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Abstract

We propose that public investors react differently to patent issuance depending on

its novelty, and these misreactions exert real impacts on the firms’ future innovations.

First, using textual analyses of patent documents to measure patent novelty, we find

that investors underreact to the issuance of path-breaking innovations while overreact

to the trend-following ones. (Non-)novel issuance predicts a return drift (reversal) of

around 1% in two years. Novel patent issuance predicts lower risk but positive forecast

errors, consistent with a non-risk-based novelty mispricing mechanism. A bounded-

rationality model, where investors cannot figure out the true novelty of a patent at

issuance due to cognitive limits, explains the empirical patterns well. Second, using

exogenous distraction shocks, such as earthquakes, we present causal evidence that

following disappointing returns, novel firms shift innovation directions from novelty-

seeking to copycatting. The findings highlight that investors’ misreactions to patent

novelty impact firms’ future innovation directions by steering them away from higher-

valued, groundbreaking research.
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1 Introduction

Technological development has been one of the critical drivers of economic growth over

the past centuries. Not only is the amount of technological innovation important, but the

direction of technology also matters (Acemoglu (2023)). The direction of technological ad-

vancements attracts more than just the attention of economists. Investors are also drawn

to news about new technology. For example, during the COVID-19 outbreak, we saw large

swings in stock prices when pharmaceutical companies released vaccines and for firms pro-

viding work-from-home technologies. We have also witnessed the recent excitement about

blockchain technology (Cheng et al. (2019)). In this paper, we study two related questions.

First, how do investors react to news about technological innovation? Second, can investors’

reactions to technological innovation affect future innovation directions?

To address these questions, we investigate the stock price movements and firm innovation

outputs after the news of patent issuance. Using novelty measures constructed from patent

text, we find that investors under-react to the issuance of novel technologies while overreacting

to non-novel ones. We show that such mispricing can be explained by a model where investors

have imprecise signals about patent novelty due to cognitive limits and, therefore, shrink their

perception to an intermediate prior level. We further demonstrate that investor reactions to

patent novelty change firms’ decisions on the direction of future innovations. Firms that issue

novel patents (“novel firms” thereafter) shift away from novel inventions, do not follow up

on their original technology, and instead pursue overpriced, non-novel technologies. Using

exogenous distracting events around patent issuance dates as an instrument, we provide

causal evidence suggesting that firm managers are influenced by return reactions to patents

when deciding on future innovation directions.

Our paper documents a new channel through which financial markets can influence tech-

nological change. Our key contribution is to document and reconcile the novel co-existence

of under- and over-reaction to patent issuance based on its novelty, and show that such in-
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vestors’ irrational behavior in turn changes firms’ future innovation directions from novel to

non-novel. To our knowledge, we are the first to show that investor biases can impact firms’

future innovation strategy. We argue that investors under-react to novel patents, which cre-

ates an underpricing in novel firms’ stock prices. If firm managers care about the short-term

fluctuations of firm market value, this creates a disincentive for them to continue pursuing

novel R&D. On the other hand, investors get over-excited about non-novel technology and

overprice the stock of non-novel firms, which then encourages managers to over-invest in

existing technologies.

The key challenge to studying the differential reactions to patent novelty is constructing a

precise measure of patent novelty. We measure patent novelty using a comprehensive textual

analysis of patent text following the methodology introduced by Kelly, Papanikolaou, Seru

and Taddy (2021). They compute pairwise textual similarities between patents to quantify

the commonality of each pair of patents. They identify breakthrough patents as patents that

are distinct from previous innovations but that are strongly related to subsequent innovations.

For our purpose, we are primarily interested in an ex-ante measure of novelty. Therefore,

we modify the Kelly et al. (2021) definition as follows: we define a patent as novel if it

has low aggregate textual similarities to all other patents filed five years before its filing

year. At the same time, we identify non-novel inventions as those with high similarity to

prior innovations. To quantitatively measure firms’ future innovation directions, we create a

patent-pairwise citation network so that for each patent, we observe every prior invention it

builds on and all of its future citations.

With the data and measures in hand, we document two main findings. First, investors

under-react to novel patents but overreact to non-novel patents. We run impulse response

functions of firm-level subsequent returns on patent issuance of different novelty levels. Novel

patent issuance positively predicts future returns in the next two years, suggesting that the

initial reactions to novel patents are not sufficient, so future returns continue to drift, con-

sistent with an underreaction to novelty. Conversely, non-novel patent issuance negatively
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predicts future returns, consistent with an initial overreaction as investors gradually correct

for the overpricing, leading to a return reversal. (Non-)novel issuance predicts a return drift

(reversal) of around 1% in the next two years. We back up this mispricing mechanism with

several empirical tests. We argue against a risk-based story by showing that novel patent

issuance predicts lower volatility than non-novel patents. We show direct evidence of incor-

rect beliefs where novel issuance predicts positive forecast errors in earnings expectations,

suggesting investors are too pessimistic about future cash flows of high-novelty firms, hence

under-price the stock. We also provide suggestive evidence that the effects are indeed driven

by patent issuance events and come from the misvaluation of patents, instead of the misper-

ception of patent grant probability.

We propose a bounded-rationality model of investors to explain these mispricing patterns.

When a patent is issued, since the novelty is defined only with ex-ante information, investors

can, in principle, compute it. However, due to cognitive limits, it is likely that investors

will be unsure about the true novelty of the patent at its issuance. Instead, they receive

noisy but unbiased signals of patent novelty. Such signals shrink their posterior mean to an

intermediate prior level, which leads them to underestimate the novelty of novel patents and

overestimate the novelty of non-novel patents. Connecting perceived novelty to perceived

value, the model predicts the following short-term and long-term response in the firm’s stock

price. In the short term, return responses are insignificantly different across novelty. In the

long run, however, the model predicts significant return predictability as the firm market

value converges to the rational response of patent issuance. These model predictions exactly

match the empirical patterns of short-term and long-term average returns in the data. The

model also predicts stronger mis-reaction and slower convergence with noisier signals. We

verify this key model mechanism by empirically showing that firms with lower institutional

holdings have stronger misreactions than those held primarily by institutional investors, as

retail investors tend to receive noisier signals.

Second, we demonstrate that investors’ misreactions to novelty in turn shift firms’ inno-
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vation directions from novelty-seeking to copycatting. Using the patent citation network, we

create several measures to assess firms’ innovation directions. We examine whether firms’

stock market returns can predict future changes in their innovation directions. Reduced-form

ordinary least squares (OLS) estimates suggest that firms’ disappointing quarterly returns

are correlated with fewer novelty-seeking innovations relative to “copycatting” (non-novel)

ones in the following twenty quarters (five years). Considering that a firm’s future innovation

could correlate with unobserved determinants of its equity returns, to examine causal effects,

we instrument for returns using “felt” earthquakes as exogenous distractions to investors and

provide causal evidence that market reactions distort a firm’s future innovation directions.

Specifically, we exploit the cross-time variations by comparing the same firm across pe-

riods with time-varying distractions caused by earthquakes. The period with more frequent

“felt” earthquakes happening during the 3-day window around patent issuance creates more

distraction to investors, so they respond less to the news of a firm’s patent issuance, which

leads to lower returns on the equity market relative to the period without distractions. Follow-

ing the disappointing returns, firms, particularly when majority of patents granted is novel,

pivot from investing in other novel research or continuing developing their newly granted

patents to mimicking existing innovation trends.

Moreover, we obtain similar findings when exploiting cross-firm variations by comparing

firms within the same industry during the same period. By using a firm’s ex-ante retail

investor shares as plausibly exogenous shares and interacting them with the frequencies of

“felt” earthquakes as shocks for distractions, we calculate each firm’s exposure to investors

distracted by earthquakes. Leveraging this “Bartik”-type instrument, we show that firms

experiencing lower returns due to higher exposure to earthquake distractions engage in fewer

novelty-seeking innovations relative to those non-novel ones in the future. Such a shift could

potentially create lower economic value for the innovating firm and decrease the positive

externalities of novel patents. We propose and discuss several channels through which firm

managers consider their firms’ short-term stock returns when making future innovation de-
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cisions (Stein, 1989) for future study.

Literature Review

Our paper contributes to three strands of literature.

First, we contribute to the literature on investor reactions to innovation news. We are

most closely related to Hirshleifer et al. (2018) who document that firms’ innovative orig-

inality positively predicts stock returns, but have important distinctions empirically and

theoretically. Empirically, our measure, which is based on textual similarity, more directly

measures how a patent is distinctive to previous patents than citing a wide set of technolo-

gies. We also find both positive predictability for novel patents and negative predictability for

non-novel patents, which provides a new fact that investors overreact to existing technology.

Theoretically, we provide a model that can jointly explain under and over-reaction, while

an inattention model can only explain the under-reaction to originality. Inattention models

also explain other underpricing of innovation, e.g., Hirshleifer et al. (2013) on innovation

efficiency, Cohen et al. (2013) on R&D success, Fitzgerald et al. (2021) on innovation search

strategy, Chemmanur et al. (2022) on grant news, etc. Despite the popularity of limited

attention models, our paper offers a new framework to jointly understand both the under-

and overpricing of technology, which we then verify in the data. Therefore, we also add to

the recent studies trying to reconcile the co-existence of under- and over-reaction1. In a way

that is new to the literature, we reconcile the co-existence of under- and over-reaction to the

same type of news, patent issuance. Investors have an imprecise representation of patent

novelty and thus form posterior beliefs close to an intermediate level.

Second, the paper suggests a novel, important channel by which financial markets exert

real economic impact. There is a growing literature studying the effect of the secondary

1Bordalo, Gennaioli, Ma and Shleifer (2020) argue that individuals often overreact while the consensus
opinion often underreacts. Wang (2021) proposes that investors under-react to persistent processes but
overreact to random processes. Kwon and Tang (2021) demonstrate that investors under-react to less extreme
events while overreacting to extreme news.
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market on firm decisions through learning from prices. Chen, Goldstein and Jiang (2007)

suggest that firm managers learn from private information in stock prices to make investment

decisions. Price informativeness is also essential in other firm decisions, such as takeover

activity (Edmans, Goldstein and Jiang (2012)) and R&D investments (Kang and Kim (2017)).

Unlike the learning from prices channel, we propose that investors’ behavioral biases, which

lead to mispricing, can affect firms’ future investment decisions. Moreover, the research on the

effect of financial markets on firms’ innovation strategies has focused primarily on the primary

market. Bernstein (2015)) studies the impact of going public on innovation quality, Lerner,

Sorensen and Strömberg (2011) discuss the effects of LBO on innovation output, and Babina,

Bernstein and Mezzanotti (2023) show the effect of local exposure to financial crises on local

innovation players. These papers demonstrate the importance of financial frictions. We

instead explore the possibility that behavioral forces in the secondary market also contribute

to the shift in innovation behavior. On this front, Dong et al. (2021) document that stock

overreactions affect innovative inventiveness and output with a positive sign. They focus

on general overpricing, while we look at misreactions around patent issuance and closely tie

reactions to patents to managers’ decisions on future innovation strategies. Moreover, while

they study the amount of future innovation, we are interested in the direction of innovation

from novel to copycat innovations. Krieger et al. (2022) also look at the decision of novel vs.

incremental innovations, focusing on the pharmaceutical firms. They argue that risk aversion

and costly external financing lead them to underinvest in novel innovation. We look at this

decision in all industries and tie it directly to investors’ reactions to novelty.

Finally, we speak to the economic growth literature on heterogeneous innovation and in-

novation directions. In a 2023 AEA lecture, Acemoglu (2023) proposes two channels that

can distort the direction of technology. The first one is differential externalities. If the nega-

tive externality is not priced in, technology will be directed towards the areas with negative

externalities. Secondly, innovation is driven towards industries with a higher markup. For

example, curative technologies usually have higher markup in healthcare, thus fostering more
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innovation. We study innovation direction at a more granular level. Instead of focusing on

across industries, we study how firms choose their innovation directions. Acemoglu et al.

(2022) argue that firms with an open-to-disruption culture are more likely to conduct rad-

ical innovations. We provide a new channel where the decision also depends on investors’

perception, not just managers’ own type. Akcigit and Kerr (2018) also study this question

at the firm level. They are interested in whether firm managers choose internal (improving

existing products) versus external innovations (acquiring a new product line). They find that

large firms prefer internal innovation, and thus, major innovations tend to happen in small

firms. In their model, innovation direction shifts as the firm scales up, while in our paper,

conditional on firm size, innovation direction can also shift due to investors’ reactions.

The paper proceeds as follows. We describe our data sources and key measures in Section

2. In Section 3, we present results regarding investors’ misreactions to patent novelty. We

then develop a theoretical framework to explain the misreactions and verify its predictions

in our data in Section 4. In Section 5, we show results on the future innovation direction of

novel firms and how misreactions slow novel technology advancements in novel firms. Section

6 concludes by discussing the implications of our results for future research.

2 Data and Measurement

We combine various data sources to establish the empirical results in the paper. Since we

examine how investors react to patent issuance news and how investors’ reactions to patents’

novelty impact firms’ future innovation directions, the key data construction is to combine

information from patent data with firms’ stock prices and financial statements.

2.1 Patent Data

Our study’s first substantial data source is the patent records from the United States

Patent and Trademark Office (USPTO). Over a period of nearly a century (from 1926 to
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2022) , this extensive dataset provides valuable insights into technological advancements and

innovation activity across various industries. The dataset includes information on a patent’s

filing and issuance date, inventors and assignees, classification codes, citation patterns, and

the patent’s full text, enabling us to construct different measures of innovation. We elaborate

on the methodologies and definitions of these measures later in this section.

2.2 Firm-level Financial Data

For the main analyses, We obtain monthly stock returns and shares outstanding from the

Center for Research in Security Prices (CRSP). Our sample includes all NYSE, AMEX, and

NASDAQ (CRSP exchange code 1-3) common stocks (CRSP share code 10-12). To test the

market reactions to the news of patent issuance, we match it with the patent data. Our focus

is on the stock market reactions after the official USPTO announcement of patent issuances.

Following the methodology by Kogan et al. (2017), we link the patents to publicly-traded

firms by using the assignee names as the key matching criterion. We drop patents that are

matched to multiple firms to avoid double-counting. We end up with around 3.6 million

patents that can be matched to a US public firm.

We also construct several control variables from CRSP. We calculate market capitalization

as |prc| × shrout, and we use the market cap from December in the past year to calculate

book-to-market ratio (Fama and French, 1992). Short-term reversal is the returns from

month t−1 and the medium-term momentum is the cumulative returns from month t−12 to

t− 2. To study the short-term reactions, we also match CRSP daily returns to patents with

issuance dates using the same mapping procedure. Using the daily returns, we also construct

monthly realized volatility as the squared daily returns and the monthly beta by regressing

daily returns in each firm-month on CRSP value-weighted index returns.

We extract an array of firm-specific accounting variables from Compustat, such as revenue,

cost, book equity, employment, etc. Book equity is the shareholders’ equity (seq) adjusted
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for tax credit (txditc) and preferred stocks (pstkrv or pstkl or pstk). We compute several

profitability margins. Gross profit is revenue (sales) minus COGS (cogs), scaled by total

asset (at), free cash flow is net income (ni) plus depreciation (dp) minus change in working

capital (wcapch) and capital expenditure (capx) scaled by book equity (Novy-Marx, 2013),

operating profit is revenue minus COGS, SG&A (xsga), and interest expenses (xint), scaled

by book equity, investment is change in total assets (Fama and French, 2015), EPS is net

income divided by adjusted share outstanding (cshpr) (Bordalo et al., 2019), and ROE is

income before extraordinary items divided by lagged book equity (Hou et al., 2015). We

also construct several firm input and output variables following Kogan et al. (2017). We use

profits (sales minus cogs, deflated by CPI), output (sales plus change in inventories invt,

deflated by CPI), employment (emp), and capital stock (ppegt, deflated by NIPA price of

equipment).

2.3 Other Data

Institutional Holdings We obtain firm-quarter institutional ownership from FactSet.

FactSet institutional ownership data mostly comes from the SEC 13F filings. All institu-

tional investment managers with more than $100 million of AUM are required to file each

quarter. We use the Ferreira and Matos (2008) construction of institutional holdings as our

main measure of institutional shares. The data is available from 2000Q1 to 2021Q4.

