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1 Introduction

Following the emergence of a factor zoo for explaining the cross-section of equity returns (e.g.,

Cochrane, 2011), a burgeoning literature independently proposes risk factors for the cross-section

of bond returns. In influential work, Dickerson, Mueller, and Robotti (2023) document that existing

empirical factor models fail to outperform a one-factor bond capital asset pricing model (CAPM).

Relatedly, van Binsbergen, Nozawa, and Schwert (2024) find that existing models mostly fail to

improve over the bond CAPM when returns are adjusted for the long term decline in interest rates.

We propose a test of a linear factor model for the cross-section of corporate bond returns motivated

by economic theory. Specifically, we test whether an intertemporal equilibrium asset pricing model

in which a representative investor has generalized disappointment aversion and the uncertainty in

the economy is time-varying provides a good economic foundation for understanding the dispersion

in excess corporate bond returns. Farago and Tédongap (2018) show that such a framework leads

to a linear factor model with five risk factors (GDA5) that compensate investors for the return

co-variation of their assets with the aggregate market and volatility risks, the downside state, and

the interaction of the downside state with the market and volatility risk factors.

Corporate bonds exhibit concave payoffs, which limits their upside but exposes them to significant

downside risk. Compensation for downside risk arises naturally in models with asymmetric prefer-

ences where investors’ increase in marginal utility is more pronounced in downside states, such as

disappointment aversion (e.g., Gul, 1991; Routledge and Zin, 2010). Moreover, there is extensive

evidence that volatility risk matters for asset prices (e.g., Ang, Hodrick, Xing, and Zhang, 2006;

Adrian and Rosenberg, 2008; Bloom, 2009). Thus, a model with these features emerges as a natural

candidate for explaining the cross-section of corporate bond returns.

We assess the asset pricing performance of the GDA5 factor model using bond-level transactions

data and find that it provides a good fit for the cross-section of excess corporate bond returns.

In particular, all five factors are priced in the cross-section of corporate bond returns and their

signs align with the predictions of the theory. Thus, investors command positive risk premiums for

exposure to market risk, unconditionally and conditional on being in a downside state. In contrast,

investors command a negative risk premium for exposure to downside states, volatility risk, and

conditional downside volatility risk.

In particular, we find that investors attribute greater importance to volatility downside risk than

unconditional volatility risk. Thus, our results complement and extend the findings of Chung,

Wang, and Wu (2019) since we provide an economic foundation for the role of volatility risk in

corporate bond returns, especially if it is high in downside states. All downside risk factors are

constructed following economic theory but differ from empirical proxies of downside risk used for

the analysis of bond returns (e.g., Bai, Bali, and Wen, 2019). As such, our results lend credence to

the view that downside risk is priced in the cross-section of corporate bonds.
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We emphasize the significance of using individual bonds rather than portfolios as test assets because

of the strong factor structure in bonds. The first five (ten) principal components explain 71% (91%)

of the common variation among bonds, while only 56% (70%) variation among stocks. This raises

the concern that we may wrongly associate risk premiums to factors because they correlate with the

common sources of variation in returns. In turn, it elevates the importance of increasing the number

of test assets (Lewellen, Nagel, and Shanken, 2010). Our sample contains 37,585 bonds issued by

4,157 firms between 2002 and 2021, which is an order of magnitude larger than the maximum of

32 test portfolios used in Dickerson, Mueller, and Robotti (2023).

Moreover, grouping single assets into portfolios may lead to information loss and biased estimates

of betas (see e.g. Litzenberger and Ramaswamy, 1979; Lo and MacKinlay, 1990; Berk, 2000;

Conrad, Cooper, and Kaul, 2000; Phalippou, 2007). Even though grouping individual assets into

portfolios has the potential for more efficient beta estimates, it also reduces their cross-sectional

dispersion. Thus, Gagliardini, Ossola, and Scaillet (2016) suggest using individual securities as test

assets because they maintain more observed heterogeneity in betas and make it more challenging

to validate the pricing performance of risk factors.

We conduct a series of additional tests to assess the robustness of the GDA5 model. First, we

examine the prices of risk of the GDA5 factors while controlling for factor betas from alternative

traded and non-traded factor models proposed by the extant literature. Specifically, we consider

the BBW4 model, the STK5 model, and the BND5 model (Bai, Bali, and Wen, 2019); the HKM,

HKMSF and HKMNT models (He, Kelly, and Manela, 2017); the DEFTERM model (Fama and

French, 1993); the stock CAPM model; the MACRO model (Bali, Subrahmanyam, and Wen,

2021b); the LIQPS and LIQAM models (Lin, Wang, and Wu, 2011); and the VOLPS and VOLAM

models (Chung, Wang, and Wu, 2019).1

Consistent with the findings of Dickerson, Mueller, and Robotti (2023), we find that none of the

factors of these alternative models have significant prices of risk with the exception of the Fama and

French (1993) TERM and Lin, Wang, and Wu (2011) LIQBAM factors. In contrast, the GDA5

factors maintain significant prices of risk after controlling for alternative factor betas. Second, we

show that our results are robust to using duration-adjusted returns (van Binsbergen, Nozawa, and

Schwert, 2024), winsorized excess returns, and non-winsorized beta estimates. Third, we follow

Chung, Wang, and Wu (2019) and control for an extensive list of bond characteristics. Even after

controlling for all bond characteristics jointly, three of our factors, including two downside factors,

still have significant prices of risk. Finally, our results are robust to alternative measures of the

1The DEFTERM model includes the default (DEF ) and term (TERM) spread factors from Fama and French
(1993). The MACRO model includes the MKTB and the uncertainty (∆UNC) factors from Bali, Subrahmanyam,
and Wen (2021b). The LIQPS and LIQAM models include the Fama and French (1993) three factors (MKTS, SMB,
HML), the default (DEF ) and term (TERM) spread factors from Fama and French (1993), and the liquidity factor
LIQBPS or LIQBAM from Lin, Wang, and Wu (2011), respectively. The VOLPS and VOLAM models include the
Fama and French (1993) three factors (MKTS, SMB, HML), the default (DEF ) and term (TERM) spread factors
from Fama and French (1993), the volatility factor (∆V IX) from Chung, Wang, and Wu (2019), and the liquidity
factor LIQBPS or LIQBAM from Lin, Wang, and Wu (2011), respectively.
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market and volatility factors, different values for the model parameters, and different window sizes

to estimate beta.

Given the documented failure of empirical factor models to outperform the bond CAPM (e.g., Dick-

erson, Mueller, and Robotti, 2023; van Binsbergen, Nozawa, and Schwert, 2024) we also examine

the performance of the GDA5 factor model when we use portfolios as test assets. We use eight

sets of bond portfolios to assess the asset pricing performance of the GDA5 factor model, including

those used by Bali, Subrahmanyam, and Wen (2021a), Dickerson, Mueller, and Robotti (2023) and

Elkamhi, Jo, and Nozawa (2024). For direct comparison with the literature, we adopt the model

comparison tests of Kan, Robotti, and Shanken (2013) used by Dickerson, Mueller, and Robotti

(2023). While our evidence is mixed, we find that the GDA5 factors have significant prices of risk

in three of the eight sets of test portfolios. More importantly, the GDA5 model has significantly

higher GLS R2 than the bond CAPM for five sets of portfolios. In these cases, the increase ranges

between 0.102 and 0.351. We also confirm the results of Dickerson, Mueller, and Robotti (2023)

that 13 other commonly used alternative models by and large fail to outperform the bond CAPM.

Our paper relates first and foremost to the literature on the cross-section of corporate bond returns.

We provide two main contributions. First, we propose a novel set of five theory-motivated risk

factors for the cross-section of corporate bonds. These risk factors are pinned down by a linear

factor representation of excess returns that endogenously arises in a model where investors face

aversion to downside risk and aggregate growth is heteroscedastic and unpredictable. Second, we

prioritize asset pricing tests at the individual bond level and show vastly different results when we

assess our model’s asset pricing performance using individual securities or portfolios as test assets.

Thus, we show that the pitfalls associated with dimensionality reduction by grouping assets into

portfolios are especially pronounced in the case of corporate bonds.

The over-the-counter nature of bonds makes them sensitive to liquidity frictions and liquidity

risk (see, e.g., Longstaff, Mithal, and Neis, 2005; Chen, Lesmond, and Wei, 2007; Dick-Nielsen,

Feldhütter, and Lando, 2012; Dick-Nielsen and Rossi, 2019; Goldberg and Nozawa, 2019 among

many others). Bao, Pan, and Wang (2011) and Lin, Wang, and Wu (2011) document that liquidity

risk is priced in the cross-section of corporate bond returns. Other explanations for excess returns in

corporate bond markets are associated with compensation for momentum risk (Jostova, Nikolova,

Philipov, and Stahel, 2013) and volatility risk (Chung, Wang, and Wu, 2019; Bali, Subrahmanyam,

and Wen, 2021b). Bai, Bali, and Wen (2019) propose a four-factor model that, besides a market risk

premium, includes factor premiums associated with downside, liquidity and credit risk. Common to

all these models is that the risk factors are empirically motivated and lack a theoretical foundation.

An exception is Elkamhi, Jo, and Nozawa (2024), who propose long-run growth risk (Bansal and

Yaron, 2004) as a unique factor for the cross-section of bond returns.

Dickerson, Mueller, and Robotti (2023) and van Binsbergen, Nozawa, and Schwert (2024) cast

doubt on the performance of earlier factor models by showing that they largely fail to outperform
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a one-factor bond CAPM. Relatedly, Dick-Nielsen, Feldhütter, Pedersen, and Stolborg (2023) and

Dickerson, Robotti, and Rossetti (2024) document the failure of existing asset pricing models for

the cross-section of bond returns and their ability to replicate anomaly strategies.

Our paper also relates to the literature on preferences with disappointment aversion, which have

proven successful in explaining asset pricing moments, their dynamics, and portfolio choice (e.g.,

Gul, 1991; Routledge and Zin, 2010; Campanale, Castro, and Clementi, 2010; Bonomo, Garcia,

Meddahi, and Tédongap, 2011; Augustin and Tédongap, 2016; Dahlquist, Farago, and Tedongap,

2017; Schreindorfer, 2020; Augustin and Tédongap, 2020). Delikouras (2017) demonstrates the

ability of consumption-based models with disappointment aversion to price anomalies in the cross-

section of stock returns, while Farago and Tédongap (2018) successfully explain cross-sectional

returns of stock, option, and currency portfolios. We complement this literature and show that the

GDA5 factor model of Farago and Tédongap (2018) successfully prices the cross-section of U.S.

corporate bond returns.

In Section 2, we illustrate the theoretical framework. Section 3 explains the construction of the

corporate bond data set and risk factors. We examine the asset pricing performance of our model

in Section 4. Section 5 concludes the paper.

2 Theoretical Framework

We introduce a framework rooted in axiomatic decision theory that rationalizes the importance

of downside and volatility risk as priced factors for the cross-section of corporate bond returns.

We show that these factors arise naturally in an intertemporal equilibrium asset pricing model

in which the representative investor features preferences with aversion to downside risk and the

economy exhibits time-varying macroeconomic uncertainty.

The capital asset pricing model (CAPM) stipulates that a security’s risk premium is linearly related

to the asset’s return covariance with the aggregate market return (e.g., Sharpe, 1964; Lintner, 1965).

Relatedly, the canonical consumption-CAPM (C-CAPM) measures a security’s risk by its return

covariance with aggregate per capita consumption growth (e.g., Lucas, 1978; Breeden, 1979).

Farago and Tédongap (2018) extend the C-CAPM by considering the impact on asset risk premia

when investors exhibit recursive utility (Epstein and Zin, 1989; Weil, 1989) with aversion to out-

comes that they experience as disappointing (e.g., Gul, 1991; Routledge and Zin, 2010).2 In that

2Recall recursive lifetime utility Vt =
[
(1− δ)C1−1/ψ

t + δ [Rt (Vt+1)]1−1/ψ
]1/(1−1/ψ)

, where 0 < δ < 1, ψ > 0 and

ψ 6= 1, define the subjective discount factor and intertemporal elasticity of substitution; the certainty equivalent is
defined by U (Rt+1) = Et [U (Vt+1)] and U (x) =

(
x1−γ − 1

)
/ (1− γ) if γ > 0 and γ 6= 1.
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case, the stochastic discount factor (SDF) between periods t and t + 1, Mt,t+1, is adjusted by an

amount that reflects the occurrence and the intensity of disappointment:

MGDA
t,t+1 = Mt,t+1

(
1 + `I (Dt+1)

1 + κ1−γ`EtI [(Dt+1)]

)
, (1)

where the superscript GDA denotes the SDF associated with generalized preferences for disap-

pointment aversion, the indicator function I(·) is one when the condition inside the brackets is met

and zero otherwise, and γ ≥ 0 is the coefficient of relative risk aversion (see, e.g., Hansen, Heaton,

Lee, and Roussanov, 2007; Routledge and Zin, 2010; Bonomo, Garcia, Meddahi, and Tédongap,

2011). The parameter ` > 0 modulates the intensity of disappointment (Gul, 1991), while 0 < κ ≤ 1

generalizes the disappointment threshold to arbitrary levels below the certainty equivalent of future

lifetime utility (Routledge and Zin, 2010).

The representation in Equation (1) illustrates that the case of recursive expected utility (Epstein

and Zin, 1989; Weil, 1989) is nested when ` = 0. Moreover, the disappointment event Dt is

subject to lifetime utility Vt falling below a fraction κ of its certainty equivalent R (·), that is

Dt = {Vt < κRt−1 (Vt)}. In this framework, the optimal portfolio choice of the representative

investor implies a restriction on the conditional Euler equation where the excess return Rei,t on each

asset i must satisfy:

E[MGDA
t,t+1 R

e
i,t+1] = 0. (2)

Testable cross-sectional asset pricing implications of Equation (2) can be derived under two addi-

tional assumptions. First, substitute out consumption growth to express welfare valuation ratios

as a function of the state variables representing the endowment economy (e.g., Epstein and Zin,

1989; Hansen, Heaton, Lee, and Roussanov, 2007; Bansal and Yaron, 2004). Second, assume that

aggregate consumption growth is heteroscedastic and unpredictable (e.g., Bollerslev, Tauchen, and

Zhou, 2009; Beeler and Campbell, 2012; Bonomo, Garcia, Meddahi, and Tédongap, 2011). Under

these assumptions, Farago and Tédongap (2018) derive a linear five factor representation of asset

excess returns given by:

E[Rei,t] = pWσiW + pDσiD + pWDσiWD + pXσiX + pXDσiXD, (3)

with p(·) referencing prices of risk compensating investors for asset return covariances with the log

market return rWt, the market volatility ∆σWt, and the contingency of a downside state I(Dt):

σiW ≡ cov [Reit,rWt]

σiD ≡ cov [Reit,I(Dt)]

σiWD ≡ cov [Reit,rWt · I(Dt)]

σiX ≡ cov
[
Reit,∆σ

2
Wt

]
σiXD ≡ cov

[
Reit,∆σ

2
Wt · I(Dt)

]
.

(4)
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The five factor model (GDA5) in Eq. (3) shows that in the absence of disappointment aversion,

only two factors command a risk premium, the market factor rWt (MKT ) and the volatility factor

∆σ2Wt (V OL), since pD = pWD = pXD = 0. If investors experience a greater drop in utility in

states that are disappointing, three additional risk premiums emerge as compensation for the asset’s

return covariance with the downside state factor I(Dt), the market downside factor rWt ·I(Dt), and

the volatility downside factor ∆σ2Wt · I(Dt), which we henceforth refer to as DS, MKTDS, and

V OLDS, respectively.3

The GDA5 model predicts that the covariance risk prices satisfy pW > 0, pD < 0, pWD > 0,

pX < 0, and pXD < 0. Intuitively, an asset whose excess return is positively correlated with the

market return commands a higher expected return to compensate investors for the exposure to

the systematic risk associated with increasing marginal utility for market losses. This effect is

amplified in downside states. In contrast, an asset whose excess return is positively correlated

with market volatility provides a hedge against unfavorable movements in market volatility and,

therefore, commands a lower risk premium. This effect is similarly amplified in downside states.

Given the preference and endowment assumptions, the downside state is explicitly described by:

Dt =

{
rWt − a

σW
σX

∆σ2Wt < b

}
(5)

where σW and σX are the standard deviations of the market factor rWt and volatility factor ∆σ2Wt,

respectively, and where the parameters a > 0 and b are functions of parameters defined in the

preferences and the aggregate consumption process. Equation (5) implies that downside states

occur when the market return is low or when the change in market volatility is high.

To test the GDA5 model, we may further express Equation (4) as a multivariate beta pricing model:

E[Rei,t] = p>FσiF =
(

Σ>F pF

)>
Σ−1F σiF = λ>FβiF , (6)

where the 5 × 1 vector βiF = [βiW βiD βiWD βiX βiXD]> may be estimated from a time-series

regression of excess returns on the GDA5 factors and the 5×1 vector λF = [λW λD λWD λX λXD]>

represents the corresponding prices of risk. The signs of the elements of λF are the same as those of

pF , i.e. λW > 0, λD < 0, λWD > 0, λX < 0, and λXD < 0, as long as cov(rWt,∆σ
2
Wt) < 0, consistent

with the leverage effect documented in the empirical literature (e.g., Black, 1976; Christie, 1982).

The GDA5 model contains a volatility factor that arises endogenously in the model because of the

assumptions of stochastic consumption growth volatility and recursive utility. Thus, this framework

provides a theoretical justification for the evidence that volatility risk may be negatively priced in

the cross-section of corporate bond returns (Chung, Wang, and Wu, 2019), although the model

emphasizes an additional compensation for volatility risk in disappointing states.

3A linear three factor representation emerges in a setting where aggregate consumption is homoscedastic and
unpredictable or when the elasticity of substitution ψ is infinite. In that case, pX = pXD = 0
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Relatedly, the framework implies a risk premium for downside risk and for the covariances of asset

returns with the market and volatility factors in downside states. Thus, the model provides a

foundation for the intuition that downside risk should be priced in assets with concave payoff

functions such as corporate bond returns (Bai, Bali, and Wen, 2019).

3 Corporate Bond Data and Factor Construction

We first explain the construction of the GDA5 factors (Section 3.1). We then describe the corporate

bond data (Section 3.2) and present related summary statistics (Section 3.3). Appendix A provides

details about the data construction with variable definitions listed in Table A.1.

3.1 Constructing the GDA5 factors

The construction of the GDA5 factors from Equation (3) requires estimates of the market return,

market volatility and the downside state to compute the MKT , V OL, and DS factors. The

MKTDS and V OLDS factors are readily available as the product of the DS factor with the

MKT and V OL factors, respectively.

