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Abstract

Does data mining always increase price efficiency? Not necessarily. I incorporate

data mining into a standard asset pricing model and identify a novel cost of complexity

that arises endogenously from data mining. When a data miner explores alternative

data, she faces a scarcer training history relative to potential predictors (increasing

complexity) and an increasing difficulty in extracting useful signals (decreasing return

in data efficacy). The cost of complexity and decreasing return in data efficacy to-

gether imply a finite optimal data mining level, such that excess data mining will lead

to lower price informativeness. Empirically, I provide evidence of decreasing return in

data efficacy in the context of the “factor zoo”, and I show that the release of satellite

data reduces price informativeness in a difference-in-difference setting.
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1 Introduction

In recent years, alternative data sets have become more widely used by investors to make

predictions on future asset returns. Asset managers enhance their predictor set by sourcing

unconventional data, including news articles, announcement transcripts, and satellite images,

in addition to traditional signals from past price patterns and firm fundamentals. The

prevailing notion is that data mining efforts enable investors to derive a more precise signal

from these predictors, thus enhancing price discovery and improves price efficiency (see Bai

et al. (2016); Dávila and Parlatore (2023), among others).

However, in this paper I show that data mining could lead to lower price informativeness.

This surprising result arises from the interaction between two realistically motivated model

features: complexity and data efficacy. On the one hand, in the real world investor have only

a finite history to estimate the statistical relationship between predictors and future payoff.

As the set of predictor expands, insufficient training history introduces complexity into the

investor’s learning problem. On the other hand, investor find it increasingly challenging to

extract truly useful signals from newly acquired data sets, resulting in a decreasing marginal

benefit of new predictor.

In this paper, I study a simple model where a representative investor tries to estimate

future asset payoffs and incorporates the estimation into prices, with the presence of com-

plexity and decreasing return in data efficacy. Importantly, I assume that the investor takes

a “data-driven” approach in estimating payoffs, such that the investor’s prior belief puts

equal weight on all signals she has. With decreasing return in data efficacy in the signal

discovery process, an equal prior weight means the investor pays equal attention to less in-

formative signals as the more informative ones. When training history is sufficient, such

equal attention to all predictors doesn’t have an effect on the posterior estimates, because

there’s enough data for the investor to figure out the true predictive relationships. However,

when there’s insufficient training data, complexity creates limits to learning that prevents

precise estimation of the true predictive relationship. In the model, I illustrate that with de-

creasing return in data efficacy, for the investor with equal prior on all signals, the marginal

cost of data mining (higher complexity) eventually dominates the marginal benefit (better

approximation of true DGP), leading to a decline in price informativeness.

In the real world, investors must estimate a statistical model to predict future asset

payoff from their sets of predictors. With an increasing number of predictors, they grapple

with models featuring heavier parameterization. Unlike other machine learning and AI

domains, such as auto-driving cars and natural language processing (NLP), where training

data is abundant and easy to generate, obtaining additional time series return data for return

prediction is not easily achievable. The historical data for training the statistical model thus
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remains limited, at least in the near future1. Additionally, most alternative data sets have a

relatively short historical span. As more potential predictors emerge, the training data set

becomes increasingly insufficient relative to the size of signals. Thus, data mining elevates

the “complexity” of investor’s estimation problem.

At the same time, in the real world the newly acquired alternative data is often less useful

than the old ones in terms of predictive power2. For instance, investors have long explored

accounting-based variables like valuation ratios or profitability to predict stock return. These

variables are evident predictors because there’s direct economic connection between these

fundamentals and a firm’s future return3. In contrast, many alternative data sets, such as

web traffic, satellite images, and transcript data, are more challenging to process, have a

lower signal-to-noise ratio, and only have an indirect connection to future stock returns. As

a result, the “data efficacy” of investor’s information set might not scale up linearly with

the size of the data set.

In Section 2, I present empirical evidence on the decreasing return in data efficacy within

the context of the “factor zoo” and Stochastic Discount Factor (SDF) estimation. Regarding

the stock-level return predictors discovered in the previous literature, I demonstrate that the

marginal benefit (in terms of SDF Sharpe ratio) declines as more raw predictors are used

to construct an out-of-sample SDF estimate. Additionally, employing a neural network to

introduce nonlinearity, I show that the out-of-sample Sharpe ratio eventually declines with

the inclusion of more predictors.

It remains unclear how the quest of alternative data affects asset prices in the presence

of these realistic complications. In this paper, I theoretically characterize the impact of data

mining on equilibrium asset prices, accounting for insufficient training history and decreasing

return in data efficacy. Without loss of generality, my approach assumes the true asset payoff

ft+1 is driven by a set of P predictive signals linearly, i.e.

ft+1 =
P∑
i=1

βiXi,t + ϵt+1 (1)

On the other hand, the investor (data miner) only has access to a data set of P1 signals.

Among these P1 signals, Px of them are the truly useful signal X, while the other signals are

redundant, though the investor doesn’t know their usefulness ex-ante. The investor needs to

1For example, at the end of 2022, the CRSP aggregate stock market return has 1164 monthly observations,
while the average number of monthly observations for CRSP individual stock is 133. Such point on insufficient
training data is also made in Fernández-Villaverde (2021)

2In a Bloomberg article, many practitioners suggested that “investing signals are hard to find” among
alternative data sets. For example, one fund manager said “I’ve looked at probably 700 or 800 data sets over
the last 10 years and about 90 to 95% of data sets tend to have basic evident biases to them...They don’t
really deliver the claims the vendor has made”.

3See Fama and French (1992, 2015); Zhang (2005); Hou et al. (2015).
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estimate the predictive relationship β’s of these P1 signals from past realizations of payoff

f and observed signals, but can only observe as far back as T periods. I capture the idea

of data mining as an increase in investor’s signal set P1, while recognizing the insufficiency

in training history by considering T to be relatively small and fixed compared to P1. See

Figure 4 for an illustration of the data mining process.

To represent the notion of training data insufficiency, I adopt the terminology from Kelly

et al. (2021) and define c = P1/T as complexity, which captures the heaviness of model

parameterization relative to training data size. Since the training data size T doesn’t scale

easily in the real world, the increase in P1 during the data mining process effectively increases

c linearly. I show that complexity is closely related to the investor’s estimation uncertainty.

To capture the varying usefulness in data sets acquired in different phases of the data mining

process, I introduce κ = Px/P as the measure of data efficacy. A higher κ means the data

miner’s data set contains many useful signals, while a lower κ implies that most acquired data

sets are useless. As the data miner expands the data set size P1 (and equivalently increases

c), more true predictive signals are discovered, leading to an increase in data efficacy κ.

However, after exploiting the obvious signals, finding additional true signals becomes more

difficult, causing the increase in data efficacy to slow down. Therefore, I assume that κ is

an increasing concave function in P1, capturing the decreasing return to scale in the data

mining process.

I explore how a representative, risk averse Bayesian data miner forms posterior belief

about future payoff and prices assets in this information environment. I assume that the

data miner adopts a prior belief that all signals have the same predictability. This formulation

mimics a “quant” investor in the real world, who doesn’t have special expertise in analyzing

any specific subset of signals, but instead takes a data-driven approach and let the data

speak about each signal’s predictability. In fact, many widely-used machine learning models

such as Ridge or LASSO regression can be thought of as generated by the posterior of a data

miner with this equal predictability prior.

I theoretically characterize how price volatility, risk premium, and price informativeness

responds to an increase in P1 due to data mining. As a benchmark, I first characterize

pricing results when there’s sufficient training history, i.e. when T is large relative to P1 so

that c ≈ 0. In this scenario, the investor’s prior inconsequential, and they can estimate the

true β without any estimation uncertainty. As a result, the variation in price aligns with

the variation in the payoff from the observed true predictors, while redundant signals receive

zero coefficient estimates and exert no impact on price. In this case, despite the decreasing

return to scale in data efficacy, price informativeness always increases with data mining.

I then depart from the assumption of sufficient training data and examine the scenario

with limited training history. Asset pricing moments differ from the benchmark, with the dis-

tortion comes from two sources. First, with complexity c > 0, the data miner lacks sufficient
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training data to recover the true model parameters, resulting in noisy forecasts influenced

by sampling errors in the training history. Second, higher complexity induces increased

shrinkage in the estimator, which increases conditional bias. This shrinkage stems from both

explicit and implicit sources. Explicit shrinkage occurs when the Bayesian investor, with an

informative prior, opts for higher shrinkage to address the challenge in parameter estimation

posed by an increase in c. Implicit shrinkage emerges when c > 1 due to the fundamental

difficulty in constructing conditionally unbiased forecasts4.

The estimation challenge posed by data mining must be weighed against the benefit it

brings, namely an improved information set for capturing the variability in future payoffs, to

fully characterize how data mining affects price informativeness. I demonstrate that in the

presence of decreasing returns to scale in data efficacy, as observed in the real world with

the mining of alternative data sets, the advantage derived from expanding the predictor set

diminishes. At some point, it will fall below the marginal cost of complexity. I illustrate

that with decreasing returns to scale in data efficacy, there exists an optimal finite level

of data mining P ∗
1 that maximizes both individual investor’s utility and the overall price

informativeness. Further data mining that increases complexity beyond P ∗
1 fails to justify

the higher estimation difficulty and results in diminished price informativeness and investor

utility, as measured by the Sharpe ratio. Intuitively, this surprising result can be understood

as a result of investor using the data-driven approach when data has diminishing usefulness.

When the data miner adopts a prior belief that all predictors are potentially useful, he will

train the model trying to figure out the usefulness of signals that are in fact redundant. Such

estimation on redundant signals will interfere with learning the useful signals when there’s

insufficient training data, thus creating decrease in price informativeness.

I also characterize how price volatility and risk premium evolve with the scale of data

mining. For price volatility, I show that it increases at the beginning, as the variation

gets captured in the true predictors increases. But price volatility eventually decreases as

complexity introduces higher shrinkage. As for the risk premium, I demonstrate that it

is linked to data miner’s perceived risk, which stems from three sources: uncertainty from

parameter estimation, unexplained variation due to missing signals, and truly unlearnable

residuals. I delineate how it changes with P1, illustrating that the risk premium decreases

more slowly than in the benchmark case due to nonzero estimation uncertainty.

Finally, while a comprehensive empirical evaluation of the impact of data mining on price

efficiency is difficult and beyond the scope of this paper, I offer suggestive evidence that

empirically indicates that data mining can lead to lower price informativeness. Specifically, I

assess the causal effect of mining alternative data on price informativeness by leveraging the

4The implicit shrinkage is the key driver to the “benign overfit” or “double decent” phenomenon in large
statistical models. See Hastie et al. (2022), Belkin et al. (2019), Ghosh and Belkin (2022) for more detailed
discussions on the implicit shrinkage.
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release of satellite data as an expansion to investor’s predictor set. Employing a difference-

in-difference research design, I show that the release of parking lot traffic data on retailers

from satellite image reduces price informativeness for the stocks covered by this data set. I

also show that this effect is more pronounced for firms with shorter data availability (higher

complexity), suggesting insufficient training history is an important channel in which data

mining affects price informativeness.

Literature This paper contributes to the growing literature that studies decision making in

a high dimensional setting, such as Aragones et al. (2005), Al-Najjar (2009) and Montiel Olea

et al. (2022). My paper is closely related to the recent work in Martin and Nagel (2022),

who show that cross-sectional return predictability can arise naturally when investors face

parameter uncertainty on asset prices in the high-dimensional learning, and Balasubramanian

and Yang (2019) who studies trading game in high dimensional setting with uncertainty

about other trader’s prior. My Bayesian agent setup is similar to Martin and Nagel (2022),

but instead of focusing on return predictability from risk neutral agents, I study the general

equilibrium pricing when the agent is risk averse, and I study how data mining affects

risk premium, price volatility, and price informativeness in the equilibrium. My paper also

connects to the literature that emphasizes the role of parameter estimation in shaping asset

pricing moments (Lewellen and Shanken (2002), Pastor and Veronesi (2009), Collin-Dufresne

et al. (2016)). Many of these models assume low-dimensional data generating process but

with regime shifts, such that agents effectively has limited training data in each regime to

estimate parameters precisely. On the contrary, my model directly formulates parameter

uncertainty when the number of potential signals increases.

This paper also contributes to the study of big data and its impact on asset prices (Gold-

stein et al. (2021); Farboodi et al. (2022a)). My model provides realistic characterization

on the process of data mining, and I explicitly derive the limiting asset pricing moments in

closed form. My paper also speaks to information and learning models in finance (e.g. Vives

(2010), Farboodi et al. (2022a); Veldkamp (2023b)). In these models, the cost of information

acquisition plays an important role. Many studies justifies the cost of information by the

cost of purchasing data set, or the burden on information processing. In my paper, the

cost of information arises endogenously as data mining process expands, because it makes

training data scarcer relative to the number of parameters, which leads to higher estimation

difficulty. My paper also connects to the recent literature that tries to value data as an asset

(Farboodi et al. (2022b), Veldkamp (2023a)), such that my model suggests that the length of

training history is an important determinant of investor’s valuation for data. My work also

connects to the recent literature that studies the effect of reducing information acquisition

cost on price informativeness, such as Banerjee et al. (2018); Dugast and Foucault (2018,

2023). In many works in this literature, reduction in information acquisition cost doesn’t
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necessarily lead to higher price informativeness due to investor’s strategic choice when there’s

heterogeneity in trading motives or properties of signals. This paper identifies a more direct

mechanism why data mining might not lead to more efficient price even in the absence of

any heterogeneity.

This paper also connects to the emerging literature on applying machine learning models

to return predictions (e.g. Gu et al. (2020), Freyberger et al. (2020), Nagel (2021), Kelly and

Xiu (2023)). In this literature, researchers propose to use sophisticated nonlinear models

to approximate the unknown functional form of asset returns. The virtue of complexity

literature (e.g. Kelly et al. (2021), Didisheim et al. (2023)) shows that when expanding model

size, the gain from better approximation dominates the cost of estimation uncertainty when

the model admits universal approximation property. While I use a similar model setup, my

paper studies expanding raw predictor data sets rather than model approximation capacity.