Implied Volatility We obtain implied volatility measure from OptionMetrics. The implied

volatility is from standardized at-the-money options. We construct a firm-month panel by

averaging the implied volatility at the option level issued in each month. The data is available

from January 1996 to December 2022.

Analyst Forecasts We use the sell-side analyst forecast data from I/B/E/S. We use

analyst-level unadjusted forecasts of annual earnings from IBES and adjust earnings for stock
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splits using the CRSP cumulative adjustment factor. Directly using the adjusted file from

IBES has rounding errors which may change the conclusion (Payne and Thomas (2003)).

We use a potentially different adjustment factor at the forecast date and the earnings an-

nouncement date to make sure the adjusted earnings and forecasts are on the same basis.

Following Bouchaud et al. (2019), we compute consensus earnings with the median of indi-

vidual forecasts submitted at most 45 days after a total annual earnings announcement. If

the analyst issues multiple forecasts during the 45-day period, we use the first forecast. We

use the 1-year and 2-year future earnings forecasts from fiscal year 1982 to 2023.

Earthquakes We collect earthquake data from the United States Geological Services (USGS).

The data includes dates, magnitudes, and coordinate locations of each earthquake happened

in the United States from 2000 to 2020. We count the number of “felt” earthquakes in the

US with magnitudes above 3.5 as only “felt” earthquakes can distract investors.

2.4 Innovation Novelty, Impact, and Direction

2.4.1 Measurement of Patent Novelty and Impact

The key variable of interest in our analyses is patent novelty, which is the degree to which

an invention presents a unique, innovative idea compared to prior work. To quantify this

feature, we opt for a text-based measure so that we can extract distinctive patterns, themes,

and terminologies, allowing for a relatively objective assessment of a patent’s novelty.

More specifically, our measure of patent novelty is inspired by Kelly et al. (2021)2. They

define the importance of a patent by examining its similarity to both the patents filed before

and after. Specifically, they propose an indicator of patent importance, denoted as q10j for

patent j, as the ratio of its forward similarity FS10
j , to its backward similarity, BS5

j :

2We thank the authors for sharing the dataset on https://github.com/KPSS2017/

Measuring-Technological-Innovation-Over-the-Long-Run-Extended-Data.

10

https://github.com/KPSS2017/Measuring-Technological-Innovation-Over-the-Long-Run-Extended-Data
https://github.com/KPSS2017/Measuring-Technological-Innovation-Over-the-Long-Run-Extended-Data


q10j =
FS10

j

BS5
j

, where BS5
j︸︷︷︸

Novelty

=
∑
i∈Bj,5

ρj,i, FS10
j︸ ︷︷ ︸

Impact

=
∑

i∈Fj,10

ρj,i.

Delving deeper into each component, the backward similarity (BS5
j ) represents the nov-

elty aspect of a patent. It sums up the pairwise similarities, ρj,i, of patent j to all patents

filed in the five years preceding j’s filing date. These preceding patents are captured in the

set Bj,5. This measure aims to understand how closely patent j resembles or diverges from

previous innovations. On the other hand, the forward similarity (FS10
j ), capturing the im-

pact dimension, is the summation of the pairwise similarities of patent j to all subsequent

patents filed in the decade following j’s filing date, represented as a set Fj,10. This measure

provides insight into the influence of patent j on subsequent innovations.

Our primary focus is the novelty aspect of each patent. As noted above, a patent with a

lower similarity to preceding patents (lower BS5
j ) would indicate a higher degree of novelty.

Such a metric is important and intuitive, as it helps us approximate ex-ante whether an

invention is groundbreaking or merely a marginal improvement upon prior art. One should

note that not all novel patents necessarily represent technological breakthroughs. Under such

circumstances, we take advantage of the forward similarity metric FS10
j , which captures the

ex-post impact of a patent, to separate the patents with the same novelty levels further into

high or low-impact groups.

2.4.2 Measurement of Innovation Direction and Diffusion

We construct a pairwise patent citation network to capture the breadth and depth of

technological diffusion. This methodology is built on observing each patent’s subsequent

citations, ensuring a comprehensive mapping of the flow of knowledge and firms’ innovation

directions. Our data consists of 43 million patent citation pairs, specifically covering patents

whose assignees are publicly traded firms available in the CRSP database. We employ it

to explore the dynamics of firms’ innovation directions. Specifically, we can infer whether
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firms are more willing to innovate further upon their original novel patents or opt to follow

prevailing trends by referencing patents from other entities. Moreover, the citation network

allows us to create proxies for evaluating a patent’s social value. For example, we can employ

the total citations a patent receives to indicate its influence and acceptance in the broader

community. The metric gives us a reasonable estimate of a patent’s social value.3

3 Market Reactions to Novelty

In recent years, there has been a growing interest in understanding how financial markets

react to various types of news, including innovation news. In this section, we study investors’

differential responses to news of patent issuance by public firms, explicitly distinguishing

between patents with high novelty and those that are more conventional. By integrating

patent data with stock returns, we systematically estimate the predictability of firms’ re-

turns after the announcements of patent issuance. This exercise seeks to illustrate whether

investors under-react or overreact to such news. We then show robustness with alternative

specifications and measurements. We also investigate what drives the difference in market

reactions to novelty. Using expectations data, we show direct evidence of a mispricing-based

explanation. We highlight the importance of patent issuance as news using a placebo test.

3.1 Impulse Response of Patent Issuance

In the empirical studies of investors’ reactions to news, a prevalent methodology is to

examine whether news predicts firms’ future returns. Such an approach offers a framework

for gauging the extent of market mis-reaction. Intuitively, if investors rationally respond to

full information (FIRE), the firm’s stock price should jump immediately to the correct level

so that future stock returns should be unpredictable. If, instead, the information revelation

3Our proxies represent a lower bound on a patent’s social value, given that a patent can bring significant
value to society in ways not measured by the citation network.
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leads to positive predictability in future returns, we can infer that investors do not take

account of all the information when it is initially released, suggesting an underreaction to the

news. Conversely, negative predictability can be seen as an indication of overreaction, where

investors give an overly high valuation to the news upon its release.

Using this framework, we aim to compare investor reactions, or potential misreactions,

to patents categorized as novel versus non-novel ones. In particular, we estimate the degree

to which future returns can be predicted by the issuance of novel and non-novel patents,

controlling for other determinants of returns.

We first classify each month’s patents into novel versus non-novel types. For each firm,

we collate all patents granted each month and categorize them into ten deciles based on

their novelty levels. To prevent lookahead bias, we assign decile bins by comparing the

novelty (patent backward similarity, BS5
j ) of the patents issued in each month with the

decile cutoffs from the previous month. As such, patent novelty is constructed using only

ex-ante information that is potentially knowable to investors. We categorize novel patents

as similarity deciles from 1 to 5 and non-novel as 6-10 so that results are not only driven by

extreme values.

We then compute local projections to examine how firm-month returns are predictable

by their innovation novelty indicators:

ri,t+τ = αind,t + βτ,novel1{i ∈ Above-Median Noveltyt}

+ βτ,non−novel1{i ∈ Below-Median Noveltyt}+ γ′Xi,t + εi,t+τ . (1)

where ri,t+τ is the return of firm i in month t+ τ . αind,t are industry×month fixed effects

(FEs) that control for industry-level drivers of returns. We also control for an extensive

list of return determinants, Xi,t: market beta, size, book-to-market, gross profit, operating

profit, EPS, ROE, free cash flow, investment, short-term reversal (rt−1), and medium-term

momentum (rt−12→t−1).
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The main variables are the two indicator variables which are equal to 1 if firm i is granted

at least one novel or non-novel patent in month t. The coefficients, βτ,novel and βτ,non−novel,

capture whether the issuance of (non-)novel patents predicts future returns, conditional on

the fact that firms can issue the other type of patents simultaneously.

To study the dynamics of return predictability by firms’ novelty intensity over time, we

generate a cumulative impulse response function (IRF),
∑T

τ=1 βτ,d, from τ = 1 to 36 months.

The IRF is a graphical representation of how a patent issuance shock translates to cumulative

returns over a three-year window. If we see a persistent increase in the cumulative IRF, this

indicates that investors are gradually correcting their underreactions to the positive news. If

we see a persistent decrease, this suggests that investors are gradually correcting their initial

overreactions to the news. When the function goes flat, the misreactions are fully corrected.

As shown in Figure 1, we see two distinct patterns. The black solid line represents the

cumulative IRF of novel patent issuance, βτ,novel, while the red dashed line is the cumulative

IRF of non-novel patent issuance, βτ,non−novel. The two lines represent the market’s differen-

tial responses to innovative breakthroughs versus incremental innovations. We see that the

indicator of novel patent issuance positively predicts returns in the next two years, which sug-

gests that investors, in their assessment of novel patents, tend to exhibit under-reaction. The

full value of groundbreaking innovations is not immediately priced in, leading to a gradual

adjustment in the firm’s stock price. These lagged reactions are consistent with a mechanism

where cognitive limits result in delayed or incomplete processing of new information. The

issuance of novel patents leads to cumulative returns of 1%. Given the rarity of novel patents,

this effect is economically significant.

By contrast, the red dashed line shows that non-novel issuance predicts persistently nega-

tive future returns. This negative relationship implies that investors overreact to patents that

follow existing technologies. Such overreactions to non-novelty may reflect a bias towards

the familiar and tried-and-true, often overvaluing incremental advancements at the expense

of truly pioneering innovations. After the initial overreaction, investors gradually correct for
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this bias, leading to a persistent negative impact on future returns.

3.2 Cumulative Return Regressions

We next run an alternative specification where we regress future cumulative returns on

novel & non-novel patent issuance together with a host of known return predictors, same as

in Section 3.1. We include industry×month fixed effects so that the specification resembles

monthly Fama and MacBeth (1973) cross-sectional regressions with industry fixed effects.

The dependent variables are future cumulative returns from 6 months to 36 months to capture

the long-term price effects. We carefully eliminate the concern of survivorship bias created

by cumulative returns. That is, for three-year cumulative returns, the observations will only

include firms that exist at least three years after the patent issuance. However, we should

also take into account investors’ reactions to short-lived firms. For firms that do not exist

for the full three-year period, we interpolate missing returns with their respective industry

returns. The specification is thus

rt→t+τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ (2)

As Table 1 shows, novel patent issuance positively predicts future long-term cumulative

returns and non-novel patent issuance negatively predicts long-term returns. Novel issuance

at most predicts 1.3% in the next three years, and non-novel issuance at most predicts -1%

in the next two years. These results confirm that investors under(over)-react to (non-)novel

patent issuance.

To understand the difference in magnitude between cumulative return regressions and

impulse response regressions, e.g., non-novel issuance predicts a larger effect (-2%) in the

IRF plot, one could distinguish average cumulative returns and cumulative average returns.

In impulse response, we compute average returns predictability in each horizon separately

and accumulate the respective average effects. In cumulative return regressions, we compute
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the cumulative returns first and then regress out the average effects. The former takes the

perspective of an investor rebalancing every period to get the average returns and the latter

adopts a buy-and-hold strategy of an average firm for three years. We do not distinguish our

preferred strategy but confirm the same conclusion with both strategies.

3.3 Robustness in Alternative Measures

To further support our main finding that investors underreact to novel innovations but

overreact to non-novel innovations, we conduct several robustness analyses with alternative

measures and specifications.

Short-term return on patent issuance While our primary analysis focuses on the long-

term reactions, understanding the immediate return response post-patent issuance is also

crucial to establish the empirical fact of investor mis-reaction. For example, if investors

overreact to non-novel patents, we should see an immediate return jump followed by a neg-

ative predictability. To test this, we run a firm-day level regression of 3-day returns on the

patent issuance dummy, controlling for industry×date fixed effects and the same set of firm

characteristics as in our main results:

Ri,t,t+2 = αind,t + βPatent Issuance Dummyi,t + γ′Xi,t + εi,t,t+2.

We find that both novel and non-novel patent issuance predict sizable short-term re-

turns. As shown in Table A.1, the coefficients of novel and non-novel patent issuance indica-

tors, when analyzed separately, are both positive and statistically significant. If we include

both dummies together with an additional patent issuance dummy, only the patent issuance

dummy is significant. This suggests that patent issuance predicts positive three-day returns

that do not differ by patent novelty.

The short-term return jumps combined with long-term return predictability give a com-
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prehensive summary of misreactions to patent novelty. For a novel patent, although the stock

price jumps up immediately following the patent news, the jump does not fully capture the

value of the patent, so the price keeps going up subsequently, suggesting an under-reaction.

On the other hand, for a non-novel patent, initially, we again see a positive jump, but part

of it is due to investor over-excitement. Following the news, returns are gradually corrected

downward, exhibiting negative predictability.

Firm-level intensity measure as a proxy for novelty We provide an alternative defi-

nition of the novelty of firms’ innovations. The new measure is the fraction of novel patents

among all patents granted to the firm each month. In particular, we compute the “novel

intensity”, defined as:

Novel intensityi,t =
# of Novel Patents (Above-Median Novelty)i,t

Total # of Patentsi,t
.

We aim to use this measure to capture the intensive margin of investors’ reactions to patent

novelty. If investors under-react to novel innovations, firms with a larger fraction of novel

patents should exhibit stronger positive return predictability.

We run return predictability regressions by replacing the novelty decile dummies with the

(non-)novel intensity measure:

ri,t+τ = αt + αind + βτ (Non-)Novel patent intensityi,t + γ′Xi,t + εi,t+τ .

In Figure A.1, we see that novel intensity positively predicts future returns in the next two

years, suggesting that investors underreact more strongly to firms with more novel patents.

We lose some power in this specification because we are conditioning only on the firms that

have at least one patent issuance. However, the advantage of this measure is that it is scaled

by the number of patents issued; as such, the return predictability is not driven by one firm

issuing many patents at the same time. Even with weaker power, we still find significant
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positive predictability for novel intensity; the predictability becomes insignificant in the long

term, providing evidence that the mispricing is corrected after two years.

Firm-level multi-valued similarity score as a proxy for novelty Another alternative

measure we use is the firm-level multi-valued similarity score. To implement this, we again

classify patents into decile groups based on their backward similarity. This classification

enables us to compute a similarity score at the firm-month level by directly averaging the

firm’s patents’ decile values. Under this measurement scheme, a higher average similarity

score indicates a firm’s inclination towards non-novel innovations. If investors overreact to

non-novel innovations, we would expect to see a strong negative predictability of future

returns by the firm’s similarity score.

We run local projection regressions with the similarity score. As shown in Figure A.2, the

similarity score displays negative predictability of future returns, confirming that investors

overreact to incremental innovations.

Dissecting the quality of novel patents We distinguish whether investors’ misreactions

to novelty is driven only by the issuance of “bad” novel patents. Do investors display under-

reactions because they perceive these novel patents as faltering endeavors? Or do they also

undervalue impactful breakthrough innovations?

To address this, we use the 10-year forward similarity measure from Kelly et al. (2021),

categorizing patents into “Good” and “Bad” patents based on their relative impact. A patent

with higher forward similarity is more impactful because it opens up more future follow-up

innovations. We define “good” as being above the median of the 10-year forward similarity in

a given month. Akin to our main empirical strategy, we implement the following firm-month
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level regressions:

ri,t+τ = αind,t + βτ,good1{i ∈ Goodt} × Novel Intensityi,t

+ βτ,bad1{i ∈ Badt} × Novel Intensityi,t + γ′Xi,t + εi,t+τ .

We plot the cumulative impulse response function (IRF) in Figure A.3. The underreac-

tions to novelty are similar among firms with high versus low-quality firms, indicating that

misreactions are not driven by investors’ perception of patent quality.

Portfolio sorts We investigate whether a trading strategy that longs firms with novel

patents and shorts firms with non-novel patents generates positive alphas. We impose several

different portfolio approaches. First, following the canonical financial event study literature

(Kothari and Warner, 2007), we use the Jensen-alpha (or calendar-time portfolio approach)

to capture risk-adjusted long-horizon event study performance. Advocated by Mitchell and

Stafford (2000), this approach automatically accounts for the cross-sectional correlations of

the individual event firms, which is likely to be crucial in a patent issuance setting. In

particular, each month, we form value-weighted portfolios of firms granted a (non-)novel

patent within the prior three years. To maximize portfolio performance, we define (non-

)novel patents as the ones in the most novel (similar) decile, and a firm is in the portfolio if

there is a month in the past three years when it issues only (non-)novel patents. In Figure

A.4, we plot the cumulative alpha of the long-short portfolio against three asset pricing

models: CAPM, Fama and French (1992) 3-factor, and 3-factor after replacing the value

factor with the intangible-adjusted value factor from Eisfeldt et al. (2020). We see that

cumulative alpha is positive throughout the time series, and the average annualized alpha is

2.1% against CAPM, 1.5% against FF3F, and 0.6% against intangible-adjusted FF3F.