As a baseline approximation of the market factor (MKT ), we choose the corporate bond market

excess return measured as the outstanding amount-weighted average return of all bonds net of the

one-month Treasury rate. This makes our results directly comparable to the existing cross-sectional

bond pricing literature (Elton, Gruber, and Blake, 1995; Bai, Bali, and Wen, 2019; Dickerson,

Mueller, and Robotti, 2023) and we can test for the incremental pricing power of the V OL and

the three disappointment factors relative to the bond CAPM, which is difficult to outperform with

empirically motivated factor models (Dickerson, Mueller, and Robotti, 2023).

Farago and Tédongap (2018) use the log return of the CRSP value-weighted portfolio as an ap-

proximation of the market portfolio to examine the cross-section of equity, option and currency

portfolios. However, the aggregate corporate bond portfolio is likely a better proxy for the wealth

portfolio if corporate bond market investors are primarily large institutional investors. Practically,

the corporate bond market allows for a more accurate estimation of the downside factor, since

downside states in the U.S. corporate bond market are more evenly distributed over the sample

period, while they tend to cluster in the U.S. equity market around the 2008 Global Financial Cri-

sis. Nonetheless, we show that our results remain intact when we approximate the market portfolio

using the excess return of the CRSP value-weighted portfolio.

The computation of a bond volatility risk factor V OL is challenging due to the illiquidity of cor-

porate bonds (e.g., Bao, Pan, and Wang, 2011; Dick-Nielsen, Feldhütter, and Lando, 2012). In the
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absence of a bond volatility index and high frequency bond market returns, we follow Chung, Wang,

and Wu (2019) and measure bond market volatility using the Cboe VIX volatility index.4 The V OL

factor is constructed using the monthly changes in market variance calculated from the VIX index.

In robustness tests, we rely on conditional variance estimates based on an EGARCH model and on

the macroeconomic uncertainty index of Jurado, Ludvigson, and Ng (2015) to measure the market

volatility factor.

The definition of the downside state in Equation (5) implies that the downside state factor DS

depends on a and b, which are parametric functions of investor preferences and the dynamics of

aggregate consumption growth. For our baseline results, we set a = 1.00 such that the market return

and market volatility have equal weight in determining disappointing outcomes. In addition, we set

b = −0.0046 such that the probability of disappointing outcomes p is equal to 25%. In robustness

tests, we show that our main results are robust to a wide range of alternative calibration.

3.2 The corporate bond sample

Our sample consists of transactions of U.S. corporate bonds obtained from Trade Reporting and

Compliance Engine (TRACE) Enhance data available at Wharton Research Data Services (WRDS).

The TRACE Enhanced data provides more information compared with the TRACE Standard data

and is widely used in other studies on corporate bonds (see, e.g., Dickerson, Mueller, and Robotti,

2023). We also retrieve bond information from the Mergent Fixed Income Securities Database

(FISD), such as the offering date, maturity date, amount outstanding, coupon rate, coupon payment

frequency, and credit rating. Our sample period is from July 2002 to December 2021.

Consistent with Dickerson, Mueller, and Robotti (2023), we apply the following filtering criteria:

we remove (1) bonds issued by governments, agencies, or supranationals; (2) floating-coupon bonds

and bonds with less than 1 year to maturity; (3) bonds that are not denominated in USD or whose

issuer is not in the jurisdiction of the U.S.; (4) privately placed (including those through Rule-

144A), asset-backed, agency-backed, equity-linked, and convertible bonds; (5) transactions that are

‘when-issued’, locked-in, that have special sales conditions, more than three days to settle, trade

under $5 or above $1,000, or that have trading volume below $10,000; (6) canceled records and we

adjust corrected or reversed records following Dick-Nielsen (2009) and Dick-Nielsen (2014).

We follow Dickerson, Mueller, and Robotti (2023) and van Binsbergen, Nozawa, and Schwert (2024)

to construct monthly corporate bond returns Rt as a function of end-of-month prices Pt, coupon

payments Ct and accrued interest AIt:

Rt =
(Pt +AIt) + Ct − (Pt−1 +AIt−1)

Pt−1 +AIt−1
, (7)

4Cboe launched options on two corporate bond index futures only on July 10, 2023 and the synthetic corporate
bond volatility index of Chen, Doshi, and Seo (2022) computed from CDX swaptions is only available since March
2012.

8



such that Pt+AIt represents the full (or dirty) price of the bond. The excess return is defined as the

difference between the bond return and the 1-month Treasury rate, retrieved from Kenneth French’s

website.5 See Appendix A for details on the implementation of the filters and the constructed of

corporate bond returns.

Similar to Dickerson, Mueller, and Robotti (2023), we do not winsorize bond returns in our baseline

specifications. But our main results hold when using winsorized excess returns. In addition, we

construct bond duration-adjusted returns following van Binsbergen, Nozawa, and Schwert (2024) by

subtracting from the bond return a duration-matched Treasury return computed off the Treasury

yield curve data from Gürkaynak, Brian Sack, and Wright (2007). Our findings are also robust to

the use of duration-adjusted returns.

3.3 Descriptive statistics

Our final sample consists of 1,263,743 monthly bond returns computed for 37,585 bonds issued by

4,157 firms. In Figure 1, we plot the yearly number of bonds, firms (issuers) and aggregate bond

amount outstanding. The figure shows that the U.S. corporate bond market has significantly grown

from $1.45 trillion in 2002 to $4.97 trillion in 2021. While the number of bonds has also steadily

increased from 4,088 in 2002 to 6,678 in 2021, the number of issuing firms reached a peak of 869

issuing firms in 2015 and decreased thereafter to 678 by 2021.

Table 1 reports descriptive statistics of our monthly bond sample. The average excess bond return

is 0.59% per month, corresponding to an annual return of 7.31%, about three quarters of the average

stock excess return of issuing firms in our sample (0.81% monthly or 10.16% annually). The average

monthly standard deviation of bond excess returns is 3.84%, which is an order of magnitude smaller

than that of stock excess returns (8.56%).6

The duration-adjusted monthly return is on average 0.33% per month, close to half that of the

average unadjusted bond excess return. In contrast, the average standard deviation of the duration-

adjusted return is 3.82%, similar to that of the bond excess return of 3.84%. This suggests that

most of the variation in bond excess returns is driven by credit component even though the level

of duration-matched Treasury returns is sizeable, on average, consistent with the evidence in van

Binsbergen, Nozawa, and Schwert (2024).

We use the average of Moody’s and S&P’s bond credit ratings, which we code using a numerical

rating scale ranging from AAA=1 to D=22 for S&P’s and from Aaa=1 to C=21 for Moody’s. Hence,

a higher value indicates a lower rating and, therefore, a higher credit risk. The average (median)

5https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html
6Excess stock return statistics are comparable to those reported by Hartzmark and Solomon (2022) for the CRSP

value-weighted return index over a long sample from 1926-2015.

9

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


rating of the corporate bonds in our sample is 8.65 (8.04), which approximately corresponds to a

Moody’s rating between Baa1 and Baa2 or an S&P’s rating between BBB+ and BBB. The average

(median) maturity in our sample is 9.69 (6.55) years, ranging from 1 to 30 years at the 1st and 99th

percentiles of the distribution. There is similarly a wide dispersion in bond size as the outstanding

amount (par value) ranges from approximately $3 million to over $2,000 million. The average bond

amount outstanding in the sample is $542.32 million.

We compute the BPW illiquidity measure of Bao, Pan, and Wang (2011), defined as the negative

value of the first-order auto-covariance of daily bond log returns within each month. We require

a minimum of 2 observations within a 7 day consecutive period to recognize a daily log bond

return and a minimum of 10 monthly observations for the calculation of a bond return in a month.

Because of the scarcity of bond transactions, we supplement missing values with the average BPW

illiquidity measure of each bond over the past 12 months. This provides us with BPW illiquidity

measure for a reduced sample of 906,445 bond-month observations. Corporate bonds tend to be

illiquid with positive values. The average BPW bond illiquidity is 1.02.

We complement he BPW illiquidity measure with the DFL illiquidity measure of Dick-Nielsen,

Feldhütter, and Lando (2012). Using a similar approach to fill missing values with the average

bond-level illiquidity measure computed over the lagged twelve months yields availability of the DFL

illiquidity measure for 1,099,505 bond-month observations. The distribution of our DFL illiquidity

measure resembles that reported by Dick-Nielsen, Feldhütter, and Lando (2012). Since the DFL

illiquidity variable is constructed using an average of signed standardized illiquidity measures, it

has both negative and positive values.

Bonds in our sample have an average (median) coupon rate of 5.65% (5.52%), ranging from less

than 2% to over 10%. Bond age captures the number of years since a bond’s initial offering date. It

ranges from less than one year to more than 10 years, with an average of 4.60. We calculate a bond’s

5% Value-at-Risk (5% VaR) following Bai, Bali, and Wen (2019), using the past 36 months of data

and requiring a minimum of 24 observations. The average (median) 5% VaR is 4.55% (3.18%)

ranging from less than 0.6% to over 20%. Issuing firms in our sample have on average (median) 831

(719) institutional investors. Compared to the whole CRSP-Thomson Reuters universe, firms in

our sample tend to have a larger number of institutional investors (see, for example, Lewellen and

Lewellen, 2022). On average, institutional investors own 66% of the equity of issuing firms, which

are followed on average by 12 analysts forecasting their earnings. Analysts’ forecast dispersion, i.e.

the standard deviation of analysts’ earnings forecasts divided by the absolute mean forecast, ranges

from 0 to over 3 with an average of 0.32. Overall, our sample statistics are largely aligned with

those reported by Cao, Goyal, Xiao, and Zhan (2023) and Dickerson, Mueller, and Robotti (2023).

Detailed definitions of all variables are provided in Table A.1.

10



4 Evidence on the cross-section of U.S. corporate bond returns

We first assess the GDA5 model’s ability to explain cross-sectional variation in excess returns

measured at the individual bond level (Section 4.1). We then compare the GDA5 model’s asset

pricing performance to that of other existing factor models (Section 4.2), examine alternatives for

winsorized and duration-adjusted returns (Section 4.3), examine characteristics (Section 4.4), and

conduct additional robustness tests (Section 4.5). We end with a model comparison when we use

corporate bond portfolios as test assets (Section 4.6).

4.1 Bond-level Fama-MacBeth regressions

One key distinction from the extant literature is that we focus our baseline analysis on explaining

cross-sectional variation in excess returns measured at the individual bond level. Our choice for

using bonds as test assets rather than portfolios is primarily motivated by the data structure. A

principal component analysis reveals that the first five principal components (PCs) explain 71% of

the variation of corporate bond returns and only 56% of the variation of stock returns.7 The much

tighter factor structure of bonds raises the importance of using a large number of test assets to

assess the relevance of asset pricing models (Lewellen, Nagel, and Shanken, 2010).

Moreover, there can be vast differences in asset pricing results when using individual stocks or

portfolios as test assets (Avramov and Chordia, 2006; Barras, 2019). Grouping assets into portfolios

may lead to information loss and biased estimates of betas (see e.g. Litzenberger and Ramaswamy,

1979; Lo and MacKinlay, 1990; Berk, 2000; Conrad, Cooper, and Kaul, 2000; Phalippou, 2007) or a

reduction in the cross-sectional dispersion of betas (Ang, Liu, and Schwarz, 2020; Lewellen, Nagel,

and Shanken, 2010), making it potentially easier to find statistically significant factors when using

portfolios as test assets (Gagliardini, Ossola, and Scaillet, 2016).

We test the GDA5 model using Fama and MacBeth (1973) two-pass regressions. In a first step, for

each bond i, we estimate GDA5 factor betas using the following time-series regression:

Reit = a+βi,MKTMKTt+βi,DSDSt+βi,MKTDSMKTDSt+βi,V OLV OLt+βi,V OLDSV OLDSt+εit, (8)

where Reit is the excess return of bond i in month t. We follow the literature (e.g., Dickerson,

Mueller, and Robotti, 2023) and estimate Equation (8) in overlapping rolling windows of 36 months

and require a minimum of 24 observations for the estimation. This yields a time-series of factor

exposures (betas) for each bond in our sample. The Internet Appendix provides robustness results

for alternative rolling window lengths.

7See Appendix Table A.2 for details on this exercise.
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In a second step, we estimate the following cross-sectional regression in each month to test the

GDA5 factor model:

Rei,t+1 = λ0+λMKT βi,t,MKT +λDSβi,t,DS+λMKTDSβi,t,MKTDS+λV OLβi,t,V OL+λV OLDSβi,t,V OLDS+ui,t+1,

(9)

where we winsorize estimated factor betas at the 0.5% and 99.5% levels of their distribution because

they are estimated over a short horizon for each monthly cross-section. However, our main results

are robust if factor betas are not winsorized. We compute Newey and West (1987) standard errors

with four lags based on the rule of thumb formula L ≈ T 1/4 (e.g., Greene, 2018), but our results

are robust to alternative number of lags.

In Table 2, we report the time-series average of pairwise cross-sectional correlation coefficients

between our estimated factor betas and a battery of commonly used bond/issuer characteristics

including bond coupon, maturity, rating, issuance size, age, value-at-risk, measures of illiquidity,

lagged bond return, the number of institutional investors, the percentage of institutional equity

ownership, number of analysts, earnings forecast dispersion, and contemporaneous stock excess

return. The correlation coefficients are computed by first estimating the cross-sectional correlation

of each beta with the bond characteristics and then computing the time-series average of these

cross-sectional correlations. Table 2 shows that the GDA5 factor betas are generally weakly cor-

related with bond characteristics, suggesting that they may contain independent and incremental

information on the cross-section of bond returns. The largest correlations are estimated between

the MKT beta and bond maturity (0.35) and VaR5 (0.41).

We illustrate in Figure 2 the dynamics of the cross-sectional distribution for each of the five GDA5

factor betas using the cross-sectional mean, as well as the 25th, 50th and 75th percentiles of their

respective distributions. These plots document a non-trivial amount of variation across all betas.

For example, while the average MKT beta hovers around 1 for most of the sample, except for a

dramatic spike around the 2008 Global Financial Crisis, the tails of the distribution vary more,

suggesting that bonds display varying exposures to these risk factors.

We report in Table 3 the results from the two-pass Fama-MacBeth regressions of individual bond

excess returns on the GDA5 factors. In column (1), we use the outstanding amount-weighted

average return of all bonds in the sample minus the one-month Treasury rate as our baseline

approximation for the MKT factor. All signs of the estimated coefficients (i.e., prices of risk)

align with the model’s prediction. Signs are positive for the market (MKT ) and the market

downside (MKTDS) factors and negative for the downside (DS), the volatility (V OL), and the

volatility downside (V OLDS) factors. Thus, a corporate bond whose excess return is positively

correlated with the market excess return, or the market excess return in downside states, commands

a higher expected return to compensate investors for the exposure to systematic market risk, both

unconditionally and conditionally on downside states. On the other hand, a bond whose excess

return is positively correlated with downside states and the volatility factor (in or outside downside
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states) provides a hedge against these unfavorable conditions and, therefore, commands a lower risk

premium. The coefficients of the MKT , DS, MKTDS, and the V OLDS factors are all significant

at a 5% or higher significance level. The price of risk of the V OL factor is not statistically significant.

The regression intercept is statistically insignificant at conventional levels with a t-statistic of 1.14.

In columns (2), (3), and (4) of Table 3, we construct the GDA5 factors using alternative approxi-

mations for the bond market portfolio: the Bank of America Merrill Lynch Corporate Master Index

(from Thomson Reuters Eikon), the Bloomberg Barclays US Corporate Bond Index, respectively,

and the excess return of the CRSP value-weighted portfolio. The results across specifications are

largely similar to those reported in our baseline specification reported in column (1). The main

differences are that the intercept is significant at a 5% significance level and the V OL factor is

significant at the 10% level in columns (2) and (4). The adjusted R2 is around 13%-14% for all

specifications with alternative candidates for the bond market factor.

Overall, we find that the GDA5 model performs well in explaining the cross-sectional variation of

individual corporate bond returns and that all downside factors have significant and robust prices

of risk. Our results thus suggest that, in addition to bond market risk, corporate bond investors

also care about downside risk, as well as market and volatility downside risks. Moreover, bond

investors appear to be more sensitive to volatility risk in downside states, as we find weaker results

for the volatility risk factor, thereby complementing the results in Chung, Wang, and Wu (2019).

The success of the theoretically motivated GDA5 factor model contrasts with the findings in Dick-

erson, Mueller, and Robotti (2023) and van Binsbergen, Nozawa, and Schwert (2024), who show

that most empirical factor models fail to outperform the bond CAPM in bond-level Fama-McBeth

regressions using simple or duration adjusted excess bond returns. Relatedly, using bond portfolios

as test assets, Dick-Nielsen, Feldhütter, Pedersen, and Stolborg (2023) and Dickerson, Robotti, and

Rossetti (2024) document the failure of existing asset pricing models for the cross-section of bond

returns and the disappearance of anomalies when adjusting for data errors, inconsistent methodolog-

ical choices, and look-ahead bias. Our results thus emphasize the importance of theory-motivated

risk factors in the ongoing effort to explain the cross-section of corporate bond returns.

In Figure 3, we report a scatter plot of the realized against the predicted mean excess returns of

each bond in our sample. For the ease of visualization, we only show bonds with both realized and

predicted returns between−0.50% and 1.50%. Then, we cut the x-axis (predicted excess return) into

20 bins with equal numbers of observations and estimate for each bin the average realized excess

return and its bootstrapped standard error. This binned scatter plot suggests that the relation

between the (aggregated) realized and predicted excess corporate bond return is approximately

linear for bonds with positively predicted mean excess return. We assume that the zero-beta excess

return is zero and estimate without a constant. According to the 45-degree line, the GDA5 model

slightly underpredicts bond-level mean excess returns.
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4.2 Comparing the GDA5 model to alternative factor models

We next compare the performance of the GDA5 factor model with that of alternative linear asset

pricing models that the extant literature suggests for the cross-section of corporate bond returns.

Following Dickerson, Mueller, and Robotti (2023), we consider several traded factor models: (1) the

BBW4 model of Bai, Bali, and Wen (2019) that includes the bond market factor (MKTB) from

Elton, Gruber, and Blake (1995), the downside risk factor (DRF ), liquidity risk factor (LRF ), and

the credit risk factor (CRF )8; (2) the STK5 model of Bai, Bali, and Wen (2019) that includes

the Fama and French (1993) three factors (MKTS, SMB, HML), the Carhart (1997) momentum

factor (UMD), and the Pástor and Stambaugh (2003) stock liquidity factor (LIQS); (3) the BND5

model of Bai, Bali, and Wen (2019) that includes the bond market factor (MKTB), the default

(DEF ) and term (TERM) spread factors from Fama and French (1993), the bond momentum fac-

tor (MOMB) from Jostova, Nikolova, Philipov, and Stahel (2013), and the bond liquidity factor

(LIQB) from Lin, Wang, and Wu (2011); (4) the He, Kelly, and Manela (2017) two-factor model

(HKM) that includes the stock market factor (MKTS) and the traded intermediary capital risk

factor (CPTLT ); (5) the DEFTERM model that includes the default (DEF ) and term (TERM)

spread factors from Fama and French (1993); (6) the stock CAPM model that includes only the

MKTS stock market factor; (7) the HKMSF model that includes the single CPTLT factor exam-

ined by Dickerson, Mueller, and Robotti (2023). Table A.1 provides details about data sources and

factor constructions.

