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Abstract

Trading in 0-Days-To-Expiry (0DTE) options has grown exponentially over the last

few years. After describing this exploding market, we present novel closed-form pricing

formulae that accurately capture the 0DTE implied-volatility surface. We use a local-

in-time approach, relying on Edgeworth-like expansions of the log-return characteristic

function, explicitly suited to price ultra-short-tenor instruments. The expansions pro-

vide skewness and kurtosis adjustments which depend on the underlying non-affine

return characteristics in closed form. We show significant improvements in pricing and

hedging as compared to state-of-the-art models. We conclude by providing suggestive

results on nearly instantaneous predictability by estimating 0DTE-based risk premia.

Keywords: Zero days-to-expiry options (0DTEs), pricing, hedging, instantaneous

return/variance risk premia.

JEL classification: C51, C52, G12, G13.
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1 Introduction

The market for 0DTE options has seen a meteoric increase in traded volume over the last

few years. We focus on SPX (i.e., S&P 500) options. For the years 2014 to 2023, Fig. 1

represents the percentage of daily volume (in terms of number of contracts traded) associated

with SPX options expiring during the same trading day.

Trading in 0DTE options
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Figure 1: The figure reports volume (i.e., number of contracts traded) in 0DTE SPX options
as a fraction of total volume for options with maturity up to one year. The data covers the
period from 2014 to 2023. Data source: OptionMetrics.

Daily transaction volume in 0DTE SPX options is now over 43% of overall daily option

volume, up more than 100% as compared to 2021 levels. According to J.P. Morgan Chase’s

estimates released in February 2023, this figure corresponds to a daily notional dollar volume

around $1 trillion.

While academic work on 0DTEs is still very limited, investors have been paying attention.

So, have exchanges. The CBOE is currently believed to derive more than 56% of its revenues

from its option business.1 This figure justifies the CBOE’s incentive to progressively increase

the listing frequency of weekly options (weeklies) to a daily frequency, a phenomenon that

has lead to the current access to 0DTEs.2 On each individual day, 0DTEs are - in essence -

weeklies listed a week earlier.

1See, e.g., the April 2023 Ambrus Capital’s report “Dispelling false narratives about 0DTE options.”
2The CBOE Friday weeklies, as well as weeklies expiring on other days, are listed on the following web

page: https://www.cboe.com/available_weeklys/.
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0DTEs offer new opportunities to traders who can now capitalize on very short-term

directional bets, e.g. around macroeconomic announcements,3 among other more complex

strategies. These new opportunities have appeared as especially appealing in an uncertain

(for equities) environment of increasing interest rates. The sell side of the market, however,

faces considerable “convexity”. Because of their short maturity, the gamma of 0DTEs (the

second derivative of the option price with respect to the price of the underlying) is large. It

is particularly large for at-the-money or near at-the-money positions. This feature, among

others, has led some to warn about unintended consequences.4

Our interest is in the pricing (and hedging) of short-tenor options, including those in

the ultra short-tenor segment, i.e. 0DTEs. We achieve this objective by imposing mild

assumptions on the dynamics of the price process (Xt). The price process features both con-

tinuous and discontinuous components (Xc
t and X

d
t , respectively). All characteristics driving

its dynamics, including, e.g., volatility, leverage (the correlation between price changes and

volatility changes), volatility-of-volatility, the intensity of the jumps and the moments of

the jump sizes are unrestricted processes only required to satisfy technical, but innocuous,

smoothness conditions.

3Descriptive evidence is provided in Section 5.
4On February 15 2023, J.P. Morgan Chase’s chief global markets strategist, Marko Kolanovic, warned

that the growing size of the 0DTE segment may lead to sharp market swings as large as $30 billion dollars,
particularly in the current low liquidity environment. Referring to the spike of volatility which affected short
volatility strategies in February 2018, Mr. Kolanovic famously suggested the possibility of a “Volmageddon
2.0” in the 0DTE market. These swings are viewed as a feedback effect caused by option sellers rushing
to hedge their (high gamma) positions after a large intra-daily market move. His opinion is shared by
others. On the same day, Saqib Iqbal Ahmed of Reuters quoted the SpotGamma founder Brent Kochuba as
saying: “(This market) could draw large, sudden hedging requirements from options dealers. This could be
particularly dangerous around an unexpected news event that catches people offsides.” He added: “Overall,
we feel that 0DTEs pose the potential to create a flash crash at the index level.” On February 21 2023,
Garrett DeSimone, head of quantitative research at OptionMetrics, was quoted by Joseph Adinolfi of Market
Watch as saying “We haven’t seen the systemic risks present themselves yet, but there’s a concern that if
you have a big daily swing, like what we saw during March 2020, that we really don’t know how the
market-making mechanism is going to react.” In the same article, Joseph Adinolfi cited Charlie McElligott,
managing director of cross-asset strategy and global equity derivatives at Nomura, as indicating that he
would be shocked if regulators weren’t already trying to gauge the systemic risks associated with these
products. Not everyone agrees with these concerns. On February 23 2023, Lu Wang of Bloomberg News
quoted Nitin Saksena, strategist at Bank of America, as writing in a note: “Some are raising the alarm that
directional end-users are net short out-of-the-money 0DTEs, thus sowing the seeds for a ‘tail wags the dog’
event akin to the February 18 ‘Volmageddon’ ... The evidence so far suggests that 0DTEs positioning is
more balanced/complex than a market that is simply one-way short tails.” This recent debate is indicative
of the opportunities and risks that the exponentially-growing 0DTE market has been quickly generating.
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Pricing short-tenor options requires the evaluation of the Q-characteristic function of the

logarithmic price process over a short horizon τ (ClogX(u, τ)). This function depends, of

course, on the characteristic function associated with the continuous portion of the process

(ClogXc
(u, τ)) and on the characteristic function of the discontinuous portion of the process

(ClogXd
(u, τ)).

Importantly, our assumed price process represents a significant departure from specifi-

cations, e.g. Lévy or affine, for which ClogX(u, τ) is known in closed form. In spite of the

generality of the price process, we provide two closed-form expressions for the price charac-

teristic function over small-τ intervals. Theoretically, the resulting expressions are ideally

suited, because of their local nature, to price instruments with short tenors, like 0DTEs.

Computationally, they retain the tractability of characteristic functions known in closed

form.

In our first (baseline) specification, we model ClogXd
(u, τ) as a known characteristic func-

tion and express ClogXc
(u, τ) as a small-τ Edgeworth-like expansion around the Gaussian

characteristic function. Local Gaussianity is, of course, induced by the process’ driving Brow-

nian motion. Once more, we make no assumptions, other than smoothness, on the nature of

the price characteristics (volatility, leverage and volatility-of-volatility, inter alia) their own

Q-dynamics and risk premia. We document that the expansion depends on leverage and

the volatility-of-volatility, among other characteristics. The former affects the at-the-money

skew, the latter impacts the at-the-money convexity of the implied volatility surface. By

tilting locally (in τ) the conditional Gaussian characteristic function in such a way as to in-

troduce negative return skewness (through leverage) as well as thicker return tails (through,

e.g., the volatility-of-volatility), the proposed expansion is shown to generate model-implied

volatilities which adapt effectively to the at-the-money (and near at-the-money) 0DTE im-

plied volatilities in the data. The result is accurate pricing within the bid/ask for 80% of

our options and superior performance as compared to state-of-the-art specifications.

The importance of discontinuous variation in assisting out-of-the-money short-term pric-

ing is well-known (e.g., Andersen, Fusari, and Todorov, 2017). We instead formalize - in

closed form - the role played by continuous variation in yielding at-the-money (and near

at-the-money) implied volatilities which adapt to those in the data and, as a result, supe-

rior fit of the entire implied volatility surface. We document that daily volume in 0DTE

SPX options is distributed evenly around at-the-money, something which is consistent with
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reasonably sophisticated trading strategy and the evidence that a relatively small portion

of these instruments are traded by retail investors.5 Because our proposed expansions are

designed to capture the implied-volatility skew and convexity, large traded volume at-the-

money (or near at-the-money) translates into significant price improvements as compared

to state-of-the-art competitors. Conversely, because of traded volume around at-the-money

in the ultra short segment of this market - that occupied by 0DTEs - the center of the

moneyness range is of particular economic interest. Finally, all else equal, superior pricing

at-the-money and near at-the-money is expected to improve pricing, as well as hedging,

along the full implied volatility surface, even in the tails. We provide evidence that this is,

in fact, the case.

In our second specification, we work with a small-τ Edgeworth-like expansion of the

characteristic function of the full process ClogX(u, τ), one in which ClogXc
(u, τ) is expressed

as in the baseline case and the jump portion of the characteristic function (ClogXd
(u, τ)) is

also expanded. The full expansion allows for jumps in prices, as in the baseline case, but also

for jumps in volatility. The price and the volatility jumps are permitted to be idiosyncratic

and joint. In other words, the expansion introduces - again, in closed form - an additional

source of skewness (through discontinuous leverage induced by the price/volatility co-jumps)

and an additional source of kurtosis (through the volatility jumps). We show that expanding

the characteristic function of the jump in prices (without jumps in volatility) does not add

in any economically-meaningful way to the baseline specification in which a known jump

characteristic function is used. We also show that, in spite of their potential contribution to

both skewness and kurtosis, the jumps in volatility have a marginal impact on our reported

short-term pricing. We, of course, do not exclude that a more constrained (possibly affine)

5On February 21, 2023, Joseph Adinolfi of Market Watch referred to J.P. Morgan Chase data as suggesting
that retail investing only amounts to about 5.6% of daily 0DTE option trading. Supporting interest in
institutional investors, in an April 2023 note, Ambrus Capital wrote: “Post-March 2020 many institutions
began advocating for option overlay programs. During 2021 many of those mandates were approved and
put into action. Along with generic hedging mandates, large RIAs also began implementing yield-generating
programs. During 2022, rates began to move higher and equities sank. This left wealth managers looking for
other sources of yield. With equity volatility remaining muted, these yield programs started to attract more
investors towards the end of Q1 of 2022. The addition of short-dated options made these programs very
attractive to advisors and other institutions. The shrinking equity risk premium due to the move in rates
left investors flocking to the growing volatility risk premium. This is why there was a substantial increase
in 0DTE volume around Q2 of 2022. Additionally, for volatility hedge funds and market makers, this new
tenor allowed a cleaner way to hedge gamma and theta risk. Furthermore, speculative hedge funds that are
not derivative-focused began using 0DTEs to hedge macroeconomic-driven event risk.”

5



specification would attribute a bigger role to these discontinuities. We, instead, find that

flexible diffusive dynamics - such as the ones we assume - contribute to the returns’ higher

moment dynamics in ways which attenuate the pricing relevance of the volatility jumps.

We proceed as follows. In Section 2, we offer more motivation for focusing on 0DTE op-

tions. Section 3 further positions our contribution. In Section 4 we detail the two proposed

pricing models. Empirical work begins with the first (baseline) specification before turning

to the second specification in Section 9. Section 5 is about details of implementation and the

data. Particular attention is devoted to the features of the intra-daily cross-sectional option

data we use. Pricing performance is documented in Section 6. Section 7 evaluates robust-

ness. Among other exercises, we slice pricing performance along a variety of dimensions:

moneyness, volatility states and tenor. Section 8 reports on profits and losses from ∆- and

Γ-hedging strategies. Section 9 turns to the full expansion of the process’ characteristic func-

tion in our second model specification. In Section 10 we exploit the identification potential

of the proposed pricing model to estimate instantaneous notions of the return/volatility risk

premia. In other words, we study (nearly) instantaneous predictability. Section 11 concludes.

