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1. Introduction

Factor models dominate empirical work in asset pricing. They provide tractability

by determining observable proxies for the representative agent’s unknown marginal rate

of substitution, which according to theory (e.g., Lucas 1978), should be the stochastic

discount factor (SDF) pricing assets. A seminal example is the capital asset pricing model

(CAPM) of Sharpe (1964) and Lintner (1965), which predicts that the SDF should be a

function of only one factor: the excess return on the market portfolio. This prediction

has been eventually rejected, giving rise not only to hundreds of cross-sectional anomalies

as test assets that are challenging to price (Hou, Xue and Zhang, 2020), but also to a

plethora of alternative factors beyond the market (Harvey, Liu and Zhang, 2016).

The vast majority of this work imposes that the marginal rate of substitution is linear

in the set of factors under consideration. This allows asset pricing tests to be easily

implemented through linear regressions, where the metric of pricing performance has a

clear economic interpretation. Namely, the linear factor model prices the test assets if

and only if the maximum Sharpe ratio attainable from the factors cannot be improved

by also trading in the test assets (Gibbons, Ross and Shanken, 1989). In addition, under

the linearity assumption, comparing two factor models boils down to comparing the

maximum Sharpe ratio attainable from the factors in each model (Barillas and Shanken,

2017). That is, test assets are surprisingly irrelevant for model comparison.

However, enforcing the SDF to be linear in the factors entails important limitations.

First, the SDF can attain negative values, which is inconsistent with the marginal utility

of a representative agent and the absence of arbitrage. Second, payoffs that are nonlinear

functions of the factors cannot be priced by a linear SDF on the factors (Bansal and

Viswanathan, 1993). Third, investors care about systematic skewness and kurtosis risk

(Harvey and Siddique, 2000; Dittmar, 2002), which is ignored under a linear SDF. In

fact, failing to account for preferences for higher moments can give rise to anomalies that

would otherwise not exist (Schneider, Wagner and Zechner, 2020). In other words, a

rejection of a linear factor model may be a rejection of linearity, rather than a rejection

of the factors as proxies for the aggregate marginal rate of substitution.
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This raises several important questions. How can we systematically account for non-

linearities in a given factor model? What is the metric of pricing performance under

nonlinearities? Are factor nonlinearities priced in the cross-section of returns, i.e., can

they significantly improve the explanatory power for the cross-section relative to lin-

ear factor models? Do test assets continue to be irrelevant for model comparison? Is

it necessary to add more factors beyond the market once we allow for nonlinearities?

Can nonlinear factor models achieve the (out-of-sample) mean-variance frontier? In this

paper, we aim to answer these questions.

To that end, we extend the linear approach to allow for the SDF to be a nonlinear

function of the factors. Our generalization is still easy to implement and has a similar

economic interpretation. It relies on first estimating a nonlinear SDF pricing the factors

of a given model, and then using this SDF as a single factor in the regression-based tests.

The pricing performance metric becomes the Sharpe ratio of the mimicking portfolio

of the nonlinear SDF.1 This framework provides a reason why test assets are irrelevant

for model comparison under the linear approach. If the SDF is a linear function of the

factors, its mimicking portfolio (i.e., its projection onto the universe of test assets and

factor returns) loads only on the factors themselves and has zero weights in the test

assets. In contrast, if a nonlinear SDF pricing the factors of a given model is considered,

its mimicking portfolio will load on the entire universe of test assets and factors. That

is, the relevance of test assets is restored as they are needed to mimic the nonlinearities.

Knowing how to evaluate a factor model under a nonlinear SDF, the natural question

is then which nonlinearities to consider. Under no-arbitrage, there exists an infinity of

admissible SDFs that price the factors beyond the linear one. Each of these alternative

specifications introduce nonlinearities that are irrelevant to price the factors, but that

may be relevant to price the extended economy with test assets.2 While the no-arbitrage

set is too large and can contain SDFs that are not economically plausible, focusing on one

1It is easy to see why this generalizes the traditional linear approach: if the linear SDF pricing the
factors (Hansen and Jagannathan, 1991) is used, its mimicking portfolio is precisely the portfolio of the
factors that attains the maximum Sharpe ratio possible when trading in the factors.

2In fact, we derive a sufficient condition for a nonlinear SDF to improve upon the pricing performance
of the linear one: the nonlinearity it adds must provide an insurance for the “true” systematic risk, i.e.,
it must covary positively with the marginal rate of substitution that prices the whole universe of test
assets and factors.
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specific nonlinear SDF would require a strong prior on a particular form of nonlinearity.

Instead, in the spirit of Cochrane and Saa-Requejo (2000), we propose to restrict the

no-arbitrage set based on economic restrictions. From the restricted set, we identify the

nonlinear SDF for which the mimicking portfolio has the highest Sharpe ratio.

More specifically, we choose to work with the set of SDFs minimizing Cressie and

Read (1984) discrepancy functions, which generalize the variance metric. These SDFs

are thus a direct generalization of the linear one and satisfy several desirable properties.

First, they are all nonnegative. Second, they map to the marginal utilities of investors

with hyperbolic absolute risk aversion (HARA) solving an optimal portfolio problem.

As such, they capture a diverse set of preferences for higher order co-moments with an

economically meaningful portfolio of the factors. Third, their nonlinearities are indexed

by a single parameter, allowing us to interpret how pricing performance depends on it.

Empirically, we analyze the pricing implications of incorporating factor nonlinearities

for a wide range of popular models. We consider 10 factor models encompassing 19 unique

traded factors: the market factor (CAPM); the 2-factor intermediary asset pricing model

of He, Kelly and Manela (HKM, 2017); the betting-against-beta extension of the CAPM

of Frazzini and Pedersen (BAB, 2014); the factor model of Daniel, Hirshleifer and Sun

(DHS, 2018), which adds 2 behavioral factors to the market; the Fama and French (1993)

3-factor model (FF3); the investment q-factor model of Hou, Xue and Zhang (2015) (q4);

the Fama and French (2015) 5-factor model (FF5); the hedged FF5 of Daniel et al. (FF5*,

2020); FF5 plus momentum (Carhart, 1997) (FF6); and the Barrilas and Shanken (2018)

6-factor model (BS). Our baseline set of test assets is given by the 19 unique factors and

44 anomalies from Kozak, Nagel and Santosh (2020).

We find that factor nonlinearities are priced as they substantially improve the absolute

pricing performance of nearly all factor models considered.3 In some cases, such as for

the CAPM and the BAB, the Sharpe ratio metric can even double. These results are

not only economically, but also statistically significant, holding for different sets of test

assets. This is striking as the minimum discrepancy SDFs are not optimized to maximize

pricing performance across the universe of test assets. In fact, just as in the linear

3The exception is FF3, for which the linear model is optimal within the family of SDFs we consider.
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case, only information on the factors is used, such that improvements come solely from

economically meaningful nonlinearities embedded in the SDF. The Cressie-Read SDFs

that yield those improvements are usually the ones associated with investors with higher

degrees of absolute risk aversion relative to the linear SDF.