Table 4 reports the pairwise correlation coefficients between the traded and the GDA5 factors.

We highlight those coefficients that are statistically significant at the 1% level in bold with an

asterisk. MKT and DS are negatively correlated by construction. MKT and V OL are negatively

correlated, consistent with a leverage effect (e.g., Black, 1976; Christie, 1982). As in Dickerson,

Mueller, and Robotti (2023), the correlation coefficients between DRF (LRF ) and MKT (i.e.

MKTB, the bond market factor) is high, i.e. 83% (72%). The correlation between DRF and

LRF is also as high as 81%. In addition, the 48% correlation between MKTS and MKT indicates

only limited co-movement between the stock and bond market. Downside risk factors are mostly

weakly correlated with other factors, again suggesting that they main contain information about

the cross-section of corporate bond returns beyond those factors commonly used in the literature.

We repeat our baseline estimations and control for the betas of the alternative factor models in

the second step of the Fama-MacBeth regressions. Specifically, we follow Dickerson, Mueller, and

Robotti (2023) and van Binsbergen, Nozawa, and Schwert (2024) and estimate all factor betas

for each model jointly. Since the bond market factor (MKTB) is common to the GDA5, BBW4,

and BND5 models, we only include GDA5’s market factor for these specifications that include the

8To avoid confusion with the notation, we use “MKT” to denote the market factor of the GDA5 model. Hence,
we use “MKTS” to denote the stock market factor and “MKTB” to denote the bond market factor. In our main
specification, we use MKTB as MKT in the GDA5 model.
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BBW4 and BND5 models. We nonetheless show in the appendix that including their market factors

does not affect our results.

Table 5 reports our results. In column (1), we report the baseline regression from column (1)

Table 3 for comparability. In column (2) we include all of the GDA5 factor betas and the BBW4’s

DRF , LRF , and CRF factor betas in the second-stage cross-sectional regression. The sample size

decreases slightly because the DRF factor is constructed using the bond’s 5% value-at-risk, which

requires a 36-month estimation period. All GDA5 factors have significant prices of risk at the 1%

significance level and have similar coefficients to those reported in column (1). In contrast, none of

the DRF , LRF , and CRF factors have significant prices of risk at conventional significance levels

largely confirming the findings of Dickerson, Mueller, and Robotti (2023).

When we add the STK5 factors in column (3) of Table 5, all downside factors remain significant at

a 5% or higher significance level, while the MKT factor is significant at the 10% level. None of the

STK5 factors have significant risk prices. Similarly, we maintain strongly significant risk premiums

associated with the GDA5 factors when we include the BND5 factors (excluding MKTB) in column

(4). We face again a sample reduction because the LIQB factor in the BND5 model depends on

the liquidity beta that is estimated using 60-months rolling windows as in Lin, Wang, and Wu

(2011) and Bai, Bali, and Wen (2019). None of BND5 factors have significant prices of risk.

In columns (5), (6), (7), and (8) we follow Dickerson, Mueller, and Robotti (2023) and successively

include the MKTS and CPTLT factor betas, the DEF and TERM factor betas, and the MKTS

and the CPTLT factors on a standalone basis. While neither of the alternative traded factors are

statistically significant, we find that in particular the downside risk and downside volatility risk

factors remain highly statistically significant. MKTDS only loses significance in the specification

in column (6), while we find weaker results for the unconditional market and volatility factors.

In Table 6, we further consider the performance of the GDA5 factors when we control for alternative

non-traded factors proposed in the literature: (1) the MACRO model that includes the MKTB

and the uncertainty (∆UNC) factors from Bali, Subrahmanyam, and Wen (2021b); (2) the LIQPS

model that includes the Fama and French (1993) three factors (MKTS, SMB, HML), the default

(DEF ) and term (TERM) spread factors from Fama and French (1993), and the Pastor-Stambaugh

bond liquidity factor LIQBPS from Lin, Wang, and Wu (2011); (3) the LIQAM model that includes

the Fama and French (1993) three factors (MKTS, SMB, HML), the default (DEF ) and term

(TERM) spread factors from Fama and French (1993), and the Amihud bond liquidity factor

LIQBAM from Lin, Wang, and Wu (2011); (4) the VOLPS model that includes the Fama and

French (1993) three factors (MKTS, SMB, HML), the default (DEF ) and term (TERM) spread

factors from Fama and French (1993), the Pastor-Stambaugh bond liquidity factor LIQBPS from

Lin, Wang, and Wu (2011), and the volatility factor (∆V IX) from Chung, Wang, and Wu (2019);

(5) the VOLAM model that includes the Fama and French (1993) three factors (MKTS, SMB,

HML), the default (DEF ) and term (TERM) spread factors from Fama and French (1993), the
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Amihud bond liquidity factor LIQBAM from Lin, Wang, and Wu (2011), and the volatility factor

(∆V IX) from Chung, Wang, and Wu (2019); (6) the HKMNT model that includes the stock market

factor (MKTS) and the non-traded intermediary capital risk factor (CPTL) from He, Kelly, and

Manela (2017). See Table A.1 for details on the data and factor construction.

The results of these model performance comparisons against non-traded factors largely paint a

similar picture than that observed for traded factors. Compared to the baseline results in column

(1) of Table 6, the majority of the GDA5 factors maintain significant prices of risk with similar

coefficient magnitudes. In particular, our three downside risk factors are significant across all

specifications, except for DS, which loses significance in the VOLAM model specification reported

in column (6).

Moreover, we find that almost all non-traded factors are estimated with insignificant prices of risk

when they are estimated jointly with the GDA5 model, except for the TERM and LIQBAM

factors. This result resonates with Dickerson, Mueller, and Robotti (2023), who also find that

the TERM factor has a significant price of risk with t-statistic below 2. However, they find that

LIQBAM is insignificant in the LIQAM model. Table 4, which reports the pairwise correlation

coefficients between the GDA5 and non-traded factors indeed suggests that our GDA5 factors

may contain independent explanatory power for the cross-section of bond returns because their

correlations are mostly weak.

4.3 Duration-adjusted and winsorized excess returns

van Binsbergen, Nozawa, and Schwert (2024) document that the decline in discount rates over

the past decades has led to ex-post positive return realizations for long-duration assets such as

corporate bonds. To account for this impact in their asset pricing tests, the authors construct

duration-adjusted returns by subtracting a duration-matched Treasury bond return. We follow

their approach and use duration-adjusted bond returns as the dependent variable in our Fama-

MacBeth regressions for robustness.

Column (1) of Table 7 suggests that our main results hold when we use duration-adjusted returns.

Four out of five GDA5 factors are significant at a 5% level with similar coefficients to those in our

baseline specification, while the unconditional volatility factor V OL is statistically insignificant.

Both the magnitude and the t-statistic of the intercept are smaller compared to the benchmark

regression, suggesting that primarily the intercept estimate may be driven by the long-term decline

in discount rates.

In our benchmark specification, we do not winsorize because Dickerson, Mueller, and Robotti (2023)

argue that it could bias the estimations while Dickerson, Robotti, and Rossetti (2024) suggest that

it may introduce a look-ahead bias. A similar argument is made for options by Duarte, Jones,
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Khorram, Mo, and Wang (2024). In contrast, using bond portfolios as test assets, Dick-Nielsen,

Feldhütter, Pedersen, and Stolborg (2023) suggest that winsorizing returns may alleviate data errors

in bond prices, even if they may incorrectly remove correct outliers. To alleviate the concern that

the performance of the GDA5 model is driven by outliers in bond returns, we, therefore, repeat our

baseline Fama-MacBeth regressions using excess returns that are winsorized at the 1% and 99%

level over the whole sample.

The findings in column (2) of Table 7 suggest that our results are strikingly similar with or without

winsorizing returns, if not stronger. All of the GDA5 factors are significant at a 5% or higher signif-

icance level, including the V OL factor, which was not significantly priced in our main specification.

Finally, to alleviate the concern that our results may be driven by the cross-sectional winsorization

of factor betas, we report in column (3) of Table 7 Fama-MacBeth regressions without any cross-

sectional winsorization of factor betas. This test further suggests that our benchmark results are

robust since the coefficient estimates and the explanatory power are similar to those in our main

results reported in column (1) of Table 3.

4.4 Controlling for bond characteristics

Daniel and Titman (1997, 2012) suggest that stock characteristics explain the cross-sectional varia-

tion in stock returns rather than betas. Indeed, the literature documents that bond characteristics

have significant explanatory power in the cross-section of corporate bond returns (Bai, Bali, and

Wen, 2019; Lin, Wang, and Wu, 2011; Chung, Wang, and Wu, 2019). We, therefore, examine

whether the risk prices of the GDA5 factors are subsumed by bond/issuer characteristics, including

bond size, maturity, rating, coupon, 5% VaR (VaR5), age, BPW illiquidity (Bao, Pan, and Wang,

2011), DFL illiquidity (Dick-Nielsen, Feldhütter, and Lando, 2012), lagged bond return, number

of institutional investors, share of institutional ownership, number of analysts, dispersion in the

earnings forecast, and contemporaneous stock excess return. See Table A.1 for detailed variable

definitions.

Table 8 reports our results. For ease of comparison, in column (1), we repeat our main specification

from Table 3. In columns (2)-(15), we then successively add individual bond characteristics one

by one as control variables in the second-stage cross-sectional regressions. The results suggest

that the magnitude and significance of the risk prices of the GDA5 factors remain largely similar

across most specifications. One exception is the downside risk factor DS, which loses significance

in specifications with a non-trivial drop in sample size due to less populated data for information

on institutional investor, analysts’ forecast dispersion, and contemporaneous stock excess return.

Note that most bond characteristics do not have significant incremental explanatory power for the

cross-section of corporate bond returns beyond GDA5 factor betas, except for the lagged bond
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return and contemporaneous stock excess return, and to a certain degree the share of institutional

ownership and the forecast dispersion.

In column (16) of Table 8, we add all of the bond characteristics simultaneously. This specification

shows that MKTDS, V OL, and V OLDS remain statistically significant at a 5% or 10% level.

4.5 Robustness

We conduct a series of robustness tests to ensure the validity of our results. We briefly discuss the

nature of the additional exercises and provide details in Appendix Sections B and C.

In Table A.3, we construct alternative measures of the volatility factor. In column (1), we report

results from our main specification. In column (2), we report results with conditional volatility

estimated using an EGARCH model (Nelson, 1991). In column (3), we use the Jurado, Ludvig-

son, and Ng (2015) macroeconomic uncertainty index to approximate market volatility since Bali,

Subrahmanyam, and Wen (2021b) document its importance for the cross-section of corporate bond

returns. Our findings in Table A.3 suggest that the choice of volatility is immaterial for our results.

The estimation of the downside state factor in Equation (5) depends on values for parameters

a and b. The latter is implicitly defined through the probability of occurrence of disappointing

states. In our baseline specification, we choose p = 25%. The results in Table A.4 suggest that

different values of p ∈ {10%,15%,20%} do not impact our conclusions that the GDA5 model explains

the cross-section of corporate bond returns. Relatedly, our benchmark specification is based on

a = 1.00, which gives equal weight to the market and volatility factors in determining downside

states. Similarly, as we show in Table A.5, different values of parameter a ∈ {0.50,0.75,1.25} yield

similar conclusions.

Next, we consider alternative window lengths to estimate the factor betas, including rolling windows

with 48, 60, and 72 months of lagged data, respectively. Table A.6 reports that across all different

specifications, the statistical significance and magnitude of the estimated coefficients are similar to

our benchmark results which are based on 36 months of lagged data. In Table A.7, we vary the lags

for the Newey-West standard error correction between 2, 3, 5, and 6, and find that our results do

not depend on the choice of lags. Finally, in Table A.8, we conduct additional tests to show that

the pricing power of the GDA5 model is robust to including the BBW4 or BND5 market factor

betas, respectively.

4.6 Portfolios as test assets

The much tighter factor structure of corporate bond returns compared to stock returns attaches

a greater importance to testing the GDA5 factor model at the individual bond level (Lewellen,
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Nagel, and Shanken, 2010). For completeness and comparison with the literature, we also examine

whether the GDA5 factor model explains the cross-section of bond returns when we use portfolios

as test assets, even though grouping assets into portfolios may lead to information loss and can

reduce the cross-sectional dispersion of betas (e.g., Ang, Liu, and Schwarz, 2020; Avramov and

Chordia, 2006).

Specifically, we follow Lewellen, Nagel, and Shanken (2010) and use portfolios formed on bond

characteristics that are unrelated to the GDA5 factors. We consider the following eight sets of test

portfolios and calculate the outstanding amount-weighted average excess return for each portfolio.

1. 25 Size/Maturity portfolios: In each month, we independently sort bonds into 5 size and

5 maturity quintiles. We then take their intersection to form 5× 5 portfolios.

2. 30 Fama-French industry portfolios: In each month, we allocate bonds into portfolios

based on the issuer’s industry according to Fama-French 30 industry definitions.9

3. 25 Size/Rating portfolios: Similar to the construction of the 25 Size/Maturity portfolios,

we independently sort bonds into 5 size and 5 credit rating quintiles to form 25 portfolios.

4. 25 Credit Spread portfolios: In each month, we sort bonds into 25 equal-sized portfolios

based on their average credit spread in the past 12 months where the credit spread is defined

as the bond yield to maturity minus the risk-free yield.10

5. 25 Rating/Maturity portfolios: Similar to the 25 Size/Maturity portfolio, bonds are

sorted independently into 5× 5 portfolios based on their credit rating and maturity.

6. 27 Size/Rating/Maturity portfolios: In each month, we form bond portfolios through

an independent trivariate sort on bond size, credit rating, and maturity into three terciles,

respectively. We then take their intersection to form 3× 3× 3 = 27 portfolios.

7. 32 portfolios following Dickerson, Mueller, and Robotti (2023): 5 portfolios sorted

on credit rating, 5 portfolios sorted on maturity, 10 portfolios sorted on credit spread, and 12

portfolios based on the Fama-French 12 industry definitions.

8. 35 portfolios following Elkamhi, Jo, and Nozawa (2024): 10 portfolios sorted on credit

spread, 5 portfolios sorted on credit rating, 5 portfolios sorted on idiosyncratic volatility, 5

portfolios sorted on intermediary factor betas, 5 portfolios sorted on long-term reversal, and

5 portfolios sorted on maturity.11

9The definitions of the Fama-French 30 industries are based on SIC codes and retrieved from Kenneth French’s
website. For each bond in our sample, we first obtain its issuer SIC code from Mergent FISD. If it is unavailable, we
retrieve the issuer’s SIC code from CRSP based on its CUSIP.

10We use the overnight index swap (OIS) yield curve to proxy for the risk-free yield curve. Specifically, we
download pricing data on OIS with different maturities from Bloomberg and bootstrap the corresponding zero yield
curve. Finally, we use the OIS yield corresponding to the corporate bond’s maturity date as the risk-free yield.

11Among the 40 portfolios of Elkamhi, Jo, and Nozawa (2024), we exclude 5 portfolios sorted on downside risk to
avoid using portfolios sorted on a variable that is related to the GDA5 factors (Lewellen, Nagel, and Shanken, 2010).
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Table 9 reports the results of the Fama-MacBeth two-pass regressions for each set of test portfolios

independently. Our findings are mixed, since we find that our downside factors have significant

prices of risk among three of the eight sets of portfolios.

In column (1) of Table 9, we use the 25 Size/Maturity portfolios. MKT , DS, and MKTDS are

significant at a 5% or higher significance level, while V OLDS is significant at the 10% significance

level. The intercept is insignificant. The results are similar in column (5), where we use the 25

Rating/Maturity portfolios. We find that three of five GDA5 factors are significant at a 5% or higher

significance level, while the intercept is statistically insignificant. Similarly, in the regressions that

use the 27 Size/Rating/Maturity portfolios in column (6), we find that three of five GDA5 factors

are significant at a 10% or higher significance level, while the intercept is statistically insignificant.

In columns (2), (3) and (4), we use the 30 Fama-French industry portfolios, the 25 Size/Rating

portfolios, and the 25 Credit Spread portfolios. For these test assets, the GDA5 factor model does

not provide a good fit since none of the GDA5 factors have significant prices of risk.

In columns (7) and (8), we use the 32 portfolios formed by Dickerson, Mueller, and Robotti (2023)

and the 35 portfolios formed by Elkamhi, Jo, and Nozawa (2024), respectively. In both estimations,

only MKT has a significant price of risk at a 5% significance level while none of the other risk

factors is significantly estimated.

To visualize the goodness of fit of the GDA5 model, we plot in Figure 4 the realized against

the predicted mean excess returns for different sets of portfolios. These graphs are based on

unconditional factor betas estimated using a time-series regression over the entire sample. We

assume that the zero-beta excess return is zero and estimate without a constant. Other than for

the 25 Size/Rating and 30 Fama-French industry portfolios, the GDA5 factor model provides a

good fit.

By estimating the betas unconditionally over the entire sample period, we are essentially examining

the OLS R2 and suffer from the critique of Lewellen, Nagel, and Shanken (2010). We, therefore,

repeat the analysis and estimate conditional factor betas using rolling windows of 36 months of

data, as we do in Table 9. The corresponding illustrations in Figure 5 reflect the mixed results

reported in Table 9, that is, the GDA5 factor model provides a good fit for the 25 Rating/Maturity,

the 27 Size/Rating/Maturity portfolios, and the 35 Elkamhi, Jo, and Nozawa (2024) portfolios.

Dickerson, Mueller, and Robotti (2023) find that none of the BBW4, DEFTERM, CAPM, HKMSF,

HKM, MACRO, HKMNT, LIQPS, LIQAM, VOLPS, and VOLAM models outperforms the sim-

ple bond CAPM in pricing the cross-section of corporate bond portfolio returns using their 32

test portfolios. These conclusions are based on model comparison techniques introduced by Kan,

Robotti, and Shanken (2013). We implement, therefore, similar tests to assess whether the GDA5

factor model may outperform the bond CAPM.
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Thus, Table 10 reports the results of the model comparisons of the GDA5, BBW4, STK5, BND5,

HKM, DEFTERM, CAPM, HKMSF, MACRO, LIQPS, LIQAM, VOLPS, VOLAM, and HKMNT

models versus the bond CAPM based on the GLS R2 statistic from cross-sectional regressions as

suggested by Lewellen, Nagel, and Shanken (2010). The test statistic used to compare models is

the difference between each model’s GLS R2 and that of the bond CAPM, and the p-values are

based on Wald tests under potential model misspecification (Kan, Robotti, and Shanken, 2013).

