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Abstract

This paper challenges the conventional wisdom that exchange-traded funds (ETFs) are
more liquid than open-end mutual funds. I build a model and establish that same-index
ETFs and mutual funds provide liquidity at different horizons. Investors facing higher
(lower) liquidity risk and thus shorter (longer) investment horizons prefer mutual funds
(ETFs). Since they can be redeemed at NAV, mutual funds holding illiquid assets provide
higher short-term liquidity, but the resulting payoff complementarities make them under-
perform ETFs in the long run. ETFs, however, are subject to mispricing and illiquidity in
the short term due to arbitrageurs’ balance-sheet constraints. In equilibrium, both funds
coexist when investors face heterogeneous liquidity needs. The model generates novel,
testable predictions concerning the competition and future trajectory of index ETFs and
mutual funds.
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1 Introduction

A central idea in finance is that the average investor is best served by passively investing
in a diversified index of securities. The growing adoption of this approach is evident in the
shift from active to passive investing. Households generally rely on investment funds, such as
open-end mutual funds (MFs), or exchange-traded funds (ETFs) to obtain their desired in-
dex exposure. MFs and ETFs both perform liquidity transformation by pooling money from
many investors to purchase securities and hold virtually identical portfolios in the passive
investment sector. Furthermore, they control nearly equal portions of the over $9tn in as-
sets under management (AUM) within U.S-registered public index funds (figure A.1). ETFs,
however, have consistently garnered greater inflows than their mutual fund counterparts for
each of the preceding 15 years, leading some industry professionals to predict that mutual
funds will become obsolete (figures A.2 and A.4). Nevertheless, index MFs have continued
to receive net capital inflows. The gap between the perceived advantages of ETFs, such as
superior tax efficiency in the U.S., intraday trading, and lower minimum investments, and
the continued, substantial presence of index MFs begs the question what purpose MFs serve
in the world of passive investing. Understanding the differences between index ETFs and
MFs is important because of their size, central role in households’ portfolio allocation, and
the relevance to ongoing policy debates on regulatory measures to minimize the flow-induced
dilution of shareholders’ interest in open-end funds.

This paper seeks to rationalize the coexistence of same-index ETFs and MFs with their
unique liquidity-provision services. I propose a static, discrete-time portfolio choice model
featuring rational investors with ex-ante heterogeneous liquidity needs who allocate their
wealth between an index ETF and MF. My primary contribution is to emphasize the unique
liquidity-transformation characteristics inherent in alternative index fund structures. ETFs’
and MFs’ distinct trading and pricing mechanisms affect fund liquidity provision across dif-
ferent horizons. The central distinction between these two funds lies in the fact that relative
mispricing in ETFs affects investors’ returns in the short term. In contrast, MF share dilution
negatively impacts investors’ returns in the long term. I establish that the exchange-traded
nature of ETFs does not inherently make them more liquid than MFs. Instead, excessive
price fluctuations associated with ETFs’ intraday trading reduce their short-term liquidity-
provision compared to MFs. Rational index investors can optimize their portfolio allocation
by selecting the fund type that aligns best with their specific liquidity requirements and in-
vestment horizon.

In my model, investors generally invest for the long-term but may receive liquidity shocks,
necessitating the prompt liquidation of their portfolio holdings. ETFs and MFs are sim-
ply financial technologies that facilitate index-based investments by providing diversification
and access to otherwise inaccessible market segments. Both funds passively track the same
benchmark index. ETFs are exchange-traded intraday at the prevailing market price, just
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like stocks, whereas MFs are purchased or redeemed directly from the fund sponsor at the
end-of-day fund net asset value (NAV). I show that both funds are fundamentally different
investment vehicles. The key distinguishing features between ETFs and MFs are their distinct
payoff structures, specifically the mechanisms determining at what price their fund shares can
be redeemed at short notice.

I derive three main findings. First, I establish that the payoff structure differences between
index ETFs and MFs matter for fund liquidity provision at different horizons.1 In this con-
text, liquidity provision is defined by the relative payoffs of equity claims on identical index
portfolios issued by different financial intermediaries (ETFs and MFs). ETFs provide more
liquidity over the long-term, whereas MFs provide more liquidity at shorter horizons. Short
term, within this framework, corresponds to a few trading days, whereas the long term ex-
tends across periods of months to years. Outflows from ETFs only have temporary effects on
investors’ payoffs, whereas MF flows have persistent effects on investors’ payoffs.

These results emerge from the distinct mechanisms through which the costs of the liquidity
transformation provided by these investment funds are reflected in their share prices. ETF
liquidity provision occurs in secondary markets via authorized participants (APs). By con-
trast, MF liquidity provision takes place within primary markets among MF shareholders as
funds themselves stand ready to sell or repurchase any quantity of fund shares at the end-of-
day NAV on demand. Consequently, over the short-term, ETFs can be mispriced relative to
their fund NAVs when balance sheet capacity constraints prevent APs from providing liquid-
ity in secondary ETF markets via primary market creations or redemptions. Eventually, ETF
prices converge back to the fund NAV once AP balance sheet capacity constraints subside.
This theoretical result is consistent with the data. Throughout the March 2020 market sell-
off, U.S.-based index ETFs on average traded at an discount of −32.5 bps (median discount
of −8.3 bps) relative to their NAV. The mispricing was even larger in ETF market segments
characterized by a greater liquidity mismatch. International equity ETFs experienced dis-
counts exceeding 2%, while fixed income ETFs traded at discounts of approximately 3% on
an asset-weighted basis during the peak crisis days.2

Unlike ETFs, MFs guarantee investors the ability to trade at the end-of-day fund NAV, re-
gardless of prevailing financial market conditions. MFs’ pricing mechanism gives rise to an
externality between fund investors. While ETF prices can fluctuate excessively relative to the
value of their underlying assets over the short term, MF NAVs can be insufficiently flexible as
they do not fully reflect the transaction costs and price impacts associated with shareholders’
redemptions. Accordingly, MF redemptions dilute the shareholdings of the remaining fund
investors. This share dilution represents the liquidity premium investors pay in exchange for
the short-term liquidity protection offered by MFs, should they choose not to redeem their

1To avoid ambiguity, MFs in my paper refers to index mutual funds, unless otherwise specified.
2See figures A.5 - A.20 for data on the relative mispricing in ETFs over time and across asset classes.
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shares prematurely. Due to the in-kind nature of ETF creations and redemptions, there is
no share dilution risk in ETFs.

I demonstrate that ETFs’ market-based pricing mechanism gives rise to reverse run incentives,
as strategic substitutabilities encourage shareholders to remain invested when intermediaries
are balance sheet constrained. Investors who do not need immediate access to liquidity will
always abstain from selling their ETF shares prematurely. The opposite is true for MFs.
The insufficient flexibility of MF prices leads to payoff complementarities, encouraging early
redemptions by long-term investors during periods of market illiquidity, potentially culmi-
nating in mutual fund runs.

Importantly, in my model, asset market illiquidity serves as the fundamental prerequisite for
the inherent frictions within ETFs and MFs. In highly liquid index segments, such as large
cap domestic equities (e.g., S&P 500 index funds), the relative mispricing risk in ETFs as
well as the share dilution costs in MFs are small. I establish that in such cases, both, ETFs
and MFs, offer virtually frictionless liquidity transformation. By contrast, in relatively more
illiquid and increasingly popular market segments such as corporate bonds or international
equities, the financial frictions tied to ETFs and MFs are predicted to attain economic signif-
icance, leading to evident divergences in their respective payoffs across investment horizons.
In this context, financial frictions impede the seamless functioning of index fund markets.

In my second main finding, I show that within the realm of funds tracking benchmark indices
composed of imperfectly liquid securities, funds’ relative liquidity differences give rise to a
cut-off equilibrium wherein investors self-select into ETFs versus MFs depending on their liq-
uidity needs and expected investment horizons. Understanding funds’ different pricing risks
and run incentives, an investor with a long horizon ex-ante will optimally select the ETF,
while an investor with a shorter horizon will select the MF. Investors with lower liquidity
risks or longer horizons are positioned to circumvent the potential short-term mispricing of
ETFs. By contrast, opting for MFs would likely expose them to the costs associated with the
earlier redemptions by shorter-term fund investors. Conversely, when investors anticipate a
need to quickly sell their investments within a few days, they highly value the immediate
liquidity protection offered by MFs. These are agents who invest to hedge against liquidity
needs in different states of the economy, for example due to higher labor income risk, un-
foreseen expense shocks, or the need to support their lifestyles through income from capital
investments. They are willing to forgo long-term expected returns to sidestep the potential
short-term mispricing in ETFs.

Third, I investigate the consequences of the coexistence of same-index ETFs and MFs for
funds’ vulnerabilities to outflows and for investors’ payoffs. I demonstrate that the existence
of ETFs makes MFs more vulnerable to premature investor redemptions, and the existence

3



of MFs reduces ETF mispricing. Investors who are likely to require urgent liquidity in the
future are worse off after the introduction of an ETF compared to the MF-only equilibrium.
When index fund assets are divided between an ETF and MF, the liquidity risks encountered
by investors within the MF are pooled among a smaller set of agents, thereby diminishing
the extent of liquidity co-insurance provided to each individual investor within that group.
Investors with low expected liquidity needs benefit. The competition between ETFs and MFs
allows them to separate from higher liquidity risk investors, thereby avoiding the transaction
costs associated with those investors’ short-term liquidity needs.

These insights can inform decision-making processes for investors, regulatory authorities, and
asset managers. Despite the seemingly straightforward nature of index investing, investors
should look beyond fees or taxes and remain cognizant of the potential indirect liquidity-
provision costs tied to their chosen investment vehicle. This study also offers implications for
index fund selection within retirement accounts, an area of paramount significance. To avoid
a scenario where retirement investors in illiquid index MFs during the wealth accumulation
phase inadvertently subsidize short-term liquidity provision to retirees and non-retirement ac-
count holders, retirement plan sponsors should add ETFs to the menu of investment options.
An awareness of investors’ trade-offs between ETFs and MFs can further assist regulators
in designing fund liquidity management tools. In my model, MFs are subject to run risk.
ETFs’ payoff structure discourages early redemptions by patient investors but imposes ex-
cessive liquidation costs on impatient investors. One potential tool to reduce flow-induced
share dilution, and therefore run risk in MFs is swing pricing. Swing pricing is a mechanism
that adjusts MFs’ NAVs to account for flow-induced transaction costs, thereby protecting re-
maining shareholders’ interests. In November 2022, the SEC proposed to make swing pricing
mandatory for most U.S. based open-end mutual funds, sparking vehement criticism from
both asset managers and politicians.3 Contrary to the arguments of these stakeholders, I
show that swing pricing can reduce incentives for early MF liquidations while preserving
MFs’ relative appeal to investors with higher liquidity needs. If certain conditions are met,
including optimal swing factor calibration, along with rational and forward-looking investors,
swing pricing even enables MFs to dominate same-index ETFs in terms of liquidity provi-
sion. My paper further suggests that regulators should avoid endorsing multi-share class
structures, where ETF and MF share classes coexist within a single fund portfolio, especially
when the underlying index consists of less liquid securities. This arrangement tends to favor
MF shareholders at the expense of ETF investors. From an asset management perspective,
this paper sheds light on the recent trend involving MF-to-ETF conversions by suggesting
that the benefits of these reorganizations are larger for MFs with less liquid assets and longer-
term investors.

3For details on the U.S. Securities and Exchange Commission’s (SEC) proposed swing pricing rule, refer
to https://www.sec.gov/files/33-11130-fact-sheet.pdf.
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Many asset managers and financial advisors promote ETFs as more liquid or easier to trade
than their MF peers. This may lead some to think that ETFs are more suitable for in-
vestors with short-term liquidity needs. I challenge this notion, demonstrating that ETFs are
typically better suited for investors with lower liquidity risks or longer investment horizons,
especially when underlying portfolio holdings are illiquid. Previously, expense ratios and the
tax implications associated with fund-level capital gains realizations have dominated discus-
sions on the merits of ETFs versus MFs. In fact, fee and tax disparities alone are insufficient
to explain the coexistence of same-index ETFs and MFs. Both fund types charge virtually
identical fees on an asset-weighted basis within the most popular index segments (figures
A.21 and A.22), and although U.S.-based ETFs allow deferring capital gains taxes until in-
vestors sell their fund shares, ETFs have experienced similar growth in other markets where
they are subject to identical tax rules as MFs. Accordingly, this paper puts forth a novel,
rational explanation, based on funds’ universally different security design, for the trillions of
U.S. dollars still allocated to index MFs.

1.1 Related literature

I contribute to the growing ETF literature by formalizing a unified framework to understand
investors’ trade-offs between ETFs and MFs. I show that index ETFs and MFs are imperfect
substitutes because of differences in the nature of their liquidity provision.

Few other papers have explicitly considered investor trade-offs between ETFs and open-
end mutual funds, and the few that do, generally agree that ETFs and MFs can coexist
in equilibrium. They attribute the coexistence of both fund types to clientele effects re-
sulting from different fee structures, ETFs’ intraday liquidity provision (Agapova 2011) and
tax efficiency (Moussawi, Shen, and Velthius 2022). Specifically, Agapova (2011) predicts
that investors with higher liquidity needs or longer time horizons prefer ETFs because of
their exchange-traded nature and lower fees, while short-term traders prefer MFs because of
their commission-free nature. Figure A.21 illustrates that index MFs are now available at
similar expense ratios as their ETF competitors. Besides, many U.S. brokerage firms offer
commission-free trading for retail investors. I contribute to this literature by showing that,
even abstracting from fee and tax differences, ETFs provide relatively larger payoffs over the
long term due to the absence of share dilution risks. In related work, based on a model
featuring ETFs that are frictionless and identical to the benchmark index, Huang and Guedj
(2009) show that ETFs are more suitable when investors have more correlated liquidity shocks
or underlying securities markets are less liquid. I endogenize the frictions in both ETFs and
MFs and demonstrate that MFs can be more suitable for investors with short-term liquidity
needs due to the potential for relative mispricing in ETFs. Investors with intraday trading
needs, such as hedge funds who trade ETFs for speculative or hedging purposes, are outside
of the scope of my paper, as they would never choose to invest in MFs in the first place.

5



My paper also adds to the literature on investment fund choice of organizational structure.
The previous literature largely focuses on the choice between the open- and closed-end fund
(CET) structure. While I focus on the liability-side competition between same-index ETFs
and MFs, this literature has emphasized complementarities in open- and closed-end fund
asset holdings. Deli and Varma (2002) empirically show that funds holding securities with
lower liquidity or price transparency are more likely to be structured as CEFs. Similar to my
model, Cherkes, Sagi, and Stanton (2009) theoretically argue that CEFs exist because they
facilitate investments in illiquid securities without the externality costs of open-end MFs.
Elton, Gruber, Blake, and Shachar (2013) highlight CEFs’ ability to use leverage. I extend
this line of research by considering the trade-off between the ETF and the open-end MF struc-
ture. ETFs represent a hybrid organizational form between open- and closed-end MFs. Their
shares are exchange-traded, similar to CEFs, but they also incorporate an intermediary-based
mechanism for the creation of new shares and the redemption of existing ones, akin to the
structure found in open-end MFs.4

This paper further complements the literature on liquidity provision by non-bank financial
intermediaries (NBFIs) and their associated risks. I build on work by Diamond and Dybvig
(1983) on bank liquidity provision. In contrast to their framework, investors in my model
are ex-ante heterogeneous and invest in index fund equity instead of bank deposits. Equity-
issuing intermediaries including ETFs and MFs also provide liquidity (Ma, Xiao, and Zeng
2022a), and similar to banks, the liquidity mismatch between ETF or MF shares and their
portfolio holdings is the key driver of frictions in this paper. For MFs, the literature has
identified the combination of payoff complementarities for MF investors with the liquidity
mismatch on MFs’ balance sheet as the central source of run risk. Chen, Goldstein, and Jiang
(2010) show empirically and theoretically in a global games framework that the guaranteed
redemption at the fund NAV gives rise to a first-mover advantage among investors which
increases in the illiquidity of fund assets. Payoff complementarities in MFs arise because
redemptions are associated with fund costs not fully reflected in fund NAVs at which ex-
iting investors trade. Edelen (1999) quantifies the significant cost of liquidity-motivated
trading for long-term MF investors, and Coval and Stafford (2007) show that MFs tend to
conduct costly and unprofitable trades ex-post large outflows at the cost of their remain-
ing shareholders. They estimate that most flow-induced MF trades occur with a lag of one
day after redemption events.5 Dickson, Shoven, and Sialm (1999) provide evidence for the

4Another related literature strand studies competition among funds of the same type. Malamud
(2016), Box, Davis, and Fuller (2019) and Khomyn, Putnin, š, and Zoican (2023) examine the coexis-
tence of same-index ETFs. Hortacsu and Syverson (2004), Elton, Gruber, and Busse (2004) and
Choi, Laibson, and Madrian (2009) investigate the coexistence of same-index open-end MFs.

5See also Feroli, Kashyap, Schoenholtz, and Shin (2014) and Goldstein, Jiang, and Ng (2017).
Falato, Goldstein, and Hortaçsu (2021) and Ma, Xiao, and Zeng (2022b) offer empirical evidence from
the Covid-19 crisis. Kacperczyk and Schnabl (2013) and Schmidt, Timmermann, and Wermers (2016) docu-
ment shareholder runs in money market funds. Previous attempts to quantify the costs of MF redemptions
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importance of capital gains taxes as a source of externalities among MF investors. Most re-
cently, the staleness in MF NAVs is documented by Choi, Kronlund, and Oh (2022) for fixed
income funds; previous evidence focusing on international and illiquid domestic equity MFs in-
clude Goetzmann, Ivković, and Rouwenhorst (2001), Chalmers, Edelen, and Kadlec (2001),
Boudoukh, Richardson, Subrahmanyam, and Withelaw (2002) and Zitzewitz (2003). An-
other source of staleness in MF NAVs are outdated portfolio weights (Tufano, Quinn, and Taliaferro
2012). I contribute to this literature by showing that the lag with which flow-induced trans-
action costs are reflected in MF NAVs provides liquidity insurance to investors with urgent
liquidity needs. Yet, over the longer term this liquidity insurance comes at the cost of share
dilution for the remaining MF investors. Consistent with prior studies, these payoff comple-
mentarities among MFs investors introduce MF run risk into my model.

The literature on risks in ETFs has focused on the spillover effects from ETFs to financial
markets caused by the AP arbitrage channel.6 From an investor’s perspective, the key friction
in ETFs is the potential for relative mispricing between the ETF price, at which investors
can trade, and the fund NAV, which is intended to reflect the fundamental value of a share in
the fund. Empirically, Haddad, Moreira, and Muir (2021) document large discounts in bond
ETFs during the Covid-19 sell-off. Petajisto (2017) shows that the relative ETF mispricing
remains statistically and economically significant, even after accounting for potential stale-
ness in fund NAVs. Other related studies include Todorov (2021), Gorbatikov and Sikorskaya
(2022) and Malamud (2016). Pan and Zeng (2019) demonstrate how the liquidity mismatch
between ETF shares and portfolio securities, coupled with APs’ balance sheet constraints,
leads to limits to arbitrage in ETF markets. Shim and Todorov (2022) suggest that ETFs
may be more effective in managing illiquid assets compared to MFs because APs can limit
adverse spillover effects from fund liquidations to asset markets. I add to this literature by
demonstrating that ETFs’ distinct payoff structure discourages fund liquidations when mar-
kets are illiquid and endogenously attracts relatively more long-term investors.

The remainder of the paper is organized as follows. Section 2 introduces the model. Section
3 presents the equilibrium predictions. Section 4 analyzes policy implications. Section 5
discusses empirical predictions. Section 6 concludes.

include Chordia (1996), Wermers (2000), Greene and Hodges (2002) and Johnson (2004).
6For example, previous studies have analyzed the effect of ETF ownership on non-fundamental asset price

volatility (Dannhauser and Hoseinzade 2017; Ben-David, Franzoni, and Moussawi 2018), asset price discovery
(Brown, Davies, and Ringgenberg 2021; Israeli, Lee, and Sridharan 2017; Glosten, Nallareddy, and Zou 2021;
Madhavan and Sobczyk 2016; Bhattacharya and O’Hara 2018) and return co-movement (Da and Shive 2018;
Shim 2019; Madhavan and Morillo 2018).
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2 Theoretical framework

I propose a portfolio choice model to study the tradeoffs faced by rational investors with
heterogenous liquidity risks when choosing to allocate their portfolio between index ETFs
and index open-end mutual funds built upon Diamond and Dybvig (1983). Investors gen-
erally invest for the long term, but they may occasionally need to liquidate financial assets
at short notice in times when overall market liquidity is scarce. The model is designed to
mimic adverse states of the economy characterized by low asset market liquidity and high
demand for liquidity. Asset market liquidity refers to the ease with which financial securi-
ties can be traded. Correspondingly, liquidity risk denotes the probability that an investor
needs to liquidate her financial assets for consumption purposes at times when it is costly to
do so. On the one hand, these episodes of market stress represent the states in which the
distinct frictions associated with same-index ETFs and MFs materialize and meaningfully
impact fund liquidity provision. On the other hand, it is during adverse market conditions
that funds’ liquidity-provision service is most valuable for investors.

I focus on investors’ discretionary portfolio allocations outside of retirement savings accounts.
This allows me to capture a wide range of investment motives and liquidity needs, crucial
for examining liquidity-provision differences across competing investment funds. Implications
for investments within retirement accounts are discussed in section 4.2. More generally, this
framework is not limited to retail investors. It is sufficiently flexible to accommodate any
type of investor relying on investment funds.

