-impact channels, this section presents a

deeper theoretical justification that stands independently of any specific channel. I prove

that, out of all possible ways of selecting N factors and eliminating cross-impacts among

them, the IUF is the only way that keeps each factor’s price response to its flow unchanged

and keeps the arbitrageur’s expected utility unchanged for any specific utility function. This

section is developed under the regularity Assumption 4, while Online Appendix A presents

the general theory without this assumption.

19Proportional substitution is a well-known issue of the logit demand system. For a detailed discussion,
refer to Section 3.3.2 of Train (2009).
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Revisiting the N2 model (19), I first define the process of selecting N factors and elimi-

nating cross-impacts among them, termed “model orthogonalization.”

DEFINITION 1. Any N linearly independent portfolios b̃1, b̃2, . . . , b̃N defines a model

orthogonalization. The N2 model (19) expressed under these portfolios is

∆p(f) =
N∑

n=1

N∑
m=1

λ̃n,mq̃mcov(R0, b̃
⊤
nR0), (31)

with the N2 free parameters λ̃n,m and portfolio flows q̃1, q̃2, . . . , q̃N . The orthogonalized N-

factor model under these portfolios is defined as

∆p̄(f) =
N∑

n=1

λ̃n,nq̃ncov(R0, b̃
⊤
nR0). (32)

By Definition 1, model orthogonalization means that one picks a specific set of N port-

folios b̃1, b̃2, . . . , b̃N and removes the off-diagonal terms of the corresponding λ̃n,m. By

Theorem 1, the IUF is a particular model orthogonalization that chooses the specific factor

portfolios b1,b2, . . . ,bN with uncorrelated fundamental returns and uncorrelated flows.

To show why the IUF is the optimal orthogonalization, I next define the expected utility

of an arbitrageur. Denote the arbitrageur’s wealth after absorbing flow f as W (f), and the

arbitrageur’s utility function on her wealth as u(·). By absorbing flow f , the arbitrageur’s

expected utility is given by

E[u(W (f))] = E[u(W (0) +RF f
⊤∆p(f)− f⊤(R0 −RF1))], (33)

where I use equation (10). As discussed in Section 4.1, f⊤∆p(f) is the arbitrageur’s com-

pensation for absorbing the flow-induced risk, and f⊤(R0 −RF1) is the total payoff risk.

Because flow f can vary, the compensation for risk f⊤∆p(f) also varies. However, because

flow f is independent of the assets’ payoff X, the compensation f⊤∆p(f) is also independent

of X. Hence, to eliminate the second-order effect of the arbitrageur’s aversion to the varying
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compensation f⊤∆p(f), I assume that the arbitrageur is averse only to the fundamental

payoff risk, i.e., for some utility function ũ(·),

u(W (0) +RF f
⊤∆p(f)− f⊤(R0 −RF1)) = RF f

⊤∆p(f) + ũ(W (0)− f⊤(R0 −RF1)). (34)

Using equations (33) and (34), I simplify the arbitrageur’s expected utility as

E[u(W (f))] = RFE[f⊤∆p(f)] + E[ũ(W (0)− f⊤(R0 −RF1))]. (35)

The insight from (35) is that the price impact ∆p(f) affects the expected utility E[u(W (f))]

only by varying the expected compensation E[f⊤∆p(f)]. Therefore, by holding E[f⊤∆p(f)]

constant while reducing the N2 model to an N -factor model, I can ensure that the expected

utility E[u(W (f))] remains invariant for any utility function. Theorem 2 applies this insight

and shows that the IUF indeed keeps E[f⊤∆p(f)] invariant. Appendix A.4 provides a proof.

THEOREM 2. Fix any model orthogonalization b̃1, b̃2, . . . , b̃N . The orthogonalized model

(32) satisfies the IUF for any N parameters λ̃1,1, λ̃2,2, . . . , λ̃N,N if and only if for any N2

parameters λ̃n,m,

� a one-unit shock to portfolio flow q̃n causes the same amount of impact to the price of

portfolio b̃n under the N2 model (31) and the orthogonalized model (32),

∂b̃⊤
n∆p(f)

∂q̃n
=

∂b̃⊤
n∆p̄(f)

∂q̃n
. (36)

� the arbitrageur’s expected utility E[u(W (f))] remains invariant under (31) and (32).

Similar to Theorem 1, Theorem 2 is also an if-and-only-if statement, so it provides an

alternative characterization of the IUF based on the optimality of chosen factors. That is,

the IUF is the only model orthogonalization that satisfies two key properties. First, (36)

ensures that each factor’s price response to its own flow remains invariant for the N2 model
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and the orthogonalized N -factor model. Empirically, this property ensures that the price

impact regression for the orthogonalized model correctly recovers each factor’s λ̃n,n.

Second, model orthogonalization eliminates off-diagonal terms of λ̃n,m, and as a result,

it necessarily loses some information. The IUF is the unique optimal orthogonalization

in the sense that it preserves the arbitrageur’s expected utility E[u(W (f))], which is the

arbitrageur’s optimizing goal in equilibrium models. The theorem’s theoretical generality lies

in the fact that it imposes no parametric assumptions on the arbitrageur’s utility function,

yet demonstrates that the IUF maintains the invariance of expected utility across both the

N2 model and the orthogonalized N -factor model.

6 Reducing the Number of Factors

This section presents the last step of the model, where I reduce the number of factors from

N to a small K in equation (26). The motivation is that in practice, N is usually large, and

empirical researchers often use a small set of factors to achieve robustness in estimation. To

do so, Section 6.1 generalizes the concept of arbitrage to markets with noise trading. Section

6.2 applies this concept and the fact that flows themselves exhibit a low-dimensional factor

structure to reduce the number of factors.

6.1 Generalized Concept of Arbitrage

Traditionally, no arbitrage means that a portfolio with little risk should not have a high

expected return. The Hansen-Jagannathan bound acts as a bridge, linking the maximum

attainable Sharpe ratio within the economy to the volatility of the SDF. I generalize this

principle for noise trading scenarios, postulating that a small flow into a portfolio with little

payoff risk should not generate a high price impact. If such portfolios existed, it means that

only a limited number of arbitrageurs are providing liquidity, granting them exceptionally

favorable risk-return trade-offs.
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This section delves into this generalized concept of arbitrage, developing the flow-based

counterparts to both the Sharpe ratio and the Hansen and Jagannathan (1991) bound. Note

that this generalized arbitrage extends beyond the scope of the previously introduced factor

model. Specifically, the results derived in this section require only the assumptions made on

model setup in Section 3.

By the pricing equation (8), the price impact of any portfolio c ∈ RN is c⊤∆p(f) =

E[c⊤R0∆M(f)]. Using the F-SDF’s zero-mean property from (9), I have

E[c⊤R0∆M(f)] = corr(c⊤R0,∆M(f))σ(c⊤R0)σ(∆M(f)), (37)

where σ(·) denotes volatility. Because the correlation |corr(c⊤R0,∆M(f))| ≤ 1 for any

portfolio c, I have

σ(∆M(f)) ≥ max
c∈RN

c⊤∆p(f)

σ(c⊤R0)
. (38)

On the right-hand side, the numerator c⊤∆p(f) represents the portfolio’s price impact,

while the denominator σ(c⊤R0) denotes the portfolio’s fundamental-return volatility. Con-

sequently, c⊤∆p(f)/σ(c⊤R0) is termed the price impact ratio of portfolio c under flow f , and

the right-hand side of (38) is the maximum price impact ratio (MPIR) across all portfolios.

Inequality (38) shows that, for any fixed flow f , the F-SDF’s volatility is no less than the

maximum price impact ratio. Appendix A.5 proves that this bound is tight.

PROPOSITION 3. The flow-based Hansen-Jagannathan bound is

min
∆M(f)

σ(∆M(f)) = max
c∈RN

c⊤∆p(f)

σ(c⊤R0)
(39)

for any given flow f . Specifically, the minimum-volatility F-SDF is

∆M∗(f) = ∆p(f)⊤var(R0)
−1(R0 − E[R0]), (40)

which is also the unique F-SDF in the demeaned return space spanned by R0 − E[R0].
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Figure 3. Relationship with standard theory

time t = 0 without flow:
SDF: M(0)

time t = 0 with flow f :
SDF: M(f)

time t = 1:
payoff X

max Sharpe ratio
without flow = σ(M∗(0))RF

max Sharpe ratio
with flow f = σ(M∗(f))RF

F-SDF: ∆M(f) = M(f)−M(0)
max price impact ratio

= σ(∆M∗(f))

Notes: The F-SDF ∆M(f) is the difference between two standard SDFs, M(f) and M(0). The original
Hansen-Jagannathan bound shows that the volatility of the minimum-volatility SDF M∗(f) and M∗(0)
(times the risk-free rate RF ) is equal to the maximum Sharpe ratio in the economy with and without flow f ,
respectively. The flow-based Hansen-Jagannathan bound shows that the volatility of the minimum-volatility
F-SDF ∆M∗(f) = M∗(f)−M∗(0) is equal to the maximum price impact ratio under flow f .