The decreasing return to scale in data efficacy contrasts the constant return to scale in

modeling capacity as in this literature, and is a key distinction to understand the impact of

data mining in the real world.

The paper proceeds as follows. In Section 2, I provide empirical evidence on decreasing

return in data efficacy in the context of SDF estimation. In Section 3, I set up the model,

introduce the process of data mining, and derive the benchmark asset pricing results when

there’s sufficient history. In Section 4, I derive the main asset pricing results with insufficient

history and decreasing return in data efficacy. In Section 5 I estimate the causal impact of

satellite data release on price informativeness. Section 6 concludes. Additional results and

all proofs are in appendix.

2 Evidence of Decreasing Return in Data Efficacy

In this section, I offer empirical evidence of decreasing return in data efficacy in the context

of a standard empirical problem in asset pricing: estimating the Stochastic Discount Factor

(SDF) from US stock returns. I demonstrate that the marginal benefit of data mining (dis-

covering additional predictors), measured by increase in out-of-sample Sharpe ratio, declines

as the predictor set expands, indicating a decreasing return in data efficacy.

2.1 Data

I obtain monthly stock characteristics data constructed in Jensen et al. (2022) (JKP hence-

forth), which includes 153 characteristics for each stock from 1963 to 20195. Since some

5The JKP data set is publicly available at https://jkpfactors.com/. It includes NYSE/AMEX/NASDAQ
securities with CRSP share code 10, 11 or 12. For our analysis I exclude “nano” stocks, which are stocks
with market capitalization less than 1% across all NYSE stocks.
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of the JKP characteristics have low coverage, especially in the early parts of the sample, I

reduce the 153 characteristics to a smaller set of 130 characteristics with the fewest missing

values. I drop stock-month observations for which more than 30% of the 130 characteristics

are missing. Next, I cross-sectionally rank-standardize each characteristic and map it to the

[-0.5, 0.5] interval, following Gu et al. (2020). The final 130 stock-level characteristics forms

the potential predictor set6.

2.2 Empirical result

I replicate the real-world data mining process by progressively using additional predictors

to form factor portfolios and using them to construct the SDF. Specifically, at each time

t, I construct factor returns Ft+1 = S ′
tRt+1, where St is the matrix of cross-sectional values

of characteristics at time t. I then build SDF from those factor returns by estimating a

Maximum Sharpe Ratio Regression7:

λ̂(z) =
(
zI + Ê[FtF

′
t ]
)−1

Ê[Ft]

= argmin
λ

(
T∑
t=1

(1− λ′Ft)
2 + z||λ||2

)
(2)

Here, λ̂(z) is the SDF weight on factors, T is the estimation period, and Ê[Ft] =
1
T

∑
t Ft

and Ê[FtF
′
t ] =

1
T

∑
t FtF

′
t are the sample mean and second moment of the factors. The

out-of-sample SDF portfolio is then constructed as

R̂SDF
T+1 = λ̂(z)′FT+1 (3)

Intuitively, this regression finds the combination of factors Ft that behave as closely as

possible to a positive constant (in the l2 sense), which is tantamount to finding the portfolio

with the highest Sharpe ratio.

In the first exercise, I gradually increase the size of St from 2 to 130 using the raw

characteristics from JKP, and estimate the out-of-sample SDF considering a grid of ridge

penalties z ∈ {10n|n ∈ {−9, · · · 3}}. Starting from January 1973, in each month t, I use a

rolling window of 120 months to estimate λ̂ in (2). I then compute the out-of-sample SDF

portfolio return in the subsequent month, and from the sequence of out-of-sample monthly

SDF returns I compute its Sharpe ratio.

6One concern with this data set is that these predictors are selected from previous studies that are shown
to strong predictability of future returns, therefore doesn’t generalize to the new signals yet to be discovered.
In Appendix D.1 I extend the predictor set to include hypothetical signals, and I show that out-of-sample
Sharpe ratio will not improve when more signals are included if the training period is short, i.e. there’s
nontrivial complexity in the estimation problem.

7see Didisheim et al. (2023); Kelly and Xiu (2023)
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Figure 1 shows the out-of-sample SDF Sharpe ratio as I progressively increase predictors

for factor construction. I focus on the best Sharpe ratio across all shrinkage z. To mitigate

randomness in the order of addition, I perform 20 random orderings and report their aver-

age. The central conclusion of my analysis is that the marginal benefit of using additional

predictor diminishes as the predictor size increases: the increase in Sharpe ratio slows once

more predictors are discovered, eventually plateauing. In the terminology used throughout

the paper, data efficacy exhibits decreasing returns. In Figure 12 and 13 in Appendix D I

replicate the exercise for different rolling windows and in different size groups, and I find the

decreasing return pattern is robust.

Figure 1: Out-of-sample SDF (annualized) Sharpe ratio based on factors constructed by
different sizes of predictor sets. I gradually increase the set of JKP predictors used to
construct factors and estimate SDF using (2) and (3). I report the highest Sharpe ratio
across shrinkage z. Each light blue line represent a random order of discovering predictors,
and the black line is the average across random orderings.

In Figure 1, although the gain in Sharpe ratio is decreasing, the general pattern is in-

creasing in the number of raw predictors discovered. This is because the raw JKP predictors

are strong predictors of the cross-sectional expected return by previous research. Could it

be the case that adding more predictors decreases the SDF performance? I explore this

question by adding more “data-mined” variables constructed in Chen et al. (2022) and see

how SDF Sharpe ratio changes. These variables are constructed by taking ratios and scaled

first differences of Compustat accounting variables and CRSP market equity. I gather 991
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value-weighted long short factors built on data-mined signals that have no missing obser-

vations and have positive Sharpe ratio in the full sample. This process ensures that the

data-mined signals indeed carry predictability of expected return in the cross-section. I then

gradually add the data-mined factors on top of the 130 JKP factors to and estimate the

SDF Sharpe ratio, following a decreasing order of individual factor’s ex-post Sharpe ratio.

In other words, I assume that investor discovers the strongest signal first, followed by the

second strongest and so forth.

Figure 2: Out-of-sample SDF (annualized) Sharpe ratio based on factors constructed from
both discovered and hypothetically data-mined factors. The first 130 factors are discovered
by previous literature and constructed in JKP. The following factors are data-mined from
Chen et al. (2022). The black line (left axis) shows the out-of-sample SDF Sharpe ratio, and
the blue bars shows the full-sample Sharpe ratio of each added data-mined factor.

Figure 2 shows how SDF out-of-sample Sharpe ratio changes when we further data-

mine accounting variables and include hypothetical factors based on their full-sample Sharpe

ratio. As individual data-mined signal each have positive Sharpe ratio, they all contain

predictability about future cross-sectional stock returns to some degree. However, when we

combine their predictability together and estimate an SDF jointly, the performance starts

to decrease when we have more factors in the model. Put it differently, more signals hurts

model performance when combined together even when each one of them carries incremental

information.

Finally, in the third exercise, rather than directly using a subset of the 130 predictors,
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I use their nonlinearly transformed counterparts to create factors. This approach can be

understood as building a machine learning SDF, where the nonlinear transformations can

be viewed as nonlinear basis functions for nonparametric approximators of SDF weights.

Following Didisheim et al. (2023) I use random Fourier features (RFF) to transform the raw

signals. Specifically, at each time t, I build

S̃t = [sin(γStω1), · · · sin(γStωP/2), cos(γStω1), · · · cos(γStωP/2)] (4)

where ωi is a random vector with same size as St drawn from iid normal distributions. Each

column in S̃t can be thought of as a random linear combination of the raw characteristics St

fed through the trigonometric activation functions. As before, I progressively increase the

set of predictors in St from 2 to 130 and for P ∈ {100, 500, 1000} I perform the RFF trans-

formation to generate S̃t. I then use S̃t to generate factors and estimate SDF as described

before8.

Figure 3 shows the out-of-sample Sharpe ratio of machine learning SDF. I arrive at

the same conclusion as before: that marginal benefit of additional predictor is decreasing.

In fact, for fixed model capacity (fixed P ), the marginal benefit can be negative–using

more predictors as input to nonlinear transformations eventually harms the out-of-sample

Sharpe ratio. This evidence suggest that additional predictors become “redundant” once

many predictors are already discovered for models with fixed capacity, and assigning nonzero

weights to them impairs model performance. In Figure 14 and 15 in Appendix D I again

find the pattern is robust in different rolling windows and size groups.

In conclusion, these empirical results offer evidence of decreasing returns in data efficacy

for stock-level predictors: as investors mine additional predictors, the marginal benefit of new

predictor decreases, and investors will fail to utilize the incremental information provided by

newly-mined predictors, resulting in a decrease in model performance. Motivated by these

empirical facts, I then proceed to build a model to study the asset pricing implication of

data mining, and in Section 4 I incorporate decreasing return in data efficacy in the model.

3 An Asset Pricing Model with Data Mining

In this section, I introduce an asset pricing model while formulating the idea of data mining.

I begin with an economy featuring a single asset and a representative risk-averse Bayesian

investor (data miner). The investor needs to forecast asset payoff generated by a high-

dimensional set of predictive signals using past realizations of signals and payoffs. The

8The parameter γ controls the Gaussian kernel bandwidth in generating random Fourier features. Fol-
lowing Didisheim et al. (2023), I randomly choose γ from the grid [0.5, 0.6, 0.7, 0.8, 0.9, 1.0] for each ωi that
I generate. This embeds varying degrees of nonlinearity in the generated features set S̃t. For each nonlinear
feature, I again cross-sectionally rank-standardize it to be in [−0.5, 0.5] interval.
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Figure 3: Out-of-sample SDF (annualized) Sharpe ratio based on factors constructed by
random Fourier features (RFF) of different sizes of predictor sets. I gradually increase the
set of JKP predictors used in RFF as in (4) and estimate SDF using (2) and (3) on RFFs
with different size P . I average across 20 draws of random weights and report the highest
Sharpe ratio across shrinkage z. Each light blue line represent a random order of discovering
predictors, and the black line is the average across random orderings.
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process of data mining involves expanding the set of signals, which includes both true pre-

dictors and redundant predictors, used by the investor to forecast the payoff. I derive the

posterior distribution of the asset payoff as a function of the number of predictors and num-

ber of training data points. As a benchmark, I characterize the equilibrium risk premium,

price volatility, and price informativeness when the investor can observe sufficient history to

estimate parameters.

3.1 Environment

Representative investor Time is discrete and there is a single consumption good (dollar)

at each date, which serves as numeraire. There are two assets traded in the economy: one

risk-free asset with perfectly elastic supply and a gross return which is normalized to 1.

There’s also a short-lived risky asset with a price pt at each t, and obtaining one unit of the

risky asset at t gives a random payoff ft+1 at t + 1. The supply of the risky asset is fixed

at Q. The payoff process is to be specified later and the price is to be determined in the

equilibrium.

The risky asset is priced by a short-lived representative investor in the economy, who

enters a trade at t and makes consumption at t + 1. At time t he optimally chooses a

position in the risky asset, denoted by qt, and the remaining wealth in the risk free asset to

solve

max
qt

EI
t [U(Wt+1)] (5)

subject to the budget constraint

Wt+1 = Wt + (ft+1 − pt)qt (6)

Here EI
t [·] denotes the investor’s expectation and could be different from the true DGP of

the payoff. The equilibrium is a solution qt such that it maximizes 5 and it clears the risky

asset market, i.e. qt = Q. Applying second order approximation to the utility function U(·),
one can show that qt approximately solves a standard mean-variance problem

qt ≈
1

ρ

EI
t [ft+1]− pt
V I [ft+1]

(7)

where ρ = −WtU ′′(Wt)
U ′(Wt)

is the relative risk aversion, and V I [ft+1] is the investor’s conditional

variance of the payoff. By imposing the market clearing condition, the equilibrium price is

determined as

pt = EI
t [ft+1]− ρQV I

t [ft+1] (8)

12



Assumptions on the Payoff I assume that the random payoff is driven by a poten-

tially high dimensional set of predictors, and the investor needs to estimate the predictive

relationship. Specifically, I assume that

ft+1 = β′X̃t + ϵt+1 (9)

where X̃t is a P−dimensional vector of predictors, β is a P− dimensional vector of coefficients

that describes the predictive relationship. I denote θt ≡ β′X̃t as the learnable part of the

payoff, and ϵt+1 is the unlearnable part. I make the following assumption governing the true

predictive coefficient β, the predictor X̃t, and unlearnable part ϵt+1:

Assumption 1. I assume that

1. X̃t is a random vector with independent entries that satisfies E[X̃i,t] = E[X̃3
i,t] = 0 and

E[X̃2
i,t] = σ2

x and finite fourth moment for all i = 1 · · ·P .

2. β is random with i.i.d coordinates βi that are independent of X̃t and ϵt+1 such that

E[βi] = 0 and E[β2
i ] = b∗/P

3. ϵt+1 is i.i.d with finite fourth moment. E[ϵt+1] = E[ϵ3t+1] = 0 and E[ϵ2t+1] = σ2

Assumption 1 guarantees that the investor’s belief and equilibrium price is well-behaved

with large T and P . The first assumption states that the predictors are isotropic, which

allows us to derive closed form solution to the equilibrium price. In Appendix B I extend the

result to correlated features. The second assumption introduces the randomness of β, which

is a device that allows us to solve for price for generic predictive coefficients. Intuitively,

one can interpret this condition as the Nature draws true β from a multivariate normal

distribution with zero mean and covariance matrix of σ2
βIP/P . The assumption that β has

zero mean is inconsequential; one could allow for non-zero mean and restate our analysis

in variances instead of second moments. I assume an identity matrix of β to say that the

predictability is independent across different predictors. The scalar b∗ denotes the L2 norm

of the β vector, i.e. ||β||2 = b∗. It controls the total amount of variation in payoff that

can be learned. Because of the independence of β and X̃, each component β′X̃t has mean

0 and variance b∗σ2
x

P
. Thus, the learnable component θ can be viewed as an average of P

independent random variables with mean 0 and variance b∗σ
2
x. By the central limit theorem,

as P → ∞, the unconditional (prior) distribution of θ converges to a normal distribution

N(0, b∗σ
2
x).