We also evaluate the performance of conventional characteristic-based long-short portfolio

sorts. In particular, we construct value-weighted long-short portfolios based on the fraction
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of novel patents granted to a firm (novel intensity). A (non-)novel firm has a novel intensity

above 70th (below 30th) percentile. We sort with two frequencies: every month and every

three years to capture the long-term effects. Both portfolios are monthly rebalanced. Figure

A.5 shows the cumulative alpha of three-year sorts, and Figure A.6 shows the cumulative

alpha of monthly sorts. Both approaches generate positive alphas in most periods against

CAPM and FF3F models, though portfolios do better in earlier time periods before the 1980s,

when one would expect it’s harder to figure out patent novelty with slower technology.

In summary, our robustness checks, with diverse methods and measures, consistently con-

firm our primary conclusion: public-market investors, while responsive to patent announce-

ments, display a systematic underreaction to pioneering innovations and an overreaction to

non-novel ones.

3.4 Mechanism

In this section, we provide empirical evidence of the mechanism behind investor misreac-

tions to patent novelty. We first provide suggestive evidence to rule out a rational risk-based

explanation of return predictability, and then show direct evidence of mispricing in firms with

novel versus non-novel innovation issuance. We also show several pieces of evidence that the

mispricing pertains to patents themselves. These discussions about the mechanism serve as

inspiration for a misreaction model of patent novelty in Section 4.

Ruling out a risk-based explanation Return predictability does not always signify in-

vestor misreaction. A rational explanation for the positive predictability of patent novelty

is that novel firms are riskier, and thus, investors demand a higher expected return as com-

pensation. To test this hypothesis, we investigate the relationship between the issuance of

(non-)novel patents and firms’ future stock return volatility.

We do not find supporting evidence for a risk-based explanation using three different
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definitions of volatility. In Figure 2, we run the following local projection regressions:

σi,t+τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ , (3)

where σi,t+τ is the standard deviation of realized daily returns in month t + τ and “Novel”

equals 1 if the firm issues at least one patent with above-median novelty. We also control

for firm characteristics, including market beta, size, book-to-market, gross profit, operating

profit, EPS, ROE, free cash flow, investment, short-term reversal (rt−1), and medium-term

momentum (rt−12→t−1), and industry×month fixed effects.

We plot the impulse response for novel and non-novel issuance indicators. Firms issuing

novel innovations even have significantly lower return volatility than firms issuing non-novel

innovations, contrary to a risk-based story where novel firms have higher risks.

One may argue that realized total return volatility may not be the correct measure of risk

since only systematic risk should be priced. We, therefore, test whether there is a significant

difference in future market beta in response to the issuance of novel and non-novel patents.

We run analogous regressions with future market beta as the dependent variable:

βi,t+τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ .

We estimate the monthly beta using daily returns in each month. Figure A.7 shows that

non-novel patent issuance consistently predicts a higher beta than novel patents. If systematic

risk is priced in returns, we should instead expect that novel patents predict higher returns.

The fact that we see the converse pattern in the data suggests that the positive predictability

of novel patents is unlikely to be driven by a risk-based story.

Another possible concern is that realized volatility is not the volatility that investors

perceive at the time of issuance. To respond to this concern, we estimate the predictability

of ex-ante implied volatility. We obtain daily implied volatility of standardized 30-day at-
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the-money (ATM) options from OptionMetrics. Following Kelly et al. (2016), we exclude

options with an implied volatility exceeding 100% per year. We construct a firm-month

panel of implied volatility by averaging the implied volatility reported in each month. We

run impulse response regressions with implied volatility as the dependent variable:

Implied Voli,t+τ = αind,t+βτ,novel1{i ∈ Novelt}+βτ,non−novel1{i ∈ Non-Novelt}+γ′Xi,t+εi,t+τ .

(4)

Figure 3 shows that non-novel patent issuance consistently predicts higher implied volatil-

ity than novel patents, implying that investors perceive higher volatility for firms with non-

novel patents. If we believe that investors think novel patents are riskier, we should instead

see a higher implied volatility for novel patents. On a side note, implied volatility decreases

as we go further away from patent issuance. This is consistent with the idea that uncer-

tainty around patent issuance gets resolved over time. We will explore more in our model of

misreaction.

These disconnects between various definitions of risk and expected returns challenge the

rational story and favor a behavioral story of investors’ misreactions.

Earnings Forecast Errors, Mispricing, and Patent Novelty To establish a behavioral

story of novelty misreaction, we show direct evidence of incorrect beliefs after novel vs. non-

novel patent issuance. Investors form overly pessimistic expectations about a firm’s future

profitability when it is granted novel versus non-novel patents. If investors trade based on

these earnings expectations, the errors in earnings expectations would directly translate into

return predictability. To test this mechanism, we study the subjective forecast errors after

patent issuance, inspired by the setup in Ma (2023). The earnings expectations data come

from IBES, which collects sell-side analyst forecasts of firm EPS. We extract the one-year

and two-year earnings expectations, following the data construction process in Bouchaud et

al. (2019). We measure consensus earnings forecasts by taking the median forecast from
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individual analyst-level forecasts issued within 45 days after the past announcement. We

winsorize consensus expectations at the 1% level to remove anomalous forecasts. Denote the

actual EPS in year t+ τ as πt+τ and the forecasts issued in year t as Ftπt+τ , and we regress

earnings forecast error on patent issuance indicators in a firm-year panel:

πi,t+τ − Ftπi,t+τ

Pi,t−1

= ατ + βτ,novel1{i ∈ Novelt−1}

+ βτ,non−novel1{i ∈ Non-Novelt−1}+ γ′Xi,t−1 + εi,t+τ , (5)

where we scale EPS forecast errors by ex-ante stock price as in Bouchaud et al. (2019) and

“(Non-)Novel” equals one if the firm issues at least one patent with above(below)-median

novelty in year t. This specification captures the thought process in which an analyst in year

t observes the novel vs. non-novel patents issued in year t−1 and needs to forecast the firm’s

profitability in the next two fiscal years. We use t − 1 patent issuance to avoid lookahead

bias, where patents are issued after the earnings forecasts are made.

A positive coefficient, βτ,d, d ∈ {novel, non−novel}, suggests an underreaction as investors

form too pessimistic forecasts given a novel patent issuance. On the other hand, a negative

coefficient suggests that investors are overly optimistic after the issuance event. In Table 2,

we see positive coefficients for novel issuance and negative coefficients for non-novel issuance,

suggesting that analysts give overly pessimistic forecasts after novel issuance and optimistic

forecasts after non-novel issuance. This is consistent with the hypothesis that investors

undervalue novel patents and overvalue non-novel patents. The coefficient for novel-patent

issuance is statistically significant, while the one for non-novel issuance is only marginally

insignificant due to a much smaller sample. As robustness, in Table A.2, we regress the same

forecast errors on novel intensity, an intensive-margin measure of the firm’s novelty. We see

positive coefficients, which indicate that analysts are more pessimistic about a firm’s future

profitability if it issues more novel patents. This is again consistent with an underpricing of

firms with novel patents. Both results provide a belief-based mispricing explanation of the
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misreactions to patent novelty: investors form too pessimistic beliefs about firms with novel

patents and hence underprice these stocks.

Identifying Treatment Effects of Novelty Issuance One may be concerned that the

return predictability results are not driven by patent issuance events but by unobserved firm

characteristics. To test this, we introduce a placebo test where we keep the exact patent

issuance timing and number of patents issued but randomize patents into pseudo novelty

levels. If the misreactions are driven by firm unobservables, not the novelty of the patents,

we should see similar predictability even with randomized patent novelty. By contrast, if the

results are muted with randomized novelty, this is more consistent with investors’ misreactions

to patent novelty. Note that this placebo test takes into account the time-varying firm-specific

unobservables that can be related to patent issuance but not those that are directly linked

to patent novelty. For example, if a firm with a novel patent issuance is unique in a way that

makes it more capable of obtaining novel patents and investors misreact to that, the placebo

test cannot separate it out. When we consider investors’ reactions to patent novelty, we are

agnostic about whether it is the novel patents themselves or the firm ability to issue novel

patents – both should be counted as the value of innovation to the firm.

In particular, for each firm, we keep the same number of patents issued each month, but

we randomly put these patents into ten novelty deciles. We then calculate novel and non-

novel indicators using the reshuffled novelty decile levels, where the novel indicator equals 1

if there is at least one patent reshuffled to decile 1-5 and vice versa. We then run the same

impulse response regressions with the actual returns and firm characteristics but replace

actual (non-)novel indicators with the pseudo ones:

ri,t+τ = αind,t + βτ,novel1{i ∈ Shuffled Novelt}

+ βτ,non−novel1{i ∈ Shuffled Non-Novelt}+ γ′Xi,t + εi,t+τ . (6)
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Figure 4 gives the results from one of such randomization exercises. With randomized

patent novelty, we find null results for both “pseudo” novel and non-novel issuance with the

exact timing and firm characteristics. We also see that the coefficients of “pseudo” novel and

non-novel issuance are not statistically significant. The findings imply that the misreactions

are driven by patent novelty, not other firm characteristics.

To avoid the results driven by one random realization, we conduct 100 randomization

exercises and extract the coefficients from regressions of 2-year cumulative returns (τ = 24)

on reshuffled (non-)novel issuance:

rt→t+τ = αind,t + βτ,novel1{i ∈ Shuffled Novelt}

+ βτ,non−novel1{i ∈ Shuffled Non-Novelt}+ γ′Xi,t + εi,t+τ . (7)

Figure 5 plots the distribution of coefficients on reshuffled novel versus non-novel patent is-

suance. Throughout the 100 samples, both the novel and non-novel coefficients are close to 0,

and the coefficients from actual data are statistically significant given the empirical distribu-

tion from 100 simulations. This again indicates that the under-(over-)reaction to (non-)novel

is unlikely to be driven by anything other than the issuance of (non-)novel patents.

Another approach to confirm the validity of this approach to identify the effects of novel

versus non-novel patent issuance can be borrowed from difference-in-differences literature,

which is to conduct a test for pre-trends. If the return responses for firms with novel and

non-novel patent issuance are similar before the actual issuance events, the return responses

afterward are likely to be driven by patent issuance. In particular, we estimate the pre-

dictability of (non-)novel issuance on lagged returns:

ri,t−τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ .

We run lagged returns in the past 12 months. In Figure A.8, we see that the pre-period
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returns are all, on average, close to 0, and more importantly, the pre-trend moves in parallel

with novel and non-novel patent issuance, suggesting that the return predictability we see in

the post-periods are likely driven by the issuance of novel versus non-novel patents.

Patent Grant Probability versus Value The magnitude of return reaction to patent

issuance is determined by the probability of a successful issuance multiplied by the unit

value of the patent. This may lead to two concerns in the interpretation of results. First,

if investors perceive a lower grant probability of novel patents, this may also lead to initial

underreactions in returns to novel patent issuance instead of underestimation of patent value.

We address this concern by arguing that, at the patent issuance date, investors immediately

know how long it takes for the patent to be granted from its filing, so they should quickly

correct their perception of the success probability of novel versus non-novel patents issued at

the same time. The misperception should be corrected instantly, which will be inconsistent

with our results, as the mispricing takes two years to correct.

Second, if the patent office biases the approval rate of novel technologies to be lower than

non-novel technologies, the magnitude of misreactions between novel and non-novel patents

should adjust for different grant probabilities. The same 1% misreaction to novel versus

non-novel patents would predict a stronger undervaluation of novel patents compared to the

overvaluation of non-novel patents. To investigate the extent to which this creates large

differences, we compare the average grant probability between novel and non-novel patents.

In particular, we run the following patent-level regressions:

(Grant - Filing Date)i × 12/365 = αm + αcpc + α + β1{Noveli}+ εi,

where we control the grant month fixed effects and indicators of the CPC technology class.

Table A.3 demonstrates the average grant length of novel versus non-novel patents. Non-

novel patents, on average, take 32.3 months to get granted, and novel patents take 2.3

months longer. Using the properties of an exponential distribution, this translates into a
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grant probability of (non-)novel patent in a month of 2.9% (3/1%). The approval probability

in an average month of novel vs. non-novel innovation only differs by 0.2%, which is not

economically significant.

4 A Model of Misreaction to Novelty

In this section, we present a framework that we can use to understand the return mis-

reactions to patent novelty and the return dynamics after patent issuance. The model is

consistent with a mispricing mechanism to patent novelty (as argued in Section 3.4) and also

explains key empirical facts in Section 3. First, short-term returns jump up immediately

after a patent is issued, but the jumps are not economically different across patent novelty.

Second, in the long term, a novel patent issuance positively predicts returns while a non-novel

patent issuance negatively predicts returns, as investors gradually learn the true value of the

patent.

This is a bounded-rationality model where investors do not know the true novelty of a

patent when it is first issued. Instead, they receive unbiased, noisy signals about patent

novelty and are Bayesian learners of the true novelty. It is a bounded-rationality model

because true patent novelty, as we define it, only depends on ex-ante information and is

therefore knowable to investors when patents come out. However, due to cognitive limits,

investors are unsure about the patent’s novelty immediately after issuance, as new patents

are hard to understand and process. This aside, investors are rational: they update from the

signal in a Bayesian manner. The key prediction of the model is that immediately after patent

issuance, investors’ perception of novelty is close to an intermediate prior; they, therefore,

overestimate the novelty of non-novel patents and underestimate the novelty of novel patents.

Connecting perceived novelty to patent value, we show that the model makes predictions

about expected returns after the issuance of patents with different levels of novelty, which

is directly testable in the data. First, under- and over-reaction is monotonic across levels of
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novelty. The more novel the patents are, the more investors under-react to them. Second,

the noisier the signals are, the stronger the misreactions are, and the longer it takes for the

price to converge to the correct level. Third, when patents are first issued, return differences

are not economically significant. Most of the differential misreactions show up in long-term

return predictability.

4.1 Short-Term Reactions

We first derive the model predictions for the return reactions to patent issuance when a

patent is issued. We denote the true novelty of a patent as x ∈ [0,∞). Investors have a prior

distribution of the patent’s true novelty, which we assume to be lognormally distributed:

log x ∼ N(µ, σ2).

We assume a lognormal prior to ensure that patent novelty is non-negative while main-

taining tractability. Woodford (2020) also uses a lognormal prior in a model of cognitive

imprecision; he argues that lognormality is consistent with Fechner’s explanation for Weber’s

law, where the subjective sensation of a stimulus is proportional to the logarithm of stimulus

intensity. Our model, however, differs from the Woodford (2020) model in a nuanced way.

In a model with cognitive imprecision, agents see the true value but their perceptual system

encodes it imprecisely; by contrast, in our model, agents do not observe the true value.

When a patent is first issued, a bounded-rational investor does not know the true novelty

of the patent; instead, he receives an unbiased but noisy signal about the patent novelty:

r ∼ N(log x, ν2).
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Then, she forms the posterior mean of patent novelty in a Bayesian matter:

x̂(r) ≡ E[x|r] = exp

( ν2

σ2 + ν2

)
log x̄+

(
σ2

σ2 + ν2

)
r

 , (8)

where x̄ ≡ exp[µ+ 1/2σ2] is the prior mean.

Therefore, for a patent with true novelty x, the investor’s estimate x̂ follows a lognormal

distribution with mean and variance

e(x) ≡ E[x̂|x] = exp
(
β2ν2/2

)
x̄1−βxβ var[x̂|x] = (exp(β2ν2)− 1)e(x)2, (9)

where β ≡ σ2/(σ2 + ν2) < 1.

In Figure A.9, we plot the mean perception of patent novelty, E[x̂|x], against the true

novelty level. We see that the investor underestimates novelty for novel patents, while for

non-novel patents, she overestimates novelty.