2 More on motivation

The rise of trading in short-term option contracts is generally associated with the introduc-

tion of SPX weekly options (weeklies) on October 28, 2005. These original weeklies were

listed on Friday and were expiring at 4pm on the Friday of the subsequent week.6 More

than ten years later - on February 23 2016 - the CBOE introduced weeklies expiring on

Wednesday of each week. Shortly thereafter, on August 15 2016, weeklies with Monday

expirations were introduced. The CBOE advertised them as a new effective instrument to

hedge “over-the-weekend” risks. Options with expirations on Tuesday and Thursday were

offered on April 18 2022 and on May 11 2022. The result has been the generation of a very

liquid market of option contracts allowing investors to trade ultra short-tenor instruments

during each trading day and at every point in time within the trading day.

Fig. 2 reports the percentage of volume associated with SPX options with different tenors

(0-7 days, 7 days to 1 month, 1 month to 3 months, 3 months to 6 months, and 6 months to

6The exception were weeklies which would have been set to expire on the third Friday of the month (the
day of expiration of standard SPX option contracts). These options were not listed.

6



12 months). Within each year, the columns sum up to 1. It is apparent that all segments of

the SPX market have shrunk - in relative terms - over time with the exception of the longer

maturities, which have remained rather stable, and the shortest 0 to 7 day maturities, which

have seen considerable growth. This said, total trading activity has increased over time and

all maturity segments have witnessed a corresponding increase in absolute terms.

SPX options: trading volume
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Figure 2: The figure reports the percentage of volume (i.e., number of contracts traded)
associated with SPX options with different tenors (0-7 days, 7 days to 1 month, 1 month to
3 months, 3 months to 6 months, and 6 months to 12 months). Within each year, the columns
sum up to 1. The data covers the period from 2014 to 2023. Data source: OptionMetrics.

Zooming into the 0 to 7 day maturities in Fig. 3, we notice that they have all remained

reasonably stable over the time period 2014 to 2023 with the exception of the shortest

maturities, namely those covered by 0DTE options, and the maturities immediately longer.

The former, in particular, have witnessed an exponential growth.

Since the first draft of this article, the geographical diffusion of these instruments has also

increased. So has their use in structured products. On August 28 2023, Deutsche Boerse

began trading 0DTE options on the Euro Stoxx 50 index (0EXP). In its press release on

August 22 2023, the exchange wrote: “Institutional demand for options with short-term

expiries has strongly increased as investors seek to react quickly and precisely to specific

market events”.7 On September 13 and 19 2023, Defiance ETFs launched QQQY and JEPY,

two actively-managed funds designed to gain exposure to the Nasdaq 100 Index and the S&P

7While retail trading has seen an uptick in Europe over the last couple of years, its diffusion is far from
that experienced in the US and China. The reference to “institutional demand” reflects this reality as well
as the specificities of instruments which, even in the US, have drawn considerable institutional interest.
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Trading in short-maturity options
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Figure 3: The figure reports volume (i.e., number of contracts traded) associated with SPX
options across various short tenors (ranging from 0 days to 7 days to maturity) as a fraction
of total volume for options with maturity up to one year. The data covers the period from
2014 to 2023. Data source: OptionMetrics.

500 index and generate income through 0DTE option writing. On October 13, after 30 days

of trading, the combined AUM of the two funds was reported in a Defiance ETFs press

release to be over $100 million.

In sum, the 0DTE market is growing by the day. Its growth, in turn, justifies academic

attention to it. We address this need by focusing on issues of valuation.

3 Positioning

This article contributes to various strands of the literature.

Considerable work has been devoted to expansions (of various nature and of various

quantities, from implied volatilities, to transition densities, to characteristic functions) for the

purpose of valuing structured products, doing inference using the information in structured

products, or both. We refer the reader, e.g., to Jarrow and Rudd (1982), Corrado and Su

(1996), Sircar and Papanicolaou (1999), Lee (2001), Kunitomo and Takahashi (2001), Carr

and Wu (2003), Durrleman (2004), Medvedev and Scaillet (2007), Bentata and Cont (2012),
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Gatheral, Hsu, Laurence, Ouyang, and Wang (2012), Forde and Jacquier (2011), Forde,

Jacquier, and Lee (2012), Takahashi and Yamada (2012), Xiu (2014), Jacquier and Lorig

(2015), Bandi and Renò (2017), Lorig, Pagliarani, and Pascucci (2017), Aı̈t-Sahalia, Li, and

Li (2021), Todorov (2021) and the references therein. We introduce a novel procedure to

derive pricing expansions for short-tenor derivative instruments. The expansions are local

in time and, therefore, particularly suited to value 0DTEs, our objective in this article.

A successful literature in financial econometrics has been devoted to the estimation of

a variety of equity characteristics: from spot volatility, to spot leverage, to spot volatility-

of-volatility, among other quantities. The bulk of this work has made use of the informa-

tion contained in intra-daily price data for identification. For spot volatility, see, e.g., Fan

and Wang (2008), Mykland and Zhang (2008), Kristensen (2010), Zu and Boswijk (2014),

Mancini, Mattiussi, and Renò (2015), Bandi and Renò (2018), Bibinger, Hautsch, Malec, and

Reiss (2019) and the references therein. Regarding spot leverage, see, e.g., Bandi and Renò

(2012), Aı̈t-Sahalia, Fan, and Li (2013), Wang and Mykland (2014), Wang, Mykland, and

Zhang (2017), Kalnina and Xiu (2017), Aı̈t-Sahalia, Fan, Laeven, Wang, and Yang (2017)

and the references therein. For spot volatility-of-volatility, see, e.g., Vetter et al. (2015),

Sanfelici, Curato, and Mancino (2015), Barndorff-Nielsen and Veraart (2012) and the refer-

ences therein. There is also work which employs the information in short-term options for

identification: Andersen, Fusari, and Todorov (2017) (spot volatility and tail characteris-

tics), Todorov (2019) (spot volatility), Todorov (2021) (leverage) and Chong and Todorov

(2023) (leverage and volatility-of-volatility). Identifying the equity characteristics is not our

emphasis. We may, in fact, use existing estimation methods and employ the resulting esti-

mates as inputs in the proposed pricing expansion. Having made this point, for reasons that

will be discussed in Section 5, there is value in identifying the (needed, for valuation) equity

characteristics jointly. We view joint identification of the characteristics as a contribution of

this article of independent interest.

Turning to the 0DTE market in particular, academic work focusing specifically on this

market is very limited. Brogaard, Han, and Won (2023) focus on spillovers from the 0DTE

segment of the short-tenor option market to the market of the underlying. They relate 0DTE

volume to the volatility of the underlying, showing how the former may influence (due, e.g.,

to informational effects and/or hedging) the latter. The destabilizing impact of the recent

surge in 0DTE trading is disputed by Dim, Eraker, and Vilkov (2024) who instead highlight
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the strategic role of 0DTEs, e.g., as bets on resolution of uncertainty (or large price moves)

around announcements. Even though the broader option market is generally viewed as a

playground for sophisticated institutional investors, retail investors have shown particular

interest in the 0DTE segment. Beckmeyer, Branger, and Gayda (2023) emphasize that while

still limited, relative to institutional trading, the share of retail trading in the 0DTE segment

(around 6%) is higher than that (2% to 4%) in the longer segment of the market. 0DTEs

are, therefore, attractive to retail traders too. Beckmeyer, Branger, and Gayda (2023) report

that roughly 75% of retail trades in S&P 500 options in the first quarter of 2023 were in

0DTE contracts. These trades were, however, generally unsuccessful, a result which mirrors

existing results for longer, i.e. weekly, expiries (Bryzgalova, Pavlova, and Sikorskaya, 2022).

Vilkov (2023) analyses a variety of trading strategies in the 0DTE space. He documents a

tendency for the profit-and-losses of popular strategies to be negative and with considerable

volatility. He concludes by cautioning traders lacking a “nuanced understanding” of the

market.

We are interested in valuing 0DTEs. The topic is important for the buy side looking to

understand fair values and place, e.g., directional bets. It is important for the sell side and

market-makers attempting to quantify risks (including, but not limited to, gamma risk) and

hedge them. It is, also, important for regulators wishing to assess the systemic implications

of a new and extremely fast-growing market. Using rich affine models with self-exciting

jumps, Bates (2019) provides an early study on the valuation of options with expiries equal

to one day (and longer).8 He emphasizes that his most successful model specification would

still fail to capture the option skew and its time variation.9 Bates (2019) advocates for

non-affine specifications as a solution to this issue, a solution which is consistent with our

proposed valuation method and its non-affine nature.

8As discussed in Section 5, our shortest expiry in this article is 5.5 hours but we have experimented with
expiries as short as 1 hour with very similar findings.

9His model captures the skew over short maturities better than over long maturities. However, even over
short maturities, there appears to be a significant, unexplained skew time variation.
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4 The pricing model

We assume an adapted, real stochastic price process Xt defined on the filtered probability

space (Ω,F , (Ft)t≥0,P) expressed as follows:

dXt = µtXtdt+ σtXtdWt︸ ︷︷ ︸
dXc

t

+(ext − 1)XtdNt︸ ︷︷ ︸
dXJ

t

, (1)

dσt = αtdt+ βtdWt + β′
tdW

′
t ,

dµt = γtdt+ δtdWt + δ′tdW
∗
t ,

dβt = ζtdt+ ηtdWt + η′tdW
∗∗
t ,

where σt > 0, βt > 0, β′
t > 0, δt > 0, δ′t > 0, ηt > 0 and η′t > 0, almost surely, ∀t ≥ 0, and the

quantities Wt, W
′
t , W

∗
t and W ∗∗

t are independent Brownian motions. Nt is a Poisson process

and xt is a random jump size. Xc
t and XJ

t are independent.

The characteristics σt and µt and, more generally, all other characteristics (including, e.g.,

βt and β
′
t) are adapted processes. Because of the presence of a common Brownian motion

Wt, they are allowed to be correlated among themselves and with Xt. The jump sizes xt and

the Poisson intensity λt are also adapted processes. Only technical smoothing conditions -

to which we will return - are imposed on all processes.

The price process is, of course, neither Lévy nor - as said - affine. Given the generality of

its assumed dynamics, obtaining a closed-form characteristic function (to be inverted for the

purpose of pricing) is, therefore, infeasible, in general. Consistent with our objective to price

short-tenor instruments, we address this issue by proposing two closed-form expansions of

the characteristic function over short horizons, to which we now turn.

4.1 The first (baseline) specification

We are interested in the Q-characteristic function of the logarithmic price process, namely

ClogX(u, τ). For reasons of benchmarking with a model which has been successful in the

pricing of short-term options (with tenors longer than one day), i.e., the one proposed by

Andersen, Fusari, and Todorov (2017), we write

ClogX(u, τ) = EQ
t [e

iu(logXt+τ−logXt)] = ClogXc

(u, τ)× ClogXd

(u, τ). (2)
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In Andersen, Fusari, and Todorov (2017), parametric jumps (represented by ClogXd
(u, τ)) are

added to an independent diffusive component (represented by ClogXc
(u, τ)) which is assumed

to be conditionally (on spot volatility, σt) Gaussian. The intensity of the jumps, the moments

of the jump sizes and spot volatility (the sole diffusive characteristic in Andersen, Fusari,

and Todorov, 2017) are adapted processes.