3.2 Data Mining and Investor’s Learning Problem

The representative investor doesn’t observe θt. Instead, the investor observes a data set,

which consists of a subset of the true predictors and some redundant predictors for past T

13



periods9. Specifically, I assume that at t the investor observes Xτ for τ = t − T, t − T +

1, · · · t− 1, where Xτ = [X1,τ ,Wτ ]. Here X1,τ denotes the set of predictors that are included

in the true predictor set X̃τ . I denote the size of X1,τ using Px and obviously 0 ≤ Px ≤ P .

In addition, there are predictors Wτ in investor’s data set that are not in the true DGP, i.e.

they are redundant. I make the following assumption on the distribution of Wt:

Assumption 2. We assume thatWt is a random vector with independent entries that E[Wi,t] =

E[W 3
i,t] = 0 and they have the same variance as true predictors for simplicity, i.e. E[W 2

i,t] =

σ2
x.

Assumption 2 states that the redundant signals and true signals have same distributions,

and their only difference is whether they are useful in payoff prediction. I denote the size

of Wτ using Pw, and I define P1 ≡ Px + Pw be the total number of predictors the investor

observes. Figure 4 illustrates the sizes of predictors in true DGP and investor’s data set.

Figure 4: Illustration of payoff process and investor’s information set. The gray bar repre-
sents a P -dimensional vector X̃ in the true DGP. Investor observes the first Px predictors of
X, which is shown in the blue bar, plus some redundant predictors W with size Pw as in the
green bar. The total size of blue and green bar represents the total number of predictors in
investor’s information set, P1 = Px + Pw.

This formulation of investor’s information set captures the notion of data mining. {X̃τ}t−1
τ=t−T

can be thought of as the data set provided by a data vendor, which contains possibly rele-

vant predictors for their historical values for T periods. Data mining refers to the process

of acquiring new predictors in investor’s information set, i.e. an increase in P1. However, in

the real world the investor doesn’t know the true data generating process, and thus doesn’t

know if the newly acquired predictor is a true predictor or a redundant one. In other words,

for any Xj in X, the investor doesn’t know if it is a true predictor or a redundant one. She

thus needs to estimate a predictive relationship fτ+1 = βXτ + ϵτ+1 using {fτ+1, Xτ}t−1
τ=t−T

and make a forecast of Et[ft+1] and Vt[f1] using Xt and estimated β̂.

9In this paper I don’t study where does investor obtain the data set, and I assume there’s no additional
cost associated with these data. In practice data sets are costly and are usually supplied by data vendors,
who might have a difference incentive than investors. I leave these extensions for future research.
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3.2.1 Data efficacy

I then define the concept of data efficacy, which is a key concept in our model and a driver

on price efficiency. The data efficacy κ is simply defined as the fraction of the true predictors

included in investor’s data set.

Definition 3.1. The data efficacy of investor’s data set, κ, is defined as

κ ≡ Px
P

(10)

As an investor undertakes data mining which increases P1, her data set should include

more true predictors. Thus one should expect κ to be increasing along with data mining. κ

can be further decomposed into two parts:

κ ≡ Px
P

=
Px
P1

P1

P

Here it’s obvious that data efficacy can be driven by two factors. First, it’s driven by how

useful the data set is, captured by Px

P1
, which measures the proportion of the investor’s infor-

mation set that is truly useful for prediction. A lower Px

P1
means the investor’s information

set contains many redundant predictors that are not useful for predicting payoff. Second, it’s

driven by how well the model capacity compares to the true DGP, captured by P1

P
, namely

the ratio between the total number of observable predictors and total true parameters. It’s

easy to see that P1/P scales linearly with P1 once the true DGP is fixed. Note that a correct

specification means κ = 1.

As demonstrated in Section 2, discovering true signals becomes more challenging as the

observed data set increases in size. Conceptually, as the predictability of obvious predictors

saturates, investors need to expand their search for the non-obvious ones. During this search,

investors may pickup more redundant signals before encountering a real one. For example, in

stock return prediction, starting with price-based and accounting-based signals is obvious,

and many of them are robust return predictors. However, once investors move beyond

these obvious predictors and search for other predictors in alternative data sets like earnings

transcript or social media, the potential signals that can be extracted become enormous.

Therefore, it’s reasonable to assume that investors need to pass through more redundant

signals before finding a new one. For this reason, one should expect the growth rate in κ

to decline, i.e. it exhibits decreasing returns. Assumption 3 states the assumption on the

evolution of data efficacy κ as a function of data mining scale P1.

Assumption 3 (Decreasing return in data efficacy). I assume κ′(P1) > 0 and κ′′(P1) < 0

Remark 1 (Decreasing importance in β). In Assumption 1, I assumed predictive coefficient

βi is rotationally symmetric, i.e. all predictors have the same predictability ex-ante. In this
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case, data efficacy κ can be interpreted as number of true predictors covered in investor’s

signal set. Section A.1 in Appendix provides another formulation of decreasing returns in

κ based on decreasing importance in β. In that formulation, a decreasing return in data

efficacy simply means the newly discovered signals carry less predictability than old signals.

Both formulations give the same pricing implications.

Remark 2 (Low-dimensional factor structure). The assumption that predictors Xi are dis-

tributed i.i.d means there’s no factor structure in the true DGP, and dimensionality reduction

techniques such as PCA will not solve the high dimensional learning problem in this model.

My result can be interpreted as investors trying to predict the idiosyncratic component of

the payoff, after common factors are controlled for. It maps naturally to the real world,

where sophisticated investors such as hedge funds care about payoffs beyond exposures to

common factors. In fact, if the payoff is generated by a low dimensional factor structure

and all potential signals are true factors plus noise, then discovering new signals will al-

ways lead to higher prediction accuracy and price informativeness because accessing a larger

cross-section of signals will allow investors to extract the latent factors more precisely, for

example through principal component analysis.

3.2.2 Investor’s learning

I assume that the investor is Bayesian and forms a prior regarding the prediction coefficient

β̃, and makes forecast using the posterior distribution. To insure tractability, I make the

following assumption regarding the investor’s prior about β:

Assumption 4. We assume that without seeing any data, investor has a prior distribution of

β̃ that is

β ∼ N(0, σ2
βIP1/P1) (11)

Assumption 4 implies that without seeing data, the investor thinks all predictors are

equally useful for prediction. This is a natural assumption for a data miner who has know

prior knowledge on the usefulness of predictors and just “let the data speak”10. σ2
β controls

the total amount of predictability the investor believes her predictors has. When σ2
β = 0,

investor thinks all β’s are zero and thus the payoff is unpredictable using her data set,

whereas when σ2
β → ∞ the investor thinks her predictors are very predictive.

Given the normal prior and the linearity assumption of the payoff, the following propo-

sition characterizes the investor’s posterior belief about the payoff

10An alternative research doctrine is to use theory to guide empirical model in order to prevent data
mining bias, as advocated in Harvey et al. (2016); Harvey (2017). However, recent work by Chen et al.
(2022) finds that predictors which peer-reviewed theory argued to be robust still suffers deterioration in
predictability out-of-sample.
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Proposition 3.1

Given the prior β ∼ N(0,
σ2
β

P1
IP1), after observing historical data XT = {Xτ , fτ+1}t−1

τ=t−T and

current realization Xt, the informed investor holds posterior distribution of θ1 according to

θ|XT , fT , Xt ∼ N( X ′
tβ̂︸︷︷︸

EI
t [θt|II ]

, X ′
tV̂βXt︸ ︷︷ ︸

V I
t [θt|II ]

) (12)

where

β̂ =

(
P1σ̂

2

Tσ2
β

I +
1

T
X ′
T X̃T

)−1
1

T
X ′
TfT

V̂β = σ̂2

(
P1σ̂

2

Tσ2
β

I +
1

T
X ′
TXT

)−1
1

T 2
X ′
TXT

(
P1σ̂

2

Tσ2
β

I +
1

T
X ′
TXT

)−1
(13)

and σ̂2 = σ2 + 1
T

∑
τ β

′
2X2,τ where X2,τ and β2 are the true predictors and coefficients in X̃

but not observed in X. Using the definition of data efficacy in (10), we have

σ̂2 = σ2 + (1− κ)b∗σ
2
x (14)

Proposition 3.1 shows that the posterior mean of the payoff, which corresponds to the

investor’s conditional expectation, can be interpreted as a prediction from a Tikhonov-

regularized (i.e. ridge) regression with shrinkage parameter τ ≡ P1σ̂2

Tσ2
β
, for example see

Shalev-Shwartz and Ben-David (2014). Indeed, the estimated β̂ is stabilized by adding a

penalty term to the sample covariance matrix, and the prior variance σ2
β controls the degree

of shrinkage. When σβ → ∞, β̂ becomes the usual OLS estimator. Given the conditional

expectation and conditional variance, one can plug them in Eqn. 8 to solve for equilibrium

price and other moments. It becomes clear in this formulation that data mining has two

effects. The first effect is on the “perceived” unexplanable variation. An increase in P1 pre-

sumably finds more true predictors, and thus reducing the perceived unexplanable variance

σ̂2. The second effect is on the estimation: as P1/T increases, the β̂ estimates deviates more

from the OLS estimates and it introduces more bias. I will characterize how these two effects

matter for the equilibrium price in the later sections.

Remark 3 (Optimal ridge regression). When investor’s prior on predictability equals the

actual predictability in the predictors, i.e. σ2
β = ||β1||2 = κb∗, the shrinkage τ corresponds

to the optimal shrinkage as derived in Kelly et al. (2021). In other words, the estimation

accuracy achieves its maximum when the investor knows the correct amount of predictability

in his data set versus the amount of predictability still left out. In the following sections I

derive results under this assumption, but it will be easy to derive general results for arbitrary

σ2
β and σ̂2. In that case one can just restate results in terms of sufficient statistics z = σ̂2

σ2
β
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and use τ = P1

T
z.

3.3 Risk Premium, Price Volatility and Price Informativeness

In this section I define the objects studied in this paper, including price volatility, risk pre-

mium, and price informativeness. I define these objects from the perspective of an econome-

trician outside the model, who observes an infinite history of payoff ft and price pt generated

by the investor inside the model.

Specifically, since the model is essentially static, I define the (unconditional) risk premium

simply as the expected difference between payoff and price, i.e.

RP ≡ E[ft+1 − pt] (15)

where the expectation is taken under the true unconditional probability measure. I also

define price volatility as the unconditional variance of prices

V ol ≡ V ar(pt) (16)

Our measure for price informativeness, following Bond et al. (2012) and Bai et al. (2016), is

the forecasting price efficiency, which is the variance of the predictable component of payoff

ft+1 given pt. Specifically, the econometrician runs an OLS regression of prices on future

payoff realization

ft+1 = δ0 + δpt + ut+1 (17)

and extract the predictive component πt ≡ δ0 + δpt. Our price informativeness measure is

then defined as

FPE ≡ V ar(ft+1|pt) = V ar(πt) (18)

Note that FPE = V ol if the population coefficient δ = 1.

3.4 Benchmark: Sufficient History

In this section I solve for the equilibrium price and price informativeness in a benchmark

case, where investor has access to sufficiently long history to estimate β̂. This means T → ∞
and P1/T → 0. This scenario corresponds to the traditional asymptotic, where the usual

Law of Large Numbers (LLN) applies and the convergence of estimator holds. While these

results might seem trivial, they provide a benchmark to which I contrast my main results of

learning with insufficient history and data mining.

Lemma 1 (Price with Sufficient History)
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When P1/T → 0, denote Px/P = κ, we have

β̂ = (
1

T
X̃ ′
T X̃T )

−1 1

T
X̃ ′
TfT →

(
β1

0

)
(19)

V̂β = (σ2 + b∗(1− κ)σ2
x)(

1

T
X̃ ′
T X̃T )

−1 1

T 2
X̃ ′
T X̃T (

1

T
X̃ ′
T X̃T )

−1 → 0 (20)

And as a result, EI
t [ft+1|It] = X ′

1,tβ1 and V [ft+1|It] = σ2
xb∗(1− κ) + σ2, and

pt = X ′
1,tβ1 − ρQ(σ2

xb∗(1− κ) + σ2) (21)

Therefore,

RP = ρQ(σ2
xb∗(1− κ) + σ2)

V ol = FPE = σ2
xb∗κ

(22)

Furthermore, if the investor observes all predictors Px = P , then we have

pt = X ′
tβ − ρQσ2 (23)

and
RP = ρQσ2

V ol = FPE = σ2
xb∗

(24)

Lemma 1 shows that with sufficient history comparing to the number of parameters, i.e.

P1/T → 0, the investor can recover true β on the truely useful signals and filter out redundant

signals by assigning zero coefficients, regardless the distribution of the true parameter and

the prior. This is the classic consistency result of Bayesian estimators.