Improvements associated with nonlinearities are heterogeneous across factor models.

In particular, nonlinearities improve substantially the performance of the CAPM, impos-

ing a stronger hurdle to beat it. We find that the market factor outperforms both the

HKM and FF3 when nonlinearities are allowed for the three models, while the opposite

happens under the linear specification. This is consistent with previous evidence that

nonlinear versions of the CAPM perform well in cross-sectional asset pricing (Harvey

and Siddique, 2000) and outperform the FF3 multi-factor model (Dittmar, 2002; Chung,

Johnson and Schill, 2006). However, we also show that nonlinearities are not enough to

make the CAPM comparable to the other multi-factor models in our analysis, confirming

the need to go beyond the market return as the only relevant state variable.

Accounting for nonlinearities leads to different rankings between the remaining factor

models as well. Overall, the best performing factor model is the DHS, followed by BS. This

is true both under the linear specification and the nonlinear specification for pricing the

baseline set of anomalies. However, if we consider different sets of test assets (anomalies

from Hou, Xue and Zhang, 2020; the 25 Fama-French size/book-to-market portfolios; or

the 49 Fama-French industry portfolios), the opposite conclusion is obtained under the

nonlinear case: BS is the best performing model. This highlights the relevance of the

test assets once nonlinearities are taken into account and is consistent with the intuitive

notion that the preferred model will depend on the set of assets being priced.

Among test assets, we find that momentum strategies are the most important to

mimic factor nonlinearities. This provides a potential explanation for the momentum

anomaly: it commands a premium because it works as a proxy for priced nonlinearities

of systematic sources of risk. In a sense, this helps justify the use of momentum as a

factor in linear factor models as a simple way of incorporating factor nonlinearities. On

the other hand, low-risk anomalies such as idiosyncratic volatility are among the least

important in the mimicking portfolios. The only exception is for the market factor, for
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which these strategies are especially useful in reproducing nonlinear patterns. This is

consistent with the evidence from Schneider, Wagner and Zechner (2020) that low-risk

anomalies are closely related to market co-skewness risk.

While our baseline results are out-of-sample in the cross-sectional dimension, in the

sense that test assets are not used in the estimation of the nonlinear SDFs, they are

based on the whole sample period and thus rely on ex-post Sharpe ratios. To address

this concern, we conduct a pricing exercise that is also out-of-sample in the time-series

dimension, where we estimate the SDFs and their mimicking portfolios in an expanding

training window and compute the out-of-sample portfolio returns. For most of the models,

the best nonlinear SDF (chosen ex-ante) continues to deliver higher Sharpe ratios than the

linear specification. In particular, the returns of the nonlinear SDF mimicking portfolios

are not spanned by those of the linear SDF, while the latter are spanned by the former.

Interestingly, some of the factor models are even able to achieve the out-of-sample mean-

variance frontier when nonlinearities are contemplated, indicating that the SDF is more

likely to be a sparse function of observable factors under nonlinearities.

Finally, we also analyze the implications of nonlinearities for the pricing performance

of 17 nontraded factors from Bryzgalova, Huang and Julliard (2023). Results are even

more impressive than for traded factors. For 9 out of the 17 models, the squared Sharpe

ratio more than doubles under a nonlinear SDF. The performances of the investor senti-

ment index of Baker andWurgler (2006) and the dividend yield factor in the nonlinear case

are particularly remarkable, as the Sharpe ratios associated with these one-factor models

are comparable to those of the best traded multi-factor models we analyze. Further-

more, nonlinearities are especially important for the pricing performance of consumption

factors, supporting the idea that higher-order co-moments with consumption are priced.

The remainder of the paper is organized as follows. After a brief review of the related

literature, Section 2 summarizes the traditional liner factor model approach. Section 3

presents our extension to allow for nonlinearities, while Section 4 discusses the specific

set of nonlinear SDFs we consider. Section 5 contains our empirical analysis on the

importance of nonlinearities for the pricing performance of factor models. Section 6

concludes the paper.
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1.1. Related literature

Our paper is mainly related to four strands of the literature. The first strand stud-

ies asset pricing tests of factor models. Gibbons, Ross and Shanken (1989) provide a

test for the efficiency of a model with traded factors. Shanken (1985) develops a test

based on a quadratic form of pricing errors from cross-sectional regressions, which Kan

and Robotti (2008) show is analogous to a modified Hansen and Jagannathan (1997)

distance. Kan and Robotti (2009) provide a formal model comparison test using the

Hansen-Jagannathan distance. Lewellen, Nagel and Shanken (2010) discuss how to im-

prove empirical tests. Barillas and Shanken (2017) show that, under traditional tests,

the preferred model is the one with higher maximum squared Sharpe ratio. Barillas and

Shanken (2018) and Bryzgalova, Huang and Julliard (2023) derive Bayesian asset pricing

tests, while Barillas et al. (2020) provide asymptotic tests for model comparison based

on maximum Sharpe ratios. Detzel, Novy-Marx and Velikov (2022) take into account

transaction costs when evaluating factor models. Kozak and Nagel (2023) discuss the

conditions under which different approaches for factor construction span the linear SDF

pricing individual stocks. While all these papers focus on linear models, we provide an ex-

tension of the standard regression-based tests to allow for nonlinearities in the factors that

still has a similar economic interpretation in terms of Sharpe ratios of tradable strategies.

Relatedly, Bollerslev, Patton and Quaedvlieg (2024) extend linear factor models to allow

factor exposures and risk premia to vary in the return space in cross-sectional regressions.

Since our approach conceptually relies on using a nonlinear SDF as the single factor in a

cross-sectional regression, both methods could be combined and are thus complementary.

The second strand of the literature proposes nonlinear SDF models for pricing the

cross-section of returns. Bansal and Viswanathan (1993) and Chapman (1997) use neural

networks and orthonormal polynomials, respectively, to estimate a nonlinear SDF as a

function of a few state variables. Harvey and Siddique (2000) consider a three-moment

CAPMwhere coskewness is priced, while Dittmar (2002) proposes a cubic SDF taking into

account preferences for cokurtosis with the market. Vanden (2006) provides conditions

under which the economy SDF depends on quadratic terms of index option returns.

Schneider, Wagner and Zechner (2020) document that an SDF that is a quadratic function
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of the market can explain low-risk anomalies. While these papers motivate our work, we

do not share the goal of providing a new nonlinear market model. Instead, we take any

set of factors as given and investigate the implications of accounting for nonlinearities in

their pricing performance. We show that, for a variety of models, factor nonlinearities are

important to explain returns as they substantially improve upon the linear specification.