The key of Proposition 3 lies in the portfolio that has the maximum price impact for a

given level of fundamental risk. Intuitively, shorting this MPIR portfolio is the mean-variance

optimal strategy to capitalize on flow-induced changes in risk premiums. As discussed in

Proposition 2, while multiple F-SDFs can explain a specific set of price impacts, only one

F-SDF is uniquely defined within the demeaned return space spanned by R0−E[R0]. Propo-

sition 3 further shows that this unique F-SDF is also the one with the minimum volatility,

and its volatility actually equals the MPIR of the mean-variance optimal strategy.

Figure 3 illustrates the relationship of my theory with standard theory. Instead of study-

ing the Sharpe ratio per se, my theory focuses on how flows change the Sharpe ratio, which

intuitively captures the arbitrageurs’ risk-absorbing capacity on the margin. To see this,

note that by equations (3) and (4), the minimum-volatility standard SDF under flow f is20

M∗(f) =
1

RF

+

(
∆p(f)− E[R0 −RF1]

RF

)⊤

var(R0)
−1(R0 − E[R0]). (41)

The original Hansen-Jagannathan bound shows that the volatility of M∗(f) and M∗(0)

(times the risk-free rate RF ) is equal to the maximum Sharpe ratio in the economy with and

20Refer to equation (5.25) in Cochrane (2009).
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without flow f , respectively. In my theory, the minimum-volatility F-SDF ∆M∗(f) equals

the the difference between M∗(f) and M∗(0). The flow-based Hansen-Jagannathan bound

shows that the volatility of this F-SDF ∆M∗(f) is equal to the MPIR.

6.2 Flow-Based APT

Equipped with the generalized concept of arbitrage, this section develops the flow-based APT

to reduce the N -factor model of price impacts (26) to a low-dimensional K-factor model.

I write the N -asset flow as the N -factor structure f =
∑N

n=1 bnqn as in Lemma 1, with

factor portfolios bn and corresponding flows qn sorted such that their variance satisfies π1 >

π2 > · · · > πN . The N -factor price impact model (26) is ∆p(f) =
∑N

n=1 λnqncov(R0,b
⊤
nR0).

The flow-based APT uses the first K factors, f =
∑K

k=1 bkqk + e, where e is an N × 1 vector

of idiosyncratic flows. The reason to pick first K factors is because empirically, flows indeed

exhibit a low-dimensional factor structure (Hasbrouck and Seppi, 2001). The corresponding

K-factor price impact model is

∆p̌(f) =
K∑
k=1

λkqkcov(R0,b
⊤
k R0). (42)

Under what conditions can I bound the pricing error ∆p(f)−∆p̌(f) of price impacts? The

following proposition provides the answer, and Appendix A.6 presents a proof.

PROPOSITION 4. Let ∥v∥ be the L2 norm of vector v. For any F-SDF that satisfies

max
∥f∥=1

σ(∆M(f)) ≤ H (43)

for some constant H, if
∑N

n=K+1 E[q2n] tends to zero, then E[∥∆p(f) − ∆p̌(f)∥2] tends to

zero.

Condition (43) requires the factor model’s F-SDF ∆M(f) in Theorem 1 not to be overly

volatile. Because the F-SDF ∆M(f) is linear in flow f , I bound the volatility of the F-SDF
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on the unit sphere ∥f∥ = 1. By Proposition 3, the bound on the volatility of the F-SDF is

also the bound on the maximum price impact ratio. If the price impact ratio is too high,

small flows into some portfolio with little fundamental risks would have a large price impact.

These opportunities represent very good deals for arbitrageurs—they can trade against flows

to take advantage of price dislocations while taking on little fundamental risks. Condition

(43) assumes that these good deals should not exist. This assumption generalizes the “good-

deal bound” logic of Cochrane and Saa-Requejo (2000) to markets with noise trading.

Idiosyncratic flows’
∑N

n=K+1 E[q2n] tending to zero means that flows have a factor struc-

ture. Data support this assumption (Hasbrouck and Seppi, 2001). Here, because flows can

have nonzero means,
∑N

n=K+1 E[q2n] tending to zero means that both the variance
∑N

n=K+1 πn

and squared expected flows
∑N

n=K+1 E[qn]2 tend to zero. The term ∆p(f) − ∆p̌(f) is the

pricing error of the price impacts between the true N -factor model and the approximate

K-factor model under a given flow f . Because f is random, E[∥∆p(f)−∆p̌(f)∥2] tending to

zero implies a good approximation in the mean-squared-error sense. In summary, assuming

the F-SDF has bounded volatility, the factor structure of flows implies the factor model of

price impacts.

One may question whether a version of the flow-based APT exists that bypasses the IUF

and directly simplifies the N2 model (19) into a K2 model. Online Appendix B demonstrates

that this is not feasible. Without the IUF, there is no solid theoretical basis for disregarding

the cross-impacts of factor flows on portfolios receiving idiosyncratic flows. In simpler terms,

the K factors identified by the IUF are crucial for the validity of the flow-based APT. These

factors are vital not only for capturing commonality in flows but, importantly, for capturing

commonality in flow-induced risk exposures.

7 Applications

In this section, I discuss two applications from subsequent works where flows either exhibit

dynamic predictability or are informed about asset payoffs. Provided a single-asset model is
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solvable, researchers can apply my machinery to solve the general model with N assets fea-

turing any correlation pattern in both payoffs and flows. Unlike traditional approaches that

impose stringent correlation structures for tractability, this generality facilitates theoretical

investigations into how trading flows impact cross-sectional asset prices in a more realistic

setting and delivers new insights.

7.1 Predictable Flows

This application examines the cross-sectional asset pricing implications of predicable flows,

and also provides an alternative foundation for the factor model of price impacts (26) in a

dynamic equilibrium setting. The discussion here largely follows An and Zheng (2023b).

Empirical studies have consistently highlighted the predictability of noise trading flows.

A commonly observed pattern is that if noise traders purchase a specific asset today, they

are likely to continue purchasing more of the same asset the following day, demonstrating

a momentum in flows. This observation leads to an intuitive hypothesis: the predictability

of flows, coupled with their influence on asset prices, could partially account for the pre-

dictability in returns. This hypothesis receives empirical support from Coval and Stafford

(2007) and Lou (2012). Moreover, the relationship between flow predictability and return

predictability is not just confined to individual assets but also extends to factors, as doc-

umented by Kelly, Moskowitz, and Pruitt (2021), Ben-David, Li, Rossi, and Song (2022a),

Ehsani and Linnainmaa (2022), and Arnott, Kalesnik, and Linnainmaa (2023).

These empirical findings prompt a crucial theoretical question: how is flow predictability

linked to return predictability at both individual asset and factor levels? Addressing this

question requires a dynamic asset pricing model that incorporates three key elements: the

covariance structure of fundamental returns, denoted as var(R0); the covariance of noisy

flows, var(f); and the predictability of flows, represented by κ. In practice, these elements are

represented by general N×N matrices, acknowledging the realities of covariances and cross-

predictability observed in the data. Prior studies often simplify their models by assuming at
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Figure 4. The dynamic factor model of price impacts

asset-level flow predictability factor-level flow predictability

asset-level return predictability factor-level return predictability

least one of these matrices to be diagonal, effectively eliminating cross-asset relationships.21

Building upon the framework in this paper, An and Zheng (2023b) show that in the cross-

section, flow predictability drives return predictability through factors. A pivotal aspect of

their approach, echoing the significance of commuting matrices in defining the IUF condition

in my work, is the strategic use of these matrices in solving the dynamic problem. They

show that the matrices var(f), var(R0), and κ, exhibit a commuting property (specifically,

var(f)var(R0)κ = κvar(f)var(R0)) if and only if there is no cross-predictability among the

N specific factors identified in Lemma 1. In other words, these N factors have uncorrelated

fundamental returns and flows, with each factor’s flow predictability acting independently.

When flows at the asset level and their predictability are aggregated to these factors, their

price impacts can be independently analyzed using the single-asset models of Campbell and

Kyle (1993) and Wang (1993). This factor-level flow predictability gives rise to factor-level

return predictability, which subsequently cascades down to asset-level return predictability

in line with individual assets’ risk exposures. This dynamic model is depicted in Figure 4.