The first row of Table 10 suggests that the GDA5 model has a significantly higher GLS R2 than

the bond CAPM among five of the eight sets of portfolios. Specifically, in column (2), when using

the 30 Fama-French industry portfolios, the GLS R2 of the GDA5 model is higher than that of

the bond CAPM by 0.175 in magnitude and it is significant at a 10% significance level. Similarly,

in columns (3), (5), (7), and (8), when using the 25 Size/Rating portfolios, 25 Rating/Maturity

portfolios, the 32 portfolios of Dickerson, Mueller, and Robotti (2023), and the 35 portfolios of

Elkamhi, Jo, and Nozawa (2024), respectively, the GLS R2 of the GDA5 model is higher than that

of the bond CAPM by 0.102 ∼ 0.351 in magnitude and it is significant at a 5% or higher significance

level. Across all sets of portfolios, the improvement of GLS R2 over the bond CAPM for the GDA5

model ranges between 0.051 to 0.351.

While the GDA5 model shows significant improvement over the bond CAPM across most sets of

test portfolios, the alternative models mostly fail to outperform the simple bond CAPM, consistent

with Dickerson, Mueller, and Robotti (2023). An exception is the STK5 model, which significantly

outperforms the bond CAPM using the 25 Size/Rating portfolios, and the BND5 model, which

significantly outperforms the bond CAPM using the 25 Rating/Maturity portfolios.12 However,

their improvements in GLS R2 are smaller in magnitude compared to the improvement obtained

with the GDA5 factor model.

In summary, we find that the significance of the prices of risk of the GDA5 model depends on the

choice of test portfolios. The GDA5 model has significant prices of risk and provides a reasonably

good fit for three of the eight sets of portfolios that we examine. In addition, we find that the

GDA5 model shows statistically significant improvement over the bond CAPM in five of the eight

sets of portfolios, while alternative models fail to outperform the bond CAPM for virtually all sets

of test assets.

5 Conclusion

We test the ability of theory-motivated risk factors to explain the cross-section of corporate bond

returns. In an intertemporal equilibrium asset pricing model with disappointment aversion prefer-

ences and time-varying macroeconomic uncertainty, a linear factor representation emerges where

12Dickerson, Mueller, and Robotti (2023) do not examine STK5 and BND5 factor models.
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expected excess returns command risk premiums for their return covariation with five risk factors,

including the market, the volatility, and three downside risk factors.

Our model is a natural candidate for the cross-section of corporate bond returns. Due to their

concave payoff functions, fixed income securities are particularly sensitive to downside risk. This

is well captured in dynamic models with asymmetric preferences that can endogenously generate

time-varying risk premiums associated with disappointing states. Moreover, an extensive literature

documents the importance of volatility risk for asset prices, including corporate bond returns (e.g.,

Chung, Wang, and Wu, 2019; Bali, Subrahmanyam, and Wen, 2021b).

We test the model using individual bonds as test assets because the factor structure of corporate

bonds is significantly stronger than that of equities and because of the apparent information loss

and reduction in the dispersion of beta estimates. We find that all factors carry theoretically

consistent signs and are significantly priced, except for the volatility factor, which is only marginally

significant. Thus, we complement and extend the findings in Chung, Wang, and Wu (2019) by

providing a theoretical foundation for volatility risk in the cross-section of corporate bond returns

and by showing that volatility downside risk is more informative than unconditional volatility risk.

For comparison with the literature, we also examine the ability of our model to explain the cross-

section of corporate bond portfolios. We find that our model provides a good fit for three of the

eight sets of test portfolios. We confirm the results of Dickerson, Mueller, and Robotti (2023) that

existing empirical factor models fail to outperform the bond CAPM, but show that our model

improves the cross-sectional explanatory power for excess returns over the bond CAPM in five of

the eight sets of test portfolios.

Our work contributes to the ongoing search for theory-motivated risk factors in the cross-section of

corporate bond returns. The contrasting asset pricing results when using bonds or portfolios as test

assets underscores the impact that information loss can have on model assessment when portfolios

are prioritized over individual securities for explaining the cross-section of corporate bond returns.
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Table 1: Descriptive Statistics

This table reports time-series averages of cross-sectional descriptive statistics for variables in our monthly corporate bond sample. The bond excess return is
defined as the monthly bond return minus the one-month Treasury bill rate. The duration-adjusted return is the monthly bond return minus a duration-matched
Treasury return following van Binsbergen, Nozawa, and Schwert (2024). Rating is the average corporate bond credit rating from S&P Global Ratings and
Moody’s, coded on a numerical scale ranging from AAA=1 to D=22 for S&P and from Aaa=1 to C=21 for Moody’s. If either credit rating is missing, we use
only one of both ratings. Maturity is defined as the number of years until the bond’s maturity date. Bond size is the amount outstanding in million USD. BPW
illiq is the monthly bond illiquidity measure of Bao, Pan, and Wang (2011) and DFL illiq is the monthly bond illiquidity measure (λ) of Dick-Nielsen, Feldhütter,
and Lando (2012). To reduce the impact of missing values for these variables, we supplement for each bond and each month, missing illiquidity values with the
average monthly illiquidity over the past 12 months. Coupon is the bond’s coupon rate in percentage points. Bond age is the number of years from the bond’s
offering date. The 5% Value-at-Risk (5% VaR) is calculated following Bai, Bali, and Wen (2019). # Inst. defines the number of institutional investors and % IO
is the percentage of the bond issuer’s equity shares owned by institutional investors. # Analysts is the number of analysts forecasting the issuers’ earnings per
share and Forecast Disp. is the standard deviation of the most recent quarterly forecast scaled by the absolute mean forecast. Stock excess return is the issuers’
stock return minus the one-month Treasury bill rate. For each variable, we report the number of observations (N), the mean, median, standard deviation (SD)
and the 1st, 5th, 25th, 75th, 95th and 99th percentiles of the distribution. Bond transaction data are from TRACE. Other bond-level data are from Mergent
FISD. Institutional ownership data are from Thomson-Reuters 13F and analyst data are from I/B/E/S. Stock return data are from CRSP. Table A.1 provides
detailed variable definitions. The sample period spans from July 2002 to December 2021.

Percentiles

N Mean Median SD 1 5 25 75 95 99

Bond excess return (%) 1,263,743 0.59 0.40 3.84 −8.00 −3.68 −0.69 1.63 5.33 11.37
Duration-adjusted return (%) 1,263,743 0.33 0.18 3.82 −8.19 −3.88 −0.91 1.34 4.98 11.01
Rating 1,236,724 8.65 8.04 3.82 1.42 3.02 6.09 10.50 15.97 19.16
Maturity 1,263,743 9.69 6.55 8.91 1.11 1.55 3.65 12.73 27.34 30.88
Bond size (million $) 1,263,743 542.32 381.50 596.55 3.34 11.93 189.34 677.35 1651.73 2868.15
BPW illiq 906,445 1.02 0.20 5.05 −1.21 −0.14 0.03 0.76 4.10 13.81
DFL illiq 1,099,505 0.38 −0.46 2.75 −2.16 −1.97 −1.37 1.28 5.32 9.55
Coupon (%) 1,263,743 5.65 5.52 1.71 2.03 3.10 4.56 6.60 8.69 10.36
Bond age 1,263,743 4.60 3.41 4.41 0.07 0.33 1.59 6.17 14.16 19.88
5% VaR (%) 599,130 4.55 3.18 4.39 0.59 0.92 1.88 5.61 12.71 21.57
# Inst. 938,784 830.99 718.98 512.96 66.12 148.32 431.77 1186.04 1809.03 1985.76
% IO 899,025 0.66 0.68 0.19 0.20 0.31 0.53 0.80 0.93 0.97
# Analysts 1,016,155 12.26 11.99 6.68 0.50 1.96 7.21 16.96 23.32 29.03
Forecast Disp. 978,768 0.32 0.04 2.54 0.00 0.01 0.02 0.10 1.62 3.55
Stock excess return (%) 1,051,676 0.81 0.60 8.56 −19.84 −11.09 −3.55 4.83 13.45 24.30
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Table 2: Correlation Matrix of Betas and Bond Characteristics

This table reports the time-series average of pair-wise cross-sectional correlation coefficients for the GDA5 factor betas and a range of bond characteristics including
bond coupon, maturity, rating, issuance size, age, 5% Value-at-Risk (VaR5), the illiquidity measures of Bao, Pan, and Wang (2011) (BPW illiq) and Dick-Nielsen,
Feldhütter, and Lando (2012) (DFL illiq), lagged bond return, number of institutional investors, percentage equity ownership of institutional ownership, number of
analysts, earnings forecast dispersion, and contemporanous stock excess return. Specifically, for each month we calculate the pair-wise cross-sectional correlation
coefficients among these variables. Then, we take their time-series average and report in the table. MKT is the bond market factor, i.e. the outstanding
amount-weighted average return of all bonds in the sample minus the 1-month Treasury rate. V OL is the volatility factor calculated from the VIX index. DS
is the downside factor, and MKTDS (V OLDS) is the market (volatility) downside factor. Table A.1 provides details for all variable definitions. Factor betas
are estimated using rolling windows of lagged 36 months and requiring a minimum of 24 observations. The sample period spans July 2002 to December 2021.
Numbers in bold with a ∗ indicate statistical significance at the 1% level computed using the t test.
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BPW illiq 0.32∗ 0.00 −0.03∗ −0.05∗ −0.05∗ 0.03∗ −0.01
DFL illiq 0.03 0.05∗ −0.14∗ −0.00 0.04∗ −0.02
Lagged return −0.03 −0.01 −0.02∗ −0.01 0.02
# Inst. −0.40∗ 0.33∗ −0.09∗ −0.01
% IO −0.05∗ 0.01 0.02
# Analysts −0.00 −0.01
Forecast Disp. −0.02
Stock excess return
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Table 3: Bond-level Fama-MacBeth Regressions

This table reports the results of the Fama-MacBeth two-pass regressions of individual bond excess returns on the
GDA5 factors. MKT is the market return minus the one-month Treasury rate. We use four different proxies for the
market return. In column (1), the market return is the outstanding amount-weighted average return of all bonds
in our sample. In column (2), the market return is the return of the Merrill Lynch U.S. Corporate Master Index
obtained from Eikon (ticker: .MERC0A0). In column (3), the market return is the Barclays U.S. Corporate Total
Return Index obtained from Bloomberg (ticker: LUACTRUU Index). In column (4), the market return is the CRSP
value-weighted total return obtained from CRSP in WRDS (file: DSI). V OL is the monthly change in variance based
on the VIX index obtained from Cboe Global Markets. DS is the downside factor constructed. MKTDS (V OLDS)
is the market (volatility) downside factor. Factor betas are estimated using rolling windows with a lag of 36 months
and requiring a minimum of 24 observations. All prices of risk are in percentage points. Time-series averages of
cross-sectional adjusted R2 are reported at the bottom. Table A.1 provides detailed variable definitions. Standard
errors are corrected according to Newey and West (1987) with 4 lags. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% (two-tailed) test levels, respectively. The sample period spans July 2002 to December 2021.

(1) (2) (3) (4)

Sample bond market ML Corporate Barclays Corporate CRSP

βMKT 0.352∗∗ 0.182∗∗ 0.200∗∗ 0.782∗

(2.50) (2.03) (2.30) (1.81)

βDS −13.190∗∗ −10.921∗∗∗ −9.382∗ −8.537∗

(−2.29) (−2.70) (−1.86) (−1.91)

βMKTDS 0.253∗∗∗ 0.193∗∗∗ 0.188∗∗ 0.574∗∗

(2.96) (2.90) (2.46) (2.50)

βV OL −0.019 −0.028∗ −0.027 −0.021∗

(−1.11) (−1.68) (−1.50) (−1.86)

βV OLDS −0.034∗∗ −0.032∗∗ −0.035∗∗ −0.023∗

(−2.13) (−2.34) (−2.35) (−1.96)

Constant 0.108 0.301∗∗ 0.241∗∗ 0.284∗∗

(1.14) (2.56) (2.35) (2.34)

N 578,841 578,057 578,354 574,548
Adjusted R2 0.148 0.144 0.143 0.134

29



Table 4: Factor Correlations

This table reports pairwise time-series correlation coefficients between monthly risk factors. MKT is the bond market factor, i.e. the outstanding amount-weighted
average return of all bonds in the sample, minus the 1-month Treasury rate. V OL is the volatility factor calculated from the VIX index. DS is the downside
factor, and MKTDS (V OLDS) is the market (volatility) downside factor. DRF , LRF , and CRF are the downside risk, liquidity risk, and credit risk factors,
respectively, constructed following Bai, Bali, and Wen (2019). MKTS, SMB, and HML are the Fama and French (1993) three factors and UMD is the Carhart
(1997) stock momentum factor. Data on these four factors are obtained from Kenneth French’s website. LIQS is the Pástor and Stambaugh (2003) stock liquidity
factor. Data on LIQS is obtained from Lubos Pastor’s website. DEF is the difference between long-term corporate bond and long-term government bond
returns and TERM is the difference between long-term government bond returns and the 1-month Treasury rate. Data on these two factors are obtained from
Amit Goyal’s website. MOMB is the bond momentum factor constructed following Jostova, Nikolova, Philipov, and Stahel (2013). LIQBPS (LIQBAM) is
the Pastor-Stambaugh (Amihud) bond liquidity factor constructed following Lin, Wang, and Wu (2011) and LIQB is the traded factor of LIQBPS constructed
following Lin, Wang, and Wu (2011) and Bai, Bali, and Wen (2019). CPTL and CPTLT are the non-traded and traded intermediary risk factors, respectively
from He, Kelly, and Manela (2017). Data on the two factors are downloaded from Zhiguo He’s website. ∆UNC is the monthly change of the economic uncertainty
index downloaded from Sydney Ludvigson’s website and ∆V IX is the first difference of the end-of-month VIX index downloaded from Cboe Global Markets.
Table A.1 provides detailed variable definitions. The sample period spans from July 2002 to December 2021. Numbers in bold with an ∗ indicate statistical
significance at the 1% level.
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MKT −0.55∗ 0.69∗ −0.59∗ −0.44∗ 0.83∗ 0.72∗ 0.44∗ 0.48∗ 0.16 0.05 −0.37∗ 0.15 0.59∗ 0.27∗ −0.36∗ −0.39∗ 0.37∗ −0.37∗ −0.38∗ 0.47∗ −0.51∗ 0.32∗

DS −0.52∗ 0.47∗ 0.51∗ −0.48∗ −0.36∗ −0.21∗ −0.51∗ −0.11 −0.07 0.17∗ −0.05 −0.35∗ −0.17∗ 0.10 0.13 −0.41∗ 0.16 −0.00 −0.24∗ 0.55∗ −0.34∗

MKTDS −0.45∗ −0.55∗ 0.50∗ 0.41∗ 0.30∗ 0.40∗ 0.09 0.06 −0.15 0.29∗ 0.46∗ 0.13 −0.18∗ 0.00 0.28∗ −0.41∗ −0.12 0.66∗ −0.40∗ 0.25∗

V OL 0.76∗ −0.44∗ −0.35∗ −0.43∗ −0.72∗ −0.20∗ −0.15 0.31∗ −0.22∗ −0.51∗ 0.07 0.14 0.16 −0.57∗ 0.34∗ 0.30∗ −0.40∗ 0.94∗ −0.50∗

V OLDS −0.22∗ −0.17 −0.37∗ −0.59∗ −0.14 −0.17 0.16 −0.24∗ −0.38∗ 0.07 −0.03 −0.17 −0.49∗ 0.44∗ 0.06 −0.52∗ 0.70∗ −0.45∗

DRF 0.81∗ 0.41∗ 0.47∗ 0.14 0.06 −0.40∗ 0.09 0.68∗ 0.04 −0.57∗ −0.62∗ 0.39∗ −0.30∗ −0.35∗ 0.30∗ −0.44∗ 0.34∗

LRF 0.36∗ 0.28∗ 0.09 0.01 −0.32∗ 0.04 0.44∗ 0.14 −0.53∗ −0.59∗ 0.23∗ −0.23∗ −0.34∗ 0.28∗ −0.31∗ 0.17∗

CRF 0.61∗ 0.38∗ 0.30∗ −0.50∗ 0.21∗ 0.51∗ −0.53∗ −0.34∗ −0.18 0.61∗ −0.35∗ −0.15 0.43∗ −0.41∗ 0.63∗

MKTS 0.35∗ 0.22∗ −0.41∗ 0.23∗ 0.56∗ −0.30∗ −0.19∗ −0.12 0.83∗ −0.30∗ 0.02 0.33∗ −0.76∗ 0.77∗

SMB 0.17 −0.16 0.21∗ 0.25∗ −0.26∗ −0.16 −0.04 0.26∗ −0.09 −0.02 0.17∗ −0.20∗ 0.26∗

HML −0.37∗ −0.19∗ 0.20∗ −0.23∗ 0.06 −0.02 0.51∗ −0.17∗ 0.04 0.08 −0.12 0.48∗

UMD 0.12 −0.34∗ 0.21∗ 0.33∗ 0.29∗ −0.59∗ 0.19∗ 0.03 −0.16 0.29∗ −0.57∗

LIQS 0.24∗ −0.19∗ −0.04 0.16 0.08 −0.10 0.09 0.36∗ −0.18∗ 0.09
DEF −0.45∗ −0.43∗ −0.25∗ 0.56∗ −0.34∗ −0.32∗ 0.50∗ −0.52∗ 0.54∗

TERM 0.28∗ −0.08 −0.40∗ 0.08 −0.10 −0.21∗ 0.15 −0.44∗

MOMB 0.56∗ −0.17∗ 0.13 0.26∗ −0.13 0.19∗ −0.15
LIQB −0.12 −0.03 0.47∗ 0.14 0.16 −0.04
CPTLT −0.28∗ 0.06 0.26∗ −0.60∗ 0.94∗

∆UNC 0.08 −0.42∗ 0.29∗ −0.29∗

LIQBPS −0.21∗ 0.20∗ 0.08
LIQBAM −0.31∗ 0.28∗

∆V IX −0.53∗

CPTL
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Table 5: Bond-level Fama-MacBeth Regressions: Alternative Traded Factors

This table reports the results of the Fama-MacBeth two-pass regressions of individual bond excess returns on the
GDA5 factors controlling for traded factors. In the GDA5 model, MKT is the bond market factor, i.e. the outstanding
amount-weighted average return of all bonds in the sample minus the 1-month Treasury rate. V OL is the volatility
factor calculated from the VIX index. DS is the downside factor, and MKTDS (V OLDS) is the market (volatility)
downside factor. For each factor model, all factor betas are jointly estimated using rolling windows with a lag of
36 months and requiring a minimum of 24 observations. In column (2), we control for the BBW4 factors (DRF ,
LRF , and CRF ) of Bai, Bali, and Wen (2019). In column (3), we control for the STK5 factors (MKTS, SMB,
HML, UMD, and LIQS) of Bai, Bali, and Wen (2019). In column (4), we control for the BND5 factor betas (DEF ,
TERM , MOMB, LIQB) of Bai, Bali, and Wen (2019). In column (5), we control for the HKM factors (MKTS and
CPTLT ) of He, Kelly, and Manela (2017). In column (6), we control for the DEFTERM factors (DEF and TERM)
of Dickerson, Mueller, and Robotti (2023). In column (7), we control for the stock CAPM (MKTS) of Dickerson,
Mueller, and Robotti (2023). In column (8), we control for HKMSF single factor CPTLT of Dickerson, Mueller,
and Robotti (2023). We exclude the bond market beta from BBW4 and BND5 to avoid potential multicollinearity
issues in our regressions. All prices of risk are in percentage points. Time-series averages of cross-sectional adjusted
R2 and number of observations (N) are reported at the bottom of each column. Table A.1 provides detailed variable
definitions. Standard errors are corrected according to Newey and West (1987) with 4 lags. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% (two-tailed) test levels, respectively. The sample period spans from
July 2002 to December 2021.