The third strand of the literature leverages complex machine learning techniques to

nonlinearly map the information from a large set of stock characteristics into portfolios

entering a linear SDF (Gu, Kelly and Xiu, 2021; Bryzgalova, Pelger and Zhu, 2024; Chen,

Pelger and Zhu, 2024; Cong, Feng, He and He, 2023; Fan, Ke, Liao and Neuhierl, 2023;

Didisheim, Ke, Kelly and Malamud, 2024). In a sense, we do the opposite: we take a

low-dimensional and interpretable set of factors proposed by the literature as given, and

obtain from them parsimonious nonlinear SDFs indexed by a single parameter. When

projected onto the universe of assets, these SDFs lead to tradable portfolios with Sharpe

ratios that are substantially higher than those associated with the linear model. Our

approach is not meant as a competitor of the machine learning methods, as we aim to

enhance the pricing performance of existing factor models keeping their interpretability,

rather than building linear models based on a high-dimensional set of newly constructed

factors. Our theoretical motivation is that for any linear factor model that does not

achieve the mean-variance frontier, incorporating nonlinearities can bring it closer to the

frontier as they might be relevant for pricing the extended economy beyond the factors.

Whether applying this idea to the high-dimensional linear SDFs implied by these papers

would be fruitful is a question we leave for future research.

The fourth strand uses Cressie-Read discrepancies for different purposes in asset pric-

ing. A number of papers have considered SDFs minimizing the Cressie-Read family

(Almeida and Garcia, 2012, 2017) or particular members of the family such as variance

(Hansen and Jagannathan, 1991), entropy (Stutzer, 1995; Bansal and Lehmann, 1997;

Alvarez and Jermann, 2005; Backus, Chernov and Zin, 2014; Ghosh, Julliard and Tay-

lor, 2017) and generalized entropy (Snow, 1991; Liu, 2021) for diagnosing asset pricing

models.4 Stutzer (1996) and Almeida and Freire (2022) analyze the option pricing im-

4More specifically, these papers have analyzed whether the pricing kernel of a candidate equilibrium
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plications of the minimum entropy SDF and the whole family of Cressie-Read SDFs,

respectively. Almeida, Ardison and Garcia (2020) derive performance measures for hedge

funds based on minimum discrepancy SDFs. Korsaye, Quaini and Trojani (2019) estimate

minimum discrepancy SDFs under general constraints on pricing errors. Ghosh, Julliard

and Taylor (2019) show that the minimum entropy SDF estimated from test assets out-

performs popular factor models out-of-sample, while Sandulescu, Trojani and Vedolin

(2021) examine ratios of minimum entropy SDFs from international markets. Our paper

is unique in that we use the whole family of Cressie-Read SDFs obtained from a given

set of factors to price the extended economy with test assets. More recently, Almeida,

Masini and Schneider (2023) and Sandulescu and Schneider (2024) identify the smallest

polynomial modification to a linear factor model to be consistent with no-arbitrage. Each

SDF we consider also imposes no-arbitrage, but adds a different nonlinear term to the

linear model determined by the maximization of a HARA utility function.

2. Asset pricing tests of linear factor models

In this section, we briefly describe asset pricing tests of linear factor models, which

we later extend to allow for nonlinearities. Consider N test assets with excess returns R

and K traded factors with returns f that are also in excess of the risk-free rate or return

spreads of long-short portfolios. Traditional tests evaluate whether the unconditional

expected return-beta relation is satisfied:5

E(R) = βλ, (1)

where β is N ×K and contains the covariances between the test assets and the factors,

and λ is the K-vector of expected excess returns of the factors, i.e., their risk premia.

The relation above states that any expected return beyond the risk-free rate should come

as a compensation for exposure to systematic factor risk. Deviations from this relation

characterize pricing errors, or “alphas”: α ≡ E(R)− βλ.

model is able to generate enough dispersion as measured by a particular Cressie-Read loss function.
5Conditional asset pricing tests as in, e.g., Lewellen and Nagel (2006), do not fall in this category.
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The traditional approach to evaluate a model of traded factors is the Gibbons, Ross

and Shanken (1989) test. This approach consists of a multivariate linear regression with

time-series observations on Rt and ft:

Rt = α + βft + ϵt, t = 1, ..., T, (2)

where all variables are N -vectors, with the exception of the N ×K β matrix and the K-

vector of factors. The error term ϵt has zero mean and an invertible covariance matrix Σ.

The null hypothesis is that the entries of α are jointly equal to zero, that is, that relation

(1) holds. The GRS test is based on a quadratic form in the alphas that they show is

equivalent to the improvement in the maximum squared Sharpe ratio Sh2(.) attainable

from investing in the test assets in addition to the factors:6

α′Σ−1α = Sh2(f,R)− Sh2(f). (3)

In other words, a nonzero alpha indicates that the factors do not span the tangency port-

folio, or, equivalently, do not attain the maximum squared Sharpe ratio in the economy.

For models where the factors f are nontraded, the same relation (1) should hold, but

now the means of the factors are uninformative and different from their risk premia. In

this case, the GRS test is not applicable, and a two-step approach is needed instead as

λ must also be estimated. First, the betas with respect to the factors are obtained from

time-series regressions for each asset i = 1, ..., N :

Ri,t = ci + βift + ui,t, t = 1, ..., T. (4)

Then, a cross-sectional regression (CSR) of expected excess returns on betas obtains the

risk premia as the slope coefficients and the pricing errors as the residuals:

E(R) = βλ+ α. (5)

6For any set of returns R̃, the maximum squared Sharpe ratio is given by Sh2(R̃) =
E(R̃)′V ar(R̃)−1E(R̃).
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The regression does not contain an intercept, such that the residuals capture deviations

from the linear expected return-beta relation. The null hypothesis of α = 0 can also

be tested with a quadratic form (Shanken, 1985). Using results from Lewellen, Nagel

and Shanken (2010), Barillas and Shanken (2017) show that, if the CRS is estimated

with generalized least squares (GLS), a quadratic form in the alphas again reduces to the

improvement in the squared Sharpe ratio from trading in the assets, but now in addition

to that of the mimicking portfolios of the factors.7 That is:

α′V −1α = Sh2(R)− Sh2(fp), (6)

where V is the covariance matrix of R and fp are the returns of the mimicking portfolios

of the original factors f .8

In sum, standard asset pricing tests boil down to evaluating the maximum squared

Sharpe ratio obtained from the factors. In fact, both approaches above are equivalent if

the factors are traded and included in the set of asset returns R (Barillas and Shanken,

2017). To see that, note that in this case R includes both the tests assets and the factors,

and the mimicking portfolios of traded factors are the factors themselves. This implies

that the expression in (6) equals that in (3).

Considering the alpha mispricing metric associated with the asset pricing tests above,

Barillas and Shanken (2017) provide a surprising result for the comparison of linear factor

models. While most of the empirical literature has compared the performance of factor

models in pricing different sets of test assets, they argue that a model should also be able

to price the traded factors in competing models, i.e., the whole universe of assets under

consideration. As it turns out, this implies that comparing two models is equivalent to

comparing the maximum squared Sharpe ratio of the factors in each model, such that

test assets are irrelevant.