In order to derive the cleanest possible comparison with this approach - and, in the

process, in order to highlight the importance of diffusive dynamics - we work with the same

model as in Eq. (2) but solely modify ClogXc
(u, τ). Rather than assuming a conditionally

(on σt) Gaussian characteristic function (as in Andersen, Fusari, and Todorov, 2017), we

employ a small-τ expansion of the characteristic function of logXc around the Gaussian

characteristic function. Among other effects, the expansion adds skewness to the Gaussian

distribution (through a time-varying leverage process) and kurtosis (through, e.g., a time-

varying volatility-of-volatility process). We will show that these tilts are central to better fit

at-the-money, near at-the-money and beyond. Next, we provide details.

In the baseline model, consistent with the approach in Andersen, Fusari, and Todorov

(2017), we parametrize ClogXd
(u, τ) and assume - at first - conditional Gaussian jump sizes

xt. Gaussianity is, of course, a classical assumption on the distribution of the jump sizes in

logarithmic prices.10 Any parametric assumption on the density of the jump sizes (leading

to a known characteristic function) is, however, allowed. In Section 7, we therefore relax

it and work with the tempered stable family.11 The conditional mean and the standard

deviation of the jump sizes are µj,t and σj,t, respectively. The infinitesimal intensity of

the jumps is λt. Thus, all jump characteristics are allowed to be processes. In this sense,

the assumed specification is more flexible than models in which these quantities are tightly

parametrized (i.e., the many specifications in the tradition of Heston, 1993). It is also more

flexible than models in which the quantities are assumed to be nonparametric functions of

the state variables (as in Bandi and Renò, 2016, and Bandi and Renò, 2022). The intensity

λt, for example, could be self-exciting.

10See, e.g., Bates (2000), Duffie, Pan, and Singleton (2000), Pan (2002), Eraker (2004) and Broadie,
Chernov, and Johannes (2007).

11Andersen, Fusari, and Todorov (2017) estimate a conditional Gaussian jump specification before turning
to the (conditional) tempered stable class (e.g., Carr, Geman, Madan, and Yor, 2003, and Carr and Wu,
2003) and its sub-cases, like the double-exponential model of Kou (2002) or the variance gamma model of
Madan, Carr, and Chang (1998).
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We write

C
logXd

σt
√
τ (u, τ) = eτλt(e

iu
µj,t
σt

√
τ
−u2

σ2
j,t

2σ2
t τ −1−iuµ̄j,t),

where µ̄j,t is a Q-compensator expressed as e
µj,t
σt

√
τ
+ 1

2

σj,t

σ2
t τ

2

− 1. Given ClogXc
(u, τ), to which

we now turn, the presence of the compensator µ̄j,t will guarantee that ClogX(−i, τ) =

EQ
t [e

(logXt+τ−logXt)] = EQ
t [Xt+τ/Xt] = ertτ +O(

√
τ), as required by risk-neutral pricing.

We express ClogXc
(u, τ) as local (in τ) Edgeworth-like expansion of the Q-characteristic

function of logXc
t based on the Q-counterpart to the P-process in Eq. (1) above. The

Q-process has the same dynamic structure as the P-process.12 As emphasized, within the

adopted family of continuous-time semi-martingales for logXc
t , these dynamics are unre-

stricted and all characteristics are treated as general semi-martingales themselves. Hence,

our proposed expression for ClogXc
(u, τ) is nonparametric in nature.

In order to separate the volatility-of-volatility from leverage, we adopt the classical Hes-

ton’s specification (Heston, 1993) and suitably re-label quantities:

βt = β̃tρt,

β′
t = β̃t

√
1− ρ2t .

As a result, β̃t now represents the full volatility-of-volatility and ρt is time-varying leverage.

The separation between the two quantities, and their relative role, will be central to the

economic interpretation of our findings.

Write µ̃t = rt − σ2
t

2
, where rt is the risk-free rate. Assume (µ̃t, σt) ∈ D

(4)
W .13 By virtue

of Theorem 1 in Bandi and Renò (2017) (see Appendix for details), the Q-characteristic

function of the diffusive component of the logarithmic price process, i.e., ClogXc
(u, τ) with

u ∈ C and τ = T − t, can be expressed as a small-τ Edgeworth-like expansion given by

12The relation between (some of) the P-characteristics and the corresponding Q-characteristics is made
explicit in Section 10 by virtue of a compatible (non-monotonic) measure change.

13The notation signifies W -differentiability to the fifth order of the Q-logX process, i.e. logXQ
t . This

is simply a smoothness condition on the characteristics of logXQ
t and, thus, on logXQ

t itself. It is asking
logXQ

t to have a drift and a diffusion which depend on the main Brownian motion W (something that was
specified explicitly in Eq. (1)). Their characteristics should also depend on the main Brownian motion W
and so on, two more times. Bandi and Renò (2017) show formally that the smoothness properties of the
process are related to the integrability of its characteristic function, something which is needed to derive the
implied density and price.
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C
logXc

σt
√
τ (u, τ) = e

iu
µ̃tτ

σt
√
τ
−u2

2

1 −iu3 β̃tρt
2σt

√
τ︸ ︷︷ ︸

third moment adjustment

−u2
(
(αQ

t + δ̃t)

2σt
+

β̃2
t

4σ2
t

)
τ +

1

24

β̃2
t

σ2
t

u2
(
4u2 − ρ2tu

2
(
3u2 − 8

))
τ +

ηt
6σt

u4τ︸ ︷︷ ︸
second, fourth and sixth moment adjustment

 , (3)

where αQ
t is the Q-drift of the volatility process and δ̃t is the W -volatility of the Q-drift in

logarithmic diffusive prices (µ̃t).

Eq. (3) is an expansion around the conditional Gaussian density. The expansion provides

both closed-form skewness (through ρt) and kurtosis (through, e.g., β̃t) adjustments. The

first-order (in
√
τ) term in the expansion is, in fact, a third moment adjustment capturing

skewness. The second-order (in τ) term is, instead, an even (second, fourth and sixth)

moment adjustment. This term captures kurtosis (as well as the high-order contribution of

squared skewness to the sixth moment and the contribution of time-varying characteristics

to the second moment). We will show that both adjustments are central to the reported

price improvements.

In order to appreciate the flexibility of our proposed approach, we derive the implied

parameters/processes entering the expansion in the case of two well-known specifications:

Heston’s affine model (Heston, 1993) and the logarithmic volatility model used, e.g., in

Chernov, Gallant, Ghysels, and Tauchen (2003).

Heston’s model reads as follows:

d logXc
t = (µ− σ2

t /2)dt+
√
σ2
t dWt,

dσ2
t = κ(ω − σ2

t )dt+ ξ
√
σ2
t ρdWt + ξ

√
σ2
t

√
1− ρ2dW ′

t ,

where µ, κ, ω, ξ, ρ are constant parameters. Using Ito’s lemma repeatedly, we obtain

αt =
1

8σt
(4κ(ω − σ2

t )− ξ2),
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β̃t =
1

2
ξ,

ρt = ρ,

δ̃t = −1

2
σtξρ,

and

ηt = 0.

Thus, Heston’s model implies a constant leverage and a constant volatility-of-volatility (and,

therefore, no volatility of the volatility-of-volatility). However, the volatility of the drift is

time-varying (and depends, linearly, on the volatility itself).

The logarithmic volatility model reads, instead, as follows:

d logXc
t = (µ− σ2

t /2)dt+ σtdWt,

d log σt = κ(ω − log σt)dt+ ξρdWt + ξ
√
1− ρ2dW ′

t ,

where, again, µ, κ, ω, ξ, ρ are constant parameters. Using, again, Ito’s lemma, we obtain

αt =
1

2
σt(ξ

2 + 2κ(ω − log σt),

β̃t = ξσt,

ρt = ρ,

δ̃t = −σ2
t ξρ,

and

ηt = σtξ
2ρ2.

In this model specification, leverage continues to be constant. The volatility-of-volatility

and the volatility of the volatility-of-volatility are, instead, proportional to the volatility.

We conclude that both models impose constraints on skewness (through a constant drift)

and kurtosis (through, e.g., a constant or tightly parametrized volatility-of-volatility). In

this article, we dispense with these (and other) constraints by working with unrestricted

processes whose time-t realizations are estimated, period-by-period, using a cross-section of
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options (as discussed in Section 5).

In essence, capturing the volatility dynamics in a flexible way is central to our approach.

If we were to freeze volatility (as in Andersen, Fusari, and Todorov, 2017), the model would

amount to a conditionally (on time-varying spot volatility) Gaussian specification with jumps

(a specification which we will later dub BSM). This is our τ = 0 case. Because we do not

freeze volatility, the remaining (
√
τ and τ) terms in the expansion (i.e., the skewness and

the kurtosis correction) arise as a function of the volatility features (e.g., ρt, β̃t and αQ
t ).

The nonparametric nature of these features make it infeasible to employ known closed-form

characteristic functions. We, instead, propose a closed-form expansion which is naturally

suited to price short-tenor instruments. Below, we add discontinuities in volatility to the

expansion.

4.2 The second specification

The second specification is a small-τ Edgeworth-like expansion of the Q-characteristic func-

tion of the full logarithmic price process logXt inclusive of finite-activity jumps in volatility:

C
logX
σt

√
τ (u, τ) = e

iu
µ̃fullt τ

σt
√
τ
−u2

2

(
1− iu3

β̃tρt
2σt

√
τ − u2

(
(αQ

t + δ̃t)

2σt
+

β̃2
t

4σ2
t

)
τ (4)

+
1

24

β̃2
t

σ2
t

u2
(
4u2 − ρ2tu

2
(
3u2 − 8

))
τ +

ηt
6σt

u4τ (5)

+ τ

∫
R

(
e
iu x

σt
√
τ − 1

)
λXt f

X
t (dx)︸ ︷︷ ︸

idiosyncratic price jumps

(6)

+ τ

∫
R2

∫ 1

0

(
e
iu x

σt
√
τ e

−u2

2

(
s2

σ2
t
+2 s

σt

)
v
− 1

)
λX,σt fX,σt (dx, ds)dv︸ ︷︷ ︸

joint price/volatility jumps

(7)

+ τ

∫
R

∫ 1

0

(
e
−u2

2

(
s2

σ2
t
+2 s

σt

)
v
− 1

)
λσt f

σ
t (ds)dv︸ ︷︷ ︸

idiosyncratc volatility jumps

 , (8)
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with

µ̃full
t = rt −

σ2
t

2
− σt

√
τ

(∫
R

(
e

x
σt

√
τ − 1

)
λXt f

X
t (dx) +

∫
R

(
e

x
σt

√
τ − 1

)
λX,σt fX,σt (dx)

)
, (9)

where λXt , λ
X,σ
t and λσt , are the time-t intensities of the idiosyncratic price jumps, the joint

price/volatility jumps and the idiosyncratic volatility jumps, respectively. As earlier, all

intensities are processes. The quantities fXt (.), fX,σt (.) and fσt (.) are, instead, the time-t

densities of the price jump sizes, of the joint price/volatility jump sizes, and of the volatility

jump sizes, respectively. Theorem 2 in Bandi and Renò (2017) justifies this expansion without

applying it to pricing, the subject of this article. The Appendix provides details on pricing.