As highlighted in Section 5.2, in the static quadratic-normal model, the price of flow-

induced risk λn is equalized across factors. The dynamic model in An and Zheng (2023b),

while adhering to the quadratic-normal framework, relaxes the equal-λn constraint through

an equilibrium approach. The reason is that flow predictability can differ across factors, and

21For an overview of such simplifications, see the survey article by Rostek and Yoon (2020) or the models
presented in Bogousslavsky (2016) and Lu, Malliaris, and Qin (2023).
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factors with more pronounced flow momentum have higher values of λn. The intuition is

that stronger flow momentum leads arbitrageurs who absorb such flows today to anticipate

more flows tomorrow. This dynamic consideration effectively raises the arbitrageurs’ risk

aversion for absorbing flows today, leading to a higher λn.

In summary, the key advancement of the factor model (26) over the static quadratic-

normal model is relaxing the equal-λn constraint. My paper highlights this advancement

through the arbitrage approach, particularly emphasizing the IUF condition. In a com-

plementary manner, An and Zheng (2023b) explore this advancement from an equilibrium

perspective, focusing on the dynamic predictability of flows—a strong pattern observed in

the data. This aspect, wherein flow predictability leads to differential λn across factors,

draws a parallel to the Merton (1973a) ICAPM, which shows that return predictability can

introduce additional risk factors beyond the static CAPM.

7.2 Informed Flows

This application examines the cross-sectional asset pricing implications of informed flows,

while also offering a broader perspective on the factor model of price impacts (26) in the

context of informed trading. The discussion here largely follows An and Zheng (2023a).

Returning to the fundamental pricing equation P = E[MX], my paper operates under

the assumption that the noise trading flow is independent of the payoff X. Consequently,

all price impacts are manifested through changes in the SDF M . An and Zheng (2023a) ex-

pands upon this framework to accommodate scenarios where the order flow can be informed

about the payoff X. This allows arbitrageurs to learn about the payoff from the order flow

and determine asset prices P accordingly. Specifically, An and Zheng (2023a) extend the

arbitrage-pricing approach developed in my paper to model information learning, diverging

from the traditional quadratic-normal learning models in Kyle (1985). This arbitrage ap-

proach reveals general constraints on arbitrageurs’ learning that are applicable across various

reasonable equilibria, and offers three advantages over traditional microstructure approaches:
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1) it avoids the limitations of examining learning within specific equilibrium contexts; 2) it

removes the need for parametric assumptions about utility functions and payoff distributions;

3) it is versatile enough to accommodate both Bayesian and behavioral learning.

Furthermore, the factors identified by the IUF address a challenge in the literature con-

cerning information learning involving multiple assets with correlated payoffs. The textbook

approach (Veldkamp, 2011) is to construct portfolios with uncorrelated payoffs, and assumes

that certain agents receive independent signals about the payoff of each portfolio. These

informed agents subsequently generate trading flows, from which arbitrageurs learn.

However, the textbook approach has several drawbacks. From an economic standpoint,

Sims (2006) critiques this approach, arguing that agents might strategically opt to acquire

correlated signals on uncorrelated payoffs. On a technical level, the characterization of such

portfolios is not unique—given any set of portfolios with uncorrelated payoffs, it is always

possible to rotate them into another set that also have uncorrelated payoffs. This lack of

uniqueness implies that the choice of portfolios in this approach depends on an arbitrary

orthogonalization condition imposed by theorists.22 As Veldkamp (2011) notes, “Which

procedure most resembles how economic decision makers learn is an open question.”

The core concept of this paper, the IUF, directly addresses this open question. As

demonstrated in Lemma 1, it is possible to identify unique portfolios characterized by both

uncorrelated flows and uncorrelated payoffs, thereby resolving the technical issue. When the

IUF is applied to such portfolios, it implies that order flows into one portfolio do not convey

information about the payoffs of other portfolios. This is underpinned by the logic of revealed

preference. Should agents observe correlated signals on these portfolios, it would lead to

correlated order flows, which would contradict the very basis of the portfolio construction.

Thus, the IUF provides not only a technical solution but also aligns with economic reasoning,

ensuring that the construction of portfolios adheres to logical market behavior.

In summary, while my paper exclusively focuses on the price impacts of noise trading

22PCA orthogonalization is commonly used, which lacks a clear economic justification in this context.
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flows, the methodologies developed herein are also applicable to the analysis of learning from

informed flows, as explored in An and Zheng (2023a). In the expanded model, which still

adheres to the factor structure (26), flow can impact price at the factor level through two

distinct mechanisms: firstly, by exposing arbitrageurs to risk, and secondly, by conveying

information about payoff.

8 Conclusion

In conclusion, this paper proposes an arbitrage-pricing approach to analyze how noise trading

flows impact asset prices. This approach uses no-arbitrage conditions to determine the

impact of these flows on the stochastic discount factor, and consequently, on the cross-section

of asset prices. By generalizing classic arbitrage theory, I show that noisy flows impact asset

prices through a few important factors. The resulting model features rich patterns of cross-

asset substitution beyond traditional mean-variance price impact models and logit demand

systems. My theory also addresses prevalent misconceptions regarding the aggregation of

asset flows into factor flows and the definition of factor-level price multipliers.
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Appendix

The appendices provide proofs and additional theoretical results.

A Proofs

In this appendix, I provide proofs omitted in the main text.

A.1 Proof of Proposition 2

First, I write the F-SDF ∆M(f) in the space spanned by R0 − E[R0] as ∆M(f) = (R0 −

E[R0])
⊤b for some b ∈ RN . By equation (8), I have ∆p(f) = var(R0)b. Therefore, I have

b = var(R0)
−1∆p(f) and thus

∆M(f) = ∆p(f)⊤var(R0)
−1(R0 − E[R0]). (A.1)

Next, I show that linearity Assumption 1 implies the linearity of the F-SDF. Using

condition (iii) and equation (A.1), I have, for any a1 ∈ R, a2 ∈ R, f1 ∈ RN , and f2 ∈ RN ,

∆M(a1f1 + a2f2) =∆p(a1f1 + a2f2)
⊤var(R0)

−1(R0 − E[R0])

= (a1∆p(f1) + a2∆p(f2))
⊤ var(R0)

−1(R0 − E[R0])

= a1∆M(f1) + a2∆M(f2). (A.2)

Then, I define cn as an N × 1 vector with only the n-th entry being one and all other

entries being zero. Equation (A.2) implies that ∆M(f) =
∑N

n=1 fn∆M(cn). Condition (iii)

implies that ∆M(cn) ∈ R0 − E[R0] also resides within the the space spanned by R0−E[R0],

so I can write ∆M(cn) = y⊤
n (R0 − E[R0]) for some yn ∈ RN . Therefore, I have

∆M(f) =
N∑

n=1

fny
⊤
n (R0 − E[R0]) = (Yf)⊤(R0 − E[R0]), (A.3)
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where Y = (y1,y2, . . . ,yN). Equation (19) and Assumption 2 imply that var(R0)Y is

positive definite.

A.2 Proof of Lemma 1

Because the matrix var(R0) has full rank, I carry out Cholesky decomposition and obtain

var(R0) = U⊤U, where U is an N × N upper triangular matrix with positive diagonal

entries. I then carry out eigenvalue decomposition of the symmetric matrix Uvar(f)U⊤.

Because var(f) has full rank, I obtain

Uvar(f)U⊤G = GΠ, (A.4)

whereΠ = diag(π1, π2, . . . , πN) andG is anN×N orthonormal matrix satisfyingG⊤G = IN .

I then define B = U−1G, where the upper triangular matrix U with positive diagonal entries

is by definition invertible.

I now show that the constructed B = (b1,b2, . . . ,bN) satisfies the conditions (23) and

(24). First, I have

B⊤var(R0)B = G⊤(U⊤)−1U⊤UU−1G = IN . (A.5)

Second, equation (22) implies f = Bq, where q = (q1, q2, . . . , qN)
⊤. Therefore,

var(f) = Bvar(q)B⊤. (A.6)

From (A.4), I have Uvar(f)U⊤UB = UBΠ. Because U is invertible, I have

var(f)U⊤UB = BΠ. (A.7)

Plugging (A.6) into (A.7), I obtain

BΠ = Bvar(q)B⊤U⊤UB = Bvar(q), (A.8)
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where I have used B⊤U⊤UB = G⊤G = IN . Equation (A.8) implies var(q) = Π.

Finally, I show the uniqueness of the matrix B. Suppose that some other matrix B̃

satisfies (23) and (24). I define G̃ = UB̃. I then have G̃⊤G̃ = IN and G̃⊤Uvar(f)U⊤G̃ = Π.

