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Abstract

This paper examines the stock market implications of investor uncertainty about
the Fed’s inflation-fighting ability. In a general equilibrium model, investors learn about
the Fed’s ability to control inflation. Uncertainty about this ability amplifies volatility
and the risk premium, particularly during pronounced monetary tightening and easing
cycles. This effect is stronger during tightening, as learning magnifies stock responses
to inflation shocks. Moreover, if the Fed’s credibility wanes, investors see inflation as
more persistent, boosting volatility and the risk premium. Empirical tests validate
the model’s predictions, underscoring the role of learning about the Fed’s inflation
management in shaping financial markets.
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1 Introduction

Inflation, a key economic indicator, can disrupt economies and severely impact people’s well-

being. The COVID-19 pandemic led to a resurgence of inflation as governments worldwide

took drastic measures. Lockdowns, forcing people indoors and businesses to cease operations,

impelled governments and central banks to adopt lenient fiscal and monetary policies to

support firms and consumers. However, diminished output and a sharp rise in the money

supply created an imbalance, sparking inflation. The United States Consumer Price Index

(CPI) saw a significant jump one year after lockdowns started, with year-over-year growth

hitting 2.6% in March 2021 and exceeding 8.5% in March 2022. In response, the Federal

Reserve (henceforth, “the Fed”) began raising interest rates in March 2022.

This raises a crucial question: Can the Fed control inflation? Its capacity to manage

inflation profoundly impacts financial markets, investor confidence, and overall economic

stability. Absent the Fed’s credibility in combating inflation, the phenomenon risks becoming

self-perpetuating. This paper explores the Fed’s credibility issue from investors’ perspective.

When investors doubt the Fed’s ability to manage inflation, they gather information from

observed inflation data. Integrating this learning process into a general equilibrium model

reveals that the market risk premium and volatility increase when the Fed loses its credibility

in battling inflation. Furthermore, when the Fed counters high inflation data by hiking

interest rates, it precipitates a stock market downturn, increased volatility, and a spike in

the market risk premium.

Recent research underscores the significant role of investors’ perceptions of Fed actions

in asset pricing. Bauer, Pflueger, and Sunderam (2022) analyze the influence of professional

forecasters’ perceptions of the Fed’s monetary policy rule on asset prices and monetary policy

transmission, showing that the perceived dependence of the federal funds rate on economic

conditions is both time-varying and cyclical. Forecasters adapt their beliefs in response to

monetary policy actions. Caballero and Simsek (2022) explore the disagreement between

the Fed and financial markets and its impact on interest rate policies and market reactions.

Bianchi, Ludvigson, and Ma (2022) explore how Fed announcements influence investor beliefs

about evolving monetary policy rules. Together, these works emphasize the importance of

understanding how investors assimilate and react to the Fed’s decisions.

Contributing to this line of research, we draw from the literature on learning (Ai, 2010)
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and propose a model where a rational agent learns about inflation dynamics, building on

Xiong and Yan (2010). We focus on uncertainty and learning about the Fed’s inflation-

fighting ability. Our main query is: What are the stock market implications of the agent’s

learning about the Fed’s ability to control inflation?

Our analysis employs a general equilibrium economy model (Lucas, 1978), featuring a

representative agent with Epstein and Zin (1989) preferences who consumes the aggregate

output. The nominal price of the consumption good acts as a proxy for the consumer price

index. In this setting, the Fed adjusts the nominal interest rate based on the Taylor rule,

increasing rates in response to inflation growth or signs of overheating. Meanwhile, the agent

observes inflation data and updates their beliefs about the Fed’s ability to control inflation

via interest rate hikes. As the Fed raises interest rates and a subsequent decline in inflation

is observed, the agent’s confidence in the Fed’s ability grows. However, if inflation persists,

the agent loses faith in the Fed’s ability, realizing that interest rate hikes are insufficient to

curb inflation, ultimately eroding the Fed’s credibility.

The analysis uncovers two novel effects that set our study apart from existing literature.

First, we find that uncertainty about the Fed’s ability to control inflation results in higher

stock market volatility and risk premium, especially during intense monetary tightening or

easing periods. As inflation strays from its target, the Fed’s ability is questioned by the

agent, prompting the stock market to react strongly to new information. For instance, a

high inflation reading during aggressive tightening may cause a significant market decline,

similar to a stock market crash. Conversely, a low inflation reading in the same context

could trigger a substantial market rally. This is particularly relevant now, as markets have

recently responded strongly to post-COVID inflation data (Gil de Rubio Cruz, Osambela,

Palazzo, Palomino, and Suarez, 2022; Kroner, 2023).

The second effect relates to the agent’s valuation of monetary policy. Assuming a prefer-

ence for early resolution uncertainty (Bansal and Yaron, 2004), monetary policy is valuable

for the agent because it reduces long-run risk. The Fed tightens during overheating and

eases during weakening, stabilizing economic cycles. However, this desirable stabilizing force

comes at a cost to the stock market, which negatively correlates with the Fed’s actions: the

market falls when the Fed tightens and rises when the Fed eases. In asset-pricing terms, the

stock market is considered a “bad” asset due to its negative correlation with a “good” risk,

leading the agent to demand a risk premium to hold it. This effect is asymmetric, depending
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on whether the cycle is tightening or easing. The agent demands a higher risk premium dur-

ing tightening because learning amplifies the impact of both positive and negative inflation

surprises. For example, a positive inflation surprise during tightening undermines the Fed’s

credibility, resulting in doubly bad news. Conversely, during easing, the agent demands

a lower risk premium as learning dampens the impact of inflation surprises. As a result,

learning leads to a higher risk premium during tightening periods.

The agent’s perception of the Fed’s ability to control inflation strengthens these two ef-

fects. This is mainly because the perceived ability directly dictates the degree of long-run risk

in the economy. When the perceived ability is low or negative, indicating weaker control by

the Fed, it suggests challenges in returning inflation to its long-term mean. Consequently, the

agent sees inflation as more persistent, strengthening long-run risk and, in turn, amplifying

both the risk premium and stock market volatility.

To quantify these effects, we estimate the parameters of the model using Maximum Like-

lihood, employing data on U.S. real GDP, Federal funds rate, and inflation rate from 1955 to

2021. Importantly, the estimation does not use any asset prices as inputs. The estimated pa-

rameter values yield asset-pricing moments that align with the data. Specifically, the model

predicts a real interest rate of 1%, nominal interest rate of 4.5%, market risk premium of 8%,

market return volatility of 19%, and market Sharpe ratio of 0.43. We then empirically test

the model’s predictions using the S&P 500 as a proxy for the market. Our approach involves

multiple steps. Initially, we obtain empirical time series for market risk premium, market

return volatility, price-dividend ratio, real interest rate, and expected output growth rate.

Subsequently, we derive the model-implied counterparts for these time series by inputting

the state variables extracted from the Maximum Likelihood estimation into our theoretical

framework.

Using these time series, we find that our model aligns well with the data, showing pos-

itive and statistically significant relations between empirical and model-implied quantities.

Furthermore, when the Fed tightens, as anticipated by our model, there is a noticeable

rise in the empirical real interest rate, expected output growth rate, market risk premium,

and market return volatility. Conversely, the empirical market price-dividend ratio declines.

These relationships are statistically significant in the data. Moreover, as inflation increases,

the empirical real interest rate, expected output growth rate, and market price decrease,

mirroring our model’s predictions.
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We also find that a decrease in the Fed’s ability to control inflation leads to a statistically

significant increase in the empirical market risk premium and market return volatility, in

line with the model. Additionally, the data reveals a U-shaped relationship where the risk

premium rises during pronounced tightening and easing episodes; however, such a pattern is

not evident for volatility. Overall, our empirical findings support the theoretical predictions

of the model.

By examining the impact of uncertainty about the Fed’s ability to control inflation, our

research adds to the literature on economic policy uncertainty (e.g. Baker, Bloom, and Davis,

2016). It connects with theories analyzing investor learning and its impact on asset prices

(Timmermann, 1993; Pastor and Veronesi, 2009; Ai, 2010), and in particular with Pástor

and Veronesi (2013), who explored the impact of uncertainty regarding future government

actions on asset prices. The model we develop stems from the general equilibrium litera-

ture (Lucas, 1978) and explores the interaction between incomplete information (Detemple,

1986), inflation (Xiong and Yan, 2010; Cochrane, 2011), interest rates (Buraschi and Jiltsov,

2005; Wachter, 2006), and asset prices, thereby expanding the literature on asset pricing in

monetary economies (Danthine and Donaldson, 1986; Bakshi and Chen, 1996; Gallmeyer,

Hollifield, Palomino, and Zin, 2007).

Our paper builds on previous studies examining the Fed’s role in controlling inflation

and maintaining credibility (Kydland and Prescott, 1977; Alesina and Summers, 1993; Barro

and Gordon, 1983; Bernanke and Mishkin, 1997; Bernanke, Laubach, Mishkin, and Posen,

1998; Svensson, 1999; Clarida, Gali, and Gertler, 2000; Woodford, 2003; Walsh, 2017). It

also relates to the literature on the effects of monetary policy on financial markets and

risk premia (Gürkaynak, Sack, and Swanson, 2004; Rigobon and Sack, 2004; Bernanke and

Kuttner, 2005) and in particular with a growing body of evidence that risk premia respond

strongly to the announcement of central banks (Bianchi et al., 2022; Caballero and Simsek,

2022; Bauer et al., 2022; Bauer and Swanson, 2023).