The model is designed to capture the fundamental economic differences between ETFs and
MFs, the mechanisms by which both funds’ shares are priced and traded in financial mar-
kets. I abstract from variation in fund expense ratios and capital gains taxation and refer to
Agapova (2011) and Moussawi et al. (2022) for an empirical analysis of the implications of
fee and tax differences between ETFs and MFs. While fees and tax rules are at the discre-
tion of fund sponsors and regulators of the fund’s domicile country, the pricing and trading
mechanisms constitute intrinsic components of the structures of both ETFs and MFs. There
are three periods, t = {1, 2, 3}; time is discrete and financial markets are competitive. There
is a single consumption good, dollars. The economy consists of investors i and of financial
intermediaries. Investors are heterogeneous in terms of their liquidity risk exposure. Liquid-
ity risk in this context refers to the possibility that unexpected financial needs or obligations
may arise, requiring investors to sell their investments quickly under less-than-ideal market
conditions. Some investors are more likely to be forced to liquidate their assets earlier than
others. There is also a group of “sleepy” or inattentive investors; for the ease of exposition,
I call them retirement investors. Consistent with the menu of funds in practice offered by
many retirement plans, retirement investors can only invest in mutual funds. Generally, these
sleepy investors reflect agents who do not actively monitor or adjust their investment port-
folios in response to changing market conditions or new information. They follow a simple
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buy-and-hold strategy, making no portfolio re-allocation decisions between the initial and
terminal period.

Financial markets feature risky composite securities: index MFs, and index ETFs both of
which are investment technologies that pool money from investors to invest in a diversified
portfolio of potentially illiquid securities. For tractability, I abstract from individual secu-
rities markets; ETFs and MFs simply hold the composite security. The composite security
represents a benchmark index and can only be traded by fund managers and intermediaries.
Investors can only invest in composite securities via investment funds, and they cannot trade
directly in the index. There is also a risk-free asset which pays zero interest Rf = 1.

Key model frictions directly arise from the different payoff structures of ETFs and MFs. They
emerge in ETFs from the potential for the prices at which investors transact in secondary
markets to diverge from the fund’s net asset value. I refer to this difference between ETF
market prices and fund NAV as relative mispricing. If the ETF trades at a discount (pre-
mium), long ETF investors receive a payoff below (above) the funds’ fundamental value. In
contrast, frictions in MFs are due to payoff externalities between fund investors. There are
no agency frictions between fund sponsors, intermediaries and investors. Objectives of fund
sponsors are outside of the scope of my model.

Figure 1: Timeline of information and investor actions

t = 0

Investors allocate portfolio
between ETF & MF

Index value xj ∼ N(µj , σ
2
j )

Investor i’s liquidity risk: λi ∼ U [0, 1]

t = 1
Index value (state) xj realized

Investor types = Patient, Impatient

Early redemption decision

t = 2

Terminal
index & fund payoffs

Figure 1 summarizes the model information structure and the timing of agents’ decisions.
The terminal index payoff, xj , serves as the state variable, reflecting the exogenous funda-
mental value of the composite security j, is distributed xj ∼ N(µj , σ2

j ) with µj > 1 and
observed at the beginning of period t = 1. µj < 1 implies a positive expected index return.
I focus on investors’ portfolio allocation decision between the ETF and MF within a given
benchmark segment j. Since my focus is on the tradeoffs across index fund types, I do not
consider investors’ portfolio choices across different asset classes and index segments. The
relation between the fundamentals xj across j is not relevant for this paper’s analysis. All
agents have identical information about xj . Table D.1 summarizes notation.

The model is intentionally designed to capture adverse economic conditions characterized by
an overall net demand for liquidity among fund investors, manifested through redemptions
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from MFs and sales of ETFs. In the interim period, individual investors confront two possible
scenarios: a liquidity shock necessitating the immediate liquidation of their entire portfolios,
or the absence of a liquidity shock allowing them to choose between immediate or future
portfolio liquidation. Investors can be impatient consumers but not impatient savers. Given
the lack of positive cash flows shocks, there are no fund inflows at t = 1. There is no po-
tential for trade among fund investors and Jacklin (1983)’s critique does not apply. In fact,
following the assumptions placed on the distribution of investor liquidity risks, outflows from
the fund sector are strictly positive at t = 1. Even though liquidity risks are independent at
the investor level, the model features systemic liquidity risks at the aggregate level. At least
half of fund investors will liquidate their portfolio holdings early. As a result, investors are
unable to fully insure themselves against liquidity risks: they depend on financial markets
and intermediaries for liquidity provision. In practice, even during periods of market stress,
index funds typically experience inflows from some investors who consistently allocate a fixed
dollar amount to these funds as part of a savings plan. In this model, fund outflows can be
understood as investors’ net withdrawals.

2.1 Financial markets

Benchmark index. A benchmark index j represents a diversified portfolio of securities (e.g.,
S&P 500 Index, Bloomberg Aggregate Bond Index, MSCI Emerging Markets Index). In what
follows, I focus on a single index j tracked by one ETF and one MF. The terms composite
security and index are used interchangeably. It can be traded by mutual fund managers,
financial intermediaries in their role as APs, and market makers (broker-dealers) specialized
in providing liquidity in these index markets at t = 1. Composite security markets are seg-
mented, a standard assumption in the literature (e.g., Malamud (2016), Gromb and Vayanos
(2002)) which allows for potential relative mispricing between markets. This implies that
MFs and APs trade with distinct index market makers, potentially at different prices. It
is motivated by the different timing of when MFs and APs trade in index markets: APs
respond to demand imbalances in secondary ETF markets in real time intraday, while MFs
adjust their portfolio holdings with a lag after observing their investors’ net redemptions.
More fundamentally, the segmented index markets assumption allows distinguishing ETF
and MF respective price impacts in the underlying security markets. MFs and APs are both
price takers and do not compete on the asset side in index markets. The index price in the
interim period is endogenous, given by P jt and determined by market clearing between mar-
ket makers, APs and MFs. In the terminal period, the index pays a terminal dividend equal
to its fundamental value, Divj2 = xj . Hence, the cum-dividend index price at t = 2 is P j2 = xj .

In an extension of the model, I relax the segmented market assumption and show that the
same overall predictions continue to hold when ETFs and MFs trade with a common index
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market maker.7 The extension provides additional insights on how asset-side competition be-
tween ETFs and MFs affects fund investors’ payoffs. Investors cannot directly trade composite
securities. In theory, it is equivalent to assuming that the transaction costs investors face
under autarky when trying to replicate, and sequentially rebalance, the index themselves, for
instance through direct indexing in separately managed accounts (SMAs), are always strictly
larger than the cost of holding an ETF or MF.

Investment funds. There exists both one open-end mutual fund as well as one ETF pas-
sively tracking every benchmark, j. Funds’ ex-ante choice about which benchmark index to
track is outside the scope of this model. I consider the case of a single benchmark index
so the notation j illustrates the dependence of key parameters, and consequently the model
predictions, on the return distribution and liquidity of the benchmark portfolio. Hence,
j generally denotes the overall liquidity of the asset market segment under consideration.
For simplicity, neither ETFs nor MFs charge fees, so management expense ratios are zero,
fETF,jt = fMF,j

t = 0 ∀t and j. Funds hold no cash, so the portfolio holdings of the ETF and
MF tracking benchmark j are identical. Abstracting from portfolio differences allows me to
focus on non-portfolio differences as the source of heterogeneity between ETFs and MFs.

ETFs. The ETF market price, PE,jt , arises endogenously intraday in equilibrium from market
clearing between ETF investors and APs.

Assumption 1 ETF creation and redemption baskets are identical to the benchmark index.

Lemma 1 The ETF NAV is always equal to the value of the benchmark index, NAV E,j
t ≡

P jt . The ETF perfectly replicates its benchmark. There is no tracking difference.

Here, tracking difference refers to the difference between the fund NAV and the index price,
NAV E,j

t − P jt . In practice, however, tracking difference often refers to the return difference
between a fund and its benchmark. ETF returns and payoffs are equivalent in this model.

What matters to ETF investors is not the ETF NAV but the ETF market price at which they
trade. PE,jt is linked to the index price, P jt , via arbitrage. There are limits to arbitrage, so the
ETF price can deviate from its NAV, resulting in relative mispricing vis-à-vis the benchmark
index. Arbitrage constraints arise endogenously from APs’ balance sheet capacity constraints.

Definition 1 The relative ETF mispricing refers to the difference between the ETF’s net
asset value, NAV E,j

t , and its market price, PEt . At any given point in time, the relative
mispricing is given by:

ϵE,jt ≡ NAV E,j
t − PEt . (1)

7The assumption that market makers are distinct from banks acting as APs in ETF markets is a simpli-
fication. In practice, different trading desks of the same broker-dealer may act in multiple roles as market
maker in index markets, as a counterparty to MFs, as well as an AP for ETFs. Studying the implications of
the associated conflicts of interests is beyond the scope of this paper but will be explored in future research.
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When ϵE,jt > 0 (ϵE,jt < 0) the ETF trades at a discount (premium).

Then, the ETF price is given by PE,jt = NAV E,j
t + ϵE,jt .

Given P jt , the mispricing captures the wedge between the index and the ETF price. Because
transaction costs for trading ETF shares are incurred at the investor level, investors’ effective
(pre-tax) transaction price may deviate from PE,jt by the amount of bid-ask spreads and
trading commissions charged per ETF share. For simplicity, I assume ETF bid-ask spreads
are zero, and I also assume investors trade ETFs commission-free.

Open-end mutual funds. All MF creation or redemption orders submitted throughout
the trading day are executed at the end of each trading day, at the fund NAV. The daily MF
NAV is equal to the closing index price. By design, MFs have zero relative mispricing:

PM,j
t ≡ NAVM,j

t .

Rational investors have perfect foresight and correctly anticipate the fund NAV, PM,j
t , when

submitting their MF orders throughout the trading day. This assumption is standard in the
literature. The MF NAV is flexible, to the extent that it accounts for new information on the
fundamental index value, xj . Yet, the NAV is not fully forward-looking: total net fund flows
and the price impact caused by MFs’ ensuing flow-induced trading are generally unknown
until the next trading day (Ma et al. 2022b). While ETF prices are determined in equilibrium
from the intraday supply-demand conditions in ETF markets, MF prices are set based on
supply-demand conditions in index markets at the end of the trading day. The imperfect
flexibility of MF prices constitutes the key friction of mutual funds in this model. Formally,
this is captured by the specification of the MF NAV at t = 1 which is quasi-exogenous and
given by:

NAVM,j
1 = ψE1[xj ]. (2)

PM,j
t is a function of the expected index value and a parameter ψ with 0 < ψ ≤ 1. Through

its dependence on xj , the MF NAV reflects the latest information on the value of its asset
holdings, where ψ reflects a discount or penalty for early liquidation of MF shares. The lower
ψ, the higher the cost to the individual investor of liquidating her MF holdings early. ψ < 1
is a technical restriction. It is necessary to prevent early liquidation of all MF holdings, re-
gardless of the index fundamentals, from becoming the sole dominant strategy for risk-averse
investors. Intuitively, in the absence of any MF outflows at t = 1, investors can expect to
earn a strictly positive return from holding the MF between the interim and terminal period.
The model predictions are robust to alternative specifications as long as NAVM,j

1 < xj holds.
In an extension in section 3.3.1, I fully endogenize the MF NAV at t = 1.
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2.2 Agents

There is a continuum of individual investors with mass 1 and sleepy investors with mass η.

Individual investors. Individual investors are the agents of interest, broadly defined to in-
clude retail and institutional investors, such as endowments or family offices who may choose
to invest in ETFs or MFs. In the U.S., around 68.6m (52%) and 16.1m (12%) of households
invest in MFs and ETFs respectively (ICI 2023). Investors, such as high-frequency trading
firms, who use ETFs for short-term bets or hedging purposes and require intraday liquidity
are outside of the scope of the model. Since only ETFs provide intraday liquidity and MFs
generally resrict investors’ ability to frequently move in and out of a single fund, such agents
would never invest in MFs in the first place. They do not face an interesting trade-off between
different fund types.

The unit mass of investors is homogenous in terms of initial wealth, which I normalize to
one unit of capital, θi0 = 1. They invest over the long term but may at times face short-term
liquidity shocks in the spirit of Diamond and Dybvig (1983). Liquidity shocks force investors
to liquidate their assets at t = 1. In contrast to classic bank run models, in which all investors
initially face the liquidity risk, here the ex-ante probability of a liquidity shock, denoted by
λi, differs across investors. λi is independently and identically distributed according to:

λi ∼ U [λ0, λ1],

where 0 ≤ λ0 ≤ λ1 ≤ 1 reflect the distribution of liquidity risk across agents in the economy. I
assume λ0 = 0 and λ1 = 1: λi is privately observed at t = 0 and causes ex-ante heterogeneity
among investors.8 λi is directly linked to i’s investment horizon, Ti, according to:

E0[Ti] = 2 − λi.

The larger λi, the shorter i’s expected investment horizon. Investors of type λi = 1 must
always sell all assets at t = 1: These are investors who need liquidity on a specific date in the
future. Type λi = 0 investors can wait until t = 2 before liquidating their portfolio holdings.
I denote the expected mass of impatient investors, that is investors who receive a liquidity
shock at t = 1, by λ̄ =

∫
i λidi = λ0+λ1

2 . Under my baseline assumptions, λ̄ = 1
2 .

Heterogeneity in λi can reflect differences in investors’ probabilities of being hit by an unex-
pected expense or income shock as well as differences in their holding periods. According to
survey estimates, 26% of mutual-fund owning households use these investment vehicles as a
tool to save for emergencies (ICI 2023). Intuitively, investors may face unforeseen costs such

8By varying λ0 and λ1, the model can be used to analyze the effects of changes in the distribution of
liquidity risks in the economy on the allocation of assets between ETFs and MFs.
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as unexpected medical expenses, home repairs (e.g., after a natural disaster), or sudden job
loss, necessitating immediate access to liquidity beyond what they hold in cash and equiv-
alents.9 If liquid asset reserves are already exhausted due to unforeseen expenses, investors
may further be compelled to sell fund holdings in order to meet mortgage payments, tuition
fees, or other debt obligations. The sources of heterogeneity in λi are multifaceted. House-
holds with higher incomes and lower leverage generally possess greater disposable cash flows,
enabling them to cover unexpected expenses without liquidating assets. Insurance coverage
and access to credit can also hedge against unforeseen health or property-related expenses.
Differences in occupations can significantly impact job security, particularly during economic
downturns. Households with more dependents or caregiving responsibilities may face height-
ened liquidity risks due to more frequent and diverse financial needs. Finally, investors early
in their life cycles often maintain longer investment horizons, whereas those in retirement
may depend on the periodic liquidation of financial assets to cover essential living expenses.

Given λi and xj ∼ N(µj , σ2
j ), at t = 0 investors choose to allocate their endowments between

ETFs and MFs. They do not have access to the risk-free asset in the initial period, but in-
stead they must invest their entire capital endowment in index funds. This restriction allows
me to isolate the effect of different liquidity risk exposures on investors’ allocations across
fund types. After observing their idiosyncratic liquidity shocks, investors at t = 1 can decide
to liquidate some of their fund holdings early and store the proceeds in the risk-free asset
until the terminal period. When hit by a liquidity shock, they always liquidate their entire
fund portfolios. Investors cannot reallocate assets between MF and ETF markets at t = 1.
Conditional on their initial allocations to MFs and ETFs, {θi,M,j , θi,E,j}, they can only retain
or liquidate fund shares, and they receive no income from sources other than their financial
investments. They do not have access to leverage and are subject to short-selling constraints.

All investors have identical time-separable preferences. The primitive utility function, de-
noted as u(c), is defined with respect to consumption. I assume investors are risk-neutral.
In the absence of storage technologies for the consumption good cash, other than invest-
ment funds, an agent’s consumption always equals her wealth at the end of her lifespan Ti,
ciT = wiT . The investor chooses her initial portfolio allocation to maximize her expected
utility over terminal wealth, represented as E[u(wiT )], subject to her endowment, leverage,
and short-selling constraints in equations 4 - 6 respectively:

9According to the Fed’s 2022 Survey of Household Economics and Decisionmaking (SHED), 23 percent of
adults had unexpected medical expenses in the prior 12 months, with the median amount between $1, 000
and $1, 999. During the same period, 13 percent of adults were directly affected by a natural disaster and
3 in 10 adults experienced income variability from month to month. See https://www.federalreserve.gov/
publications/report-economic-well-being-us-households.htm.
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max
θi,M,j ,θi,E,j

E[wiT ] (3)

s.t. θi,E,j0 PE,j0 + θi,M,j
0 PM,j

0 = 1, (4)

θi,E,j0 − θi,E,j1 > 0, θi,M,j
0 − θi,M,j

1 > 0, (5)

θi,E,jt ≥ 0, θi,M,j
t ≥ 0 ∀ t = 0, 1. (6)

θi,E,j0 and θi,M,j
0 are the number of shares of the ETF and MF tracking index j bought by

investor i at t = 0, respectively. The index serves as the numeraire in the economy.

The terminal wealth of patient or late investors, characterized by Ti = 2 and denoted by
i = l, is given by:

wi2 = θi,E,j1 PE,j2 + θi,M,j
1 PM2 + (θi,E,j0 − θi,E,j1 )PE,j1 + (θi,M,j

0 − θi,M,j
1 )PM,j

1 ∀ i = l. (7)

Investors subject to liquidity shocks in the interim period liquidate all portfolio holdings at
t = 1. At that time, these impatient or early investors are characterized by their investment
horizon Ti = 1 and denoted by i = e. They derive utility only from their wealth in the interim
period, wi1. The terminal wealth of impatient investors is given by:

wi1 = θi,E,j0 PE,j1 + θi,M,j
0 PM,j

1 ∀ i = e.

The terminal wealth of impatient investors depends solely on their initial allocations, θi,E,j0

and θi,M,j
0 , as well as on the fund prices at t = 1.

Sleepy MF investors. Sleepy investors’ portfolio allocations are exogenous, and they invest
their entire endowment in MFs. There is a mass η of them who exist for technical reasons
to maintain model tractability. They prevent MFs from going bankrupt in scenarios where
MF runs occur in equilibrium. This simplifies the model solution and is consistent with
modeling conventions in the previous MF literature (Chen et al. 2010). Sleepy investors are
not exposed to short-term liquidity risks: they never rebalance their portfolio holdings during
the interim period and do not engage in early withdrawals. Instead, they hold their fund
shares until maturity. The terminal value of their aggregate fund portfolio value is given by:

WSleepy
2 = ηPM,j

2 .

Without loss of generality, the model can be extended to also include sleepy ETF investors.
Their inclusion neither alters the model’s predictions nor simplifies its solution. Consequently,
sleepy ETF investors are omitted for simplicity in the discussion below.
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2.3 Financial intermediaries

Financial intermediation in the economy occurs at two levels: in fund and index markets.
In fund markets, the representative authorized participant (AP) and mutual fund provide
liquidity to their investors, while in index markets the AP and MF demand liquidity from
index market makers who act as the central index liquidity supplier.

Index market makers. Risk-neutral index market makers are the broker-dealers in com-
posite security markets: they appear only in the interim period, and their sole purpose is
to provide liquidity to investment funds. These intermediaries are not frictionless: broker-
dealers need to hold and manage a stock of potentially illiquid index constituent securities,
incurring capital charges and funding costs, which can erode their profit margins and con-
strain their market-making activities. Formally, I model these frictions as quadratic inventory
costs. In equilibrium, index market makers absorb the supply of index shares resulting from
MFs’ flow-induced portfolio liquidations and AP arbitrage activities. ETF arbitrage occurs
intraday at t = 1, while MFs trade in index markets with a lag on the next trading day at
t = 1+, after observing their investors’ net redemptions. To match this institutional feature of
fund markets, I assume that index markets are segmented: APs and MFs trade with distinct
but identical index market makers. This convention allows me to focus on liability-side com-
petition between MFs and ETFs. Each representative market maker submits a price schedule
for index shares, P jt (ΘD,j

t ), to maximize her expected trading profits given her inventory
costs. Market makers’ optimization problem is given by:

max
ΘD,j

t

Et[Πj
t+1] (8)

s.t. Πj
t+1 = P jt+1 − P jt − cj

2 (ΘD,j
t )2 ∀ t = 1, 1+.

For each market maker, equation 8 implies a downward sloping index demand schedule:

P jt = Et[P jt+1] − cjΘD,j
t ∀ t = 1, 1+. (9)

P jt is the index price offered by dealer D for ΘD,j
1 units of index shares at t.

The inventory cost parameter, cj , is increasing in the index segment j specific liquidity. Intu-
itively, cEquity < cCorporate Bond: the inventory costs of holding corporate bonds are strictly
larger than those of holding stocks. Intuitively, it generally takes the market maker longer to
find a buyer for less liquid securities. In the meantime, the securities remain on the market
maker’s balance sheet and prevent it from using the capacity for market making purposes.
Market makers pass on this cost to APs and MFs. When cj > 0, MFs and APs have price
impact when trading in index markets. This represents the baseline specification. Generally,
c may be a function of both, security market j and aggregate market liquidity conditions.
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This is consistent with Ma et al. (2022b) who, amongst others, find that MFs had a significant
price impact even in generally liquid market segments during the Covid-19-related market
sell-off. Since my model is conditional on an adverse state of the economy, this specification
is not necessary. For cj = 0, the model nests the case in which funds have zero price impact
in security markets, a condition that may be satisfied for large cap domestic equities during
periods when financial markets overall are liquid.

The representative market maker faces identical inventory costs each period, at t = 1 and
t = 1+, so APs and MFs face the same net demand for index shares in composite security
markets. Index market price impact generated by the AP intraday does not impact the
market conditions faced by MFs on the next trading day. In section 3.3.1, I extend the
model to also allow or asset-side competition between funds. In this case, transactions in
index markets by APs and MFs are interconnected because APs and MFs trade sequentially
with the same representative market maker. First, the AP trades with the index market
maker intraday at t = 1 to offload index shares obtained as a result of ETF redemptions.
Next, the MF trades with the index market maker at the already depressed prices to satisfy
its investors’ net redemption requests. Thereby, the AP’s price impact affects the liquidity
conditions faced by the MF. The index demand schedule faced by the AP is still given by
equation 9, and the index demand schedule faced by the MF is given by:

P j1+ = P j1 − cjΘD,j
1+ ,

where P j1 follows from equation 9 under market clearing between the market maker and AP.

Authorized participants. APs are deep pocketed risk-neutral financial intermediaries with
the right to create and redeem ETF shares outright, via in-kind transactions with the ETF
sponsor. This role turns APs into the central and only counterparty between ETF investors
and fund sponsors. If liquidity shocks or optimal portfolio reallocation decisions by investors
at t = 1 generate excess demand (supply) for ETF shares, the AP can step in and create
(redeem) ETF shares by buying (short selling) the underlying creation (redemption) basket
in index markets and delivering (redeeming) the proceeds (corresponding security basket).
APs trade in index and ETF markets with the purpose of generating short-term profits. In
practice, there are also other reasons for APs to engage in ETF creations or redemptions:
for example, ETF arbitrage can help financial intermediaries manage their own liquidity
risks or hedge balance sheet exposures. I abstract from such motives, so APs immediately
offload any index or ETF positions obtained as part of their arbitrage trades in the same
period t = 1. They do not hold any assets overnight. There exists a single representative
AP for each ETF j. Like index market makers, APs only operate in the interim period, t = 1.