Assumption 4 requires that Uvar(f)U⊤ has distinct eigenvalues, which implies that matrix

G̃ is unique up to sign for any columns (recall that I have arranged the eigenvalue matrix

Π from large to small eigenvalues). Note that B̃ = U−1G̃, where U−1 is also an upper

triangular matrix. Therefore, the matrix B̃ is also unique up to sign for any columns.

A.3 Proof of Theorem 1

I start by showing the following lemma, which allows me to state the equivalent IUF condition

under the factors b1,b2, . . . ,bN .

LEMMA 2. For any given a ∈ RN and d ∈ RN , a⊤Cd = 0 for all C ∈ C if and only if

cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0) = 0 for all n = 1, 2, . . . , N .

Proof. Following the proof of Lemma 1 in Appendix A.2, I carry out Cholesky decomposition

to obtain var(R0) = U⊤U, whereU is anN×N upper triangular matrix. I have bn = U−1gn

for n = 1, 2, . . . , N , where g1,g2, . . . ,gN is the full set of eigenvectors of var(Uf) with distinct

eigenvalues π1 > π2 > · · · > πN > 0.

I have that

cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0) = 0 for all n = 1, 2, . . . , N

⇐⇒ a⊤var(R0)bnb
⊤
n var(R0)d = 0 for all n = 1, 2, . . . , N

⇐⇒ a⊤U⊤gng
⊤
nUd = 0 for all n = 1, 2, . . . , N (A.9)

⇐⇒ a⊤U⊤

(
N∑

n=1

zngng
⊤
n

)
Ud = 0 for any real numbers z1, z2, . . . , zN , (A.10)

where I have used the Cholesky decomposition of var(R0) in (A.9).
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I define the following set of matrices,

H =

{
H ∈ RN×N

∣∣∣∣∣H =
N∑

n=1

zngng
⊤
n for some real numbers z1, z2, . . . , zN

}
. (A.11)

I claim that

H =
{
H ∈ RN×N

∣∣HUvar(f)U⊤ = Uvar(f)U⊤H
}
. (A.12)

It is easy to see that if H ∈ H as defined in (A.11), I have H ∈ H as defined in (A.12)

because g1,g2, . . . ,gN are the eigenvectors of Uvar(f)U⊤. Conversely, if H ∈ H as defined

in (A.12), then for any n,

Uvar(f)U⊤(Hgn) = (Uvar(f)U⊤H)gn = (HUvar(f)U⊤)gn = πn(Hgn), (A.13)

showing that Hgn is also the eigenvector of Uvar(f)U⊤ that corresponds to the eigenvalue

πn. Because the eigenvalues are distinct and the eigenspaces are all one-dimensional, I have

Hgn = µngn for some µn. This shows that gn is also an eigenvector of H. Because n is

arbitrary for any 1, 2, . . . , N , I have H =
∑N

n=1 µngng
⊤
n , showing that H ∈ H as defined in

(A.11).

Given (A.12), I can equivalently rewrite (A.10) as

a⊤U⊤HUd = 0 for any H ∈ H. (A.14)

I define C = U⊤HU. Using the fact that U is invertible and var(R0) = U⊤U, I have

C ∈ C ⇐⇒ H ∈ H, where C is defined in (20). Therefore, I can equivalently rewrite (A.14)

as a⊤Cd = 0 for any C ∈ C, which completes the proof of Lemma 2.

Lemma 2 allows me to write the equivalent IUF under factors b1,b2, . . . ,bN .

Assumption 3*. IUF under factors
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For any given portfolio a ∈ RN and flow s, I construct the portfolio,

d = (cov(f1, s), cov(f2, s), . . . , cov(fN , s))
⊤ . (A.15)

If cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0) = 0 for all n, then cov(a⊤∆p(f), s) = 0.

Note that the IUF condition in Assumption 3 is equivalent to Assumption 3* only when

Assumption 4 holds. Without Assumption 4, the IUF imposes no restrictions for eigenvectors

that correspond to the same eigenvalue. In that case, the factors b1,b2, . . . ,bN are also not

unique and the IUF condition does not simplify to Assumption 3*. I present the general

case in Online Appendix A.

I also prove the following coordinate transformation,

d = cov(f , s) =
N∑

n=1

bncov(qn, s), (A.16)

where the first equality follows from definition (21) and the second equality uses the factor

decomposition (22). This coordinate transformation (A.16) implies that the portfolio d is a

linear combination of the factor portfolios bn, with weights equal to the covariance between

flow s and factor flow qn. Using (A.16) and orthogonalization condition (23), I have

cov(b⊤
nR0,d

⊤R0) = b⊤
n var(R0)

(
N∑

m=1

bmcov(qm, s)

)
= cov(qn, s). (A.17)

That is, the covariance between the return on the factor portfolio bn and the return on the

portfolio d equals the covariance between the corresponding factor flow qn and flow s.

Given these observations, I can proceed to prove the theorem. First, I show that the

F-SDF form (25) satisfies the IUF in Assumption 3*. (It is evident that the form (25) is a

special case of the form (18), so automatically satisfies all restriction in Proposition 2.) I
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derive the price impact under the F-SDF form (25) as

∆p(f) = E[R0∆M(f)] = var(R0)
N∑

n=1

λnqnbn. (A.18)

I project any portfolio a ∈ RN onto the factor portfolios b1,b2, . . . ,bN and obtain

a =
N∑

n=1

xnbn (A.19)

for some real numbers x1, x2, . . . , xN . The condition of the IUF in Assumption 3* is

0 = cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0)

=

(
N∑

m=1

xmbm

)⊤

var(R0)bncov(qn, s) = xncov(qn, s), (A.20)

for any n = 1, 2, . . . , N , where I use equations (23), (A.17), and (A.19).

I have

a⊤∆p(f) =

(
N∑

m=1

xmbm

)⊤

var(R0)

(
N∑

n=1

λnqnbn

)
=

N∑
n=1

xnλnqn, (A.21)

where I use equations (23), (A.18), and (A.19). Therefore, I have

cov(a⊤∆p(f), s) =
N∑

n=1

xncov(qn, s)λn. (A.22)

Note that the IUF’s assumption implies that xncov(qn, s) = 0 for any n = 1, 2, . . . , N in

(A.20). Therefore, by equation (A.22), I have cov(a⊤∆p(f), s) = 0, thereby showing that

the IUF holds. Moreover, equation (A.18) implies that

f⊤∆p(f) = q⊤B⊤var(R0)BΛq = q⊤Λq, (A.23)
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where B = (b1,b2, . . . ,bN), q = (q1, q2, . . . , qN)
⊤, and Λ = diag(λ1, λ2, . . . , λN). Because Λ

is positive definite, Assumption 2 holds.

Second, I show that, if the F-SDF in (18) satisfies the IUF, the F-SDF can be written in

the form (25). Using equation (22), I simplify (18) as

∆M(f) =
N∑

n=1

N∑
m=1

qmbn,mg
⊤
n (R0 − E[R0])

=
N∑

m=1

qm

N∑
n=1

bn,mg
⊤
n (R0 − E[R0]) =

N∑
m=1

qmh
⊤
m(R0 − E[R0]), (A.24)

where I define hm =
∑N

n=1 bn,mgn. Therefore, the price impact under the F-SDF (A.24) is

∆p(f) = E[R0∆M(f)] = var(R0)
N∑

m=1

qmhm. (A.25)

I use the IUF for portfolio a = bl and flow s = qm for any l ̸= m. I have from (A.16)

and orthogonalization condition (24),

d =
N∑

n=1

bncov(qn, qm) = πmbm. (A.26)

Thus, I have cov(b⊤
nR0, a

⊤R0)cov(b
⊤
nR0,d

⊤R0) = 0 for any n = 1, 2, . . . , N , because of

orthogonalization condition (23). Thus, the IUF implies that

0 = cov(a⊤∆p(f), s) = cov

(
b⊤
l var(R0)

N∑
n=1

qnhn, qm

)
= πmb

⊤
l var(R0)hm. (A.27)

Thus, for any given m = 1, 2, . . . , N , I can choose arbitrary l ̸= m, such that

b⊤
l var(R0)hm = 0. (A.28)

I project hm onto the factor portfolios b1,b2, . . . ,bN and obtain hm =
∑N

n=1 θm,nbn. Using

the IUF condition (A.28) and orthogonalization condition (23), I have θm,n = 0 for any
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m ̸= n. Therefore, I can rewrite the F-SDF form (A.24) as

∆M(f) =
N∑

n=1

θn,nqnb
⊤
n (R0 − E[R0]). (A.29)

I rename θn,n = λn and obtain the form (25). Lastly, using (A.23) and Assumption 2, I have

λn > 0 for all n. The proof is complete.