Our analysis simplifies the complex economic dynamics by focusing on investor learning

and the Fed’s ability to control inflation. It omits aspects such as fiscal policy (Sargent

and Wallace, 1981; Leeper, 1991), international trade and exchange rates (Obstfeld and

Rogoff, 1995; Calvo and Reinhart, 2002; Gali and Monacelli, 2005), or the role of a financial

intermediation sector in shaping inflation and asset prices (Bernanke, Gertler, and Gilchrist,

1999; Gertler and Kiyotaki, 2010; Corhay and Tong, 2021). Nevertheless, by emphasizing
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the role of investor learning, our research complements the existing literature and encourages

further exploration of the interplay between these areas.

The paper proceeds as follows: Section 2 presents our model; Section 3 describes pa-

rameter estimation; Section 4 reports results and empirical tests; and Section 5 concludes,

summarizing findings and suggesting future research.

2 Model

The economy is defined over a continuous-time infinite horizon and consists of a single

representative agent who derives utility from consumption. The agent has Kreps-Porteus

preferences (Epstein and Zin, 1989; Weil, 1990) with a subjective discount rate ρ, relative

risk aversion γ, and elasticity of intertemporal substitution ψ. The agent’s indirect utility

function is given by

Jt = Et
[∫ ∞

t

h(Cs, Js)ds

]
,

where the aggregator h is defined as in Duffie and Epstein (1992):

h(C, J) =
ρ

1− 1/ψ

(
C1−1/ψ

[(1− γ)J ]1/θ−1
− (1− γ)J

)
, with θ ≡ 1− γ

1− 1/ψ
.

The aggregate consumption in the economy, denoted by δ, follows the dynamic process

dδt
δt

= µδ,tdt+ σδdBδ,t, (1)

where µδ,t is the expected consumption growth rate, σδ > 0 is a known constant, and Bδ

is a one-dimensional Brownian motion. The expected consumption growth rate µδ,t varies

over time and is determined endogenously from the agent’s optimality conditions, as we will

show below.

Drawing from the framework introduced by Xiong and Yan (2010)1, the consumption

1For other articles that directly model the inflation process, see Wachter (2006), Piazzesi and Schneider
(2006), and Bansal and Shaliastovich (2013).
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price level, pt, evolves according to

dpt/pt = πtdt,

where πt is the expected rate of inflation, which follows the mean-reverting process:

dπt = λπ (πt − πt) dt+ σπdBπ,t. (2)

In equation (2), λπ > 0 is a known constant and represents the mean-reversion speed of infla-

tion, σπ > 0 is a known constant, and Bπ is a one-dimensional Brownian motion uncorrelated

with Bδ. The long-term inflation expectation, πt, varies over time according to

πt = π̆ − at(rN,t − rN),

where rN,t is the nominal interest rate, whose long-term mean is rN , π̆ is the long-term mean

of inflation under neutral interest rates (when rN,t = rN), and at is a parameter that governs

how inflation responds to deviations of the nominal rate from its long-term mean.

Our model’s central assumption is that the Fed governs the long-term inflation expecta-

tion πt by setting the nominal interest rate rN,t. In doing so, the Fed modifies the gap πt−πt
in equation (2), which governs the reversion of inflation towards its mean. Importantly, the

Fed controls the long-term inflation expectation, πt, and not directly inflation, creating a lag

between interest rate changes and the inflation’s response to those changes.

Consider an example where, without loss of generality, the expected inflation πt is high,

and the Fed is tightening (rN,t−rN > 0). Then, a positive value for the parameter at implies

a low πt and a faster reversion of inflation to lower levels. That is, positive values for the

parameter at imply that the Fed can control inflation by increasing its mean-reversion speed.

Conversely, a negative value for the parameter at weakens the Fed’s ability to bring down

inflation, meaning that inflation remains sticky and the Fed cannot control it effectively.

The focus of our paper is on the parameter at, which reflects the Fed’s ability to control

inflation. We assume that the representative agent does not observe at. That is, the agent is

unsure whether the Fed can bring inflation back down in the near future when it has become
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excessively high. The parameter at follows a hidden diffusion process

dat = −λaatdt+ σadBa,t, (3)

where λa > 0 and σa > 0 are known constants, and Ba is a one-dimensional Brownian

motion, uncorrelated with Bδ and Bπ.

The representative agent observes the process of aggregate consumption δt, nominal in-

terest rates rN,t set by the Fed, and consumption prices pt. Since consumption prices are

observable, so is the expected inflation process (2). The history of the expected inflation

process together with the history of nominal interest rates allows the agent to learn about

Fed’s ability to control inflation, i.e., about at. Defining Fπ,rN
t the information set of the

agent at time t, standard filtering theory (Liptser and Shiryaev, 2001) implies that the agent’s

posterior mean, ât ≡ E[at|Fπ,rN
t ], and the posterior variance, νa,t ≡ E[(at− ât)2|Fπ,rN

t ], follow

dât = −λaâtdt−
(rN,t − rN)λπνa,t

σπ
dB̂π,t, (4)

dνa,t =

[
σ2
a − 2λaνa,t −

(
(rN,t − rN)λπνa,t

σπ

)2
]
dt, (5)

where B̂π is a Brownian motion under agent’s filtration and represents a surprise change in

expected inflation. Post-filtering, the agent perceives the expected inflation process as

dπt = λπ[π̆ − ât(rN,t − rN)︸ ︷︷ ︸
≡π̂t

−πt]dt+ σπdB̂π,t, (6)

where π̂t ≡ π̆ − ât(rN,t − rN) is the agent’s long-term inflation expectation. Of course, the

agent’s long-term inflation expectation depends on the agent’s estimate of the Fed’s ability

to control inflation.

The agent’s updating of beliefs in Equation (4) depends on the difference rN,t−rN . To fix
ideas, assume that the Fed is tightening, meaning that rN,t > rN . Then a positive surprise

change in expected inflation (dB̂π,t > 0, or an inflationary shock) lowers the agent’s estimate

ât. The agent’s confidence in Fed’s ability to control inflation decreases after the inflationary

shock because inflation keeps rising despite the Fed’s tightening. If, on the contrary, the
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agent observes a negative surprise change in expected inflation—a deflationary shock—then

ât increases, restoring the agent’s confidence in Fed’s ability to fight inflation.

We observe an asymmetric response of ât to inflation surprises. When the Fed is tight-

ening, a positive inflation surprise not only represents bad news but also lowers the agent’s

estimate ât or their perception of the Fed’s ability to control inflation. Conversely, in the

case of an easing episode, the same positive surprise in inflation leads the agent to perceive

an improvement in the Fed’s ability to bring inflation back to its long-term mean. This

asymmetric response of ât will be relevant for some of our asset pricing results.

The posterior uncertainty νa,t evolves locally deterministically over time as described

in (5). It tends to increase when interest rates are close to being neutral (rN,t ≈ rN)

because valuable information about the Fed’s ability to control inflation can only be observed

when the Fed tries to either fight inflation (rN,t > rN) or increase inflation (rN,t < rN).

Importantly, the posterior uncertainty never vanishes since the agent learns about a moving

target, which evolves as in (3). As shown below, νa,t is the channel through which the agent’s

confidence in the Fed’s ability to control inflation generates novel asset pricing results.

The Fisher equation states that the nominal interest rate rN,t must equal the sum of the

real interest rate rR,t and the expected inflation rate:

rN,t = rR,t + πt. (7)

In this economy, the Fed relies on the Taylor rule to guide its response to deviations in

inflation and economic growth (Taylor, 1993, 1999). The agent is aware of and observes the

Taylor rule. However, the agent recognizes that economies are not static; they evolve, and as

they change, the tools and strategies once effective might not remain so. Thus, our central

hypothesis is that despite observing the Taylor rule, the agent questions its current efficacy

in managing inflation, as previously discussed.2

The Taylor rule relies on two positive and known constants, namely βπ and βµ. Specifi-

cally, if the recent history of inflation and economic growth deviate from their target levels,

2A related question is to assume that the Taylor rule’s coefficients are unknown and examine how the
agent interprets them. This perspective would highlight the agent’s perception of the Fed’s responsiveness
to inflation or growth. However, our study’s scope is broader. Rather than delving into the individual
components of the Taylor rule, we focus on a more overarching question: Can the Fed effectively control
inflation when employing a standard Taylor rule?
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the Fed changes the nominal interest rate according to:

rN,t = rN + βπ (ϕπ,t − π) + βµ (ϕµ,t − µδ) . (8)

The Taylor rule considers the difference between the current inflation index ϕπ,t and the

targeted inflation rate π, and the difference between the current consumption growth index

ϕµ,t and the natural expected consumption growth rate µδ =
E(dδt/δt)

dt
. The inflation index,

ϕπ,t, is based on the history of observations of the price level, while the consumption growth

index, ϕµ,t, is based on the history of observations of the aggregate consumption:

ϕπ,t = ωπ

∫ t

0

e−ωπ(t−s)dps
ps
, (9)

ϕµ,t = ωµ

∫ t

0

e−ωµ(t−s)dδs
δs
. (10)

In the real world, unlike in this continuous-time setup, the Fed doesn’t have access to

instantaneous expected inflation or instantaneous expected growth. Instead, it typically re-

lies on aggregate data, which may be collected and reported over a month or a quarter.

The indices ϕπ,t and ϕµ,t can be seen as mathematical tools to represent this aggregation.

The indices essentially accumulate the historical data, giving more weight to recent informa-

tion. To further understand their meaning, note first that (9) and (10) imply the following

dynamics:

dϕπ,t = ωπ(πt − ϕπ,t)dt, (11)

dϕµ,t = ωµ(µδ,t − ϕµ,t)dt+ ωµσδdBδ,t, (12)

where it can be shown that the unconditional means of ϕπ,t and ϕµ,t are respectively π and

µδ. Consider now a discretization of (11) with time steps ∆t:

ϕπ,t =
(
1− e−ωπ∆t

) ∞∑

n=0

e−ωπn∆tπt−n∆t. (13)

The expression (13) resembles an exponential moving average, with the parameter ωπ driving

the weight associated with the present relative to the past. If ωπ is large, the past price growth
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influences to a small degree the index, causing it to closely represent current price growth.