There are also costs associated with the AP’s ETF arbitrage trades. In their role as broker-
dealers APs face regulatory capital constraints. Even though in my model ETF arbitrage
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trades are completed within period t = 1, the potential time lag between an AP’s trans-
actions in ETF markets and its offsetting trade in composite security markets implies that
ETF arbitrage is not risk-free. Regulatory capital requirements applied to temporary index or
ETF balance sheet positions give rise to limits to arbitrage. Pan and Zeng (2019) document
that AP balance sheet capacity constraints distort AP arbitrage of corporate bond ETFs. In
addition, when ETF track indices composed of illiquid securities that are traded in over-the-
counter markets, such as corporate bonds, ETF arbitrage entails search and matching costs
(Koont, Ma, Pastor, and Zeng 2023). Finally, hedging ETF creation or redemptions using
derivatives is also costly.

Because regulatory capital requirements generally depend on intermediaries’ balance sheet
size, AP arbitrage costs increase in the size of ETF creations or redemptions and are thus
modeled as variable costs.10 In this model, balance sheet costs are symmetric for both ETF
creations and redemptions. Yet, the specification of investors’ liquidity shocks implies that
APs solely redeem ETF shares in exchange for index shares in equilibrium. Accordingly,
balance sheet costs can be interpreted to reflect the costs associated with ETF redemptions.

The AP’s profit maximization problem at t = 1 is:

max
ΘE,AP,j

1

ΠAP
1 (ΘE,AP,j

1 ) (10)

s.t. ΠAP
1 = (P j1 − PE,j1 )ΘE,AP,j

1 − 1
2ϕj (ΘE,AP,j

1 )2. (11)

Equation 11 is the AP’s profit function. The AP never engages in any ETF trades at a
loss. P j1 is the index price and PE,j1 is the ETF price per share. The AP takes into account
price impact in index markets when deciding on its optimal arbitrage strategy. Given the
equilibrium index price, PE,j1 will be the result of the AP’s constrained optimal arbitrage
activity in ETF markets. ΘE,AP

1 is number of ETF shares redeemed by the AP. ΘE,AP
1 < 0

implies that the AP creates ΘE,AP
1 units of new ETF shares by delivering a basket of ΘE,AP

1

units of the composite security to the ETF sponsor. For ΘE,AP
1 > 0, the AP redeems ΘE,AP

1

existing ETF shares and receives a basket of ΘE,AP
1 units of the composite security from the

ETF sponsor in exchange.

ϕj ≥ 0 is the balance sheet capacity parameter that captures variable transaction costs and
balance sheet risks associated with ETF arbitrage. In periods of reduced market liquidity, as
depicted in this model, APs often encounter more stringent balance sheet capacity constraints
due to decreased asset valuations, increased loan loss provisions, and elevated refinancing
expenses, which curtail their capacity to support ETF arbitrage transactions. In equilibrium,

10There are also fixed costs of ETF creations and redemptions. ETF sponsors charge a fixed fee per creation
(redemption) unit to cover administrative costs. Yet, these costs tend to be small economically relative to the
AP’s trading related costs.
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ϕj > 0 generates limits to arbitrage. ϕj is a function of the unconditional index segment j
specific liquidity. The time it takes them to liquidate index shares obtained as a result of
an ETF redemption trade, depends on the index specific market liquidity. Due to the over-
the-counter nature of corporate bond markets and the potential time lag between the market
hours in domestic ETF and international equity markets, redemptions of corporate bond or
international equity ETFs generally consume more balance sheet capacity than redemptions
of large cap equity ETFs which can be offloaded from APs’ balance sheet to liquid securities
market quickly without significant price impact. The dependence of ϕ on j captures this
feature of AP arbitrage: ϕCorporate Bond > ϕEquity. Overall, the specification of ϕj gives rise
to cross-sectional variation in AP arbitrage across ETF market segments.

Assumption 2 Over the long term, at t = 2, APs face no balance sheet capacity constraints.
They resume ETF arbitrage until the ETF and index price have converged. Formally:

ϵE,j2 = 0.

Open-end mutual funds. Open-end mutual funds pool capital from investors to purchase
securities. Due to the passive nature of index funds, MFs do not have any discretion over
portfolio allocation decisions. All trades in index markets by MFs are flow-induced. I abstract
from fund management fees, so there is also no scope for profit maximization. While ETF
liquidity provision is market-based and delegated to the AP, MF companies directly supply
liquidity to their investors. Whenever the MF experiences net capital inflows, it will purchase
index shares of equivalent value in securities markets. Amid net capital outflows, the MF
offloads the amount of shares required to repay redeeming investors at the fund NAV taking
as given the index demand schedule submitted by competitive market makers. All net MF
redemptions are executed in cash at the end of trading day t = 1, and MFs cannot satisfy
redemptions using in-kind transfers (RIK) of security baskets.

In any period, t, the quantity of index shares sold by the MF j is given by:

ΘM,j
t+ = ∆XM,j

t PM,j
t

P jt+
, (12)

where the net fund flows are defined as the product of the fund NAV, PM,j
t , and the change

in the number of fund shares outstanding between the end of time t and t − 1, represented
as ∆XM,j

t = XM
t−1 − XM,j

t . If ∆XM,j
t > 0, the MF experiences net redemptions at t. The

index price faced by the MF, P jt+ , is endogenously determined by market clearing with their
representative index market maker at t = 1+.

While investors’ net redemptions and the fund NAV are determined by the end of period t,
due to the specific structure of U.S. MF markets ∆XM,j

t is generally unknown to the fund
until after the conclusion of the trading day or even the commencement of the following
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day. Equation 12 captures this lag in the transmission of information on investor trades to
the MF. In order to trade in index markets, MFs require accurate information regarding the
volume of fund subscriptions or redemptions. In alignment with these inherent institutional
constraints, the subscript t+ denotes the beginning of the subsequent trading day following
t. Following the aggregation of all creation and redemption orders, at t+ the MF proceeds to
sell (or buy) index shares to satisfy net redemptions (or fulfill net creations).

In practice, index MF managers could use cash to actively manage fund redemptions: they
may first meet net redemptions by depleting cash holdings and only later sell portfolio securi-
ties to restore fund liquidity buffers. The evidence regarding the effectiveness of cash buffers
in reducing MF fragilities is mixed.11 I therefore abstract from such MF liquidity manage-
ment. This simplification, however, introduces a gap between the time when MFs must pay
off redeeming investors in cash (at t = 1), and when MFs receive the cash proceeds from their
trades in index markets (at t = 1+). To overcome this technical inconsistency, in the model
I posit that MFs initially meet net redemptions at t = 1 by drawing down overnight credit
lines from exogenous banks. Implicitly, I assume MFs can borrow overnight at t = 1 at the
risk-free rate, which is normalized to equal one. They then fully repay any overnight credit
lines at t = 1+ by liquidating portfolio assets. There is no default. The existence of these
credit lines is only a technical feature of the model resulting from the assumption that ETF
and MF trades settle instantaneously but funds do not hold cash: it has no implications on
the model predictions. The only purpose of bank credit lines is to bridge the gap between
the time at which MFs must satisfy net redemptions by investors in cash, at t = 1, and when
trading in index markets starts again at the beginning of the subsequent period, t = 1+.
Eventually, MFs must eventually liquidate portfolio securities to meet net fund redemptions.

Over time, the total number of fund shares outstanding changes as investors redeem shares.
Since investors cannot access the risk-free asset at t = 0, the shares outstanding for ETFs
and MFs are decreasing over time. Impatient investors are forced to redeem their fund shares
at t = 1. Meanwhile, patient investors face leverage constraints, so they cannot acquire addi-
tional shares beyond their initial investment. Their options are limited to redeeming shares
early or remaining invested until the terminal period. Consequently, the size of both ETF
and MF markets shrinks as the economy nears its terminal period.

2.4 Model timeline

The sequence of events and actions in the model is as follows. At t = 0, each investor i is born
with an endowment of one unit of capital, θi0 = 1. Each investor observes her idiosyncratic

11While Giuzio, Grill, Kryczka, and Weistroffer (2021) argue that liquid asset reserves can limit run risks
and costly liquidations of illiquid asset holdings, Zeng (2017) shows that the predictable re-building of cash
reserves ex-post outflows may further exacerbates run risks. Empirically, Jiang and Wang (2021) find that
corporate bond funds are reluctant to liquidate their most liquid asset holdings during period of market stress.
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liquidity risk, λi, as well as the unconditional distribution of the fundamental index value
xj ∼ N(µj , σ2

j ). Investors then pool their endowments to form ETFs and open-end MFs, in
exchange for fund shares. Fund shares are equity claims on funds’ assets. Neither MFs nor
ETFs hold any cash, CE,j0 = CM,j

0 = 0; all shareholder capital is fully invested in the index.

In the interim period, t = 1, the fundamental xj is realized and observed by everyone. At
the same time, investors privately learn about the realization of their liquidity shocks. All
investors who receive a liquidity shock liquidate their entire fund portfolios immediately. Re-
maining, patient investors retain the flexibility to either partially liquidate their fund holdings
prematurely and invest the proceeds in the risk-free asset until the terminal period, or main-
tain unchanged fund portfolios until t = 2. Investors submit orders in MF and ETF markets,
taking as given the MF NAV, PM,j

1 , and ETF price PE,j1 .

In response to the net supply of ETF shares from investors, the AP determines the quantity
of ETF shares to redeem and initiates corresponding offsetting orders to index market makers
for the composite security. APs trade in financial markets intraday at t = 1, concurrently
with ETF investors. In contrast, the MF conducts index trades at t = 1+ to fulfill its obliga-
tions to redeeming shareholders by t = 1 after observing their aggregate net redemptions.

Over the long term, at t = 2, the index pays a terminal dividend, denoted as P j2 = xj . The
final payoff for investors is contingent upon their proceeds from premature fund liquidations
at t = 1 as well as their residual share holdings in ETFs and MFs and the terminal port-
folio value of the investment funds. The model sub-periods do not have uniform durations.
Instead, the time span between t = 0 and t = 1, which I refer to as the short term, should
be interpreted as a horizon of days or weeks. The intervals between t = 1, more precisely
t = 1+, and t = 2 should be regarded as the long-term period, comprising months or years.

3 Optimal portfolio allocation between ETFs and MFs

Solving the model entails finding investors’ optimal portfolio allocations to ETFs and MFs
as a function of their liquidity risk, λi, and deriving the equilibrium sizes of the ETF and
MF sectors across market segments j. The two-period equilibrium is a perfect Bayesian
equilibrium. In every period, t = 0 and t = 1, conditional on her endowment and (expected)
liquidity needs, each investor i chooses her optimal allocation to ETFs and MFs, θi,E,jt and
θi,M,j
t , to maximize her expected utility from terminal wealth, taking as given fund prices as

well as other investors’ portfolio strategies. I focus on pure strategy equilibria because mixed
strategy equilibria, in which investors randomly choose their allocation between ETFs and
MFs with some probabilities, are not economically meaningful in this context. Formally:

Definition 2 Within any index segment, j, given µj , σj , cj , ϕj , ψ, η and λi, a two-stage pure-
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strategy perfect Bayesian equilibrium (PBE) is defined as a sequence of portfolio allocations
{θi,E,j0 , θi,M,j

0 , θi,E,j1 (xj), θi,M,j
1 (xj)} ∈ [0, 1] and asset prices, P j1 , P

j
1+ , P

E,j
1 , PE,j2 , PM,j

1 , PM,j
2 ,

such that

(i) given other investors’ allocations at t = 1 and the conditional probability of a mu-
tual fund run, πRun(xj), investor i’s portfolio allocation strategy {θi,E,j1 (xj), θi,M,j

1 (xj)}
maximizes her expected utility 3 at t = 1, and

(ii) given investor i’s expectation of other investors’ sequential allocation strategies, includ-
ing the probability of a mutual fund run at t = 1, i’s allocation {θE,i,j0 , θM,i,j

0 } maximizes
her expected utility 3 at t = 0, and

(iii) all investors share common beliefs about the probability of a mutual fund run at t = 1
conditional on the realization of xj, and

(iv) ETF and index markets clear at all times.

I solve for the equilibrium of the model using backward induction. First, I take as given
the realization of the fundamental index value xj at t = 1, as well as investors’ initial allo-
cations, θE,i,j0 and θM,i,j

0 , and I then solve for the MF, ETF, and index market equilibrium
at t = 1. In the baseline model in which APs and MFs trade with separate index market
makers, the ETF and MF market equilibria at t = 1 are not interdependent and can be solved
separately. This follows from the assumption that investors can no longer switch between
fund types in the interim period. MF prices are fixed at the fund NAV over the short term
and do not instantaneously adjust to demand-supply imbalances in MF markets. Hence,
MF investors takes prices as given. They do not internalize the fund-level transaction costs
caused by their trades. In contrast, ETF investors take into account their aggregate price
impact in ETF markets as they trade intraday at the fully flexible market-clearing ETF price.

A complication emerges because patient MF investors’ optimal allocation at t = 1 depends on
their beliefs about other investors’ redemption decisions. The interdependency of investors’
allocation decisions and the potential for shareholder runs on MFs results in multiple equi-
libria in MF markets. I use the sunspot equilibrium selection technique to coordinate MF
investor behavior and select the unique MF market equilibrium at t = 1. The notion of
sunspot equilibria originated with Cass and Shell (1983) and has found contemporary ap-
plications in financial intermediation models, including recent work by Dávila and Goldstein
(2023). Specifically, within the realm of index fundamentals, xj , where multiple equilibria
can arise in MF markets, I assume an equal probability for both the run and no-run equi-
libria. Within this framework, the run-equilibrium entails early redemption of all patient
MF investors’ shares at t = 1, while the no-run equilibrium involves patient MF investors
remaining invested until the terminal period.

An alternative method to address the challenge of multiple equilibria is the global games tech-
nique introduced by Morris and Shin (2003) and further explored by Goldstein and Pauzner
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(2005) for panic-based bank runs. This approach has previously been employed to iden-
tify a unique equilibrium in context of mutual fund runs (Chen et al. 2010) but necessitates
asymmetric information about fundamentals among investors, which would compromise the
model’s tractability. Since this paper’s primary focus does not lie on the MF equilibrium
solution, I opt for the more pragmatic sunspot equilibrium selection technique.

Second, taking as given investors’ optimal investment policy and equilibrium asset prices as
a function of xj at t = 1, I solve for investor equilibrium allocations at t = 0 as a function of
their idiosyncratic liquidity risks, λi.

3.1 Fund payoffs in the terminal period

Asset prices at t = 2 directly follow from the terminal index payoff and are given by:

P j2 = xj , (13)

PE,j2 = P j2 , (14)

PM,j
2 = XM,j

2 P j2

κM,j
0 − ∆κM,j

1
. (15)

The terminal ETF price in equation 14 equals the fundamental value of its benchmark index
given by equation 13. Over the long term, APs face no balance sheet capacity constraints,
and they resume ETF arbitrage until all relative mispricing has been eliminated. This is akin
to asserting that, even in less liquid markets, the law of one price must eventually prevail.

By design, the terminal MF payoff in equation 15 is equal to the fund NAV at t = 2. The fund
NAV is defined as the value of the fund’s portfolio assets divided by its shares outstanding.
κM,j

0 is the number of MF shares outstanding at t = 0, which is equivalent to the proportion
of investors who initially invest in MFs, and ∆κM,j

1 = κM0 − κM1 is the number of MF shares
redeemed in the interim period, so κM1 = κM0 − ∆κM,j

1 . If the MF experiences net outflows:
∆κM,j

1 > 0. 0 ≤ XM,j
2 ≤ κM0 is the number of index shares held by the MF at t = 2 after

accounting for the fund’s interim index trades. All variables on the right-hand side of equation
15 are known as of t = 1+. Since one MF share initially represents a claim on one unit of the
index, the long-term MF payoff deviates from the terminal index value when XM,j

2 ̸= κM1 . I
refer to these deviations between the fund and index payoff as tracking difference.

Definition 3 The MF tracking difference denotes the difference between the mutual fund net
asset value (NAV) and the benchmark index price at any time and is given by:

∆M,j
t ≡ P jt −NAVM,j

t . (16)

When ∆M,j
t > 0, the MF NAV is smaller than the value of its benchmark index: The MF

exhibits a positive tracking difference.
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∆M
t represents a wedge between the fund and index price. As evident from the definition

of NAVM,j
t in equation 15, ∆M

t ̸= 0 arises from the cumulative transaction costs incurred
at the fund level as a result of early redemptions by MF shareholders. Equation 16 defines
the tracking difference as a difference in prices. In practice, the tracking difference typically
pertains to deviations of fund returns from a benchmark return. Because all asset prices are
normalized to equal one in the initial period, prices and returns are equivalent in the model.

Following lemma 1, for ETFs, the tracking difference is always zero, ∆E,j
t = 0 ∀t. ETF

investors trading in secondary ETF markets bear their own transaction costs. Their actions
impact the ETF’s market price but do not affect the ETF’s net asset value. Outflows from
ETFs only have temporary effects on investors’ payoffs, whereas outflows from MFs can have
persistent effects on investors’ payoffs.

Lemma 2 In the terminal period the MF tracking difference per MF share is given by:

∆M,j
2 =

P j2

(
∆κM,j

1 (NAV M,j
1 −P j

1+ )
P j

1+

)
κM,j

1
. (17)

The relative MF tracking difference, ∆̃M,j
2 = ∆M,j

2
P j

2
, per MF share is given by

∆̃M,j
2 = 1

κM,j
1︸ ︷︷ ︸

Remaining
MF shares
outstanding

(
∆κM,j

1︸ ︷︷ ︸
# MF
shares

redeemed
early

(
NAVM,j

1 (P j,M1+ )−1 − 1︸ ︷︷ ︸
Excess # index
shares liquidated
to satisfy early

redemptions

))
.

Corollary 1 The MF tracking difference in the terminal period is zero, ∆M,j
2 = 0, if and

only if at least one of the following three conditions is satisfied:

(i) Markets are perfectly liquid and funds have no price impact when trading index shares,
cj = 0 and ψ = 1.

(ii) The mutual fund NAV at t = 1 is perfectly forward looking and equal to the index price
at which the MF trades in index markets, NAVM,j

1 = PM,j
1+ .

(iii) Net mutual fund redemptions at t = 1 are zero, ∆κM,j
1 = 0.

If condition (i) is satisfied and MFs have no price impact in index markets, (ii) automatically
follows. In this case NAVM,j

1 = P j1+ = xj . Early investors trade the MF at a price reflecting
its fair value after accounting for (zero) price impact. They do not impose any negative exter-
nalities on the remaining MF investors. Condition (ii) may for example hold if the MF used
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swing pricing and swing factors were calibrated optimally to reflect all flow-induced transac-
tion costs. I study the implications of swing pricing on MF payoffs and investors’ allocation
decision in section 4. Whereas (i) implies (ii), the reverse is not true. Finally, condition (iii)
illustrates that fund flows are necessary for the costs of the liquidity-transformation services
provided by investment funds to materialize.

Corollary 2 When at least one of the conditions in corollary 1 is satisfied, the mutual fund
NAV at t = 2 is equal to the terminal index payoff. In this case, the MF and ETF tracking
benchmark index j provide identical payoffs over the long term, PM,j

2 = PE,j2 = P j2 .

Equation 17 illustrates how frictions in MFs arise from flow-induced share dilution. The im-
perfect flexibility of the MF NAV relative to prices in underlying security markets, is the fun-
damental source of tracking difference, ∆M,j

2 ̸= 0, over the long term. When NAVM,j
1 −P j1+ >

0, short-term investors’ payoffs exceed the current liquidation value of their share holdings.
They get a better deal than they would if they had to bear the full cost associated with their
trading activity. Accordingly, the MF provides short-term investors with liquidity insurance
in the amount of NAVM,j

1 − P j1+ . This liquidity provision to short-term investors is not free
since the relatively higher payoff received by short-term investors comes at the cost of long-
term investors. In this sense, ∆M,j

2 can also be interpreted as a negative risk premium or an
“insurance” premium paid in exchange for the short-term liquidity-insurance service provided
by MFs. It represents a redistribution of consumption from long-term to short-term investors.

3.2 Portfolio allocations in the interim period

At t = 1, the idiosyncratic liquidity shocks are realized. Each agent learns if she is the
impatient (e) or patient (l) type. Besides, the fundamental index value xj is revealed.

Lemma 3 Conditional on the realization of the liquidity shocks at t = 1, there are four
groups of ex-post identical investors: patient and impatient ETF investors, and patient and
impatient MF investors. These investors are characterized by the following conditions:

(i) Patient ETF investors: All i = l who initially invested in ETFs, θi,E,j0 = 1

(ii) Impatient ETF investors: All i = e who initially invested in ETFs, θi,E,j0 = 1.

(iii) Patient MF investors: All i = l who initially invested in MFs, θi,M,j
0 = 1.

(iv) Impatient MF investors: All i = e who initially invested in MFs, θi,M,j
0 = 1.

Solving for the fund market equilibrium at t = 1 entails separately deriving the optimal
portfolio choice of each of these investor groups.

(i) Patient ETF investors must decide if they wish to liquidate any of their ETF shares
early. Formally, their problem is given by:
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max
θi,E,j

1

E[wi2|x] (18)

s.t. wi2 = θi,E,j1 PE,j2 + (θi,E,j0 − θi,E,j1 )PE,j1 Rf ,

θi,E,j0 − θi,E,j1 ≥ 0,

θi,E,j1 ≥ 0.

The optimization problem 18 follows directly from the assumption that investors are no longer
able to switch between fund types in the interim period. Rational investors anticipate that the
ETF mispricing will converge to zero in the terminal period, and PE,j2 = xj . There remains no
uncertainty regarding the final ETF payoff. Hence, patient ETF investors’ optimal portfolio
allocation at t = 1 depends only on the current ETF price, index value, and Rf .