(1) (2) (3) (4) (5) (6) (7) (8)

βMKT 0.352∗∗ 0.344∗∗∗ 0.174∗ 0.329∗∗∗ 0.245∗∗∗ −0.001 0.167 0.197∗

(2.50) (3.12) (1.85) (3.50) (2.73) (−0.01) (1.54) (1.92)

βDS −13.190∗∗ −15.084∗∗∗ −9.810∗∗ −11.918∗∗∗ −12.063∗∗∗ −9.921∗ −11.029∗∗∗ −10.225∗∗∗

(−2.29) (−3.58) (−2.54) (−4.40) (−3.26) (−1.75) (−2.84) (−2.74)

βMKTDS 0.253∗∗∗ 0.222∗∗∗ 0.171∗∗∗ 0.211∗∗∗ 0.162∗∗∗ 0.133 0.168∗∗∗ 0.183∗∗∗

(2.96) (2.96) (3.09) (4.25) (3.16) (1.59) (2.80) (2.95)

βV OL −0.019 −0.055∗∗∗ −0.015 −0.055∗∗∗ −0.021 −0.015∗ −0.003 −0.008
(−1.11) (−3.97) (−1.41) (−2.88) (−1.32) (−1.76) (−0.25) (−0.76)

βV OLDS −0.034∗∗ −0.040∗∗∗ −0.022∗∗ −0.040∗∗ −0.020∗∗ −0.026∗∗∗ −0.021∗∗ −0.019∗∗

(−2.13) (−3.48) (−2.30) (−2.48) (−1.97) (−2.69) (−2.54) (−2.42)

βDRF 0.046
(0.38)

βLRF 0.002
(0.04)

βCRF −0.160
(−0.67)

βMKTS 0.229 −0.087 0.252
(0.46) (−0.17) (0.43)

βSMB −0.100
(−0.52)

βHML −0.138
(−0.73)

βUMD −0.181
(−0.68)

βLIQS 0.018
(0.74)

βDEF −0.161 0.065
(−1.19) (0.38)

βTERM 0.370 0.518
(1.28) (1.28)

βMOMB −0.030
(−0.24)

βLIQB 0.023
(0.15)

βCPTLT 0.254 0.372
(0.34) (0.49)

Constant 0.108 0.158 0.127 0.189∗∗∗ 0.151∗ 0.118 0.118 0.137
(1.14) (1.47) (1.54) (3.29) (1.93) (1.30) (1.29) (1.55)

N 578,841 549,016 578,841 475,287 578,841 578,841 578,841 578,841
Adjusted R2 0.148 0.199 0.200 0.193 0.178 0.185 0.169 0.168
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Table 6: Bond-level Fama-MacBeth Regressions: Alternative Non-traded Factors

This table reports the results of the Fama-MacBeth two-pass regressions of individual bond excess returns on the
GDA5 factors controlling for non-traded factors. In the GDA5 model, MKT is the bond market factor, i.e. the
outstanding amount-weighted average return of all bonds in the sample minus the 1-month Treasury rate. V OL
is the volatility factor calculated from the VIX index. DS is the downside factor, and MKTDS (V OLDS) is the
market (volatility) downside factor. For each factor model, all factor betas are estimated jointly using rolling windows
with a lag of 36 months and requiring a minimum of 24 observations. Column (1) reports our main results from
Table 3. In column (2), we control for MACRO factors MKTB and ∆UNC as in Bali, Subrahmanyam, and Wen
(2021b). In column (3), we control for LIQPS factors (MKTS, SMB, HML, DEF , TERM and LIQBPS) as in
Lin, Wang, and Wu (2011). In column (4), we control for LIQAM factors (MKTS, SMB, HML, DEF , TERM and
LIQBAM) as in Lin, Wang, and Wu (2011). In column (5), we control for VOLPS factors (MKTS, SMB, HML,
DEF , TERM , LIQBPS, and ∆V IX) as in Chung, Wang, and Wu (2019). In column (6), we control for VOLAM
factors (MKTS, SMB, HML, DEF , TERM , LIQBAM , and ∆V IX) as in Chung, Wang, and Wu (2019). In
column (7), we control for the HKMNT factors (MKTS and CPTL) as in He, Kelly, and Manela (2017). All prices
of risk are in percentage points. Time-series averages of cross-sectional adjusted R2 and the number of observations
(N) are reported at the bottom of each column. Table A.1 provides detailed variable definitions. Standard errors are
corrected according to Newey and West (1987) with 4 lags. ***, **, and * indicate statistical significance at the 1%,
5%, and 10% (two-tailed) test levels, respectively. The sample period spans from July 2002 to December 2021.

(1) (2) (3) (4) (5) (6) (7)

βMKT 0.352∗∗ 0.341∗∗ −0.079 −0.037 −0.101 −0.102 0.245∗∗

(2.50) (2.50) (−0.56) (−0.32) (−0.75) (−0.84) (2.48)

βDS −13.190∗∗ −13.669∗∗ −7.395∗∗ −5.937∗ −7.469∗∗ −5.139 −12.915∗∗∗

(−2.29) (−2.57) (−2.09) (−1.68) (−2.42) (−1.65) (−3.10)

βMKTDS 0.253∗∗∗ 0.219∗∗∗ 0.087∗ 0.098∗ 0.091∗∗ 0.082∗ 0.164∗∗∗

(2.96) (2.76) (1.78) (1.90) (2.01) (1.80) (2.68)

βV OL −0.019 −0.018 −0.004 −0.013 −0.020∗∗ −0.017 −0.024
(−1.11) (−1.20) (−0.34) (−1.21) (−2.27) (−1.47) (−1.47)

βV OLDS −0.034∗∗ −0.026∗∗ −0.018∗∗∗ −0.022∗∗ −0.024∗∗∗ −0.020∗∗∗ −0.023∗∗

(−2.13) (−2.18) (−2.73) (−2.56) (−3.06) (−2.92) (−2.41)

βUNC −0.136
(−0.65)

βMKTS 0.436 0.302 0.223 0.251 −0.140
(0.78) (0.56) (0.47) (0.51) (−0.26)

βSMB −0.123 −0.121 −0.214 −0.186
(−0.58) (−0.52) (−1.13) (−0.92)

βHML −0.094 −0.138 −0.172 −0.168
(−0.33) (−0.48) (−0.61) (−0.58)

βDEF 0.157 0.104 0.112 0.099
(0.84) (0.59) (0.67) (0.58)

βTERM 0.377 0.487 0.501 0.619∗∗

(1.24) (1.64) (1.59) (2.13)

βLIQBPS −0.008 0.093
(−0.01) (0.16)

βLIQBAM 0.792∗ 0.842∗

(1.72) (1.93)

βV IX 17.685 2.812
(0.40) (0.05)

βCPTL 0.109
(0.16)

Constant 0.108 0.123 0.119 0.102 0.131 0.108 0.133
(1.14) (1.31) (1.27) (1.13) (1.36) (1.16) (1.61)

N 578,841 578,841 578,788 578,788 578,788 578,788 578,841
Adjusted R2 0.148 0.161 0.213 0.212 0.219 0.217 0.176
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Table 7: Bond-level Fama-MacBeth Regressions: Robustness Tests

This table reports the results of the Fama-MacBeth two-pass regressions of the GDA5 factors. MKT is the bond
market factor, i.e. the outstanding amount-weighted average return of all bonds in the sample minus the 1-month
Treasury rate. V OL is the volatility factor calculated from the VIX index. DS is the downside factor, and MKTDS
(V OLDS) is the market (volatility) downside factor. In column (1), the duration-adjusted return is used as the de-
pendent variable following van Binsbergen, Nozawa, and Schwert 2024 based on Treasury yield data from Gürkaynak,
Brian Sack, and Wright (2007). In column (2), we use the excess return winsorized at the 1% and 99% level over the
whole sample as the dependent variable. In column (3), we do not winsorize factor betas in each cross-section. Factor
betas are estimated using rolling windows with a lag of 36 months and requiring a minimum of 24 observations. All
prices of risk are in percentage points. Time-series averages of cross-sectional adjusted R2 and the number of obser-
vations (N) are reported at the bottom of each column. Table A.1 provides detailed variable definitions. Standard
errors are corrected according to Newey and West (1987) with 4 lags. ***, **, and * indicate statistical significance
at the 1%, 5%, and 10% (two-tailed) test levels, respectively. The sample period spans from July 2002 to December
2021.

(1) (2) (3)
Duration-adjusted return Winsorized return Beta not winsorized

βMKT 0.297∗∗ 0.296∗∗∗ 0.358∗∗

(1.97) (2.78) (2.41)

βDS −12.882∗∗ −9.163∗∗ −14.090∗∗

(−2.16) (−2.42) (−2.25)

βMKTDS 0.232∗∗ 0.162∗∗ 0.273∗∗∗

(2.55) (2.58) (2.94)

βV OL −0.020 −0.032∗∗ −0.022
(−1.25) (−2.33) (−1.52)

βV OLDS −0.033∗∗ −0.036∗∗∗ −0.037∗∗∗

(−2.14) (−2.72) (−2.62)

Constant −0.042 0.201∗∗∗ 0.098
(−0.41) (3.24) (1.04)

N 578,841 578,841 578,841
Adjusted R2 0.127 0.160 0.149
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Table 8: Bond-level Fama-MacBeth Regressions: Controlling for Bond and Issuer Characteristics

This table reports the results of the Fama-MacBeth two-pass regressions of the GDA5 factors controlling for bond characteristics. MKT is the bond market factor,
i.e. the outstanding amount-weighted average return of all bonds in the sample minus the 1-month Treasury rate. V OL is the volatility factor calculated from the
VIX index. DS is the downside factor, and MKTDS (V OLDS) is the market (volatility) downside factor. In column (1), we report the baseline GDA5 model.
In columns (2)-(15), we successively control one by one for bond size, maturity, rating, coupon, VaR5, bond age, BPW illiquidity, DFL illiquidity, lagged bond
return, number of institutional investors, percentage of institutional equity ownership, number of analysts, earnings forecast dispersion, and contemporaneous
stock excess return. In column (16), we control for all of the bond and issuer characteristics together. Factor betas are estimated in rolling windows using a lag
of 36 months and requiring a minimum of 24 observations. All prices of risk are in percentage points. Time-series averages of cross-sectional adjusted R2 and the
number of observations (N) are reported at the bottom of each column. Table A.1 provides detailed variable definitions. Standard errors are corrected according
to Newey and West (1987) with 4 lags. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% (two-tailed) test levels, respectively. The sample
period spans from July 2002 to December 2021.

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16)

βMKT 0.352∗∗ 0.343∗∗∗ 0.303∗∗ 0.285∗∗ 0.349∗∗ 0.165 0.351∗∗ 0.324∗∗ 0.300∗∗ 0.386∗∗∗ 0.237∗∗ 0.246∗∗ 0.253∗∗ 0.261∗∗ 0.236∗∗ 0.093
(2.50) (2.64) (2.05) (2.42) (2.50) (1.34) (2.50) (2.52) (2.56) (2.62) (2.01) (1.99) (1.99) (2.06) (2.27) (0.89)

βDS −13.190∗∗ −12.672∗∗ −13.010∗∗ −12.444∗∗ −13.381∗∗ −7.680∗ −13.055∗∗ −12.500∗∗ −11.907∗∗ −13.894∗∗ −5.642 −5.508 −6.515 −6.055 −6.099 −3.056
(−2.29) (−2.32) (−2.17) (−2.41) (−2.35) (−1.68) (−2.27) (−2.28) (−2.40) (−2.52) (−1.14) (−1.13) (−1.30) (−1.21) (−1.41) (−0.99)

βMKTDS 0.253∗∗∗ 0.249∗∗∗ 0.240∗∗∗ 0.220∗∗∗ 0.250∗∗∗ 0.164∗∗ 0.251∗∗∗ 0.229∗∗∗ 0.223∗∗∗ 0.261∗∗∗ 0.156∗∗ 0.156∗∗ 0.164∗∗ 0.159∗∗ 0.160∗∗ 0.102∗

(2.96) (3.14) (2.67) (2.94) (2.93) (2.10) (2.94) (3.06) (3.04) (3.16) (2.32) (2.19) (2.12) (2.11) (2.58) (1.73)

βV OL −0.019 −0.018 −0.021 −0.018 −0.019 −0.009 −0.019 −0.014 −0.018 −0.022 −0.016 −0.015 −0.014 −0.018 −0.017 −0.033∗

(−1.11) (−1.07) (−1.27) (−1.41) (−1.24) (−0.86) (−1.12) (−0.74) (−1.08) (−1.23) (−1.01) (−0.83) (−0.82) (−1.13) (−1.16) (−1.78)

βV OLDS −0.034∗∗ −0.033∗∗ −0.035∗∗ −0.030∗∗ −0.034∗∗ −0.024∗∗ −0.034∗∗ −0.031∗ −0.032∗∗ −0.040∗∗ −0.030∗ −0.031∗ −0.030∗ −0.032∗ −0.030∗∗ −0.043∗∗

(−2.13) (−2.10) (−2.23) (−2.18) (−2.19) (−2.22) (−2.13) (−1.79) (−2.08) (−2.37) (−1.82) (−1.74) (−1.81) (−1.96) (−1.99) (−2.16)

ln(Bond size) −0.065 0.042∗

(−1.31) (1.77)

Maturity 0.004 0.006
(0.56) (0.90)

Rating 0.031 0.019
(1.16) (1.06)

Coupon 0.029 −0.005
(0.87) (−0.46)

VaR5 5.009 5.157∗

(1.31) (1.96)

Bond age 0.007 0.001
(1.51) (0.33)

BPW illiq 0.031 0.028
(0.76) (1.25)

DFL illiq 0.044 0.017
(1.61) (1.17)

Lagged return −8.033∗∗∗ −20.476∗∗∗

(−3.77) (−9.64)

# Inst. −0.000 0.000
(−0.71) (1.29)

% IO −0.261∗ −0.026
(−1.75) (−0.21)

# Analysts −0.007 −0.006∗∗∗

(−1.61) (−2.71)

Forecast Disp. −0.150∗ −0.096∗

(−1.67) (−1.97)

Stock excess return 6.732∗∗∗ 5.471∗∗∗

(10.78) (10.10)

Constant 0.108 0.505 0.115 −0.117 −0.083 0.013 0.070 0.090 0.115 0.127 0.220∗∗ 0.366∗∗∗ 0.257∗∗∗ 0.185∗∗∗ 0.218∗∗∗ −0.178
(1.14) (1.59) (1.33) (−0.63) (−0.54) (0.15) (0.78) (1.01) (1.10) (1.35) (2.20) (2.93) (2.98) (3.47) (3.49) (−0.95)

N 578,841 578,841 578,841 575,143 578,841 578,841 578,841 516,687 568,049 548,833 441,787 420,893 473,324 460,387 489,930 343,857
Adjusted R2 0.148 0.157 0.169 0.169 0.153 0.181 0.150 0.167 0.160 0.183 0.160 0.161 0.161 0.175 0.192 0.361
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Table 9: Portfolio-level Fama-MacBeth Regressions

This table reports the results of the Fama-MacBeth two-pass regressions of bond portfolio excess returns on the GDA5 factors. MKT is the bond market
factor, i.e. the outstanding amount-weighted average return of all bonds in the sample minus the 1-month Treasury rate. V OL is the volatility factor calculated
from the VIX index. DS is the downside factor, and MKTDS (V OLDS) is the market (volatility) downside factor. In column (1), we use 5×5 portfolios
sorted independently on bond size and maturity. In column (2), we use portfolios aggregated at the Fama-French 30 industry level. In column (3), we use 5×5
portfolios sorted independently on bond size and rating. In column (4), we use 25 portfolios sorted on credit spread. In column (5), we use 5×5 portfolios sorted
independently on bond rating and maturity. In column (6), we use 3×3×3 portfolios sorted independently on size, rating, and maturity. In column (7), we use
the 32 portfolios constructed by Dickerson, Mueller, and Robotti (2023). In column (8), we use the 35 portfolios constructed by Elkamhi, Jo, and Nozawa (2024)
where we exclude the 5 portfolios sorted on downside risk. Factor betas are estimated using lagged rolling windows of 36 months and requiring a minimum of
24 observations. All prices of risk are in percentage points. Time-series averages of cross-sectional adjusted R2 and the number of observations (N) are reported
at the bottom of each column. Table A.1 provides detailed variable definitions. Standard errors are corrected according to Newey and West (1987) with 4 lags.
***, **, and * indicate statistical significance at the 1%, 5%, and 10% (two-tailed) test levels, respectively. The sample period spans from July 2002 to December
2021.