Connecting Patent Novelty to Returns To generate a price effect from novelty mis-

perception, we need to relate the investor’s perceived novelty of the patent to the stock price

change in response to patent issuance. Our empirical findings suggest that patent value is

positively correlated with patent novelty. In particular, we show that novel and non-novel

patents have indistinguishable return jumps at issuance, that novel patents show return drift

afterward, and that non-novel patents show return reversal. The evidence combined suggests

that true patent value is positively correlated with novelty. The exact functional form of

the relationship, however, is unknown. Therefore, we proceed as follows: As in Kogan et al.

(2017), we decompose the return of a given firm around patent issuance as

Rj = vj + εj.
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We also follow Kogan et al. (2017) in imposing that patent value cannot be negative and that

it has a normal distribution truncated at 0. We also assume that patent value is positively

correlated with the perceived novelty of the patent in a log-linear way. That is,

vj ∼ trunc+(γ0 + γ1 log x̂j + εx,j).

Since the distribution of the sum of a truncated normal variable vj and standard normal

variable εj has no closed form, we simulate 1,000,000 independent draws of the two random

variables and plot the mean of the simulated joint distribution, E[Rj|xj].

Figure 6 shows that novel patents have issuance returns lower than the rational bench-

mark, thus exhibiting under-reaction, while non-novel patents have issuance returns higher

rational, thus exhibiting overreaction. Moreover, if investors receive very noisy signals, the

returns differences across patent novelty will be economically insignificant. This matches our

empirical findings that the firm’s 3-day returns are positive for both novel and non-novel

patent issuance, but they are not economically different, as presented in Table A.1.

4.2 Long-Term Dynamics

In the previous section, we showed that, in a static setting, we could generate under(over)-

reaction to (non-)novel patents in short-term issuance returns that matched empirical evi-

dence. However, the mispricing does not lead to large return difference in the short term,

especially when the signal is noisy. In the long term, as returns gradually converge to the cor-

rect level, we should observe a more pronounced divergence in return responses. To capture

this, we resort to a dynamic model.

We assume that, after patent issuance, investors receive a noisy signal in each period. The

prior about patent novelty again follows a lognormal distribution: log x ∼ N(µ, σ2). In each
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period, investors receive one identical noisy signal:

rt ∼ N(log x, ν2).

Model Solution Conditional on the series of signals, the posterior distribution in each

period t is lognormal:

log x|r0, ..., rt ∼ N

(t+ 1

ν2
+

1

σ2

)−1

t+ 1

ν2

 1

t+ 1

t+1∑
i=1

ri

+
1

σ2
µ

 ,

(
t+ 1

ν2
+

1

σ2

)−1

 .

(10)

Denote this conditional mean as µc and conditional variance as σ2
c . Then we define the

posterior mean of novelty x at time t as E[x|r1, ..., rt] ≡ x̂t. Using the properties of the

lognormal distribution, we get

logE[x|r1, ..., rt] ≡ log x̂t = µc +
1

2
σ2
c . (11)

We then show the average misperception of novelty of a large sample of investors for each

novelty level x.

log et(x) ≡ logE[x̂t|x] = E

[
µc +

1

2
σ2
c

]
+

1

2
var

(
µc +

1

2
σ2
c

)
, (12)

where E
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Figure A.10 plots the dynamic conditional mean of the perception of patent novelty,

E[x̂t|x] for ten levels of novelty x, when the signal is relatively noisy (ν = 2σ). We can

see that, at issuance, different novelty perceptions across true novelty levels are compressed

toward an intermediate prior level of novelty. As time goes by and investors receive more

31



signals, they update their novelty perception toward the correct level of novelty.

To capture the average return response to novelty, we again relate the perception of

patent novelty to returns. Same as the static case, the patent value is distributed as a

truncated normal with a mean that is related to the logarithm of perceived novelty: vt ∼

trunc+(γ0+γ1 log x̂t+ εx,t). With this formulation, we write the distribution of patent value,

vt, in each period t:

vt ∼ N+

γ0 + γ1

(
t+ 1

ν2
+

1

σ2

)−1
[
t+ 1

ν2
log x+

1

σ2

(
µ+

1

2
σ2

)]
,

γ2
1

((
t+ 1
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1

σ2

)−2(
t+ 1

ν2

)2
ν2

t+ 1

)
+ σ2

x

 . (13)

From Equation 13, we see two key predictions about the return reactions to novelty.

Prediction 1 (Perceived Patent Value). Average perceived patent value is a weighted com-

bination of true value and prior value. Weights on the true value increase as t increases.

At issuance, the weight on true novelty is small, and therefore, patent value is indistin-

guishable across novelty. As time passes, more weight is placed on true novelty, and thus,

the model predicts a divergence in value as the posterior mean converges to the correct level.

Prediction 2 (Signal Noise). The weight on the true value is inversely correlated with signal

noise. With noisier signals, the misreactions to novelty are stronger, and it takes longer to

converge to the correct level.

For illustration, we again plot the average return to novelty, E[Rt|xt]. The cumulative

return is again denoted as Rt = vt + εt, εt ∼ N(0, σ2
ε). Since vt is distributed as a truncated

normal while εt is normally distributed, there is no closed form for the joint conditional dis-

tribution, Rt|xt. We thus simulate 1,000,000 independent draws of the two random variables

and plot the mean of the simulated joint distribution, E[Rt|xt].
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In Figure 7, we plot the return reaction to ten novelty levels for 60 periods after the

patent issuance. Simulations confirm key model predictions. First, investors underreact to

the novel patents (large x) and overreact to non-novel ones but converge to the correct level

of returns over time. In the short term, returns are compressed towards the prior, so they

are not economically significantly different. However, we see a large divergence in return

responses across different novelty levels as they converge to the correct level.

Simulations also align with key model comparative statics for the signal noise ν. A high

ν indicates that investors receive very noisy signals. In reality, this approximates the case

where the investors are primarily retail traders and do not have precise information on the

novelty of firms’ innovations. Conversely, a low ν corresponds to the case where firms have

mostly institutional investors with professional knowledge. Institutional investors should

better understand the technological advances and innovation strategies of the firms they

invest in and thus receive less noisy signals about patent novelty.

Figure 8 plots the return dynamics after the patent issuance. We consider two levels

of signal precision. High precision is the case where signal precision is the same as prior

standard deviation (ν = σ); low precision is the case where ν = 2σ. With noisier signals, the

initial reaction differs less across different novelty levels, suggesting stronger misreactions.

We also see that investors take longer to converge to the correct level of reaction.

4.3 Empirical test of the model

In this section, we empirically test three key model predictions. We start with the predic-

tions for the short-term reactions; we then plot the long-term dynamics in the data. Finally,

we test the differential reactions based on the key model parameter, the signal precision.

Short-Term Response The model predicts that the return reaction at issuance should

not be distinguishable across different novelty deciles with noisy signals. To test this, we

run firm-day level panel regressions of 3-day returns right after patent issuance on ten-decile
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indicators of patent novelty. Each indicator is equal to 1 if patents with a given novelty level

are granted to the firm on this day. If there is no patent issued, all indicators will be 0, which

means that the counterfactual returns are the returns from the firms without patent issuance

that are in the same industry and have similar firm observables:

Ri,t,t+2 = αind,t +
10∑
k=1

βk1{i ∈ Novelty Decilek,t}+ γ′Xi,t + εi,t,t+2, (14)

where αind,t are industry×issuance-date FEs, and Xi,t are market beta, size, book-to-market,

gross profit, operating profit, EPS, ROE, free cash flow, investment, short-term reversal, and

medium-term momentum.

Figure 9 shows significantly positive average return responses in almost all ten deciles.

We also see that the difference in response is not economically and statistically significant

across novelty deciles. This is consistent with the model implication where, at issuance, since

investors are very unsure about patent novelty, they give an intermediate prior valuation to

all patents.

Long-Term Response Despite similar short-term responses, the model predicts a much

more significant difference in the long term, periods after the patents get issued, as investors

receive more signals about patent novelty. We expect a divergence in returns across novelty

deciles as they converge to their correct level. We expect a positive return drift for novel

innovations and a return reversal for non-novel innovations. Also, the more non-novel the

patent is, the stronger reversal we shall see (the strongest negative predictability).

We directly test this by generalizing our result in Figure 1 to all ten deciles. We plot

the cumulative impulse response of future 3-year monthly returns for ten deciles of patent

novelty:

ri,t+τ = αind,t +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ . (15)

This is the exact same specification as our main result with Equation 1, but instead of splitting
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novel versus non-novel by median, we explore the behavior of ten deciles. Figure 10 shows

that, although in real data, the response is noisier, we still see that positive predictability

decreases as we move down the novelty deciles, and we start to see negative predictability for

non-novel deciles. The impulse response differences are large and consistent with the model

predictions.

Institutional Holdings and Signal Precision Finally, in the model, signal precision is a

key parameter that drives the return response. If the signals investors receive are noisier, we

would expect stronger misreactions and slower convergence to the correct level. To test this

mechanism in real data, we compare the return predictability for firms with high versus low

institutional holdings. Institutional investors should know better about the technology and

receive less noisy signals about patent novelty, and thus should exhibit weaker misreactions

and faster convergence. We use the institutional holdings data from FactSet and follow the

construction of institutional ownership in Ferreira and Matos (2008). Figure 11 shows the

results from the following regressions:

ri,t+τ = αind,t +
∑

d∈{Novel,Non−Novel}

βτ,d,high1{i ∈ dt} × 1{i ∈ High Inst Holdt}

+
∑

d∈{Novel,Non−Novel}

βτ,d,low1{i ∈ dt} × 1{i ∈ Low Inst Holdt}+ γ′Xi,t + εi,t+τ

We plot the cumulative impulse responses, βτ,d,high and βτ,d,low, for d = novel or non-novel

issuance. We see exactly what the model predicts: firms with high institutional holdings

tend to have less positive predictability after novel issuance and less negative predictability

after non-novel issuance, suggesting that the misreactions are weaker for firms with high

institutional holdings. We also see that firms with high institutional holdings have zero

return predictability earlier than firms with low institutional holdings, indicating a faster

convergence to the true value of the patents.
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5 Impact on Future Innovation

In previous sections, we documented a systematic difference in the equity market’s re-

sponse to patents with different novelty: underreaction to novel patents and overreaction to

non-novel patents. The implications of this discrepancy are profound. It raises a pivotal

question about the essence of innovation: could investors’ reactions translate into real con-

sequences for firms’ future innovation directions? In this section, we first examine whether

firms’ returns can predict future changes in their innovation directions. Simple ordinary

least squares (OLS) estimates suggest that firms’ disappointing quarterly returns are cor-

related with fewer novelty-seeking innovations relative to “copycatting” (non-novel) ones in

the following twenty quarters (five years). Considering that a firm’s future innovation could

correlate with unobserved determinants of its equity returns, to examine the existence of any

causal effects, we instrument for returns using “felt” earthquakes as exogenous distractions to

investors and provide causal evidence that market reactions can distort a firm’s future inno-

vation directions. Specifically, we mainly exploit the cross-time variations by comparing the

same firm across periods with different distractions to investors caused by earthquakes. The

period with more frequent “felt” earthquakes happening during the 3-day window around

patent issuance creates more distraction to investors, so they respond less to the news of a

firm’s patent issuance, which leads to lower returns on the equity market relative to the pe-

riod without distractions. Following the disappointing returns, firms, particularly during the

periods with more novel patents granted, pivot from investing in other pioneering research or

continuing developing their newly granted patents to mimicking existing innovation trends.

Moreover, when exploiting cross-firm variations by comparing firms within the same indus-

try during the same period, we obtain similar findings. By using a firm’s ex-ante retail

investor shares as plausibly exogenous shares and interacting them with the frequencies of

“felt” earthquakes as shocks for distractions, we calculate each firm’s exposure to investors

distracted by earthquakes. Leveraging such a “Bartik” type instrument, we show that firms

experiencing lower returns due to higher exposure to earthquake distractions engage in fewer
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novelty-seeking innovations relative to those non-novel ones in the future. Such a shift could

potentially create lower economic value for the innovating firm and decrease the positive

externalities of novel patents. Our evidence implies that financial markets could push firms

in sub-optimal innovation directions by exploiting existing technology with low remaining

value and not trying the high-value novel directions.

5.1 Firm Innovation Directions and Dynamics

Firms’ innovation directions are essential for their long-term growth. A sound innovation

strategy enables corporations to provide their customers with continued value, create new

market segments, and even push competitors out of their once-owned segments. Since firms’

innovation strategies vary significantly depending on their idiosyncratic preference and choice

sets, documenting firms’ exact decision-making procedures for future innovation directions

in a systematic way is very challenging. However, observing firms’ future patenting behavior

provides an alternative method to measure firms’ innovation trajectories and outcomes.4

Given that our study mainly focuses on patent novelty, we categorize firms’ innovation

directions into three types closely tied to the novelty of firms’ patenting. The first one is

sustaining innovation, an incremental improvement that follows up on existing technology,

in particular, that builds on the novel technology developed by the firm. For example,

Apple pioneered multi-touch technology that laid the foundation for the early-generation

iPhone and was granted a patent for this revolutionary invention.5 Following up on that,

Apple further developed a series of incremental technologies, such as “pinch-to-zoom,6” “slide

between user interface.7” Not surprisingly, these later patents by Apple all cited its original

4One limitation of our measure is that we cannot capture firms’ failed research projects and patent
applications or ongoing long-term planned R&D investment. Despite this, the outcome variables based on
granted patents should provide a valid measurement capturing any realized changes in firms’ innovation
direction.

5The US patent US20060097991A1, titled “Multipoint touchscreen”.
6“Pinch-to-zoom”: the US patent US9619132B2, titled “Device, method and graphical user interface for

zooming in on a touch-screen display”.
7“Slide between user interface”: the US patent US9772751B2, titled “Using gestures to slide between

user interfaces”.
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patent on “Multi-touch” technology, and a series of these sustaining innovations helped shape

the smartphones widely used nowadays. Inspired by this anecdotal example, we construct

the measure “number of follow-up patents” to represent a firm’s sustaining innovation based

on the patent pairwise citation network we construct. More specifically, for firm i at year-

quarter t, we calculate the number of patents filed by firm i in the following four, twelve, or

twenty quarters (i.e., one, three, or five years) that self-cite firm i’s patents issued at time

t. A higher value of this firm-level measure suggests that the firm creates more sustaining

innovation following up on its just-issued technology.

The second type of innovation is “novelty-seeking.” Besides sustaining innovation built on

existing novel technology, firms can continuously seek other novel ideas in their innovation

process. For instance, Apple has always been a “novelty-seeking” innovator. From the

invention of “embedding the electronic device to wearable” that helped the launch of the

Apple Watch eight years ago to the most recent technology in eye and hand tracking forming

the revolutionary product Apple Vision Pro, these innovations were all very novel relative

to other patents when they came out.8 To capture firms’ “novelty-seeking” innovation, we

construct the outcome variable, “number of other novel patents,” which is calculated as

the number of novel patents filed by firm i in the next one, three or five years following

i’s quarterly return at time t. We exclude firms’ “follow-up” patents during each period

when constructing the “novelty-seeking measure” because the sustaining innovations could

mechanically be less novel, which brings potential bias to our analysis.

The last type of innovation we are interested in is “copycatting innovation.” Sometimes,

firms strategically “copy” their competitors’ innovation to push these competitors out of

their once-owned segments. Taking Apple’s innovation direction as an example, Apple is also

producing inventions such as “folding device technology,” which is a well-known feature of its

competitor Samsung’s smartphones.9 Besides, we hypothesize that investors’ underreaction

8“Embedding the electronic device to wearable”: the US patent US8787006B2, titled as “Wrist-worn
electronic device and methods therefor”; Technology in eye and hand tracking: For example, the US patent
US10893801B2, titled as “Eye tracking system and method to detect the dominant eye”.

9“folding device technology”: the US patent application US20230011092A1, titled as “Hybrid cover-
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to novel patents and overvaluation of non-novel patents could drive some firms to follow the

market trend and produce more non-novel patents to chase short-term gains from the equity

market. Similar to the measure of “novelty-seeking” innovation, we calculate the number of

other non-novel patents during [t+1, t+4], [t+1, t+12] or [t+1, t+20] as proxies for firms’

future “copycatting” innovation behaviors following their quarterly return at time t. We also

exclude firms’ self-citing patents in our variable construction for the same reason as before10.