On the other hand, if ωπ is small, the past history of price growth influences the index to a

greater extent. This logic also applies to the index ϕµ,t, with the added impact of Bδ shocks,

reminiscent of an ARMA model. In fact, discretizing (12) produces:

ϕµ,t =
(
1− e−ωµ∆t

) ∞∑

n=0

e−ωµn∆tµδ,t−n∆t + ωµσδ

√
1− e−ωµ∆t

2ωµ

∞∑

n=0

e−ωµn∆tZt−n∆t,

where Z is the N(0, 1) discrete counterpart of the Brownian Bδ. The parameter ωµ controls

the weight associated with the present consumption growth relative to the past, with a higher

ωµ giving more weight to recent data.

To summarize, the indices ϕπ,t and ϕµ,t allow the Fed to base its interest rate decision

not only on the latest estimates of inflation and expected consumption growth but on their

entire history. The Taylor rule is thus versatile, permitting the Fed to adjust the weight it

assigns to past observations. The parameter values ωπ, ωµ, βπ, and βµ will be estimated

from the data in Section 3.

A convenient simplification arises when ωπ = ωµ ≡ ω. The dynamics of the variable

ϕt ≡ βπ (ϕπ,t − π) + βµ (ϕµ,t − µδ) ,

which enters the Taylor rule in (8), do not include the two indices ϕπ,t and ϕµ,t:

dϕt = ω[βµ(µδ,t − µδ) + βπ(πt − π)− ϕt]dt+ ωβµσδdBδ,t. (14)

The dynamics in (14) show that ϕt mean-reverts at speed ω towards its stochastic mean,

which is determined by the weighted sum of the inflation and consumption growth deviations

from their targets. This reduction of ϕπ,t and ϕµ,t into a single state variable ϕt when

ωπ = ωµ ≡ ω simplifies the numerical method and facilitates our interpretations. In essence,

high values of ϕt indicate tightening, and low values indicate easing. Since eliminating one

state variable simplifies the numerical solution of the equilibrium and helps us to interpret

our findings more easily, we assume going forward that ωπ = ωµ ≡ ω.3 Hereafter, ϕt will be

3Evidence confirming that the estimated values of the mean-reversion speeds ωπ and ωµ are almost
identical will be provided in Section 3.
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referred to as the Fed tightening index.

This implies that the nominal interest rate is determined by:

rN,t = rN + ϕt, (15)

with the dynamics of ϕt provided in (14).

We observe that the process ϕt = rN,t − rN has a direct impact on the agent’s updating

of beliefs in equation (4). This establishes a clear connection between the Fed’s decisions,

as governed by (15), and the agent’s learning process regarding the Fed’s ability to control

inflation, as described in (4).

Solving for the equilibrium in this economy involves writing the HJB equation:

max
C

{h(C, J) + LJ} = 0, (16)

with the differential operator LJ following from Itô’s lemma. In keeping with existing work

(e.g., Benzoni, Collin-Dufresne, and Goldstein, 2011), we guess the following value function:

J(C, π, â, ϕ, νa) =
C1−γ

1− γ

[
ρeI(xt)

]θ
, (17)

where I(xt) is the log wealth-consumption ratio and xt ≡ [πt ât ϕt νa,t]
⊤ denotes the state

vector. (Note that the state vector does not include µδ,t, which in our model will be endoge-

nously determined in equilibrium as a function of the other state variables.)

Substituting the guess (17) into the HJB Equation (16) and imposing the market-clearing

condition Ct = δt, yields a partial differential equation for the log wealth-consumption ratio.

We numerically solve this equation using Chebyshev polynomials (Judd, 1998). Appendix

A describes the solution method and details the numerical procedure.

Equilibrium market price of risk and real risk-free rate Following Duffie and Epstein

(1992), the state price density in this economy is given by

ξt = exp

[∫ t

0

hJ(Cs, Js)ds

]
hC(Ct, Jt) = exp

[∫ t

0

(
θ − 1

eI(xs)
− ρθ

)
ds

]
ρθC−γ

t (eI(xt))θ−1.

A two-dimensional Brownian vector, B̂t ≡ [Bδ,t B̂π,t]
⊤, drives the state variables in this
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economy. As a result, the market price of risk in this economy is also two-dimensional,

denoted as mt ≡ [mδ,t mπ,t]
⊤. Both the market price of risk and the real risk-free rate rR,t

result from the dynamics of the state price density,

dξt
ξt

= −rR,tdt−m⊤
t dB̂t, (18)

Itô’s Lemma yields the market prices of risk for Bδ and B̂π:

mδ,t = γσδ + (1− θ)σδβµωIϕ, (19)

mπ,t = (1− θ)

(
σπIπ −

λπνa,t
σπ

Iâϕt

)
, (20)

where we denote by Iz the partial derivative of the log wealth-consumption ratio with respect

to the state variable z ∈ {π, â, ϕ, νa}.
Focusing on the market price of risk mδ,t, the Fed’s monetary policy plays an important

role in mitigating growth fluctuations caused by Bδ. The Fed tightens when facing an

overheating economy (high ϕt), leading to an expected negative sign for Iϕ. Conversely,

the Fed eases when facing a weak economy, also implying Iϕ < 0. (We will confirm the

assumed signs of the partial derivatives of I(xt) in Section 4.) The agent values the Fed’s

stabilizing force through the long-run risk channel, with 1− θ measuring the preference for

early resolution of uncertainty. From the long-run risk agent’s perspective, the Fed’s response

to changes in ϕt reduces long-run risk and, with it, mδ,t. This effect is stronger as σδ (the

scale of economic fluctuations), βµ (the output gap coefficient in the Taylor rule), and ω (the

weight given to recent growth data) increase.

For the market price of risk mπ,t, we expect a negative Iπ (as higher inflation reduces

expected real consumption growth and the wealth-consumption ratio) and a positive Iâ

(since greater trust in the Fed’s inflation control ability raises the wealth-consumption ratio).

Assuming the Fed is tightening (ϕt > 0) and considering the signs Iπ < 0 and Iâ > 0, we

obtain a negative mπ,t. Consequently, the agent is willing to pay a premium for assets whose

returns covary positively with inflation. The magnitude of the price of risk mπ,t grows with

a strong preference for early resolution of uncertainty (large 1 − θ), with higher inflation

volatility (large σπ), and, crucially, with higher uncertainty in the Fed’s inflation control

ability (large νa,t).
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Itô’s Lemma applied to (18) yields the equilibrium real risk-free rate:

rR,t = ρ+
µδ,t
ψ

− γ(1 + ψ)

2ψ
σ2
δ −

1− θ

2

(
σ2
W,t − σ2

δ

)
, (21)

where σ2
W,t is the instantaneous variance of wealth,

σ2
W,t ≡ σ2

δ + 2σ2
δβµωIϕ + σ2

πI
2
π +

λ2πν
2
a,tϕ

2
t

σ2
π

I2â + σ2
δβ

2
µω

2I2ϕ − 2λπνa,tϕtIπIâ.

The first two terms in (21) are familiar drivers of the real risk-free rate: the time pref-

erence rate and the expected growth rate of consumption. The last two terms result from

precautionary saving and represent an adjustment for risk, which includes consumption risk

and excess wealth risk. The last term vanishes in the CRRA case (θ = 1).

Replacing rR,t in the Fisher equation (7), then fixing rN,t = rN and taking unconditional

expectations on both sides determines the neutral level of interest rates, rN , as a known

function of the other parameters:

rN = ρ+ π +
µδ
ψ

− γ(1 + ψ)

2ψ
σ2
δ −

1− θ

2

(
2σ2

δβµωIϕ + σ2
πI

2

π + σ2
δβ

2
µω

2I
2

ϕ

)
,

where Iπ and Iϕ are the values of the partial derivatives of the log wealth-consumption ratio

measured when all state variables are at their long-term means: π = π, â = 0, ϕ = 0, and

νa = νa.

In our economy, the expected growth rate of consumption is endogenously determined

in equilibrium and depends on monetary policy. Equation (21), together with the Fisher

equation (7), lead to an equilibrium expected growth rate:

µδ,t = ψ(rN,t − πt︸ ︷︷ ︸
rR,t

−ρ) + γ(1 + ψ)

2
σ2
δ +

ψ(1− θ)

2
(σ2

W,t − σ2
δ ). (22)

Equation (22) determines the expected growth as a function of the nominal rate and

expected inflation. Meanwhile, equation (6) describes the inflation path based on the agent’s

perceived impact of the Fed’s decisions. In order to close the model, these two equations

are supplemented with the Taylor rule (15), which determines the nominal interest rate
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rN,t. Collectively, these three equations imply that the real consumption’s equilibrium path

depends on monetary policy, making the expected consumption growth µδ,t endogenous and

monetary policy non-neutral.

Given this, in our model with learning about the Fed’s ability to control inflation, mon-

etary policy becomes non-neutral in equilibrium. This approach, which starts with a semi-

exogenous inflation process and solves for the equilibrium expected growth, introduces non-

neutrality without resorting to standard mechanisms commonly found in traditional New

Keynesian models, such as those described in Gaĺı (2015).