A.4 Proof of Theorem 2

I first show the sufficiency direction. From Theorem 1 and Proposition 5, if the orthogonal-

ized model (32) satisfies the IUF, there exists some N × N invertible matrix O, such that

O−1diag(λ̃1,1, λ̃2,2, . . . , λ̃N,N)O is a diagonal matrix for any free parameters λ̃1,1, λ̃2,2, . . . , λ̃N,N .

Denote the (n,m)-th entry of O−1 as xn,m and the (n,m)-th entry of O as yn,m. I then know

that xn,mym,l = 0 for any m and n ̸= l. Suppose that there exist some m and l ̸= l′, such that

ym,l ̸= 0 and ym,l′ ̸= 0. I then know that xn,m = 0 for any n = 1, 2, . . . , N . This contradicts

the fact that O is invertible. Therefore, any row of O has exactly one non-zero element.

Together with the fact that O is invertible, any column of O also has exactly one non-zero

element. In other words, O is just a scaling and reordering matrix. By Proposition 5, I have

cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 and cov(q̃n, q̃m) = 0 for any n ̸= m.

To show (36), note that I have, by (31) and cov(b̃⊤
l R0, b̃

⊤
nR0) = 0 for n ̸= l,

b̃⊤
l ∆p(f) =

N∑
n=1

N∑
m=1

λ̃n,mq̃mcov(b̃
⊤
l R0, b̃

⊤
nR0) =

N∑
m=1

λ̃l,mq̃mvar(b̃
⊤
l R0). (A.30)

I then have

∂b̃⊤
l ∆p(f)

∂q̃l
= λ̃l,lvar(b̃

⊤
l R0). (A.31)

Similarly, I have, by (32),

b̃⊤
l ∆p̄(f) =

N∑
n=1

λ̃n,nq̃ncov(b̃lR0, b̃
⊤
nR0) = λ̃l,lq̃lvar(b̃lR0), (A.32)
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and

∂b̃⊤
l ∆p̄(f)

∂q̃l
= λ̃l,lvar(b̃

⊤
l R0). (A.33)

This shows that (36) holds.

Under the price impact model (31), the expected compensation for risk is

E[f⊤∆p(f)] =
N∑

n=1

N∑
m=1

λ̃n,mvar(b̃
⊤
nR0)cov(q̃m, q̃n) =

N∑
n=1

λ̃n,nvar(b̃
⊤
nR0)var(q̃n), (A.34)

where the first equality uses cov(b̃⊤
nR0, b̃

⊤
mR0) = 0, and the second equality uses cov(q̃n, q̃m) =

0 for any n ̸= m. Therefore, the expected compensation E[f⊤∆p(f)] under models (31) and

(32) are the same for any N2 parameters λ̃n,m. By equation (35), the expected utility

E[u(W (f))] under models (31) and (32) are also the same.

Next, I show the necessity direction. I have, by (31),

b̃⊤
l ∆p(f) =

N∑
n=1

N∑
m=1

λ̃n,mq̃mcov(b̃
⊤
l R0, b̃

⊤
nR0). (A.35)

I then have

∂b̃⊤
l ∆p(f)

∂q̃l
=

N∑
n=1

λ̃n,lcov(b̃
⊤
l R0, b̃

⊤
nR0). (A.36)

Similarly, I have, by (32),

b̃⊤
l ∆p̄(f) =

N∑
n=1

λ̃n,nq̃ncov(b̃lR0, b̃
⊤
nR0), (A.37)

and

∂b̃⊤
l ∆p̄(f)

∂q̃l
= λ̃l,lvar(b̃

⊤
l R0). (A.38)

Because (36) holds for any parameters λ̃n,m, I have cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 for any n ̸= m.
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Under the price impact model (31), the expected compensation is

E[f⊤∆p(f)] =
N∑

n=1

N∑
m=1

λ̃n,mvar(b̃
⊤
nR0)cov (q̃n, q̃m) , (A.39)

where I use cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 for any n ̸= m. By (35), if the expected utility E[u(W (f))]

remains invariant under models (31) and (32), the expected compensation E[f⊤∆p(f)] also re-

mains invariant. Therefore, cov(q̃n, q̃m) = 0 for any n ̸= m. By Theorem 1, cov(b̃⊤
nR0, b̃

⊤
mR0) =

0 and cov(q̃n, q̃m) = 0 for any n ̸= m imply that the orthogonalized model (32) satisfies the

IUF for any parameters λ̃1,1, λ̃2,2, . . . , λ̃N,N .

A.5 Proof of Proposition 3

I write the F-SDF ∆M(f) in the space spanned by R0−E[R0] as ∆M∗(f) = (R0−E[R0])
⊤b

for some b ∈ RN . By equation (8), I have ∆p(f) = var(R0)b. Therefore, I have b =

var(R0)
−1∆p(f) and thus

∆M∗(f) = (R0 − E[R0])
⊤var(R0)

−1∆p(f). (A.40)

The variance of ∆M∗(f) is var(∆M∗(f)) = ∆p(f)⊤var(R0)
−1∆p(f).

I claim that

var(∆M∗(f)) ≤ max
c∈RN

∆p(f)⊤cc⊤∆p(f)

var(c⊤R0)
. (A.41)

I choose portfolio c = var(R0)
−1∆p(f). Therefore, I have

∆p(f)⊤cc⊤∆p(f)

var(c⊤R0)
=

(∆p(f)⊤var(R0)
−1∆p(f))2

c⊤var(R0)c
= ∆p(f)⊤var(R0)

−1∆p(f). (A.42)

Therefore, I have proved (A.41). Combining with inequality (38) in the main text, I have

proved the flow-based Hansen-Jagannathan bound.
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A.6 Proof of Proposition 4

By Proposition 3, condition (43) implies

max
∥f∥=1

∆p(f)⊤var(R0)
−1∆p(f) ≤ H2. (A.43)

Under the N -factor model (26), the squared maximum price impact ratio is

∆p(f)⊤var(R0)
−1∆p(f) =

N∑
n=1

λnqnb
⊤
n var(R0)

N∑
n=1

λnqnbn =
N∑

n=1

λ2
nq

2
n, (A.44)

where I use condition (23). I consider the flow f =
∑N

n=1 qnbn, with qm = 1/∥bm∥ for

some specific m and qm = 0 for m ̸= n. Clearly, ∥f∥ = 1, so by (A.43) and (A.44), I have

|λm| ≤ H∥bm∥. That is, all λn are uniformly bounded for any F-SDF that satisfies (43).

I can simplify the pricing error of the price impact as

∆p(f)−∆p̌(f) = var(R0)
N∑

n=K+1

λnqnbn =
N∑

n=K+1

cnqn, (A.45)

where I define the N × 1 vector cn = var(R0)λnbn. Because λn are bounded, each element

of every cn is also uniformly bounded for any F-SDF that satisfies (43). I have

∥∆p(f)−∆p̌(f)∥2 =
N∑

n=1

(
N∑

k=K+1

cn,kqk

)2

. (A.46)
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Using the fact that qk are uncorrelated with each other, I have

E[∥∆p(f)−∆p̌(f)∥2] =
N∑

n=1

E

(
N∑

k=K+1

cn,kqk

)2

=
N∑

n=1

N∑
k=K+1

c2n,kE[q2k] + 2
N∑

n=1

∑
K+1≤i<j≤N

cn,icn,jE[qi]E[qj]

≤
N∑

n=1

N∑
k=K+1

c2n,kE[q2k] +
N∑

n=1

∑
K+1≤i<j≤N

(
c2n,iE[qi]2 + c2n,jE[qj]2

)
.

(A.47)

Because all cn,k are uniformly bounded for any F-SDF that satisfies (43), if
∑N

n=K+1 E[q2k]

tends to zero, then E[∥∆p(f)−∆p̌(f)∥2] tends to zero.

B F-SDF and Price Impacts Under Alternative Factors

In practice, one may not want to use the factor portfolios B = (b1,b2, . . . ,bN) constructed

in Lemma 1 to characterize the F-SDF and price impacts. Instead, one might want to choose

a set of portfolios B̃ = (b̃1, b̃2, . . . , b̃N) that have more explicit economic interpretations.

For example, b̃1 could be the Fama-French high-minus-low (HML) portfolio, and b̃2 could

be the small-minus-big (SMB) portfolio. In this case, the factor flow q̃ = (q̃1, q̃2, . . . , q̃N)
⊤

defined using f = B̃q̃ also has more explicit interpretations. Using the same example, q̃1 is

the HML factor flow, and q̃2 is the SMB factor flow.