With these measures of firms’ innovation directions, we examine the following question:

Can firms’ returns predict their changes in future innovation directions? To answer this

question, we consider a model that relates firms’ future innovations directly to their quarterly

equity returns11:

Future Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αindt(i) + εi,t.

In this model, our main focus is on the future innovation outcomes, Future Innovationi,t+1→t+τ ,

which are based on the previously defined innovation directions (i.e., sustaining, novelty-

seeking, or copycatting innovations). To better capture the changes in future innovation

directions, we have developed two relative measures instead of directly using the three inno-

vation direction measures (based on patent filing levels) as the dependent variables. Because

our primary interest lies in understanding a firm’s future decisions about novelty-seeking or

sustaining innovation after establishing a novel technology, we have created the following

measures to capture how the changes in these two future innovation directions in comparison

to the ”copycatting” (non-novel) innovations:

Novelty-seeking Innovationi,t+1→t+τ = log

(
No. of novel patents filedi,t+1→t+τ

No. of non-novel patents filedi,t+1→t+τ

)
,

lay/window structure for flexible display applications”
10Firms’ follow-up patents are more likely to be categorized as non-novel patents, bringing upward bias

to the measure of “copycatting” innovation.
11We propose to implement our model on a firm-year-quarter panel in order to align with real-world

practices. It is observed that companies are more likely to assess their current technology and determine
their future innovation trajectories at a quarterly level around earnings releases.
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Sustaining Innovationi,t+1→t+τ = log

(
No. of follow-up patents filedi,t+1→t+τ

No. of non-novel patents filedi,t+1→t+τ

)
.

Given that a firm’s tendency to further innovate in a particular direction is also influenced

by multiple factors ranging from the firm’s capital and labor constraints to the existing

innovation capacity, we include a set of firm-level controls Zi,t in the regression. Specifically,

Zi,t includes the log value of the capital stock and the log number of employees, acknowledging

the foundational role of firm size in its innovation direction. Larger firms, with their expansive

resources, might be more likely to maintain their innovation trajectories. Zi,t also includes

the log value of the profits, recognizing firms with higher profit margins might invest more

in R&D and contribute more novelty-seeking innovations in the future. Moreover, we also

include the total values of all patents issued to firm i at time t12, serving as a heuristic for

the firm’s innovation quality. Furthermore, Zi,t also controls for a firm’s age, given that

younger firms might be more innovative while older companies potentially have a larger

portfolio of follow-up patents filed due to accumulated innovations over time. Lastly, we also

control for idiosyncratic volatility because it could be correlated with firms’ future growth

opportunities. A firm with high idiosyncratic volatility may have uncertain future growth

opportunities. This uncertainty could influence a firm’s future innovation directions.

In this model, we exploit two types of variations with different sets of fixed effects. First,

we include firm fixed effect αi to exploit the cross-time variations by comparing the same

firm across periods with different quarterly equity returns.13 Second, we exploit cross-firm

variations and compare firms within the same industry during the same period by includ-

ing industry interactions with year-quarter fixed effects. In both specifications, we cluster

standard errors at the firm level.

12To measure a patent’s economic value effectively, we take the off-the-shelf KPSS measure – a benchmark
method based on short-term market reactions after the patent grant, as outlined by Kogan et al. (2017).
Alternatively, we also use a patent’s adjusted citation (i.e., total forward citations normalized by the average
citations of all patents granted in the same year to address the truncation issues. One drawback of the citation
measure is that it incorporates forward-looking measures, which might bring the potential endogeneity bias
into our regression.

13When comparing the same firm across different periods, we remove the firm’s age as a control to allow
more cross-time variations.
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In Tables A.4 and A.5, we document that, even after accounting for various firm-level fac-

tors that could impact a firm’s future innovation paths, firms tend to reduce their pursuit of

other novel innovations more (relative to non-novel ones) following periods of underwhelming

equity returns, as opposed to periods with less disappointing returns. Additionally, within

the same industry and period, firms with lower equity returns are linked to fewer filings of

novelty-seeking patents compared to the “copycatting” ones in the subsequent twenty quar-

ters. However, disappointing equity market returns do not significantly predict a difference

between a firm’s sustaining innovation and non-novel ones in the short run (i.e., the succeed-

ing twelve quarters), except for a slightly increase of follow-up patents (relative to non-novel

ones) in a longer timeframe (twenty quarters).

In this section, we first create several measures to assess firms’ innovation directions using

their patent filings and our constructed patent citation networks. We then examine whether

firms’ stock market performance can predict changes in their future innovation strategies.

Simple OLS estimates indicate that firms with lower equity returns are more likely to expe-

rience a significant decline in their future pursuit of novelty-seeking innovations relative to

imitative (non-novel) ones. We do not find strong associations between a firm’s sustaining

innovation changes (compared to “copycatting” innovation) and its market returns. How-

ever, the OLS estimates for a model linking a firm’s future innovation direction changes to

their equity returns could yield biased results. This is because, even after controlling var-

ious covariates, a firm’s future innovation trajectories might still be correlated with some

unobserved determinants of the firm’s equity returns. For example, suppose a firm reorga-

nizes its R&D department at time t by hiring new technicians, scientists, and inventors with

different expertise. Such information would be priced in by investors and could impact the

firm’s market returns in the same period. Meanwhile, the new hires in the company’s R&D

department will likely change the firm’s future innovation strategies. As a result, the biased

OLS estimates would not help us identify any causal effects of a firm’s equity returns on its

future changes in innovation directions. In the subsequent section, we aim to address this
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endogeneity issue and investigate the potential causal links between investors’ misreaction to

firms’ patent issuance news in the stock market and the firms’ future innovation decisions.

5.2 Does Investors’ Behavior Impact Firms’ Innovation Directions?

We start by revisiting the model that relates firms’ future innovation to their equity

returns as we specified in 5.1:

Future Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αindt(i) + εi,t.

The primary outcome variables of interest Future Innovationi,t+1→t+τ are still the two relative

measures: Novelty-seeking Innovationi,t+1→t+τ and Sustaining Innovationi,t+1→t+τ as defined

in Section 5.1. These measures reflect a firm’s changes in filings of other novel patents or

follow-up patents on innovations granted at time t, relative to non-novel patent filings. The

main explanatory variable is firm i’s equity returns at time t, ri,t. To account for various

factors that could influence a firm’s future innovation trajectory, Zi,t controls for firm capital

stock, number of employees, profits, age, and idiosyncratic volatility.

As previously discussed, using only OLS estimates for this model may lead to biased

results due to the potential correlation between a firm’s future innovation and unobserved

determinants of the firm’s equity returns. To address this endogeneity issue, we estimate

an instrumental variable regression for our model. We exploit the disruptions to investors

caused by certain exogenous shocks during the short-term window around the announcement

of patent issuance, resulting in increased noise in the signals investors receive when processing

the patent news. Specifically, we instrument a firm’s quarterly equity returns ri,t with the

number of “felt” earthquakes 14 within the three-day window surrounding patent issuance

(i.e., from Tuesday to Thursday, as patent issuances are invariably announced each Tuesday)

following Goetzmann et al. (2024).

14We define the “felt” earthquakes as those with equal or above 3.5 “Ritcher” magnitude according to
https://www.earthquakescanada.nrcan.gc.ca/info-gen/scales-echelles/magnitude-en.php.
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The instrument still enables us to exploit two types of variations with different sets of

fixed effects in the model. First, we leverage cross-time variations by comparing the same

firm across periods with different levels of distractions to investors resulting from varying

frequencies of “felt” earthquakes. Specifically, we run the first-stage regression:

ri,t = βEarthquakest + γ′Zi,t + αind + αi,decade + εi,t.

Then, we regress a firm’s future innovation measure on the predicted returns r̂i,t obtained

from the first stage in the second-stage regression:

Future Innovationi,t+1→t+τ = βr̂i,t + γ′Zi,t + αind + αi,decade + εi,t.

Our specifications are based on two key identifying assumptions to ensure the estimates

from the IV regressions correctly capture the causal effect of firms’ equity return on future

innovation. First, we require a strong association between the frequency of “felt” seismic

events Earthquaket and the firm’s quarterly equity return ri,t. We expect that more frequent

“felt” earthquakes occurring during the 3-day window surrounding patent issuance would

create more distraction to investors, leading to their reduced responses to the news of a

firm’s patent issuance and lower returns to the firm on the equity market.15 We also modify

our model specification by including firm interaction with decade indicator fixed effects to

compare the same firm across different periods but within the same decades, considering

potential changes in stock market structure and investor participation over decades might

dampen the “relevance” assumption. Additionally, we incorporate industry-level fixed effect

15It’s important to note that media coverage of seismic events can potentially influence the level of dis-
traction for investors. For quarters t+ i and t+ j with an equal number of earthquakes, if quarter t+ i has
more news reports on these seismic events, investors may be more distracted, leading to potentially lower
equity returns for firms in that quarter. To mitigate this issue, we utilize the off-the-shelf topic attention
measures from Bybee et al. (2021), which involve estimating a topic model and quantifying the proportion
of news attention dedicated to each theme at each point in time. Given the absence of a specific theme on
“earthquakes,” we decide to use the news attention allocated to ”natural disaster” as a proxy and integrate
it into both stages of our IV regressions.
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to account for the potential shifts in a firm’s primary industry due to business changes. Fur-

thermore, the “strong instrument” assumption is empirically testable through the effective

F-stats from the first-stage regression. We report the relevant statistics in the results table

later. The second crucial assumption is the “exclusion restriction.” This assumption is not

empirically testable. However, given that aggregated “felt” earthquakes are exogenous nat-

ural disaster shocks and are unlikely to change a firm’s future innovation directions directly,

we are confident that our instrument variable Earthquaket does not violate the “exclusion

restriction” assumption.

In this model, the null hypothesis states that, according to the Modigliani-Miller theorem,

any changes in short-term equity returns should not impact the firm’s future investment or

production decisions, including the changes in innovation directions. We are particularly

interested in empirically testing this hypothesis for changes in two innovation directions

defined earlier.

Starting from a firm’s future changes in novelty-seeking innovation compared to the “copy-

catting” ones, in Table 3, we present the IV estimates and the first-stage regression results. In

columns (1), (3), and (5), we analyze how the firm’s filings of novelty-seeking patents change

relative to the “copycatting” ones in the subsequent four, twelve, and twenty quarters follow-

ing its quarterly returns in the equity market, respectively. Columns (2), (4) and (6) show the

corresponding first-stage results. All first-stage results indicate that the frequencies of “felt”

seismic events Earthquaket serve as a strong instrument for a firm’s quarterly returns in the

stock market.16 When comparing the same firm in two different quarters (but in the same

decade), the more distractions to investor induced by “felt” earthquake (i.e., high value of

Earthquaket) around the patent issuance events in quarter t, the lower equity returns for the

firm at that time. We obtain the IV estimates by plugging the predicted return changes from

the first stage into the second-stage regression as a key explanatory variable. These results

indicate that the exogenous return drops induced by earthquakes’ distractions can impact

16To simplify interpretation, we normalize Earthquaket by dividing its standard deviation, making the
standardized Earthquaket have a standard deviation of 1.

44



the firm’s future novel patent filings relative to non-novel ones. Specifically, on average, a 10

percent decrease in a firm’s quarterly equity returns can cause a 7.46 percent decrease in the

firm’s novel-to-non-novel patent filings ratio in the next three years (twelve quarters) and

eventually 5.23 percent decrease in the subsequent five-year timeframe.

A more interesting question is, for the same firm, is it more likely to be affected by

market reactions and change its future innovation directions when more novel patents are

granted today? We propose that investors’ undervaluation of novel patents could discourage

the firm from pursuing other innovative ideas in the future, especially when they have a

higher proportion of novel patents granted at present.17 To investigate this, we categorize

our sample into high- and low-novelty periods based on whether the firm’s ratio of novel

patents granted is above 50% in the quarter. Then, we run the exact IV specification on each

subsample separately.

The results in Table 4 support our hypothesis. We find that the impact of equity return

drop on a more rapid decrease in firms’ future novelty-seeking innovation (relative to “copy-

catting” innovation) is most pronounced during periods of high novelty, where firms have

a greater number of novel patents granted. In particular, during these times, a 10 percent

decrease in a quarter’s equity returns can result in an average 8.75 percent reduction in the

firm’s ratio of future novel-to-non-novel patent filings over the subsequent twelve quarters,

ultimately leading to a cumulative 5.75 percent decrease over the 5-year period. In contrast,

we observe muted effects when analyzing the subsample from periods with lower levels of

novelty.

Having shown that market reactions can cause changes in firms’ future novelty-seeking

innovation, we explore how a firm’s other innovation direction – sustaining innovation is

impacted by the firm’s return changes on the equity market. Our analysis, running the same

17One potential underlying mechanism is that companies may develop a belief that the market does not
accurately recognize the value of new technology based on disappointing market returns. As a result, when
making future investment decisions regarding novel innovations, they may rely on past experiences and expect
the market to be unresponsive to innovative ideas. Due to potential agency conflicts such as managerial
entrenchment or short-termism, firm managers choose to reduce their investment in novel technology.
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IV regressions and changing only the outcome variables to Sustaining Innovationi,t+1→t+τ

defined earlier, reveals that the exogenous return drops at quarter t induced by more frequent

earthquakes’ distractions can impact the firm’s future filings of follow-up patents (i.e., the

patents cite the innovations granted at time t) relative to non-novel ones. Intuitively, lower

equity returns in a given quarter may lead the firm to conclude that the market does not

value the technologies it recently developed, prompting the firm’s decision not to pursue

them further. Statistically, as results shown in Table 5, on average, a 10 percent decrease

in a firm’s quarterly equity returns at time t can lead to an 18.62 percent decrease in the

firm’s sustaining-to-non-novel patent filings ratio over the subsequent four quarters and an

accumulative 16.16 percent decrease in three years.

We further explore how firms are affected by market reactions and changes its future

innovation directions during high and low-novelty periods. In contrast to the scenario that

the effect of equity return drops on the changes in a firm’s future novelty-seeking innovation

is evident only during high-novelty periods, we propose that the decrease in market returns,

resulting from investors being distracted, could dissuade the firm from pursuing follow-ups

on the developed technologies, regardless of whether the technology portfolio in the period

is predominantly high-novelty or dominated by low-novelty inventions.18 To explore this

further, we once again apply the exact IV specification to subsets of high- and low-novelty

periods. The results in Table 6 confirm our hypothesis. We find that the impact of a decline

in equity returns on a more pronounced decrease in firms’ future sustaining innovation, as

opposed to ”copycatting” innovation, is significant in both high- and low-novelty periods.

We can leverage cross-firm variations as a second type of variation. By incorporating

industry interactions with year-quarter fixed effects, we can compare firms within the same

industry during the same period. Since the frequencies of “felt” earthquakes in a quarter are

aggregated exogenous shocks that only vary across time, to compare firms during the same

18It’s important to note that our analysis may reveal underlying mechanical effects. Given that, on average,
novel patents result in a significantly higher number of follow-up patents compared to non-novel ones (as
shown in Table A.9), the firm might naturally generate fewer follow-up patents after a period in which a
higher proportion of non-novel patents are issued.
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period, we can create a “Bartik” type instrument instead of directly employing Earthquaket

as an instrument. Specifically, by utilizing a firm’s ex-ante retail investor shares as plau-

sibly exogenous shares and interacting them with the frequencies of “felt” seismic events

Earthquaket as shocks for distractions, we can compute each firm’s exposure to earthquake

distractions and use it as an instrument for firm’s equity return at time t:

ri,t = βEarthquaket ×% of retail investors + γ′Zi,t + αindt + εi,t.

Then, we regress a firm’s future innovation measure on the predicted returns r̂i,t obtained

from the first stage as follows:

Future Innovationi,t+1→t+τ = βr̂i,t + γ′Zi,t + αindt + εi,t.

We make two key identifying assumptions for the above specifications. First, we expect a

strong link between the firm’s exposure to investors’ distraction by “felt” earthquake shocks

(measured as Earthquaket×% of retail investors) and its quarterly return ri,t. We anticipate

that more frequent “felt” earthquakes occurring during the 3-day window around patent

issuance would lead to greater distractions among retail investors, resulting in lower equity

returns for firms with higher ex-ante retail investor holdings. Second, as aggregated “felt”

earthquakes are considered exogenous natural disaster shocks and the shares of retail investor

holdings are known four quarters in advance, our measure of distraction exposure to “felt”

earthquake shocks from retail investor holdings is plausibly exogenous.