Figure 5 plots price volatility, risk premium, and price informativeness when investor

undertakes data mining in a sufficient-history environment. Given no uncertainty in the

estimation as V̂β → 0, the risk perceived by the investor comes entirely from the unexplained

variation, which comes from the true unlearnable variation σ2 or unlearnable variation due to

unobservable predictors σ2
xb∗(1−κ), and the risk premium is proportional to the summation

of these two parts. The price variance, on the other hand, is entirely driven by the variation

in the observable predictors, and with correctly estimated κ fraction of true β, the total

variation in the prediction is κb∗σ
2
x. I also note in this case that price is a conditionally

unbiased forecast for the fundamental, therefore δ in the forecast regression 17 equals 1,

and thus V ol = FEP . When κ = 1, the expressions restore to the case equivalent to the

investor fully observing the learnable part θ, and all risk and prediction error is driven by

the unlearnable variance σ2. As data mining increases P1, because β̂ = β1, pt captures more

variation in the payoff more correctly, and therefore the price informativeness increases. This

is true even among P1 predictors some are redundant, because even the investor starts from
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a nonzero prior on the redundant predictors, she will conclude that their coefficients are zero

eventually given sufficient training history.

Figure 5: Effect of data mining on V ol, RP and FPE when training data is sufficient
T → ∞. I choose ρ = 1, Q = 0.1, σ2 = σ2

x = 1 and b∗ = 10. I set true P = 1000 and κ to
have a polynomial decay as κ(c) = 1− (1 + c)−α with α = 1.

4 Equilibrium Pricing with Data Mining

In the previous section, Lemma 1 shows that when training data is sufficient, investor can

figure out which predictors are useful and estimate their β’s correctly, while eliminating

redundant predictors by assigning zero coefficients to them. In this section, I move on to

study what will happen to asset prices when investor only have finite history to estimate

his model. In this regime, training data is scarce relative to signals. As a result, it creates

difficulty in investor’s learning problem. The main contribution of this paper is to quantify

this limits to learning by taking into account the details of the data mining process.

I show that insufficient training data has three effects on investor’s parameter estimates.

First, it creates a limits to learning, such that investor cannot perfectly estimate β̂ and

estimation uncertainty arises. Second, investor’s prior will have nontrivial influence on his

estimates. When investor has a non-diffusive prior (σ2
β < ∞ in (11)), it can be shown that

the explicit shrinkage increases as more predictors are included. Third, in a high-complexity

regime where the number of predictors exceeds the number of training data points, an implicit

shrinkage arises as there can be multiple parameter solutions to fit the training data, and

the model can select the estimate with lowest variance. Combining the three effects from

complexity and decreasing return in data efficacy implies asset price patterns distinct from

the benchmark case as characterized in Lemma 1.
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4.1 Complexity and Data Mining

I introduce the notion of complexity and see how it affects equilibrium prices. I define model

complexity as the ratio between P1 and T , i.e. c = P1/T . Low complexity (c ≈ 0) describes

settings with many more observations than predictors in the model to estimate parameters.

This is the regime of traditional econometrics, and the learning result is characterized in

Lemma 1. However, in the real world investors only have finite historical observations.

Thus, when P1 increases due to data mining, c starts to deviate from 0. The next proposition

characterizes the limiting posterior variance, risk premium, and price informativeness when

data mining introduces complexity, using random matrix theory.

Proposition 4.1 (Effect of data mining on equilibrium pricing)

Suppose the investor’s information set is described as in Section 3.2. Let c = P1/T , and

κ = Px/P . As P1, T → ∞, we have the posterior variance

V [θ|II ] → V(τ(c); c, κ) (25)

the risk premium

RP → ρQ(V(τ(c); c, κ) + σ2 + b∗σ
2
x(1− κ)) (26)

the price volatility

V ol → L(τ(c); c, κ) (27)

and the forecasting price efficiency

FPE → E(τ(c); c, κ)2

L(τ(c); c, κ)
(28)

where τ(c) = cσ
2+b∗σ2

x(1−κ)
σ2
β

and

E(τ(c); c, κ) = b∗κσ
2
x(1− τ(c)m(τ(c); c)

V(τ(c); c, κ) = (σ2 + b∗σ
2
x(1− κ))

(
cm(τ(c); c) + cτ(c)

d

dτ
m(τ(c); c)

)
L(τ(c); c, κ) = M(τ(c); c, κ) + V(τ(c); c, κ)

M(τ(c); c, κ) = b∗κσ
2
x(1− 2τ(c)m(τ(c); c)− τ(c)2

d

dτ
m(τ(c); c))

(29)
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and m(τ ; c) is the Marcenko-Pastur law

m(τ ; c) =
−(1− c+ τ) +

√
(1− c+ τ)2 + 4cτ

2cτ
(30)

Proof of Proposition 4.1 relies on characterization of pricing moments when investor uses

correctly specified model (Px = P ) with complexity. Such characterization also allows us to

separate the effect of complexity directly. For brevity I include the discussion of correctly

specified model in Appendix A.2.

Proposition 4.1 shows that data mining when training history is insufficient has different

implications on asset pricing moments from sufficient history case characterized in Lemma

1. To unpack what drives the changes, it’s useful to define quantities when σ2
β = ∞, or

equivalently τ(c) = 0. It corresponds to results when investor uses a “ridgeless” estimator

and when c < 1, OLS is the ridgeless estimator. Since investor uses OLS in the benchmark

case regardless his prior, studying the ridgeless estimator allows us to separate the effect

due to complexity from effect due to investor’s prior. The following Lemma unpacks the

difference between benchmark and high complexity result.

Lemma 2 (Decompose the complexity wedge)

We have

E(τ(c); c, κ) = E(0; 0, κ)− (E(0; 0, κ)− E(0; c, κ))︸ ︷︷ ︸
limits to learning

− (E(0; c, κ)− E(τ(c); c, κ))︸ ︷︷ ︸
prior bias

(31)

V(τ(c); c, κ) = V(0; c, κ)︸ ︷︷ ︸
ridgeless variance

− (V(0; c, κ)− V(τ(c); c, κ))︸ ︷︷ ︸
explicit shrinkage

(32)

M(τ(c); c, κ) = M(0; 0, κ)− (M(0; 0, κ)−M(0; c, κ))︸ ︷︷ ︸
implicit shrinkage

− (M(0; c, κ)−M(τ(c); c, κ))︸ ︷︷ ︸
explicit shrinkage

(33)

where E(0; 0, κ) = M(0; 0, κ) = b∗κσ
2
x is the benchmark price volatility or FPE derived in

Lemma 1. Furthermore, we have

E(0; 0, κ)− E(0; c, κ) =

0 if c < 1

(1− c−1)b∗κσ
2
x if c ≥ 1

(34)

V(0; c, κ) =

 c
1−c(σ

2 + b∗σ
2
x(1− κ)) if c < 1

1
c−1

(σ2 + b∗σ
2
x(1− κ)) if c ≥ 1

(35)

M(0; 0, κ)−M(0; c, κ) =

0 if c < 1

(1− c−1)b∗κσ
2
x if c ≥ 1

(36)
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Lemma 2 shows the drivers of pricing moments and derives explicit formula for the

difference between benchmark and ridgeless quantities. In the benchmark case, investor’s

prior doesn’t matter and he will run OLS as it’s the optimal estimator when there’s sufficient

data. However, when training data is insufficient, ridgeless estimator will behave differently

from OLS with sufficient data, and investor will find it optimal to use a non-zero shrinkage.

Both effects will contribute to the deviation from benchmark pricing result. I plot each

quantity in Figure 10 in Appendix.

In Propositon 4.1, E describes the behavior of Cov(ft+1, pt). In a high complexity world

(P1 > T ), it’s impossible for the investor to construct a conditionally unbiased forecast,

even if he starts with non-informative prior. This limits to learning channel describes the

fundamental challenge in doing estimation when investor faces high dimensional predictors

and insufficient data. In addition, when complexity deviates from zero, investor will use a

nonzero explicit shrinkage τ if he starts with an informative prior, which will lead to higher

conditional bias. This prior bias channel further dampens Cov(ft+1, pt).

In Proposition 4.1, price volatility is driven by two components: the variance in expected

price movement from signals (price responsiveness), and estimation uncertainty when in-

vestor estimates β. I denote the former by M and the latter by V . For V , when there’s

insufficient data, ridgeless variance increases and becomes infinity when P1 = T , where the

OLS estimator is undefined. The ridgeless variance declines in the P1 > T regime, because

the multiplicity of least-squares solutions allows ridgeless regression to find a low-norm beta

that exactly fits the data. I denote this phenomenon implicit shrinkage. The posterior vari-

ance is further stabilized as investor chooses a nonzero explicit shrinkage. For M, price

responsiveness with ridgeless estimator equals the one for OLS initially, but decreases as

P1 > T for the same reason as implicit shrinkage arises. Price responsiveness also declines

in explicit shrinkage, as the β estimates are further shrunk towards zero.

The following corollary states that when data efficacy κ has a decreasing return to scale

as in Assumption 3, price volatility and informativeness achieves maximum at finite c when

investor has uninformative prior. A similar characterization exists for informative prior, and

I discuss it in in Appendix A.5.

Corollary 1 (Price volatility and FPE are not always increasing in P1)

Suppose κ′′(c) < 0, for σ2
β = ∞, we have

dV ol

dP1

< 0;
dFPE

dP1

< 0 (37)

for large P1.

Figure 6 shows price volatility, risk premium, and forecasting price efficiency derived in

Proposition 4.1, featuring ridgeless and optimal shrinkage. Here I assume κ has polynomial
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decay, i.e. κ(c) = 1− (1 + c)−α. I also plot the benchmark results as shown in Figure 5 for

better comparison. Panel (a) plots the price volatility. When P1 = 0, the investor doesn’t

know any signals, and the price doesn’t move anywhere. As the investor acquires bigger data

set, he finds more true signals and his demand starts to respond to these signals, contributing

to an increase in price volatility. When in the world with with insufficient training data,

estimation uncertainty starts to show up, pushing up price volatility above the benchmark.

Price volatility is undefined for ridgeless investor with P1 = T . Explicit shrinkage helps to

mitigate the excess volatility, but price is still more volatile than benchmark. When data

mining puts P1 beyond T , implicit shrinkage emerges and both estimation uncertainty and

price responsiveness declines.

Panel (b) in Figure 6 shows the risk premium as a function of P1. The perceived risk is

affected by the estimation uncertainty V [θ|II ] and the unexplanable variation due to missing

predictors. The figure shows risk premium with complexity is higher than benchmark. It’s

because with nonzero complexity, estimation uncertainty cannot be completely eliminated,

and this shows up as an additional source of risk, which adds to risk premium.

Finally, Panel (d) shows the forecasting price efficiency, whose general pattern is hump-

shaped, meaning that price efficiency increases initially but starts to decrease at around

c = 1. The initial increase is driven by better approximation of the true DGP, but as data

efficacy exhibits decreasing return, the gain in better forecasting decreases, while at the

same time limits to learning to high complexity kicks in at large P1 regime. Therefore, price

efficiency eventually decreases.

In summary, I have shown that both changes in complexity and data efficacy matters for

the equilibrium pricing moments. With decreasing return in data efficacy, data mining can

actually lead to lower forecasting power and price efficiency, when the gain in additional true

predictors is lower and can’t offset the high cost of estimating model in the highly complex

regime.

Remark 4 (Changes in optimal shrinkage). I note in Remark 3 the optimal prior (measured

from ex-post prediction accuracy) is given by σ2
β = κb∗. As data mining increases κ, the

optimal shrinkage becomes more diffused to accommodate more predictors. The optimal

shrinkage, on the other hand, is given by τ(c) = cσ
2+b∗σ2

x(1−κ(c))
b∗σ2

xκ(c)
. In Appendix A.4 I charac-

terize how optimal shrinkage changes with data mining. For most of the parameter regions

the optimal τ(c) is increasing in data mining scale P1.

4.2 Value of Data and Optimal Data Mining

In the previous section, I characterized equilibrium price volatility, risk premium, and price

informativeness as a function of data mining scale. In this section, I study the change in the

investor portfolio’s Sharpe ratio due to data mining and characterize the optimal degree of
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(a) Price volatility (b) Risk premium

(c) Forecasting price efficiency (FPE)

Figure 6: Equilibrium pricing result with data mining as a function of P1 from Proposition
A.1. I assume ρ = 1, Q = 0.1, σ2 = 1, b∗ = 10, and true P = 10T where T = 100. “ridgeless”
denotes the case when inevstor uses uninformative prior , i.e. σ2

β = ∞, while “opt shrinkage”
denotes the case when the investor has the correct prior on the variance in β, i.e. σ2

β = κb∗.
I pick the decay parameter α = 1. The dashed line shows the interpolation boundary c = 1.
The dashed blue line plots the benchmark result as derived in Lemma 1 and shown in Figure
5.
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data mining. In this analysis, I assume the representative investor behaves like a price-taker,

meaning that data mining only matters in forming informative demand, and the investor

doesn’t consider the general equilibrium effect of price adjustment due to data mining11. This

can be rationalized by thinking of the representative investor as a combination of infinite

identical investors, each with mass zero, and thus not internalizing the general equilibrium

effect. I demonstrate that with sufficient decreasing returns in data efficacy, there’s a finite

optimal level of data mining level P ∗
1 , such that the investor’s utility will decrease if the data

mining scale goes beyond P ∗
1 . I also show that such data mining level corresponds to the

optimal level that maximizes forward price efficiency.

I evaluate Sharpe ratio from the perspective of an outside econometrician, who is able to

compute the expectations out-of-sample under the true data generating process. I define the

Sharpe Ratio of investor’s portfolio as the ratio between expected future wealth divided by

its standard deviation, which is proportional to the Sharpe ratio of a market timing strategy

using forecast X1,tβ̂ as the position in risky asset:

SR ≡ Et[Wt+1]√
V art(Wt+1)

∝ Et[ft+1X1,tβ̂]

V art(ft+1X1,tβ̂)
(38)

Here investor takes price as given, and it’s easy to show that at optimal qt we have U(qt) ∝
SR2. Therefore, the Sharpe ratio provides a good characterization of the welfare. The next

proposition characterizes the (out-of-sample) Sharpe ratio as a function of the data mining

process:

Proposition 4.2 (Effect of data mining on Sharpe ratio)

Suppose the investor’s information set is described as in Section 3.2. Let c = P1/T , κ =

Px/P1. As P1, T → ∞, we have the squared Sharpe ratio

SR2 → E(τ(c); c, κ)2

2E(τ(c); c, κ)2 + L(τ(c); c, κ)(b∗σ2
x + σ2)

=
1

2 + (b∗σ2
x + σ2)FPE−1

(39)

where τ(c), E(τ(c); c, κ)2 and L(τ(c); c, κ) are defined in Proposition 4.1.