(1) (2) (3) (4) (5) (6) (7) (8)

5× 5
Size/Maturity

30
FF Industry

5× 5
Size/Rating

25
Credit Spread

5× 5
Rating/Maturity

3× 3× 3
Size/Rating/Maturity

32 portfolios by
Dickerson, Mueller, and Robotti (2023)

35 portfolios by
Elkamhi, Jo, and Nozawa (2024)

βMKT 0.408∗∗∗ 0.074 0.120 0.184 0.470∗∗∗ 0.361∗∗∗ 0.297∗∗ 0.507∗∗∗

(2.64) (0.40) (0.90) (1.14) (3.08) (2.94) (2.10) (2.75)

βDS −27.380∗∗∗ 2.068 0.442 0.150 −28.815∗∗ −16.961∗ −11.934 −0.673
(−3.40) (0.18) (0.03) (0.01) (−2.03) (−1.83) (−1.48) (−0.07)

βMKTDS 0.281∗∗ 0.069 0.047 0.106 0.275∗ 0.197∗ 0.165 0.057
(2.13) (0.44) (0.31) (0.68) (1.73) (1.80) (1.65) (0.41)

βV OL −0.001 0.005 0.018 0.007 −0.046 −0.004 0.009 −0.019
(−0.04) (0.16) (0.43) (0.15) (−1.09) (−0.10) (0.20) (−0.60)

βV OLDS −0.047∗ −0.006 −0.005 −0.013 −0.082∗∗ −0.037 −0.002 −0.029
(−1.89) (−0.22) (−0.14) (−0.31) (−2.00) (−1.11) (−0.04) (−0.96)

Constant 0.049 0.361∗∗∗ 0.339∗∗∗ 0.267∗∗∗ −0.017 0.099 0.156∗∗∗ −0.003
(0.55) (2.83) (3.43) (2.86) (−0.17) (1.20) (2.81) (−0.03)

N 4,950 5,924 4,950 4,925 4,950 5,346 6,304 6,090
Adjusted R2 0.673 0.412 0.693 0.815 0.819 0.759 0.735 0.796
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Table 10: Model Comparison Tests versus the Bond CAPM

This table reports the results of model comparisons of GDA5, BBW4, STK5, BND5, HKM, DEFTERM, CAPM, HKMSF, MACRO, LIQPS, LIQAM, VOLPS,
VOLAM, and HKMNT models against the bond CAPM using different sets of test portfolios. In column (1), we use 5×5 portfolios sorted independently on bond
size and maturity. In column (2), we use portfolios aggregated at the Fama-French 30 industry level. In column (3), we use 5×5 portfolios sorted independently
on bond size and rating. In column (4), we use 25 portfolios sorted on credit spread. In column (5), we use 5×5 portfolios sorted independently on bond rating
and maturity. In column (6), we use 3×3×3 portfolios sorted independently on size, rating, and maturity. In column (7), we use the 32 portfolios constructed
by Dickerson, Mueller, and Robotti (2023). In column (8), we use the 35 portfolios constructed by Elkamhi, Jo, and Nozawa (2024) where we exclude the 5
portfolios sorted on downside risk. The test statistic is the difference of GLS R2 between each model and the bond CAPM based on cross-sectional regressions.
The p-values in parentheses are calculated following Kan, Robotti, and Shanken (2013) under potential model misspecification. ***, **, and * indicate statistical
significance at the 1%, 5%, and 10% (two-tailed) test levels, respectively. The sample period spans from July 2002 to December 2021.

(1) (2) (3) (4) (5) (6) (7) (8)
25 Size/Maturity 30 FF Industry 25 Size/Rating 25 Credit Spread 25 Rating/Maturity 27 Size/Rating/Maturity 32 Dickerson et al. 35 Elkamhi et al.

GDA5 0.152 0.175* 0.351** 0.051 0.200** 0.086 0.236*** 0.102**
(0.514) (0.062) (0.049) (0.828) (0.011) (0.431) (0.008) (0.016)

BBW4 0.078 0.039 0.081 0.032 0.111 0.033 0.015 0.018
(0.449) (0.768) (0.129) (0.901) (0.176) (0.601) (0.818) (0.626)

STK5 -0.118 0.091 0.321** 0.091 0.200 -0.064 0.218 0.144
(0.559) (0.468) (0.016) (0.665) (0.357) (0.652) (0.186) (0.422)

BND5 0.116 0.025 0.050 0.207 0.155** 0.002 0.093 0.072
(0.782) (0.957) (0.736) (0.443) (0.026) (0.998) (0.315) (0.386)

HKM -0.154 0.008 0.051 -0.161 -0.190 -0.141 -0.007 -0.044
(0.311) (0.919) (0.571) (0.244) (0.122) (0.200) (0.918) (0.451)

DEFTERM -0.018 -0.035 0.033 -0.086 -0.129 -0.039 -0.082 -0.067
(0.842) (0.589) (0.640) (0.463) (0.250) (0.563) (0.130) (0.241)

CAPM -0.156 0.007 0.036 -0.173 -0.194 -0.147 -0.007 -0.060
(0.298) (0.933) (0.617) (0.228) (0.114) (0.161) (0.910) (0.304)

HKMSF -0.164 -0.006 0.051 -0.206 -0.190 -0.141 -0.026 -0.085
(0.320) (0.937) (0.571) (0.186) (0.122) (0.202) (0.719) (0.237)

MACRO 0.019 0.011 0.000 0.045 0.003 0.052 0.032 0.022
(0.671) (0.640) (0.944) (0.466) (0.844) (0.239) (0.260) (0.301)

LIQPS 0.152 0.078 0.089 0.268 0.109 0.057 0.213 0.117
(0.527) (0.630) (0.422) (0.281) (0.535) (0.641) (0.225) (0.374)

LIQAM 0.114 0.150 0.170 0.162 0.109 0.041 0.272 0.128
(0.574) (0.491) (0.200) (0.501) (0.537) (0.692) (0.170) (0.353)

VOLPS 0.176 0.121 0.096 0.274 0.111 0.156 0.216 0.117
(0.487) (0.561) (0.443) (0.256) (0.542) (0.299) (0.239) (0.377)

VOLAM 0.116 0.203 0.198 0.186 0.110 0.092 0.282 0.128
(0.568) (0.417) (0.214) (0.483) (0.543) (0.407) (0.172) (0.342)

HKMNT -0.154 0.008 0.037 -0.155 -0.189 -0.143 -0.002 0.003
(0.299) (0.924) (0.613) (0.327) (0.130) (0.188) (0.975) (0.972)
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Figure 1: Number of Bonds, Number of Firms and Total Amount Outstanding
This figure plots the number of bonds (blue solid line), number of firms (red dashed line), and the total amount
outstanding in $trillion (green dotted line). The sample period is from 2002-2021. Specifically, we first calculate the
number of bonds, number of firms, and the total outstanding amount for each month. From the monthly statistics,
we then compute yearly averages that are reported in the graph. Source: Trade Reporting and Compliance Engine
(TRACE) Enhance data and Mergent Fixed Income Securities Database (FISD).
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Figure 2: Time-Series Distribution of Estimated GDA5 Factor Betas
This figure plots the distribution of the GDA5 factor betas estimated using rolling windows of 36 months. MKT
is the bond market factor, i.e. the outstanding amount-weighted average return of all bonds in the sample minus
the 1-month Treasury rate. V OL is the volatility factor calculated from the VIX index. DS is the downside factor,
and MKTDS (V OLDS) is the market (volatility) downside factor. We plot the cross-sectional mean (solid black
line), cross-sectional 25th percentile (blue dotted line), cross-sectional 50th percentile (yellow dashed line), and the
cross-sectional 75th percentile (green dash-dotted line) for all five factor betas. The sample period spans from July
2005 to December 2021.
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Figure 3: Realized vs. Predicted Excess Returns at the Individual Bond Level
This figure plots the realized mean excess returns against the predicted expected excess returns (E[λ>F βiF ]) from the
GDA5 factor model estimated using excess returns measured at the individual bond level and where the prices of risk
(λF ) are estimated from Fama-MacBeth regression without a constant. Each grey dot represents the realized and
predicted mean excess return of a bond. For the ease of visualization, we only show the graph for monthly excess
returns between −0.50% and 1.5%. We also cut the x-axis (predicted return) into 20 bins with equal numbers of
observations and estimate the average realized return in each bin (blue dots), as well as their bootstrapped standard
errors (blue error bars) for each bin. The red dashed line indicates the 45◦ line.
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Figure 4: Realized vs. Predicted Returns at the Portfolio Level with Unconditional Betas
This figure plots the realized mean excess returns versus the predicted expected excess returns (E[λ>F βiF ]) from the GDA5 factor model for different sets of test
portfolios where the betas are estimated unconditionally over the whole sample period and the prices of risk (λF ) are estimated from Fama-MacBeth regression
without a constant. The red dashed lines indicate the 45◦ line.
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Figure 5: Realized vs. Predicted Returns at the Portfolio Level with Rolling-Window Betas
This figure plots the realized mean excess returns versus the predicted expected excess returns (E[λ>F βiF ]) from the GDA5 factor model for different sets of
portfolios where the betas are estimated using 36-month rolling windows and the prices of risk (λF ) are estimated from Fama-MacBeth regression without a
constant. The red dashed lines indicate the 45◦ line.
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Appendix

Downside Risk and the Cross-section of Corporate Bond Returns

In the appendix, we provide details on the construction of the corporate bond data (Appendix A), examine
alternative methods to construct the GDA5 factors (Appendix B), and discuss additional robustness tests
(Appendix C).

A Constructing Monthly Corporate Bond Returns

We follow Dickerson, Mueller, and Robotti (2023) to construct the cross-section corporate bond returns.
We deviate in some instances that we explicitly motivate and further clean the bond transactions data to
identify and remove potential erroneous data. All of the text in code font refers to SAS code. All results
are generated using SAS software version 9.4 TS Level 1M5 and Python 3.10.131.

A.1 Filters for the corporate bond transactions data (enhanced TRACE)

We start with the Enhanced TRACE database and use the filters of Dickerson, Mueller, and Robotti (2023)
with two major differences: (1) we account for the change in TRACE data fields before and after February
6, 2012;2 (2) we use a different filter for days to settlement.

More specifically, we first remove canceled transactions and adjust corrected and reversed transactions fol-
lowing Dick-Nielsen (2009) and Dick-Nielsen (2014).3 Then, for common data fields in both pre-2/6/12 and
post-2/6/12 files, we apply the following filters:

1. Remove when-issued trades using wis fl^="Y";

2. Keep trades with par volume greater than or equal to $10,000 using entrd vol qt>=10000;

3. Keep trades with reported price between 5 and 1,000 (quoted as percentage points of face value) using
5<rptd pr<1000;

4. Remove trades with special trade conditions using spcl trd fl^="Y".4

Then, we further apply the following filters using different data fields in the two files:

5. Remove equity-linked notes: Pre-2/6/12 file, we require scrty type cd^="E"; post-2/6/12 file, we
require sub prdct^="ELN".

1We mainly use the following Python packages: NumPy 1.23.5, Pandas 1.5.2, and QuantLib 1.29.
2On February 6, 2012, TRACE migrated to a new technological platform. This slightly changed the lists of data

fields between the pre-2/6/12 file and the post-2/6/12 file, but WRDS directly concatenates the two files including all
data fields. Some data fields are available in both files, while some are only available in one file with missing values
in the other.

3We use the SAS code available from WRDS: https://wrds-www.wharton.upenn.edu/pages/support/

manuals-and-overviews/wrds-bond-return/cleaning-trace-data/wrds-clean-trace-enhanced-file.
4This filter is not used by Dickerson, Mueller, and Robotti (2023), but we think this filter is necessary based on the

data manual, which states that “this field indicates the existence of a special trade condition (as defined in FINRA
Rule 6730(d)(4)(A)) that impacted the execution price”, where FINRA Rule 6730(d)(4)(A) states “if a transaction
is not executed at a price that reflects the current market price, select the modifier, ‘special price’ ”.

https://wrds-www.wharton.upenn.edu/pages/support/manuals-and-overviews/wrds-bond-return/cleaning-trace-data/wrds-clean-trace-enhanced-file
https://wrds-www.wharton.upenn.edu/pages/support/manuals-and-overviews/wrds-bond-return/cleaning-trace-data/wrds-clean-trace-enhanced-file


6. Remove locked-in trades: Pre-2/6/12 file, there is no relevant data field; post-2/6/12 file, we require
lckd in ind^="Y".

7. Require regular trade with less than 3 days to settlement: pre-
2/6/12 file, keep regular trades by requiring sale cndtn cd="@" and
missing(sale cndtn2 cd). There is no extra information about days to settlement in this
file; post-2/6/12 file: keep regular trades by requiring trd mod 3 not in ("T","Z","U") and
trd mod 4^="W".5 Then, we use CRSP business days from crsp.dsiy to calculate days to settlement
from trd exctn dt and stlmnt dt. If trd exctn dt falls on a non-CRSP business day, we assume
that the transaction happens on the next CRSP business day following SEC rules. Then, we only
keep observations that, based on these calculcations, have days to settlement less than or equal to 3
business days.

The last filter on days to settlement needs further explanation. Bai, Bali, and Wen (2019) remove transactions
with a more than two-day settlement. Dickerson, Mueller, and Robotti (2023) follow the same approach
and show that they filter based on days to sttl ct. However, this choice may introduce a bias since the
SEC adopts T+2 in 2017. Before 2017, transactions used to be settled T+3.6 Brokers were required to
comply with the new rule starting from September 5, 2017.7 In addition, the data field days to sttl ct,
which only exists in the pre-2/6/12 file, only represents days to settlement when sale cndtn cd="R" (Sellers
Option Settlement); for other cases, the data field is equal to "000" which does not necessarily mean T+0
settlement.8 In the post-2/6/12, however, there is a new data field stlmnt dt representing the actual
settlement date, from which we can calculate the actual days to settlement and apply the filter accordingly.
As a result, due to the absence of information on the exact number of days to settlement in the pre-2/6/12
file and the transition from T+3 to T+2 in 2017 during our sample period, we require transactions to be
settled in no more than 3 business days only in the post-2/6/12 file.

A.2 Filters for corporate bond characteristics (Mergent FISD)

We retrieve the bond issue sample from Mergent FISD and largely follow the filters from Dickerson, Mueller,
and Robotti (2023). We explicitly motivate any deviation. Specifically, we apply the following filters:

1. Keep bonds with issuers in the U.S. using COUNTRY DOMICILE="USA";

2. Keep bonds traded in US dollar using FOREIGN CURRENCY="N";

3. Remove convertible bonds using CONVERTIBLE="N";

4. Remove asset backed bonds using ASSET BACKED="N";

5. Remove bonds traded under Rule 144A using RULE 144A="N";

6. Remove bonds issued via private placements using PRIVATE PLACEMENT="N";

5These filters parallel those based on sale cndtn cd and sale cndtn2 cd, but the latter two are not available in
the post-2/6/12 file. Specifically, by requiring regular trades in the pre-2/6/12, we effectively removes trades that
are reported late, with weighted average price, cash sale, next-day settlement, or sellers option settlement. Due to
the lack of information on the others in the post-2/6/12 file, we only impose filter based on the first two conditions
using trd mod 3 and trd mod 4.

6See https://www.sec.gov/about/reports-publications/investorpubstplus3htm.
7For the press release from SEC, see https://www.sec.gov/news/press-release/2017-68-0. In addition, we use

the new data field stlmnt dt available in the post-2/6/12 file to verify this. We find that before September 5, 2017,
over 90% of daily transactions are settled T+3 while after that over 90% of daily transactions are settled T+2.

8Dickerson, Mueller, and Robotti (2023) require days to sttl ct to be one of ‘001’, ‘002’, ‘000’, or ‘None’. This
only removes transactions with above two-day settlement for transactions with sellers’ option settlement before
February 6, 2012.
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7. Use BOND TYPE to remove bonds such as equity-linked, agency-backed, U.S. Government, or mortgage-
backed bonds. Specifically, we only keep bonds with BOND TYPE equal to one of the following values:
"CMTZ" (US Corporate MTN Zero), "CDEB" (U.S. Corporate Debentures), "RNT" (Retail Note), "CMTN"
(U.S. Corporate MTN), "USBN" (U.S. Corporate Bank Note), "PS" (Preferred Security), "UCID" (U.S.
Corporate Insured Debenture), "TPCS" (Trust Preferred Capital Security), "CPIK" (U.S. Corporate
PIK Bond), or "CZ" (U.S. Corporate Zero), where definitions of each value are available from the
Mergent FISD database manual;9

8. Remove bonds with missing values for DATED DATE, INTEREST FREQUENCY, DAY COUNT BASIS,
OFFERING DATE, or MATURITY;

9. Keep zero-coupon bonds or fixed-rate bonds. Sometimes, there is an inconsistency among dif-
ferent data fields. For example, some fixed-rate bonds identified by COUPON TYPE="F" have
zero coupon rate and some zero-coupon bonds identified by COUPON TYPE="Z" have semi-annual
interest frequency (INTEREST FREQUENCY="2"). As a result, we adopt a conservative ap-
proach and only keep bonds satisfying either of the two following conditions: (1) Zero-coupon
bonds: identified by COUPON TYPE="Z" and INTEREST FREQUENCY="0"; (2) Fixed-rate bonds:
identified by COUPON TYPE="F", coupon>0, not missing(coupon), and INTEREST FREQUENCY in

("1","2","4","12","99"). Values of INTEREST FREQUENCY indicate the following payment frequen-
cies: "1" for annually, "2" for semi-annually, "4" for quarterly, "12" for monthly, and "99" for payment
at maturity. This is a slightly stricter filter than Dickerson, Mueller, and Robotti (2023);

10. We further remove equity-linked notes by removing bonds if ISSUE NAME contains "LINK". We
manually check these bonds and find that all of them are linked notes such as index-linked, equity-
linked, currency-linked, and swap rate-linked notes. This filter is not used by Dickerson, Mueller, and
Robotti (2023).

We start with the Mergent FISD bond issue sample of 561,184 bonds. After applying the above filters, we
end up with 75,601 bonds. 50,533 of them are in the filtered TRACE data.

A.3 Constructing the daily bond price series

Dickerson, Mueller, and Robotti (2023) construct the daily bond price series by directly calculating the
volume-weighted average price among all transactions for each bond on each day. We follow that approach
and further clean the price series to identify and remove potential erroneous data using the following steps:

1. We start from the filtered enhanced TRACE transaction data with valid bond information in the
filtered Mergent FISD data set (obs: 110,720,031);

2. Then, we aggregate transaction-level data at the bond-timestamp level by calculating the volume-
weighted average price (obs: 88,194,095) and the total volume. The timestamp is identified by
trd exctn dt and trd exctn tm;

3. At the same time, we calculate the standard deviation of all prices of the same bond traded at the
same timestamp. Then, we obtain the ratio of the standard deviation to the weighted average price.
We require that the ratio be no more than 10% since we do not expect that transactions happening at
the same time for the same bond should have such large deviation in their prices. This filter slightly
reduces the sample size from 88,194,095 to 88,193,294 observations;

4. Then, we apply the Rossi (2014) filter on the timestamp-level bond prices which effectively removes
observations with large price reversal or large price deviation among adjacent transactions (within 30
days). This reduces the sample size from 88,193,294 to 87,598,556 observations;

9This requirement is identical to Dickerson, Mueller, and Robotti (2023), though instead of keeping these bonds,
they remove bonds with BOND TYPE having other values than the above ones.

43



5. Finally, for each bond and each day, we calculate the daily price as the volume-weighted average price
for all timestamps with available price and volume data (obs: 19,397,104).

Then, we use the QuantLib 1.29 library, which takes into account information such as the day count basis
and the interest frequency to calculate the accrued interest and full price for each bond on each day.

A.4 Constructing the monthly bond return series

We closely follow Dickerson, Mueller, and Robotti (2023) in the construction of monthly bond returns. For
each bond and each month t, we first check if there are observations in the last 5 trading days of the month.
If there is a unique one, we choose its price Pt as the bond price at the end of month t; if there are multiple
observations, we choose the one that is closest to the last day of the month; if there is no observation, the
bond return in month t is set as missing. Trading days are identified from CRSP (crsp.dsiy).