Because these factors generally do not have uncorrelated flows and uncorrelated funda-

mental returns, they still have cross-impacts between each other. The IUF implies a struc-

tural restriction on the cross-impacts between the factors, which is represented by an N ×N

price-of-flow-induced-risk matrix Λ̃ = {λ̃n,m}. When these factors are properly chosen to

have both uncorrelated flows and uncorrelated fundamental returns, Λ̃ = {λ̃n,m} simplifies

to a diagonal matrix as in Theorem 1.
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PROPOSITION 5. Under alternative factors, the F-SDF in Theorem 1 becomes

∆M(f) =
N∑

n=1

N∑
m=1

λ̃n,mq̃mb̃
⊤
n (R0 − E[R0]) = (Λ̃q̃)⊤B̃⊤(R0 − E[R0]), (B.1)

and the price impact model becomes

∆p(f) =
N∑

n=1

N∑
m=1

λ̃n,mq̃mcov(R0, b̃
⊤
nR0). (B.2)

The price-of-flow-induced-risk matrix Λ̃ satisfies, for some N ×N invertible matrix O,

O−1Λ̃O = Λ, where Λ is diagonal and positive definite, (B.3)

O⊤B̃⊤var(R0)B̃O = IN , (B.4)

OΠO⊤ = var(q̃), where Π is diagonal and positive definite. (B.5)

Proof. Note that there exists some N × N invertible matrix O such that B̃O = B and

Oq = q̃, where B = (b1,b2, . . . ,bN) and q = (q1, q2, . . . , qN)
⊤ are the factor portfolios and

flows in equation (25). By (B.1), I have

∆M(f) = (O−1Λ̃Oq)⊤B⊤(R0 − E[R0]). (B.6)

By (25), the above equation implies that O−1Λ̃O = Λ, where Λ = diag(λ1, λ2, . . . , λN) is the

diagonal price-of-flow-induced-risk matrix. Because B and q satisfy Lemma 1, conditions

(23) and (24) translate into (B.4) and (B.5).

C Static Quadratic-Normal Price Impact Model

In this appendix, I show that the static quadratic-normal price impact model is a special

case of my factor model (26) with an additional restriction λ1 = λ2 = · · · = λN .

Consider a two-period economy t = 0 and t = 1. There is a mass µ of infinitesimal
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arbitrageurs. There are N assets in the economy, indexed by n = 1, 2, . . . , N . The total

fixed supply of assets is an N × 1 vector S, where the unit of supply is the number of shares.

These assets are held equally by all arbitrageurs. A risk-free bond is in perfectly elastic

supply at a gross interest rate RF > 1. The N assets have payoff X at time t = 1, which

is an N × 1 vector of random variables. At time 0, the flow into asset n is hn, grouped as

vector h = (h1, h2, . . . , hN). Unlike in the baseline setup, the unit of flow is expressed in

the number of shares, not dollar value. I later translate the flow in dollar value. With flow

h, each arbitrageur now holds (S − h)/µ shares of assets, and I denote the time-0 price of

assets as the N × 1 vector P(h).

The setup so far is equivalent to my baseline setup in Section 3. I now introduce the

quadratic-normal assumptions:

1. Each arbitrageur has a CARA utility with parameter γ.

2. Payoff X is normally distributed with mean u and variance var(X).

In equilibrium, the arbitrageurs’ optimality condition implies

−h/µ = argmax
y

E[− exp(−γW (y))], (C.1)

where the time-1 wealth of each arbitrageur is

W (y) = S⊤X/µ+ y⊤(X−P(h)RF ). (C.2)

Standard calculation implies that

P(h) =
u

RF

− γ

µRF

var(X)(S− h). (C.3)
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Therefore, the price change is

P(h)−P(0) =
γ

µRF

var(X)h. (C.4)

I define price impact as

∆p(h) =

(
P1(h)− P1(0)

P1(0)
,
P2(h)− P2(0)

P2(0)
, . . . ,

PN(h)− PN(0)

PN(0)

)⊤

, (C.5)

and fundamental return as

R0 =

(
X1

P1(0)
,

X2

P2(0)
, . . . ,

XN

PN(0)

)⊤

. (C.6)

Using the fact that

var(X) = diag(P1(0), P2(0), . . . , PN(0))var(R0)diag(P1(0), P2(0), . . . , PN(0)), (C.7)

I have

∆p(h) =
γ

µRF

var(R0)diag(P1(0), P2(0), . . . , PN(0))h. (C.8)

At this stage, I define the flow in dollar value as

f = (P1(0)h1, P2(0)h2, . . . , PN(0)hN)
⊤ = diag(P1(0), P2(0), . . . , PN(0))h. (C.9)

Using equations (C.8) and (C.9), I obtain

∆p(f) =
γ

µRF

var(R0)f . (C.10)

Using the factor portfolios and flows constructed in Lemma 1, I have f =
∑N

n=1 qnbn. There-
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fore, the quadratic-normal price impact model is

∆p(f) = var(R0)
N∑

n=1

γ

µRF

qnbn. (C.11)

Comparing (C.11) with my N -factor price impact model,

∆p(f) = var(R0)
N∑

n=1

λnqnbn, (C.12)

one sees that the quadratic-normal framework imposes stronger restrictions on the price of

flow-induced risk than my model and requires, additionally, λ1 = λ2 = · · · = λN .
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Online Appendix of

“Flow-Based Arbitrage Pricing Theory”

The online appendix provides additional theoretical results omitted in the paper.

A General Theory with Duplicate Eigenvalues

In this appendix, I provide the general theory of the F-SDF and price impacts without

imposing regularity Assumption 4 in the main text. That is, I allow the matrix var(Uf) to

have possibly duplicate eigenvalues.

A.1 Factor Model of F-SDF and Price Impacts

To construct the form of F-SDF under the general case, I conduct eigenvalue decomposition

to obtain

Uvar(f)U⊤G = GΠ, (OA.1)

where the eigenvalue matrix is

Π =



π1Ir1 0 · · · 0

0 π2Ir2 · · · 0

· · · · · · · · · · · ·

0 0 · · · πJIrJ


(OA.2)

with π1 > π2 > · · · > πJ > 0. The matrix Uvar(f)U⊤ has J distinct positive eigenvalues,

with each eigenvalue πj having rj degrees of duplication for j = 1, 2, . . . , J . With duplicate

eigenvalues, eigenvectors G are generally not unique. I arbitrarily pick one and construct

the corresponding factors B = U−1G following the proof of Lemma 1 in the main text.

Using theN factorsB = (b1,b2, . . . ,bN) and their corresponding flows q = (q1, q2, . . . , qN)
⊤,

I now generalize Theorem 1 of the main text.
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Theorem O.1. The F-SDF satisfies all restrictions in Proposition 2 and the IUF Assump-

tion 3 if and only if it can be written as

∆M(f) = (Λq)⊤B⊤(R0 − E[R0]), (OA.3)

where the price-of-flow-induced-risk matrix Λ is an N ×N block-diagonal matrix

Λ =



Ψ1 0 · · · 0

0 Ψ2 · · · 0

· · · · · · · · · · · ·

0 0 · · · ΨJ


, (OA.4)

where each Ψj is an rj × rj positive definite matrix for j = 1, 2, . . . , J . The corresponding

price impact model is

∆p(f) = E[R0∆M(f)] = var(R0)BΛq. (OA.5)

Proof. First, I show that the form (OA.3) satisfies the IUF. That is, for any portfolio a ∈ RN ,

flow s, and the corresponding portfolio d that satisfy a⊤Cd = 0 for all C ∈ C, the goal is to

show cov(a⊤∆p(f), s) = 0.

I project portfolio a ∈ RN onto the factors b1,b2, . . . ,bN ,

a =
N∑

n=1

xnbn = Bx, (OA.6)

with the N × 1 vector x = (x1, x2, . . . , xN)
⊤. I can therefore simplify

cov(a⊤∆p(f), s) = a⊤var(R0)BΛcov(q, s) = x⊤Λcov(q, s), (OA.7)

because of the orthogonalization condition B⊤var(R0)B = IN . Note that Λ is a block-

diagonal matrix of the form (OA.4). Therefore, to show cov(a⊤∆p(f), s) = 0, it is sufficient
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to show that xlcov(qm, s) = 0 for all l and m such that the (l, l)-th and (m,m)-th elements

of matrix Π in (OA.2) correspond to the same eigenvalue.

Using the coordination transformation (A.16) in the main text and equation (OA.6), I

simplify the IUF condition as

0 = a⊤Cd = x⊤B⊤CBcov(q, s). (OA.8)

I define the set

H =
{
H ∈ RN×N

∣∣HUvar(f)U⊤ = Uvar(f)U⊤H
}
. (OA.9)

Recall that I define the matrix B = U−1G from a given of set of eigenvectors G of matrix

Uvar(f)U⊤ (see equation (OA.1)). Using the transformation C = U⊤HU, I have that

a⊤Cd = 0 for all C ∈ C if and only if x⊤G⊤HGcov(q, s) = 0 for all H ∈ H.