Assumption 3 If the terminal ETF payoff is equal to the payoff from immediate liquidation
at t = 1, patient investors always hold the investment fund until maturity.

Using assumption 3, patient ETF investors’ optimal investment policy is given by:

θi,E,j1 =

0 if P j2 − (P j1 − ϵE,j1 )Rf < 0,

1 if P j2 − (P j1 − ϵE,j1 )Rf ≥ 0,

The ETF discount ϵE,j1 is the liquidity premium that ETF investors pay in exchange for
short-term liquidity provision. The larger the current ETF discount, the greater the payoff
from waiting to liquidate ETF shares until the terminal period. If the expected payoff of the
ETF in the terminal period is smaller than the current ETF share price reinvested at the
risk-free rate, xj < PE1 R

f , investors always liquidate all of their ETF shares prematurely. In
the absence of ETF inflows, this condition is never satisfied in equilibrium.

Proposition 1 In equilibrium, patient investors never liquidate any ETF shares early:

θi,E,j1
∗

= 1 ∀i = l with θi,E,j0 = 1.

(ii) Impatient ETF investors’ terminal wealth is given by:

wi1 = PE,j1 .

By definition, u(ci2) = u(wi1) ∀i = e.

(iii) Patient MF investors can decide to liquidate any of their MF shares early like patient
ETF investors. They solve the following problem:
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max
θi,M,j

1

E[wi2|x] (19)

s.t. wi2 = θi,M,j
1 PM,j

2 + (θi,M,j
0 − θi,M,j

1 )PM,j
1 Rf ,

θi,M,j
0 − θi,M,j

1 ≥ 0,

θi,M,j
1 ≥ 0.

In contrast to the terminal ETF payoff, the terminal MF payoff is uncertain even at t = 1.
Beyond xj , PM,j

2 depends on the early redemption decision of other MF investors. This
interdependency arises because the MF tracking difference, ∆M,j

2 , depends on fund flows at
t = 1. By definition, E[PM,j

2 |xj ] = xj − E[∆M,j
2 |xj ]. Because investors are risk-neutral, the

solution to equation 19 will always be on the boundary of the permissible range of θi,M,j
1 .

Patient MF investors’ optimal allocation policy at t = 1 as a function of the expected MF
tracking difference is then given by:

θi,M,j
1 =

0 if P j2 − E[∆M,j
2 |x] − PM,j

1 Rf ≤ 0,

1 if P j2 − E[∆M,j
2 |x] − PM,j

1 Rf ≥ 0.
(20)

In equilibrium, investors are perfectly forward looking and anticipate other investors’ actions
conditional on the realization xj . In the region of xj characterized by the potential existence
of multiple mutual fund market equilibria, the anchoring of expectations is achieved through
a sunspot equilibrium.

(iv) Impatient MF investors’ final wealth is given by:

wi1 = ψxj .

3.3 Equilibrium prices in the interim period

Equilibrium prices in the interim period are determined by market clearing between the MF,
AP, index market makers and ETF investors, given MF investors’ fund liquidations. In the
baseline model with segmented index markets, prices are set in the following sequence: First,
at t = 1 the ETF price, PE,j1

∗
, is determined relative to the index price from the AP’s optimal

ETF redemptions and investors’ net supply of ETF shares. Simultaneously, the index price
faced by the AP, P j1

∗, follows from the other side of its arbitrage trade and the market maker’s
net demand for index shares. Second, given MF investors’ net redemptions at t = 1, at t = 1+

the index price faced by MFs, P j1+
∗ is determined from market clearing between the MF’s

flow-induced index sales and its market maker’s net demand for index shares. Thereby, P j1+
∗

is derived independently of P j1
∗ due to the timing disparities between the intraday trading

activity of the AP and the next-day index trading activity of the MF. The model extension
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with integrated index markets is presented in section 3.3.1.

ETF price. PE,j1 follows from market clearing between APs and ETF investors, taking as
given the equilibrium index price P j1 . Since patient ETF investors never redeem early, the
aggregate number of ETF shares sold by investors at t = 1, denoted by ∆κE,j1 , is equal to
impatient investors’ liquidations:

∆κE,j1 =
∫
i
(θi,E,j0

∗
− θi,E,j1

∗
) di.

From equation 10 follows the AP’s net demand function for ETF shares at t = 1:

ΘE,j,AP
1 = (P j1 − PE,j1 )

ϕj
. (21)

ΘE,j,AP
1 refers to the number of ETF shares redeemed by APs in exchange for an equivalent

amount of index shares. Equation 21 implies that when the ETF trades at a discount (pre-
mium), the AP opts to redeem (create) ETF shares to the extent permitted by its balance
sheet capacity. ETF market clearing requires ΘE,j,AP

1 = ∆κE,j1 . Hence, given the index price
and ETF outflows by impatient investors, the ETF price as a function of the index price is:

PE,j1 = P j1 − ∆κE,j1 ϕj .

Index price at t = 1. Conditional on market clearing in ETF markets, the index price faced
by the AP at t = 1 follows from market clearing with the index market maker. ΘAP,j

1 = ΘE,AP
1

since the AP can always redeem one unit of the index in exchange for one ETF share. In the
case of cj > 0, when there is price impact in index markets, the t = 1 index price is:

P j1 = E[P j2 |xj ] − ∆κE,j1 cj .

For the ETF price it implies:

PE,j1 = E[P j2 |xj ] − ∆κE,j1 (cj + ϕj). (22)

ETF prices adjust in real time to supply and demand conditions in financial markets. ETF
investors internalize the price impact in index markets caused by AP arbitrage as well as
APs’ balance sheet capacity constraints. Because of AP balance sheet capacity constraints,
ϕj > 0, ETF prices are excessively flexible over the short term, PE,j1 < P j1 .

In the alternative scenario with cj = 0, the market maker’s net demand for index shares is
perfectly elastic. Index markets are infinitely liquid. APs do not have price impact. This
condition represents the reference point for liquid market segments, such as the S&P 500
index, during periods of abundant market-wide liquidity. In this setting, both APs and MFs
face a common equilibrium index price at t = 1 and t = 1+, represented by P j1 = P j1+ = xj .
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Proposition 2 The payoffs of the ETF and MF tracking index j are identical across all
investment horizons, PE,jt = PM,j

t ∀t = 1, 2 if one of the following two conditions is satisfied:

(i) Index markets are perfectly liquid and APs do not face any balance sheet capacity con-
straints, cj = 0, ψ = 0 and ϕj = 0.

(ii) Index markets are illiquid (cj > 0), but the MF NAV at t = 1 is perfectly forward look-
ing, APs do not face any balance sheet capacity constraints and the volume of outflows
from ETFs and MFs at t = 1 are equal, ∆κE,j1 = ∆κM,j

1 .

In these idealized environments, a fund structure irrelevance principle emerges: Under as-
sumptions (i) or (ii), the capital structure of a passive investment fund – if it is structured
as an ETF or an open-end mutual fund, has no impact on the payoffs to its investors.

Proposition 2 constitutes a special case of my theory. On one side, the assumptions that
support condition (i) may be applicable to large-cap domestic equity index funds in times
of ample market liquidity. On the other side, the requirement of equivalent volumes of fund
outflows from the ETF and MF (ii) is unlikely satisfied due to the random nature of investors’
liquidity shocks. There are two possible modifications of (ii): First, even if the ETF and MF
tracking index j experience different outflows ex-post at t = 1, their ex-ante expected payoffs
are identical across investment horizons as long as investors self-select into both fund types
at t = 0 at random, irrespective of their λi. Second, if the ETF and MF trade simultane-
ously in the index markets during the interim period, they encounter identical index prices
and offer equivalent payoffs to their investors, regardless of their individual outflows. The
latter result necessitates that MFs accurately predict their investors’ net redemption requests.

Mutual fund price. Under the baseline specification, the MF NAV at t = 1, is given by:

PM,j
1 ≡ ψE[P j2 |xj ], (23)

, where 0 < ψ < 1 reflects a penalty for premature fund liquidations. Formally, ψ < 1 ensures
that, in the absence of payoff complementarities, early redemptions would never be optimal
for patient investors. Investors earn a positive expected return when holding fund shares
until the underlying asset matures in t = 2.

In practice, trades of most U.S. MFs, with the exception of money market mutual funds
(MMFs), settle within one business day after the trade date, T + 1, whereas ETF transac-
tions currently settle T +2.12 Therefore, in the case of MF redemptions, investors receive the
cash proceeds from their sales with a delay of at most one business day. In my model, investors

12See SEC settlement cycle recommendation. Generally, the settlement cycle for transactions of publicly
traded securities, including ETFs, in the U.S. is T + 2. MMFs tend to settle T + 0 or T + 1. On February 15,
2023, the SEC adopted an amendment to an existing rule to further reduce the settlement cycle for standard
securities transactions to T + 1, see SEC release Nos. 34-96930, IA-6239; File No. S7-05-22 .
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receive the cash from their ETF and MF transactions on the same day, a convention followed
for simplicity. This assumption does not affect the model predictions; rather, accounting for
the later settlement date of ETF compared to MF transactions strengthens model predictions.

The number of MF redemptions are ∆κM,j
1 =

∫
i(θ

i,M,j
0 − θi,M,j

1 )di. It is noteworthy that even
in the case of a MF run in which all patient MF investors redeem their shares early, the
presence of the “sticky” MF investors ensures that the MF never fully disappears at t = 1,
κMt ≥ η > 0. This assumption does not mechanically produce the model predictions. It is
only necessary to simplify the model solution as it allows to abstract from events in which
the MF goes bankrupt. The equilibrium coexistence of ETFs and MFs follows from investors
initial allocation decisions, θMi,0 and θEi,0, which are fully endogenous in the model.

Index price at t = 1+. The index price at t = 1+ follows from market clearing between
the market maker’s net demand for index shares, ΘD,j

1+ =
E[P j

2 |xj ]−P j

1+
cj

, and MFs flow-induced
trading in index markets:

ΘM,j
1+ = ∆κM,j

1 PM,j
1

P j1+

. (24)

The maximum number of index shares which the MF can sell to meet investor redemptions
is bounded by its portfolio holdings according to ΘM,j

1+ ≤ κM0 due to short sale constraints.

In the special case in which there is no price impact in index markets, cj = 0, the number
of index shares sold by MFs is given by ΘM,j

1+ = ψ∆κM,j
1 . Abstracting from potential taxable

distributions of capital gains and trading commissions, there are no transaction costs and
therefore externalities associated with fund outflows.

Lemma 4 If index markets are frictionless, cj = 0, patient MF investors never choose to
redeem any MF shares early in equilibrium. There are no run risks in the index MF.

This result is consistent with prior empirical studies documenting higher run risk in more
illiquid fund market segments (e.g., Chen et al. (2010)).

In the more general case in which 0 < cj ≤ 1, investment funds have price impact in index
markets. The market clearing index price at t = 1+, follows from ΘM,j

1+ = ΘD,j
1+ and solves:

E[P j2 |x] − P j1+

cj
= ∆κM,j

1 PM,j
1

P j1+

. (25)

It exists as long as the fundamental index value x is large relative to the market maker’s
inventory costs, cj . To establish the uniqueness, I impose an additional assumption.
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Assumption 4 If there exists a pair of candidate prices and quantities, {P ′
1+ ,Θ′

1+}{P ′′
1+ ,Θ′′

1+},
satisfying equation 25, the equilibrium index price is given by the larger price candidate:

P j1+ = P ′
1 if P ′

1 ≥ P ′′
1 ,

and ΘM,j
1+ = Θ′

1.

Assumption 4 is consistent with a model in which market makers and MF managers engage
in price negotiations for their trade, defined by {P ′

1,Θ′
1}. They start at P j = xj and adjust

the index price downward until the market clears.

Proposition 3 If cj > 0 and
xj− 1

2 (xj−
√
x2

j −4cjψxj∆κM,j
1 )

cj
≤ 1 + η, for any volume of MF

redemptions ∆κM,j
1 ∈ [0, 1], the unique index market equilibrium at t = 1+ is given by:

P j1+ = 1
2(xj +

√
x2
j − 4cjψxj∆κM,j

1 ),

Θj
1+ =

xj + 1
2(xj −

√
x2
j − 4cjψxj∆κM,j

1 )
cj

.

The condition
xj− 1

2 (xj−
√
x2

j −4cjψxj∆κM,j
1 )

cj
≤ 1 + η follows from ΘM,j

1+ ≤ κM,j
0 .

Corollary 3 In the case with cj > 0, there exists an market clearing index price P j1+ that
solves 25 over 0 ≤ ΘM,j

1+ ≤ 1 + η if and only if xj ≥ 4cjψ.

Corollary 4 In the special case in which MF net redemptions at t = 1 are given by:

∆κM,j
1 = (1 − ψ)xj

cj
,

the equilibrium index price at t = 1+ is exactly equal to the MF net asset value at t = 1,
P j1+ = ψxj. Then, Θj

1+ = ∆κM,j
1 , and the MF tracking difference is zero, ∆M,j

2 = 0. In this
special case, the fund NAV at t = 1 is perfectly forward looking.

Ex-post, this equilibrium is comparable to the case in which the MF employs swing pricing
to ensure that exiting investors at t = 1 bear the transaction costs associated with their
redemptions. Ex-ante it differs from a swing pricing equilibrium due to the effect of swing
pricing policies on investors’ expectations regarding others’ redemption decisions.

Corollary 5 When ∆κM,j
1 ̸= (1−ψ)xj

cj
, the equilibrium index price at which the MF trades at

t = 1+ deviates from the MF NAV at which fund investors can redeem shares at t = 1:
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i. If ∆κM,j
1 <

(1−ψ)xj

cj
, the equilibrium index price at t = 1+ is larger than the MF NAV

at t = 1, P j1+ > ψxj. Then, ΘM,j
1+ < ∆κM,j

1 , and the terminal MF tracking differ-
ence becomes negative, ∆M,j

2 < 0. The remaining MF shareholders gain from other
investors’ redemptions at PM,j

1 because the latter sell at a fund NAV that is too low
given fundamentals. Premature redemptions are costly.

ii. If ∆κM,j
1 >

(1−ψ)xj

cj
, the equilibrium index price at t = 1+ is lower than the MF NAV

at t = 1, P j1+ < ψx. Then, ΘM,j
1+ > ∆κM,j

1 , and the terminal MF tracking difference
becomes positive, ∆M,j

2 > 0. The MF NAV at t = 1 is too high, as it does not fully
account for the full price impact associated with investor redemptions at t = 1.

3.3.1 Fund and index prices with a common index market maker

In an alternative specification, index markets are integrated and APs and MFs sequentially
trade with the same index market maker. In this case funds compete on the liability as well
as asset side. Because ETF arbitrage takes place intraday, the AP trades first at t = 1. Next,
given the price impact generated by the AP’s arbitrage activities, the MF trades with the
index market maker at t = 1+. The net demand schedule for index shares faced by the AP
remains the same as before. As a result, the index and ETF price at t = 1 are the same
under sequential trading with a common index market maker as in the baseline specification
with segmented index markets:

P j,Seq1 = xj − ∆κE,j1 cj = P j1 ,

PE,j,Seq1 = xj − ∆κE,j1 (cj + ϕj) = PE,j1 .

The MF price at t = 1 as well as the index price faced by the MF at t = 1+ are different
with sequential index trading: First, the MF NAV is set at the end of trading day, so the
AP’s intraday trading activities directly impact the MF price paid to redeeming investors at
t = 1. Whereas the MF NAV was quasi-exogenous in the baseline specification, it is now
fully endogenous and equal to the marginal index price faced by the AP:

PM,j,Seq
1 = xj − ∆κE,j1 cj .

As long as xj(1 − ψ) < cj∆κE,j1 , that is cj is large and ψ close to one, it holds that:

PM,j,Seq
1 < PM,j

1

ETF outflows do not only negatively impact ETF prices, through the AP arbitrage channel,
they also decrease the end-of-day NAVs of same-index MFs to the extent that APs pass on
selling pressure from ETF to index markets. The intraday nature of ETF trading makes MF
prices endogenously more flexible. Redeeming MF investors at t = 1 still do not face the
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trading costs associated with their own redemptions, but they internalize the price impact
caused by impatient ETF investors’ early liquidations.

Second, the net demand schedule for index shares faced by the MF differs:

ΘD,j,Seq
1+ =

xj − ∆κE,j1 cj − P j1+

cj
.

The market maker’s index inventory expands after trading with the AP. Given its quadratic
inventory cost, the market maker therefore demands an even larger discount relative to the
fundamental index value, xj , to absorb the additional supply of index shares from the MF.

Overall, asset side competition between same-index ETFs and MFs reduces the MF’s short-
term liquidity provision, PM,j,Seq

1 < PM,j
1 , to the benefit of long-term MF investors. The

greater flexibility of the MF price at t = 1 discourages early redemptions by patient MF in-
vestors as they are forced to bear the transient price impact cause by ETFs in index markets.
ETF investors’ trading at t = 1 comes at the cost of short-term MF investors to the benefit
of long-term MF investors.

The key model predictions regarding investors’ optimal allocation and funds relative liquid-
ity provision over time continue to hold. For tractability, the rest of the paper builds on the
simplified baseline model with segmented index markets. This is consistent with the practice
of broker-dealers to have separate trading desks responsible for ETF arbitrage as compared
to market making for mutual funds and other buy-side entities.

3.4 Equilibrium allocations in the interim period

Investors’ equilibrium portfolio allocations in the interim period, θi,E,j1
∗

and θi,M,j
1

∗
, directly

follow from market clearing in the ETF, MF, and index markets at t = 1 and investors’
optimal investment strategies.

ETF market equilibrium. From proposition 1, it follows:

θi,E,j1
∗

=

1 ∀i = l (patient types) with θi,E,j0
∗

= 1,

0 ∀i = e (impatient types) with θi,E,j0
∗

= 1

and

PE,j1
∗

= xj − ∆κE,j1
∗
cj︸ ︷︷ ︸

Price
discovery

+ ∆κE,j1
∗
ϕj︸ ︷︷ ︸

Relative
mispricing

. (26)
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∆κE,j1
∗

= eE is the fraction of ex-post impatient ETF investors.

Besides the fundamental, xj , the equilibrium ETF price in equation 26 depends on two
components, one reflecting price discovery and another relative mispricing. First, the price
discovery component is given by ∆κE,j1

∗
cj . It reflects the price impact generated in index

markets as a result of the AP’s arbitrage trades. When deciding on its optimal ETF redemp-
tions, the AP takes into account its expected price impact in index markets and directly
passes it on to the trading ETF investors. Through this mechanism, price discovery takes
place in ETF markets intraday. Early ETF investors pay the flow-induced transaction costs
caused by their trading decisions.

Second, the equilibrium relative ETF mispricing is given by

ϵE,j
∗ = ∆κE,j1

∗
ϕj .

Since eE ≥ 0 whenever the ETF has non-zero AUM and ϕj > 0 ∀j, the ETF trades at a
discount to its benchmark index. The equilibrium mispricing is increasing in ∆κE,j1

∗
and ϕj .

It arises because ETF arbitrage temporarily consumes the AP’s balance sheet capacity. The
more illiquid the ETF’s index holdings (higher ϕj), the more time it takes the AP to complete
an ETF arbitrage trade and therefore, the longer the AP has to hold the index shares on its
balance sheet. The latter aspect of the model mirrors the empirical fact that corporate bond
and international equity ETFs often exhibit larger mispricing when compared to large-cap
domestic equity ETFs (see figures A.5 - A.12). Intuitively, amid excess supply of ETF shares
from investors, the ETF price has to adjust downward to incentivize the AP to step in and
supply liquidity on secondary ETF markets. ϵE,j1 represents the AP’s compensation for liq-
uidity provision in times of aggregate illiquidity. An alternative approach to generating the
same results is by making the AP risk-averse and introducing price risk in index markets.

As a result, the ETF price is excessively flexible over the short term. It does not only reflect
index market price impact but also the balance sheet cost associated with AP’s liquidity-
provision services. Both costs are borne by impatient ETF investors. Investors cannot create
or redeem ETF shares themselves. They depend on the AP’s creation and redemption activ-
ities and bear all associated costs. Overall, the more illiquid the index j and the higher the
mass of impatient ETF investors at t = 1, the larger the index market price impact and ETF
mispricing, and thus the liquidation costs for any individual impatient ETF investor.

Patient ETF investors have no incentive to liquidate their shares early. ETF investors only
trade fund shares when they need liquidity. In this specification, price impact in index mar-
kets is transitory. Over the long term, the ETF pays xj independent of trading activity in
prior periods. Accordingly, by waiting to liquidate until the terminal period, patient ETF
investors can avoid both, the index price impact and relative ETF mispricing. The results
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are robust to an alternative specification in which index price impact is persistent. ETF
mispricing is sufficient to deter early liquidations by patient ETF investors.

MF market equilibrium. Patient MF investors’ early redemption incentives illustrated
in equation 20 are increasing in the expected volume of redemptions by other MF investors,
E[∆κM,j

1 |xj ], index market illiquidity, cj , and decreasing in the fundamental, xj . Each MF
investor’s optimal allocation is a function of the expected terminal MF tracking difference,
which in turn depends on the allocation decisions of all MF investors at t = 1. As a result of
the payoff complementarities among MF investors, the MF market at t = 1 is characterized
by the possibility of multiple equilibria. To show this formally, I first analyze two regions of
very bad and very good fundamentals, where each patient MF investor’s optimal allocation is
independent of her beliefs regarding other patient MF investors’ actions. Following the pre-
vious literature (e.g., Goldstein and Pauzner (2005)), I refer to these regions of fundamental
values as the lower and upper dominance regions. In these two regions, patient MF investors’
allocations at t = 1 are only a function of the fundamental index value and general model
parameters.

Lower dominance region. The lower dominance region encompasses values of the fun-
damental in the range xj ∈ (0, xj ]. In this region, fundamentals are sufficiently bad, such
that early redemption is the dominant strategy for any individual patient investor. After
observing xj < xj , an investor redeems all her MF shares early, even if all other patient MF
investors choose not to redeem their shares early. At the boundary xj = xj , a patient investor
is indifferent between redeeming early and remaining invested until t = 2. Let ēM = E[eM ]
be the expected mass of impatient MF investors at t = 1 and note that ēM only depends on
the initial mass of MF investors, κM,j

0 , and their liquidity risk λi.