Second, we follow the same method to determine the bond price at the end of month t−1, i.e. Pt−1. If there
is no observation in the last 5 trading days of month t − 1, we check if there are observations in the first 5
trading days of month t. If there is a unique observation, its price is chosen to be Pt−1; if there are multiple
observations, the one closest to the first day of month t is chosen; otherwise, the bond return in month t is
set as missing. Finally, if both Pt and Pt−1 are available, the bond return in month t is defined as:

Rt =
(Pt +AIt) + Ct − (Pt−1 +AIt−1)

Pt−1 +AIt−1
, (A.1)

where AIt is the accrued interest from the last coupon payment day, i.e. Pt +AIt is the full (or dirty) price
of the bond, and Ct is the coupon payment in month t. As in Dickerson, Mueller, and Robotti (2023), we
do not winsorize bond returns.

Finally, we remove return observations if the bond has less than 1 year to maturity as in Dickerson, Mueller,
and Robotti (2023) and van Binsbergen, Nozawa, and Schwert (2024).

B Alternative Methods to Construct the GDA5 Factors

We check the robustness of the GDA5 model in explaining the cross-sectional variation in corporate bond
returns to different methods of constructing the GDA5 factors.

B.1 Volatility factor estimated from conditional EGARCH variance

For our baseline results, we use the Cboe VIX volatility index to construct the volatility factor. As a
robustness check, we estimate as an alternative volatility factor the following EGARCH model using daily
market factors over the whole sample period:

rW,t = µ+ σW,tεt, εt ∼ i.i.d. N (0,1), (A.2)

ln(σ2
W,t) = w + αεt−1 + γ(|εt−1| −

√
2/π) + δ ln(σ2

W,t−1), (A.3)

where rW,t is the MKT factor. We obtain the fitted daily variance and take the sum as the monthly variance.
Then, we use its monthly change as the proxy for our volatility factor. Column (2) of Table A.3 reports
the results of the Fama-MacBeth regression of the GDA5 factor model when V OL is constructed from the
full-sample EGARCH model, whereas column (1) repeats our baseline results. The MKT and V OLDS
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factors are significant at a 5% significance level, while MKTDS and V OL factors are significant at a 10%
significance level. Due to the relatively low volatility of the bond market return, the prices of risk for V OL
and V OLDS are smaller than those in our baseline results where V OL is constructed from the VIX index.
In addition, the intercept remains statistically insignificant.

B.2 Volatility factor constructed from macroeconomic uncertainty

Bali, Subrahmanyam, and Wen (2021b) show that economic uncertainty, proxied by the Jurado, Ludvigson,
and Ng (2015) macroeconomic uncertainty index is priced in the cross-section of corporate bond returns. As
a robustness check, we, therefore, use the macroeconomic uncertainty index to proxy for the GDA5 volatility
factor. As shown by Bali, Subrahmanyam, and Wen (2021b), the macroeconomic uncertainty index aligns
well with the VIX index, so we consider the index as a measure of volatility and estimate the associated
variance as its squared value. Then, the volatility factor is defined as the monthly change in the estimated
variance.10

Column (3) of Table A.3 reports the Fama-MacBeth regression of the GDA5 model using the V OL factor
estimated from the macroeconomic uncertainty index. Four of the five GDA5 factors are significant at a 5%
or higher significance level. In particular, DS becomes insignificant while V OL becomes significant. Since
the macroeconomic uncertainty index is constructed from a large panel of economic and financial data, the
additional information incorporated in the index, in excess of the VIX index, is useful in explaining the
cross-section of corporate bond returns which subsumes the explanatory power of the pure downside factor.

B.3 Different values of model parameters

For our baseline results, we choose p = 25% to have a probability of downside states equal to 25%. Table A.4
reports results using different values of p ∈ {10%,15%,20%,25%} to construct the GDA5 downside factors.
The corresponding values of parameter b are also shown at the bottom of the table. In column (1), when the
probability of downside states is too low, we lose many observations since there may not be enough downside
states to estimate GDA5 factor betas accurately for some periods. While we maintain the robustness of our
results, the statistically weaker performance of the GDA5 model is due to a a significant smaller sample size
of 269,560 observations.

In column (2), at p = 15%, MKTDS and V OLDS are significant at a 5% significance level, while DS is
significant at a 10% significance level. All of the downside factors are significant at a 5% significance level
or higher when p = 20% in column (3).

The calibration of the downside states in our baseline results also depends on a = 1 to give equal importance
to the market and volatility factor in determining the downside states. Table A.5 reports results when we
use different values of parameter a ∈ {0.50,0.75,1.00,1.25} to construct the GDA5 factors. For all values
of a, we find that four of five GDA5 factors are significant, with the exception of V OL. These results are
similar to our benchmark results both in statistical significance and in economic magnitude.

C Additional Robustness Checks

We consider alternative window lengths to estimate the factor betas, alternative lag lengths to correct the
standard errors, and different ways to compare the GDA5 factor model to models that that also include a
market factor.

10Bali, Subrahmanyam, and Wen (2021b) uses the monthly change of the uncertainty index since the index itself
is serially correlated. To align more closely with the theoretical framework of Farago and Tédongap (2018), we use
the monthly change of variance.
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C.1 Alternative window lengths to estimate factor betas

For our baseline results, we align with the literature and estimate the factor betas using rolling window
lengths of 36 months (Dickerson, Mueller, and Robotti, 2023). To show that the performance of the GDA5
model is robust to different window lengths, we consider alternative rolling window lengths of 48, 60, and
72 months, respectively. Using each of these rolling windows, we estimate our factor betas using Eq. (8).
Table A.6 reports these results. As the size of the rolling window increases, we lose observations at the
beginning of the sample period but obtain more observations for the later periods since more betas can be
estimated. Thus, the number of observations changes with different lengths of the rolling window. Our main
results are robust to the length of the rolling window. Across all different specifications, four of five GDA5
factors are significant at a 5% or higher significance level, with the exception of DS which is significant at a
10% significance level when we use a 72-month rolling window. The average adjusted R2s are similar across
specifications. These results are qualitatively and quantitatively similar to our benchmark results.

C.2 Alternative lags for the Newey-West standard error correction

We estimate standard errors following Newey and West (1987) to correct for serial correlation in the error
terms. The Newey-West estimator requires a choice on the number of lags. In our main specification, we
use 4 lags for the estimation based on the rule of thumb formula L ≈ T 1/4 (see, e.g., page 521 of Greene
(2018)). To show that our results do not rely on this choice, we repeat our baseline estimation with 2, 3, 5,
and 6 lags for the Newey-West estimator. Table A.7 reports these results and we find that our main results
are robust to different number of lags.

C.3 Controlling for bond market betas from BBW4 and BND5

Both the BBW4 and BND5 models contain the same bond market factor MKT as the GDA5 model. In
our main specification of the Fama-MacBeth regression, we include all of the GDA5 factor betas, as well as
all of BBW4’s (BND5’s) factor betas, except their bond market betas. We conduct additional tests to show
that the pricing power of the GDA5 model is robust to including the BBW4 or BND5 market factor betas,
respectively.

We report in column (1) of Table A.8 the baseline estimation from column (2) of Table 5. In column (2), we
include all of the four factor betas of the BBW4 model, as well as all GDA5 factor betas, except the GDA5
MKT beta. BBW4’s MKTB factor beta is significant at a 1% significance level. In addition, both DRF
and LRF are significant at a 5% significance level. Nonetheless, all of the remaining four GDA5 factor betas
remain significant.

In column (3), we further include all of the GDA5 factor betas (including MKT ) and all of the BBW4 factor
betas. All of the GDA5 factors remain significant at a 5% or higher significance level, while all of the BBW4
factors are statistically insignificant. Note that the time-series average of the cross-sectional correlation
coefficient between GDA5’s MKT and BBW4’s MKTB beta is 9% (it ranges from -50% to 70%), so there
is no severe multicollinearity issue.

In columns (4) and (5), we repeat the estimation of columns (1) and (2), with BBW4 betas estimated following
the methodology in Bai, Bali, and Wen (2019), that is, theMKTB beta is estimated in a univariate regression
while the other four factor betas are estimated by controlling only for MKTB. In both specifications, all of
the GDA5 factors remain statistically significant.

In columns (6)-(8), we repeat the estimation of columns (1)-(3) controlling for the BND5 factor betas. Recall
that we have a reduction in the sample size since constructing LIQB in the BND5 model requires a data lag
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of 60 months following Lin, Wang, and Wu (2011). Across these specifications, all of the GDA5 factor betas
are still significant at a 10% or higher significance level. The BND5 factors are insignificant except for the
MKTB factor, which is significant in column (7), and the TERM factor, which is marginally significant in
column (7) as well.
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Table A.1: Variable Definitions

Main Variables Definitions

Panel A: Bond-level variables

Bond excess return Bond monthly return minus 1-month Treasury rate. Bond return is constructed

following Dickerson, Mueller, and Robotti (2023) using bond transaction data

from TRACE and bond information from Mergent FISD. The 1-month Trea-

sury rate is from Kenneth French’s website.11

Duration-adjusted return Bond monthly return minus duration-matched Treasury return following van

Binsbergen, Nozawa, and Schwert (2024). Data on Treasury yield curve is from

Gürkaynak, Brian Sack, and Wright (2007).

Rating The average of S&P’s and Moody’s credit rating for corporate bonds from

Mergent FISD, coded from AAA=1 to D=22 for S&P’s and Aaa=1 to C=21

for Moody’s. If either one is missing, we use the other one instead.

Maturity Number of years until the maturity date from Mergent FISD.

Bond size The amount outstanding of bond in million USD from Mergent FISD.

BPW illiq We first calculate monthly bond illiquidity following Bao, Pan, and Wang

(2011), defined as −Covt(∆pi,t,d,∆pi,t,d+1) where ∆pi,t,d = ln(Pi,t,d/Pi,t,d−1)

is the log return of bond i on day d of month t. The covariance is calculated us-

ing daily bond return in month t, requiring a maximum of 7 days between two

observations to recognize a daily log return and a minimum of 10 observations

for each month for the calculation. Then, to reduce the impact of missing val-

ues, for each bond and each month, we supplement missing values of illiquidity

by the average of monthly illiquidity in the past 12 months.

DFL illiq The λ measure proposed by Dick-Nielsen, Feldhütter, and Lando (2012) which

is the sum of standardized four liquidity measures: the Amihud measure, im-

puted round-trip cost (IRC), Amihud risk, and IRC risk. Then, to reduce the

impact of missing values, for each bond and each month, we supplement miss-

ing values of illiquidity by the average of monthly illiquidity in the past 12

months.

Coupon Coupon rate in percentage points from Mergent FISD.

Bond age Number of years since the bond’s offering date from Mergent FISD.

VaR5 The negation of the 5% VaR for each bond in each month using monthly returns

in the past 36 months, requiring a minimum of 24 months, following Bai, Bali,

and Wen (2019).

Lagged return Bond return in the previous month.

11See https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

48

https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html


Panel B: Firm-level variables

# Inst. Number of institutional owners, from Thomson-Reuters 13F data.12

% IO Percentage of equity shares held by institutional owners, from Thomson-

Reuters 13F data.

# Analysts Number of analysts forecasting the issuer’s earnings per share, based on data

from I/B/E/S.13

Forecast Disp. The standard deviation of most recent quarterly analysts’ forecast of earnings

per share divided by the absolute mean forecast, based on data from I/B/E/S.

Stock excess return Monthly stock return of the issuer from CRSP, less the 1-month Treasury rate.

Panel C: GDA5 factors

MKT Outstanding amount-weighted average return of all bonds in our sample based

on data from TRACE and Mergent FISD, less 1-month Treasury rate from

Kenneth French’s website.

V OL Monthly change in market variance following Farago and Tédongap (2018),

where (monthly) market variance is defined as (V IX/100)2/12. The VIX index

is obtained from Cboe Global Markets.

DS A binary factor defined as:

DSt =

{
MKTt − a

σMKT

σV OL
V OLt < b

}
,

following Farago and Tédongap (2018). σMKT is the standard deviation of

MKT and σV OL is the standard deviation of V OL. We set a = 1 in our main

specification and obtain b such that the probability of downside state (DSt = 1)

is p = 25%. The corresponding b is −0.0046.

MKTDS MKT multiplied by DS.

V OLDS V OL multiplied by DS.

Panel D: Alternative traded factors

MKTS Fama and French (1993) stock market factor from Kenneth French’s website.

SMB Fama and French (1993) SMB factor from Kenneth French’s website.

12We utilize the SAS code from WRDS to compute # Inst. and % IO: https://wrds-www.

wharton.upenn.edu/pages/wrds-research/applications/institutional-ownership-research/

institutional-ownership-concentration-and-breadth-ratios/.
13We use the SAS code from WRDS to calculate # Analysts and Forecast disp.: https://wrds-www.

wharton.upenn.edu/pages/wrds-research/applications/programming-examples-and-other-topics/

guide-measuring-investors-opinion-divergence-divop.

49

https://wrds-www.wharton.upenn.edu/pages/wrds-research/applications/institutional-ownership-research/institutional-ownership-concentration-and-breadth-ratios/
https://wrds-www.wharton.upenn.edu/pages/wrds-research/applications/institutional-ownership-research/institutional-ownership-concentration-and-breadth-ratios/
https://wrds-www.wharton.upenn.edu/pages/wrds-research/applications/institutional-ownership-research/institutional-ownership-concentration-and-breadth-ratios/
https://wrds-www.wharton.upenn.edu/pages/wrds-research/applications/programming-examples-and-other-topics/guide-measuring-investors-opinion-divergence-divop
https://wrds-www.wharton.upenn.edu/pages/wrds-research/applications/programming-examples-and-other-topics/guide-measuring-investors-opinion-divergence-divop
https://wrds-www.wharton.upenn.edu/pages/wrds-research/applications/programming-examples-and-other-topics/guide-measuring-investors-opinion-divergence-divop


HML Fama and French (1993) HML factor from Kenneth French’s website.

UMD Carhart (1997) momentum factor from Kenneth French’s website.

LIQS Pástor and Stambaugh (2003) stock liquidity factor from Lubos Pastor’s web-

site.14

MKTB Outstanding amount-weighted average return of all bonds in our sample based

on data from TRACE and Mergent FISD, less 1-month Treasury rate from

Kenneth French’s website. Same as MKT in the GDA5 factor model.

DRF Constructed following Bai, Bali, and Wen (2019): For each bond and in each

month, we calculate the 5% VaR as defined above and retrieve credit ratings

from Mergent FISD. Then, we form 5×5 portfolios by independently sorting

bonds on their 5% VaR and credit ratings, respectively. For each of the 25

portfolios, we calculate its monthly outstanding amount-weighted average re-

turn among all bonds in the portfolio. Then, we calculate the average return of

the top 5% VaR quintile portfolios across all credit rating quintiles and repeat

the calculation for the bottom 5% VaR quintile portfolios. Their difference is

defined as the DRF factor.

LRF Constructed following Bai, Bali, and Wen (2019): For each bond and in each

month, we calculate BPW illiquidity as defined above. To stick to Bai, Bali,

and Wen (2019), we do not supplement missing values with the past 12-month

average. Then, we form 5×5 portfolios by independently sorting bonds on

their illiquidity and credit ratings, respectively. For each of the 25 portfolios,

we calculate its monthly outstanding amount-weighted average return among

all bonds in the portfolio. Then, we calculate the average return of the top

illiquidity quintile portfolios across all credit rating quintiles and repeat the

calculation for the bottom illiquidity quintile portfolios. Their difference is

defined as the LRF factor.

CRF Constructed following Bai, Bali, and Wen (2019): For the 5×5 5%VaR and

ratings portfolios, we calculate the average return of the low rating (high credit

risk) quintile portfolios across all 5% VaR quintiles and repeat the calculation

for the high rating quintile portfolios. Their difference is defined as CRFV aR.

Then, the procedure is repeated for illiquidity and lagged return to obtain

CRFIlliq and CRFREV , respectively. Then, their average is defined as the

CRF factor.

DEF The difference between long-term corporate bond return and long-term gov-

ernment bond return, downloaded from Amit Goyal’s website.15

TERM The difference between long-term government bond return and 1-month Trea-

sury rate, downloaded from Amit Goyal’s website.

14https://faculty.chicagobooth.edu/lubos-pastor/data
15https://sites.google.com/view/agoyal145
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MOMB Bond momentum factor constructed following Jostova, Nikolova, Philipov, and

Stahel (2013): For each bond in month t, we calculate its cumulative return

from month t − 7 to month t − 2 and then assign bonds into 5×5 portfolios

by independently sorting based on credit rating and cumulative return. Then,

we calculate the equal-weighted return of each portfolio. Finally, we calculate

the average return of all winner quintile portfolios and that of all loser quintile

portfolios. Their difference is defined as the MOMB factor.

LIQB This is the traded Pastor-Stambaugh bond liquidity factor constructed follow-

ing Bai, Bali, and Wen (2019) and Lin, Wang, and Wu (2011): First, LIQBPS

is calculated as described in this table. Then, for each bond and each month,

we estimate liquidity beta using data in the past 60 months (requiring at least

15 observations) by regressing bond monthly excess return on MKTS, SMB,

HML, DEF , TERM , and LIQBPS and the estimated coefficient of LIQBPS

is the liquidity beta. Then, bonds are allocated into 10 decile portfolios by sort-

ing on their liquidity beta and the average return difference between the top

decile and bottom decile is defined as LIQB.

CPTLT The value-weighted equity return for the New York Fed’s primary dealer sector,

downloaded from Zhiguo He’s website.16

Panel E: Alternative non-traded factors

∆UNC The first difference of 1-month-ahead economic uncertainty index downloaded

from Sydney Ludvigson’s website.17

LIQBPS The Pastor-Stambaugh bond liquidity factor constructed following Lin, Wang,

and Wu (2011): For each bond in each month, we estimate the following time-

series regression to obtain π:

ret+1 = a0 + a1rt + π · sign(ret )V olt + εt+1,

using daily bond data in the month. We require at least 10 observations for the

estimation. ret+1 is the bond daily return in excess of bond market return on day

t+ 1 and rt is the daily bond return on day t. sign(ret ) is an indicator function

that is equal to 1 if ret is positive and −1 otherwise. V olt is the dollar volume,

i.e. volume in million $ multiplied by bond full price quoted for $1 face value.

Then, we calculate πt as the average of estimated π across all bonds in month

t and define ∆πt = (Mt/M1)(πt−πt−1) where Mt is the market capitalization,

i.e. the sum of outstanding amount in million $ multiplied by its full price

quoted for $1 face value across all bonds in month t. Finally, we estimate the

following time-series regression using monthly data over the sample period:

∆πt = b0 + b1∆πt−1 + a2(Mt−1/Mt)πt−1 + εt,

and the Pastor-Stambaugh bond liquidity factor (LIQBPS) is defined as Lt =

100ε̂t.