The argument is simple. Let f1 and f2 be two competing models of traded factors

7Kan and Robotti (2008) show that this test is equivalent to a modified Hansen-Jagannathan distance
when the zero-beta rate is constrained to equal the risk-free rate.

8The mimicking portfolio for a factor f is given by the projection of the factor on the returns
and a constant. More specifically, fp,t = ARt, where A is obtained from the time-series regression
ft = a+ARt + ηt.
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and R the returns of a set of basis test assets, such that the whole universe of test assets

is given by Rall = [R, f1, f2]. According to the alpha mispricing metric, factor model f1

is preferred if its improvement in Sharpe ratio when investing in the test assets is smaller

than that for f2, that is, if:

Sh2(Rall)− Sh2(f1) < Sh2(Rall)− Sh2(f2). (7)

The common term above drops out and we have that the better model is the one which

factors yield the higher maximum squared Sharpe ratio: Sh2(f1) > Sh2(f2). Throughout

the paper, we follow the premise that traded factors are included in the set of test assets.

3. Incorporating nonlinearities

In this section, we extend the traditional linear approach of evaluating factor models

to allow for nonlinearities. In this context, we discuss the implications of nonlinearities for

the pricing performance of a set of factors. In particular, we provide a sufficient condition

for nonlinearities to improve performance relative to the linear case. Then, instead of

focusing on a particular form of nonlinearity, we propose to address performance under

nonlinearities by considering the highest Sharpe ratio one can obtain from nonlinear SDFs

within an economically meaningful set.

3.1. Extending traditional asset pricing tests

To incorporate nonlinearities of factors when evaluating a given model, we propose a

simple generalization of the traditional methods described in Section 2. Our approach

can be conceptually seen as a three-step procedure. First, for a given traded factor model

f , we identify an SDF m that prices the factors, i.e., that satisfies the Euler equation:

E(mf) = 0. (8)
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Then, we run the two-step GLS CSR using the SDF m as a single nontraded factor to

obtain the pricing errors α. From Equation (6), the following holds:

α′V −1α = Sh2(Rall)− Sh2(mp), (9)

where mp is the mimicking portfolio of the SDF and Rall contains the basis test assets

and the factors f (and any other factors from competing models).

We now show that the standard asset pricing tests in Section 2 are the particular case

of our approach that uses in the first step the unique linear SDF that prices the factors

(Hansen and Jagannathan, 1991):

m∗ = 1− b′[f − µf ], b = Σ−1
f µf , (10)

where µf = E(f) and Σf = V ar(f). The SDF above is a linear function of the portfolio

of the factors b′f with maximum squared Sharpe ratio. Therefore, if we run the GLS

CSR using m∗ as the single factor and analyze the quadratic form in the pricing errors

alphas, we obtain:

α′V −1α = Sh2(Rall)− Sh2(m∗
p) = Sh2(Rall)− Sh2(−b′f) = Sh2(Rall)− Sh2(f). (11)

The second equality stems from the fact that the mimicking portfolio m∗
p of m∗, i.e., its

projection on Rall, recovers precisely the portfolio −b′f since m∗ is linear in the factors.9

The third equality holds because b′f is already the portfolio of the factors that yields the

maximum squared Sharpe ratio Sh2(f). In other words, the GRS or GLS CSR approaches

on the factors f are equivalent to using the linear SDF pricing f in the GLS CSR.

By looking through the lens of the space of SDFs, our framework provides additional

insights into the test asset irrelevance result of Barillas and Shanken (2017) for comparing

factor models. Test assets are irrelevant in the usual approach because they are not

needed to mimic the SDF, which is already a linear function of factors f . In contrast, if a

9That is, in the regression 1− b′[ft −µf ] = a+ARt + ηt, A is equal to −b for the factors ft and zero
for the remaining test assets in Rt, while a = 1 + b′µf and ηt is zero.
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nonlinear SDF pricing the factors of a given model is considered, its mimicking portfolio

will load on the entire universe of test assets. That is, test assets become relevant as they

are needed to mimic the nonlinearities.

While we mostly focus on the case of traded factors f , our framework also analogously

generalizes traditional asset pricing tests for nontraded factors. In this case, our approach

would first identify an SDF m that prices the mimicking portfolios of the nontraded

factors, and then use this SDF in the GLS CSR. As detailed in Appendix A, the traditional

GLS CSR approach applied directly to the nontraded factors is a particular case of our

framework when the linear SDF pricing the mimicking portfolios of the factors is used.

In sum, we propose to incorporate nonlinearities by using a nonlinear SDF that prices

the factors f as the single factor in the GLS CSR. Under no-arbitrage, there exists an

infinity of admissible SDFs satisfying the Euler equation (8) beyond the linear one.10 Each

of these alternative SDFs introduce nonlinearities that are irrelevant to price the factors,

but that may be relevant to price the whole universe of test assets. In the next subsection,

we make this statement more precise and discuss the implications of nonlinearities for

the pricing performance of a traded factor model f .

3.2. Implications of nonlinearities for pricing performance

We start from the following decomposition that any admissible SDF m that prices

the factors f satisfies (Cochrane, 2001):

m = m∗ + e, E(e) = 0, E(ef) = 0. (12)

The decomposition shows that the nonlinear term e simply adds noise for pricing f .

However, since any model is potentially misspecified, it is reasonable to assume that

the linear function m∗ of the factors f does not fully capture the systematic risk in the

extended economy with all test assets and factors. In this case, the nonlinearity can

improve the pricing performance in the extended economy relative to the linear SDF.

10This is true under incomplete markets, which is the realistic case where the number of states is
larger than the number of assets in a one-period problem.
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More precisely, using the decomposition (12), we can rewrite the metric of model

mispricing in (9) as:

α′V −1α = Sh2(Rall)− Sh2(mp) = Sh2(Rall)− Sh2(m∗
p + ep), (13)

where ep is the mimicking portfolio of the nonlinearity e. The maximum squared Sharpe

ratio of mp can be further simplified into:

Sh2(m∗
p + ep) =

E(m∗
p + ep)

2

V ar(m∗
p + ep)

=
µ2
m∗

p

σ2
m∗

p
+ σ2

ep

+
µ2
ep

σ2
m∗

p
+ σ2

ep

+
2µm∗

p
µep

σ2
m∗

p
+ σ2

ep

, (14)

where µx and σ2
x denote expected value and variance, respectively, of the variable x in the

subscript. The expression above tells us that, everything else constant, a more volatile

nonlinearity hurts the pricing performance of the nonlinear SDF. However, for reasonable

distortions of m∗ where the variance of e is small relative to that of m∗, we can write