Furthermore, when data efficacy κ is a function of c, the optimal data mining is charac-

terized by a c∗ such that it solves

max
c≥0

SR(c, κ(c)) (40)

and is characterized by ∂SR(c,κ(c))
∂c

= 0.

11Because of market clearing, considering the general equilibrium effect will leave the investor’s utility
unchanged along data mining, because changes in forecast translate one-for-one in prices in the opposite
direction, and in equilibrium, data miners will not be better off in any sense. This echoes the Grossman-
Stiglitz paradox since there’s no exogenous noise in this economy. However, in this case, it becomes hard to
rationalize the effort for data mining in the first place, so I proceed by assuming investors are price-takers.
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(a) Sharpe ratio (b) Optimal data mining P ∗
1

Figure 7: Sharpe ratio and optimal data mining P ∗
1 from the perspective of a price-taking

representative investor. The left panel shows the Sharpe ratio defined in 38 as a function of
data mining level P1 with different decay parameter α = 1, and the right panel shows the
Sharpe-maximizing P ∗

1 as a function of α. Assume ρ = 1, Q = 0.1, σ2 = 1, b∗ = 10, and true
P = 10T where T = 100. “ridgeless” denotes the case when inevstor uses uninformative
prior , i.e. σ2

β = ∞, while “opt shrinkage” denotes the case when the investor has the correct
prior on the variance in β, i.e. σ2

β = κb∗. The dashed black line shows the interpolation
boundary c = 1.

Proposition 4.2 characterizes the Sharpe ratio in 38 as a function of c for the price-taking

investor. It also shows that there’s a one-to-one mapping between the individual investor’s

Sharpe ratio and the equilibrium forecasting power efficiency. Intuitively, if investor is able

to predict payoff at a higher accuracy and derive a higher Sharpe ratio for his portfolio,

the equilibrium price – which is generated by the investors – is also more informative about

future payoff.

As the FPE exhibits hump-shape with decaying data efficacy, it is as expected that the

Sharpe ratio is also hump-shaped. Panel (a) in Figure 7 plots Sharpe ratio as investor

increases P1. In the benchmark case where investor has sufficient training data, obtaining

new predictor is always good for investor, because he can estimate parameters precisely

and rule out any redundant signals. However, in a complex world, limits to learning and

shrinkage means model performance eventually deteriorates as more predictor is discovered.

The pattern is similar to FPE in Figure 6.

This implies that there’s an optimal P ∗
1 that maximizes Sharpe ratio and FPE. Further

data mining beyond P ∗
1 exhibits slow increase in the approximation capacity that doesn’t

justify the increase in limits to learning imposed by higher complexity. Panel (b) in Figure 7

shows the optimal P ∗
1 as a function of how fast data efficacy decays. When α is high (lower),

the decay is faster (slower), thus the investor should stop data mining sooner (later), meaning
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a lower (higher) P ∗
1 .

Remark 5 (Comparing to the “Virtue of Complexity”). It is important to compare my

results with the recent finding of “virtue of complexity” in asset pricing, as discovered in

Kelly et al. (2021) and Didisheim et al. (2023). They also study empirical models whose

parameterization is large relative to training data and find that complex models outperform

simple ones. One key distinction in my setup versus theirs is the assumption on how the

model size expands. In Kelly et al. (2021) and Didisheim et al. (2023), the empirical model

gets bigger because of an increase in features that carry the same predictive content to the

payoff. In other words, there is a constant return to scale. Such assumption applies to a

modeler who is given a fixed set of raw predictors, doesn’t know the true functional form

of the predictive relationship, but instead is motivated by universal approximation theorem

(e.g. Hornik (1991)) and uses a basic neural network to approximate the functional form.

An expansion of model complexity can thus be thought of an increase in the number of

hidden nodes in the neural network or an increase in nonlinear basis functions. In this

paper, I complement their finds by considering what will happen when the raw predictor

set increases, while taking the functional form fixed (e.g. linear predictive relationship). As

shown in Figure 3, increasing predictors doesn’t always lead to higher performance once the

neural network size is fixed. The decreasing returns in data efficacy is a realistic assumption

that captures the challenge in mining alternative data and a key driver of my main result.

Remark 6 (Difficulty in finding the optimum). If the functional form of κ is known, the

investor will stop mining additional data sets once the size of data set reaches the optimal

P1. However, in the real world, investors don’t know the true data efficacy, and they can

only do so by evaluating their model out-of-sample. Given a finite out-of-sample period,

it will also be challenging for investors to draw conclusion on when to stop data mining.

Additionally, investor might engage in excess data mining if they have other incentives aside

from Sharpe maximization. For example, if it’s desirable for a hedge fund to provide distinct

strategies compared to their peers, as it allows the fund manager to attract more asset under

management, the hedge fund might want to use more alternative data that is unexplored

by others, even if the data efficacy might be low. For these reasons, in this paper I mainly

focus on the comparative statics of data mining, while the empirical evaluation on optimal

data mining is left for future research.

5 Empirical Results

In this section, I examine the empirical impact of increasing alternative data on price in-

formativeness. By leveraging the release of satellite coverage data for retailer stocks as an

exogenous expansion of the investor’s potential signal set, I employ a difference-in-difference
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approach to identify the causal effect of this expansion on price informativeness. The findings

reveal that the release of satellite data in fact reduces price informativeness of the covered,

with a more pronounced effect observed for firms with shorter data availability (higher com-

plexity)12. These results support the idea that data mining can be detrimental to price

efficiency and underscore the role of training history availability in shaping price efficiency

in the real world.

5.1 Data

The main data set comes from RS Metrics, the first data vendor to introduce real-time

parking lot traffic signals derived from satellite images in the US. This data set comprises

daily store-level information about parking lot capacity and utilization for major public

retailers, such as Walmart, Bed Bath & Beyond, Target etc. RS Metrics processes raw

satellite images to generate parking lot traffic signals, which are then sold to institutional

investors who might be utilizing these signals in their trading strategies.

I obtain the start dates of traffic signal coverage from RS Metrics, which starts in Q2:2009.

Different stocks will have different coverage start dates, which allows me to investigate the

effect of data release as well as training history length on price informativeness. I obtain the

release dates of traffic signals to investors from Katona et al. (2022), which is usually one

year after RS Metrics start covering the stock. In total there are 52 retailer stocks within

the coverage. In addition, we obtain market-based information such as market cap, volume

and return from CRSP, and accounting information such as total asset, book value, and

earnings from Compustat. I use Operating Income After Depreciation (QIADPQ) as our

measure of earnings at the quarterly frequency. My sample starts in Q1:2003 and ends in

Q4:2020 to ensure sufficient observations pre- and post- satellite data release, allowing for a

more accurate measurement of price informativeness.

5.2 Empirical Design

To perform the difference-in-difference analysis, I construct the control group by selecting

firms with the same 6-digit Global Industry Classification Standard (GICS) codes as the

covered firms that don’t have satellite data coverage. For each covered firm, I then match

12I note that this result contrasts Zhu (2019) who finds an increase in price discovery with the release
of satellite data, and Katona et al. (2022) who reports no significant impact on price discovery. The main
difference between my empirical approach and previous literature is that both Zhu (2019) and Katona et al.
(2022) measure price discovery using abnormal returns around earnings announcement dates, whereas I
follow the standard literature on measuring price informativeness as in Bai et al. (2016); Farboodi et al.
(2022a) and measure FPE by regressing future earnings on current prices at a quarterly basis. In addition,
as Katona et al. (2022) points out, Zhu (2019) blends firms that are truly covered by satellite data with firms
in the same industry but not covered, and Zhu (2019) assumes the release dates that might be different from
the actual release dates provided by RS Metrics.

29



it with three control firms with most similar book-to-market ratio, gross profitability, sales-

to-equity ratio, and return on equity. This matching is achieved by minimizing the total

distance in these characteristics across matched pairs. Importantly, my construction avoids

using early treated firms as control firms for late treated ones, and thus my estimates are not

impacted by comparing early-treated groups to late treated-groups that typically confound

staggered Diff-in-Diff estimates. After removing firms with incomplete stock-level data, the

final sample comprises 50 treated firms and 93 control firms.

I first measure price informativeness in the similar spirit as Bai et al. (2016); Farboodi

et al. (2022a). Specifically, for each stock i at quarter t, I run a stock-level time series

regression
Ei,t+τ+1

Ai,t+τ

= αi,t + βi,t ·
Mi,t+τ

Ai,t+τ

+ γi,tXi,t + ϵi,t (41)

for τ = 0, 1, · · · 20 quarters, where Ei,t+τ+1/Ai,t+τ is the cash-flow (or more precisely, operat-

ing income after depreciation) of firm i in quarter t+τ +1 scaled by its total asset in quarter

t + τ ; Mi,t+τ/Ai,t+τ is market capitalization scaled by total asset, and Xi,t is the controls,

which includes past earnings to asset. This is the analog to the payoff prediction regression

as in 17. I then compute the FPE estimate as

ˆFPEi,t = β̂i,t · σM/A
i,t (42)

where σ
M/A
i,t is the standard deviation of market-to-asset ratio used in the regression. The

scaling follows Bai et al. (2016); Farboodi et al. (2022a) and my final ˆFPEi,t can be viewed

as the empirical counterpart to 18.

I then estimate the impact of satellite data release on price informativeness in a difference-

in-difference design. Specifically, we run the following regression

ˆFPEi,t = β1Posti,t + β2Treati,t + β3Posti,t × Treati,t + Controlsi,t + ϵi,t (43)

where Posti,t is an indicator if the current t is after satellite data release for firm i, and

Treati,t is an indicator if the firm is in the treatment group. I include controls that might

affect price discovery, including firm size (log market cap), quarterly trading volume, and

quarterly return. The estimate of interest is β3, which estimates the causal impact of satellite

release on forward price efficiency.

In addition, the model implies that signals with shorter history (higher complexity) might

lead to lower price informativeness. To test this implication, I run the following regression

ˆFPEi,t = β1Posti,t + β2Treati,t + β3Posti,t × Treati,t

+ β4Complexityi,t × Treati,t + Controlsi,t + ϵi,t
(44)
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where I define Complexityi,t as the inverse of the number of quarters since RS Metrics start

covering the firm (in other words 1/T in the theoretical model). The coefficient β4 estimates

the effect of complexity on price informativeness for the treated firms.

5.3 Result

Table 1 presents the difference-in-difference coefficient estimates for the price informative-

ness measure using one-quarter ahead earnings forecast regression. The significantly negative

coefficient on Post × Treat indicates that the release of satellite data leads to lower price

informativeness. This surprising result is contrary to the common view that the discovery

of alternative data should enhance price informativeness, but is in line with my model pre-

diction. In the second column, I report the impact of complexity on price informativeness.

The significantly negative coefficient on Complexity×Treat suggests that firms with signals

of higher estimation complexity (shorter history available) experience a more pronounced

decline in price informativeness. This result is consistent with my model that demonstrates

that estimation complexity hinders price discovery.

In addition to measuring price informativeness using one-quarter ahead forecast, I also

conduct the analysis on price informativeness measured with longer forecast horizon. Table

2 reports the difference-in-difference coefficient estimates for price informativeness measure

using 2,3,4-quarter ahead earnings forecast regression. I again find significant reduction in

long-term price informativeness after the release of satellite data. The effect on complexity

however becomes less significant at longer horizon. I note that my analysis only speaks to the

effect of a particular alternative data set for a particular set of stocks, and a comprehensive

analysis would require researcher to know all the data sets used by investors, which is very

challenging in the real world. Nonetheless, these empirical results illustrate that the discovery

of new signals might be detrimental to price informativeness, a phenomenon my model

provides a potential explanation for.
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(1) (2)

Post× Treat -0.006*** -0.005***

(-6.49) (-4.54)

Complexity × Treat -0.0096**

(-1.97)

Post 0.008*** 0.009***

(9.11) (9.22)

Treat 0.004*** 0.004***

(9.22) (9.32)

Controls Yes Yes

Time FE Yes Yes

R2 0.0556 0.0572

Obs 2531 2531

Table 1: This table shows that satellite image data release decreases forward price efficiency, and
the decrease is more significant for stocks with higher complexity. I report the estimates based on
DID regression model in equation (43) and (44). The dependent variable ˆFPE is estimated from
a rolling regression with 20 quarters of one-quarter ahead earnings on current market cap, as in
(41). Post is an indicator that takes the value one after the release of RS Metrics coverage. Treat
is an indicator variable that takes the value one for the treated group of retailers with satellite
coverage. The controls include log market capitalization, quarterly dollar trading volume, and
quarterly return.***, **, and * indicate statistical significance at 1%, 5% and 10% level, based on
two-tailed tests.
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2Q ahead 2Q ahead 3Q ahead 3Q ahead 4Q ahead 4Q ahead

Post× Treat -0.005*** -0.003*** -0.003*** -0.003*** -0.004*** -0.005***

(-4.66) (-2.79) (-3.34) (-3.32) (-5.10) (-5.66)

Complexity × Treat -0.012** 0.004 0.002

(-2.31) (0.089) (1.28)

Post 0.008*** 0.008*** 0.004*** 0.004*** 0.004*** 0.004***

(8.25) (8.37) (5.71) (5.64) (5.63) (5.48)

Treat 0.003*** 0.003*** -0.001*** -0.001*** -0.002*** -0.002***

(6.47) (6.59) (-2.16) (-2.18) (-6.27) (-6.40)

Controls Yes Yes Yes Yes Yes Yes

Time FE Yes Yes Yes Yes Yes Yes

R2 0.0432 0.0453 0.0245 0.0248 0.0441 0.0465

Obs 2531 2531 2527 2527 2514 2514

Table 2: This table shows that satellite image data release decreases forward price efficiency. I
report the estimates based on DID regression model in equation (43) and (44). The dependent
variable ˆFPE is estimated from a rolling regression with 20 quarters of 2-quarter, 3-quarter, and
4-quarter ahead earnings on current market cap, as in (41). Post is an indicator that takes the
value one after the release of RS Metrics coverage. Treat is an indicator variable that takes
the value one for the treated group of retailers with satellite coverage. The controls include log
market capitalization, quarterly dollar trading volume, and quarterly return.***, **, and * indicate
statistical significance at 1%, 5% and 10% level, based on two-tailed tests.