I define O as an N × N matrix with only the (l,m)-th element being one and all other

elements being zero. I define the matrix H̃ = GOG⊤. Using (OA.1), I have

H̃Uvar(f)U⊤ = GOG⊤GΠG⊤ = GOΠG⊤ = GΠOG⊤ = Uvar(f)U⊤H̃, (OA.10)

where the key step ΠO = OΠ uses the fact that the (l, l)-th and (m,m)-th elements of

matrix Π in (OA.2) correspond to the same eigenvalue. Therefore, H̃ ∈ H and

0 = x⊤G⊤H̃Gcov(q, s) = x⊤Ocov(q, s) = xlcov(qm, s). (OA.11)

Because l and m are arbitrary as long as they correspond to the same eigenvalue in Π, I

have that cov(a⊤∆p(f), s) = 0, implying that the IUF holds.

Moreover, equation (OA.5) implies that

f⊤∆p(f) = q⊤B⊤var(R0)BΛq = q⊤Λq. (OA.12)
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Because Λ is positive definite, f⊤∆p(f) > 0 for any f ̸= 0.

Second, I show that the IUF implies that the F-SDF can be written in the canonical form

(OA.3). Following the proof of Theorem 1 in the main text, I write the F-SDF as

∆M(f) =
N∑

n=1

qnh
⊤
n (R0 − E[R0]) (OA.13)

for some hn ∈ RN and derive the corresponding price impact model as

∆p(f) = var(R0)
N∑

n=1

qnhn. (OA.14)

I use the IUF for portfolio a = bl and flow s = qm, where the (l, l)-th and (m,m)-th

elements of matrix Π in (OA.2) correspond to distinct eigenvalues. Using the coordinate

transformation (A.16) in the main text, I have

d =
N∑

n=1

bncov(qn, qm) = var(qm)bm. (OA.15)

I next show that b⊤
l Cbm = 0 for all C ∈ C, where C is defined in the main text as

C =
{
C ∈ RN×N | var(R0)var(f)C = Cvar(f)var(R0)

}
.

Proof. For any given matrix C ∈ C, I define the matrix

H = (U−1)⊤CU−1. (OA.16)

Then H satisfies

U⊤Uvar(f)U⊤HU = U⊤HUvar(f)U⊤U, (OA.17)

which simplifies to

Uvar(f)U⊤H = HUvar(f)U⊤. (OA.18)
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I define the matrix

L = G⊤HG. (OA.19)

Using equations (OA.1) and (OA.18), I have

LΠ = G⊤HGG⊤Uvar(f)U⊤G = G⊤HUvar(f)U⊤G = G⊤Uvar(f)U⊤HG = ΠL.

(OA.20)

For any vector v in the span of the j-th part of the partition of matrix Π in (OA.2), I have

Πv = πjv. Therefore, I have

Π(Lv) = (ΠL)v = (LΠ)v = Lπjv = πj(Lv). (OA.21)

Therefore, Lv is also a vector in the span of the j-th part of the partition. Because I can

arbitrarily choose the vector v and the part j = 1, 2, . . . , J , matrix L must be

L =



Φ1 0 · · · 0

0 Φ2 · · · 0

· · · · · · · · · · · ·

0 0 · · · ΦJ


, (OA.22)

where each Φj is an rj × rj matrix for j = 1, 2, . . . , J .

The form (OA.22) and L = G⊤HG imply that whenever the (l, l)-th and (m,m)-th

elements of matrix Π in (OA.2) correspond to distinct eigenvalues, I have g⊤
l Hgm = 0,

where gl and gm are l-th and m-th column of G. Recall the definitions H = (U−1)⊤CU−1

and B = U−1G. Therefore, I have b⊤
l Cbm = 0.

The IUF condition therefore implies that

0 = cov(a⊤∆p(f), s) = cov

(
b⊤
l var(R0)

N∑
n=1

qnhn, qm

)
= var(qm)b

⊤
l var(R0)hm. (OA.23)
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What remains follows the proof of Theorem 1 in the main text. Specifically, I project hm

onto the factor portfolios b1,b2, . . . ,bN and obtain hm =
∑N

n=1 θm,nbn. The IUF condition

(OA.23) implies that θm,n = 0, for any (n, n)-th and (m,m)-th elements of matrix Π that

correspond to distinct eigenvalues. Therefore, I recover the block-diagonal form of the price-

of-flow-induced-risk matrix of the F-SDF, as shown in (OA.4). Lastly, because of (OA.12)

and the assumption of positive compensation for risk, Ψj is positive definite for all j.

A.2 Optimality of the IUF Orthogonalization

This appendix shows the optimality of the IUF orthogonalization, without imposing regu-

larity Assumption 4 in the main text.

In the general case, the definition of model orthogonalization in the main text needs to

be modified to account for duplicate eigenvalues. The orthogonalized model now has the

block-diagonal price-of-flow-induced-risk matrix that is consistent with (OA.2).

DEFINITION O.1. Any N linearly independent portfolios B̃ = (b̃1, b̃2, . . . , b̃N) defines a

model orthogonalization. The N2 model expressed under portfolios B̃ is

∆p(f) = var(R0)B̃Λ̃q̃, (OA.24)

with portfolio flows q̃ = (q̃1, q̃2, . . . , q̃N)
⊤ and the N ×N price-of-flow-induced-risk matrix

Λ̃ =



Ψ̃1,1 Ψ̃1,2 · · · Ψ̃1,J

Ψ̃2,1 Ψ̃2,2 · · · Ψ̃2,J

· · · · · · · · · · · ·

Ψ̃J,1 Ψ̃J,2 · · · Ψ̃J,J


, (OA.25)

where each Ψ̃j,l is an rj×rl matrix. The orthogonalized N-factor model under these portfolios

is defined as

∆p̄(f) = var(R0)B̃Λ̄q̃, (OA.26)
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with the N ×N price-of-flow-induced-risk matrix

Λ̄ =



Ψ̃1,1 0 · · · 0

0 Ψ̃2,2 · · · 0

· · · · · · · · · · · ·

0 0 · · · Ψ̃J,J


. (OA.27)

I now generalize Theorem 2 of the main text.

Theorem O.2. Fix any model orthogonalization B̃ = (b̃1, b̃2, . . . , b̃N). The orthogonalized

model (OA.26) satisfies the IUF for any parameters Ψ̃1,1, Ψ̃2,2, . . . , Ψ̃N,N if and only if for

any N2 parameters Λ̃ in (OA.25),

� a one-unit shock to portfolio flow q̃n causes the same amount of impact to the price of

portfolio b̃n under the N2 model (OA.24) and the orthogonalized model (OA.26),

∂b̃⊤
n∆p(f)

∂q̃n
=

∂b̃⊤
n∆p̄(f)

∂q̃n
. (OA.28)

� the arbitrageur’s expected utility E[u(W (f))] remains invariant under (OA.24) and

(OA.26).

Proof. The proof relies on three intermediate results.

The first result is that the orthogonalized model (OA.26) satisfies the IUF for any param-

eters Ψ̃1,1, Ψ̃2,2, . . . , Ψ̃N,N if and only if cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 and cov(q̃n, q̃m) = 0 whenever

the (n, n)-th and (m,m)-th elements of matrix Π correspond to distinct eigenvalues.

Proof. First, I show the sufficiency direction. From Theorem O.1, if the orthogonalized

model (OA.26) satisfies the IUF, then there exists some N × N invertible matrix O, such

that for any Λ̄ in (OA.27), O−1Λ̄O is still a block-diagonal matrix of form (OA.27). I denote

the (j, l)-th block of O−1 as Xj,l, which is an rj × rl matrix. I denote the (j, l)-th block of O

as Yj,l, which is an rj×rl matrix. I then know that Xj,lΨ̃l,lYl,k = 0 for any l, any j ̸= k, and
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any parameter matrix Ψ̃l,l. This implies that at most one of the matrices Xj,l and Yl,k is a

non-zero matrix. Suppose that there exist some l and k ̸= k′, such that both Yl,k and Yl,k′

are non-zero matrices. Then all Xj,l are zero matrices for j = 1, 2, . . . , J , which contradicts

the fact that O is invertible. Therefore, for each l, at most one of the matrices from Yl,k

(k = 1, 2, . . . , J) is non-zero. Because O is invertible, for each k, at least one of the matrices

from Yl,k (l = 1, 2, . . . , J) is non-zero. Therefore, matrix O has exactly J non-zero blocks,

which belong to distinct columns and rows. Moreover, all of these J blocks must be square

matrices. Otherwise, I can find linearly dependent rows or columns of O, contradicting the

invertibility. Therefore, the matrix O is of the form

O =



Γ̃1,1 0 · · · 0

0 Γ̃2,2 · · · 0

· · · · · · · · · · · ·

0 0 · · · Γ̃J,J


(OA.29)

or its rearrangements, where each Γ̃j,j is a rj × rj matrix. The only possible rearrangement

of O is exchanging any two blocks of columns over for j and j′, where the two rearranged

blocks j and j′ have the same dimension rj = rj′ . Because B̃O = B and Oq = q̃, matrix

O reorders blocks of portfolios B̃ = (b̃1, b̃2, . . . , b̃N) that correspond to distinct eigenvalues

with the same degree of multiplicity and recombines portfolios that correspond to the same

eigenvalue. The resulting portfolios B are the factor portfolios in Theorem O.1. Therefore,

cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 and cov(q̃n, q̃m) = 0 whenever (n, n)-th and (m,m)-th elements of

matrix Π correspond to distinct eigenvalues.