In equation (22), the nominal interest rate does not move one-for-one with expected

inflation4, resulting in fluctuations in rR,t. These changes in the real interest rate, in turn,

impact consumption since the representative agent adjusts her expected future consumption

growth to align with the new real interest rate level. To illustrate this, let us consider the log

level of real consumption, denoted by ct = log(δt). By discretizing equation (1) and using

equation (22), we can write Et[ct+1]− ct = µδ,t − σ2
δ/2, which implies:

ct − Et[ct+1] = ψ(ρ+ πt − rN,t)−
(
γ(1 + ψ)

2ψ
+

1

2

)
σ2
δ −

ψ(1− θ)

2
(σ2

W,t − σ2
δ ). (23)

The optimality condition (23), arising from the representative agent’s first-order condition for

consumption today versus consumption tomorrow, aligns with conditions found in standard

monetary policy frameworks (e.g., Gaĺı, 2015, Chapter 3, p. 54). According to this condition,

the agent consumes more today relative to tomorrow when either the subjective discount

rate ρ or the inflation rate πt is high, and consumes less today relative to tomorrow when

the nominal interest rate rN,t is high.

The final term in Equation (23) acts as the “exogenous preference shifter” in monetary

economies. A change in this term can be interpreted as a discount rate shock (Gaĺı, 2015,

Chapter 3). A key difference in our model is that this shock is endogenous and driven by the

excess variance of wealth, σ2
W,t − σ2

δ . An increase in the excess variance of wealth results in

lower consumption today relative to tomorrow because the representative agent prefers early

resolution of uncertainty. As such, a higher excess variance of wealth boosts precautionary

4Applying Itô’s Lemma to the Taylor rule equation (8) shows that the nominal interest rate depends on
the Brownian Bδ, while expected inflation πt solely depends on the Brownian Bπ as given in equation (2).
Therefore, based on the Fisher equation (7), a change in expected inflation must result in a change in the
real interest rate. In other words, monetary policy is non-neutral.
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saving and discourages current consumption.

Equilibrium asset prices As in Bansal and Yaron (2004), we will now consider an asset

(the “market”) that pays an aggregate dividend, which follows the dynamic process

dDt

Dt

= [(1− α)µδ + αµδ,t]dt+ σDdBD,t, (24)

where BD is a one-dimensional Brownian motion uncorrelated with {Bδ, B̂π}, α is the div-

idend leverage on expected consumption growth (Abel, 1999), and σD helps calibrate the

volatility of dividends which in the data is larger than that of consumption. Assuming

non-zero correlations between BD and {Bδ, B̂π} is possible but not necessary to achieve our

main objective of isolating the impact of learning about the Fed on asset prices. In equation

(24), the expected growth rate of dividends is an affine function of the economy’s expected

growth rate, µδ,t. As inflation and monetary policy impact µδ,t, we will analyze how asset

pricing reflects this impact. Lastly, the constant (1 − α)µδ in the drift of (24) ensures that

the average dividend growth rate is equal to the average consumption growth rate, µδ.

Denote the log price-dividend ratio by Π(xt), which solves a partial differential equation

we relegate to Appendix A. The diffusion of market returns is a vector with three elements:

sδ,t = σδβµωΠϕ, (25)

sπ,t = σπΠπ −
λπνa,t
σπ

Πâϕt, (26)

sD,t = σD.

Multiplying each of the market prices of risk in (19)-(20) with the corresponding diffusions

in (25)-(26), then taking the sum, yields the market risk premium (the market price of risk

for BD is zero, and thus σD does not enter the risk premium):

RPt = γσ2
δβµωΠϕ + (1− θ)σ2

δβ
2
µω

2ΠϕIϕ + (1− θ)σ2
πΠπIπ

− (1− θ)νa,t(ΠπIâ +ΠâIπ)λπϕt + (1− θ)
λ2πν

2
a,t

σ2
π

ΠâIâϕ
2
t .

(27)

In line with our analysis of the log wealth-consumption ratio, we hypothesize—and con-
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firm in Section 4—that: Πϕ < 0 (the Fed tightens during an overheating economy and

eases during a weakening economy, resulting in a negative relationship between ϕt and asset

prices); Πâ > 0 (confidence in the Fed’s ability to control inflation boosts asset prices); and

Ππ < 0 (inflation reduces growth and negatively affects asset prices).

Two primary factors influence the risk premium. First, for the long-run risk agent, the

Fed’s monetary policy lowers the market price of Bδ risk—refer to our discussion of equation

(19)—resulting in Iϕ < 0. Consequently, the term (1− θ)σ2
δβ

2
µω

2ΠϕIϕ in (27) is positive. In

other words, the Fed’s tightening or easing policy reduces long-run risk and is thus favorable.

However, the market declines when the Fed tightens (when ϕ increases) and rises when the

Fed eases (when ϕ decreases), creating a negative correlation between Bδ and the market,

which leads to a positive risk premium. The magnitude of this effect on the risk premium

depends on the agent’s perceived confidence in the Fed’s ability to control inflation, ât. To

gain some intuition whay, suppose ât is positive and large. In that case, the Fed’s strong

ability to control inflation will promptly bring it back to its long-term mean, making it less

persistent. This weakens the impact of long-run risk and thus the risk premium. Further

discussion on this effect can be found in Section 4.

The uncertainty channel νa,t is the second factor affecting the market risk premium. It

is represented by the second-row terms in equation (27), which form a quadratic expression

in the Fed tightening index ϕt. The product ΠâIâ is positive, and thus the quadratic term

generates a U-shape. This means that uncertainty about the Fed’s ability to control inflation

increases the risk premium when the Fed deviates from a neutral monetary policy. More-

over, the linear term in ϕt leads to an asymmetric response. Since ΠπIâ + ΠâIπ < 0, the

risk premium is higher during a tightening cycle than during an easing cycle. This asym-

metry follows from equation (4), which shows that learning amplifies the impact of inflation

surprises during tightening episodes and dampens it during easing episodes.

Finally, the risk premium is magnified by the term (1 − θ)σ2
πΠπIπ, which is positive

when both the aggregate wealth and the market decrease with inflation, in other words,

when Ππ < 0 and Iπ < 0. All the above effects are more pronounced when there is high

uncertainty, the economy is in a more extreme tightening or easing cycle, or the agent

strongly prefers early resolution of uncertainty.

These two forces driving the risk premium reflect our paper’s main contributions. The

first force is based on the idea that the Fed’s monetary policy stabilizes aggregate fluctuations
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and is therefore desirable in a long-run risk economy. However, the market bears a cost in

the form of a risk premium, especially when the Fed’s ability to control inflation, ât, is low

or negative. The second force is based on the idea that the agent is uncertain about the

Fed’s ability to control inflation. This uncertainty increases the risk premium when the Fed

deviates from a neutral monetary policy, creating concerns that the Fed may not be able to

bring inflation back to target, particularly during tightening periods.

Turning now to stock market variance, the process (24) together with the log price-

dividend ratio Π(xt) imply the instantaneous stock return variance in this economy:

σ2
t = σ2

D + σ2
δβ

2
µω

2Π2
ϕ + σ2

πΠ
2
π − 2λπνa,tΠâΠπϕt +

λ2πν
2
a,t

σ2
π

Π2
âϕ

2
t . (28)

The last two terms in the stock return variance are novel, and are caused by the uncer-

tainty about the Fed’s ability to control inflation. These terms show that the stock return

variance increases when the Fed deviates from a neutral monetary policy (ϕt ̸= 0). The

term linear in ϕt is positive during tightening episodes and negative during easing episodes,

which creates an asymmetry that follows from the agent’s learning. As a result, we observe

an asymmetric U-shaped pattern for stock return variance, with uncertainty about the Fed’s

ability to control inflation becoming more important during tightening cycles.

3 Parameter Estimation

We estimate the model’s parameters by Maximum Likelihood using U.S. real Gross Domestic

Product (GDP) data, Federal funds rate (Fed Funds rate) data, and Consumer Price Index

(CPI) data. Appendix B provides details about the Maximum Likelihood estimation. Real

GDP is from NIPA tables, while the Fed funds rate and the CPI are from FRED. The

data is at the monthly frequency from January 1955 to December 2021. The log real GDP

growth rate, log CPI growth rate, and continuously compounded Fed funds rate are used

as proxies for the real log output growth rate log (δt+∆/δt), the inflation rate πt, and the

nominal interest rate rNt, respectively. These time series are depicted in Figure 1. The

bottom panel reveals that the Federal funds rate exceeded 10% in the mid-1970s and early

1980s to combat soaring inflation, as shown in the middle panel. These elevated interest

rates contributed to the economic downturns visible in the top panel of the figure.

17



−0.05

0

0.05

G
D
P
G
ro
w
th

0

0.05

0.1

0.15

In
fl
at
io
n

19
60

19
70

19
80

19
90

20
00

20
10

20
20

0

0.05

0.1

0.15

F
ed

F
u
n
d
s
R
at
e

Figure 1: GDP Growth, Inflation, and Federal Funds Rate.
This figure plots the observed annualized U.S. real GDP growth rate (top panel), CPI
inflation rate (middle panel), and Federal Funds rate (bottom panel).