6 Conclusion

In this paper, I demonstrate that data mining can have a dual impact on information effi-

ciency. While data mining discovers more true predictors, expanding the set of predictive

signals increases the challenge of estimation due to insufficient training history. Unlike other

machine learning and AI applications such as auto-driving cars and natural language pro-

cessing, where training data is abundant and easy to generate, in the real world investors

can’t easily generate time series return data. This leads to model complexity and limits to

learning. I theoretically analyze how price volatility, risk premium, and price informativeness

respond to the escalation of data mining efforts. In conjunction with a decreasing return in

data efficacy, I show that there exists a finite optimal level of data mining scale. Acquiring

further predictive signals beyond the optimum would lead to lower price informativeness

and Sharpe ratio. As a result, investors would optimally choose to ignore some costless sig-

nals, even they contain information that are useful for prediction. These theoretical insights

contribute to understanding asset pricing in high-dimensional settings, while future research
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could explore empirical approaches targeting the high-dimensionality of investors’ estimation

problems.
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(3710495).

Fama, E. F. and French, K. R. (1992). The cross-section of expected stock returns. the

Journal of Finance, 47(2):427–465.

Fama, E. F. and French, K. R. (2015). A five-factor asset pricing model. Journal of financial

economics, 116(1):1–22.

Farboodi, M., Matray, A., Veldkamp, L., and Venkateswaran, V. (2022a). Where has all the

data gone? The Review of Financial Studies, 35(7):3101–3138.

Farboodi, M., Singal, D., Veldkamp, L., and Venkateswaran, V. (2022b). Valuing financial

data. Technical report, National Bureau of Economic Research.

Fernández-Villaverde, J. (2021). Has machine learning rendered simple rules obsolete? Eu-

ropean Journal of Law and Economics, pages 1–15.

Freyberger, J., Neuhierl, A., and Weber, M. (2020). Dissecting characteristics nonparamet-

rically. The Review of Financial Studies, 33(5):2326–2377.

Ghosh, N. and Belkin, M. (2022). A universal trade-off between the model size, test loss,

and training loss of linear predictors. arXiv preprint arXiv:2207.11621.

Goldstein, I., Spatt, C. S., and Ye, M. (2021). Big data in finance. The Review of Financial

Studies, 34(7):3213–3225.

Gu, S., Kelly, B., and Xiu, D. (2020). Empirical asset pricing via machine learning. The

Review of Financial Studies, 33(5):2223–2273.

Harvey, C. R. (2017). Presidential address: The scientific outlook in financial economics.

The Journal of Finance, 72(4):1399–1440.

Harvey, C. R., Liu, Y., and Zhu, H. (2016). . . . and the cross-section of expected returns.

The Review of Financial Studies, 29(1):5–68.

Hastie, T., Montanari, A., Rosset, S., and Tibshirani, R. J. (2022). Surprises in high-

dimensional ridgeless least squares interpolation. Annals of statistics, 50(2):949.

Hornik, K. (1991). Approximation capabilities of multilayer feedforward networks. Neural

networks, 4(2):251–257.

36



Hou, K., Xue, C., and Zhang, L. (2015). Digesting anomalies: An investment approach. The

Review of Financial Studies, 28(3):650–705.

Jensen, T. I., Kelly, B., and Pedersen, L. H. (2022). Is there a replication crisis in finance?

The Journal of Finance.

Katona, Z., Painter, M., Patatoukas, P., and Zeng, J. (2022). On the capital market conse-

quences of alternative data: Evidence from outer space. Available at SSRN 3222741.

Kelly, B., Malamud, S., and Zhou, K. (2021). The virtue of complexity in return prediction.

Swiss Finance Institute Research Paper, (21-90).

Kelly, B. T. and Xiu, D. (2023). Financial machine learning. Available at SSRN.

Lewellen, J. and Shanken, J. (2002). Learning, asset-pricing tests, and market efficiency.

The Journal of finance, 57(3):1113–1145.

Lindley, D. V. and Smith, A. F. (1972). Bayes estimates for the linear model. Journal of

the Royal Statistical Society Series B: Statistical Methodology, 34(1):1–18.

Martin, I. W. and Nagel, S. (2022). Market efficiency in the age of big data. Journal of

financial economics, 145(1):154–177.

Montiel Olea, J. L., Ortoleva, P., Pai, M. M., and Prat, A. (2022). Competing models. The

Quarterly Journal of Economics, 137(4):2419–2457.

Nagel, S. (2021). Machine learning in asset pricing, volume 8. Princeton University Press.

Pastor, L. and Veronesi, P. (2009). Learning in financial markets. Annu. Rev. Financ. Econ.,

1(1):361–381.

Shalev-Shwartz, S. and Ben-David, S. (2014). Understanding machine learning: From theory

to algorithms. Cambridge university press.

Silverstein, J. W. and Bai, Z. (1995). On the empirical distribution of eigenvalues of a class

of large dimensional random matrices. Journal of Multivariate analysis, 54(2):175–192.

Veldkamp, L. (2023a). Valuing data as an asset. Review of Finance, page rfac073.

Veldkamp, L. L. (2023b). Information choice in macroeconomics and finance. Princeton

University Press.

Vives, X. (2010). Information and learning in markets: the impact of market microstructure.

Princeton University Press.

37



Zhang, L. (2005). The value premium. The Journal of Finance, 60(1):67–103.

Zhu, C. (2019). Big data as a governance mechanism. The Review of Financial Studies,

32(5):2021–2061.

38



A Additional Theoretical Results

A.1 Decreasing returns to scale from decreasing predictability

In Assumption 1 and the formulation of data mining in Section 3.2, I assume predictive

coefficient β is ex-ante the same for all predictors, and the decreasing return in data efficacy

comes from inclusion of redundant signals. Here I present another formulation of decreasing

return in data efficacy, arising from a decreasing predictability from newly discovered signals.

I continue to assume that all true predictors X̃i,t are i.i.d with E[X̃i,t] = 0 and E[X̃2
i,t] =

σ2
x. However, instead of assuming E[β2

i ] = b∗/P for all i, I relax this assumption by denoting

E[β2
i ] = bi∗/P , where a higher bi∗ corresponds to a higher predictability associated with

predictor i. I assume there’s no redundant signals, so that all signals discovered by the data

miner are true. In this case, one can define data efficacy as the fraction of predictability

covered in the predictor set the data miner owns:

κ =

∑P1

i=1 b
i
∗∑P

i=1 b
i
∗

(45)

A decreasing return in data efficacy then means signals have decreasing predictability in the

order of discovery, i.e.

b1∗ > b2∗ > b3∗ · · · > bP1
∗ (46)

The natural interpretation of this formulation is that investor first discover the most salient

and prominent signals, and once those strong predictors are discovered, investors then move

on to discover weak signals. Figure 8 illustrates this data mining process. I note that all of

our theory goes through when we denote b∗ =
∑P

i bi∗.

Figure 8: Alternative data mining process, where investor discovers less important signals
when they undertake data mining.

A.2 Correctly specified model

Proposition A.1 (Complexity in correctly specified model)

Suppose the model is correctly specified such that Px = P1 = P . Let c = P1/T as P1, T → ∞.
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We have the posterior variance

V [θ|II ] → V(τ(c); c) (47)

the risk premium

RP → ρQ(V(τ(c); c) + σ2) (48)

the price volatility

V ol → L(τ(c), c) (49)

and the forecasting price efficiency

FPE → E(τ(c); c)2

L(τ(c); c)
(50)

where τ(c) = c σ
2

σ2
β
and

V(τ(c); c) = cσ2σ2
xm(τ(c); c) + cτ(c)σ2σ2

x

d

dτ
m(τ(c); c) (51)

E(τ(c); c) = b∗σ
2
x(1− τ(c)m(τ(c); c) (52)

L(τ(c); c) = b∗σ
2
x(1− 2τ(c)m(τ(c); c)− τ(c)2

d

dτ
m(τ(c); c)) + V(τ(c); c) (53)

and m(τ ; c) is the Marcenko-Pastur law

m(τ ; c) =
−(1− c+ τ) +

√
(1− c+ τ)2 + 4cτ

2cτ
(54)

To derive the expression for misspecifed case, notice that with isotropic assumption of X

and the rotational symmetry assumption of β in Assumption 1, we can effectively write the

data generating process of ft+1 as

ft+1 = β′
1X1,t + β′

2X2,t + ϵt+1︸ ︷︷ ︸
ut+1

(55)

where ut+1 is the unpredictable term from investor’s view, which includes both the truly

unpredictable component ϵt+1 and the unpredictable component due to unobservable predic-

tors β′
2X2,t. Therefore, ut+1 is independent of X1,t and Wt, having mean zero and variance

σ2+ ||β2||22σ2
x. Thus, the risk premium, out-of-sample expected R2, and the forecasting price

efficiency will behave exactly the same as we computed in Proposition A.1, after we make
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the substitution with

b∗ 7→ b∗κ and σ2 7→ σ2 + b∗σ
2
x(1− κ)

and putting these observations together leads to Proposition 4.1.

Proposition A.1 demonstrates how insufficient training history (c > 0) affects equilibrium

risk premium, volatility and price informativeness. Note here all results are driven by changes

in complexity (equivalently change in P1 when T is taken as fixed). Figure 9 plots these

theoretical results as P1 increases. Panel (a) shows that price volatility decreases as P1 gets

large. This is driven by increase in both the explicit shrinkage investor uses in estimation,

i.e. τ(c) = c σ
2

σ2
β

13, and implicit shrinkage when c > 1. For implicit shrinkage, intuitively, as

there are more predictors than the observations, investor will find it easier to have linear

combinations of predictors to fit training data well. Given that the investor is Bayesian with

non-diffusive prior, he will settle on a β̂ with smaller norm (and smaller posterior variance).

This is usually referred to as the “benign overfit” or “virtue of complexity” phenomenon and

is actively being explored by machine learning researchers. (e.g. Hastie et al. (2022), Kelly

et al. (2021), Didisheim et al. (2023)).

When P1 is close to 0, there’s no uncertainty in estimating β and price fully reflects

variations in Xt, which means the variance in prices equals to b∗σ
2
x in expectation. However,

when P1 becomes large, both explicit and implicit shrinkage penalizes β̂ towards 0. Therefore,

it reduces the variance in the forecast, which means price volatility decreases.

Panel (b) plots the risk premium as a function of P1. When P1 is close to zero, correct

specification of the model and consistent estimator imply all explainable variation in the

payoff is captured. Therefore, risk premium is only related to the unlearnable variation σ2

(the benchmark case). However, as P1 starts to increase, estimation uncertainty about β

kicks in, which serves as an additional source of risk and increases risk premium. As data

mining further increases P1 beyond c = 1, both explicit and implicit shrinkage increase and

penalizes parameter estimates towards zero. Thus, the “subjective” uncertainty decreases

from the perspective of investor, and so is the risk premium.

Panel (c) plots the out-of-sample R2 when treating price as the forecast for fundamental,

and panel (d) plots the forecasting price efficiency. We see that when P1, both R2 and FPE

equal to the fraction of learnable variation in the payoff, as shown in Lemma 1. However,

when P1 increases, the increasing explicit shrinkage induce a larger bias in the forecast,

resulting in an initial decrease in the c < 1 region. As P1 increases further into the c >

1 region, the implicit shrinkage also arises and contributes to a further decrease in the

variance in β̂. As a result, price becomes less sensitive to changes in the predictors and price

informativeness decreases.

13Note that τ(c) corresponds to the optimal shrinkage that attains the highest Sharpe ratio and out-of-
sample R2 derived in Kelly et al. (2021).
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(a) Price volatility (b) Risk premium

(c) Out-of-sample R2 (d) Forecasting price efficiency (FPE)

Figure 9: Equilibrium pricing result with complexity in correctly specified model as a function
of P1 and σ2

β from Proposition A.1. We assume ρ = 1, Q = 0.1, σ2 = 1, b∗ = 10, and true
P = 10T where we fix T = 100. The dashed black line shows the interpolation boundary
c = 1. The dashed blue line plots the benchmark result as derived in Lemma 1.
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A.3 Decomposing the complexity wedge

(a) Decomposing E(τ(c); c, κ) (b) Decomposing V(τ(c); c, κ)

(c) Decomposing M(τ(c); c, κ)

Figure 10: Decomposing the complexity wedge following quantities in Lemma 2. I assume
ρ = 1, Q = 0.1, σ2 = 1, b∗ = 10, and true P = 10T where we fix T = 100. The dashed black
line shows the interpolation boundary c = 1.