Next, I show the necessity direction. Because cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 and cov(q̃n, q̃m) = 0

whenever the (n, n)-th and (m,m)-th elements of matrix Π correspond to distinct eigenval-

ues, all I need for the form (OA.4) is to orthogonalize the portfolios B̃ = (b̃1, b̃2, . . . , b̃N)

within each duplicate eigenvalue. I am free to do so, because there is no dimension reduc-

tion for the price-of-flow-induced-risk matrix within the same eigenvalue. The form (OA.4)
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satisfies the IUF by Theorem O.1.

The second claim is that (OA.28) holds for any Λ̃ if and only if cov(b̃⊤
nR0, b̃

⊤
mR0) = 0

whenever (n, n)-th and (m,m)-th elements of Π correspond to distinct eigenvalues.

Proof. Note that I have by (OA.24),

b̃⊤
l ∆p(f) =

N∑
n=1

N∑
m=1

λ̃n,mq̃mcov(b̃
⊤
l R0, b̃

⊤
nR0). (OA.30)

I then have

∂b̃⊤
l ∆p(f)

∂q̃l
=

N∑
n=1

λ̃n,lcov(b̃
⊤
l R0, b̃

⊤
nR0). (OA.31)

Similarly, I have by (OA.26),

b̃⊤
l ∆p̄(f) =

N∑
n=1

N∑
m=1

λ̄n,mq̃mcov(b̃
⊤
l R0, b̃

⊤
nR0) (OA.32)

and

∂b̃⊤
l ∆p̄(f)

∂q̃l
=

N∑
n=1

λ̄n,lcov(b̃
⊤
l R0, b̃

⊤
nR0). (OA.33)

If the (n, n)-th and (l, l)-th elements of matrix Π correspond to the same eigenvalue, I have

λ̃n,l = λ̄n,l by definition (OA.27). Therefore, (OA.31) and (OA.33) are equal for any Λ̃ if

and only if cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 whenever (n, n)-th and (m,m)-th elements of matrix Π

correspond to distinct eigenvalues.

The third claim is stated under the condition that cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 whenever the

(n, n)-th and (m,m)-th elements of matrix Π correspond to distinct eigenvalues. The arbi-

trageur’s expected utility E[u(W (f))] remains invariant under models (OA.24) and (OA.26)

if and only if cov(q̃n, q̃m) = 0 whenever the (n, n)-th and (m,m)-th elements of matrix Π

correspond to distinct eigenvalues.
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Proof. I partition the portfolio flows q̃ according to eigenvalue values,

q̃⊤ = (q̃1, q̃2, . . . , q̃J)
⊤, (OA.34)

where each q̃j is an rj × 1 vector. Similarly, I partition the covariance B̃⊤var(R0)B̃ as

B̃⊤var(R0)B̃ =



Φ̃1,1 0 · · · 0

0 Φ̃2,2 · · · 0

· · · · · · · · · · · ·

0 0 · · · Φ̃J,J


, (OA.35)

where each Φ̃j,j is an rj × rj matrix and I use cov(b̃⊤
nR0, b̃

⊤
mR0) = 0 whenever the (n, n)-th

and (m,m)-th elements of matrix Π correspond to distinct eigenvalues.

Under the price impact model (OA.24), the expected compensation is

E[f⊤∆p(f)] = E[q̃⊤B̃⊤var(R0)B̃Λ̃q̃] =
J∑

j=1

J∑
l=1

E
[
q̃⊤
j Φ̃j,jΨ̃j,lq̃l

]
. (OA.36)

Similarly, under the price impact model (OA.26), the expected compensation is

E[f⊤∆p̄(f)] = E[q̃⊤B̃⊤var(R0)B̃Λ̄q̃] =
J∑

j=1

E
[
q̃⊤
j Φ̃j,jΨ̃j,jq̃j

]
. (OA.37)

As shown in the main text, the arbitrageur’s expected utility E[u(W (f))] remains invariant

under models (OA.24) and (OA.26) if and only if the expected compensation E[f⊤∆p(f)]

remains invariant. Because Ψ̃j,l are free parameters, the expected compensation (OA.36)

and (OA.37) are the same if and only if cov(q̃j, q̃l) = 0 for any j ̸= l. The last statement

is precisely cov(q̃n, q̃m) = 0 whenever the (n, n)-th and (m,m)-th elements of matrix Π

correspond to distinct eigenvalues.

The three claims together imply that Theorem O.2 is true.
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Figure O.1. Necessity of the IUF to the flow-based APT

K ×K
price of flow-induced risk λn,m

K × (N −K)
price of flow-induced risk λn,m

pricing error
tends to zero

(N −K)×K
price of flow-induced risk λn,m

pricing error does NOT
tend to zero

(N −K)× (N −K)
price of flow-induced risk λn,m

pricing error
tends to zero

factor flow
q1, q2, . . . , qK

idiosyncratic flow
qK+1, qK+2, . . . , qN

factor portfolio

b1

b2

bK

...

idiosyncratic portfolio

bK+1

bK+2

bN

...

Notes: This figure shows why the IUF is necessary for the flow-based APT. Without the IUF, the price impact
of factor flows on idiosyncratic portfolios does not tend to zero, even when the variance of idiosyncratic flows
tends to zero. This effect is illustrated in the bottom-left block of the price-of-flow-induced-risk matrix.

B Necessity of the IUF to the Flow-Based APT

One may wonder if there exists a version of the flow-based APT that does not impose the

IUF and directly reduces the N2 price impact model to some K2 model. That is, I start

with the N2 model

∆p(f) =
N∑

n=1

N∑
m=1

λn,mqmcov(R0,b
⊤
nR0), (OB.1)

and aim to approximate this model by the first K factors,

∆p̌(f) =
K∑
k=1

K∑
j=1

λk,jqjcov(R0,b
⊤
k R0). (OB.2)

Can I bound the pricing error ∆p(f)−∆p̌(f) in a similar manner to the flow-based APT in

the main text?

The answer is no. Figure O.1 illustrates the situation. The bound in the main text

on the volatility of the F-SDF implies a uniform upper bound on the N2 prices of flow-

induced risk λn,m. The flow-based APT assumes the variance
∑N

n=K+1 πn of idiosyncratic

flows qK+1, qK+2, . . . , qN tending to zero. This assumption ensures that the pricing error

11



caused by idiosyncratic flows, which is
∑N

n=1

∑N
m=K+1 λn,mqmcov(R0,b

⊤
nR0), tends to zero,

which corresponds to the top-right and bottom-right blocks of Figure O.1.

However, note that

∆p(f)−∆p̌(f) =
N∑

n=1

N∑
m=K+1

λn,mqmcov(R0,b
⊤
nR0) +

N∑
n=K+1

K∑
m=1

λn,mqmcov(R0,b
⊤
nR0).

(OB.3)

The second term is the price impact of factor flows on portfolios that idiosyncratic flows go

into, which does not tend to zero, even when the variance of idiosyncratic flows tends to zero.

This component of pricing error corresponds to the bottom-left block of Figure O.1. While

flows qK+1, qK+2, . . . , qN are idiosyncratic, portfolios bK+1,bK+2, . . . ,bN that correspond to

these flows may be important risk factors. Factor flows q1, q2, . . . , qK could have a large cross-

impact on these portfolios. Without the IUF, one lacks a proper theoretical justification for

eliminating this bottom-left component.

Instead, my IUF approach first chooses the specific flows q1, q2, . . . , qN and corresponding

portfolios b1,b2, . . . ,bN that have both uncorrelated flows and uncorrelated fundamental

returns. The IUF implies that these portfolios have no cross-impacts. That is, the IUF first

reduces the N2 prices of flow-induced risk to the N diagonal terms. The flow-based APT

then reduces these N prices of flow-induced risk to K using the factor structure of flows.
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