Table 1 presents the parameter values estimated using Maximum Likelihood. The esti-

mated output gap and inflation coefficients βµ and βπ suggest that nominal interest rates

respond more to inflation than to output growth (Clarida et al., 2000; Ang, Boivin, Dong,

and Loo-Kung, 2011). The inflation and output growth indexes revert to their means at
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Parameter Symbol Value
Output growth volatility σδ 0.0243∗∗∗

(0.0005)

Mean inflation π 0.0345∗∗∗

(0.0013)

Mean nominal interest rate rN 0.0452∗∗∗

(0.0009)

Mean-reversion speed of inflation index ωπ 0.4479∗∗∗

(0.0364)

Mean-reversion speed of output growth index ωµ 0.4236∗∗∗

(0.0455)

Interest rate sensitivity to inflation βπ 1.3247∗∗∗

(0.0310)

Interest rate sensitivity to output growth βµ 1.0251∗∗∗

(0.0790)

Inflation volatility σπ 0.0124∗∗∗

(0.0002)

Mean inflation under neutral interest rates π̆ 0.0322∗∗∗

(0.0030)

Mean-reversion speed of inflation λπ 0.6295∗∗∗

(0.1240)

Volatility of the Fed’s ability to control inflation σa 0.8412∗∗∗

(0.2763)

Mean-reversion speed of the Fed’s ability to control inflation λa 1.3149∗∗∗

(0.4890)

Table 1: Parameter values estimated by Maximum Likelihood.
This table reports the parameter values estimated by Maximum Likelihood. The estimation
procedure is detailed in Appendix B. The data is at the monthly frequency from January
1955 to December 2021. Output data is in real terms. Standard errors are reported in
brackets, and statistical significance at the 10%, 5%, and 1% levels is denoted by *, **, and
***, respectively.

nearly identical rates, ωπ and ωµ. As a result, and in line with Section 2, we assume equal

mean-reversion speeds: ωπ = ωµ ≡ ω = 0.4479. Throughout our sample period, average

inflation stands at 3.45%, and nominal interest rates at 4.52%, yielding an approximate

average real interest rate of 1%. Notably, the historical average inflation rate is roughly

72% higher than the Fed’s current 2% target, raising questions about the attainability and

sustainability of this target.
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Figure 2: Agent’s perception of the Fed’s ability to control inflation.
The figure juxtaposes the agent’s estimate of the Fed’s ability to control inflation, ât (solid
line, left axis), with the historical inflation rate (dashed line, right axis). The alternating
shaded bands mark the tenures of different Fed Chairpersons. The time series of ât is
extracted from the Maximum Likelihood estimation.

Figure 2 plots the agent’s estimate of the Fed’s ability to control inflation (solid line, left

axis) juxtaposed against the historical inflation rate (dashed line, right axis). Alternating

shaded bands delineate the tenures of various Chairpersons at the Fed. Fed’s ability to

control inflation, ât, varies substantially over the sample, suggesting shifting investors’ beliefs.

A consistent pattern emerges when we consider inflation relative to its historical average.

Specifically, when inflation is above this average, the correlation of changes in inflation with

changes in ât is −0.4993. This suggests that an increase in inflation diminishes the perceived

ability of the Fed. Conversely, when inflation falls below its historical mean, the correlation

is 0.6610. This dichotomy reflects the paper’s learning mechanism: both a spike in inflation

during high inflationary periods and a decline during deflationary periods indicate to the

agent that the Fed is losing its grip on inflation.

The time series of ât aligns with key historical periods. For instance, the ability to control

inflation hit lows during the inflationary peaks of the mid-1970s and early 1980s. Yet, during

Paul Volcker’s tenure (1979-1987), ât was consistently positive, resonating with his reputation

for curbing that era’s inflation. Similarly, a positive ability marked Ben Bernanke’s term
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(2006-2014), signifying his guidance during the global financial crisis.5

Figure 3 displays the historical paths of the tightening process ϕt = rN,t− rN (top panel)

and the agent’s long-term inflation expectation (bottom panel), defined in equation (6) and

denoted as π̂t ≡ π̆ − ât(rN,t − rN). These time series result from the Maximum Likelihood

estimation. The process ϕt characterizes the Fed’s tightening (ϕt = rN,t − rN > 0) and

easing (ϕt = rN,t−rN < 0) cycles. The Fed tightened from late 1965 to early 1992 and eased

from early 1955 to mid-1965, as well as from mid-1992 to late 2021. The Fed tightening

index ϕt exhibits a volatility of around 2.9% and an autocorrelation of approximately 0.996,

indicating highly persistent tightening and easing cycles.

The bottom panel of Figure 3 plots the agent’s long-term inflation expectation, π̂t ≡ π̆−
ât(rN,t− rN), which is driven by the agent’s estimate of the Fed’s ability to control inflation.

The long-term inflation expectation has a volatility of 1.9% and an autocorrelation of 0.927,

making it a relatively persistent process as well.6 The long-term inflation expectation hits

lows between −1.9% and 0% in early 1982 and late 2008 to mid-2009. The 1980-1982

recession lows followed the drastic interest rate increase implemented by the Paul Volcker-

led Fed in mid-1981; the 2009 lows occurred at the end of the Great Recession, spurred by

the subprime and financial crises. The highs range from 7% to 19% in mid-1973 to late

1974, mid-1979 to mid-1981, and mid to late 2021. The highs followed the 1973 oil crisis,

during which Arab members of the Organization of Petroleum Exporting Countries (OPEC)

imposed an oil embargo; and the most recent highs resulted from the unprecedented fiscal

and monetary stimulus provided during the COVID-19 health crisis.

Consistent with the existing literature, we set the relative risk aversion, the elasticity

of intertemporal substitution (EIS), subjective discount rate, dividend leverage on expected

consumption growth, and dividend growth volatility to γ = 10, ψ = 1.5, ρ = 0.0045, α = 2.5,

and σD = 0.05, respectively. As discussed later, these chosen parameter values, combined

with the estimated parameters in Table 1 yield model-implied real interest rates, nominal

5The spike in ât near the end of our sample (December 2021), during Jerome Powell’s tenure, can be
attributed to the Fed’s easing stance coinciding with the onset of an inflationary uptrend. Given that inflation
began to rise during this easing period, it appeared as though the Fed’s actions were aligned with economic
needs, in accordance with the learning process defined in (4).

6The agent’s long-term inflation expectation, π̂t, has a 0.34 correlation with the median long-term annual
average inflation over the next five years from the Survey of Professional Forecasters (SPF), available from
the Federal Reserve Bank of Philadelphia since 2005Q3. Regressing the SPF’s 5-year inflation forecast on π̂t

yields a coefficient of 0.048 (t-stat = 2.9).
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Figure 3: Tightening cycles and long-term inflation expectations.
This figure plots the Fed tightening index ϕt = rN,t − rN (top panel) and the agent’s long-
term inflation expectation (bottom panel), denoted as π̂t ≡ π̆ − ât(rN,t − rN ). These time
series are extracted from the Maximum Likelihood estimation.

interest rates, market risk premium, market return volatility, and market Sharpe ratio that

reasonably match the data.

Table 2 presents asset-pricing moments, with the first column displaying empirical mo-

ments and the second column showing model-implied moments. We calculate empirical
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Moment Data Model

Real interest rate 0.0105 0.0107

Nominal interest rate 0.0450 0.0453

Market risk premium 0.0605 0.0818

Market return volatility 0.1431 0.1896

Market Sharpe ratio 0.4228 0.4313

Table 2: Asset-Pricing Moments.
This table presents asset-pricing moments, with the first column displaying empirical mo-
ments and the second column showing model-implied counterparts. We calculate empirical
moments using the Fed funds rate as the nominal interest rate, the difference between the
Fed funds rate and the CPI inflation rate as the real interest rate, and the S&P 500 as the
market. Model-implied moments are derived by inputting the state variable time series from
the Maximum Likelihood estimation into the model. The data span monthly from January
1955 to December 2021.

moments using the Fed funds rate as the nominal interest rate, the difference between the

Fed funds rate and the CPI inflation rate as the real interest rate, and the S&P 500 as the

market. Model-implied moments are derived by inputting the state variable time series from

the Maximum Likelihood estimation into the model. The model-implied real and nominal

interest rates stand at 1% and 4.5%, respectively, aligning with their empirical counterparts.

The model-implied market risk premium, market return volatility, and market Sharpe ratio

are 8%, 19%, and 0.43, respectively. These values are reasonably close to their empiri-

cal counterparts, suggesting that the model generates realistic asset-pricing moments, even

though our Maximum Likelihood estimation does not use any asset prices as inputs.

4 Results

In this section, we present the model’s predictions and subsequently offer empirical evidence

to support them. All the illustrations are derived after solving the model using a numerical

algorithm, which relies on the parameters estimated in Section 3. Details of the model
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solution can be found in Appendix A.

4.1 Model Predictions

Figure 4 illustrates the expected consumption growth µδ,t, the real interest rate rR,t, and the

log price-dividend ratio Π(xt) as functions of the model’s main state variables. The primary

drivers of µδ,t, rR,t, and Π(xt) are the expected inflation πt and the Fed tightening index ϕt.

As a reminder, high values of ϕt indicate tightening, while low values signify easing.

Figure 4 demonstrates that the expected consumption growth rate and the real interest

rate decline as expected inflation increases. As shown in equation (22), equilibrium expected

consumption growth is adversely impacted by inflation. High inflation encourages the agent

to consume more today relative to tomorrow, reducing the expected consumption growth.

Moreover, the Fisher Equation (7) suggests that when the nominal interest rate remains

constant, an increase in expected inflation leads to a decrease in the real interest rate.

Lastly, an increase in ϕt results in monetary tightening and, via the Fisher equation (7), an

increase in the real interest rate, which in turn leads to higher expected consumption growth

as the agent optimally chooses to increase borrowing and delay consumption.

Shifting our attention to the price-dividend ratio (bottom panels), it decreases with

expected inflation and the Fed tightening index ϕt and increases with the Fed’s perceived

ability to control inflation ât. Thus, the inequalities conjectured in Section 2 (Ππ < 0,

Πâ > 0, and Πϕµ < 0) are now verified with our estimated parameter values.

The price-dividend ratio declines with expected inflation through equation (22), which

demonstrates that the expected growth rate diminishes as expected inflation rises. This

represents the pathway through which inflation introduces long-run risk into the economy.