Relative to the baseline specification, the price jump compensations are now folded into a

re-defined term µ̃full. As earlier, they insure that EQ
t [Xt+τ/Xt] = ertτ + O(

√
τ), as required

by risk-neutral pricing.

The volatility jumps have the potential to contribute to both overall skewness (through

negative cross-moments between the contemporaneous price/volatility jump sizes in Eq. (7))

and to overall kurtosis (through a positive mean of the idiosyncratic volatility jump sizes

in Eq. (8)). The conceptual importance of the first effect in contributing to total leverage

(and, therefore, to overall skewness) is central to Bandi and Renò, 2016. The second effect

is well-understood.

Our empirical work (in Section 5 through 8) begins with the first (baseline) specification.

As emphasized, this choice is motivated by the need to relate our findings to existing bench-

mark(s) in the literature. It is also motivated by our interest in understanding whether a

richer specification (specifically one which allows for jumps in volatility and, therefore, for

added sources of skewness and kurtosis) leads to meaningful improvements over a successful,

but more parsimonious, specification. To this extent, Section 4.2 documents that, in spite

of its generality, our second specification does not contribute to the baseline meaningfully.

Volatility jumps, in particular, will be shown to hardly affect the price of 0DTEs.

5 Implementation and data

Given values of the characteristics (σt, β̃t, and ρt, among others), Fourier inversion of the

characteristic function in Eq. (2) would give us prices. We price options using the tradi-
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tional quadrature method, as in Heston (1993). We first discuss how the inputs (i.e., the

characteristics) are obtained for the purpose of implementing the proposed pricing model.

We then turn to data. We will emphasize the richness of CBOE intra-daily option data as a

source of granular information allowing pricing at any point in time within the trading day.

5.1 Estimating the equity characteristics

In order to price, we could feed time-series sample analogues of the “historical” characteristics

into Clog X̃(u, τ) and Fourier invert. This procedure is, however, delicate - for at least two

reasons. First, while spot volatility (σt) can be measured accurately using time-series data,

quantities based on spot volatility (like β̃t and ρt) are known to be problematic. Their

time-series sample analogues, in fact, entail differences of spot volatility estimates. While

the measurement error in the point volatility estimates may be limited, differencing point

estimates has the potential to exacerbate noise. They also entail squares/products of these

differences, which are bound to yield biases in the presence of measurement error. Second, a

large literature (c.f. the discussion in Section 3) has focused on the estimation of σt, β̃t and ρt

using high-frequency time-series data. We are, however, not aware of work on the remaining

characteristics entering the characteristic function, i.e., αQ
t , δ̃t and ηt. Even though sample

analogues to these quantities can be constructed, given their nature we believe that they

would be hard to identify reliably using time-series data.

In light of these considerations, we estimate all characteristics jointly by minimizing the

average squared distance between the market Black and Scholes implied volatilities and the

model-based implied volatilities. The criterion is, therefore, in the spirit of Bates (1996) and

Andersen, Fusari, and Todorov (2015). The latter, in particular, estimate jump features and

spot volatility (ρt and β̃t not appearing in their framework). Estimating ρt and β̃t requires an

alternative model specification, which we introduce here. The resulting joint identification of

the characteristics addresses both of the issues described in the previous paragraph. On the

one hand, as far as β̃t and ρt are concerned, we avoid the biases which would be induced by

two-step estimation of volatility functionals using time-series sample analogues. On the other

hand, joint identification also gives us estimates of the residual characteristics (α̃t = αQ
t + δ̃t,

as a sum, and ηt). Because our focus is on both pricing and hedging, below we evaluate the

accuracy of the minimum distance estimates by using suitable pricing and hedging metrics.
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Define Θt = (ρt, β̃t, σt, α̃t, ηt, λt, µj,t, σj,t), the set of model characteristics at time t. Their

estimates are obtained as the following argmin:

Θ̂t = argmin

{
1

Nt

∑
i∈τt

[
BSIV mkt

ki,τt
−BSIVki,τt (Θt)

]2}
, (10)

where τt is the shortest available tenor on day t and Nt is the number of out-of-the money

options used at time t with maturity τt. The optimization outcome is daily time series of

estimates for all characteristics, i.e., Θ̂t.

5.2 Data

We employ CBOE intra-daily option data from January 2 2014 to May 11, 2023. Estimation

is conducted at a single point in time during the trading day (10:30am) using the available

cross section of options with the shortest maturity.

We note that, because the literature has not focused on the shortest segment of the option

market, it is customary to use OptionMetrics data, estimate parameters/characteristics at

the end of the trading day (3:59pm), and price options which expire on the next day or later

(as in, e.g., Andersen, Fusari, and Todorov, 2017). OptionMetrics data is, however, updated

less frequently than CBOE data. Also, since in OptionMetrics the option cross section

is sampled at 3:59pm, 0DTEs would only be sampled with 1 minute to expiration. We,

therefore, exploit the granularity of CBOE intra-daily option price data, volume information

in Figs. 1, 2 and 3 being the only OptionMetrics data used in this study. In line with our

objective (valuing and hedging 0DTEs), we estimate and price during the trading day.14

Because of our use of intra-daily option data, the selection of 10:30am as the estimation

time is a choice. Such choice is dictated by the following observation. As shown in Fig. 4,

the opening of the day (i.e., between 9:30am and 10:10am) is characterized by high mean

trading volume (top left panel) but, also, by significant variation in volume (bottom left

panel). The choice of 10:30am strikes a sensible compromise between high enough mean

14In light of well-known intra-day periodicity, the volatility of the underlying is expected to be higher at
the beginning and at the end of the trading day. This heightened volatility has a positive impact on the
option spreads set by market makers engaged in hedging activities perceived as riskier. Thus, an additional
advantage of using cross sections of options in the middle of the trading day (as provided by CBOE data),
rather than at the end of the trading day, is that the corresponding prices are likely less affected by execution
costs.

19



volume and low enough variability, excessive variability being something which could affect

the quality of the estimates across days.

We note that, even in this market, volume has a U-shaped pattern with higher levels

both at the beginning and at the end of the trading day. On FOMC announcement days,

the latter occur earlier (around 2pm) and are drastically steeper (top right panel). These

effects confirm the importance - to which we refer in the Introduction - of directional trades

around macroeconomic announcements in this market. While these trades are interesting in

their own right, we do not pursue this line of inquiry in this article.15
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Figure 4: The figure reports average intra-daily trading volume in ultra-short maturity op-
tions. The top panels depict the average standardized trading volume over the entire sample
(top left) and during days corresponding to FOMC announcements (top right). Each day,
we calculate trading volume within a specific time period (i.e., each 5-minute interval) and
divide it by the average trading volume for that day (i.e., the line is centered around one
by construction). We report averages across days. The bottom panels display the standard
deviation associated with the estimates in the top panels. The time period is January 2,
2014, to May 11, 2023. Data source: CBOE.

We apply minimal filters to the option data, following the approach outlined in Andersen,

15Our choice of 10:30am is also far enough from FOMC announcements and other macroeconomic an-
nouncements.
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Fusari, and Todorov (2017). Specifically, we exclude options with zero bid prices, options

for which the ratio between ask and bid prices exceeds 10 (considered highly illiquid) and

options for which we cannot successfully compute the implied volatility. To address potential

synchronicity issues between the option and the underlying, we derive the implied underlying

forward price from put-call parity. Finally, as customary in the literature, we only retain out-

of-the-money calls and puts since they are significantly more liquid than their in-the-money

counterparts. This leaves us, each day, with an average of 45 option contracts (Fig. 5) across

a broad moneyness range (Fig. 6). The result is a large average number of representative

strikes giving us confidence in the reconstruction of the implied volatility surface, in our

inference on the characteristics, and in the pricing/hedging evaluation.
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Figure 5: The figure reports monthly averages of the daily number of options used for esti-
mation and pricing. The time period is January 2, 2014, to May 11, 2023. Data source:
CBOE.

One observation is in order. During the first part of the sample, taking advantage of the

shortest maturity may still not lead - for certain days - to the use of cross sections of 0DTEs.

This is due to the absence (until May 11 2022) of continuous daily expiries. As indicated

earlier, May 11 2022 is the day during which Thursday expiries were introduced, thereby

completing the CBOE’s menu of daily expiries. Because our data ends on May 11 2023, the

last year in the data only uses 0DTEs. The next best alternative - to 0DTEs, when not

available - is, instead, employed in previous years.

To illustrate this point, Fig. 7 reports the tenors used for estimation over the years, the

shortest available tenor being invariably our choice. The vertical dashed line corresponds

to the dates during which specific weeklies (i.e., weeklies expiring on specific days) were
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Figure 6: The figure reports monthly averages of the standardized (by volatility) daily log-
moneyness ranges. The time period is January 2, 2014, to May 11, 2023. Data source:
CBOE.
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Figure 7: The figure reports the options’ tenors used for estimation and pricing. The time
period is January 2, 2014, to May 11, 2023. Data source: CBOE.

introduced. The horizontal dense points refer to options expiring at 4pm (weeklies). The

horizontal sparse points refer, instead, to options expiring at 9am (these are regular monthly

SPX options which settle on the third Friday of each month at 9am). Thus, at 10:30am of

every trading day, i.e., the time of estimation, the shortest available tenor is the one of a

weekly option expiring on the same day at 4pm, if that option exists. Alternatively, it is the

one of a monthly option expiring at 9am on the subsequent trading day. In the absence of

the latter, it is the one of a weekly option expiring at 4pm of the subsequent day, and so on.

Needless to say, the introduction by the CBOE of a new weekly (each vertical line) is always

accompanied by a deepening of the market and a reduction in the length of the available

tenor. In the end, as made clear by the graph, we sometimes had to resort to maximum
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tenors of 7 days (at the beginning of the sample) but could, very frequently, use intra-daily

tenors of 5.5 hours throughout the sample. These tenors were invariably used beginning

on May 11, 2023. The increased liquidity associated with ultra-short-tenor options is the

institutional feature which we exploit for estimation and pricing within the trading day.

5.3 The equity characteristics

Before turning to pricing, we report on the main characteristics, namely σt, β̃t, and ρt.

Because large literatures have focused on their identification (generally one at a time), vi-

sualizing their dynamics is of separate interest. We note, also, that if our emphasis were on

inference per se, not on pricing, our methods could be optimized. For instance, one could

use the richness of CBOE intra-daily data, exploit multiple cross sections, and local average

the estimates in order to enhance efficiency.

Fig. 8 reports the estimated (main) characteristics over time. Spot volatility behaves as

expected, with a considerable spike in March 2020 due to the pandemic. Spot leverage is

negative and hovers around -0.4. The correlation between spot volatility and spot leverage

is negative and around -0.15, confirming previous findings (Bandi and Renò, 2012). Spot

volatility-of-volatility is less understood in its dynamics but the reported increasing trend

is consistent with the behavior of the VVIX during the time frame over which the VVIX is

available. Given our results, the positive trend in the VVIX may, therefore, not be entirely

attributable to increased risk premia.

6 Pricing performance

We now turn to pricing. We visualize it in Fig. 9. The figure reports the average (across

days) smoothed empirical implied volatilities as compared to implied volatilities delivered by

two models: the one we propose (described above) and a model which has been successful in

pricing short-tenor instruments, namely the one suggested in Andersen, Fusari, and Todorov

(2017). The horizontal axis is log-moneyness in units of implied volatility. Hence, a value

of -4 and above, for instance, would define deep out-of-the-money puts. A value between -2

and -4 would represent out-of-the-money puts, and so on.