A.4 Changes in optimal shrinkage

In Remark 4 we show that the optimal shrinkage is given by

τ(c) = c
σ2 + b∗σ

2
x(1− κ(c))

b∗σ2
xκ(c)

(56)

and thus

∂τ(c)

∂c
=

1

b∗σ2
xκ

2(c)

[
(σ2 + b∗σ

2
x(1− κ(c)))(κ(c)− cκ′(c))− b∗σ

2
xcκ

′(c)κ(c)
]

(57)
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Given κ′′(c) < 0, we know that κ(c)− cκ′(c) > 0, and the second term

b∗σ
2
xcκ

′(c)κ(c) ≤ b∗σ
2
xκ

2(c) (58)

Thus, the sufficient condition for ∂τ(c)
∂c

> 0 is that

σ2 + b∗σ
2
x(1− κ(c)))(κ(c)− cκ′(c) ≥ b∗σ

2
xκ

2(c) (59)

Figure 11 shows the optimal shrinkage as a function of data mining P1 for polynomial

decaying κ. We see that for most specifications of α, the optimal shrinkage is increasing in

P1.

(a) Optimal shrinkage τ(c) as a function of P1 (b) Derivative of optimal shrinkage τ(c)

Figure 11: Optimal shrinkage and its derivative to P1 for κ following polynomial decay with
different decay parameters.

A.5 Comparative statics with optimal shrinkage

From direct calculation we have

dE(τ(c); c, κ)
dc

=
∂E
∂c

+
∂E
∂τ

dτ

dc
+

∂E
∂κ

κ′(c)

= b∗σ
2
x

[
κ

(
1− τ

∂m

∂c
−
(
m+ τ

∂m

∂τ

))
dτ

dc
+ (1− τm(τ, c))κ′(c)

] (60)
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dM(τ(c); c, κ)

dc
=

∂M
∂c

+
∂M
∂τ

dτ

dc
+

∂M
∂κ

κ′(c)

= b∗σ
2
x

[
κ

(
1− 2τ

∂m

∂c
− τ 2

∂2m

∂τ∂c
−
(
2m+ 4τ

∂m

∂τ
+

∂2m

∂τ 2

)
dτ

dc

)
+ (1− 2τm(τ, c)− τ 2

∂m

∂τ
)κ′(c)

] (61)

and
dV(τ(c); c, κ)

dc
=

∂V
∂c

+
∂V
∂τ

dτ

dc
+

∂V
∂κ

κ′(c)

= (σ2 + b∗σ
2
x(1− κ))

[(
m+ c

∂m

∂c
+ τ

∂m

∂τ
+ cτ

∂2m

∂τ∂c

)
+

(
2c

∂m

∂τ
+ cτ

∂2m

∂τ 2

)
dτ

dc

]
− b∗σx

(
cm+ cτ

∂m

∂τ

)
κ′(c)

(62)

and these quantities can be used to characterize

dV ol

dc
=

dM(τ(c); c, κ)

dc
+

dV(τ(c); c, κ)
dc

(63)

and
dFPE

dc
=

2E(τ(c); c, κ)dE(τ(c);c,κ)
dc

V ol − E(τ(c); c, κ)2 dV ol
dc

V ol2
(64)

We don’t have a closed form characterization with nonzero shrinkage, but the change will

be two components as in Lemma 2. The effect in the ridgeless scenario is always that data

mining leads to lower FPE and V ol for κ′′(c) < 0 as in Corollary 1. The explicit shrinkage

effect doesn’t admit a closed form characterization, but is mainly driven by changes in

shrinkage. When the effect from shrinkage is small comparing to the change in the ridgeless

case, for example as shown in Figure 10, the behavior of FPE and V ol is similar to the

ridgeless case, and from Corollary 1 we have

dV ol

dP1

< 0 ;
dFPE

dP1

< 0 (65)

as shown in Figure 6.

B Proofs

In this section we provide proofs to theoretical propositions in the main text.
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Proof of Proposition 3.1 The proposition follows directly from Lindley and Smith

(1972).

Proof of Lemma 1 When P1/T → 0, we have 1
T
X ′

1,TX1,T → σ2
xIqP1 ,

1
T
W ′
TWT →

σ2
xI(1−q)P1 , and

1
T
X ′

1,TW1,T → 0. Therefore,

β̂ →

(
β1

0

)
+

[
1
T
X ′
T ϵT+1

1
T
W ′
T ϵT+1

]
→

(
β1

0

)
(66)

We also have

1

T

∑
τ

(β′
2X2,τ )

2 → E[(β′
2X2)

2] = tr(E[β2β
′
2X2X

′
2]) = (1− q)σ2

xb∗

The posterior variance thus becomes

V̂β → (σ2 + b∗σ
2
x(1− q))

σ2
xT

→ 0 (67)

Therefore, E[ft+1|II ] = X1,0β1 and V [ft+1|II ] = σ2 + b∗σ
2
x(1 − q). The rest of the results

follow from direct calculation.

Proof of Proposition A.1 Denote Ψ̂T ≡ 1
T
X ′
TXT , we can write

VI [θ] = σ2X ′
0(τI + Ψ̂T )

−1 1

T
Ψ̂T (τI + Ψ̂T )

−1X0 (68)

From Lemma 4 and the fact that X0 ∼ N(0, σ2
xIP ), we have

σ2X ′
0(τI + Ψ̂T )

−1 1

T
Ψ̂T (τI + Ψ̂T )

−1X0 − σ2σ2
x tr((τI + Ψ̂T )

−1 1

T
Ψ̂T (τI + Ψ̂T )

−1) → 0 (69)

in probability. At the same time, notice that

tr((τI + Ψ̂T )
−1 1

T
Ψ̂T (τI + Ψ̂T )

−1) = tr((τI + Ψ̂T )
−1 1

T
(τI + Ψ̂T − τI)(τI + Ψ̂T )

−1)

{by Lemma 7} =
1

T
tr(E[(τI + Ψ̂T )

−1(τI + Ψ̂T )(τI + Ψ̂T )
−1])

− τ

T
tr(E[(τI + Ψ̂T )

−1(τI + Ψ̂T )
−1])

=
1

T
tr(E[(τI + Ψ̂T )

−1])− τ

T
tr(E[(τI + Ψ̂T )

−2])

(70)
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From Lemma 5 and notice that when Ψ = IP we have the Marchenko-Pastur distribution,

we have
1

T
tr(E[(τI + Ψ̂T )

−1]) → cm(τ ; c) (71)

and hence

d

dτ

1

T
tr(E[(τI + Ψ̂T )

−1]) → c
d

dτ
m(τ ; c) (72)

Notice that
d

dτ

1

T
tr(E[(τI + Ψ̂T )

−1]) = − tr(E[(τI + Ψ̂T )
−2]) (73)

Thus, we get
1

T
tr(E[(τI + Ψ̂T )

−2]) → −c
d

dτ
m(τ ; c) (74)

Collecting terms, we have

VI [θ] → σ2σ2
x(cm(τ ; c) + cτ

d

dτ
m(τ ; c)) (75)

Given the mean zero assumptions in β, X and ϵ, we have E[β′Xt + ϵt+1] = E[β̂Xt] = 0.

Therefore,

RP = E[ft+1 − pt] = ρQ(V [θ|II ] + σ2) (76)

→ ρQσ2(1 + σ2
x(cm(τ ; c) + cτ

d

dτ
m(τ ; c))) (77)

For the price volatility (variance), we have

V ar(pt) = V ar(β̂′Xt − ρQ(V [θ|II ] + σ2)) (78)

Since V [θ|II ] converges to a constant in the limit, and given E[β̂′Xt] = 0, we have

V ar(pt) = E[(β̂′Xt)
2] → tr(E[XtX

′
t]β̂β̂

′) (79)

= σ2
x tr((τI + Ψ̂T )

−1(Ψ̂Tβ + qT )(Ψ̂Tβ + qT )(τI + Ψ̂T )
−1) (80)

where we define qT = 1
T

∑T
t=1X

′
tϵt+1. We then use the following lemma:

Lemma 3

We have β′(τI + Ψ̂T )
−1qT → 0 in L2 and thus also in probability
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Proof of Lemma 3 We have that YT = β(τI + Ψ̂T )
−1qT satisfies

E[Y 2
T ] = E[β′(τI + Ψ̂T )

−1qT q
′
T (τI + Ψ̂T )

−1β]

= E[β′(τI + Ψ̂T )
−1σ2 1

T
Ψ̂T (τI + Ψ̂T )

−1β]

→ b∗σ
2P−1 trE[(τI + Ψ̂T )

−1 1

T
Ψ̂(τI + Ψ̂T )

−1]

≤ τ−1b∗P/(PT ) → 0

(81)

Given Lemma 3, we have

V ar(pt) → σ2
x tr((τI + Ψ̂T )

−1(Ψ̂Tββ
′Ψ̂T + qT q

′
T )(τI + Ψ̂T )

−1)

= σ2
x tr((τI + Ψ̂T )

−1(Ψ̂Tββ
′Ψ̂T + σ2 1

T
Ψ̂T )(τI + Ψ̂T )

−1)

= σ2
x tr((τI + Ψ̂T )

−1(Ψ̂Tββ
′Ψ̂T )(τI + Ψ̂T )

−1) + σ2
xσ

2 tr((τI + Ψ̂T )
−1 1

T
Ψ̂T (τI + Ψ̂T )

−1)

= Term1 + Term2

(82)

We have computed Term2 from Eqn 70, i.e.

Term2 → σ2
xσ

2(cm(τ ; c) + cτ
d

dτ
m(τ ; c)) (83)

For Term1 we have

Term1 = b∗σ
2
x trE[(τI + Ψ̂T )

−1Ψ̂T Ψ̂T (τI + Ψ̂T )
−1]

= b∗σ
2
x trE[I − 2τ(τI + Ψ̂T )

−1 + τ 2(τI + Ψ̂T )
−2]

→ b∗σ
2
x(1− 2τm(τ ; c)− τ 2

d

dτ
m(τ ; c))

(84)

and combining Term1 and Term2 we have

V ar(pt) → L(τ ; c) = b∗σ
2
x(1− 2τ(c)m(τ(c); c)− τ(c)2

d

dτ
m(τ(c); c))

+ cσ2σ2
xm(τ(c); c) + cτ(c)σ2σ2

x

d

dτ
m(τ(c); c)

(85)
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The out-of-sample R2 is defined as

R2 = 1− E[(ft+1 − pt)
2]

E[f 2
t+1]

=
E[ft+1pt]− E[p2t ]

E[f 2
t+1]

=
E[(β′Xt + ϵt+1)β̂

′Xt]− V ar(pt)

E[(β′Xt + ϵt+1)2]

(86)

Notice that

E[(β′Xt + ϵt+1)
2] = trE[XtX

′
t]ββ

′ + σ2 = b∗σ
2
x + σ2 (87)

and we calculated V ar(pt) → L(τ ; c). Therefore, it remains to calculate

E[ft+1pt] = Cov(ft+1, pt) = E[(β′Xt + ϵt+1)β̂
′Xt] = E[β′XtX

′
tβ̂] (88)

given the independence of ϵt+1. Now,

β′E[XtX
′
t]β̂ = β′E[XtX

′
t](τI + Ψ̂T )

−1(Ψ̂Tβ + qT )

→ β′E[XtX
′
t](τI + Ψ̂T )

−1(Ψ̂Tβ)

→ b∗σ
2
x tr((τI + Ψ̂T )

−1Ψ̂T )

=→ b∗σ
2
x(1− τm(τ ; c))

(89)

Thus, we have Cov(ft+1, pt+1) = E[ft+1pt] → E(τ ; c) = b∗σ
2
x(1− τm(τ ; c)), and

R2 =
2E(τ ; c)− L(τ ; c)

b∗σ2
x + σ2

(90)

Furthermore, we have the regression coefficient

δ ≡ Cov(ft1 , pt)

V ar(pt)
→ E(τ ; c)

L(τ ; c)
(91)

Thus,

V ar(δpt) →
E(τ ; c)2

L(τ ; c)
(92)

and we have

FPE =
E(τ ; c)2

L(τ ; c)
(93)
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Proof of Corollary 1 When investor has uninformative prior and uses ridgeless regression,

using Lemma 2 we have

V ol = L(0; c, κ)

= M(0; c, κ) + V(0; c, κ)

=

 c
1−c(σ

2 + b∗σ
2
x(1− κ)) + b∗σ

2
xκ if c ≤ 1

1
c−1

(σ2 + b∗σ
2
x(1− κ)) + 1

c
b∗σ

2
xκ if c > 1

(94)

For large P1 with fixed T , c > 1, and since σ2

c−1
is decreasing in c, we have

sign

(
dV ol

dP1

)
= sign

(
dV ol

dc

)
= sign

(
d

dc
(
1− κ(c)

c− 1
+

κ(c)

c
)

)
(95)

Since κ′(c) > 0, we have 1−κ(c)
c−1

to be decreasing in c. When κ′′(c) < 0, we have κ′(c)c < κ(c),

which leads to d
dc
κ(c)
c

< 0. Putting both terms together we have dV ol
dP1

< 0.

Similarly, we have for ridgeless regression at P1 > T ,

FPE =
E(0; c, κ)2

M(0; c, κ) + V(0; c, κ)

=
b∗σ

2
x
κ(c)
c

( σ2

σ2
xb∗

+ 1) c
c−1

1
κ(c)

+ 1
c−1

(96)

We have dFPE
dP1

< 0 if and only if(
(
σ2

σ2
xb∗

+ 1)
c

c− 1

1

κ(c)
+

1

c− 1

)
σ2
xbx

κ′(c)c− κ(c)

c2

−bxσ
2
x

κ(c)

c

[
(
σ2

σ2
xb∗

+ 1)

(
cκ′(c)− κ(c)

κ(c)2(c− 1)
+

c

c− 1

1

κ(c)

)
+

1

(c− 1)2

]
< 0

(97)

which is equivalent to
κ′(c)c− κ(c)

c2
≤ σ2

σ2
xb∗

+ 1 +
κ(c)

c(c− 1)
(98)

Notice that the right hand side is always positive, and when κ′′(c) < 0 we have κ′(c)c < κ(c),

which means the left hand size is always negative. Therefore the condition is satisfied, and

we conclude that

sign

(
dFPE

dP1

)
= sign

(
dFPE

dc

)
< 0 (99)

for any κ with κ′′(c) < 0.
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C Auxiliary theoretical results

In this appendix, we provide some auxiliary theoretical results for dealing with large random

matrices. See Kelly et al. (2021); Didisheim et al. (2023) for additional random matrix theory

results in asset pricing.