Leveraging the “Bartik” type instrument, our analysis in Table A.6 demonstrates that

firms experiencing lower returns due to heightened exposure to earthquake distractions have

a more rapid decline in novelty-seeking innovations relative to those non-novel ones in the

future. Furthermore, these effects are statistically significant only among those firms with a

higher proportion of novel patents granted today, as shown in Table A.7. These results align

with our earlier findings from earlier within-firm comparisons.
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However, when comparing firms over the same period, as shown in Table A.8, disap-

pointing stock market returns due to increased exposure to earthquake distractions do not

significantly affect the ratio between a company’s sustaining innovation and non-novel ones

in the subsequent five years. It’s important to highlight that these results do not conflict

with our findings from within-firm comparisons, which underscore that a firm is likely to

reduce the number of its follow-up patents following a period with lower returns compared

to a period with less disappointing returns. However, in this specific scenario, we compare

two different firms simultaneously with different equity returns and do not find evidence

that the firm with lower stock returns shifts more from sustaining innovation to copycatting

innovations.

5.3 Mechanism and Discussion

We present causal evidence that following disappointing returns in a quarter, novel firms

(firms with a higher ratio of novel patents granted) shift innovation directions from novelty-

seeking to copycatting. However, it is still unclear through which channel these causal effects

occur. One natural mechanism is that some novel firms might be financially constrained.

Constrained firms rely more strongly on external financing and thus care more about the

market price of their stock, which is tightly related to the firm’s cost of capital. This channel

is related to equity dependence in Baker et al. (2003) where they find that firms that need

equity financing to fund marginal investment have investment distortions due to short-term

stock prices. To give an example, Kodak, the company that invented the first-ever digital

camera back in 1977, was granted a patent for this revolutionary invention.19 However, this

novel technology did not grab much market attention and bring significant stock market

returns for the company at the time. As a result, the company executives refused to continue

investing in this digital technology, given Kodak’s financial constraints. Instead, they decided

to follow the market trend and join the innovation race in “medical equipment”.

19The US patent 4131919, titled “Electronic still camera.”
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Besides the financial constraints channel, other channels could also result in the casual

effects we document., such as agency conflicts between firm managers and shareholders.

A firm’s manager has a relatively shorter tenure at the firm, resulting in myopia and short-

termism. Besides, some managers are also compensated with stock, which provides additional

incentives for managers to chase short-term gains from the stock market. We will consider

and empirically test those channels in future work.

6 Conclusion

In this paper, we document that investors react differently to patent issuance news based

on patent novelty. They underreact to novel technology but overreact to non-novel technol-

ogy. We argue against a rational risk-based story where firms with novel patents are riskier,

and show direct evidence that investors incur mispricing to firms with novel versus non-novel

patents. A bounded-rationality model where investors are cognitively limited and unsure

about true novelty at patent issuance can explain these mispricing patterns.

We further investigate the real impact of such mispricing. We present causal evidence

that market reactions cause novel firms to change their future innovation directions. We show

that return drops in the equity market around patent issuance shift novel firms away from

following up on their original technology and contributing to novel innovations, producing

more copycat innovations in the future. This infers that firm managers care about short-

term stock return movements when deciding on future innovation directions. This short-term

focus could be attributed to managerial short-termism related to stock-based compensation

or career concerns, or costly external financing where equity-dependent firms need to issue

new equity to finance new projects.

Our paper provides important policy implications. Misperception of patent value in

financial markets discourages future innovation in novel technology. In Figure A.11 and Table

A.9, we show that novel patents bring higher private and social value to the firm. Hence, firms
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prefer to work more on already-established technologies with market enthusiasm, but they

have lower remaining economic value. Over time, we will have fewer novel breakthroughs

than is optimal, leading to welfare inefficiencies in the economy. Our results imply that

policies facilitating investors’ understanding of patent novelty would improve welfare. Such

policies include more patent novelty disclosure, investor education on the patent system, and

a better understanding of patent classification. One promising future research direction is

quantifying the economic welfare loss from the inefficient innovation directions caused by

market misreactions. Another interesting question is to explore how the misreactions in

public markets influences private-market innovation efforts by startup companies and how it

affects the interplay between public and private innovation.
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Figure 1: Cumulative IRF of Firm Returns on (Non-)Novel Issuance

This figure plots the cumulative impulse response of future returns on patent issuance for different

levels of novelty. In particular, we run the following regression for each τ ∈ [1, 36] at the firm-month

level:

ri,t+τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ ,

where the two indicator variables represent that the firm issues at least one novel/non-novel patent.

We control for industry×month fixed effects and firm characteristics, including market beta, size,

book-to-market, gross profit, operating profit, EPS, ROE, free cash flow, investment, short-term

reversal, and medium-term momentum. We plot the cumulative coefficients,
∑t

τ=1 βτ,d, over t ∈
[1, 36] for d ∈ {novel, non − novel}. The error bars are 95% confidence intervals with clustered

standard errors at the year-month level.
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Figure 2: Impulse Response of Firm Realized Volatility after (Non-)Novel Patent Issuance

This figure plots the impulse response of future return volatility after patent issuance for different

levels of patent novelty. We run the following regression for each τ ∈ [1, 36] at the firm-month level:

σi,t+τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ ,

where σi,t+τ is the standard deviation of daily returns for firm i in month t + τ . “(Non-)Novel”

equals to 1 if the firm issues at least one patent with above(below)-median novelty. We control

for industry×month fixed effects and firm characteristics, including market beta, size, book-to-

market, gross profit, operating profit, EPS, ROE, free cash flow, investment, short-term reversal,

and medium-term momentum. We plot coefficients, βτ,d, over t ∈ [1, 36] for d ∈ {novel, non−novel}.
The error bars are 95% confidence intervals with clustered standard errors at the year-month level.
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Figure 3: Cumulative IRF of Firm Implied Volatility after (Non-)Novel Patent Issuance

This figure plots the impulse response of future implied volatility after patent issuance for different

levels of patent novelty. We run the following regression for each τ ∈ [1, 36] at the firm-month level:

Implied Voli,t+τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ ,

where Implied Voli,t+τ is the implied volatility for standardized ATM options maturing in 30 days

of firm i in month t + τ , provided by OptionMetrics. “(Non-)Novel” equals to 1 if the firm issues

at least one patent with above(below)-median novelty. We control for industry×month fixed effects

and firm characteristics, including market beta, size, book-to-market, gross profit, operating profit,

EPS, ROE, free cash flow, investment, short-term reversal, and medium-term momentum. We plot

coefficients, βτ,d, over t ∈ [1, 36] for d ∈ {novel, non − novel}. The error bars are 95% confidence

intervals with clustered standard errors at the year-month level.
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Figure 4: Cumulative IRF of Firm Returns on Randomized (Non-)Novel Issuance

This figure plots the cumulative impulse response of future returns on patent issuance with ran-

domized novelty. We run one randomization to get pseudo novelty and classify patents into pseudo

novel versus non-novel groups. Then, we run the following regression for each τ ∈ [1, 36] at the

firm-month level:

ri,t+τ = αind,t+βτ,novel1{i ∈ Shuffled Novelt}+βτ,non−novel1{i ∈ Shuffled Non-Novelt}+γ′Xi,t+εi,t+τ ,

where the two indicator variables represent that the firm issues at least one randomized novel/non-

novel patent. We control for industry×month fixed effects and actual firm characteristics, including

market beta, size, book-to-market, gross profit, operating profit, EPS, ROE, free cash flow, in-

vestment, short-term reversal, and medium-term momentum. We plot the cumulative coefficients,∑t
τ=1 βτ,d, over t ∈ [1, 36] for d ∈ {novel, non−novel}. The error bars are 95% confidence intervals

with clustered standard errors at the year-month level.
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Figure 5: Coefficient Distribution of Cum. Return on Randomized (Non-)Novel Issuance

This figure plots the coefficient distribution of 100 randomization samples where we regress 2-year

cumulative returns on patent issuance with randomized novelty. In each sample, we randomly assign

patent issued by each firm in each month to novelty levels. Then, we run the following regression

for each τ = 24 at the firm-month level:

rt→t+τ = αind,t+βτ,novel1{i ∈ Shuffled Novelt}+βτ,non−novel1{i ∈ Shuffled Non-Novelt}+γ′Xi,t+εi,t+τ ,

where the two indicator variables represent that the firm issues at least one randomized novel/non-

novel patent. We control for industry×month fixed effects and actual firm characteristics, including

market beta, size, book-to-market, gross profit, operating profit, EPS, ROE, free cash flow, invest-

ment, short-term reversal, and medium-term momentum. In Panel (a), we plot the novel coefficient,

β24,novel, and in Panel (b), we plot the non-novel coefficient, β24,non−novel.
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Figure 6: Theoretical Predictions of Issuance Returns to Novelty

This figure plots the model-predicted expected return of the firm on the day of patent issuance

for different levels of true novelty. We pick reasonable numerical values for the exogenous model

parameters and compute the model implied expected return. We assume that the firm return on

patent issuance follows a normal distribution truncated at zero, whose mean is positively related to

the logarithm of the perceived novelty. We specify that the prior distribution of true novelty follows

a lognormal distribution with a mean of one and a standard deviation of one. We further assume

that investors’ unbiased signals have a standard deviation of 0.5, 0.8, or 1, ranging from precise

to noisy signals. We relate perceived novelty to return response by assuming λ0 = 0, λ1 = 0.1,

σx = 0.1, and σε = 0.12. We are interested in the conditional return expectation, E[R|x], which we

estimate numerically using 1,000,000 random independent draws.
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Figure 7: Theoretical Predictions of Dynamic Return Reaction by Novelty

This figure plots the model-predicted dynamic return expectation for ten values of true novelty

(x ∈ {1, ..., 10}). We pick reasonable numerical values for exogenous model parameters and compute

the model-implied expected novelty. We assume that the firm return on patent issuance follows a

normal distribution truncated at zero, with a mean that is positively related to the logarithm of

the perceived novelty. The prior distribution of true novelty follows a lognormal distribution with a

mean of one and a standard deviation of one. Investors’ unbiased signals have a standard deviation

of 2. We relate perceived novelty to return response by assuming λ0 = 0, λ1 = 0.1, σx = 0.1,

and σε = 0.12. We are interested in the evolution of the conditional return expectations over 60

periods after the patent issuance, E[Rt|x], which we estimate numerically using 1,000,000 random

independent draws.
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Figure 8: Theoretical Predictions of Dynamic Return Reaction by Signal Precision

This figure plots the comparative statics of model-predicted dynamic return expectations for ten

values of true novelty (x ∈ {1, ..., 10}) over different levels of signal precision. We pick the reasonable

numerical values for the exogenous model parameters and compute the model-implied expected

novelty. We assume that the firm return on patent issuance follows a normal distribution truncated

at zero, with a mean that is positively related to the logarithm of the perceived novelty. The prior

distribution of true novelty follows a lognormal distribution with a mean of one and a standard

deviation of one. We compare two scenarios where investors’ unbiased signals have a standard

deviation of 1 (precise) or 2 (noisy). We relate perceived novelty to return response by assuming λ0 =

0, λ1 = 0.1, σx = 0.1, and σε = 0.12. We are interested in the evolution of the conditional return

expectations over 60 periods after the patent issuance, E[Rt|x], which we estimate numerically using

1,000,000 random independent draws.
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Figure 9: 3-Day Issuance Return across Patent Novelty

This figure depicts the 3-day returns after patent issuance for different levels of patent novelty. We

run the following regression at the firm-day level:

Ri,t→t+2 = αind,t +
10∑
k=1

βk1{i ∈ Novelty Decilek,t}+ γ′Xi,t + εi,t→t+2,

where the ten indicator variables represent that the firm issues at least one patent in a certain

novelty decile on date t. We control for industry× issuance date fixed effects and firm characteristics,

including market beta, size, book-to-market, gross profit, operating profit, EPS, ROE, free cash flow,

investment, short-term reversal, and medium-term momentum. We plot the issuance coefficients,

βk, across ten deciles. The error bars are 90% confidence intervals with clustered standard errors

at the issuance date level.
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Figure 10: Cumulative IRF of Firm Returns after Patent Issuance across Patent Novelty

This figure plots the cumulative impulse response of future returns after patent issuance for different

levels of patent novelty. In particular, we run the following regression for each τ ∈ [1, 36] at the

firm-month level:

ri,t+τ = αind,t +
10∑
d=1

βτ,d1{i ∈ Novelty Deciled,t}+ γ′Xi,t + εi,t+τ ,

where the ten indicator variables represent that the firm issues at least one patent in a certain

novelty decile in month t. We control for industry×month fixed effects and firm characteristics,

including market beta, size, book-to-market, gross profit, operating profit, EPS, ROE, free cash flow,

investment, short-term reversal, and medium-term momentum. We plot the cumulative coefficients,∑t
τ=1 βτ,d, over t ∈ [1, 36] for the ten deciles. The error bars are 95% confidence intervals with

clustered standard errors at the year-month level.
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Figure 11: Cumulative IRF of Firm Returns after Patent Issuance by Institutional Holdings.

This figure compares the cumulative impulse response of future returns after novel versus non-novel

patent issuance for firms with high versus low institutional holdings. We run the following regression

for each τ ∈ [1, 60] at the firm-month level:

ri,t+τ = αind,t +
∑

d∈{Novel,Non−Novel}

βτ,d,high1{i ∈ dt} × 1{i ∈ High Inst Holdt}

+
∑

d∈{Novel,Non−Novel}

βτ,d,low1{i ∈ dt} × 1{i ∈ Low Inst Holdt}+ γ′Xi,t + εi,t+τ

where we interact (non-)novel issuance indicators with dummies for high and low institutional hold-

ings (IO). High IO firms have above-median institutional holdings, defined by Ferreira and Matos

(2008). We control for industry×month fixed effects and firm characteristics, including market beta,

size, book-to-market, gross profit, operating profit, EPS, ROE, free cash flow, investment, short-

term reversal, and medium-term momentum. We plot the cumulative coefficients,
∑t

τ=1 βτ,d,high

and
∑t

τ=1 βτ,d,low over t ∈ [1, 60], for d ∈ {novel, non− novel}. The error bars are 95% confidence

intervals with clustered standard errors at the year-month level.
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Table 1: Cumulative Returns on (Non-Novel) Issuance

This table examines the predictability of novel and non-novel patent issuance on future cumulative

returns. In particular, we run the following firm-month panel regression:

rt→t+τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ ,

where the two indicator variables represent that the firm issues at least one novel/non-novel patent.

We control for industry×month fixed effects and firm characteristics, including market beta, size,

book-to-market, gross profit, operating profit, EPS, ROE, free cash flow, investment, short-term

reversal, and medium-term momentum. We report the key estimates in the table. Standard errors

are in parentheses and all clustered at the year-month level.

(1) (2) (3) (4)

6-Month Returns 1-Year Returns 2-Year Returns 3-Year Returns

Novel Issue 0.0616 0.3141∗ 0.9541∗∗∗ 1.3408∗∗∗

(0.55) (1.92) (4.05) (4.54)

Non-Novel Issue -0.2368 -0.4269∗∗ -0.9200∗∗∗ -0.7603∗∗

(-1.62) (-2.03) (-3.09) (-2.14)

R2 0.300 0.313 0.325 0.338

Controls Yes Yes Yes Yes

IndustryxMonth FE Yes Yes Yes Yes

Observations 2292514 2292514 2292514 2292514

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 2: Earnings Forecast Errors on (Non-)Novel Issuance

This table examines the predictability of novel and non-novel patent issuance on earnings forecast

error. In particular, we run the following firm-year panel regression:

πi,t+τ − Ftπi,t+τ

Pi,t−1
= ατ+βτ,novel1{i ∈ Novelt−1}+βτ,non−novel1{i ∈ Non-Novelt−1}+γ′Xi,t−1+εi,t+τ ,

where πi,t+τ −Ftπi,t+τ/Pi,t−1 are the forecast errors based on one- and two-year consensus earnings

forecast, scaled by stock price at the end of fiscal year t−1 and the two indicator variables represent

that the firm issues at least one novel/non-novel patent in year t. We control for firm characteristics,

including market beta, size, book-to-market, gross profit, operating profit, EPS, ROE, free cash flow,

investment, short-term reversal, and medium-term momentum. We report the key estimates in the

table. Standard errors are double clustered at firm and year level.