Then, the lower dominance region is characterized by the value xj , which solves:

E[P j2 − ∆M,j
2︸ ︷︷ ︸

Payoff from
liquidating

at t = 2

− PM,j
1 Rf︸ ︷︷ ︸
Payoff

from early
redemption

|xj = xj ∪ ∆κM,j
1 = ēM ] = 0. (27)

All uncertainty in equation 27 comes from ∆M,j
2 ’s dependence on MF investors’ redemptions.

Upper dominance region. The upper dominance region is defined by xj ∈ [xj ,∞). In
this region, fundamentals are so good that patient MF investors always keep all of their MF
shares until t = 2. After observing xj ≥ xj , they never redeem early even if all other patient
MF investors are liquidating at t = 1. Before portfolio reallocation, the mass of all patient
and impatient MF investors at t = 1 is eM + lM ≤ 1. Hence, eM + lM = κM,j

0 − η, where η
is common knowledge and κM,j

0 is observed after allocation decision have been made in the
initial period. Then, the upper dominance region is characterized by the value xj that solves:
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E[P j2 − ∆M,j
2 − PM,j

1 Rf |xj = xj ∪ ∆κM,j
1 = κM,j

0 − η] = 0 (28)

The condition 28 is similar to condition 27 except that it is derived conditional on all other
MF investors liquidating their shares early, ∆κM,j

1 = eM + lM .

Proposition 4 There exists a lower and upper dominance region with respect to the fun-
damental that is characterized by the boundary values xj and xj, with xj ≤ xj, such that
for any realization of the fundamental within these regions (xj ≤ xj or xj ≥ xj) the MF
market at t = 1 has a unique equilibrium in which patient MF investors always redeem all of
their shares early or never redeem any shares early at all, irrespective of their beliefs of other
patient MF investors’ portfolio allocations. Formally, ∃ xj , xj s.t.

θi,M,j
1

∗
(xj ≤ xj) = 0,

θi,M,j
1

∗
(xj ≥ xj) = 1.

If additionally xj < xj, the range of xj over which multiple equilibria exist in the MF market,
xj ∈ (xj , xj) is non-empty.

The lower dominance region in which a MF run is the unique equilibrium outcome irre-
spective of agents beliefs regarding other patient investors’ actions is defined by:

xj = cj(ψēM + (1 − ψ)κM,j
0 )2

(1 − ψ)κM,j
0

. ∀ ēM > 0. (29)

In the special case in which ēM = 0, xj = 0, the lower dominance region is empty.

The upper dominance region in which no patient MF investors choose to sell any MF
shares early irrespective of their beliefs of other patient MF investors’ actions is defined by:

xj =
cj
(
κM,j

0 − ψη
)2

(1 − ψ)κM,j
0

. (30)

The relative importance of payoff complementarities in patient MF investors’ allocation de-
cision diminishes with xj . As the fundamental improves, MFs’ index price impact decreases,
while the early liquidation penalty increases in absolute terms. Fund outflows at t = 1 do not
impose significant costs on remaining investors when expected long-term returns are high.

Corollary 6 The size of the run (lower dominance) region (0, xj ] is increasing in cj, the
index illiquidity, as well as in eM , the mass of impatient MF investors.

36



This result directly follows from the partial derivatives of equation 29. MFs with more illiquid
portfolios and investors with high short-term liquidity needs are more prone to runs.

Corollary 7 The size of the no-run (upper dominance) region [xj ,∞) is decreasing in cj as
well as in κM,j

0 , the total mass of MF investors.

Corollary 8 In the special case in which cj = 0 and MFs do not have price impact in index
markets, xj = xj = 0. The region of xj over which a MF run is the unique or one possible
equilibrium outcome is empty. There are no negative externalities among MF investors and
MFs never occur in equilibrium.

For xj ∈ (xj , xj), there exist MF multiple equilibria at t = 1. The equilibrium outcome de-
pends on agents’ beliefs regarding other patient investors’ redemption strategy, E[∆κM,j

1 |xj ].
To overcome this multiplicity I use the sunspot equilibrium selection technique. In the region
(xj , xj), the equilibrium is determined by an i.i.d. sunspot for every realization of xj .

Assumption 5 For any xj ∈ (xj , xj), investors beliefs are such that they expect all other
patient MF investors to run versus not run with equal probability. Formally:

π ≡ Prob(∆κM,j
1 = eM + lM |xj < xj < xj) = 0.5.

Consequently, Prob(∆κM,j
1 = eM |xj < xj < xj) = 1 − π = 0.5.

I use this specification to maintain tractability. The model predictions are robust to different
values for π.

3.5 Equilibrium allocations in the initial period

At t = 0, each investor invests in the fund type that maximizes her expected lifetime wealth:

θi,E,j0 =

1 if E0[wiT |λi, θi,E,j0 = 1] ≥ E0[wiT |λi, θi,M,j
0 = 1]

0 if E0[wiT |λi, θi,E,j0 = 1] < E0[wiT |λi, θi,M,j
0 = 1]

(31)

and

θi,M,j
0 =

1 if E0[wiT |λi, θi,M,j
0 = 1] > E0[wiT |λi, θi,E,j0 = 1]

0 if E0[wiT |λi, θi,M,j
0 = 1] ≤ E0[wiT |λi, θi,E,j0 = 1].

(32)

The allocation policy defined by equations 31 and 32 assumes that an investor who is indiffer-
ent between the ETF or MF invests her entire endowment in the ETF. I abstract from mixed
strategies and only focus on pure-strategy equilibria. This simplification does not affect the
model predictions because the mass of investors with any given λi is infinitely small.
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Assumption 6 The investor who is indifferent between allocating her portfolio to ETFs or
MFs at t = 0 invests her entire endowment in ETFs.

The goal of this paper is to solve for θi,E,j and θi,M,j as a function of λi. If all investors
allocated their entire endowment to the ETF in equilibrium, irrespective of their liquidity
risks, θi,E,j = 1 and θi,M,j = 0 ∀λi, ETFs would drive MFs extinct.

Investor i’s expected payoff from investing in the ETF at t = 0 in equation 31 is given by:

E0[wiT |λi, θi,E,j0 = 1] = µj − λiE0[eE ](cj + ϕj), (33)

where E0[eE ] is the expected mass of impatient ETF investors at t = 1. Equation 33 ac-
counts for the result that patient ETF investors never choose to redeem early. ETF investors
portfolio reallocation decision is independent of the fundamental. Impatient ETF investors
receive PE,j1 = xj − ∆κE,j1 (cj + ϕj) at t = 1. Patient ETF investors receive PE,j2 = xj . They
account for the distribution of the fundamental and other ETF investors’ liquidity risks in
their initial allocation decision at t = 0.

Investor i’s expected payoff from investing in the MF at t = 0 in equation 32 is given by

E0[wiT |λi, θi,M,j
0 = 1] = λiE0[wiT |λi, θi,M,j = 1 ∪ i = e]

+ (1 − λi)E0[wiT |λi, θi,M,j = 1 ∪ i = l] (34)

= λiψµj︸ ︷︷ ︸
i is impatient

+ (1 − λi)Rfψ
(∫ xj

0
xjdx+ 1

2

∫ xj

xj

xjdx

)
︸ ︷︷ ︸

i is patient x run equilibrium

+ (1 − λi)
(1

2

∫ xj

xj

(xj − ∆M,j
2 )dx+

∫ ∞

xj

(xj − ∆M,j
2 )dx

)
︸ ︷︷ ︸

i is patient x no-run equilibrium

.

The expected lifetime MF payoff does not only depend on investors’ own types and the
fundamental, but additionally depends on other MF investors’ types and decisions and the
sunspot. Not only the MF’s terminal tracking difference, ∆M,j

2 , but also the size of the run
region (xj , xj) depends on the size of the MF as of t = 1 as well as the distribution of liquidity
risks among fund investors.

Within an index segment j, all cross-sectional variation in investors’ initial allocations is due
to heterogeneity in λi because everyone has identical preferences and there is no asymmetric
information regarding xj . The model is characterized by a cut-off equilibrium: Investors
self-select into fund types based on their idiosyncratic liquidity needs.

Lemma 5 If (1 −ψ)µj is small relative to cj +ϕj, so there is price impact in index markets,
cj > 0, APs face balance sheet capacity constraints, ϕj > 0, and MF prices are imperfectly
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flexible over the short-term, ψ → 1, an investor with λi = 1 always invests in the MF at
t = 0, whereas an investor with λi = 0 always invests in the ETF:

θi,M,j
0

∗
=

0 if λi = 0

1 if λi = 1

θi,E,j0
∗

=

1 if λi = 0

0 if λi = 1

Th intuition behind lemma 5 is simple: The MF payoff at t = 1 is larger than the ETF
payoff, PM,j

1 > PE,j1 , when funds experience outflows and markets are illiquid. Under the
same conditions, the ETF payoff at t = 2 is larger than the MF payoff, PM,j

2 > PE,j2 . On one
side, an investor with λi = 1, who faces a certain liquidity need at t = 1, always prefers the
MF over the ETF. This investor values the short-term liquidity insurance provided by MFs’
guaranteed redemption at the fund NAV and wants to avoid the short-term mispricing risk
in ETFs. Since she always liquidates all fund holdings at t = 1, she does not face any MF
share dilution risk. On the other side, a definitive long-term investor (λi = 0) always prefers
the ETF over the MF. This type of investor wants to avoid the potential long-term share
dilution in MFs and is not affected by the ETF’s short-term mispricing risk. By definition,
as a long-term investor she never needs to sell fund shares at a time when markets overall
are illiquid and the cost of liquidity provision as reflected in the ETF mispricing is large.

Moving along the liquidity risk distribution starting at λi = 1, as λi decreases, the weight
investors place on the fund payoff at t = 1 decreases while the weight placed on the payoff
at t = 2 increases. Investors start to value MFs’ short-term liquidity insurance less and in-
creasingly care about reducing long-term share dilution risks. Eventually, when an investor’s
liquidity risk crosses a threshold level, λ′, her expected return from investing in the ETF
begins to exceed her expected return from the MF.

Proposition 5 Investors facing high liquidity risks or short-term investment horizons self-
select into mutual funds. Investors facing low liquidity risks or long-term investment horizons
self-select into ETFs:

∃λ′ for which {θi,E,j0
∗
, θi,M,j

0
∗
} = {1, 0} ∀i with λi ≤ λ′

and {θi,E,j0
∗
, θi,M,j

0
∗
} = {0, 1} ∀i with λi > λ′.

Importantly, the ETF and MF payoff are both increasing over time. The relative fund payoffs
change over time, giving rise to the cut-off equilibrium described in proposition 5. The ETF
payoff increases more strongly between t = 1 and t = 2 because of its larger sensibility to mar-
ket liquidity conditions. After a period (t = 1) characterized by less liquidity and substantial
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liquidity-driven fund liquidations, ETF investors in the model earn higher expected returns.
Because the MF shields investors from changes in liquidity conditions and flow-induced price
impact over the short-term, it provides them with more stable payoffs over time.

Fund and index prices. At t = 0, the fund sponsors receive capital investments from
investors and convert them into MF and ETF shares respectively at an exchange rate of
one. Initially, both funds and the index have the same price because fund shares are created
outright at t = 0. ETF mispricing and MF tracking difference are zero:

PM,j
0 = PE,j0 = P j0 .

I normalize P j0 = 1.

Fund market shares. Following proposition 5, the equilibrium market shares of the ETF
and MF at t = 0 are given by:

MktShareE,j0
∗

= λ′

MktShareM,j
0

∗
= 1 − λ′

3.6 Comparison to pre-ETF fund market equilibrium

This model presumes the coexistence of ETFs and MFs in a given index market segment.
Consistent with this assumption, in the data many of the most popular benchmark indices
are tracked by an ETF and MF. This has not always been the case. The first U.S. index
MFs was launched already in 1976 by Vanguard (Vanguard 500 Index Fund) whereas ETFs
were introduced in 1993 with the launch of SPY. Until then, MFs were the only option for
households to cheaply access diversified portfolios and less liquid market segments. These
developments beg the question of how the availability of ETFs, in addition to MFs, affects
index investors’ payoffs as well as the overall characteristics of funds’ investor base and their
vulnerability to early redemptions.

In principle, there are three variations of the index fund market: (i) MF monopoly, (ii) ETF
monopoly, (iii) coexistence of ETF and MF. I refer to the model’s baseline equilibrium, in
which ETFs and MFs coexist, as the competitive equilibrium. Importantly, in this equilib-
rium there exists only one ETF and on MF. They compete solely with each other based on
their common index portfolio. Table 1 summarizes investors’ payoffs under the different fund
market structures.

Table 1 provides three main insights: First, investors at the ends of the liquidity risk distri-
bution with λi = 0 and λi = 1 are indifferent between the competitive equilibrium and the
equilibrium featuring the monopoly of their preferred fund type. Following lemma 5, they are
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not affected by other investors’ choices as long as the fund type tailored to their liquidity needs
exists. Yet, in the MF (ETF) monopoly in which their preferred fund does not exist investors
with λi = 0 (λi = 1) are worse off. Second, ETF investors overall receive higher payoffs in
the competitive equilibrium than in the ETF monopoly. They benefit from ETFs’ competi-
tion with MFs because of the associated reduction in short-term mispricing risk. Third, MF
investors generally receive lower payoffs in the MF monopoly versus the competitive equi-
librium as they depend on the presence of other long-term investors for liquidity co-insurance.

Table 1: Investors’ expected payoffs across different fund market structures

λi = 1 λi > λ′ λi ≤ λ′ λi = 0

CE ψµj E[wi
Ti

|λi, θ
i,M = 1] µj − λi∆κE,j

1 (cj + ϕj) µj

MF only ψµj E[wi
Ti

|λi, θ
i,M = 1] E[wi

Ti
|λi, θ

i,M = 1] E[wi
Ti

|λi, θ
i,M = 1]

ETF only µj − 1
2 (cj + ϕj) µj − λi

1
2 (cj + ϕj) µj − λi

1
2 (cj + ϕj) µj

Note: The table shows the expected fund payoffs of investors, characterized by λi, under various fund
market structures. CE refers to the competitive equilibrium in which investors choose between an
ETF or MF. Expected CE payoffs are derived under investors’ optimal investment policy following
proposition 5. E[wi

Ti
|λi, θ

i,M = 1] is derived in equation 34. In the MF (ETF) monopoly, all payoffs
are conditional on investments in the MF (ETF). ETF payoffs are in red and MF payoffs are in blue.

MF monopoly. The MF monopoly represents a pooling equilibrium in which all investors
invest in the mutual fund irrespective of their λi. The law of large numbers implies that the
mass of early MF investors in this setting is ē = 0.5. In expectation, half of the investors
need liquidity at t = 1, while the other half are patient. Runs are possible. The run regions
continue to be defined by equations 29 and 30.

On one hand, in the MF monopoly, the region in which a run is the unique equilibrium
outcome is smaller than in the competitive equilibrium:

xMF
j > xCEj . (35)

This happens because the ratio of impatient to patient MF investors decreases relative to the
competitive equilibrium. Intuitively, when relatively more long-term investors with λi ≤ λ′,
who would otherwise invest in ETFs, are pooled with more short-term investors (λi > λ′),
the average horizon of the MF’s investor base increases from 1.5 − λ′

2 in the competitive
equilibrium to 1.5. The average investment horizon in the MF monopoly is equal to the
horizon of the average investor in the economy. As a result, the long-term share dilution cost
caused by the impatient MF investors is shared among a larger group of patient MF investors.
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On the other hand, in the MF monopoly, the region in which the no-run scenario is the unique
equilibrium outcome is also smaller compared to the competitive equilibrium:

xMF
j < xCEj . (36)

As the fraction of impatient MF investors decreases, the share of patient MF investors in-
creases. As a result, the potential share dilution costs associated with other patient MF
investors’ early liquidations rise. Anticipating this possibility, every individual patient MF
investors faces stronger incentives to redeem her shares early if she believes other patient
investors will do so as well.

Equations 35 and 36 together imply that the region over which multiple MF market equi-
libria are possible, xj ∈ (xMF

j , xMF
j ), is larger in the MF monopoly. Therefore, the effect

of moving from the competitive equilibrium to the MF monopoly for overall run risk in this
model is ambiguous as it depends on the exogenous sunspot probability of a run over the
region defined by xj ∈ (xMF

j , xMF
j ).

At the investor level, long-term investors characterized by a low λi are worse off in the pooling
MF monopoly compared to the competitive equilibrium. They have no choice but to subsidize
the MF’s short-term liquidity provision and are unlikely to benefit from the guaranteed MF
redemption at NAV themselves. States in which they do redeem early are associated with a
MF run. Investors on the other side of the liquidity risk spectrum, characterized by a high
λi, are equally well off under both equilibria. They would choose to invest in MFs regardless
and are likely to withdraw early. The medium λi investors benefit. These investors are able
to access the MF’s short-term liquidity insurance while sharing the long-term share dilution
cost with the even more long-term investors.

ETF monopoly. The ETF monopoly represents a pooling equilibrium in which all investors
invest in the ETF irrespective of their λi. Due to the absence of run risk in ETFs, in
equilibrium half of the ETF investors liquidates their shares early, while the other, patient
half waits until the terminal period. The total expected fund outflows in the interim period
are strictly smaller in the ETF compared to the competitive equilibrium because inefficient
early liquidation by patient investors never occur:

E[∆κE,j,CE1 + ∆κM,j,CE
1 ] > E[∆κE,j,ETF1 ] = 0.5.

Following 26, the ETF monopoly equilibrium prices are given by:

PE,j,ETF1 = xj − 1
2(cj + ϕj) < PE,j,CE1 ,

PE,j,ETF2 = xj = PE,j,CE2 .
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The long-term ETF payoff is unaffected by the larger mass of short-term ETF investors since
every ETF investor bears her own transaction cost. The ETF price at t = 1 in the ETF
monopoly is lower than in the competitive equilibrium. Intuitively, when investors’ with
λi > λ′ are invested in the ETF instead of the MF, there are more early ETF liquidations,
∆κE,j,ETF1 > ∆κE,j,CE1 . Amid market maker inventory costs and AP balance sheet capac-
ity constraints, ETF investors’ increased selling pressure leads to larger index market price
impact and more ETF mispricing. These costs are born by the redeeming ETF investors.
Investors facing the largest liquidity risks, λi > λ′, who would choose to invest in MFs if
offered the option, are significantly worse off compared to the competitive equilibrium. In-
vestors facing medium liquidity risks 0 < λi < λ′ similarly suffer from the pooling of absence
of short-term liquidity insurance in the ETF monopoly if they receive a liquidity shock at
t = 1. Intuitively, all impatient ETF investors trade at the same equilibrium price. They
do not only face the price impact associated with their trading activity, but also suffer from
ETF mispricing. The larger the share of short-term ETF investors, the higher the ETF sell-
ing pressure, and therefore the more depressed the ETF market price. Only ETF investors
with λi = 0 are truly indifferent between the ETF monopoly and the competitive equilibrium.

4 Policy implications

The model can be used to analyze several ongoing policy debates. I consider three applications
– swing pricing, retirement plans and multi-fund share structures.

4.1 Swing pricing in open-end mutual funds

In November 2022, the SEC proposed a new rule to mandate the use of swing pricing for
all U.S. open-end mutual funds other than money market funds and ETFs.13 Swing pricing
is a price-based liquidity management tool. It allows funds to adjust their NAV when faced
with significant out- or inflows. For example, if the fund faces net outflows above a certain
threshold (the swing threshold), it will reduce the NAV at which investors can redeem their
shares by a pre-specified percentage factor (the swing factor). By imposing flow-induced
trading costs on exiting or entering investors, swing pricing aims to mitigate payoff comple-
mentarities among MF investors. Consistent with the key MF friction in my model, the SEC
highlighted the risk of flow-induced share dilution for MF shareholders as a main motivation
for their proposed rule. Specifically, the SEC argues “Even when a fund manages its liquidity
effectively, transaction costs associated with meeting redemption requests or investing the
proceeds of subscriptions can create dilution for fund shareholders”.14

I consider a model extension featuring full swing pricing. Under a full swing pricing policy,
the MF price is “swung” whenever there are any net fund flows, ∆κM,j ̸= 0. In this case,

13File S7-26-22, Open-End Fund Liquidity Risk Management Programs and Swing Pricing; Form N-PORT.
14See https://www.sec.gov/files/33-11130-fact-sheet.pdf.
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the swing threshold is effectively zero.15 Accordingly, swing pricing simply imposes a wedge
between the MF NAV and the price at which investors trade. Given a swing factor of sj > 0,
the MF price at at t = 1 becomes:

PM,j,Swing
1 =

NAV
M,j

1 − sj if ∆κM,j
1 > 0

NAVM,j
1 + sj if ∆κM,j

1 < 0.
(37)

In equilibrium the MF experiences net outflows in the interim period, ∆κM,j
1 > 0. Hence,

the price received by MF investors at t = 1 under the swing pricing policy is lower than their
payoff in the baseline model which is given by equation 23:

PM,j,Swing
1 < PM,j

1 .

Optimal swing factor. The main challenge in implementing swing pricing is the calibration
of the swing factor sj . In my model, the optimal swing factor is endogenously determined.

Proposition 6 Within any index segment j and conditional on the volume of MF redemp-
tions, ∆κM,j

1 , the optimal MF swing factor is given by:

sj
∗ = cj∆κM,j

1 (38)

sj
∗ depends on the inventory cost of the market maker which is the root cause of flow-

induced price impact in illiquid index markets in this framework. Adjusting the MF NAV by
sj

∗ ensures that the MF’s index market price impact at t = 1 is passed on to the leaving MF
investors in proportion to their redemptions. If the MF price is set according to the pricing
rule in equation 37 and the swing factor is calibrated in line with proposition 6, the price
faced by MF investors at t = 1 is given by:

PM,j,Swing
1 = xj − cj∆κM,j

1 .

In this case, PM,j,Swing
1 = P j1+ . Swing pricing makes the MF price perfectly forward looking.

Then, corollaries 1 and 2 imply that the MF tracking difference, ∆M,J
2 , must be zero under

the optimal swing pricing rule. There is no MF share dilution risk, and therefore also no
first-mover advantage.