σ2
m∗

p
+ σ2

ep ≈ σ2
m∗

p
and obtain the following approximation:11

Sh2(m∗
p + ep) ≈ Sh2(f) +

µ2
ep

σ2
m∗

p

+
2µm∗

p
µep

σ2
m∗

p

. (15)

Since the second term of (15) is always positive, it is possible to arrive at a sufficient

condition for the nonlinear SDF to improve upon the performance Sh2(f) of the linear

SDF by studying the signs of µm∗
p
and µep . For that, it is helpful to understand what

determines their signs. Both m∗
p and ep are portfolios of traded assets in the extended

economy. Hence, their expected returns depend on how they covary with the economy-

wide SDF, i.e., the benchmark linear SDF m∗
all that prices the whole universe of assets

(and portfolios of these assets) and is associated with Sh2(Rall).
12 More specifically, from

11Such reasonable distortions would be those consistent with good-deal bounds (Cochrane and Saa-
Requejo, 2000) or, equivalently, the absence of near-arbitrage opportunities (Kozak, Nagel and Santosh,
2020). Moreover, if σ2

e is small relative to σ2
m∗ , σ2

ep is even smaller relative to σ2
m∗

p
. This is because m∗

p

has the same variance as m∗, as m∗
p is equal to m∗ plus a constant, while ep has a smaller variance than

e, as et = a+ ep,t + ηt and V ar(ηt) is nonzero.
12Note that, for the extended economy, it suffices to work with the linear SDF m∗

all as any nonlinear
SDF mall simply adds noise for pricing the entire universe of assets Rall. Note also that m∗

all is the
projection of the “true” unobserved marginal rate of substitution onto the test assets and factors Rall.
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the Euler equations E(m∗
all m

∗
p) = 0 and E(m∗

all ep) = 0, it is easy to show that:

µm∗
p
= −cov(m∗

p,m
∗
all) = −cov(m∗,m∗

all), (16)

µep = −cov(ep,m
∗
all) = −cov(e,m∗

all). (17)

That is, an asset gets a negative expected excess return if it provides insurance for

marginal utility by covarying positively with the extended economy SDF. Arguably, we

should expect that any sensible factor model f produces an SDF m∗ that covaries posi-

tively with the economy-wide SDF. In fact, this is the case empirically for all the factor

models we consider in Section 5. This implies that µm∗
p
< 0. Therefore, under approx-

imation (15), a sufficient condition for nonlinearities to improve upon the linear case is

that µep < 0. In other words, if the nonlinearity e is an insurance for systematic risk and

has a small enough variance, the nonlinear SDF m outperforms the linear one m∗. More

than that, the better an insurance e is (the more it covaries with m∗
all), the stronger is

the outperformance of m relative to m∗.

3.3. Which nonlinearities?

Given that nonlinearities can have important implications for the pricing performance

of factor models, a natural question is then which nonlinear SDFs to consider from the

no-arbitrage admissible set. On the one hand, this set is too large and may contain

SDFs that are not economically meaningful. On the other hand, focusing on one specific

nonlinear SDF would require a strong prior on a particular form of nonlinearity. Instead,

in the spirit of Cochrane and Saa-Requejo (2000), we propose to restrict the no-arbitrage

set based on economic restrictions. From the restricted set, we identify the nonlinear

SDF for which the mimicking portfolio has the highest Sharpe ratio.

More specifically, as the metric of pricing performance of a factor model f , we propose

to consider the following:

max
m

Sh2(mp) s.t. m ∈ M, (18)
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where mp is the mimicking portfolio of m when projected onto the universe of assets

in the extended economy and M imposes that the factors in the model are priced, i.e.,

E(mf) = 0. If M additionally requires that m ≥ 0, we obtain the no-arbitrage admissible

set. If, instead, M imposes that the SDF minimizes variance, this set contains only the

linear SDF pricing the factors, such that (18) boils down to the traditional metric of

linear factor models: Sh2(f).

Cochrane and Saa-Requejo (2000) apply a similar idea to obtain the maximum (or

minimum) price for an option from SDFs pricing the underlying asset returns.13 They

propose to restrict the admissible set by eliminating good-deals, i.e., by avoiding SDFs

with high variance that would imply too-high Sharpe ratios in an economy where as-

sets are exactly priced by these SDFs.14 This approach requires taking a stand on the

threshold determining the maximum variance to be allowed for the SDF. Moreover, the

solution for the bounds in Cochrane and Saa-Requejo (2000) cannot be directly applied

for problem (18). Instead, we propose to work with a set M defined by an economically

meaningful and tractable family of nonlinear SDFs that naturally generalize the linear

case, which we discuss in further detail in the next section.

4. Minimum discrepancy SDFs

As we have shown, the traditional linear factor model approach is equivalent to using

the linear SDF pricing the factors f as the single factor in asset pricing tests. The

linear SDF is the projection of any admissible SDF on the space of factors returns, such

that m∗ has the minimum variance among all candidate SDFs (see decomposition 12).

We propose to use nonlinear SDFs that naturally generalize the minimum variance one.

More specifically, we consider as our set M in (18) SDFs minimizing the Cressie and

13In their context, the underlying asset is the “factor”, the option is the asset to be priced in the
extended economy and the metric of interest is the highest price of the option consistent with the set
M. In our case, we take the factors from a model, the universe of test assets and factors as the assets
to be priced in the extended economy, and the highest Sharpe ratio obtained from mimicking portfolios
of the SDFs within M as the metric of interest.

14Note that the Sharpe ratio bound implied by such a high-variance SDF is different from the Sharpe
ratio of its mimicking portfolio, as test assets are not necessarily priced by this SDF. In other words,
simply taking SDFs with high variance would not translate into high Sh2(mp), but rather in principle
smaller Sh2(mp) as the variance would hurt the Sharpe ratio of the mimicking portfolio.
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Read (1984) family of discrepancies:

min
m

E
[
mγ+1−1
γ(γ+1)

]

s.t. E(mf) = 0, E(m) = 1, m ≥ 0,

(19)

where the parameter γ ∈ R indexes the particular Cressie-Read loss function and the

corresponding minimum discrepancy SDF. The minimum variance SDF is a particular

case when γ = 1, with the difference that we impose a nonnegativity constraint in the

SDF.15 This constraint is important to guarantee that the nonlinear SDFs we identify are

consistent with no-arbitrage in the extended economy. This is not necessarily satisfied by

m∗ as it can reach negative values. Whenever the nonnegativity constraint is not binding,

mγ=1 and m∗ are equivalent.