The model in Andersen, Fusari, and Todorov (2017) assumes parametric jumps and con-
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Figure 8: The figure reports monthly averages of daily estimates of σt, ρt and β̃t. The time
period is January 2, 2014, to May 11, 2023. Data source: CBOE.

ditionally (on the time-varying volatility process) Gaussian diffusive dynamics. We dub it

BSM, as in “Black-Scholes-Merton,” but with the understanding that the spot volatility

process is treated as an unrestricted process. Interestingly for the purposes of this compari-

son, the BSM model can be interpreted in two equivalent ways. It is a restricted version of

the specification we propose with all of the diffusive parameters (in particular, ρt and β̃t) set

to zero, with the exception of σt. It is also a model, otherwise equivalent to ours, in which

one dispenses with the volatility dynamics, as captured - in particular - by ρt and β̃t. The

latter observation will aid interpretation.

Fig. 9 shows that both models are effective in capturing deep out-of-the-money behav-

ior. This is unsurprising, given that the focus in Andersen, Fusari, and Todorov (2017) is

explicitly on tail dynamics and they are successful in capturing them. Because we assume

the same jump specification (initially, conditional Gaussian jumps), we are expecting to per-

form similarly in deep out-of-the-money regions of the log moneyness range. While the jump

specification could be modified across models (we do so in Section 7), allowing the intensity

of the jumps and the moments of the jump size distribution to be time-varying (something

that both Andersen, Fusari, and Todorov, 2017, and we do) renders conditional Gaussian

jumps rather flexible.

Fig. 9 also shows that the model we propose is especially effective in capturing dy-
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namics around at-the-money. Because the convexity (res. slope) of the implied volatility

surface around at-the-money depends intimately on the volatility-of-volatility (resp. lever-

age) adding kurtosis to the conditional return distribution (through βt and other quantities)

and skewness (through ρt) justifies the superior fit. This is where our proposed (small τ)

expansion is naturally suited to price ultra short-tenor options. The expansion skews the

return distribution and fattens its tails. It does so in a granular fashion, i.e., by shifting

probability mass relative to an otherwise locally Gaussian (because of the driving Brownian

motions) distribution. Improvement at-the-money will translate into improvements over the

full log-moneyness range, as we document below.
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Figure 9: The figure reports average (across days) smoothed empirical implied volatilities and
implied volatilities based on two models (the BSM model in Andersen, Fusari, and Todorov,
2017, and our Edgeworth-like specification). The size of the circles (on the empirical implied
volatilities) is proportional to traded volume for each log-moneyness level. The time period
is January 2, 2014, to May 11, 2023. Data source: CBOE.

Turning to a numerical assessment, we compute the RMSE of both models, namely the

percentage square root of the average squared distance between the implied volatilities in

the data and the implied volatilities delivered by each model. For notational simplicity, we

define the model proposed in this article as Edgeworth. The metric is:
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RMSE(model) =
1

T
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100√ 1

Nt
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(BSIV mkt
ki,τt

−BSIV model
ki,τt

)2

 ,
where model is either BSM or Edgeworth.

We find that RMSE(BSM) = 1.17 and RMSE(Edgeworth) = 0.48 In words, BSM yields

an average error of about 1.2% in volatility terms. As an example, if the average implied

volatility is 18%, BSM produces volatilities between (roughly) 17% and 19%. Edgeworth’s

error is about 0.5%, with a gain of 60%. As emphasized previously, the improvement is due

to the ability of Edgeworth to tilt the short-term conditional return distribution and give it

the right degree of skewness and kurtosis.

The improvement, also, suggests that near at-the-money liquidity may be substantial. In

turn, substantial near at-the-money liquidity would justify attention to that segment of the

log-moneyness range. To this extent, Fig. 9 offers evidence on market liquidity around at-

the-money (as well as in other segments of the log-moneyness range) by reporting circles on

the empirical implied volatility surface. The size of the circles is proportional to the traded

number of contracts. We show that volume is almost symmetrically distributed around at-

the-money. Consistent with the 0DTE market being - like the broader option market - a

playground for institutional investors, the reported symmetry around at-the-money is the

result of speculative/hedging strategies which exploit the center of the log-moneyness range.

RMSE(model) is, of course, an average measure which does not take into account time

variation. Next, we report the ratio RMSEt(Edgeworth)
RMSEt(BSM)

for every day in the sample (Fig. 10).

The gain provided by Edgeworth relative to BSM fluctuates between about 30% and 65%.

There is persistence in relative performance, with no obvious pattern (due to complex inter-

actions between the diffusive characteristics).

The dynamic fit of the model can also be evaluated by looking at a metric which has

proved to be challenging for otherwise successful models, such as the best model specifications

in Bates (2019). Bates (2019) looks at time variation in a skew measure defined as the

difference between the implied volatility of calls and puts for calls and puts one standard

deviation out-of-the-money. He finds a “substantial and systematic gap between predicted

and observed volatility smirks of less than one month’s maturity” and argues that “exploring
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Figure 10: The figure reports the ratio RMSEt(Edgeworth)
RMSEt(BSM)

for every day in the sample. The time
period is January 2, 2014, to May 11, 2023. Data source: CBOE.

alternative models of leverage and volatility feedback effects is the most promising area for

future research”. He concludes by advocating for more work on non-affine specifications.

We employ the same metric, which we visualize in the first panel of Fig. 11. The second

panel of Fig. 11 reports, instead, on a second - equally natural - metric, one which focuses on

convexity. The latter is constructed as the sum of the OTM put and call implied volatilities

used to compute the skewness measure from which we subtract the implied volatility of

the option closer to at-the-money (in essence, it is the second derivative of the implied

volatility surface at-the-money.) We are able to replicate the time variation in the assumed

implied-volatility skew and convexity measures very accurately. As discussed, the proposed

expansions are explicitly designed to capture time-varying skewness and kurtosis in log-

returns. They do so by freeing up - among other quantities - both leverage (ρt) and the

volatility-of-volatility (β̃t) which are treated like unrestricted stochastic processes rather

than, e.g., like affine specifications or, even, constant values. In this sense, we address -

and support empirically - the call in Bates (2019) for “alternative models of leverage” and a

deeper dive into non-affine specifications in both of its dimensions.
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Figure 11: The first panel reports the difference between the implied volatility of calls and
puts for calls and puts one standard deviation out-of-the-money, an implied-volatility skew
metric. The second panel looks at the at-the-money implied-volatility convexity. This is
constructed as the sum of the OTM put and call implied volatilities used to compute the skew
measure in the first panel from which we subtract the implied volatility of the option closer to
at-the-money. The time period is January 2, 2014, to May 11, 2023. Data source: CBOE.

7 Robustness

We now slice the previous results along several alternative dimensions, namely moneyness,

volatility states and tenor. Next, we restrict the pricing model by setting to zero certain

characteristics. We then price solely near at-the-money. Finally, we modify the jump distri-

bution.

7.1 Pricing as a function of moneyness, volatility and tenor

Panel A of Table 1 reports on moneyness. The grey area, in particular, provides the ratio of

the RMSEs of the two model specifications. Again, the lower the ratio, the better the perfor-

mance of the Edgeworth model. As expected in light of our previous discussion, the largest

improvement is at-the-money, where the Edgeworth RMSE is about a quarter of the BSM

RMSE. Because continuous dynamics have a large impact at-the-money but, of course, affect

the entire implied volatility surface (and because we employ the same jump specification as

in Andersen, Fusari, and Todorov, 2017), we expect some improvements out-of-the-money

too, although less pronounced. The numbers are consistent with this logic. Not only do

they document strong performance for a model specification which skews the local return
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Panel A: Moneyness
DOTMP OTMP ATM OTMC DOTMC

BSM 1.08 0.96 1.04 0.60 0.39
EDG 0.49 0.38 0.29 0.43 0.39
EDG/BSM 0.46 0.39 0.28 0.71 1.00
Panel B: Volatility

Q05 Q25 Q50 Q75 Q95

BSM 0.75 0.87 1.09 1.36 1.71
EDG 0.35 0.37 0.43 0.49 0.69
EDG/BSM 0.46 0.43 0.40 0.36 0.41
Panel C: Tenor

0D 1D 2D 3D 5D

BSM 1.04 1.28 1.27 1.33 1.40
EDG 0.45 0.48 0.53 0.57 0.79
EDG/BSM 0.43 0.37 0.42 0.43 0.56

Table 1: Pricing performance. Panel A reports the median RMSE for options with different
moneyness level. Moneyness is defined as m = ln (K/F )

IVATM
√
τ
. Specifically, DOTMP and OTMP

represent deep out-of-the-money (m < −4) and out-of-the-money (−4 < m < −2) put
options. ATM denotes at-the-money options (−2 < m < 2). OTMC and DOTMC represent
out-of-the-money (2 < m < 4) and deep out-of-the-money (m > 4) call options. Panel B
and C report the average RMSE over days with different levels of the ATM implied volatility
(Q5, Q25, Q50, Q75 and Q95 correspond to the 5th, 25th, 50th, 75th and 95th quantile of
the at-the-money implied volatility) and different option tenors (in days). The time period
is January 2, 2014, to May 11, 2023. Data source: CBOE.

distribution and fattens its tails across moneyness levels, they also document monotonically

increasing performance as one moves from the out-of-the-money ranges (whether for a call

or a put) to the in-the-money range.

Panel B of Table 1 reports on performance across volatility states. In particular, we

condition on implied volatility levels and compute the RMSEs during days in which implied

volatility corresponds to the 5th, the 25th, the 50th, the 75th, and the 95th quantile of the

at-the-money implied volatility distribution. A priori, we would want a successful model

specification to do well across states. While both models depend on time-varying volatility

and should adapt nicely to its levels, the distinguishing feature of the Edgeworth model is
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its ability to tilt the local return distribution through time-varying characteristics of the

volatility process. This ability should depend in significant ways on the volatility level only

to the extent that, e.g., the volatility-of-volatility and leverage are very highly correlated

with volatility. So, while we expect some variability across volatility states, we also expect

this variability not to be substantial. The numbers confirm this intuition. We report im-

provements hovering between 64% (when implied volatility is around its 75th quintile) and

54% (when implied volatility is around its 5th quintile).

Panel C of Table 1 is about tenor. The Edgeworth model leads to large improvements

across maturities, the largest improvements being however associated with the shortest tenors

(from 0DTEs to options with 3 days to maturity). This result is, again, in line with the local

(i.e., short tenor) nature of the proposed expansion(s).

7.2 Restricting the expansion

We impose a natural restriction. We only consider the skewness adjustment and, therefore,

dispense with all terms of order higher than
√
τ . By doing so, we may evaluate the relative

role played by skewness and kurtosis in the proposed expansion(s). We emphasize that the

model is re-estimated.

The restriction leads to

C
logXc

σt
√
τ (u, τ) = e

iu
µ̃tτ

σt
√
τ
−u2

2

1− iu3
β̃tρt
2σt

√
τ︸ ︷︷ ︸

skewness adjustment

 .

We note that, in this case, β̃t and ρt cannot be identified separately by minimizing the

criterion in Eq. (10). Minimization of Eq. (10), however, leads to estimates of the product

β̃tρt. We find that this product correlates strongly (over 90% correlation) with the product

of the same quantities obtained from the full minimization discussed earlier. The level of

the estimates of the product is also very similar to the level of the product of the estimates.