Corollary 9 Optimal swing pricing enables the MF to precisely replicate the index perfor-
mance across all time horizons:

15The alternative is partial swing pricing. Under partial swing pricing the swing threshold is non-zero.
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PM,j,Swing
1 = P j1+ = xj − cj∆κM,j

1 ,

PM,j,Swing
2 = P j2 = xj .

MF liquidity transformation is frictionless. The MF strictly dominates the same-index ETFs
in terms of liquidity provision. In equilibrium, all rational investors choose to invest in the
swing-pricing MF over the ETF:

θi,M,j,Swing
0 = 1 ∀i

θi,E,j,Swing0 = 0 ∀i

Corollary 10 If the MF utilizes swing pricing, the swing factor is calibrated optimally ac-
cording to equation 38, and investors are rational and forward-looking, swing pricing elim-
inates any first-mover advantage within MFs. In equilibrium only impatient MF investors
choose to redeem their shares early at t = 1:

∆κM,j,Swing
1 =

∫
i=e

θi,M,j
0 di

In terms of the cut-off equilibrium, corollary 9 implies:

λ′Swing = 0.

With optimal swing pricing, the ETF and MF yield identical returns over the long term.
In the short term, MFs outperform ETFs when the latter experience relative mispricing due
to intermediary balance sheet constraints and both trade at the same index price. In this
scenario, swing pricing does not only help MFs compete with ETFs, it can drive ETFs extinct.

Suboptimal swing factor. In practice, the optimal calibration of swing factors is challeng-
ing. While funds can observe the flow-based component of sj∗, the price impact parameter,
cj , is more difficult to estimate accurately.16 Unlike in this model, security market price
impact may not always be linear in fund flows. Especially in periods of extreme market
stress, trading costs can rise significantly. Price impact estimates derived from histori-
cal data may prove insufficient. Nonetheless, especially in these bad states (low xj), the
accurate calculation of swing factors is particularly important to minimize share dilution

16Currently, many MFs in the U.S. do not observe fund flows before they set their end-of-day NAV. This
is an institutional constraint that could be eliminated by establishing a hard close on the time by which MF
orders must be received in order to be executed at the day’s NAV. Specifically, the MF, its transfer agent,
or a registered clearing agency would need to receive the order information before the daily NAV is set. The
latter typically happens at 4pm ET. The hard close requirement is part of the SEC’s swing pricing proposal.
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and consequently reduce run risks.Prior studies provide evidence in favor of the insufficient
calibration of swing factors in jurisdictions where swing pricing is already commonly used
(Jin, Kacperczyk, Kahraman, and Suntheim 2021; International Monetary Fund 2022).

If swing factors fail to comprehensively account for all the costs associated with investor
flows, sj < cj∆κM,j

1 , same-index ETFs and MFs continue to coexist in the model equilib-
rium. Swing pricing curbs share dilution for long-term MF investors by reducing short-term
liquidity provision. Share dilution decreases but persists because payoffs to short-term MF
investors continue to exceed their “fair share” of the fund’s assets. Consequently, the marginal
investor, characterized by her indifference between investing in the index MF and ETF in
the no-swing pricing equilibrium, now prefers the MF over the ETF. The average expected
investment horizon of the MF investor base increases. This reduces relative MF outflows as
well as the risk of MF runs during states of market illiquidity.

Table 2 summarizes the fund payoffs under different calibrations of the MF swing pricing
policy. Overall, within any specific index fund category, investors facing higher short-term
liquidity risks are worse off following the implementation of swing pricing, regardless of its
calibration. By design, swing pricing redistributes payoffs from investors who are trading to
those who remain invested in the fund. If they had a choice, investors characterized by a
high λi would always choose the no-swing pricing index MF. Conditional on swing pricing,
they prefer suboptimally calibrated swing factors. Investors with “medium” liquidity needs
(λi) distinctly benefit from a swing pricing policy. Under optimal swing pricing, the MF
provides them with higher payoffs than the ETF in case they need liquidity at short notice
while offering identical long-term returns. Only definitive long-term investors, λi = 0, remain
indifferent between the ETF and MF. Under suboptimal swing pricing, the MF offers superior
expected payoffs to investors located at the boundary between ETFs and MFs, λi = λ′, in
the baseline model. Yet, investors who are less likely to need access to their capital at short
notice continue to prefer ETFs over same-index MFs.

Table 2: Fund payoffs under different swing pricing policies

Swing factor PM,j
1 PE,j

1 PM,j
2 PE,j

2

sj = 0 NAV M,j
1 xj − ∆κE,j

1 (cj + ϕj) xj − ∆M,j
2 xj

0 < sj < s∗
j xj − sj xj − ∆κE,j

1 (cj + ϕj) xj − ∆̃M,j
2 xj

sj = s∗
j xj − ∆κM,j

1 cj xj − ∆κE,j
1 (cj + ϕj) xj xj

Note: The table shows the fund payoffs at different times, t = 1, 2, and under various MF swing
pricing policies. sj = 0 refers to the baseline model specification without swing pricing, sj = s∗

j

denotes swing pricing with optimally calibrated swing factors and 0 < sj < s∗
j is swing pricing with

swing factors that fall short of fully capturing the flow-induced trading costs in MFs.
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Link to ETF prices. In this model, the optimal swing factor directly follows from the
equilibrium ETF price in the interim period 26. The ETF price is determined intraday by
market clearing between ETF investors and the AP. It reflects any price impact caused by AP
arbitrage because the profit-maximizing AP simply passes on all costs associated with ETF
creations or redemptions to the investors seeking liquidity in ETF markets. Yet, the ETF
price is excessively flexible because it also reflects AP balance sheet capacity constraints. In
the short-run, limits to ETF arbitrage imply that the law of one price does not necessarily
hold with respect to ETF and index markets. The difference between the NAV and market
price of an ETF tracking index j can reflect forward-looking price discovery and mispricing:

NAV E,j
1 − PE,j1 = xj − (xj − ∆κE,j1 (cj + ϕj)) = ∆κE,j1 cj︸ ︷︷ ︸

Price discovery

+ ∆κE,j1 ϕj︸ ︷︷ ︸
ϵE,j

1 , mispricing

(39)

Corollary 11 When APs face balance sheet capacity constraints, ϕj > 0, ETF discounts
represent an upper bound on the optimal swing factor:

NAV E,j
1 − PE,j1

∆κE,j1
>

sj
∗

∆κM,j
1

.

Anadu, Levin, Liu, Tanner, Malfroy-Camine, and Baker (2023) suggest to use observed ETF
discounts as a proxy to calibrate swing factors for MFs holding similar portfolios. Equation
39 and corollary 11 illustrate that in states where APs are balance sheet constrained and
ETF arbitrage is imperfect, swing factors derived from ETF discounts may lead to an overes-
timation of the trading costs associated with the redemption of MF investors. This, in turn,
can result in excessive liquidation costs being imposed on MF investors seeking redemption.

4.2 Index investments within retirement accounts

Although, I model portfolio allocations made by investors outside of their retirement invest-
ment accounts, this study applies to index fund selection within retirement accounts, an
area of paramount significance. Until they near their retirement, retirement investors are
long-term investors who face significant penalties for early withdrawals. Retirement assets
invested in index MFs are usually commingled with those originating from non-retirement
accounts offering daily liquidity. It is noteworthy that distinct share classes, catering to
retirement, institutional, and retail investors, frequently coexist within a single MF, each
sharing the same underlying portfolios and associated trading costs. Investors holding index
MFs with illiquid portfolios within their retirement accounts may inadvertently subsidize the
short-term liquidity provision to non-retirement account investors. This cross-subsidization
effect becomes particularly relevant when a substantial portion of the fund’s equity is held by
investors who exhibit a recurring demand for liquidity or a propensity to divest their holdings
when market liquidity is low. In contrast, I demonstrate that the long-term payoff of index
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ETFs remains unaffected by other investors’ intraday trading activities.

An additional cost of investing in ETFs as compared to no-load open-end MFs are bid-ask
spreads. Similar to the possibility of relative mispricing in ETFs, bid-ask spreads represent a
cost associated with providing short-term liquidity. While bid-ask spreads for broadly diver-
sified index ETFs typically remain modest during stable market conditions, it is noteworthy
that these spreads may accrue over time, potentially affecting the overall cost of ETF invest-
ments and making them less attractive within retirement accounts. The economic magnitude
of these effects is an empirical question and should be considered in future research on the
potential role of ETFs in retirement accounts.

4.3 ETF share classes in open-end Mutual Funds

Another model application is the analysis of investor trade offs within dual fund share struc-
ture. In this structure the ETF is a share class of an existing MF portfolio instead of a
standalone fund. Vanguard is currently the only U.S. asset manager using this structure,
managing around $2 trillion of index ETF assets, equivalent to nearly 30% of all U.S. ETF
assets.17 The rationale behind this fund structure is that if investors expected to trade fre-
quently, they could invest in, or convert their MF shares into the ETF share class and sell
on the exchange without impacting any other fund investors. As a case in point Vanguard’s
former Chief Investment Officer George U. “Gus” Sauter explained the dual fund structure by
saying “I started thinking, if we had a share class of the funds that traded on the exchange,
then likely the people with a shorter time horizon would migrate to that share class. And if
they decided they needed to get out of the market, they could sell off their stock in that share
class, as opposed to trying to come out of the traditional mutual fund share class.”18 Since
the expiry of its patent protection in May 2023, several other asset managers have submitted
applications to the SEC to copy this structure.19 Thus, it is important to understand the
implications of joint ETF-MF fund structures for investor payoffs and redemption incentives.

Abstracting from fee differences, in the joint ETF-MF fund structure the MF and ETF share
classes have the same NAV. ETFs are traded at the market price which may differ from the
fund NAV. As with multiple MF share classes, any trading costs are shared across all share
classes, including the ETF share class, on a pro rata basis. As usual, only MF shares are
traded at NAV. Holding constant the investor composition among funds, over the short-term
at t = 1 the ETF and MF payoffs are the same as in the baseline model:

17Morningstar data as of May 31, 2023. The structure has been patented under the U.S. patent no.: US
6,879,964 B2 and been granted exempted relief from the 1940 Investment Company Act by the SEC.

18See https://www.ft.com/content/e57771ce-bdcd-4ab2-ba8b-cb472279f366.
19See for example the application by Dimensional Fund Advisors available at https://www.sec.gov/Archives/

edgar/data/354204/000168035923000216/dimensional40app07122023.htm.
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PM,j,Dual
1 = NAVM,j

1 ,

PE,j,Dual1 = xj − ∆κE,j1 (cj + ϕj) = PE,j1 .

κE,j,Dual1 refers to the sell volume of the funds’ ETF shares on exchange. The fund NAV is
determined through the same mechanisms as for a standalone MF structure, so it equals the
value of the fund’s index holdings divided by the sum of its MF and ETF shares outstanding:

NAVM,j,Dual
2 = NAV E,j,Dual

2 = xj︸︷︷︸
P j

2

(1 − ∆κM,j
1 PM,j

1
P jt+

− κE,j1︸ ︷︷ ︸
# index shares remaining

in joint fund portfolio

) ∗ (κM,j
1 + κE,j1︸ ︷︷ ︸
MF + ETF

shares
outstanding

)−1. (40)

It follows for the terminal ETF and MF payoff under the dual fund structure:

PM,j,Dual
2 = NAVM,j,Dual

2 > PM,j
2

PE,j,Dual2 = NAV E,j,Dual
2 < PE,j2︸ ︷︷ ︸

xj

.

MF investors get a better deal under the dual fund structure. ETF investors are worse
off. The relative payoffs for early MF investors stay unchanged but the long-term investors’
payoffs increase. While the MF share class remains unaffected by ETF-specific mispricing
risk, the ETF share class inherits share dilution risks from the MF. For MF investors the
arrangement implies that share dilution costs caused by redemptions from MF share classes
are shared with investors in the ETF share class. This is evident from a comparison of equa-
tion 40 and the terminal MF NAV of the standalone MF in equation 15. As a result, the
expected liquidity insurance cost for MF investors decreases. As long as some ETF investors
remain invested until t = 2, κE,j1 > 0, the MF tracking difference per share is lower under
the dual fund structure compared to the baseline model, ∆M,j,Dual

2 < ∆M,j,Dual
2 . Higher

long-term payoffs for MF shareholders in a multi-fund structure represent a redistribution
from ETF investors. Patient ETF investors subsidize the MF’s short-term liquidity provi-
sion. The specific magnitude of this liquidity cross-substitution depends on the amount of
early redemptions from the MF share classes and the illiquidity of fund assets at the time
of the redemptions, cj . Early ETF investors’ payoff is the same as in a standalone ETF
since it only depends on the index value, market liquidity, and intermediary balance sheet
capacity. These factors do not change when an ETF shares its portfolio with MF share classes.

In equilibrium, rational investors with λi > 0 never choose to invest in the ETF structured
as a share class of an existing MF. The ETF is dominated by the MF share class:

PE,j,Dual1 < PM,j,Dual
1 ,

PE,j,Dual2 = PM,j,Dual
2 .
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These findings corroborate the SEC’s concerns about cross-subsidization in multi-fund share
structures, as articulated in its 2019 ETF rule. They also bolster its reluctance to authorize
additional fund companies to merge ETF and MF share classes within a single fund.20

5 Empirical predictions

I focus on the two-fund equilibrium characterized by the coexistence of ETFs and MFs to
derive predictions about the cross-section of investor portfolio allocations. The key model pre-
dictions relate to investors’ portfolio choice between same-index ETFs and MFs as a function
of their individual, heterogeneous liquidity needs. Moreover, my model generates predictions
on the impact of changes in the cross-sectional distribution of liquidity needs on the relative
size of ETFs and MFs. To conclude, I explore predictions for a fund market equilibrium
scenario wherein MFs implement swing pricing.

Prediction 1 In less liquid market segments, long-term investors or investors facing mini-
mal liquidity risks invest in ETFs.

Prediction 2 In less liquid market segments, investors with shorter investment horizons or
greater liquidity needs allocate a larger portion of their portfolio to open-end mutual funds.

Predictions 1 and 2 directly follow from proposition 5. In the competitive equilibrium in-
vestors characterized by λi > λ′ invest in the MF, while those with λi ≤ λ′ opt for the ETF.
Investors may invest different parts of their fund portfolio for distinct purposes. For example,
they may earmark some assets to cover unexpected expenses, financial emergencies, or to pro-
vide short-term liquidity in case of job loss. Concurrently, they invest to accumulate savings
for long-term objectives, such as retirement. Consequently, an alternative interpretation of
predictions 1 - 2 posits that rational investors place the portion of their portfolio designated
for short-term liquidity needs in MFs, reserving ETFs for long-term savings.

The ideal setting for testing predictions 1 and 2 involves a panel of detailed, investor-level
fund holdings data, including information on investors’ cash flows (e.g., labor income and ex-
penses), and overall financial wealth. Investor demographic, income and wealth information
is required for estimating each in individual’s distinct liquidity needs. Crucially, not only
investor-level data but also fund-level information is required. This is essential for distin-
guishing between ETF and MF holdings as well as for controlling fund-specific features, such
as the benchmark index and fees. Relying solely on aggregate data for an investors’ total

20In the final rule the SEC states, “For example, an ETF share class that transacts with authorized par-
ticipants on an in-kind basis and a mutual fund share class that transacts with shareholders on a cash basis
may give rise to differing costs to the portfolio. As a result, while certain of these costs may result from
the features of one share class or another, all shareholders would generally bear these portfolio costs.” See
Exchange-Traded Funds Release No. IC-33646 (Sept 25, 2019) p. 122-123.
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ETF and open-end mutual fund holdings proves inadequate, as the model generates distinct
predictions for investors’ fund allocations in liquid versus less liquid market segments.

Prediction 3 In index segments (asset classes) where the overall investor base exhibits rela-
tively larger short-term liquidity needs (shorter holding periods), mutual funds dominate with
a larger market share compared to ETFs.

Prediction 4 In index segments (asset classes) where the majority of investors pursue long-
term investment strategies, ETFs hold a larger market share compared to mutual funds.

Predictions 3 and 4 pertain to the long-term equilibrium fund market composition and stem
from proposition 5 together with the cross-sectional distribution of investors’ liquidity needs,
denoted as λi ∼ U [λ0, λ1]. A higher value for λ0 ≥ 0 signifies greater average liquidity needs
across the investor spectrum, while a lower value for λ1 ≤ 1 indicates that the average investor
is less likely to be impatient. Changes in these distributional parameters impact the expected
proportion of impatient investors, thereby affecting the equilibrium sizes of MFs and ETFs.

Prediction 5 In less liquid market segments, MFs implementing swing pricing, with swing
factors calibrated to approximate but not surpass the trading costs induced by fund flows,
attract longer-term investors and are characterized by larger average holding periods than
otherwise identical MFs without swing pricing.

Prediction 6 In less liquid market segments, the adoption of swing pricing increases MFs’
market share relative to ETFs.

Predictions 5 and 6 are based on proposition 6. When MFs adopt swing pricing, they become
more attractive to long-term investors who continue to face some residual short-term liquidity
risks. As long as the swing factors applied do not exceed transaction costs associated with
funds flow-induced trading activity, short-term investors continue to prefer MFs over ETFs
due to the latter’s susceptibility to mispricing risks. As of the current date, the SEC has not
finalized its proposed swing pricing rule, and no U.S. MFs, excluding money market mutual
funds, currently employ swing pricing. Consequently, predictions 5 and 6 are not yet testable
empirically in U.S. data. Yet, should the SEC proceed with its proposal, or if regulators in
other jurisdictions enhance data availability concerning the utilization of swing pricing across
funds, these predictions can be examined empirically in the future.

6 Conclusion

I study rational investors’ optimal portfolio allocations between ETFs and index open-end
mutual funds. This paper’s main message is that the distinct trading and pricing mecha-
nisms underlying ETFs and mutual funds matter for relative liquidity provision at different
investment horizons. Although same-index ETFs and MFs share identical fundamental risks
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through their common security portfolios, their payoffs may not always be equivalent. When
investors face heterogeneous liquidity needs, ETFs are not universally preferred over same-
index mutual funds by all investors. Instead, both fund types can co-exist in an index fund
market equilibrium because they cater to investors’ varied liquidity needs.

This result follows directly from the distinct mechanisms through which the costs of the liq-
uidity transformation provided by these investment funds are reflected in their share prices.
ETFs and MFs represent alternative technologies designed to provide investors’ with access to
inherently illiquid market segments and cheap diversification. MFs are an intermediary-based
index investing technology as part of which investors co-insure each other against short-term
liquidity needs through the guaranteed redemption of fund shares at the end-of-day fund
NAV. Particularly in illiquid index segments, such as corporate bond or international equity
funds, and during periods of market stress, MFs’ unique payoff structure shields investors
with urgent liquidity needs from potentially high trading costs. The costs of MFs’ short-term
liquidity provision manifest as share dilution and are borne by remaining, long-term MF in-
vestors. The resulting payoff complementarities among MF investors give rise to run risks,
the key friction associated with this technology.

Conversely, ETFs constitute a market-based investing technology. Liquidity provision occurs
via intermediaries at two levels, in security and ETF markets. There is no co-insurance
between fund investors since each ETF investor bears her own transaction costs when trad-
ing ETF shares in secondary markets. This forces ETF investors to internalize their price
impact in illiquid security markets and limits the potential for flow-induced share dilution.
Yet, because the pricing of ETF shares depends on the continuous secondary-market liquidity
provision by APs, over the short term, AP balance sheet constraints may cause disparities
between ETF prices and their underlying portfolio NAV, resulting in excessive price volatility.
ETF mispricing represents the liquidity premium earned by APs in exchange for their ETF
creation and redemption activities. Over the long term, the law of one price generally prevails,
and once AP balance sheet constraints subside, ETF prices tend to converge to the fund NAV.

In this framework, MFs are naturally preferred by investors with relatively higher liquid-
ity needs or shorter investment horizons. These investors are willing to sacrifice long-term
expected returns in exchange for MFs’ short-term liquidity insurance. ETFs in turn are pre-
ferred by investors with lower liquidity needs and longer-term investment horizons. ETFs
may be more suited for less liquid index market segments favored by long-term investors,
whereas MFs may be a better fit in liquid fund market segments favored by investors with
short-term liquidity needs, such as money market funds. Both funds are virtually perfect
substitutes in highly liquid market segments, such as large-cap domestic equities.

These findings hold significant implications for policy makers. First, the SEC’s proposed
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swing pricing rule could benefit MFs by reducing share dilution costs tied to early redemp-
tions, attracting more long-term investors, and thereby allowing funds to maintain a larger
size. Second, regulators should encourage retirement plan sponsors to include ETFs as part of
their investment options. This would enable retirement investors to adjust their portfolio allo-
cation between ETFs and MFs, aligning their investments more effectively with their liquidity
needs and investment horizons, both before and during retirement. Third, the SEC should
not permit multi-fund structures featuring ETF and MF share classes within one fund in less
liquid market segments, as such set-ups benefit MF shareholders at the cost of ETF investors.

My study opens many avenues for future empirical and theoretical research. It raises questions
such as: Does the introduction of ETFs decrease staleness in MF NAVs? How do conflicts of
interest among financial intermediaries acting as APs for ETFs and market makers for MFs
affect trade execution costs for mutual funds? Additionally, what financial stability risks
arise from the trend towards third-party ETF arbitrage, where APs conduct ETF creations
or redemptions on behalf of proprietary trading firms?
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Appendices

A Figures

Figure A.1: Size of U.S. Index Fund Market by Fund Type

Note: This figure shows the AUM in the CRSP sample of U.S. based index ETFs and open-end mutual
funds in bn USD. Sample funds include unit investment trusts but exclude closed-end funds, levered
and inverse funds.
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Figure A.2: Cumulative Flows into U.S. Index ETFs and MFs

Note: This figure shows the cumulative monthly fund flows into U.S. based index ETFs and open-end
mutual funds since January 2003 in bn USD. Cumulative flows are calculated as Cum FlowET F

t =∑T
t=1(Shares Outt −Shares Outt−1)∗NAVt for ETFs and Cum FlowMF

t =
∑T

t=1 AUMt −AUMt−1 ∗
(1 + rNAV

t ) for MFs, where rNAV
t is the monthly NAV-based MF return. Estimated fund flows are

winsorized at the 1st and 99th percentile before aggregation.