The parameter γ controls the relative importance of higher moments for the minimum

discrepancy SDF and, consequently, the particular shape of its distortion of the linear

SDF. This can be seen by Taylor expanding the expected value of the Cressie-Read loss

function ϕγ(m) = mγ+1−1
γ(γ+1)

around the SDF mean of 1:

E [ϕγ (m)] =
1

2
E (m− 1)2 +

(γ − 1)

3!
E (m− 1)3 +

(γ − 1)(γ − 2)

4!
E (m− 1)4 + . . . (20)

For γ = 1, the minimum discrepancy problem (19) minimizes variance as higher-order

moments are given zero weights. All other discrepancies give the same weight to the

variance, but each one weighs nonlinearities of the SDF differently. The main distinction

comes from whether γ is below or above one. For γ < 1, skewness is maximized as it is

given a negative weight. In contrast, skewness is minimized for γ > 1. The more extreme

the γ, the higher the relative importance of skewness. On the other hand, kurtosis is

minimized for essentially any γ other than one, except for γ between 1 and 2.

While problem (19) is of infinite dimension, Almeida and Garcia (2017) show that

it can be solved via a much simpler dual problem of dimension equal to the number of

pricing restrictions. Under no-arbitrage, it is equivalent to solve, for γ < 0:16

15This constraint is also considered in Hansen and Jagannathan (1991) as an alternative specification.
16For γ > 0, the problem is unconstrained with an indicator function in the objective function:
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θγ = arg max
{θ∈RK :(1−γθ′f)>0}

E
[
− 1

γ + 1
(1− γ θ′f)

( γ+1
γ

)

]
, (21)

where the minimum discrepancy SDF can be recovered from the first-order condition of

(21) with respect to θ, evaluated at θγ:

mγ =
(
1− γ θ′γf

) 1
γ . (22)

Mathematically, θγ is the vector of Lagrange multipliers associated with the Euler equa-

tions for the factors in (19). Economically, (21) can be interpreted as an optimal portfolio

problem for an investor maximizing a HARA utility function with concavity parameter γ,

where θγ is proportional to the optimal allocation of wealth in the factors f . We discuss

this interpretation in more detail in the next subsection.

4.1. Economic interpretation

Consider a standard optimal portfolio problem for an investor with HARA utility:

uγ(W ) = − 1

γ + 1
(b− aγW )

γ+1
γ , (23)

where a > 0 and b − aγW > 0, which guarantees that the function uγ is well-defined,

concave and strictly increasing. The investor distributes her initial wealthW0 by investing

θ̃ units of wealth on the factors with excess returns f , such that the end-of-period wealth

is given by W (θ̃) = W0Rf + θ̃′f , where Rf is the risk-free rate. The optimal allocation is

chosen as to maximize expected utility:

θ̃γ = max
θ̃∈RK

E
[
uγ(W (θ̃))

]
. (24)

Almeida and Freire (2022) show that there is a one-to-one mapping between problem (24)

and the dual problem (21) for a given γ. This is such that the SDF mγ is proportional to

E
[
− 1

γ+1 (1− γθ′f)
( γ+1

γ )
IΘγ(f)(θ)

]
, where Θγ(f) = {θ ∈ RK : (1− γθ′f) > 0} and IA(x) = 1 if x ∈ A,

and 0 otherwise. For γ = 0, the problem is unconstrained and the objective function is exponential:

E
[
−e−θ′f

]
.
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the marginal utility of the HARA investor with concavity parameter γ. Moreover, it holds

that θγ = θ̃γa/(b−aγW0Rf ), i.e., the optimal Lagrange multipliers θγ are proportional to

the optimal portfolio weights θ̃γ. Importantly, the parameter γ also indexes the attitude

towards risk of the investor: the higher the γ, the higher the coefficient of absolute risk

aversion −uγ ′′(W )/uγ ′(W ) = a/(b− γaW ).

The SDF mγ is economically meaningful as it reflects the return on the wealth of a

risk averse investor who is evaluating whether any asset would add value to her portfolio

of factors. While the interpretation is not necessarily that of an equilibrium asset pricing

model, mγ can be mapped to popular models for specific values of γ and specifications

of f . To see that, let Wγ = θ̃′γf be the endogenous wealth of the investor and Taylor

expand the marginal utility uγ ′(W (θ̃)) around the initial wealth w0 = W0Rf to obtain:17

(25)uγ ′(W (θ̃)) = uγ ′(w0) + uγ ′′(w0)Wγ +
1

2
uγ ′′′(w0)W

2
γ +

1

3!
uγ ′′′′(w0)W

3
γ + ...

If γ = 1, the utility function is quadratic and the weights to all nonlinearities are zero,

such that the linear SDF characterizing the CAPM is obtained when f equals the market

factor. If γ = 1/2, higher terms beyond W 2
γ are set to zero, and a three-moment CAPM

(Harvey and Siddique, 2000) is obtained. If instead γ = 1/3, higher terms beyond W 3
γ are

zero and the SDF is consistent with a four-moment CAPM (Dittmar, 2002). In general,

however, the minimum discrepancy SDFs will depend on all nonlinearities of the optimal

portfolio returns Wγ in different ways. This is desirable given the importance of higher

moments other than the third and the fourth to capture investors’ preferences towards

tail probabilities (Chung, Johnson and Schill, 2006).

Relatedly, the minimum discrepancy SDFs account for a diverse set of preferences

towards higher co-moments with the endogenous wealth when evaluating the abnormal

performance of a generic asset with excess return Ri. To show that, we Taylor expand

the risk-neutralized excess return (1− γ Wγ)
1
γ Ri around E[Wγ] and take expectations:

17The derivatives are given by uγ ′(w0) = a(b− aγw0)
1
γ , uγ ′′(w0) = −a2(b− aγw0)

−1+ 1
γ , uγ ′′′(w0) =

a3(1− γ)(b− aγw0)
−2+ 1

γ , uγ ′′′′(w0) = −a4(1− γ)(1− 2γ)(b− aγw0)
−3+ 1

γ and so on.
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(26)

E[(1− γ Wγ)
1
γ Ri] = (1− γE[Wγ])

1
γE[Ri]− (1− γE[Wγ])

1−γ
γ E[Ri(Wγ − E[Wγ])]

+
1

2
(1− γ)(1− γE[Wγ])

1−2γ
γ E[Ri(Wγ − E[Wγ])

2]

− 1

6
(1− γ)(1− 2γ)(1− γE[Wγ])

1−3γ
γ E[Ri(Wγ − E[Wγ])

3] + ...

The expression above reveals that the pricing error αi ≡ E[(1− γ Wγ)
1
γ Ri], or the abnor-

mal performance of asset i with respect to the factors, depends on a particular combina-

tion of co-moments withWγ. Since (1−γWγ) is nonnegative by construction, (1−γE[Wγ])

is also nonnegative and the signs of the weights given to co-moments are determined only

by γ. All SDFs imply a negative weight to the covariance: any expected return that

is earned by covarying with Wγ (and thus negatively covarying with the SDF) gets dis-

counted, leading to a smaller αi.