More importantly for our purposes, the RMSE of this asymptotically first-order expansion

is 0.75. Consistent with this figure, adjusting for skewness is of first-order importance and

leads to a RMSE which is 63% that of the BSM model.

Having made this point, adding a kurtosis adjustment - as done in the second-order
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expansion in Eq. (3) - frees up the impact of β̃t and ρt and improves fit further. The result

is a RMSE ratio between Edgeworth and BSM of about 41% and, therefore, a substantial

contribution of the kurtosis adjustment.

7.3 At-the-money pricing

We now focus on the at-the-money (or near at-the-money) range and consider log-moneyness

levels between -2 and +2. Importantly, we do pricing by only including the continuous por-

tion of the process and setting the jumps equal to zero. Generally speaking, this is intended

to evaluate if at-the-money pricing can be conducted successfully by carefully tailoring the

diffusive dynamics while dispensing with jump dynamics. More specifically, it is intended to

study the relative role of ρt (and its tilt to skewness) and β̃t (and its tilt to kurtosis) from

another vantage point.

Consistent with previous results, we find that the expansion is successful in pricing at-

the-money with an RMSE of 0.24. Renouncing the tilts provided by ρt and β̃t, i.e., using the

conditionally Gaussian diffusive dynamics in BSM , yields an RMSE of 0.64, a value which

is 2.7 times higher. We observe that BSM is implemented with price discontinuities. Hence,

the comparison should be viewed as favoring BSM relative to the diffusive-only Edgeworth

specification in this subsection. In spite of BSM ’s flexibility, Edgeworth’s relative perfor-

mance continues to be very satisfactory.

Regarding inference on the characteristics, we note that the characteristics themselves

may be identified in a fully nonparametric way. We may, in fact, work within log-moneyness

levels between -2 and 2 without having to specify the jump size distribution. When doing

so, we achieve high correlations between the nonparametric estimates in this subsection and

the semi-parametric estimates in Section 4. Specifically, the correlations are 0.98, 0.8 and

0.95 for σt, ρt and β̃t, respectively. The levels are, also, very close.

7.4 The jump distribution

Assuming Gaussian jump sizes is a natural first step consistent with a rather large portion

of the literature. In order to focus on diffusive dynamics, Gaussianity was - therefore - our

initial choice both for BSM and for Edgeworth.

We now turn to the alternative (and preferred) tempered stable specification in Andersen,
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ν = −1 ν = 0 ν = 0.5

BSM 1.08 0.93 0.90
Edgeworth 0.49 0.44 0.44
Edgeworth/BSM 0.45 0.47 0.49

Table 2: Tempered stable jumps. The table compares the RMSE of the conditional Gaus-
sian model with tempered stable jumps in Andersen, Fusari, and Todorov (2017) with the
Edgeworth model with tempered stable jumps. We set the parameter ν equal to three values
associated with well-known specifications in the literature. The time period is January 2,
2014, to May 11, 2023. Data source: CBOE.

Fusari, and Todorov (2017), which we adopt for both models. Write the jump compensator

as

λt

{
e−ψ

−|x|

|x|1+ν
1{x<0} +

e−ψ
+|x|

|x|1+ν
1{x>0}

}
dtdx,

with ν < 2. For ν < 0, the jumps are of finite activity. If ν ∈ [0, 1), they are of infinity

activity but finite variation. If ν ∈ [1, 2), they are of infinite variation. Popular models are

sub-cases of this specification. When ν = −1, one obtains the double-exponential model in

Kou (2002). The case ν = 0 corresponds to the variance gamma model of Madan, Carr, and

Chang (1998).

Consistent with the findings in Andersen, Fusari, and Todorov (2017), this more flexible

jump distribution (added to conditional Gaussian diffusive dynamics) is better able to cap-

ture out-of-the-money effects jointly with the at-the-money skew. The resulting RMSEs of

BSM are, in fact, equal to 1.07 (ν = −1), 0.93 (ν = 0) and 0.90 (ν = 0.5) and lower than

in the case of Gaussian jumps (c.f. Table 2).

Because the fit of the Edgeworth model with Gaussian jumps is already satisfactory,

while we anticipate some improvements due to the new jump specification, we do not expect

the improvements to be quite as large as in a model with conditionally Gaussian diffusive

dynamics, like BSM . Consistent with this intuition, the new Edgeworth (with tempered

stable jumps) RMSEs are 0.49 (ν = −1), 0.44 (ν = 0) and 0.44 (ν = 0.5), c.f. Table 2.

We conclude this analysis with the following observations. On the one hand, in Section

4 we have shown that Gaussian jumps are not excessively misspecified in a model in which
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the local return distribution is properly tilted by β̃t and ρt. On the other hand, we have

documented in this subsection that, even though a tempered stable specification may com-

pensate somewhat for misspecified continuous dynamics, suitable tilting of the local return

distribution continues to be beneficial. Consistent with these remarks, a Edgeworth model

with tempered stable jumps performs extremely well.

8 Hedging

Options are routinely (delta-)hedged by the sell side. 0DTE options, however, face large

“convexity” or gamma risk. As pointed out in the Introduction, this risk has been recently

invoked as a potential cause of instability loops stemming from price changes in the under-

lying leading to large repositioning (due to hedging motives) which may, in turn, yield more

volatility in the price of the underlying.

Our goal in this section is not to dispute or support the plausibility of these adverse

loops, something which is admittedly of interest to regulators but would require a better

institutional understanding of this new, fast-evolving, market. In agreement with our pricing

comparisons, our objective is to evaluate the hedging abilities of our proposed model relative

to alternative specifications. Effective hedging may, of course, lead to large price impacts

for the underlying (or other options). However, the cash flow stability that effective hedging

guarantees should not just be of interest to specialists. It should also be of interest to

regulators, particularly when large option positions are taken by central institutions.

We consider both delta (∆) and gamma (Γ) hedging. We report median profits and losses

(P&Ls). Regarding ∆ hedging:

P&LMj (∆M) = Oj,t=10:30am −∆M
j,t=10:30am × X̃t=10:30am

− Oj,t=4:00pm +∆M
j,t=10:30am × X̃t=4:00pm,

where Oj,t is the price of a specific option contract at time t, ∆M
j,t is the option’s ∆ position

implemented at time t based on the pricing model denoted by M and X̃t is the price of the

underlying at time t.

We work with three models: Black and Scholes (BS), BSM and Edgeworth. Both BSM

and Edgeworth have Gaussian jumps. Consistent with the pricing evaluations in Sections 4
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and 7, a hedging comparison with BSM is natural. In addition, we consider BS because it is,

to this day, commonly employed in the industry. In industry practice, however, the constant

BS volatility is replaced by the implied volatility for each specific level of log-moneyness, an

adjustment that we also make. Barring this adjustment, BS may, of course, be viewed as

another restricted version of Edgeworth, one in which ρt = 0 and β̃t = 0 (as in BSM) but,

also, λt = 0.

Regarding Γ hedging, we compute a Γ-neutral portfolio before rendering it ∆-neutral. In

order to Γ hedge OTM puts (resp. calls), we use the option with moneyness that is closest to

m = −0.5 (resp. m = 0.5).16 We denote by a subscript k the option that is used to perform

Γ hedging (for a generic option j). In this case, the criterion is the median of the following

P&Ls:

P&LMj (ΓM) = Oj,t=10:30am − ΓMj,t=10:30am ×Ok,t=10:30am

− (∆M
j,t=10:30am − ΓMj,t=10:30am ×∆M

k,t=10:30am)× X̃t=10:30am

− Oj,t=4:00pm − ΓMj,t=10:30am ×Ok,t=4:00pm

+ (∆M
j,t=10:30am − ΓMj,t=10:30am ×∆M

k,t=10:30am)× X̃t=4:00pm.

Table 3 contains hedging results for several moneyness levels (first column). Columns 3 and 4

refer to ∆ hedging. Columns 5 and 6 refer to Γ hedging. Needless to say, the best performing

method should deliver the smallest average P&L across log-moneyness levels. In this sense,

the reported findings are rather consistent. First, Edgeworth generally outperforms the two

competing methods in both out-of-the-money directions. The near at-the-money range is,

instead, one in which all methods perform similarly. Second, Edgeworth’s outperformance

is shown to be economically and, generally, statistically significant across several moneyness

levels. In situations in which Edgeworth does not outperform, the resulting figures are close

across models, with a difference which is typically insignificant. Third, as expected, BSM

performs better than BS, and more similarly to Edgeworth, particularly for deep out-of-the-

money levels.

It is interesting to notice that Edgeworth’s hedging performance is complementary to

16For OTM puts (resp. calls) with m = −0.5 (resp. m = 0.5) we use m = −1 (resp. m = 1).
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∆ hedging Γ hedging Pricing
Moneyness Volume Edg./BS Edg./BSM Edg./BS Edg./BSM RMSE Edg./BSM

−5.0 0.005 0.681∗∗∗ 0.997∗∗ 0.933∗∗∗ 1.145∗∗∗ 0.480
−4.5 0.009 0.657∗∗∗ 0.952∗∗ 0.847∗∗∗ 1.053∗∗∗ 0.462
−4.0 0.013 0.631∗∗∗ 0.895 0.718∗∗∗ 0.914 0.480
−3.5 0.024 0.661∗∗∗ 0.859 0.647∗∗∗ 0.725∗∗∗ 0.514
−3.0 0.022 0.725∗∗∗ 0.882∗∗∗ 0.666∗∗∗ 0.659∗∗∗ 0.503
−2.5 0.041 0.801∗∗∗ 0.903∗∗∗ 0.760∗∗∗ 0.704∗∗∗ 0.428
−2.0 0.069 0.881∗∗∗ 0.934∗∗∗ 0.846∗∗∗ 0.734∗∗∗ 0.361
−1.5 0.094 0.912∗∗∗ 0.970 0.867∗∗∗ 0.779∗∗∗ 0.239
−1.0 0.096 0.965∗∗ 1.005 0.890∗∗∗ 0.810∗ 0.205
−0.5 0.100 0.984∗ 0.991 1.042∗∗∗ 0.850 0.293
0.0 0.090 1.019 1.028 1.052∗ 1.007 0.423
0.5 0.080 1.037 1.016 1.026 0.883 0.592
1.0 0.102 1.111 0.991 1.118 0.923 0.397
1.5 0.120 0.933 0.748 0.999∗ 0.838∗∗ 0.256
2.0 0.072 0.599 0.587∗ 0.686∗∗∗ 0.729∗∗∗ 0.323
2.5 0.036 0.580 0.752 0.509∗∗∗ 0.803∗∗∗ 0.535
3.0 0.027 0.551 0.861 0.492∗∗∗ 0.976∗∗∗ 0.564

Table 3: We consider both ∆-hedging and Γ-hedging (with ∆-hedged option positions). The table
reports the ratios between the median P&Ls associated with three models (Edgeworth, BSM and
BS with the constant volatility replaced by the corresponding implied volatility) for different levels
of log-moneyness. For comparison with hedging performance (across log-moneyness levels), the last
column reports pricing results, i.e., the ratios between the RMSEs of Edgeworth and BSM. ∗, ∗∗

and ∗∗∗ denote significance at the 10%, 5% and 1% level, respectively. The time period is January
2, 2014, to May 11, 2023. Data source: CBOE.
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its pricing performance. In terms of pricing (res. hedging), Edgeworth has been shown to

be effective across log-moneyness levels and, in particular, at-the-money (resp. out-of-the-

money). Effective pricing, of course, hinges on accurate option prices. Hedging, on the other

hand, relies on accurate first and second derivatives of option prices. In this sense, pricing is

a static metric, hedging is dynamic. Under both a static and a dynamic metric, Edgeworth

performs satisfactorily.