Figure A.3: ETF % Market Share in Cumulative U.S. Index Fund Flows

Note: This figure shows the flows into index ETFs in percent of the cumulative flows into U.S. based
ETFs and open-end mutual funds.
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Figure A.4: Monthly Flows into U.S. Index ETFs and MFs

Note: This figure shows the monthly fund flows into U.S. based index ETFs and open-end mutual funds
in bn USD. Monthly flows are calculated as FlowET F

t = (Shares Outt − Shares Outt−1) ∗NAVt for
ETFs and FlowMF

t = AUMt −AUMt−1 ∗(1+rNAV
t ) for MFs, where rNAV

t is the monthly NAV-based
MF return. Estimated fund flows are winsorized at the 1st and 99th percentile before aggregation.

Figure A.5: Asset-Weighted Relative Mispricing for Equity Index ETFs

Note: This figure shows the asset-weighted relative mispricing for all U.S. based equity index ETFs.
The relative mispricing is defined as the difference between the ETF closing market price and its
NAV at the end of the day and expressed in percent of the fund NAV. The estimates are based on
the daily sample of CRSP index ETFs. Funds are sorted into asset classes based on the Morningstar
classification.
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Figure A.6: Distribution of Relative Mispricing for Equity Index ETFs

Note: This figure shows the cross-sectional distribution of the relative mispricing for the sample of
U.S. based equity index ETFs underlying figure A.5.

Figure A.7: Asset-Weighted Relative Mispricing for Domestic Equity Index ETFs

Note: This figure shows the asset-weighted relative mispricing for all U.S. based domestic equity index
ETFs. The relative mispricing is defined as the difference between the ETF market price and its NAV
in percent of the fund NAV. The estimates are based on the daily sample of CRSP index ETFs. Funds
are classified into asset classes based on data from Morningstar.
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Figure A.8: Distribution of Relative Mispricing for Domestic Equity Index ETFs

Note: This figure shows the cross-sectional distribution of the relative mispricing for the sample of
U.S. based domestic equity index ETFs underlying figure A.7.

Figure A.9: Asset-Weighted Relative Mispricing for International Equity Index ETFs

Note: This figure shows the asset-weighted relative mispricing for all U.S. based international equity
index ETFs. The relative mispricing is defined as the difference between the ETF market price and
its NAV in percent of the fund NAV. The estimates are based on the daily sample of CRSP index
ETFs. Funds are classified into asset classes based on data from Morningstar.

63



Figure A.10: Distribution of Relative Mispricing for International Equity Index ETFs

Note: This figure shows the cross-sectional distribution of the relative mispricing for the sample of
U.S. based international index equity ETFs underlying figure A.9.

Figure A.11: Asset-Weighted Relative Mispricing for Fixed Income ETFs

Note: This figure shows the asset-weighted relative mispricing for all U.S. based fixed income index
ETFs. The relative mispricing is defined as the difference between the ETF market price and its NAV
in percent of the fund NAV. The estimates are based on the daily sample of CRSP index ETFs. Funds
are classified into asset classes based on data from Morningstar.
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Figure A.12: Distribution of Relative Mispricing for Fixed Income Index ETFs

Note: This figure shows the cross-sectional distribution of the relative mispricing for the sample of
U.S. based fixed income index ETFs underlying figure A.11.

Figure A.13: Asset-Weighted Relative Mispricing for Commodity ETFs

Note: This figure shows the asset-weighted relative mispricing for all U.S. based commodity index
ETFs. The relative mispricing is defined as the difference between the ETF market price and its NAV
in percent of the fund NAV. The estimates are based on the daily sample of CRSP index ETFs. Funds
are classified into asset classes based on data from Morningstar.
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Figure A.14: Distribution of Relative Mispricing for Commodity Index ETFs

Note: This figure shows the cross-sectional distribution of the relative mispricing for the sample of
U.S. based commodity index ETFs underlying figure A.11.

Figure A.15: Relative Mispricing for SPY ETF

Note: This figure shows the relative mispricing for the SPDR S&P 500 ETF Trust, the largest S&P
500 ETF with ticker SPY. The relative mispricing is defined as above. The sample mean (median)
relative mispricing is −0.29 bps (0.14 bps) with a standard deviation of 10.04 bps.
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Figure A.16: Relative Mispricing for VOO ETF

Note: This figure shows the relative mispricing for the Vanguard S&P 500 ETF, the third largest S&P
500 ETF with ticker VOO. The relative mispricing is defined as above. The sample mean (median)
relative mispricing is 0.5 bps (0.54 bps) with a standard deviation of 4.09 bps.

Figure A.17: Relative Mispricing for VEA ETF

Note: This figure shows the relative mispricing for the Vanguard FTSE Developed Markets ETF, the
largest international equity ETF with ticker VEA. The relative mispricing is defined as above. The
sample mean (median) relative mispricing is 14.67 bps (13.35 bps) with a standard deviation of 23.19
bps.
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Figure A.18: Relative Mispricing for VWO ETF

Note: This figure shows the relative mispricing for the Vanguard Emerging Markets Stock Index Fund
ETF, the largest emerging markets equity ETF with ticker VWO. The relative mispricing is defined
as above. The sample mean (median) relative mispricing is 11.19 bps (14.01 bps) with a standard
deviation of 49.42 bps.

Figure A.19: Relative Mispricing for LQD ETF

Note: This figure shows the relative mispricing for the iShares iBoxx $ Investment Grade Corporate
Bond ETF, one of the most liquid investment grade corporate bond ETFs with ticker LQD. The
relative mispricing is defined as above. The sample mean (median) relative mispricing is 30.42 bps
(17.34 bps) with a standard deviation of 67.142 bps.
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Figure A.20: Distribution of Relative Mispricing in U.S. Index ETFs in March 2020

Note: This figure shows the distribution of relative mispricing for the sample of all U.S. based index
ETFs during the March 2020 market turmoil. The mean (median) mispricing amounted to −32.5 bps
(−8.3 bps), with a standard deviation of 164.8 bps. The relative mispricing is defined as above.

Figure A.21: Asset-Weighted Net Expense Ratio in Top 5 Benchmark Segments

Note: This figure shows the asset-weighted net expense ratio for U.S. based index ETFs and open-end
mutual funds tracking one of the top five benchmark segments in basis points. The top five benchmark
indices are based on the average AUM of funds tracking a given benchmark index over the sample
between Q2 2000 and Q1 2023 and include the S&P 500, CRSP US Total Market, Bloomberg US
Aggregate Float Adjusted, FTSE Global All Cap ex US, and Bloomberg Global Aggregate ex-USD
index. The estimates are based on the quarterly sample of CRSP index funds with benchmark index
classifications from Morningstar.
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Figure A.22: Asset-Weighted Net Expense Ratio in All Benchmark Segments

Note: This figure shows the asset-weighted net expense ratio for all U.S. based index ETFs and open-
end mutual funds in basis points. The estimates are based on the quarterly sample of CRSP index
funds with benchmark index classifications from Morningstar.

B Institutional background

This section summarizes the key institutional details underlying ETFs and open-end mutual
funds. I focus on the structure of U.S. markets. Apart from differences in fund taxation and
the reporting of fund flows from intermediaries to fund sponsors, ETFs and MFs generally
function similarly in international markets. For a more detailed summary of ETFs I refer to
Ben-David, Franzoni, and Moussawi (2017) and Lettau and Madhavan (2018).

The first U.S. mutual fund was launched in 1924 (Federal Reserve 2000). For most of his-
tory, mutual funds have been the only way for retail investors as well as many institutional
investors to obtain cheap portfolio diversification and access less liquid market segments.21

MFs were a revolution because they brought the average person into the stock market. In
contrast, ETFs were originally established in 1993 by stock exchanges and targeted at traders
of futures contracts. ETFs simply represented a new way for investors to trade bundles of
stocks. Initially, they were not intended to directly compete with MFs as a long-term invest-
ment vehicle for the average investor. This is consistent with the idea of ETFs being tailored
towards short-term traders who require intraday liquidity, a view that remains widespread in
the academic literature. Yet, ever since the financial crisis in 2008, driven by the shift from

21Another instrument to obtain index exposure without directly holding the index constituent securities
are futures contracts. Yet, given the additional requirements (e.g., margin account) and risks associated with
derivatives trading, index futures do not constitute a significant alternative to ETFs and MFs in the retail
investing space.
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active to passive investing, ETFs have become more than just a vehicle for high turnover
trading strategies. ETFs now constitute a popular alternative investment vehicle for many
different types of investors. In response to investors’ increasing demand for ETFs, some asset
managers have already converted existing MFs into ETFs.

Figure B.8 illustrates how MFs and ETFs are priced and traded in financial markets. MF
shares are purchased or redeemed directly from the fund sponsor at the fund NAV. Unlike
ETFs, all MF trades submitted during the trading day are executed at the same price, the
end-of-day fund NAV. In the U.S., orders for MFs must usually be submitted by 4pm ET to
be executed at the same-day fund NAV. Any orders submitted thereafter will be executed at
the next available NAV, so on the next trading day. It is noteworthy that MF transactions
in the U.S. generally settle T + 1 or T + 2, depending on the fund type. While the settle-
ment period of equities, including ETFs, is currently T + 2, the U.S. is also moving towards
T + 1 settlement in these markets as of 28 May 2024.22 By construction, MFs have zero
relative mispricing. The end-of-day MF NAV is determined based on the closing prices of
the fund’s portfolio securities (or their estimates). Therefore, MF prices may not fully incor-
porate the price impact and trading costs that ensue when funds liquidate assets to satisfy
investor redemptions on the next trading day. The MF can satisfy net investor redemptions
by temporarily depleting cash buffers, if available, but will eventually need to liquidate asset
holdings when outflows are large. MFs can generally not satisfy redemptions using in-kind
transfers (RIK) of security baskets. RIKs are only feasible for large investors, but MFs rarely
make use of the option to meet redemptions in-kind even if they are legally permitted to
do so.23 Thus, by construction, net MF redemption are directly linked to transactions in
portfolio securities and costly for the fund. Flow-induced transaction costs for MFs include
commissions, bid-ask spreads, price impact and taxes on capital gains distributions. When
capital gains are realized as a result of security sales after redemptions, these taxes are borne
by the remaining fund investors. This implies that MF investors may be subject to an early
realization of capital gains taxes even if they remain invested in the fund. Overall, because
of how MF shares are priced, transaction costs are caused by exiting investors but borne by
the remaining MF shareholders.

ETFs are traded intraday in secondary markets at the prevailing market price. Secondary
market transactions of ETF shares occur between investors, potentially via a market maker.
Investors do not directly trade with the ETF sponsor. Therefore, ETF trades are not directly
linked to transactions in portfolio securities. Instead, the ETF’s market price is indirectly
linked to its NAV and asset markets via the law of one price and the arbitrage trades con-

22See SEC Release Nos. 34-96930. These settlement dates refer to the time and when the ownership in a
financial instrument is transferred.

23Based on data from U.S. funds’ shareholder reports, Agarwal, Ren, Shen, and Zhao (2022) find that only
13.1% of the funds which reserve the right to execute redemptions in kind actually engaged in in-kind redemp-
tions at least once during a sample from 1997 to 2017.
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Figure B.8: Trading of ETFs and open-end Mutual Funds

ducted by APs.24 APs are financial institutions, usually large broker-dealers, with the right,
but not the obligation, to create and redeem ETF shares outright. For example, when the
ETF price exceeds the fund NAV, they can deliver a basket of securities, the creation bas-
ket, to the fund sponsor in exchange for new ETF shares, keeping the price difference as an
arbitrage profit. Generally, creation and redemption baskets resemble the portfolio securities
held by the ETF. Through this process, APs increase the number of ETF shares outstand-
ing. Importantly, creations and redemptions of ETF shares normally do not involve cash but
occur in-kind. As a special case, in the U.S. such in-kind transfers of securities are also tax-
exempt.25 This mechanism turns APs into the central suppliers of liquidity in ETF markets.
At the same time, the dependence on AP arbitrage renders ETFs vulnerable to shocks to
financial intermediaries’ balance sheet capacity. When APs temporarily retreat from ETF
creations or redemptions, ETF prices can start deviating substantially from the fund NAV,
leading to relative mispricing as shown in figures A.5 - A.14. This potential discrepancy
between the price at which investors can liquidate ETF shares at short notice and the fund

24The described mechanism refers to ETFs that physically replicate their benchmark index by holding the
underlying securities. There also exist synthetic ETFs that track their benchmark index using derivatives,
such as swaps. Yet, the large majority of ETFs pursue the physical index replication process which this paper
builds upon.

25Due to their in-kind creation and redemption mechanism, capital gains taxes on ETFs are deferred until
shares are sold by the investor. As a result, ETFs rarely distribute capital gains allowing investors to defer
capital gains taxes until they liquidate their shareholdings. U.S.-based mutual funds must distribute any
capital gains to shareholders at least once a year. These distributions are taxable if MFs shares are held
within taxable accounts.
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NAV constitutes the key friction in ETF markets.
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C Proofs

Proof of Lemma 1. The only way for a non-zero tracking difference to occur in ETFs is
for creation and redemption baskets to diverge from the underlying benchmark index. This
is ruled out by assumption 1. Hence, one ETF share is always equivalent to one unit of the
composite security, implying zero tracking difference.

Proof of Lemma 2. By definition ∆M
2 ≡ P j2 − NAVM

2 . The terminal index price is given
exogenously by P j2 = xj . The MF NAV at the end of any given trading day is defined by the
accounting identity NAVM,j

t ≡ XM,j
t P j

t

κM,j
t

, where XM,j
t is the number of index shares held by

the fund, P jt is the market price per unit of index share and κM,j
t is the remaining number

of MF shares outstanding.

In the model, the number of index shares held by the MF at t = 1 and t = 2 are given by

XM,j
1 = κM,j

0 , (41)

XM,j
2 = κM,j

0 − ψxj∆κM,j
1

P j,M1+︸ ︷︷ ︸
Flow-induced

index sales

, (42)

where Θj,M
1+ = ψxj∆κM,j

1
P j,M

1+
is the number of index shares sold by the MF at t = 1+ to meet net

fund redemptions in the interim period as derived in equation 24.

It follows

∆M,j
2 = P j2 −NAVM,j

2

= P j2 − P j2X
M,j
2

κM,j
0 − ∆κM,j

1

= P j2 −
P j2 (κM,j

0 − Θj,M
1+ )

κM,j
0 − ∆κM,j

1
. (43)

Substituting the expression for Θj,M
1+ from equation 24,
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∆M,j
2 = P j2 −

P j2 (κM,j
0 − ∆κM,j

1 ψxj

P j,M

1+
)

κM,j
0 − ∆κM,j

1︸ ︷︷ ︸
NAV M

2

= P j2 − P j2

(
κM,j

0

κM,j
0 − ∆κM,j

1
−

(
∆κM,j

1 ψxj

P j,M

1+

)
κM,j

0 − ∆κM,j
1

)

= P j2 − P j2

(
(κM,j

0 − ∆κM,j
1 + ∆κM,j

1 )
κM,j

0 − ∆κM,j
1

−

(
∆κM,j

1 ψxj

P j,M

1+

)
κM,j

0 − ∆κM,j
1

)

= P j2 − P j2

(
1 −

(
∆κM,j

1 ψxj

P j,M

1+
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

)
(44)

Finally,

∆M,j
2 =

P j2

(
∆κM,j

1 ψxj

P j,M

1+
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

(45)

The MF tracking difference represents the absolute cost of the share dilution per unit of
MF share experienced by remaining MF shareholders. It can expressed as a fraction of the
terminal index value (the numeraire):

∆̃M,j
2 ≡ ∆M,j

2
P j2

=
∆κM,j

1 ψxj(P j,M1+ )−1 − ∆κM,j
1

κM,j
0 − ∆κM,j

1
, (46)

The relative MF share dilution per unit of MF shares in 46 can further be decomposed into
three components:

∆̃M
2 = 1

κM,j
1︸ ︷︷ ︸

Remaining
MF shares

outstanding

(
∆κM,j

1︸ ︷︷ ︸
# MF
shares

redeemed
early

(
ψxj(P j,M1+ )−1 − 1︸ ︷︷ ︸

Excess # index
shares liquidated
to satisfy early

redemptions

))
. (47)

Proof of Corollary 1. First, from equation 45 it directly follows that ∆M,j
2 = 0 if net

mutual fund redemptions at t = 1 are zero, ∆κM,j
1 = 0.

Second, if the mutual fund NAV at t = 1 is perfectly forward looking and equal to the index
price at which the MF trades in index markets, ψjxj = P j,M1+ , ∆M,j

2 = 0 because
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∆M,j
2 =

P j2

(
∆κM,j

1 ψjxj

P j,M

1+
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

=
P j2

(
∆κM,j

1 − ∆κM,j
1

)
κM,j

0 − ∆κM,j
1

= 0

Third, if markets are perfectly liquid and funds have no price impact when trading index
shares, ψj = 1 and cj = 0. As a result, NAVM,j

1 = xj and P j,M1+ = xj . It follows

∆M,j
2 =

P j2

(
∆κM,j

1 ψjxj

P j,M

1+
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

=
P j2

(
∆κM,j

1 xj

xj
− ∆κM,j

1

)
κM,j

0 − ∆κM,j
1

=
P j2

(
∆κM,j

1 − ∆κM,j
1

)
κM,j

0 − ∆κM,j
1

= 0

Finally, if ∆κM,j
1 ̸= 0 and NAVM,j

1 ̸= P j,M1+ , then ∆M,j
2 ̸= 0. This follows directly from

equation 47 combined with the facts that xj > 0 and κM,j
1 = η + κM,j

0 − ∆κM,j
1 > 0.

Proof of Corollary 2. From proof 1 it follows that ∆M,j
2 = 0 when at least one of the

conditions in corollary 1 is satisfied. As a result,

PM,j
2 = P j2 − ∆M,j

2 = P j2 . (48)

Since PE,j2 = P j2 , PM,j
2 = PE,j2 = P j2 .

Proof of Lemma 3. I start by proving the results (i) and (iii): Conditional on receiving no
liquidity shock, ETF (MF) investors are ex-post identical. This is because at t = 0 investors
only had the choice between investing their entire, identical endowment into MFs or ETFs.
Investors did not have the option to invest parts of their endowment in the risk-free asset.
Due to their risk-neutrality, investors never choose to mix between the ETF and MF at t = 0.
All ETF (MF) investors at t = 0 with i = l at t = 1, that is patient ETF (MF) investors
within a given index segment j, have the same initial allocation θi,E,j0 = 1 (θi,M,j

0 = 1).
This allocation implies that all patient ETF (MF) investors’ budget constraints at t = 1
must be identical. In addition, by assumption, all investors have identical preferences over
terminal wealth. Finally, in equilibrium, all MF investors share the same belief regarding
other investors’ redemption decisions. Thus, all remaining patient ETF (MF) investors must
have the same optimal investment policy at t = 1, that is

θi,E,j1
∗

= θE,j1
∗

∀ i with θi,E,j0 = 1 and i = l (49)

θi,M,j
1

∗
= θM,j

1
∗

∀ i with θi,M,j
0 = 1 and i = l (50)

Result (ii) and (iv) follow the above argument: Conditional on receiving a liquidity shock,
ETF (MF) investors are ex-post identical. All ETF (MF) investors at t = 0, have the same
initial allocation θi,E,j0 = 1 (θi,M,j

0 = 1). Hence, all ETF (MF) investors with i = e at t = 1
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face the same budget constraint. When liquidating their entire portfolio upon receiving a
liquidity shock at t = 1, all impatient ETF (MF) receive identical payoffs. Thus,

θi,E1
∗

= 0 ∀ i with θi,E0 = 1 and i = e (51)

θi,M1
∗

= 0 ∀ i with θi,M0 = 1 and i = e (52)

Their terminal wealth is given by

W i
1

∗ = PE1
∗ ∀ i with θi,E0 = 1 and i = e (53)

W i
1

∗ = NAVM
1

∗ ∀ i with θi,M0 = 1 and i = e (54)

Proof of Proposition 1. Since investors are risk-neutral, patient ETF investors do not
liquidate any of their fund shares at t = 1, θi,E,j1 = 1 ∀i = l, whenever the expected ETF
payoff at t = 2 exceeds the ETF price at t = 1. Formally, when

PE,j1 ≤ E[PE,j2 ] (55)

, where the weak nature of the inequality follows directly from assumption 3.

Using assumption 2 and the expression for the market-clearing ETF price at t = 1 from
equation 22, equation 55 reduces to

0 ≤ ∆κE,j1 (cj + ϕj). (56)

The market maker’s inventory cost parameter as well as AP’s balance sheet capacity con-
straint parameter are both generally strictly positive, cj + ϕj > 0. Besides, the model only
features negative liquidity shocks. There are no positive liquidity (savings) shocks. There
are no dividends or non-financial income sources. As a result, ∆κE,j1 ≥ 0, there can only be
outflows. Hence, equation 56 is always satisfied and patient ETF investors always remain
invested until the terminal period.

The special case in which equation 56 is satisfied with equality occurs when ∆κE,j1 is zero
or when cj and ϕj are both zero. ∆κE,j1 = 0 holds when none of the investors who invested
in ETFs at t = 0 receives a liquidity shock at t = 1. cj = 0 and ϕj = 0 hold in the stylist
scenario case in which index markets are very liquid, such that the market maker can absorb
any index supply without price impact and the AP faces no balance sheet capacity constraints.

Proof of Proposition 2. The payoffs of the ETF and MF tracking index j at different
horizons are given by
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PE,j1 = xj − ∆κE,j1 (cj + ϕj) (57)

PE,j2 = xj (58)

PM,j
1 = ψxj (59)

PM,j
2 = xj − ∆M,j

2 (60)

(i) When cj = ψj = ϕj = 0, the ETF and MF price at t = 1 reduce to xj , the fundamental
index value. Besides, from corollaries 1 and 2 follows that ∆M,j

2 = 0. Hence, the ETF and
MF payoff at t = 2 are identical as well.

(ii) Following corollary 1, if the MF NAV at t = 1 is perfectly forward looking, PM,j
1 = P j1+ ,

the terminal MF tracking difference is zero, ∆M,j
2 = 0. Thus, PE,j2 = PM,j

2 = xj .