Preferences for coskewness, on the other hand, depend on whether γ is below or above

one. For γ < 1, investors value assets that offer protection against extreme deviations

of wealth from its mean (i.e., asset returns that go up when Wγ is volatile), such that

positive coskewness increases αi. For γ > 1, assets compensating for intermediate states

of wealth are preferred (i.e., returns that go up when Wγ is not volatile), such that

negative coskewness increases the αi. As for cokurtosis, its weight is negative for nearly

all γ’s (with exception of 1/2 < γ < 1). This means that positive cokurtosis decreases

abnormal performance as investors discount asset returns that do not help make the

tails of the wealth distribution thinner. In the particular linear case with γ = 1, higher

co-moments are given zero weights and only factor covariance risk is accounted for.

4.2. Illustration

To illustrate how γ affects the shape of the SDF, the left panel of Figure 1 plots

three SDFs obtained from the market factor as a function of the factor returns.18 Each

market return state corresponds to one time-series observation in our data. The minimum

18As can be seen in Equation (22), the SDF is a function of the returns of the optimal portfolio of the
factors: θ′γf . Since the CAPM is a one-factor model, θγ is only a scaling parameter, such that we can
plot the SDF directly as a function of f . In the case of a multi-factor model, the same patterns discussed
below will hold, but with the SDF plotted as a function of θ′γf .
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variance SDF m∗ is a linear function of the market. Since it never attains negative values

for these returns, m∗ is equal to the SDF minimizing the Cressie-Read loss function with

γ = 1. For γ = −2, the SDF maximizes skewness and is thus a convex function of market

returns, giving more weight to both large negative and positive returns compared to m∗.

In particular, “bad” states of nature with the lowest returns get highly overweighted.

In contrast, for γ = 4, skewness is minimized and the SDF is a concave function of the

market, reducing the weight given to extreme returns compared to the linear case. For

the largest returns, which represent “good” states of nature with low marginal utility,

the nonegativity constraint is binding and an indicator function sets SDF values to zero.

The shape of the SDF is directly related to the shape of the nonlinearity it adds to m∗.

The right panel of Figure 1 depicts, as a function of market returns, the nonlinear term

eγ = mγ−m∗ for both γ = −2 and γ = 4. Nonlinear SDFs minimizing discrepancies with

γ < 1 increase skewness of m∗ by adding more weight to extreme returns, while those

for γ > 1 decrease skewness by reducing compensation for both bad and good states of

nature. The smaller (greater) the γ below (above) one, more (less) importance is given to

extreme returns. This also helps understand the preferences for coskewness embedded in

the Cressie-Read SDFs. Investors associated with γ < 1 have higher marginal utility for

extreme factor returns relative to the linear case, such that they value assets with returns

that go up during those states. In contrast, for γ > 1, marginal utility is higher, compared

tom∗, for intermediate factor returns, such that asset returns offering protection for those

states are preferred.

4.3. Restricting the admissible set

The no-arbitrage admissible set of nonlinear SDFs pricing a given set of factors is

very large. This is such that one needs to impose additional structure to study how non-

linearities affect pricing performance. We propose to restrict the admissible set to SDFs

minimizing Cressie-Read discrepancies, which satisfy a number of important properties.

More specifically, they embed the minimum variance SDF as a particular case; impose

no-arbitrage by construction; are associated with economically meaningful preferences;

and are indexed by a single parameter γ that controls the nonlinear term added to the
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benchmark linear SDF. The latter property allows us to assess pricing performance as a

function of γ and interpret it in light of the nonlinearities this parameter represents.

In principle, the parameter γ coves the whole real line. However, Almeida and Freire

(2022) show that there is no solution to the minimum discrepancy problem when γ → −∞

or γ → ∞. This is because, for large negative and positive γ’s, distortions become too

extreme to still be able to satisfy the pricing restrictions for the basis assets (in our case,

the factors f). In fact, they show that solution exists within an interval [γ, γ] and provide

an algorithm to find this set. This interval depends on the basis assets under considera-

tion. In our empirical analysis, to be able to compare different models on the same basis,

we consider a fixed interval between γ = −3 and γ = 30 that guarantees solution for all

the factor models we analyze.19 Our results do not depend on this particular choice as

this interval is broad enough to capture the main effects of nonlinearities. In practice,

for each factor model f , we estimate minimum discrepancy SDFs pricing f indexed by

γ ∈ [−3, 30], with a grid with spacing of 1, and then compute (18) from these SDFs.20

4.4. How restrictive is the Cressie-Read family?

As detailed above, the Cressie-Read SDFs are hyperbolic functions of a linear combi-

nation of the factors, which can be traced back to the marginal utilities of HARA investors

solving a one-period optimal portfolio problem. The HARA class is a considerably large

class of risk averse investors. In fact, Almeida and Freire (2022) show that this class

comes close to generating the same pricing implications as the entire set of SDFs com-

patible with risk aversion, with the advantage that the Cressie-Read SDFs are indexed

by a single parameter. Therefore, going beyond the set of nonlinear SDFs we propose

would essentially mean considering SDFs inconsistent with risk aversion in a one-period

problem. In this sense, any improvements we document coming from the Cressie-Read

SDFs relative to the linear SDF can be seen as a lower bound to the added value of

nonlinearities coming from meaningful preferences.

Even so, it is worth discussing how our approach compares to popular alternatives

19The absolute value of γ is much higher than that of γ because the set of solutions for negative γ’s
is smaller as they enforce distortions that are more extreme than those for positive γ’s.

20This spacing is sufficient as the minimum discrepancy SDFs change continuously with γ.
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in the literature for introducing nonlinearities. One such alternative, as in Harvey and

Siddique (2000) and Dittmar (2002), has been to Taylor expand the marginal rate of

substitution to get the SDF as a polynomial of a state variable, usually the market

return. While this can work well for obtaining a nonlinear CAPM, it quickly becomes

unfeasible as the number of factors increases and the powers of each factor need to be

included. The Cressie-Read SDFs overcome this issue by introducing nonlinearities in a

meaningful portfolio of the factors. In fact, as shown in (25), these SDFs can be seen as

a polynomial with all powers of the optimal portfolio of the factors in a given model.

One could also be tempted to employ machine learning techniques, such as neural

networks as in Bansal and Viswanathan (1993), to estimate a general nonlinear SDF.

These methods could be well-suited if one wanted to find a nonlinear function of the

factors that maximizes the Sharpe ratio of its mimicking portfolio when projected onto

test assets. However, this would require using information from the test assets, thus not

fulfilling our goal of extending traditional tests of factor models, where only data on the

factors can be used to obtain the SDF. In this case, a neural network is uninteresting: if

the criterion is to maximize the Sharpe ratio obtainable from the factors, this is already

done by the linear SDF that minimizes variance. Similarly, if the criterion is to minimize

different discrepancy functions, this is already achieved by the Cressie-Read SDFs.