In order to better understand the role that greeks obtained from alternative models play

across moneyness levels, Fig. 12 reports (in the upper left and right panels) the ∆s and Γs

of the three pricing models. In the lower left and right panels, instead, the figure reports

the ratios between the Edgeworth’s greeks and the corresponding greeks obtained from the

alternative specifications. Consistent with the findings in Table 3, the Edgeworth’s greeks

diverge from the BS and the BSM greeks in the out-of-the-money range. While divergence

from the latter is relatively more limited (albeit economically and statistically significant,

c.f. Table 3), divergence from the former is large.

This is particularly true in the case of Γ. The upper right panel of Fig. 12 justifies this

result. Because of β̃t and ρt, i.e., the characteristics that are central to the price expansion,

the Edgeworth’s Γ is peaked and left skewed. Fig. 13 provides an illustration. Increases in

the characteristic β̃t (treated here as a constant parameter, for illustration) yield increases in

Γ. More negative values of the characteristic ρt (treated here, again, as a constant parameter)

make, instead, Γ more left skewed. Combining the estimated average β̃t and the estimated

average ρt in the data (along with other model characteristics) leads to the graph in the

upper right corner in Fig. 12 and the reported divergence between Γ values across models.
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Figure 12: The figure reports average (across days) smoothed ∆s and Γs for three models:
Edgeworth, BSM and BS. The top panels report absolute values, the bottom panels report
ratios. The time period is January 2, 2014, to May 11, 2023. Data source: CBOE.
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Figure 13: The figure reports ∆ and Γ for options with 1 day to maturity implied by the
Edgeworth model with different values of the equity characteristics σt, ρt, and β̃t. The inten-
sity λt is set to zero.
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9 Pricing using the second specification

We now turn to the full expansion in Subsection 4.2. Before discussing our findings, we

emphasize that this specification is, understandably, computationally more intensive than the

baseline specification. Differently from the baseline specification, in fact, the full expansion

entails the computation of a bivariate and a trivariate integral, something which inevitably

increases the computational complexity of the problem. For Fourier pricing, we therefore

depend on a recently developed method (called SINC) introduced by Baschetti, Bormetti,

Romagnoli, and Rossi (2022). The method offers three benefits: 1) it allows pricing of an

entire cross-section of options with the same tenor and different strikes, 2) it is significantly

faster than successful, competing methods (e.g., the COS procedure of Fang and Oosterlee,

2009) and 3) in our experiments, it has demonstrated superior (over competing methods)

accuracy in pricing ultra short-tenor options, the subject of this article.

We begin with a restricted case in which we dispense with the volatility jumps (i.e., Eq.

(7) and Eq. (8) are removed). This restricted case is, of course, immediately comparable

to the baseline specification. Rather than writing the exact characteristic function of the

jumps in prices, we expand the same in the tenor τ, for small τ. The expansion, therefore,

simply amounts to ignoring terms of order higher than τ in the evaluation of ClogXd
t (u, τ).

Two observations are in order. First, the expansion of the jump characteristic function

inevitably requires the choice of a time-t jump measure which we assume to be conditionally

(on the time-varying jump features µj,t and σ
2
j,t) Gaussian for comparability with the base-

line, conditionally Gaussian, case. In this sense, while the expansion in ClogXc
(u, τ), i.e., the

continuous portion of the process’ characteristic function, is naturally viewed as been gen-

uinely nonparametric, the expansion in ClogXd
(u, τ) is logically parametric because of the

necessary distributional assumptions on the time-t jump size. Second, more importantly,

given consistent distributional assumptions on the jump sizes, for very short tenors like the

ones used in this study, the baseline specification and this second (restricted) specification

are expected to yield very similar outcomes. We confirm that this is, in fact, the case. The

RMSE (0.4918) is very close to that of the baseline specification (0.4754). In addition, all

the equity characteristics are virtually identical to those reported in Subsection 5.3. As for

the time-varying jump features, the median across days of the jump intensity, jump mean

and jump standard deviation are 0.5369, -0.0603 and 0.0703 in the baseline specification.
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They are 0.5474, -0.0557 and 0.0655 in the second (restricted) specification.

After establishing that expanding the characteristic function of the price jumps is imma-

terial for our short tenors, we turn to the full expansion. Our focus is now on the volatility

jumps. As emphasized previously, we allow for joint and idiosyncratic contributions of these

discontinuities. The result is additional effects on both skewness (through the term in Eq.

(7)) and kurtosis (through the term in Eq. (8)).

As in the case of the expansion for the characteristic function of the price jumps, im-

plementation now requires a choice of time-t volatility jump measure, both individually (in

Eq. (7)) as well as in a bivariate specification with the price jumps (in Eq. (8)). Consistent

with the work of Duffie, Pan, and Singleton (2000) and many others, we model the marginal

density of the volatility jump sizes as being exponential. The density of the idiosyncratic

price jump sizes is, as earlier, Gaussian with mean µj,t and variance σ2
j,t. The conditional

(on realizations of the volatility jump sizes) density of the joint price jump sizes is Gaussian

with variance σ2
j,t and mean µj,t+ ρjsσ, where sσ is a specific volatility jump size realization

and ρJ is a free parameter. Thus, conditional on zero volatility jump sizes, the idiosyncratic

price jumps and the joint price jumps have the same size density.

The variance jumps enter the process’ characteristic function to the same order as the

price jumps. Their impact on option payoffs is, however, further mediated by the driving

Brownian motion of the price process. We are, therefore, expecting their contribution to

short-term option valuation to be considerably more muted than that of the price jumps.

The RMSE (0.4625) is now only marginally lower than the one delivered by the first (baseline)

specification (0.4754). Once more, all of the equity characteristics are virtually identical to

those reported in Subsection 5.3. We recall that the first (baseline) specification prices within

the bid/ask for 80% of our options. It is, therefore, not surprising that adding volatility jumps

is not leading to meaningful price improvements. It is, nonetheless, revealing to notice that

the first specification was not unnecessarily loading on characteristics which would become

less important once the variance jumps are introduced. In fact, the role played by these

jumps is marginal in our data. On the one hand, we are not excluding that more constrained

(possibly affine) diffusive specifications may attribute a more important role to them. On

the other hand, these findings re-emphasize the ability of flexible diffusive dynamics - such as

the ones we assume - to yield effective higher-moment adjustments to the return distribution

and successful local pricing. We conclude that, relative to our assumed pricing and hedging
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metrics, a parsimonious and tractable specification - such as our baseline specification - fares

extremely satisfactorily. We return to the first specification in the next section and evaluate

it from a different angle.

10 0DTE risk premia

In this section we explore the informational content of 0DTEs for ultra short-term pre-

dictability. In particular, we focus on nearly instantaneous equity and variance risk premia.

In order to map the P-dynamics of the price process in Eq. (1) into Q-dynamics, we

assume that the pricing kernel Kt is of the form:

Kt = K0

(
X̃t

X̃0

)ϕ

e
∫ t
0 ζsds+ψ(σt−σ0), (11)

where ϕ < 0 and ψ > 0 are parameters controlling aversion to price risk and volatility

risk, respectively. ζt is a stochastic process representing time preferences. A similar non-

monotonic (in prices) specification for the pricing kernel has been studied by Christoffersen,

Heston, and Jacobs (2013) and Bandi and Renò (2016), among others. In parametric option

pricing models, Christoffersen, Heston, and Jacobs (2013) are emphatic about the role of

non-monotonicity in leading to superior fit.

The instantaneous return and volatility risk premia are defined as the difference between

the risk-neutral drift and the objective drift of the logarithmic price process and the volatil-

ity process, respectively. The following equations provide closed-form expressions for both

premia given the price dynamics in Eq. (1) and the pricing kernel in Eq. (11). The equations

specialize Proposition 8.1 in Bandi and Renò (2016) to our setting and are proved similarly.

In the case of the instantaneous return premium, we have

(µt + λtEt [ex − 1])︸ ︷︷ ︸
Et

[
dXt
Xtdt

] − (rt −
σ2
t

2
)︸ ︷︷ ︸

EQ
t

[
dXt
Xtdt

]
= −ϕσ2

t − ψρtσtβ̃t − λtEt
[
(eϕx − 1)(ex − 1)

]
. (12)
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As for the instantaneous volatility premium, we have

αQ
t − αt = ϕρtσtβ̃t + ψβ̃2

t , (13)

where αQ
t is theQ-drift of the volatility process. Both are spot equations providing a mapping

between time-t equity characteristics and time-t risk compensations. Our objects of interest

are the parameters ϕ and ψ of the measure change Kt. We will identify them either from

Eq. (12) or from Eq. (13). We will also do it jointly.

The intuition behind Eq. (12) and Eq. (13) is classical. The infinitesimal return risk

premium depends on the covariance between returns and sources of variation in the mea-

sure change (returns and volatility). The terms σ2
t and λtE

[
(eϕx − 1)(ex − 1)

]
capture the

variability of returns (in its diffusive and jump portion) while the term ρtσtβ̃t captures the

covariance between returns and volatility. The infinitesimal volatility risk premium depends,

instead, on the covariance between volatility and, again, sources of variation in the measure

change (returns and volatility). The term β̃2
t captures the variability of volatility while

the term ρtσtβ̃t captures the covariance between returns and volatility. This latter term is

common between the two infinitesimal premia. Thus, given the assumed measure change,

leverage affects both infinitesimal premia (c.f. Bandi and Renò, 2016, and Cheng, Renault,

and Sangrey, 2023).

We adopt the following empirical strategy. In the case of Eq. (12), we approximate the

jump portion of the return premium using a small-x Taylor expansion:

λtE
[
(eϕx − 1)(ex − 1)

]
≈ ϕλt(µ

2
j,t + σ2

j,t).

The latter term is analogous to the jump variation of Andersen, Fusari, and Todorov (2017).

Given the Taylor expansion, the return premium is now linear in ϕ and ψ. The parameters

can, therefore, be estimated by running a linear regression of ultra short-term excess returns

(dXex
t /Xtdt) on total (diffusive plus jump) variation, i.e., σ2

t +λt(µ
2
j,t+σ

2
j,t), and the leverage

term ρtσtβ̃t. We compute (annualized) excess returns dXex
t /Xtdt between 10:30 am (the

time at which we sample options and estimate the equity characteristics) and 4:00 pm (the

expiration time of the 0DTEs). Consistent with Eq. (12), we account for the convexity

adjustment.

Turning to Eq. (13), we note that we cannot retrieve αQ
t from the option panel directly
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since, given the expansion, only the sum αQ
t + δ̃t is identified. We instead use the V IX index.

If we define by V IX0
t the V IX index computed using 0DTE options, we obtain:

(
V IX0

t

)2
= EQ

t

[
1

T − t

∫ T

t

σ2
sds

]
= σ2

t + EQ
t

[
1

T − t

∫ T

t

(σ2
s − σ2

t )ds

]
= σ2

t + EQ
t

[
1

T − t

∫ T

t

(∫ s

t

2σuαu + β̃2
u

)
duds

]
≈ σ2

t +

[
αQ
t σt +

1

2
β̃2
t

]
(T − t). (14)

The penultimate line in Eq. (14) follows from Itô’s lemma since

dσ2
t = (2σtαt + β̃2

t )dt+ 2σt (βdWt + β′
tdW

′
t) .