In the absence of AP balance sheet capacity constraints, ϕj = 0, the ETF price at t = 1
becomes PE,j1 = xj − ∆κE,j1 cj . By assumption, in this case cj > 0. Defining ∆κE,j1 =
∆κM,j

1 = ∆κj1, the fund payoffs at t = 1 simplify to

PE,j1 = xj − ∆κj1cj (61)

PM,j
1 = P j1+ = xj − ∆κj1cj (62)

Equation 62 follows directly from market clearing between the MF and index market maker
at t = 1+ according to equation 25 for the case that PM,j

1 = P j1+ .

Proof of Lemma 4.
Since investors are risk-neutral, patient MF investors do not liquidate any of their fund shares
at t = 1, θi,M,j

1 = 1 ∀i = l, whenever the expected MF payoff at t = 2 exceeds the MF price
at t = 1. Formally, when

PM,j
1 ≤ E[PM,j

2 |xj ]. (63)

Using the definition of the MF NAV at t = 1 and the results from equations 15 and 17, 63
reduces to

ψxj ≤ E

[
P j2 −

P j2

(
∆κM,j

1 (NAV M,j
1 −P j

1+ )
P j

1+

)
κM,j

1

∣∣∣∣∣xj
]
. (64)

Simplifying and using xj > 0,
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ψ ≤ 1 −

(
E[∆κM,j

1 |xj ](ψxj−P j

1+ )
P j

1+

)
E[κM,j

1 |xj ]
. (65)

If index markets are frictionless, cj = 0, there is no price impact as the index market maker
absorbs any supply of index shares at P j1+ = xj . It follows:

ψ ≤ 1 −

(
E[∆κM,j

1 |xj ](ψxj−xj)
xj

)
E[κM,j

1 |xj ]
. (66)

This in turn reduces to

(
1 + E[∆κM,j

1 |xj ]
E[κM,j

1 |xj ]

)
ψ ≤ 1 + E[∆κM,j

1 |xj ]
E[κM,j

1 |xj ]
. (67)

Since there can only be outflows or zero fund flows at t = 1, ∆κM,j
1 ≥ 0. In the presence of

sleepy investors, η > 0, the number of remaining MF investors is strictly positive, κM,j
1 > 0.

Hence, 1 + E[∆κM,j
1 |xj ]

E[κM,j
1 |xj ]

is strictly positive. Because 0 < ψ < 1, equation 67 always holds and,

irrespective of other MF investors’ redemptions, ∆κM,j
1 , patient MF investors would never

liquidate any shares early if cj = 0.

Proof or Proposition 3. Market clearing in index markets between index market makers
and MFs, ΘM,j

1+ = ΘD,j
1+ , implies

E[P j2 |xj ] − P j,M1+

cj
= ∆κM,j

1 PM1

P j,M1+

(68)

⇐⇒
xj − P j,M1+

cj
= ∆κM,j

1 ψjxj

P j,M1+

⇐⇒ 0 = P j,M1+
2 − P j,M1+ xj + cjψjxj∆κM,j

1 (69)

.
Using assumption 4, it follows P j,M1+

∗
= 1

2(xj +
√
x2
j − 4cjψjxj∆κM,j

1 ).

Proof of Corollary 3. Using ∆κM,j
1 ≤ 1, there can never be more MF redemptions than

initial investments, it follows that the fundamental must satisfy xj ≥ 4cjψj for the solution
to equation 69 to exist. The fundamental must be large relative to the price impact and MF
NAV staleness parameter.

Proof of Corollary 4. This result directly follows from equation 68 and proposition 3.
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Proof of Corollary 5. These results directly follow from equation 68 and the fact that
the inverse net index demand function of the market maker, PD,j1+ , and the inverse net index
supply by the MF, PM,j

1+ , are strictly decreasing in the number of index shares. On one
side, as the supply of index shares by the MF increases, the market maker’s inventory cost
increases leading to a drop in its willingness to pay per index share. On the other side, as the
index price decreases, the MF has to liquidate more index shares to satisfy its obligations to
MF investors who redeemed at t = 1.

dPD,j1+

dΘD,j
1+

= −cj (70)

dPM,j
1+

dΘM,j
1+

= −∆κM,j
1 PM,j

1

(ΘM,j
1+ )2

(71)

over the permissible range of ΘM,j
1+ .

Proof of Proposition 4. xj must be such that after observing the fundamental xj < xj pa-
tient MF investors always decide to run and redeem their entire portfolio of MF shares early
no matter their beliefs of other patient MF shareholders’ actions. Patient MF investors will
choose to liquidate their shares at t = 1 even if they believe only impatient MF sharesholders
redeem early. Conversely, for any xj > xj , patient MF investors will never want to redeem
any of their shares early. In this region runs never occur in equilibrium.

Lower-dominance region (0, xj ]. Let ēM = E[eM ] be the expected mass of impatient
(early) MF investors at t = 1, with ēM ≤ 1. Using equation 20 and lemma 2, the lower dom-
inance region with respect to the fundamental xj is then defined by the following condition:

0 = E[P j2 − ∆M,j
2 − PM,j

1 Rf |xj = xj ∪ ∆κM,j
1 = ēM ] (72)

Using the restriction xj > 0:

0 = 1 − E

[(∆κM,j
1 (PM,j

1 −P j

1+ )
P j

1+

)
κM,j

0 − ∆κM,j
1

∣∣∣∣∣xj = xj ∪ ∆κM,j
1 = ēM

]
− ψjR

f . (73)

Substituting P j1+ from the index market clearing at t = 1+ following proposition 3:

0 = 1 −

(
ēM (ψjxj− 1

2 (xj+
√
x2

j −4cj ψj xj ēM ))
1
2 (xj+

√
x2

j −4cj ψj xj ēM )

)
κM,j

0 − ēM
− ψjR

f . (74)

Note that κM,j
0 − ēM > 0 because of the presence of sleepy MF investors. Simplifying:
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0 =
(

(1 − ψjR
f )(κM,j

0 − ēM ) + ēM
)(

1 +
√

1 − 4cj ψj ēM
xj

)
− 2ēMψj . (75)

Solving for xj :

(
2ēMψj

(1 − ψjRf )(κM,j
0 − ēM ) + ēM

− 1
)2

= 1 − 4cj ψj ēM

xj
. (76)

This gives:

xj = 4cj ψj ēM

1 −
(

2ēMψj

(1−ψjRf )(κM,j
0 −ēM )+ēM

− 1
)2 . (77)

Using the assumption Rf = 1:

xj =
4cj ψj ēM

(
κM,j

0 − ψj(κM,j
0 − ēM )

)2(
κM,j

0 − ψj(κM,j
0 − ēM )

)2 −
(
2ψj ēM − (κM,j

0 − ψj(κM,j
0 − ēM ))

)2 (78)

Defining a = κM,j
0 − ψj(κM,j

0 − ēM ):

xj = 4cj ψj ēMa2

4aψj ēM − 4(ψj ēM )2 (79)

Note that a > 0 because a = κM,j
0 −ψj(κM,j

0 − ēM ) = (1 −ψj)κM,j
0 +ψj ē

M ) with 0 < ψj < 1,
κM,j

0 ≥ η > 0 and ēM ≥ 0.

For ēM > 0, equation 79 gives:

xj = cj(ψj ēM + (1 − ψj)κM,j
0 )2

(1 − ψj)κM,j
0

. (80)

In the special case in which ēM = 0, xj = 0 according to equation 77. The lower dominance
region is empty. Since there exists a continuum of investors i with λi ∼ U [0, 1], the law of
large numbers implies that ēM = 0 only holds in one of two cases: Apart from the sleepy
investors, no one invested in MFs at t = 0, that is κM,j

0 = η, or only investors characterized
by λi = 1 invested in MFs at t = 0.

Existence of the lower dominance region. For the lower dominance region to be non-
empty it must hold that xj > 0. That is

0 < cj(ψj ēM + (1 − ψj)κM,j
0 )2

(1 − ψj)κM,j
0

. (81)
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Assuming ēM > 0, it is clear that this condition is satisfied if and only if

0 < cj (82)

0 < ψj < 1 (83)

0 < κM,j
0 (84)

Equations 82 follows from the fact that (1 − ψj)κM,j
0 − ψj ē

M ) > 0 because 0 < ψj < 1 and
eM < κM,j

0 . Equation 82 - 83 are always satisfied given the model’s parameter assumptions.
83 is satisfied because η > 0. The lower dominance region in which the MF run is the unique
equilibrium outcome always exists and is non-empty.

Upper-dominance region [xj ,∞). Let ēM = E[eM ] be the expected mass of impatient
(early) MF investors at t = 1 as before and l̄M = E[lM ] the expected mass of patient (late)
MF investors. k = κM,j

0 − η ≤ 1 denotes the total mass of non-sleepy MF investors and is
known after initial allocation decisions have been made at t = 0. Using equation 20 and
lemma 2, the upper dominance region with respect to the fundamental xj is defined by the
following condition:

E[P j2 − ∆M,j
2 − PM,j

1 Rf |xj = xj ∪ ∆κM,j
1 = k] = 0 (85)

Equation 85 is similar to the condition for the lower dominance region, xj , in equation 72.
The distinguishing feature between both regions is the conditioning information in the ex-
pectations operator.

Using P j2 = xj and xj > 0, from 85 follows

0 = xj − xjE

[(∆κM,j
1 (PM,j

1 −P j

1+ )
P j

1+

)
κM,j

0 − ∆κM,j
1

∣∣∣∣∣xj = xj ∪ ∆κM,j
1 = κM

]
− ψjxjR

f . (86)

Substituting P j1+ from the index market clearing at t = 1+ following proposition 3:

0 = 1 −

(∆κM,j
1 (ψjxj− 1

2 (xj+
√
x2

j −4cj ψj xj ∆κM,j
1 ))

1
2 (xj+

√
x2

j −4cj ψj xj ∆κM,j
1 )

)

κM,j
0 − k

− ψjR
f . (87)

Using the fact that κM,j
0 = k + η and Rf = 1,

1 − ψj =

(
k(ψjxj− 1

2 (xj+
√
x2

j −4cj ψj xj k))
1
2 (xj+

√
x2

j −4cj ψj xj k)

)
η

. (88)
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Simplifying:

η(1 − ψj) = 2kψj

1 +
√

1 − 4cj ψj k
xj

− k. (89)

Solving for xj :

xj =
4cjψjk

(
η(1 − ψj) + k

)2(
η(1 − ψj) + k

)2 −
(
(2ψj − 1)k − η(1 − ψj)

)2 . (90)

Finally, substituting k = κM,j
0 − η the upper dominance region is defined by:

xj =
cj
(
κM,j

0 − ψjη
)2

(1 − ψj)κM,j
0

. (91)

Existence of upper dominance region. For the upper dominance region to be non-empty
it must hold that xj > 0 (necessary condition). Besides, xj ≤ xj (sufficient condition). Given
the lower dominance region exists, that is condition 81 is satisfied, if xj ≤ xj holds, the upper
dominance region must exist.

Necessary condition: The numerator and denominator of equation 91 must both be strictly
positive. First, the numerator of equation 91,

cj
(
κM,j

0 − ψjη
)2
> 0, (92)

is always strictly positive because κM,j
0 > η and 0 < ψ < 1. Second, for the same reasons the

denominator of equation 91 is also always strictly positive:

(1 − ψj)κM,j
0 > 0. (93)

Hence, xj > 0.

Sufficient condition: xj ≤ xj requires:

cj

(
ψj ē

M + (1 − ψj)κM,j
0

)2
≤ cj

(
κM,j

0 − ψjη
)2
. (94)

For cj > 0, this simplifies into:

ēM + η ≤ κM,j
0 ,
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which is always satisfied by definition because κM,j
0 = eM + lM + η.

Proof of Corollary 6. From equation 80 the lower dominance region is defined by:

xj = cj(ψj ēM + (1 − ψj)κM,j
0 )2

(1 − ψj)κM,j
0

, (95)

where κM,j
0 =

∫
i θ
i,M,j
0 di + η. Let k =

∫
i θ
i,M,j
0 di. Taking partial derivatives with respect to

the key model parameters and variables gives:

∂xj
∂cj

= (ψj ēM + (1 − ψj)κM,j
0 )2

(1 − ψj)κM,j
0

> 0, (96)

∂xj
∂ēM

= 2cjψj(ψj ēM + (1 − ψj)κM,j
0 )

(1 − ψj)κM,j
0

> 0 (97)

∂xj
∂η

= cj

(
(1 − ψj) − (ψj ēM )2

(1 − ψj)(k + η)2

)
. (98)

Where equation 98 simplifies into:

cj

(
(1 − ψj) − (ψj ēM )2

(1 − ψj)(k + η)2

)
= cj

(1 − ψj)(k + η)2︸ ︷︷ ︸
> 0

(
(1 − ψj)2(k + η)2︸ ︷︷ ︸

> 0

− (ψj ēM )2︸ ︷︷ ︸
> 0

)
(99)

The sign of the partial derivative ∂xj

∂η depends on the relative magnitude of (1−ψj)2(k+η)2 and

(ψj ēM )2. Specifically, for equation 98 it follows that ∂xj

∂η < 0 whenever (1−ψj)(k+η) < ψj ē
M .

By assumption 0 < ψj < 1 is close to 1, while 9 ≤ k ≤ 1. Therefore, as long as η is relatively
small and the mass of early MF investors is large relative to the late (patient) MF investors,

η <
ψj

(1 − ψj)︸ ︷︷ ︸
> 1

ēM − k︸︷︷︸
≥ ēM

, (100)

the size of the lower dominance region decreases as the mass of sleepy MF investors increases,
∂xj

∂η < 0.

Proof of Corollary 7. From equation 91 the upper dominance region is defined by:

xj =
cj
(
κM,j

0 − ψjη
)2

(1 − ψj)κM,j
0

. (101)
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where κM,j
0 =

∫
i θ
i,M,j
0 di + η. Let k =

∫
i θ
i,M,j
0 di. When xj increases, the size of the no-run

region decreases because xj marks the lower bound of this region.

Taking partial derivatives with respect to the key model parameters and variables gives:

∂xj
∂cj

=
(
κM,j

0 − ψjη
)2

(1 − ψj)κM,j
0

> 0, (102)

∂xj

∂κM,j
0

=
cj((κM,j

0 )2 − ψ2
j η

2)
(1 − ψj)(κM,j

0 )2
> 0, (103)

∂xj
∂η

= cj
1 − ψj

(
1 + 2ψj(

ψj
(k + η)2 − 1)

)
(104)

Equations 102 and 103 follow from the facts that κM,j
0 = k+η and 0 < ψj < 1. Equation 104

implies that the size of the no-run region increases with the mass of sleepy investors, ∂xj

∂η < 0,
when the following condition is satisfied:

0.5 < ψj −
ψ2
j

(k + η)2 . (105)

Proof of Corollary 8. This is a direct result from equations 29 and 30 for cj = 0.

Proof of Lemma 5. The expected ETF and MF payoffs of a certain long-term investor,
characterized by λi = 0 as of t = 0, are given by:

E0[wi1|θi,E,j0 = 1] = xj

E0[wi1|θi,M,j
0 = 1] = ψ

(∫ xj

0
xjdx+ 1

2

∫ xj

xj

xjdx

)

+
(1

2

∫ xj

xj

(xj − ∆M,j
2 )dx+

∫ ∞

xj

(xj − ∆M,j
2 )dx

)
.

Since 0 < ψ < 1 and ∆M,j
2 ≥ 0, E0[wi1|θi,E,j0 = 1] > E0[wi1|θi,M,j

0 = 1], so investors with
λi = 0 always choose the ETF.

The expected ETF and MF payoffs of a certain short-term investor, characterized by λi = 1
as of t = 0, are given by:

E0[wi1|θi,E,j0 = 1] = µj − ēM (cj + ϕj),

E0[wi1|θi,M,j
0 = 1] = ψµj .
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Under the given parameter assumptions (1−ψ)µj < ēM (cj +ϕj), it holds that investors with
λi = 1 always choose the MF because E0[wi1|θi,M,j

0 = 1] > E0[wi1|θi,E,j0 ] = 1.

It is noteworthy that in the equilibrium with imperfectly liquid index markets the mass of
ETF investors, and therefore the ETF’s AUM, must be strictly positive, κE,j0 > 0. Other-
wise, a contradiction arises: If all investors with λi > 0 invested in the MF, the mass of ETF
investors would be infinitely small as only investors with λi = 0 would invest in ETFs, so in
the limit κM,j

0 → 1 and κE,j0 → 0. In this limiting case the ETF would perfectly track the
index at all times: PE,j1 → xj and PE,j2 = xj , and therefore dominate the MF because ψ < 1
and ∆M,j

2 ≥ 0. As a result, investors at the margin, characterized by λi = ϵ where ϵ → 0,
would optimally choose to deviate and switch to the ETF. Hence, κE,j0 = 0 cannot be an
equilibrium. It follows that the initial mass of ETF investors must be non-zero, κE,j0 > 0.
Given λi ∼ U [0, 1], the law of large numbers then implies that the expected mass of impatient
ETF investors must also be non-zero ēE > 0.

Proof of Proposition 5. A challenge emerges because an investor’s expected ETF and MF
payoffs as of t = 0 depend on the mass and characteristics of other fund investors. I conjecture
that investors at t = 0 invest according to the strategy {θi,E,j0 , θi,M,j

0 } = {1, 0} ∀i with λi ≤ λ′

and {θi,E,j0 , θi,M,j
0 } = {0, 1} ∀i with λi > λ′ for some λ′ ∈ (0, 1) and show that any individual

investor with λi ∈ [0, 1] has no incentive to deviate from this strategy profile.

Following lemma 5, it must hold that 0 < κE,j0 < 1 and 0 < κM,j
0 < 1. The cross-sectional

distribution of liquidity risks λi ∼ U [0, 1] together with the law of large numbers then imply
that the expected mass of impatient ETF and MF investors is non-zero in equilibrium, 0 <
ēE < 1 and 0 < ēM < 1. Therefore the cut-off liquidity risk level must satisfy:

0 < λ′ < 1

Next, for the conjectured equilibrium to exist, holding all else equal, the expected ETF
payoff must be decreasing in λi while the expected MF payoff must be increasing in λi. First,
the expected ETF payoff as a function of λi, here denoted by f(λi) = E0[λiPE,j1 + (1 −
λi)PE,j2 |λi, λ′], follows from equation 33:

f(λi) = µj − λiē
E(cj + ϕj),

where ēE = λ′

2 > 0.

Partial differentiation with respect to λi gives:

∂f(λi)
∂λi

= −ēE(cj + ϕj) < 0.
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For cj + ϕj > 0 (baseline assumption), the expected ETF payoff strictly decreases in λi.

Second, the expected MF payoff as a function of λi, here denoted by g(λi) = E0[λiPM,j
1 +

(1 − λi)PM,j
2 |λi, λ′], follows from equation 34:

g(λi) = λiψµj + (1 − λi)ψ
(∫ xj

0
xjdx+ 1

2

∫ xj

xj

xjdx

)

+ (1 − λi)
(1

2

∫ xj

xj

(xj − ∆M,j
2 )dx+

∫ ∞

xj

(xj − ∆M,j
2 )dx

)
.

Note that ∆κM,j
1 = ēM = 1+λ′

2 .

Using the fact that λi ⊥⊥ xj , and the expression for the tracking difference from equation 17
together with the equilibrium index price at t = 1 from proposition 3, partial differentiation
with respect to λi gives:

∂g(λi)
∂λi

= ψµj − ψ

(∫ xj

0
xjdx+ 1

2

∫ xj

xj

xjdx

)

−
(1

2

∫ xj

xj

(xj − ∆M,j
2 )dx+

∫ ∞

xj

(xj − ∆M,j
2 )dx

)
(106)

Using the expression for the terminal MF tracking difference as a function of xj from equation
45 (lemma 2) and noting that ∆κM,j

1 = ēM over the no-run region of xj , implies ∂g(λi)
∂λi

> 0.

Proof of Proposition 6. By definition the optimal swing factor is such that it fully elim-
inates the externalities between redeeming and remaining MF investors, and therefore any
first-mover advantage. Formally sj∗ must ensure that the price at which early MF investors
redeem is equal to the price at which the MF itself trades in index markets at t = 1+:

PM,j
1 = P j1+ .

Given MF outflows of κM,j
1 , the index price at t = 1+ is:

P j1+ = xj − cjκ
M,j
1 .

Hence, the swing factor sj = cj∆κM,j
1 is optimal because xj − sj

∗ = P j1+ .

Proof of Corollary 9. With optimal swing pricing the MF NAV at t = 1 is equal to the
index price the MF trades at once it passes on fund flows to index markets, PM,j,Swing

1 = P j1+ .
This follows from proposition 6. Therefore, the MF perfectly tracks its index at t = 1. At
the same time, corollary 1 implies that the MF tracking difference at t = 2 is zero, ∆M,j

2 = 0,
if the MF is perfectly forward looking at t = 1. As a result PM,j,Swing

1 = P j1+ implies
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PM,j,Swing
2 = P j2 irrespective of MF flows at t = 1. The MF perfectly replicates the index at

all times under the optimal swing pricing rule.

While the payoff of the ETF and the MF with swing pricing is the same at t = 2, the ETF
remains subject to mispricing risk over the short term, PE,j1 = xj − ∆κE1 (cj +ϕj). Therefore,
no short- or long-term MF investor has any incentive to deviate and invest in the ETF.

Proof of Corollary 10. This follows directly from proposition 6 and corollary 9 for
∆κM,j

1 > 0.
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D List of model variables

Table D.1: Model notation

Exogenous parameters and their interpretation.
Parameter Definition
xj State variable / terminal index payoff
λi i’s probability of a liquidity shock at t = 1
ϕj AP balance sheet capacity constraint
cj Index market maker inventory cost
η Mass of sleepy investors
Rf Risk-free rate, normalized to equal one

Endogenous quantities and their interpretation.
Parameter Definition
κEt Share (mass) of ETF investors at t
κMt Share (mass) of MF investors at t
∆κE1 Volume of ETF liquidations (outflows) at t = 1
∆κM1 Volume of MF redemptions at t = 1
P jt Index market price at t
PEt ETF market price
NAV E

t ETF net asset value
NAVM

t Mutual fund net asset value, PMt = NAVM
t

ϵEt Relative ETF mispricing (discount), ϵEt = P jt − PEt

θi,Mt Units of MF shares held by agent i at t
θi,Et Units of ETF shares held by agent i at t
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