Lemma 4

Suppose that X = (Xi)
P
i=1 with Xi independent of Xj, E[Xi] = 0, E[X2

i ] = 1, E[X4
i ] ≤ k for

some k, and AP is such that ||AP ||2 = o(1).

X ′
tAPXt = tr(APXtX

′
t) (100)

lim
P→∞

E[(X ′
tAPXt − tr(AP ))

2] = 0 (101)

Proof. For the equality, we notice

X ′
tAXt ∈ R ⇒ X ′

tAXt = tr(X ′
tAXt) = tr(AXtX

′
t) (102)

For the second equality, we define Yt = XtAPXt, we have

E[Yt] = E[tr(AP (XtX
′
t))] = tr(APE[XtX

′
t]) = tr(AP ) (103)

and hence

E[(Yt − tr(AP ))
2] = V ar(Yt) = E[Y 2

t ]− E[Yt]
2 (104)

and thus it’s sufficient to prove that E[Y 2
t ]− tr(AP )

2 → 0. Now,

Yt =
∑
i,j

XiXjAi,j (105)

and therefore

Y 2
t =

∑
i1,j1,i2,j2

Xi1Xj1Ai1,j1Ai2,j2Xi2Xj2 (106)

Therefore,

E[Y 2
t ] =

∑
i1,j1,i2,j2

Ai1,j1Ai2,j2E[Xi1Xj1Xi2Xj2 ]

=
∑
i

A2
i,iE[X4

i ] +
∑
i,j

(A2
i,j + Ai,iAj,j)E[X2

iX
2
j ]

≤
∑
i

kAi,i2 +
∑
i,j

A2
i,j + 2Ai,iAj,j

= (k − 1)
∑
i

Ai,i2 +
2∑
i,j

+tr(A)2

(107)
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Notice
∑

iA
2
i,i ≤

∑
i,j A

2
i,j = ||A||22, and thus

|E[Y 2
t ]− tr(A)2| ≤ k||A||22 (108)

and the proof is complete.

Lemma 5

Suppose St = Ψ1/2Xt where Xt is independent random vectors with E[Xi,t] = E[X3
i,t] = 0

and E[X2
i,t] = 1 and it satisfies the Lindeberg condition, and Ψ is symmetric and positive

semi-definite. Define Ψ̂T = 1
T

∑
t StS

′
t, we have

lim
T→∞

1

T
tr((zI + Ψ̂)Ψ) → ξ(z; c)

almost surely, where

ξ(z; c) =
1− zm(−z; c)

c−1 − 1 + zm(−z; c)

Proof. First we introduce the Sherman-Morrison formula (see Bartlett (1951)): let Ψ̂T,t =
1
T

∑
τ ̸=t SτS

′
τ , we have

(zI+Ψ̂T )
−1 = (zI+Ψ̂T,t)

−1− 1

T
(zI+(zI+Ψ̂T,t)

−1)−1StS
′
t(zI+Ψ̂T,t)

−1 1

1 + T−1S ′
t(zI + Ψ̂T,t)−1St

(109)

The proof is proceed with several steps:

• Let Ψ̂T,t =
1
T

∑
τ ̸=t SτS

′
τ , by 109 we have

(zI + Ψ̂T )
−1St = (zI + Ψ̂T,t)

−1St

− 1

T
(zI + Ψ̂T,t)

−1StS
′
t(zI + Ψ̂T,t)

−1St
1

1 + T−1S ′
t(zI + Ψ̂T,t)−1St

=(zI + Ψ̂T,t)
−1St

1

1 + T−1S ′
t(zI + Ψ̂T,t)−1St

(110)

• By Lemma 4,

P−1S ′
t(zI + Ψ̂T,t)

−1St − P−1 tr(Ψ(zI + Ψ̂T,t)
−1) → 0 (111)

in probability. At the same time, by Lemma 7,

P−1S ′
t(zI + Ψ̂T,t)

−1St − E[P−1 tr(Ψ(zI + Ψ̂T,t)
−1)] → 0 (112)
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almost surely. Thus,

P−1S ′
t(zI + Ψ̂T,t)

−1St − E[P−1 tr(Ψ(zI + Ψ̂T,t)
−1)] → 0 (113)

in probability.

• Lemma 6 implies that

P−1 trE[(zI + Ψ̂T )
−1] → m(−z; c) (114)

Now we have

1 = P−1 trE[(zI + Ψ̂T )
−1(zI + Ψ̂T )]

= P−1 trE[(zI + Ψ̂T )
−1]z + P−1 trE[(zI + Ψ̂T )

−1Ψ̂T ]

= zm(−z; c) + P−1 trE[(zI + Ψ̂T )
−1 1

T

∑
t

StS
′
t]

= {symmetry across t} = zm(−z; c) + P−1 trE[(zI + Ψ̂T )
−1StS

′
t]

= {using Sherman - Morrison 109}

= zm(−z; c) + P−1 trE[(zI + Ψ̂T,t)
−1St

1

1 + T−1S ′
t(zI + Ψ̂T,t)−1St

S ′
t]

= zm(−z; c) + E[
P−1S ′

t(zI + Ψ̂T,t)
−1St

1 + T−1S ′
t(zI + Ψ̂T,t)−1St

]

(115)

Now E[T−1 tr(Ψ(zI + Ψ̂T,t)
−1)] ≤ ||Ψ||z−1 and hence is uniformly bounded. Let’s pick a

sub-sequence of T such that E[T−1 tr(Ψ(zI + Ψ̂T,t)
−1)] → q for some q > 0. By 111 we have

P−1S ′
t(zI + Ψ̂T,t)

−1St

1 + T−1S ′
t(zI + Ψ̂T,t)−1St

→ c−1q

1 + q
(116)

in probability and this sequence is uniformly bounded. Hence,

E[
P−1S ′

t(zI + Ψ̂T,t)
−1St

1 + T−1S ′
t(zI + Ψ̂T,t)−1St

] → c−1q

1 + q
(117)

and we get

1− zm(−z; c) =
c−1q

1 + q
(118)

Thus, the limit of ξ(z; c) = E[T−1 tr(Ψ(zI + Ψ̂T,t)
−1] is independent of the sub-sequence of

T and satisfies

1− zm(−z; c) =
c−1ξ(z; c)

1 + ξ(z; c)
(119)
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and the proof is complete.

To compute m(−z; c) we can use the following

Lemma 6

Define mΨ(z) = limP→∞
1
P
tr((Ψ− zI)−1) and m(z) to be the empirical counterpart m(z) =

limP→∞
1
P
tr((Ψ− zI)−1), we have

m(z; c) =
1

1− c− czm(z; c)
mψ

(
z

1− c− czm(z; c

)
(120)

Proof. See Silverstein and Bai (1995); Bai and Zhou (2008).

Lemma 7

We have

P−1 tr(QP (zI + Ψ̂T )
−1)− E[P−1 tr(QP (zI + Ψ̂T )

−1)] → 0 (121)

almost surely for any sequence of uniformly bounded matrix QP

Proof. Let Eτ denote the conditional expectation given Sτ+1, · · ·ST . Let also qT (z) =
1
P
tr(zI + Ψ̂T )

−1QP . With this notation, since Ψ̂T,t is independent of St, we have

(Et−1 − Et)[
1

P
tr(zI + Ψ̂T,t)

−1QP ] = 0 (122)

and therefore

E[qT (z)]− qT (z) = E0[qT (z)]− ET [qT (z)] =
T∑
t=1

(Et−1[qT (z)]− Et[qT (z)])

=
T∑
t=1

(Et−1 − Et)[qT (z)]

=
T∑
t=1

(Et−1 − Et)[qT (z)−
1

P
tr(zI + Ψ̂T,t)

−1QP ]

=
1

P

T∑
t=1

(Et−1 − Et)[tr(zI + Ψ̂T )
−1QP − tr(zI + Ψ̂T,t)

−1QP ]

= − 1

P

T∑
t=1

(Et−1 − Et)[γt]

(123)

where we defined

γt = tr

(
1

T
(zI + Ψ̂T,t)

−1St(I +
1

T
S ′
t(zI + Ψ̂T,t)

−1St)
−1S ′

t(zI + Ψ̂T,t)
−1QP

)
(124)
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Since for any symmetric positive semi-definite matrices A,B, we have tr(AB) ≤ tr(A)||B||
and tr(A1/2BA1/2) ≤ tr(B)||A||, we have

||γt|| ≤ ||QP || tr
(
1

T
(zI + Ψ̂T,t)

−1St(I +
1

T
S ′
t(zI + Ψ̂T,t)

−1St)
−1S ′

t(zI + Ψ̂T,t)
−1

)
≤ z−1 tr

(
1

T
(zI + Ψ̂T,t)

−1/2St(I +
1

T
S ′
t(zI + Ψ̂T,t)

−1St)
−1S ′

t(zI + Ψ̂T,t)
−1/2

)
= z−1 tr(B(zI +B)−1) ≤ z−1

(125)

where B = 1
T
S ′
t(zI + Ψ̂T,tSt). Thus,

(Et−1 − Et)[tr(zI + Ψ̂T )
−1Ψ] = (Et−1 − Et)[γt] (126)

forms a bounded martingale difference sequence. Applying the Burkholder-Davis-Gundy

inequality (Burkholder (1966)) we get

E[|qT (z)− E[qT (z)]|κ] ≤ KκP
−κE

(
T∑
t=1

|(Et−1 − Et)[γt]|2
)κ/2

≤ Kκ(2T/z)
κP−κ/2(

P

T
)−κ/2

(127)

Almost sure convergence follows with κ > 2 from the following lemma:

Lemma 8

Suppose that

E[|XT |κ] ≤ T−α (128)

for some α > 1 and some κ > 0, then XT → 0 almost surely.

Proof. It is known that if
∞∑
T=1

Prob(|XT | > ϵ) < ∞ (129)

for any ϵ > 0, then XT → 0 almost surely. In our case, the Chebyshev inequality implies

that

Prob(|XT | > ϵ) ≤ ϵ−κE[|XT |κ] ≤ T−α (130)

and the convergence follows since α > 1.

The proof of Lemma 7 is thus complete.
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D Additional empirical results

Figure 12: Out-of-sample SDF (annualized) Sharpe ratio based on factors constructed by
different sizes of predictor sets. We gradually increase the set of JKP predictors used to con-
struct factors and estimate SDF using (2) and (3). We report the highest Sharpe ratio across
shrinkage z. Each light blue line represent a random order of discovering predictors, and
the black line is the average across random orderings. We conduct the analysis in different
market capitalization groups: mega (largest 20% of stocks based on NYSE breakpoints each
period), large (between 80% and 50%), small (between 50% and 20%), and micro (between
20% and 1%).
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Figure 13: Out-of-sample SDF (annualized) Sharpe ratio based on factors constructed by
different sizes of predictor sets. We gradually increase the set of JKP predictors used to
construct factors and estimate SDF using (2) and (3). We report the highest Sharpe ratio
across shrinkage z. Each light blue line represent a random order of discovering predictors,
and the black line is the average across random orderings. We conduct the analysis in using
different rolling window sizes (in months).
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Figure 14: Out-of-sample SDF (annualized) Sharpe ratio based on factors constructed by
random Fourier features (RFF) of different sizes of predictor sets. We gradually increase
the set of JKP predictors used in RFF as in (4) and estimate SDF using (2) and (3) on
RFFs with different size P . We average across 20 draws of random weights and report
the highest Sharpe ratio across shrinkage z. Each light blue line represent a random order
of discovering predictors, and the black line is the average across random orderings. We
conduct the analysis in different market capitalization groups: mega (largest 20% of stocks
based on NYSE breakpoints each period), large (between 80% and 50%), small (between
50% and 20%), and micro (between 20% and 1%).
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Figure 15: Out-of-sample SDF (annualized) Sharpe ratio based on factors constructed by
random Fourier features (RFF) of different sizes of predictor sets. We gradually increase
the set of JKP predictors used in RFF as in (4) and estimate SDF using (2) and (3) on
RFFs with different size P . We average across 20 draws of random weights and report the
highest Sharpe ratio across shrinkage z. Each light blue line represent a random order of
discovering predictors, and the black line is the average across random orderings. We conduct
the analysis in using different rolling window sizes (in months).

D.1 Discover hypothetical signals

In this section we expand the signal sets from 130 JKP signals to include more hypothetical

signals, to mitigate the concern that these 130 signals are pre-selected from previous literature

and are shown to have strong predictability. We construct a hypothetical signal j as the true
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next-period return plus noise, i.e.

Sji,t = Ri,t+1 + ϵi,j,t

with ϵi,j,t ∼ N(0, σ2
ϵ ) and we set σϵ = 0.05. We conduct the signal discovery for the 130 JKP

signals first, and then expand to 70 hypothetical signals. Figure 16 shows the out-of-sample

Sharpe ratio of optimal portfolio constructed by expanding through 130 JKP signals and

hypothetical signals. We implement the estimation in two rolling window sizes: T = 12 and

T = 480. We see that even with an extremely short rolling window T = 12, expanding JKP

signals will lead to higher performance, suggesting indeed that the information content in the

JKP signals are strong. However, once we further expand to noisy hypothetical signals, we

see deterioration in performance with short rolling window, while if we use a longer training

window the performance will continue to increase. These results suggest that the amount of

training history (and complexity) is the key driver in understanding the different behaviors

when investors discover more potential predictors.

Figure 16: Hypothetical discovery of new signals. We start with the 130 JKP signals and
then expend to hypothetical signals. The blue line denotes the cutoff between JKP signals
and hypothetical signals.
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