The last line in Eq. (14) is a valid approximation if the equity characteristics are reasonably

stable over the horizon T − t. The shorter the horizon, the better the approximation. In our

case, T − t is only 5.5 hours and, therefore, we expect the approximation to be empirically

meaningful. Eq. (14) is used to recover αQ
t from the estimated equity characteristics and

the V IX. As for its objective counterpart, i.e., αt, we employ an estimate of σT ′ at T ′ > t

and write

αt =
σT ′ − σt
T ′ − t

.

Because the equity characteristics are estimated each day at 10:30 am, we take t = 10:30 am

and T ′ = 10:30 am on the next day.

We run the following regressions, individually and jointly:17

dXex
t +

1

2
σ2
t = a+ ϕ

(
−σ2

t − λt(µ
2
j,t + σ2

j,t)
)
+ ψ

(
−ρtσtβ̃t

)
+ εrt

αQ
t − αt = b+ ϕρtσtβ̃t + ψβ̃2

t + εσt .

Estimation results, along with HAC-corrected t-statistics, are reported in Table 4. As ex-

17We use moving averages of estimates of αQ
t − αt and β̃t with a window of 22 days to reduce the impact

of estimation error.
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a b ϕ ψ R2(%)

Return premium 0.06 − 6.66 2.09∗∗∗ 1.58
(0.24) (1.45) (2.76)

Volatility premium − 7.65 −13.55∗∗∗ 1.88∗∗∗ 21.20
- (1.32) (−6.75) (3.72)

Joint estimation −1.55∗∗∗ 7.85 −12.57∗∗∗ 1.89∗∗ 34.81
(−4.68) (0.79) (−6.65) (2.37)

Table 4: Instantaneous risk premia. We estimate the model in Eq. (12) and (13) individually
(by OLS) and jointly (by GMM). ∗, ∗∗ and ∗∗∗ denote significance at the 10%, 5% and 1%
level, respectively. The time period is January 2, 2014, to May 11, 2023. Data source:
CBOE.

pected, the return premium contains more limited pricing signal than the volatility premium.

In the return premium, diffusive and jump variation do not lead to a significant estimate of

ϕ, the parameter controlling the traditional risk-return trade-off. The covariance between

shocks to prices and shocks to volatility (i.e., the leverage-related term ρtσtβ̃t) is, instead, a

significant predictor. The volatility risk premium is driven by both the volatility-of-volatility

(which is consistent with the logic in Bollerslev, Tauchen, and Zhou, 2009) and the leverage

term. The resulting R2 is a remarkable 21.2% in a univariate specification (and 34.81% in a

joint specification) and much higher than for the return premium (1.58%). Importantly, the

parameter estimate of ψ in the two individual regressions are very close to each other in spite

of the stark difference in identification strategy: through leverage, in the return equation,

and through the volatility-of-volatility, in the volatility equation.

In principle, Eq. (12) requires a P-jump variation on the right-hand side. Because of our

identification strategy based on 0DTEs, we are forced to work with a Q-jump variation. We,

therefore, re-estimate the model by allowing the partial effect ϕ to change across diffusive

and jump component, the parameter ϕc being now associated with diffusive variation (σ2
t )

and the parameter ϕd being associated with Q-jump variation (λt(µ
2
j,t + σ2

j,t)), c.f. Table 5.

Econometrically, this separation readily accommodates a Q-jump variation that is propor-

tional to P-jump variation (without using time-series data to estimate P-jump variation).

The associated slope estimate would be an estimate of ϕd divided by the proportionality
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a ϕc ϕd ψ R2(%)

Return premium −0.76∗∗∗ 12.02∗∗ −49.51∗∗∗ 2.51∗∗∗ 2.48
(−2.67) (2.42) (−2.74) (3.40)

(without outliers) −0.91∗∗∗ 7.67 −41.25∗∗∗ 2.64∗∗∗ 1.58
(−3.26) (1.53) (−3.15) (2.89)

Table 5: Infinitesimal return risk premium. We estimate the model in Eq. (12). ∗, ∗∗ and ∗∗∗

denote significance at the 10%, 5% and 1% level, respectively. The time period is January
2, 2014, to May 11, 2023. The second regression excludes instances in which the annualized
volatility is larger than 100%. Data source: CBOE.

factor.

Importantly, the parameter ψ continues to be estimated (through the leverage-related

term) in a robust way. Consistent with theory, the parameter ϕd is estimated to be negative

(like ϕ in the volatility premium equation). The parameter ϕc is, instead, estimated to be

positive but the removal of days in which annualized spot volatility is larger than 100%

would make it statistically insignificant. We conclude that jump variation has the potential

to drive price compensations in the return equation (which is consistent with Andersen,

Fusari, and Todorov, 2017), the impact of diffusive variation being - once more - rather

weak. Economically, the split between ϕc and ϕd would also justify a stochastic discount

factor in which the effect of prices on risk depends on the continuous and discontinuous

price components in a differential way. This line of inquiry - and the distinction between

the two explanations - is better left for future work explicitly devoted to this subject. Our

0DTEs-based findings are, however, suggestive.

Two observations are in order. First, our results show that the leverage-related term is an

effective predictor, irrespective of whether it is contained in the return premium (with weight

ψ) or in the volatility premium (with weight ϕ). Using different conceptual frameworks,

recent work has highlighted the identification potential of leverage for both of the parameters

of the change of measure in Eq. (11), c.f. Bandi and Renò (2016) and Cheng, Renault, and

Sangrey (2023). We validate their theory with data. Second, the dependence between

predictors and return/volatility premia is, as implied by theory, effectively instantaneous.

Table 4 is revealing of the fact that the observation of a panel of 0DTE options at 10:30 am

facilitates prediction of the subsequent 5.5-hour return, as well as of the volatility premium.
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For both of these predictions, a key role is played by the instantaneous covariance between

variance and returns, a quantity whose components (σt, ρt and β̃t) are central to our proposed

Edgeworth-like expansions.

11 Conclusions

Much of the growth in option trading over the last few years has been in the ultra short-

tenor segment of the market, that occupied by 0-days-to-expiry or 0DTE options. 0DTEs

are viewed by all as an opportunity and by some as a risk.

Our objective is to value 0DTEs, a process which is important for the buy side in order to

understand fair values, for the sell side to hedge risks (possibly beyond the 0DTEs enhanced

gamma risk) and for regulators to assess systemic implications.

We argue that tilting the conditional distribution of the return process over short horizons

is central to the effective pricing (and hedging) of 0DTEs. We achieve tilting by invoking

local Edgeworth-like expansions around the Gaussian distribution. The expansions add -

locally - skewness (through continuous leverage) and kurtosis (through, e.g., the volatility-

of-volatility), the contribution to skewness and kurtosis delivered by volatility jumps being

empirically unimportant. The end result is accurate replication of both the implied volatility

skew and convexity at-the-money, near at-the-money and beyond.

While focusing on 0DTEs is natural given the growth and large notional value of the

0DTE market, the proposed valuation method is of independent interest. Because it is

based on local expansions of the characteristic function of the price process, it is - in fact -

generally applicable to the pricing of any financial instrument with short-tenor payoffs.

Of independent interest is also the recovery of the time series of the underlying equity

characteristics (σt, β̃t and ρt, in primis). Large literatures have studied them (generally,

one at a time). Using our approach to pricing, we identify them jointly, i.e., without the

need for noisy two-step procedures requiring preliminary estimates of σt as an input for the

identification of β̃t and ρt. Importantly, we argued that their recovery does not have to hinge

on the entire implied volatility surface. If conducted using near at-the-money options - along

with our Edgeworth-like expansion for diffusive dynamics only - such recovery may dispense

with a specification of the jump measures.
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acteristic function with application to estimation of leverage from options,” Stochastic

Processes and their Applications, 142, 671–705.

Vetter, M., et al., 2015, “Estimation of integrated volatility of volatility with applications to

goodness-of-fit testing,” Bernoulli, 21(4), 2393–2418.

Vilkov, G., 2023, “0DTE Trading Rules,” Available at SSRN.

Wang, C. D., and P. A. Mykland, 2014, “The estimation of leverage effect with high-

frequency data,” Journal of the American Statistical Association, 109(505), 197–215.

Wang, C. D., P. A. Mykland, and L. Zhang, 2017, “Estimating and forecasting volatility

using leverage effect,” Available at SSRN 3083253.

50



Xiu, D., 2014, “Hermite polynomial based expansion of European option prices,” Journal of

Econometrics, 179(2), 158–177.

Zu, Y., and H. P. Boswijk, 2014, “Estimating spot volatility with high-frequency financial

data,” Journal of Econometrics, 181(2), 117–135.

51



A Pricing

Consider a call option price, but a similar argument applies to puts:

CK,τ = EQ[max(Xτ −K, 0)] exp−rτ

=

[∫ ∞

K
(Xτ −K)pQ(Xτ )dXτ

]
exp−rτ ,

where pQ(XT ) is the risk-neutral density of the price process. Now, write the de-meaned standard-

ized log price process as

Zτ =
ln(Xτ )− ln(Xt)−

(
rt − 1

2σ
2
t

)
τ

σt
√
τ

=
ln(Xτ )− aτ

bτ
.

Note that ln(Xτ ) = aτ + bτZτ and, of course, Xτ = eaτ+bτZτ . Hence,

CK,τ =

[∫ ∞

K
(Xτ −K)pQ(Xτ )dXτ

]
e−rtτ

=

[∫ ∞

lnK−aτ
bτ

(eaτ+bτZτ −K)pQ(Zτ )dZτ

]
e−rtτ

=

[∫ ∞

lnK−aτ
bτ

eaτ+bτZτ pQ(Zτ )dZτ

]
e−rτ︸ ︷︷ ︸

(1)

−

[
K

∫ ∞

lnK−aτ
bτ

pQ(Zτ )dZτ

]
e−rtτ︸ ︷︷ ︸

(2)

,

where pQ(Zτ ) is now the Q-density of Zτ . As in Black and Scholes, define

lnK − aτ
bτ

= −d2,τ = −

(
ln Xt

K + (rt − 1
2σ

2
t )τ

σt
√
τ

)
.

Now, by Fourier inversion, denoting by ϕQ the moment generating function of Zτ , we obtain

(2) =Ke−rtτ
∫ ∞

−d2,τ
pQ(Zτ )dZτ

=Ke−rtτ
(
1

2
+

1

π

∫ +∞

0
R
[
eiud2,τϕQ(iu)

iu

]
du

)
.
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Similarly,

(1) =e−rtτ
∫ ∞

−d2,τ
eaτ+bτZτ pQ(Zτ )dZτ

=St

(
1

2
+

1

π

∫ +∞

0
R
[
eiud2,τϕQ(iu+ bτ )

iuertτ

]
du

)
.

We use ϕQ(iu) = Et[eiuZτ ], as derived in Theorem 2 of Bandi and Renò (2017). We note that,

when ϕQ(iu) is Gaussian, the parameters are constant, and price jumps are absent, the pricing

formula delivers the Black and Scholes model. When ϕQ(iu) is (conditionally) Gaussian, volatility

is time-varying and price jumps are present, the expression yields the model in Andersen, Fusari,

and Todorov (2017). In our case, no distributional assumptions on Zτ are made and all parameters

are allowed to be time-varying. Both price and volatility jumps are permitted.
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