(1) (2) (3) (4)

(πt+1 − Ftπt+1)/Pt−1 (πt+2 − Ftπt+2)/Pt−1

Novel Dummyt−1 0.0274∗∗∗ 0.0205∗∗ 0.0584∗ 0.0452

(2.79) (2.51) (1.89) (1.68)

Non-Novel Dummyt−1 -0.0031 -0.0058 -0.0419 -0.0184

(-0.36) (-1.10) (-1.29) (-1.02)

R2 0.000 0.002 0.000 0.006

Controls No Yes No Yes

Observations 97884 82783 80885 69007

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 3: Firm’s Equity Returns and Future Novelty-seeking Innovations

This table examines whether firms’ quarterly returns cause changes in their future novelty-seeking

innovations. In particular, we run the following firm-year-quarter level IV regression:

Novelty-seeking Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αind + αi,decade + εi,t,

where we instrument a firm’s quarterly equity returns ri,t with the number of “felt” earthquakes

within the three-day window surrounding patent issuance, capturing the exogenous distractions to

investors in the first stage (the first-stage estimates are reported in columns (2), (4) and (6)). The

dependent variable is a firm’s future novelty-seeking innovation in comparison to its “copycatting”

innovations as defined in Section 5.1 in the subsequent four quarters (columns (1)), twelve quarters

(columns (3)) and twenty quarters (column (5)) following its’ quarterly equity returns at time t.

We include Zi,t to control for multiple factors that could affect a firm’s future innovation directions,

including the log value of the capital stock, the log number of employees, the log value of the

profits, age, and idiosyncratic volatility. In addition, we incorporate the controls for media coverage

on “earthquake” proxied by the average daily news attention allocated to “natural disaster” in a

quarter from Bybee et al. (2021). We also control for firm interaction with decade indicators and

industry fixed effects. We report the estimates of the independent variable with primary interest

here. Standard errors are in parentheses and all clustered at the firm level.

(1) (2) (3) (4) (5) (6)

τ = 4 FS τ = 12 FS τ = 20 FS

ri,t 0.7340∗∗∗ 0.7463∗∗∗ 0.5225∗∗∗

(2.81) (3.35) (2.91)

(Standardized) Earthquaket -0.0250∗∗∗ -0.0247∗∗∗ -0.0249∗∗∗

(-14.25) (-14.94) (-15.27)

Firm x Decade FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Sample Period 2000-2017 2000-2017 2000-2017 2000-2017 2000-2017 2000-2017

Effective F-stats 203 223 233

Observations 26804 26804 31740 31740 33050 33050

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 4: Firm’s Equity Returns and Future Novelty-seeking Innovations with Subsamples

This table examines, for the same firm, whether it is more likely to be affected by market reactions

and change its future innovation directions when more novel patents are granted today. In particular,

we categorize our sample into high- and low-novelty periods based on whether the firm’s ratio of

novel patents granted is above 50% in the quarter. Then, we run the following firm-year-quarter

level IV regression on each subsample separately:

Novelty-seeking Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αind + αi,decade + εi,t,

where we instrument a firm’s quarterly equity returns ri,t with the number of “felt” earthquakes

within the three-day window surrounding patent issuance, capturing the exogenous distractions to

investors in the first stage. The dependent variable is a firm’s future novelty-seeking innovation

in comparison to its “copycatting” innovations as defined in Section 5.1 in the subsequent four

quarters (columns (1) and (4)), twelve quarters (columns (2) and (5)) and twenty quarters (column

(3) and (6)) following its’ quarterly equity returns at time t. We include Zi,t to control for multiple

factors that could affect a firm’s future innovation directions, including the log value of the capital

stock, the log number of employees, the log value of the profits, age, and idiosyncratic volatility. In

addition, we incorporate the controls for media coverage on “earthquake” proxied by the average

daily news attention allocated to “natural disaster” in a quarter from Bybee et al. (2021). We

also control for firm interaction with decade indicators and industry fixed effects. We report the

estimates of the independent variable with primary interest here. Standard errors are in parentheses

and all clustered at the firm level.

High-novelty Low-novelty

(1) (2) (3) (4) (5) (6)

τ = 4 τ = 12 τ = 20 τ = 4 τ = 12 τ = 20

ri,t 0.8978∗∗ 0.8746∗∗∗ 0.5745∗∗ 0.3748 0.4601 0.3471

(2.54) (3.11) (2.43) (1.02) (1.48) (1.48)

Firm x Decade FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Sample Period 2000-2017 2000-2017 2000-2017 2000-2017 2000-2017 2000-2017

Observations 16754 20219 21142 9717 11180 11551

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 5: Firm’s Equity Returns and Future Sustaining Innovations

This table examines whether firms’ quarterly returns cause changes in their future sustaining inno-

vation. In particular, we run the following firm-year-quarter level IV regression:

Sustaining Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αind + αi,decade + εi,t,

where we instrument a firm’s quarterly equity returns ri,t with the number of “felt” earthquakes

within the three-day window surrounding patent issuance, capturing the exogenous distractions

to investors in the first stage (the first-stage estimates are reported in columns (2), (4) and (6)).

The dependent variable is a firm’s future sustaining innovation in comparison to its “copycatting”

innovations as defined in Section 5.1 in the subsequent four quarters (columns (1)), twelve quarters

(columns (3)) and twenty quarters (column (5)) following its’ quarterly equity returns at time t.

We include Zi,t to control for multiple factors that could affect a firm’s future innovation directions,

including the log value of the capital stock, the log number of employees, the log value of the

profits, age, and idiosyncratic volatility. In addition, we incorporate the controls for media coverage

on “earthquake” proxied by the average daily news attention allocated to “natural disaster” in a

quarter from Bybee et al. (2021). We also control for firm interaction with decade indicators and

industry fixed effects. We report the estimates of the independent variable with primary interest

here. Standard errors are in parentheses and all clustered at the firm level.

(1) (2) (3) (4) (5) (6)

τ = 4 FS τ = 12 FS τ = 20 FS

ri,t 1.8625∗∗∗ 1.6158∗∗∗ -0.5032

(3.59) (3.34) (-1.09)

(Standardized) Earthquaket -0.0251∗∗∗ -0.0238∗∗∗ -0.0237∗∗∗

(-10.74) (-11.59) (-12.05)

Firm x Decade FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Sample Period 2000-2017 2000-2017 2000-2017 2000-2017 2000-2017 2000-2017

F-stats 115 134 145

Observations 13818 13818 19448 19448 21197 21197

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table 6: Firm’s Equity Returns and Future Sustaining Innovations with Subsamples

This table examines how the same firm is affected by market reactions and changes its future

innovation directions during high and low-novelty periods, respectively. In particular, we categorize

our sample into high- and low-novelty periods based on whether the firm’s ratio of novel patents

granted is above 50% in the quarter. Then, we run the following firm-year-quarter level IV regression

on each subsample separately:

Sustaining Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αind + αi,decade + εi,t,

where we instrument a firm’s quarterly equity returns ri,t with the number of “felt” earthquakes

within the three-day window surrounding patent issuance, capturing the exogenous distractions to

investors in the first stage. The dependent variable is a firm’s future novelty-seeking innovation

in comparison to its “copycatting” innovations as defined in Section 5.1 in the subsequent four

quarters (columns (1) and (4)), twelve quarters (columns (2) and (5)) and twenty quarters (column

(3) and (6)) following its’ quarterly equity returns at time t. We include Zi,t to control for multiple

factors that could affect a firm’s future innovation directions, including the log value of the capital

stock, the log number of employees, the log value of the profits, age, and idiosyncratic volatility. In

addition, we incorporate the controls for media coverage on “earthquake” proxied by the average

daily news attention allocated to “natural disaster” in a quarter from Bybee et al. (2021). We

also control for firm interaction with decade indicators and industry fixed effects. We report the

estimates of the independent variable with primary interest here. Standard errors are in parentheses

and all clustered at the firm level.

High-novelty Low-novelty

(1) (2) (3) (4) (5) (6)

τ = 4 τ = 12 τ = 20 τ = 4 τ = 12 τ = 20

ri,t 1.3543∗ 0.9920∗ -0.7572 2.8712∗∗∗ 2.6449∗∗∗ -0.2330

(1.96) (1.66) (-1.29) (3.04) (2.98) (-0.35)

Firm x Decade FE Yes Yes Yes Yes Yes Yes

Industry FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Sample Period 2000-2017 2000-2017 2000-2017 2000-2017 2000-2017 2000-2017

Observations 8430 12268 13505 5129 6853 7354

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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A Additional Figures and Tables

A.1 Figures

Figure A.1: Cumulative IRF of Firm Returns on Novel Patent Intensity

This figure plots the cumulative impulse response of future returns on novel patent intensity. We

run the following regression for each τ ∈ [1, 36] at the firm-month level:

ri,t+τ = αind,t + βτNovel intensityi,t + γ′Xi,t + εi,t+τ ,

where novel intensity is the fraction of novel patents over total patent issuance for each firm in

each month. We define a patent as a novel patent if it has an above-median novelty. We con-

trol forindustry×month fixed effects and firm characteristics, including market beta, size, book-to-

market, gross profit, operating profit, EPS, ROE, free cash flow, investment, short-term reversal,

and medium-term momentum. We plot the cumulative coefficients,
∑t

τ=1 βτ , over t ∈ [1, 36]. The

error bars are 95% confidence intervals with clustered standard errors at the year-month level.
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Figure A.2: Cumulative IRF of Firm Returns on Similarity Score

This figure plots the cumulative impulse response of future returns on average similarity score. We

run the following regression for each τ ∈ [1, 36] at the firm-month level:

ri,t+τ = αind,t + βτSimilarity scorei,t + γ′Xi,t + εi,t+τ ,

where similarity score is the average patent similarity decile of all patents issued at the firm-month

level. We control for industry×month fixed effects and firm characteristics, including market beta,

size, book-to-market, gross profit, operating profit, EPS, ROE, free cash flow, investment, short-

term reversal, and medium-term momentum. We plot the cumulative coefficients,
∑t

τ=1 βτ , over

t ∈ [1, 36]. The error bars are 95% confidence intervals with clustered standard errors at the year-

month level.
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Figure A.3: Cumulative IRF of Firm Returns on Good/Bad Novel Patent Intensity

This figure plots the cumulative impulse response of future returns on novel patent intensity for

good versus bad patents. We run the following regressions for each τ ∈ [1, 36] at the firm-month

level:

ri,t+τ = αind,t + βτ,good1{i ∈ Goodt} ×Novel Intensityi,t

+ βτ,bad1{i ∈ Badt} ×Novel Intensityi,t + γ′Xi,t + εi,t+τ ,

where “Good”(“Bad”) equals to 1 if the firm issues more (less) than 50% impactful patents. Novel

intensity is the fraction of novel patents over total patents issuance at the firm-month level. We

define a patent as a novel patent if it has an above-median novelty, and as a good/bad patent if it

has an above/below-median 10-year forward similarity. We control for industry×month fixed effects

and firm characteristics, including market beta, size, book-to-market, gross profit, operating profit,

EPS, ROE, free cash flow, investment, short-term reversal, and medium-term momentum. We plot

the cumulative coefficients,
∑t

τ=1 βτ , over t ∈ [1, 36]. The error bars are 95% confidence intervals

with clustered standard errors at the year-month level.
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Figure A.4: Cumulative Alpha of Calendar-Time Portfolio Approach

This figure plots the cumulative alphas of a long-short calendar-time portfolio approach of novel vs.

non-novel portfolio issuance. In each month, we sort each firm into the (non-)novel portfolio if it

only issues patents with top (bottom)-decile novelty in any month in the past three years. Monthly

rebalancing portfolio weights are determined by the ex-ante market cap. We plot the cumulative

alpha against CAPM one-factor, Fama and French (1992) (FF) three-factor, and FF three-factor

after replacing the value factor with the intangible-adjusted value factor (Eisfeldt et al., 2020).
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Figure A.5: Cumulative Alpha of 3-Year Portfolio Sorts on Novel Intensity

This figure plots the cumulative alphas of a value-weighted long-short portfolio with 3-year sorting

on novel intensity and monthly rebalancing. Every three years, we sort firms into 30-70 percentiles

based on their novel intensity (fraction of novel patents in the patents issued) in the last month of

the previous 3 years. We long firms with novel intensity above 70th percentile and short firms with

non-novel intensity below 30th percentile. Monthly rebalancing portfolio weights are determined by

the ex-ante market cap. We plot the cumulative alpha against CAPM one-factor, Fama and French

(1992) (FF) three-factor, and FF three-factor after replacing the value factor with the intangible-

adjusted value factor (Eisfeldt et al., 2020).
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Figure A.6: Cumulative Alpha of Monthly Portfolio Sorts on Novel Intensity

This figure plots the cumulative alphas of a value-weighted long-short portfolio with monthly sorting

on novel intensity and monthly rebalancing. In each month, we sort firms based on their novel

intensity (fraction of novel patents in the patents issued) into 30-70 percentiles. We long firms

with novel intensity above 70th percentile and short firms with non-novel intensity below 30th

percentile. Monthly rebalancing portfolio weights are determined by the ex-ante market cap. We

plot the cumulative alpha against CAPM one-factor, Fama and French (1992) (FF) three-factor, and

FF three-factor after replacing the value factor with the intangible-adjusted value factor (Eisfeldt

et al., 2020).
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Figure A.7: Cumulative IRF of Firm Market Beta after (Non-)Novel Patent Issuance

This figure plots the impulse response of future market beta after patent issuance for different levels

of patent novelty. We run the following regression for each τ ∈ [1, 36] at the firm-month level:

βmkt
i,t+τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ ,

where βmkt
i,t+τ is the market beta of firm i in month t + τ , computed by regressing daily returns for

firm i on the market daily returns in month t + τ . “(Non-)Novel” equals to 1 if the firm issues at

least one patent with above(below)-median novelty. We control for industry×month fixed effects

and firm characteristics, including market beta, size, book-to-market, gross profit, operating profit,

EPS, ROE, free cash flow, investment, short-term reversal, and medium-term momentum. We plot

coefficients, βτ,d, over t ∈ [1, 36] for d ∈ {novel, non − novel}. The error bars are 95% confidence

intervals with clustered standard errors at the year-month level.
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Figure A.8: Pre-Test: Impulse Response of Firm Returns before (Non-)Novel Patent Issuance

This figure plots the impulse response of returns before patent issuance for different levels of patent

novelty, as a parallel pre-trend test of (non)-novel patent issuance as treatment. We run the following

regression for each τ ∈ [−12,−1] at the firm-month level:

ri,t+τ = αind,t + βτ,novel1{i ∈ Novelt}+ βτ,non−novel1{i ∈ Non-Novelt}+ γ′Xi,t + εi,t+τ ,

where ri,t+τ is the returns of firm i in month t+ τ . “(Non-)Novel” equals to 1 if the firm issues at

least one patent with above(below)-median novelty. We control for industry×month fixed effects

and firm characteristics, including market beta, size, book-to-market, gross profit, operating profit,

EPS, ROE, free cash flow, investment, short-term reversal, and medium-term momentum. We plot

coefficients, βτ,d, over t ∈ [−12,−1] for d ∈ {novel, non − novel} together with the cumulative

post-effects,
∑t

τ=1 βτ,d over t ∈ [1, 36] as in Figure 1. The error bars are 95% confidence intervals

with clustered standard errors at the year-month level.
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Figure A.9: Theoretical Predictions of Under- & Over-Perception of Patent Novelty

This figure plots the model-predicted perception of novelty at patent issuance for different levels of

true novelty. For illustration purposes, we pick reasonable numerical values for exogenous model

parameters and compute the model-implied expected novelty. We specify that the prior distribution

of true novelty follows a lognormal distribution with a mean of one and a standard deviation of

one. We further assume that investors’ unbiased signals have a standard deviation of 0.5, 0.8, or

1, ranging from precise to noisy signals. We are interested in the conditional expectation of the

posterior mean of a large cross-section of investors, E[x̂|x], where x̂ = E[x|r], which is the posterior

mean given the signal observed at issuance.
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Figure A.10: Theoretical Predictions of Dynamic Novelty Perception

This figure plots the model-predicted dynamic perception of patent novelty for ten values of true

novelty (x ∈ {1, ..., 10}). We pick reasonable numerical values for the exogenous model parameters

and compute the model-implied expected novelty. We specify that the prior distribution of true

novelty follows a lognormal distribution with a mean of one and a standard deviation of one. We

further assume that investors’ unbiased signals have a standard deviation equal to 2. For a large

cross-section of investors, we plot the evolution of the conditional expectation of the posterior mean

of perceived novelty over 60 periods after patent issuance, E[x̂t|x], where x̂t = E[x|r1, ..., rt].
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Figure A.11: Patent Private Value on Novelty

This figure plots the average patent’s private value (as estimated in the Kogan et al. (2017)) against

the patent novelty. In particular, we run the following patent-level OLS regression:

KPSSi = αyr + αcpc +
10∑
d=1

βd1{Novelty Decilei = d}+ εi,

where KPSSi represents the private value of patent i in millions of nominal dollars (in red) or

deflated to 1982 (million) dollars using the CPI (in blue). The term 1{Novelty Decilei = d} is a

dummy variable that indicates which novelty decile d the patent i belongs to. We also include the

patent’s grant year and CPC-class fixed effects. We designate the tenth novelty decile - representing

the most non-novel patents - as our benchmark group. We then plot the coefficient βi for all

remaining decile groups i ∈ [1, 9]. The error bars are 95% confidence intervals with clustered

standard errors at the year level.
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A.2 Tables

Table A.1: Short-Term Returns on Patent Issuance Indicators

This table presents the OLS estimates of regressing the 3-day short-term returns on (novel/non-

novel) patent issuance. In particular, we run the following regression at the firm-day level:

Rt,t+2 = αind,t + βPatent Issuance Dummyi,t + γ′Xit + εi,t,

where Rt,t+2 is the 3-day returns after patent issuance, the patent issuance dummies capture that

the firm issues at least one (novel/non-novel) patent. We control for industry×issuance date fixed

effects and firm characteristics, including market beta, size, book-to-market, gross profit, operating

profit, EPS, ROE, free cash flow, investment, short-term reversal, and medium-term momentum.