If the inflation process exhibits high persistence, an agent favoring early resolution of un-

certainty will be averse to its fluctuations. The price-dividend ratio increases with the Fed’s

ability to control inflation because when ât is large and positive, the agent trusts that the Fed

will promptly bring inflation back to its target, mitigating the long-run risk that it causes.

Conversely, if ât is large and negative, the Fed will likely lose control of inflation, delaying

its reversion to target and exacerbating long-run risk. Finally, the price-dividend ratio de-

creases with ϕt because a high value for this variable signifies monetary tightening, leading

to an increase in the discount rate through a rise in the real interest rate. Consequently, the
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Figure 4: Model Predictions This figure plots the expected consumption growth µδ,t, the
real interest rate rR,t, and the price-dividend ratio as functions of the main state variables
of the model. For this illustration, we have solved the model numerically (see Appendix A)
using the parameters estimated in the Section 3.
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Figure 5: Model Predictions This figure plots the risk premium and the stock market
volatility as functions of the main state variables of the model. For this illustration, we
have solved the model numerically (see Appendix A) using the parameters estimated in the
Section 3.

price-dividend ratio falls when the Fed tightening index ϕt increases.

Figure 5 displays the risk premium and stock market volatility as functions of the model’s

main state variables. The top three panels reveal that the risk premium is largely unrespon-

sive to expected inflation but decreases significantly with the Fed’s perceived ability to

control inflation, as denoted by ât. This effect was discussed in relation to equation (27):

since inflation is a source of long-run risk in this economy, the Fed’s ability to revert it to

its target holds value for the agent, lowering the risk premium as ât increases.

Figure 5 additionally reveals that the risk premium exhibits a U-shaped relationship

with the Fed tightening index ϕt. This arises from the uncertainty about the Fed’s ability to

26



control inflation. In equation (27), the terms in the second row form a quadratic expression

in ϕt. Consequently, uncertainty about the Fed’s ability to control inflation amplifies the

risk premium when the Fed deviates from a neutral monetary policy. Equation (27) also

highlights an asymmetry, with the risk premium being higher during tightening; however,

this effect is less pronounced with our estimated parameter values.

The bottom panels of Figure 5 depict the volatility of market returns as a function of

the state variables, conveying a similar message to that of the risk premium: volatility

is mostly unresponsive to expected inflation but decreases as the Fed’s ability to control

inflation improves and increases with the Fed tightening index ϕt. A notable distinction is

the significant surge in volatility during tightening episodes, as shown in the bottom-right

panel. This effect directly results from the term linear in ϕt in equation (28): during a deep

tightening cycle, inflation surprises are “doubled” by the agent’s learning process (an increase

in inflation is doubly bad news, while a decrease is doubly good news). This intensifies the

stock price’s sensitivity to inflation news, especially when the Fed embarks on aggressive

tightening cycles.

4.2 Empirical Evidence

Does the data support our model’s predictions? To answer this question, we regress both the

empirical and model-implied expected output growth rate, real interest rate, market price-

dividend ratio, market risk premium, and market return volatility on the state variables.

In other words, we verify and confirm that the data support the relationships depicted in

Figures 4 and 5.

The empirical expected output growth rate, real interest rate, market price-dividend

ratio, market risk premium, and market return volatility are obtained as follows:

� The empirical expected output growth rate is the fitted value of an ARMA(2,2) model

applied to the realized GDP growth rate. In the estimation, the AR(1) and MA(2)

coefficients are positive, whereas the AR(2) and MA(1) are negative. All coefficients

are statistically significant at the 1% level, with the exception of the MA(1) coefficient,

which is statistically significant at the 10% level.

� The empirical real interest rate is the difference between the Fed funds rate and the

CPI inflation rate.
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� The empirical market risk premium is the fitted value obtained by regressing the 1-

year-ahead S&P 500 excess return on the current S&P 500 dividend yield (Fama and

French, 1989; Cochrane, 2008) and realized S&P 500 return variance (French, Schwert,

and Stambaugh, 1987; Guo, 2006).7 In the predictive regression, both the dividend

yield and realized variance load positively and significantly at the 5% level and 1%

level, respectively.

� The empirical market return volatility is obtained by fitting an Exponential GARCH(1,1)

model (Nelson, 1991) on the S&P 500 excess return residual,8 where the return residual

is the difference between the S&P 500 excess return and the empirical risk premium.

The ARCH(1) and GARCH(1) coefficients are positive and statistically significant at

the 1% level, and the LEVERAGE(1) coefficient is negative and statistically significant

at the 1% level.

The model-implied expected output growth rate, real interest rate, market price-dividend

ratio, market risk premium, and market return volatility are obtained by feeding the model

with the state variables extracted from the Maximum Likelihood estimation performed in

Section 3.

Table 3 documents the relationships between the empirical moments and their model-

implied counterparts by reporting the outputs of regressing the empirical moments on their

model-implied counterparts. All relations are positive, statistically significant at the 1% level,

and feature high R2s. The explanatory power of the model-implied moments is particularly

high for the risk premium, log price-dividend ratio, and real interest rate. Indeed, the model-

implied risk premium, log price-dividend ratio, and real interest rate explain respectively

20.6%, 40.4%, and 44.8% of the variation in their empirical counterparts. These results show

that the dynamics of the model-implied moments align with the dynamics of the empirical

moments, and that the model-implied moments explain a substantial fraction of the variation

in the empirical moments. To summarize, the model describes the observed dynamics of asset

prices well, and this despite the fact that the Maximum Likelihood estimation used to infer

model-implied moments does not use any asset prices as inputs.

We now test the relationships depicted in Figure 4. Table 4 reports the empirical and

7S&P 500 returns, dividend yield, and realized variance are obtained from Amit Goyal’s website.
8The Exponential GARCH model accounts for the asymmetric response of volatility to return shocks.
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Expected Real Log price-div. Risk Volatility

output growth interest rate ratio premium

µδ,t 0.084∗∗∗

(9.864)

rR,t 0.790∗∗∗

(5.649)

pdt 0.485∗∗∗

(4.157)

RPt 1.687∗∗∗

(6.332)

V olt 0.318∗∗∗

(8.300)

R2 0.099 0.448 0.404 0.206 0.036

Obs. 804 804 804 804 804

Table 3: Empirical Moments vs. Model-Implied Counterparts.
This table reports the outputs obtained by regressing the empirical moments on their model-
implied counterparts. t-statistics are in brackets and are computed using Newey and West
(1987)-adjusted standard errors. Statistical significance at the 1%, 5%, and 10% levels are
denoted by ∗∗∗, ∗∗, and ∗, respectively. The data are at the monthly frequency from January
1955 to December 2021.

model-implied relations between the state variables and the expected output growth rate

µδ,t, real interest rate rR,t, and log price-dividend ratio Π(xt). As Figure 4 shows, the main

drivers of µδ,t, rR,t, and Π(xt) are the Fed tightening index ϕt and inflation πt, which the

“Model”-labeled columns in Table 4 confirm. Indeed, the Fed tightening index and inflation

explain more than 99% of the variation in µδ,t, rR,t, and Π(xt). The “Data”-labeled columns

confirm these relations. The expected output growth rate and the real interest rate increase

with the Fed tightening index and decrease with inflation, with statistically significant slopes

at the 1% level. This occurs because an increase in ϕt leads to monetary tightening, causing

the nominal interest rate to rise through the Fed’s Taylor rule (15). The Fisher equation (7)

then implies that the real interest rate rises with the Fed tightening index ϕt and decreases

with inflation πt. Furthermore, the equilibrium relation (21) implies that the real interest

rate depends linearly on the expected output growth rate. Thus, ϕt and πt drive the expected
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Expected output growth Real interest rate Log price-dividend ratio

Model Data Model Data Model Data

ϕt 1.498∗∗∗ 0.106∗∗∗ 1.000∗∗∗ 0.812∗∗∗ −15.581∗∗∗ −7.544∗∗∗

(> 100) (8.125) (> 100) (5.253) (< −100) (−2.694)

πt −1.489∗∗∗ −0.175∗∗∗ −1.000∗∗∗ −0.732∗∗∗ −2.787∗∗∗ −1.198

(< −100) (−8.272) (< −100) (−9.055) (−24.163) (−0.968)

R2 0.999 0.152 1.000 0.456 0.997 0.391

Obs. 804 804 804 804 804 804

Table 4: Expected Output Growth, Real Interest Rate, and Log Price-Dividend
Ratio vs. State Variables.
This table reports the model-implied and empirical relations between the expected real
output growth rate, real interest rate, log price-dividend ratio, and their drivers. The
drivers are the Fed tightening index ϕt and inflation πt. t-statistics are in brackets and are
computed using Newey and West (1987)-adjusted standard errors. Statistical significance
at the 1%, 5%, and 10% levels are denoted by ∗∗∗, ∗∗, and ∗, respectively. The data are at
the monthly frequency from January 1955 to December 2021.

output growth rate in the same direction they drive the real interest rate.

Table 4 further shows that the price-dividend ratio decreases significantly with the Fed

tightening index ϕt, both in the model and in the data. An increase in ϕt raises discount rates

through tightening. As a result, prices drop as the Fed tightening index rises. Furthermore,

both the model-implied and empirical price-dividend ratios decrease with inflation, although

the empirical relation is not statistically significant. A rise in inflation implies a decrease

in expected output growth and, therefore, in expected dividend growth, leading to a lower

price-dividend ratio.