16https://voices.uchicago.edu/zhiguohe/data-and-empirical-patterns/intermediary-capital-ratio-and-risk-factor/
17See https://www.sydneyludvigson.com/macro-and-financial-uncertainty-indexes.
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LIQBAM The Amihud bond liquidity factor constructed following Lin, Wang, and Wu

(2011): For each bond in each month, we calculate the Amihud illiquidity

measure as:

ILLIQit =
1

N

N∑
i=1

|ri,j,t|
V oli,j,t

,

where ri,j,t (V oli,j,t) is the return (trading volume in million $) of bond i

on day j in month t and N is the number of days with available return and

trading volume. Then, the market-wide ILLIQMt is defined as the cross-

sectional average of ILLIQit over all bonds in month t, after winsorizing

ILLIQit in each cross section using the 1st and 99th percentiles. Then, let

ILLIQMt = (Mt/M1)(ILLIQMt − ILLIQM,t−1) where Mt is the same as

that in the definition of LIQBPS. Then, the following time series regression

is estimated as:

∆ILLIQMt = φ0+φ1∆ILLIQM,t−1+φ2(Mt−1/M1)ILLIQM,t−1+εt+θ1εt−1+θ2εt−2,

where we exclude the dummy variables d1 and d2 in Lin, Wang, and Wu (2011)

since we use TRACE Enhanced data, following Chung, Wang, and Wu (2019).

Finally, the Amihud bond liquidity factor is defined as LIQBAM = −ε̂t.

∆V IX The first difference of end-of-month VIX index from Cboe Global Markets.

CPTL The non-traded intermediary capital risk factor from He, Kelly, and Manela

(2017), downloaded from Zhiguo He’s website.
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Table A.2: Principal Component Analysis of Bonds and Stocks

This table reports the explanatory power of each of the first ten principal components (PC) for a sample of bond and
stock returns, respectively, as well as the cumulative explanatory power of these principal components. We first keep
bonds in our sample with valid monthly returns in over 60% of the sample period. This leaves 557 bonds in the sample.
Then, we perform probabilistic principal component analysis. For the stock returns, we retrieve monthly individual
stock returns from CRSP and also keep stocks with valid monthly returns in over 60% of the sample period. This
leaves 4,641 stocks in the sample. Then, we randomly draw 557 stocks from them and perform probabilistic principal
component analysis, which is repeated 100 times. Finally, we report the average of the percentage of variation that
is explained by the first ten principal components. The sample period spans from July 2002 to December 2021.

Corporate Bonds Stocks
Percentage of Cum. Percentage of Percentage of Cum. Percentage of

Variation Explained Variation Explained Variation Explained Variation Explained

PC1 34% 34% 21% 21%
PC2 13% 47% 14% 35%
PC3 10% 57% 9% 44%
PC4 8% 65% 7% 51%
PC5 6% 71% 5% 56%
PC6 6% 77% 4% 60%
PC7 5% 81% 3% 63%
PC8 4% 85% 3% 66%
PC9 3% 88% 2% 68%
PC10 3% 91% 2% 70%
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Table A.3: Bond-level Fama-MacBeth Regressions: Different Measures of Volatility

This table reports the results of the Fama-MacBeth two-pass regressions of the GDA5 factor model with different
measures of volatility to construct the V OL factor. MKT is the outstanding amount-weighted average return of all
bonds in the sample minus the 1-month Treasury rate. In column (1), we show our baseline results as in Table 3
for comparison, where V OL is constructed from the VIX index. In column (2), V OL is the change in variance
based on an EGARCH model estimated using MKT . In column (3), we use the macroeconomic uncertainty from
Jurado, Ludvigson, and Ng (2015) to construct the V OL factor. DS is the downside factor. MKTDS (V OLDS) is
the market (volatility) downside factor, i.e. MKT (V OL) multiplied by DS. Factor betas are estimated in rolling
windows using data with a lag of 36 months and requiring a minimum of 24 observations. All prices of risk are
in percentage points. Time-series averages of cross-sectional adjusted R2 and the number of observations (N) are
reported at the bottom of each column. Table A.1 provides detailed variable definitions. Standard errors are corrected
according to Newey and West (1987) with 4 lags. ***, **, and * indicate statistical significance at the 1%, 5%, and
10% (two-tailed) test levels, respectively. The sample period spans from July 2002 to December 2021.

(1) (2) (3)
VIX EGARCH MAC. UNC.

βMKT 0.352∗∗ 0.362∗∗ 0.406∗∗∗

(2.50) (2.45) (2.68)

βDS −13.190∗∗ −11.449 −5.502
(−2.29) (−1.55) (−1.09)

βMKTDS 0.253∗∗∗ 0.147∗ 0.166∗∗∗

(2.96) (1.91) (2.81)

βV OL −0.019 −0.001∗ −0.675∗∗

(−1.11) (−1.75) (−2.07)

βV OLDS −0.034∗∗ −0.002∗∗ −0.667∗∗

(−2.13) (−2.37) (−2.42)

Constant 0.108 0.122 0.073
(1.14) (1.24) (0.54)

N 578,841 577,962 573,798
Adjusted R2 0.148 0.130 0.143
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Table A.4: Bond-level Fama-MacBeth Regressions: Different Downside Probabilities p

This table reports the results of the Fama-MacBeth two-pass regressions of the GDA5 factor model with different
values of downside probabilities p. MKT is the outstanding amount-weighted average return of all bonds in the
sample minus the 1-month Treasury rate and the V OL factor is constructed from the VIX index. DS is the downside
factor. MKTDS (V OLDS) is the market (volatility) downside factor, i.e. MKT (V OL) multiplied by DS. In
columns (1)-(4), we calibrate to have a probability of downside states of p = 10%, p = 15%, p = 20%, and p = 25%
respectively, where p = 25% is our baseline specification. The corresponding values of the downside state parameter
b are shown at the bottom of each column. Factor betas are estimated using rolling windows with a lag of 36 months
and requiring a minimum of 24 observations. All prices of risk are in percentage points. Time-series averages of
cross-sectional adjusted R2 and the number of observations (N) are reported at the bottom of each column. Table
A.1 provides detailed variable definitions. Standard errors are corrected according to Newey and West (1987) with
4 lags. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% (two-tailed) test levels, respectively.
The sample period spans from July 2002 to December 2021.

(1) (2) (3) (4)
p=10% p=15% p=20% p=25%

βMKT 0.472∗∗∗ 0.287∗∗ 0.330∗∗ 0.352∗∗

(3.00) (2.34) (2.58) (2.50)

βDS −10.159∗ −6.835∗ −9.707∗∗ −13.190∗∗

(−1.74) (−1.78) (−2.02) (−2.29)

βMKTDS 0.233∗∗ 0.150∗∗ 0.223∗∗∗ 0.253∗∗∗

(2.36) (2.25) (3.07) (2.96)

βV OL −0.028 −0.015 −0.017 −0.019
(−0.76) (−0.86) (−0.98) (−1.11)

βV OLDS −0.050∗ −0.028∗∗ −0.031∗∗ −0.034∗∗

(−1.68) (−2.13) (−2.00) (−2.13)

Constant 0.259∗ 0.164∗ 0.132 0.108
(1.66) (1.86) (1.45) (1.14)

N 269,560 543,880 575,403 578,841
Adjusted R2 0.166 0.138 0.145 0.148
b −0.0233 −0.0138 −0.0084 −0.0046
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Table A.5: Bond-level Fama-MacBeth Regressions: Different Values of Downside Parameter a

This table reports the results of the Fama-MacBeth two-pass regressions of the GDA5 factor model with different
values of the downside state parameter a. MKT is the outstanding amount-weighted average return of all bonds
in the sample minus the 1-month Treasury rate and the V OL factor is constructed from the VIX index. DS is the
downside factor. MKTDS (V OLDS) is the market (volatility) downside factor, i.e. MKT (V OL) multiplied by
DS. In columns (1)-(4), we use a = 0.50, a = 0.75, a = 1.00, and a = 1.25, respectively, where a = 1.00 is our
baseline specification. The corresponding values of the downside state parameter b are shown at the bottom of each
column. Factor betas are estimated using rolling windows with a data lag of 36 months and requiring a minimum of
24 observations. All prices of risk are in percentage points. Time-series averages of cross-sectional adjusted R2 and
the number of observations (N) are reported at the bottom of each column. Table A.1 provides detailed variable
definitions. Standard errors are corrected according to Newey and West (1987) with 4 lags. ***, **, and * indicate
statistical significance at the 1%, 5%, and 10% (two-tailed) test levels, respectively. The sample period spans from
July 2002 to December 2021.

(1) (2) (3) (4)
a=0.50 a=0.75 a=1.00 a=1.25

βMKT 0.337∗∗ 0.341∗∗ 0.352∗∗ 0.351∗∗

(2.46) (2.48) (2.50) (2.53)

βDS −13.386∗∗ −13.349∗∗ −13.190∗∗ −12.477∗∗

(−2.24) (−2.26) (−2.29) (−2.13)

βMKTDS 0.242∗∗∗ 0.254∗∗∗ 0.253∗∗∗ 0.254∗∗∗

(2.95) (3.04) (2.96) (2.98)

βV OL −0.024 −0.022 −0.019 −0.018
(−1.27) (−1.18) (−1.11) (−1.00)

βV OLDS −0.037∗∗ −0.034∗ −0.034∗∗ −0.033∗

(−2.21) (−1.97) (−2.13) (−1.86)

Constant 0.127 0.121 0.108 0.109
(1.31) (1.24) (1.14) (1.16)

N 578,162 578,171 578,841 579,042
Adjusted R2 0.148 0.147 0.148 0.148
b −0.0043 −0.0041 −0.0046 −0.0050
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Table A.6: Bond-level Fama-MacBeth Regressions: Different Beta Estimations Periods

This table reports the results of the Fama-MacBeth two-pass regressions of the GDA5 factor model when we use
different window lengths to estimate the betas. MKT is the outstanding amount-weighted average return of all bonds
in the sample minus the 1-month Treasury rate and the V OL factor is constructed from the VIX index. DS is the
downside factor. MKTDS (V OLDS) is the market (volatility) downside factor, i.e. MKT (V OL) multiplied by
DS. In columns (1)-(4), we use 36, 48, 60, and 72 months to estimate the betas, respectively, requiring a minimum
of 24 observations, where 36 months is used in our baseline specification. All prices of risk are in percentage points.
Time-series averages of cross-sectional adjusted R2 and the number of observations (N) are reported at the bottom of
each column. Refer to Table A.1 for detailed variable definitions. Standard errors are corrected according to Newey
and West (1987) with 4 lags. ***, **, and * indicate statistical significance at the 1%, 5%, and 10% (two-tailed) test
levels, respectively. The sample period spans from July 2002 to December 2021.

(1) (2) (3) (4)
36 months 48 months 60 months 72 months

βMKT 0.352∗∗ 0.372∗∗ 0.405∗∗ 0.456∗∗∗

(2.50) (2.54) (2.47) (2.78)

βDS −13.190∗∗ −13.406∗∗ −12.037∗∗ −10.963∗

(−2.29) (−2.44) (−2.05) (−1.82)

βMKTDS 0.253∗∗∗ 0.274∗∗∗ 0.266∗∗∗ 0.292∗∗∗

(2.96) (2.95) (2.81) (2.97)

βV OL −0.019 −0.020 −0.010 −0.015
(−1.11) (−1.25) (−0.58) (−0.75)

βV OLDS −0.034∗∗ −0.035∗∗ −0.033∗∗ −0.038∗∗

(−2.13) (−2.38) (−2.11) (−2.04)

Constant 0.108 0.139 0.119 0.108
(1.14) (1.45) (1.17) (1.02)

N 578,841 594,586 582,202 563,604
Adjusted R2 0.148 0.135 0.126 0.118
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Table A.7: Bond-level Fama-MacBeth Regressions: Different Number of Newey-West Lags

This table reports the results of the Fama-MacBeth two-pass regressions of the GDA5 factor model using different
numbers of lags for the Newey-West standard error correction. MKT is the outstanding amount-weighted average
return of all bonds in the sample minus the 1-month Treasury rate and the V OL factor is constructed from the VIX
index. DS is the downside factor. MKTDS (V OLDS) is the market (volatility) downside factor, i.e. MKT (V OL)
multiplied by DS. In columns (1)-(5), we show results using 2, 3, 4, 5, and 6 lags, respectively, to correct standard
errors according to Newey and West (1987), where 4 lags are used in our baseline specification. Factor betas are
estimated using rolling windows with a data lag of 36 months and requiring a minimum of 24 observations. All prices
of risk are in percentage points. Time-series averages of cross-sectional adjusted R2 and the number of observations
(N) are reported at the bottom of each column. Table A.1 provides detailed variable definitions. ***, **, and *
indicate statistical significance at the 1%, 5%, and 10% (two-tailed) test levels, respectively. The sample period spans
from July 2002 to December 2021.

(1) (2) (3) (4) (5)
2 lags 3 lags 4 lags 5 lags 6 lags

βMKT 0.352∗∗∗ 0.352∗∗ 0.352∗∗ 0.352∗∗ 0.352∗∗

(2.62) (2.56) (2.50) (2.38) (2.33)

βDS −13.190∗∗ −13.190∗∗ −13.190∗∗ −13.190∗∗ −13.190∗∗

(−2.21) (−2.28) (−2.29) (−2.25) (−2.25)

βMKTDS 0.253∗∗∗ 0.253∗∗∗ 0.253∗∗∗ 0.253∗∗∗ 0.253∗∗∗

(3.21) (3.08) (2.96) (2.84) (2.76)

βV OL −0.019 −0.019 −0.019 −0.019 −0.019
(−1.16) (−1.13) (−1.11) (−1.09) (−1.07)

βV OLDS −0.034∗∗ −0.034∗∗ −0.034∗∗ −0.034∗∗ −0.034∗∗

(−2.30) (−2.20) (−2.13) (−2.08) (−2.01)

Constant 0.108 0.108 0.108 0.108 0.108
(1.21) (1.14) (1.14) (1.11) (1.12)

N 578,841 578,841 578,841 578,841 578,841
Adjusted R2 0.148 0.148 0.148 0.148 0.148
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Table A.8: Bond-level Fama-MacBeth Regressions: Controlling for Different Bond Market Factors

This table reports additional results of the Fama-MacBeth two-pass regressions of individual bond excess returns
on the GDA5 factors when we control for the BBW4 and BND5 betas. In the GDA5 factor model, MKT is the
outstanding amount-weighted average return of all bonds in the sample minus the 1-month Treasury rate and V OL
is constructed from the VIX index. DS is the downside factor constructed. MKTDS (V OLDS) is the market
(volatility) downside factor, i.e. MKT (V OL) multiplied by DS. In columns (1)-(3) and columns (6)-(8), all factor
betas in the same model are estimated jointly while in columns (4)-(5), we BBW4 factor betas are estimated following
Bai, Bali, and Wen (2019): bond market betas are estimated in univariate regressions and DRF , LRF , and CRF
betas are estimated individually by controlling only for the bond market factor. Estimation of betas are conducted
based on rolling windows with a data lag of 36 months and requiring a minimum of 24 observations. In column (1),
we repeat the estimation in Table 5 for GDA5 and BBW4. In column (2), we use the bond market beta from BBW4
in place of that from GDA5. In column (3), we include both GDA5’s and BBW4’s market betas. In column (4), we
include GDA5 betas controlling for BBW4’s DRF , LRF , and CRF betas estimated only controlling for the bond
market factor. In column (5), we replace GDA5’s market beta by BBW4’s univariate market beta. In column (6),
we repeat the estimation in Table 5 for GDA5 and BND5. In column (7), we use BND5’s bond market beta in place
of GDA5’s. In column (8), we include both GDA5’s and BND5’s market betas. All prices of risk are in percentage
points. Time-series averages of cross-sectional adjusted R2 and the number of observations (N) are reported at the
bottom of each column. Table A.1 provides detailed variable definitions. Standard errors are corrected according
to Newey and West (1987) with 4 lags. ***, **, and * indicate statistical significance at the 1%, 5%, and 10%
(two-tailed) test levels, respectively. The sample period spans from July 2002 to December 2021.

(1) (2) (3) (4) (5) (6) (7) (8)

βMKT 0.344∗∗∗ 0.216∗∗ 0.347∗∗∗ 0.329∗∗∗ 0.247∗∗∗

(3.12) (2.27) (2.96) (3.50) (2.79)

βDS −15.084∗∗∗ −9.360∗∗∗ −12.198∗∗∗ −14.209∗∗∗ −9.512∗∗∗ −11.918∗∗∗ −7.080∗∗∗ −10.411∗∗∗

(−3.58) (−3.89) (−3.25) (−3.28) (−3.57) (−4.40) (−3.27) (−4.15)

βMKTDS 0.222∗∗∗ 0.104∗∗ 0.173∗∗∗ 0.207∗∗∗ 0.070∗ 0.211∗∗∗ 0.104∗∗∗ 0.176∗∗∗

(2.96) (2.53) (3.11) (2.71) (1.72) (4.25) (3.30) (4.23)

βV OL −0.055∗∗∗ −0.035∗∗ −0.048∗∗∗ −0.052∗∗∗ −0.027∗∗ −0.055∗∗∗ −0.036∗ −0.049∗∗

(−3.97) (−2.58) (−2.82) (−4.15) (−2.01) (−2.88) (−1.92) (−2.38)

βV OLDS −0.040∗∗∗ −0.030∗∗∗ −0.035∗∗∗ −0.035∗∗∗ −0.022∗∗∗ −0.040∗∗ −0.031∗ −0.036∗∗

(−3.48) (−3.06) (−3.15) (−3.75) (−2.87) (−2.48) (−1.97) (−2.26)

βMKTB 0.324∗∗∗ 0.145 0.352∗∗∗ 0.325∗∗∗ 0.091
(2.88) (1.19) (2.90) (3.24) (0.74)

βDRF 0.046 0.609∗∗ 0.299 0.215 0.263
(0.38) (2.18) (1.17) (1.21) (1.38)

βLRF 0.002 0.184∗∗ 0.095 −0.065 −0.070
(0.04) (2.05) (1.12) (−0.86) (−0.93)

βCRF −0.160 0.086 −0.027 −0.211 −0.186
(−0.67) (0.29) (−0.09) (−0.78) (−0.70)

βDEF −0.161 0.078 −0.088
(−1.19) (0.52) (−0.54)

βTERM 0.370 0.530∗ 0.353
(1.28) (1.93) (1.45)

βMOMB −0.030 −0.153 −0.120
(−0.24) (−1.04) (−0.82)

βLIQB 0.023 −0.217 −0.045
(0.15) (−1.23) (−0.29)

Constant 0.158 0.182∗ 0.138 0.150 0.145 0.189∗∗∗ 0.193∗∗∗ 0.178∗∗∗

(1.47) (1.91) (1.35) (1.43) (1.54) (3.29) (3.53) (3.21)

N 549,016 549,016 549,016 549,016 549,016 475,287 475,287 475,287
Adjusted R2 0.199 0.199 0.206 0.199 0.201 0.193 0.192 0.200
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