Standard errors are clustered at the issuance date level.

(1) (2) (3)

Rt,t+2 (%)

Novel Dummy 0.074∗∗∗ 0.009

(5.01) (0.45)

Non-Novel Dummy 0.083∗∗∗ 0.022

(5.18) (1.32)

Patent Dummy 0.061∗∗∗

(2.70)

R2 0.153 0.153 0.153

Controls Yes Yes Yes

IndustryxDate FE Yes Yes Yes

Observations 49687279 49687279 49687279

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.2: Earnings Forecast Errors on Novel Patent Intensity

This table reports the results from regressing firm-level EPS forecast errors on novel intensity. In

particular, we run the following firm-year panel regression:

πi,t+τ − Ftπi,t+τ

Pi,t−1
= ατ + βτNovel Intensityt−1 + γ′Xi,t−1 + εi,t+τ ,

where πi,t+τ −Ftπi,t+τ/Pi,t−1 are the forecast errors based on one- and two-year consensus earnings

forecast, scaled by stock price at the end of fiscal year t−1 and the two indicator variables represent

that the firm issues at least one novel/non-novel patent in year t. We control for firm characteristics,

including market beta, size, book-to-market, gross profit, operating profit, EPS, ROE, free cash flow,

investment, short-term reversal, and medium-term momentum. We report the key estimates in the

table. Standard errors are double clustered at firm and year level.

(1) (2) (3) (4)

(πt+1 − Ftπt+1)/Pt−1 (πt+2 − Ftπt+2)/Pt−1

Novel Intensityt−1 0.0186∗ 0.0110 0.0836∗ 0.0536∗

(1.69) (1.40) (1.82) (1.82)

R2 0.000 0.003 0.001 0.020

Controls No Yes No Yes

Observations 27642 25548 23779 22047

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.3: Average Approval Length between Novel and Non-Novel Patents

This table shows results from a patent-level regression of the time length in months between grant

and filing date on whether or not the patent is a novel patent. The intercept is the average length

of a non-novel patent granted and the novel coefficient is the additional months it takes for a novel

patent to get granted. We also control for year-month FEs and CPC class indicators. Standard

errors are clustered at the year-month level.

(1) (2) (3)

Novel 2.037∗∗∗ 2.034∗∗∗ 2.347∗∗∗

(24.34) (24.57) (31.11)

Constant 32.958∗∗∗ 32.960∗∗∗ 32.347∗∗∗

(124.97) (798.59) (615.78)

R2 0.003 0.161 0.164

Month FE No Yes Yes

CPC Class No No Yes

Observations 3578422 3578422 3575773

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.4: Firm’s Future Innovation and Equity Return (Within-firm Comparisons)

This table examines whether firms’ quarterly returns are correlated with their changes in future

innovation directions. In particular, we run the following firm-year-quarter level OLS regression:

Future Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αi + εi,t

The dependent variable is a firm’s future sustaining innovation or novelty-seeking innovation relative

to its “copycat” innovation as defined in Section 5.1 in the subsequent four quarters (as shown in

columns (1) and (4)), twelve quarters (columns (2) and (5)) and twenty quarters (columns (3) and

(6)) following its’ quarterly equity returns at time t. We include Zi,t to control for multiple factors

that could affect a firm’s future innovation directions, including the log value of the capital stock,

the log number of employees, the log value of the output and profits, the total value of innovation

and idiosyncratic volatility. We also control for firm fixed effects. Note that this specification does

not include the firm’s age as a control to allow more cross-time variations. We report the estimates

of the independent variable with primary interest here. Standard errors are in parentheses and all

clustered at the firm level.

(Relative) Sustaining (Relative) Novelty-seeking

(1) (2) (3) (4) (5) (6)

τ = 4 τ = 12 τ = 20 τ = 4 τ = 12 τ = 20

ri,t -0.008 -0.040 -0.067∗∗ 0.006 0.027∗∗ 0.025∗∗

(-0.24) (-1.37) (-2.31) (0.37) (2.19) (2.25)

Firm FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Sample Period 2000-2021 2000-2019 2000-2017 2000-2021 2000-2019 2000-2017

R2 0.62 0.65 0.68 0.76 0.84 0.88

Observations 15808 21223 21412 30505 34616 33318

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.5: Firm’s Future Innovation and Equity Return (Cross-firm Comparisons)

This table examines whether firms’ quarterly returns are correlated with their changes in future

innovation directions. In particular, we run the following firm-year-quarter level OLS regression:

Future Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αindt + εi,t

The dependent variable is a firm’s future sustaining innovation or novelty-seeking innovation relative

to its “copycat” innovation as defined in Section 5.1 in the following four quarters (as shown in

columns (1) and (4)), twelve quarters (as shown in columns (2) and (5)) and twenty quarters (as

shown in columns (3) and (6)) following its’ quarterly equity returns at time t. We include Zi,t to

control for multiple factors that could affect a firm’s future innovation directions, including the log

value of the capital stock, the log number of employees, the log value of the output and profits, the

total value of innovation, age, and idiosyncratic volatility. We also control for industry interactions

with year-quarter fixed effects. We report the estimates of the independent variable with primary

interest here. Standard errors are in parentheses and all clustered at the firm level.

(Relative) Sustaining (Relative) Novelty-seeking

(1) (2) (3) (4) (5) (6)

τ = 4 τ = 12 τ = 20 τ = 4 τ = 12 τ = 20

ri,t 0.078 -0.031 -0.090∗ 0.051∗ 0.096∗∗∗ 0.090∗∗∗

(1.42) (-0.63) (-1.73) (1.69) (3.53) (3.16)

Industry x YQ FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Sample Period 2000-2021 2000-2019 2000-2017 2000-2021 2000-2019 2000-2017

R2 0.46 0.44 0.44 0.52 0.55 0.56

Observations 14300 20119 20620 29231 33972 33021

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.6: Firm’s Equity Returns and Future Novelty-seeking Innovations

This table examines whether firms’ quarterly returns cause changes in their future novelty-seeking

innovations. In particular, we run the following firm-year-quarter level IV regression:

Novelty-seeking Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αindt + εi,t,

where we instrument a firm’s quarterly equity returns ri,t with the firm’s exposure to investors’

distraction by “felt” earthquake shocks (measured as Earthquaket × % of retail investors) in the

first stage (the first-stage estimates are reported in columns (2), (4) and (6)). The dependent

variable is a firm’s future novelty-seeking innovation in comparison to its “copycatting” innovations

as defined in Section 5.1 in the subsequent four quarters (columns (1)), twelve quarters (columns

(3)) and twenty quarters (column (5)) following its’ quarterly equity returns at time t. We include

Zi,t to control for multiple factors that could affect a firm’s future innovation directions, including

the log value of the capital stock, the log number of employees, the log value of the profits, age, and

idiosyncratic volatility. We also control for the quarter and industry interactions with year fixed

effects. We report the estimates of the independent variable with primary interest here. Standard

errors are in parentheses and all clustered at the firm level.

(1) (2) (3) (4) (5) (6)

τ = 4 FS τ = 12 FS τ = 20 FS

ri,t 0.2364 1.2105∗ 1.9621∗∗

(0.30) (1.75) (2.07)

% retail investori,t−4 × Earthquaket -0.0352∗∗∗ -0.0493∗∗∗ -0.0509∗∗∗

(-5.03) (-8.62) (-7.62)

Industry x Year FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Sample Period 2001-2020 2001-2020 2001-2019 2001-2019 2001-2017 2001-2017

Effective F-stats 77 163 133

Observations 22536 22536 25442 25442 24076 24076

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.7: Firm’s Equity Returns and Future Novelty-seeking Innovations with Subsamples

This table examines whether firms with more novel patents granted are more likely to be affected

by market reactions and change their future innovation directions. In particular, we categorize our

sample into high- and low-novelty groups based on whether the firm’s ratio of novel patents granted

is above 50% in the quarter. Then, we run the following firm-year-quarter level IV regression on

each subsample separately:

Novelty-seeking Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αindt + εi,t,

where we instrument a firm’s quarterly equity returns ri,t with the firm’s exposure to investors’

distraction by “felt” earthquake shocks (measured as Earthquaket × % of retail investors) in the

first stage. The dependent variable is a firm’s future novelty-seeking innovation in comparison to its

“copycatting” innovations as defined in Section 5.1 in the subsequent four quarters (columns (1) and

(4)), twelve quarters (columns (2) and (5)) and twenty quarters (column (3) and (6)) following its’

quarterly equity returns at time t. We include Zi,t to control for multiple factors that could affect

a firm’s future innovation directions, including the log value of the capital stock, the log number

of employees, the log value of the profits, age, and idiosyncratic volatility. We also control for the

quarter and industry interactions with year fixed effects. We report the estimates of the independent

variable with primary interest here. Standard errors are in parentheses and all clustered at the firm

level.

High-novelty Low-novelty

(1) (2) (3) (4) (5) (6)

τ = 4 τ = 12 τ = 20 τ = 4 τ = 12 τ = 20

ri,t 1.7831 2.5512∗∗ 3.5637∗∗ -1.3884 -0.3932 0.2739

(1.54) (2.45) (2.15) (-1.31) (-0.53) (0.32)

Industry x Year FE Yes Yes Yes Yes Yes Yes

Controls Yes Yes Yes Yes Yes Yes

Sample Period 2001-2020 2001-2019 2001-2017 2001-2020 2001-2019 2001-2017

Observations 14079 16192 15452 8130 8900 8288

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.8: Firm’s Equity Returns and Future Sustaining Innovations

This table examines whether firms’ quarterly returns cause changes in their future sustaining inno-

vations. In particular, we run the following firm-year-quarter level IV regression:

Sustaining Innovationi,t+1→t+τ = βri,t + γ′Zi,t + αindt + εi,t,

where we instrument a firm’s quarterly equity returns ri,t with the firm’s exposure to investors’

distraction by “felt” earthquake shocks (measured as Earthquaket × % of retail investors) in the

first stage (the first-stage estimates are reported in columns (2), (4) and (6)). The dependent

variable is a firm’s future sustaining innovation in comparison to its “copycatting” innovations as

defined in Section 5.1 in the subsequent four quarters (columns (1)), twelve quarters (columns (3))

and twenty quarters (column (5)) following its’ quarterly equity returns at time t. We include Zi,t

to control for multiple factors that could affect a firm’s future innovation directions, including the

log value of the capital stock, the log number of employees, the log value of the profits, age, and

idiosyncratic volatility. We also control for the quarter and industry interactions with year fixed

effects. We report the estimates of the independent variable with primary interest here. Standard

errors are in parentheses and all clustered at the firm level.

(1) (2) (3) (4) (5) (6)

τ = 4 FS τ = 12 FS τ = 20 FS

ri,t -1.7722 -1.3968 -2.0601

(-1.01) (-1.02) (-1.37)

% retail investori,t−4 × Earthquaket -0.0453∗∗∗ -0.0570∗∗∗ -0.0522∗∗∗

(-4.62) (-7.98) (-6.74)

Industry x Year FE Yes Yes Yes

Controls Yes Yes Yes

Sample Period 2001-2020 2001-2019 2001-2017

CD Wald F 61 121 89

Observations 11962 11962 15834 15834 15694 15694

t statistics in parentheses

∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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Table A.9: Patent Social Value on Novelty

This table examines the relationship between a patent’s social value and novelty. We proxy a

patent’s social value using its total forward citations or the total private values (as estimated in the

Kogan et al. (2017)) of all patents that cite it. In particular, we run the following patent-level OLS

regression:

Social Value Proxyi = βBS5
i Decile + γKPSSi + ηXi + εi,

where Social Value Proxyi denotes our proxy for the social value of patent i as defined above.

The term BS5
i Decile represents the novelty decile of the patent. We include KPSSi to control

for a patent’s private value. The vector Xi represents the additional controls, such as firm market

capitalization and firm idiosyncratic volatility, that potentially influence the social value of a patent.

We also control for multiple types of fixed effects in different specifications, including patent grant-

year fixed effects, patent’s CPC class-year fixed effects, firm-level fixed effects, and firm-year fixed

effects. We report the key estimates in the table. Standard errors are in parentheses and all clustered

at the grant year level.

(1) (2) (3) (4) (5)

Total forward citations

BS5
i Decile -0.307∗∗∗ -0.287∗∗∗ -0.277∗∗∗ -0.069∗∗ -0.069∗∗

(-4.99) (-4.85) (-4.87) (-2.49) (-2.49)

Private Value 0.083∗∗∗ 0.070∗∗∗ 0.068∗∗∗ 0.003 0.003

(9.72) (10.14) (9.94) (0.63) (0.62)

Total private values of citing patents

BS5
i Decile -7.414∗∗∗ -6.846∗∗∗ -6.754∗∗∗ -4.498∗∗∗ -3.775∗∗∗

(-5.08) (-4.92) (-4.94) (-5.19) (-5.13)

Private Value 2.350∗∗∗ 1.984∗∗∗ 1.966∗∗∗ 1.148∗∗∗ 0.006

(7.91) (8.14) (8.13) (6.72) (0.06)

Firm Size No Yes Yes Yes Yes

Firm Volatility No No Yes Yes Yes

Year-CPC FE Yes Yes Yes Yes Yes

Firm-year FE No No No No Yes

Firm FE No No No Yes No

t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

91


	Introduction
	Data and Measurement
	Patent Data
	Firm-level Financial Data
	Other Data
	Innovation Novelty, Impact, and Direction
	Measurement of Patent Novelty and Impact
	Measurement of Innovation Direction and Diffusion


	Market Reactions to Novelty
	Impulse Response of Patent Issuance
	Cumulative Return Regressions
	Robustness in Alternative Measures
	Mechanism

	A Model of Misreaction to Novelty
	Short-Term Reactions
	Long-Term Dynamics
	Empirical test of the model

	Impact on Future Innovation
	Firm Innovation Directions and Dynamics
	Does Investors' Behavior Impact Firms' Innovation Directions?
	Mechanism and Discussion

	Conclusion
	Additional Figures and Tables
	Figures
	Tables