Table 5 presents the empirical and model-implied relations between the market risk pre-

mium (Panel A), market return volatility (Panel B), and their primary drivers. As shown in

Figure 5, the key drivers include the Fed’s ability to control inflation ât, the Fed tightening

index ϕt, and the squared Fed tightening index ϕ2
t . The “Model”-labeled columns in Table 5

support this observation. These three state variables explain over 86% of the variation in the

market risk premium and market return volatility. In both the model and data, an increase

in the Fed’s ability to control inflation significantly reduces the market risk premium and

market return volatility. As the Fed’s inflation control ability improves, the likelihood of
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Panel A: Risk premium vs. state variables

Risk premium Risk premium

Model Data Model Data

ât −0.012∗∗∗ −0.017∗∗∗ −0.011∗∗∗ −0.016∗∗∗

(−9.988) (−3.581) (−9.701) (−3.329)

ϕt 0.104∗∗∗ 0.275∗∗∗ 0.070∗∗∗ 0.224∗∗∗

(4.508) (3.964) (4.728) (2.724)

ϕ2
t 2.408∗∗∗ 3.641∗∗∗

(6.147) (2.914)

R2 0.721 0.205 0.863 0.228

Obs. 804 804 804 804

Panel B: Return volatility vs. state variables

Volatility Volatility

Model Data Model Data

ât −0.014∗∗∗ −0.034∗∗∗ −0.011∗∗∗ −0.034∗∗∗

(−6.288) (−6.700) (−6.406) (−6.569)

ϕt 0.632∗∗∗ 0.151∗∗∗ 0.509∗∗∗ 0.173∗∗∗

(10.150) (5.610) (13.161) (7.642)

ϕ2
t 8.715∗∗∗ −1.518

(6.228) (−1.628)

R2 0.745 0.101 0.884 0.102

Obs. 804 804 804 804

Table 5: Market Risk Premium and Return Volatility vs. State Variables.
This table reports the model-implied and empirical relations between the market risk pre-
mium (Panel A), market return volatility (Panel B), and their drivers. The drivers are
the Fed’s ability to control inflation ât, the Fed tightening index ϕt, and the squared Fed
tightening index ϕ2t . t-statistics are in brackets and are computed using Newey and West
(1987)-adjusted standard errors. Statistical significance at the 1%, 5%, and 10% levels are
denoted by ∗∗∗, ∗∗, and ∗, respectively. The data are at the monthly frequency from January
1955 to December 2021.

encountering high future inflation during tightening (or low future inflation during easing)

diminishes (refer to equation (6)). In other words, the Fed reduces the persistence of inflation

and the associated long-run risk, which consequently leads to a lower market risk premium

and decreased market return volatility in equilibrium.
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Moreover, both in the model and the data, the market risk premium and market return

volatility significantly increase with the Fed tightening index ϕt. As previously mentioned,

inflation surprises are amplified during tightening through investor learning. For example,

a positive inflation surprise during tightening is doubly bad news because it weakens the

agent’s confidence in the Fed; in contrast, the same inflation surprise during easing is good

news, as it boost the Fed’s credibility. This asymmetry contributes to a higher market risk

premium and market return volatility during tightening episodes.

Lastly, in the model, the market risk premium and market return volatility increase

significantly with the squared Fed tightening index. This quadratic relationship stems from

the last term in equations (27) and (28), where (rN,t−rN)2 = ϕ2
t , and arises due to uncertainty

surrounding the Fed’s ability to control inflation. The data confirm the positive impact of

the squared Fed tightening index on the market risk premium, with a statistically significant

relationship at the 1% level. However, the data reveal no significant empirical correlation

between the market return volatility and the squared Fed tightening index.

Table 6 reports the relations between the market risk premium and the market log price-

dividend ratio (Panel A), the expected real output growth (Panel B), and the real interest

rate (Panel C) both in the model and in the data. Panel A shows that the market price-

dividend ratio negatively and significantly predicts the market risk premium both in the

model and in the data, in line with Boudoukh, Michaely, Richardson, and Roberts (2007),

Cochrane (2008), and van Binsbergen and Koijen (2010). When controlling for inflation

πt and the Fed’s ability to control inflation ât, the risk premium’s negative loading on the

market price-dividend ratio remains statistically significant at the 1% level. The loading on

inflation is statistically insignificant, and the negative loading on the Fed’s ability to control

inflation is statistically significant at the 1% level.

Panel B shows that, both in the model and in the data, there is no statistically significant

relation between the market risk premium and the expected output growth rate when the

regression does not feature any control. However, in line with the empirical findings of Fama

(1981) and Fama (1990), the relation between the market risk premium and the expected

output growth rate becomes positive and highly statistically significant when controlling for

inflation and the Fed’s ability to control inflation. Similarly, Panel C shows that, both in

the model and in the data, the positive relation between the market risk premium and the

real interest rate strengthens significantly when controlling for inflation and the Fed’s ability
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Panel A: Risk premium vs. price-dividend ratio

Risk premium Risk premium Risk premium

Model Data Model Data Model Data

pdt −0.008∗∗∗ −0.039∗∗∗ −0.005∗∗∗ −0.039∗∗∗ −0.006∗∗∗ −0.038∗∗∗

(−5.864) (−41.488) (−4.829) (−15.897) (−4.308) (−25.738)

πt 0.069 0.007 −0.001 −0.022

(1.410) (0.164) (−0.075) (−0.626)

ât −0.012∗∗∗ −0.008∗∗∗

(−7.804) (−3.028)

R2 0.437 0.430 0.464 0.430 0.740 0.441

Obs. 804 804 804 804 804 804

Panel B: Risk premium vs. expected output growth

Risk premium Risk premium Risk premium

Model Data Model Data Model Data

µδ,t 0.018 −0.031 0.048∗∗∗ 0.298∗∗∗ 0.060∗∗∗ 0.254∗∗∗

(0.711) (−0.372) (4.416) (3.361) (4.086) (2.784)

πt 0.163∗∗∗ 0.329∗∗∗ 0.112∗∗∗ 0.257∗∗∗

(4.907) (8.101) (4.782) (6.140)

ât −0.012∗∗∗ −0.015∗

(−7.240) (−1.686)

R2 0.007 0.000 0.451 0.125 0.727 0.158

Obs. 804 804 804 804 804 804

Panel C: Risk premium vs. real interest rate

Risk premium Risk premium Risk premium

Model Data Model Data Model Data

rR,t 0.0241 0.154∗∗ 0.070∗∗∗ 0.172∗∗∗ 0.089∗∗∗ 0.178∗∗∗

(0.616) (2.413) (4.396) (4.332) (4.019) (4.924)

πt 0.163∗∗∗ 0.311∗∗∗ 0.113∗∗∗ 0.239∗∗∗

(4.912) (8.181) (4.739) (7.229)

ât −0.012∗∗∗ −0.016∗∗

(−7.165) (−2.253)

R2 0.005 0.022 0.449 0.144 0.725 0.181

Obs. 804 804 804 804 804 804

Table 6: Market Risk Premium vs. Market Price-Dividend Ratio, Expected
Output Growth, and Real Interest Rate.
This table reports the model-implied and empirical relations between the market risk pre-
mium and market log price-dividend ratio pdt (panel A), expected real output growth rate
µδ,t (Panel B), and real interest rate rR,t (Panel C) controlling for inflation πt and the Fed’s
ability to control inflation ât. t-statistics are in brackets and are computed using Newey
and West (1987)-adjusted standard errors. Statistical significance at the 1%, 5%, and 10%
levels are denoted by ∗∗∗, ∗∗, and ∗, respectively. The data are at the monthly frequency
from January 1955 to December 2021.
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to control inflation. These results highlight the importance of controlling for inflation and

the Fed’s ability to control inflation to highlight the predictive power of the market price-

dividend ratio, expected output growth rate, and real interest rate for future excess market

returns.9

Overall, this section shows that the relations between asset-pricing moments and eco-

nomic fundamentals predicted by the model are confirmed by the data. The market risk

premium and return volatility decrease with the Fed’s ability to control inflation, and in-

crease (quadratically) when the Fed tightens financial conditions. Furthermore, the expected

output growth, real interest rate, and market price-dividend ratio decrease with inflation. As

financial conditions get tighter, the price-dividend ratio drops and both the expected output

growth and real interest rate increase.

5 Conclusion

This paper examines how the market perceives the Fed’s ability to control inflation. Investors

infer the success of the Fed’s actions from inflation data, which has stock market implications.

When the Fed’s credibility is strong, market risk premiums and volatility decline. Conversely,

when investors doubt the Fed’s ability to control inflation, these financial measures increase,

potentially causing a significant stock market downturn. Empirical evidence supports these

theoretical predictions, highlighting the role of the market’s perception of the Fed’s inflation-

fighting efforts on stock market dynamics.

The Fed has developed effective tools to address inflation by building on experiences from

the 1970s’ Great Inflation, increased policy autonomy, and a more comprehensive grasp of

inflation causes and countermeasures. Among these tools, our paper argues that credibility

in combating inflation may be the Fed’s most valuable asset. This credibility is intrinsically

tied to investors’ confidence in the Fed’s ability and the importance of a solid reputation in

managing monetary policy effectively.

9The relationship among stock returns, interest rates, and inflation has been extensively debated in the
literature, yielding mixed evidence. Fama and Schwert (1977) and Campbell (1987) show that there is a
negative relationship between market returns and nominal interest rates. However, Campbell and Ammer
(1993) document a positive, albeit weak, relationship between market returns and real interest rates. The
relationship between market returns and inflation is debated in Fama and Schwert (1977), Fama (1981),
Geske and Roll (1983), and Kaul (1987), while the interplay between expected returns and output growth
is explored by Fama (1981, 1990) and Ritter (2005).
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Furthermore, this paper emphasizes the importance of investors’ responses to the Fed’s

actions as a critical economic factor. While our study does not explore the impact of fluc-

tuating investors’ attention, it is plausible that heightened uncertainty—particularly during

aggressive tightening where inflation shocks are “doubled” by the learning-induced asym-

metric effect—could lead to increased attention to news, intensifying the observed effects

(Kroner, 2023; Pfäuti, 2023). Future research might also investigate how heterogeneous in-

vestor beliefs about the Fed’s ability to manage inflation affect markets, evaluate how the

swift pace of our information age impacts investor learning about the Fed, and perform com-

parative international analyses to provide additional empirical validation of these findings.

A deeper exploration in these areas is vital to understand the impact of monetary policy on

the stock market and the economy.
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Appendix

A Details on Model Resolution in Section 2

Learning: To obtain the agent’s posterior mean ât ≡ E[at|Fπ,rN
t ] and the posterior variance

νa,t ≡ E[(at − ât)
2|Fπ,rN

t ] as in (4)-(5), apply Theorem 12.7 in Liptser and Shiryaev (2001) with:

A0 = λπ(π̆ − πt), A1 = −λπ(rN,t − rN ), B1 = 0, B2 = [0 σπ],

a0 = λaa, a1 = −λa, b1 = σa, b2 = [0 0].

The surprise change in expected inflation according to the agent’s information set Fπ is

dB̂π,t = dBπ,t +
λπ
σπ

(ât − at)(rN,t − rN )dt.

HJB equation: The partial differential equation (PDE) that results from (16)-(17) is:

0 = e−I − ρ+
γ − 1

θ

(
γσ2δ
2

− µδ,t

)
+ λπ [ât(rN − rN,t) + π̆ − πt] Iπ − λaâtIâ

+ ω
[
βπ(πt − π) + βµ(µδ,t − µδ)− ϕt − βµ(γ − 1)σ2δ

]
Iϕ

+
σ2π
2
Iππ +

(rN − rN,t)
2λ2πν̆

2
a

2σ2π
Iââ +

σ2δβ
2
µω

2

2
Iϕϕ + (rN − rN,t)λπν̆aIπâ

+
θσ2π
2
I2π +

θ(rN − rN,t)
2λ2πν̆

2
a

2σ2π
I2â +

θσ2δβ
2
µω

2

2
I2ϕ + θ(rN − rN,t)λπν̆aIπIâ.

To derive this PDE, we set νa,t = ν̆a, which removes one state variable and simplifies the
numerical solution process. It is important to note that the theoretical results stated in Section 2
are not affected by this assumption. Moreover, our numerical analysis of the model with a time-
varying νa,t showed that the price-dividend ratio barely changes in response to νa,t, although the
solution process becomes significantly slower. Consequently, we decided to use a fixed νa,t = ν̆a.

The PDE for I(πt, â, ϕ) is solved numerically using the Chebyshev collocation method (Judd,
1998). That is, we approximate the function I(πt, â, ϕ) as follows:

I(πt, â, ϕ) ≈ P(πt, â, ϕ) =
I∑

i=0

J∑

j=0

K∑

k=0

ai,j,kTi[π]× Tj [â]× Tk[ϕ],

where Tm[·] is the Chebyshev polynomial of order m. The interpolation nodes are obtained by
meshing the scaled roots of the Chebyshev polynomials of order I + 1, J + 1, and K + 1. We
scale the roots of the Chebyshev polynomials such that they cover approximately 99% of the
unconditional distributions of the three state variables (which are all mean-reverting).

The polynomial P(πt, â, ϕ) and its partial derivatives are then substituted into the PDE, and
the resulting expression is evaluated at the interpolation nodes. This yields a system of (I + 1)×
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(J +1)× (K+1) equations with (I +1)× (J +1)× (K+1) unknowns (the coefficients ai,j,k). This
system of equations is solved numerically.

To verify the solution method’s accuracy and address potential concerns about anomalous
numerical outcomes, we employed two distinct platforms (Mathematica and Python) and multiple
grid dimensions for solving the PDE. In all cases, the results were consistently similar, reinforcing
the method’s reliability.

Finally, the PDE for the log price dividend ratio Πt of the asset that is a claim to the dividend
process (24) is given by:

0 = e−Π − ρ+
γσ2δ (ψ + 1)

2ψ
+ (1− α)µδ +

(
α− 1

ψ

)
µδ,t + λπ[ât(rN − rN,t) + π̆ − πt]Ππ

− λaâtΠâ + ω
[
βπ(πt − π) + βµ(µδ,t − µδ)− ϕt − βµγσ

2
δ

]
Πϕ +

σ2π
2
Πππ +

(rN − rN,t)
2λ2πν̆

2

2σ2π
Πââ

+
σ2δβ

2
µω

2

2
Πϕϕ + (rN − rN,t)λπν̆Ππâ − (θ − 1)σ2δβµωIϕ +

σ2π
2
Π2
π + (rN − rN,t)λπν̆ΠπΠâ

+ (θ − 1)σ2πΠπIπ + (θ − 1)(rN − rN,t)λπν̆ΠπIâ + (θ − 1)(rN − rN,t)λπν̆ΠâIπ

+
(rN − rN,t)

2λ2πν̆
2

2σ2π
Π2
â +

(θ − 1)(rN − rN,t)
2λ2πν̆

2

σ2π
ΠâIâ +

σ2δβ
2
µω

2

2
Π2
ϕ + (θ − 1)σ2δβ

2
µω

2ΠϕIϕ

− θ − 1

2
σ2πI

2
π − (θ − 1)(rN − rN,t)λπν̆IπIâ −

(θ − 1)(rN − rN,t)
2λ2πν̆

2

2σ2π
I2â −

1

2
(θ − 1)σ2δβ

2
µω

2I2ϕ.

We replace the solution for the log-wealth consumption ratio I in the above PDE, then solve
for the log price-dividend ratio Π using the same numerical procedure.

B Maximum Likelihood Estimation in Section 3

U.S. GDP is from NIPA tables. Real values are used as proxies for the output δt and dividend Dt.
The Fed funds rate is from FRED, and its annualized continuously compounded value is used as
proxy for nominal risk-free rate rNt. The year-over-year log growth rate of the Consumer Price
Index (CPI) is the proxy for πt. Time series are at the monthly frequency from January 1955 to
December 2021.

The GDP growth rate volatility is obtained by maximizing the following log-likelihood function

lδ(Θδ;uδ,∆, . . . , uδ,J∆) =

J∑

j=1

log


 1

(2π)1/2
√
σ2δ∆


− 1

2

(
σ2δ∆

)−1
u2δ,j∆,

where ∆ = 1/12, Θδ ≡ (σδ)
⊤, J is the number of observations, ⊤ is the transpose operator, and

uδ,t+∆ = log (δt+∆/δt)−
(
avg(GDP growth)− 1

2
σ2δ

)
∆.
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avg(GDP growth) stands for the annualized empirical average of the GDP growth rate.
The unconditional mean of inflation is obtained by maximizing the following log-likelihood

function

lp(Θp;up,∆, . . . , up,J∆) =
J∑

j=1

log

(
1

(2π)1/2
√
var(inflation)∆

)
− 1

2
(var(inflation)∆)−1 u2p,j∆,

where ∆ = 1/12, Θp ≡ (π)⊤, J is the number of observations, ⊤ is the transpose operator, and

up,t = πt − π∆.

var(inflation) stands for the annualized empirical variance of inflation.
The parameters driving the Taylor rule are obtained by maximizing the following log-likelihood

function

lr(Θr;ur,∆, . . . , ur,J∆) =
J∑

j=1

log

(
1

(2π)1/2
√
σ2r∆

)
− 1

2

(
σ2r∆

)−1
u2r,j∆,

where Θr ≡ (rN , ωπ, ωµ, βπ, βµ, σr)
⊤ and

ur,t = rNt − [rN + βµ (ϕµ,t − avg(GDP growth)) + βπ (ϕπ,t − avg(Inflation))] .

The annualized empirical averages of the Fed funds rate, GDP growth rate, and inflation rate are
denoted by avg(Fed funds), avg(GDP growth), and avg(Inflation), respectively. The performance
indices ϕµ,t and ϕπ,t are obtained by discretizing the dynamics in (10) and (9) as follows

ϕµ,t = ωµ

K∑

k=0

e−ωµk∆ log
(
δt−k∆/δt−(k+1)∆

)
,

ϕπ,t = ωπ

K∑

k=0

e−ωπk∆πt−k∆∆,

where K is the number of observations prior to time t.
To obtain the parameters driving inflation, we discretize the solutions of the stochastic differ-

ential equations in (6) and (4) as follows

πt+∆ = πte
−λπ∆ + π̂t

(
1− e−λπ∆

)
+
√
varπϵπ,t+∆,

π̂t = π̆ − ât(rNt − rN )

ât+∆ = âte
−λa∆ − (rNt − rN )λπνa,t

σπ

√
1− e−2λa∆

2λa
ϵπ,t+∆, (B29)
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νa,t+∆ = νa,t +

[
σ2a − 2λaνa,t −

(
(rNt − rN )λπνa,t

σπ

)2
]
∆, (B30)

where varπ = σ2
π

2λπ

(
1− e−2λπ∆

)
and ϵπ,t+∆ is a normally distributed random variable with mean

zero and variance one. The parameters driving inflation are obtained by maximizing the following
log-likelihood function

lπ(Θπ;uπ,∆, . . . , uπ,J∆) =
J∑

j=1

log

(
1

(2π)1/2
√
varπ

)
− 1

2
(varπ)

−1 u2π,j∆,

where Θπ ≡ (σπ, π̆, λπ, σa, λa)
⊤ and

uπ,t+∆ = πt+∆ −
[
πte

−λπ∆ + π̂t

(
1− e−λπ∆

)]
.

The updating rule for ât and νa,t are provided in (B29) and (B30), respectively.
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