5. Empirical analysis

In this section, we describe the factor models and test assets we consider in our analysis

and discuss the empirical results. First, we study how the nonlinear models compare

to the linear model for a given factor model f , i.e., the implications of nonlinearities

for absolute pricing performance. Second, we investigate the implications for model

comparison by examining how the best nonlinear model of factors f1 compares to that of

f2 and contrasting that with the relative performance under the linear case. Third, we

analyze which test assets are relevant to reproduce factor nonlinearities in the mimicking

portfolios. Fourth, we consider a pricing exercise that is out-of-sample not only in the

cross-sectional, but also in the time-series dimension.
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5.1. Data on factor models and test assets

We consider 10 traded factor models in total, ranging from more classical models to

recent specifications proposed by the literature. The first model is the seminal CAPM,

consisting of the value-weighted market excess return (MKT). The second model, by He,

Kelly and Manela (HKM, 2017), adds a financial intermediary capital risk factor (FIRFT)

to the market factor. Their motivation is that intermediaries are marginal investors in

many markets, such that their financial soundness should be important for asset prices.

The third is the Frazzini and Pedersen (2014) model, which adds to the MKT a portfolio

long on low-market-beta stocks and short on high-beta stocks (BAB). The economic

intuition behind their factor is that constrained investors who cannot use leverage bid up

high beta assets, causing those assets to offer lower returns. The fourth factor model, by

Daniel, Hirshleifer and Sun (DHS, 2018), augments the market factor with two factors

that capture long- and short-horizon mispricing (FIN and PEAD).21 These factors are

based on behavioral theories of investor overconfidence and limited attention.

Fifth, we consider the three-factor model of Fama and French (FF3, 1993), which

includes the small-minus-big (SMB) and high-minus-low (HML) factors capturing the

size effect and the value effect, respectively. The sixth model is the investment q-factor

model (q4) of Hou, Xue and Zhang (2015). Motivated by the neoclassical q-theory of

investment, they include beyond the market their own size factor (ME), an investment

factor (IA) and a profitability factor (ROE). The seventh model is the five-factor model

of Fama and French (FF5, 2015), that adds to the FF3 two factors capturing profitability

(RMW) and investment (CMA) patterns in stock returns. The eighth is the hedged-

FF5 (FF5*) of Daniel et al. (2020) that statistically removes unpriced risk from each

of the original FF5 factors. Ninth, we add the momentum factor (UMD) to FF5 to

obtain a six-factor model (FF6). The momentum factor is motivated by Carhart (1997).

Finally, the tenth model is composed of the six factors statistically selected by Barrilas

and Shanken (BS, 2018) using a Bayesian method. The model includes the market, the

q4 investiment and profitability factors, the small-minus-big of FF3, the high-minus-low

21FIN is a financing factor exploiting underreactions to issuance/repurchase activity. PEAD is based
on the post-earnings announcement drift, which reflects delayed price response to information.
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updated monthly (HMLm) from Asness and Frazzini (2013) and the momentum factor.

Since there is some overlap across the 10 factors models, in the end we have 19 unique

factors. Our sample ranges monthly from July 1972 to October 2018, encompassing 556

months. This is the largest sample range for which data on all factors is readily available.22

Table 1 provides summary statistics for the monthly returns of each factor. All factors

have positive average returns. The FIRFT is the factor with the highest premium, but

it is also the most volatile one. Average returns are all statistically significant at the

5% level, with the exception of the size factors. In fact, SMB, ME and SMB* yield the

lowest Sharpe ratios. The highest Sharpe ratios come from the PEAD and BAB factors.

Moreover, while the hedged FF5* factors command smaller premiums than their original

counterparts, they reduce the volatility substantially, ultimately increasing the t-statistic

and the Sharpe ratio.

Figure 2 reports the factor correlations. Alternative versions of the same factor (e.g.,

SMB and ME, CMA and IA, RMW and ROE, HML and HMLm) are naturally highly

correlated. Similarly, each of the FF5 factors has a strong positive correlation with its

hedged FF5* counterpart. FIRFT and FIN have the highest positive and highest negative

correlations with the market factor, respectively. FIN also correlates substantially with

HML, IA, RMW and CMA, while PEAD has very low correlations with other factors.

The UMD factor mostly displays low correlations, with the exception of a strong negative

correlation with HMLm. Finally, BAB correlates mildly with FIN and MKT*.

As test assets, we follow the common practice in the recent empirical asset pricing

literature of considering anomaly portfolios. We use 44 anomalies from Kozak, Nagel and

Santosh (KNS, 2020) that are available for the same sample period as the factors. The

complete list of anomalies is provided in Appendix B. The entire universe of test assets

Rall in our baseline analysis consists of the 44 anomalies plus the 19 unique factors,

totaling 63 assets. That is, we assess the ability of each model to price not only the

basis test assets, but also the factors in the competing models. In additional tests, we

alternatively consider a different set of 118 anomalies from Hou, Xue and Zhang (2020)

and traditional test assets such as the 25 size/book-to-market portfolios of Fama and

22In Appendix B, we describe our data sources.
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French (1993) and 49 industry portfolios.

We also analyze the pricing performance of 17 nontraded factors from Bryzgalova,

Huang and Julliard (2023): LIQNT, the liquidity factor of Pastor and Stambaugh (2003);

INTERMCAPRATIO, innovations to the intermediaries’ capital ratio of He, Kelly and

Manela (2017); measures of financial (FINUNC), real economic activity (REALUNC)

and macroeconomic (MACROUNC) uncertainty of Jurado, Ludvigson and Ng (2015);

the term spread and default spread, TERM and DEFAULT, respectively; DIV, the div-

idend yield; UNRATE, unemployment rate; PE, Price-earnings ratio; the investor sen-

timent measures from Baker and Wurgler (2006) and Huang et al. (2015), BWISENT

and HJTZISENT, respectively; the growth rate of nondurable consumption (NONDUR),

service expenditure (SERV), industrial production (IPGrowth) and the producer price

index for crude petroleum (OIL); and the slope of the yield curve (DeltaSLOPE). The

nontraded factors are available from October 1973 to December 2016.

5.2. Baseline analysis

In Section 3, we show how to incorporate nonlinearities into asset pricing tests of

factor models. The relevant metric of pricing performance becomes the squared Sharpe

ratio (SR2) of the mimicking portfolio of the nonlinear SDF pricing the factors of a

given model. While we discuss population results in the theory, it is straightforward to

implement our approach by using sample analogues. Therefore, for each factor model

f , we first compute Sh2(m∗
p), which is simply the maximum SR2 attainable from the

factors, that is, the usual metric Sh2(f) from the traditional linear approach. Then, for

each γ in the grid we consider, we obtain mγ from (22), compute the SR2 of its mimicking

portfolio and then take the highest SR2 over γ. This analysis uses the whole sample from

July 1972 to October 2018.

Figure 3 depicts, for each factor model, the SR2 associated with the best nonlinear

SDF (within the Cressie-Read family) and the one coming from the linear SDF. As can

be seen, nonlinearities substantially improve pricing performance for nearly all factor

models considered. This is striking as the minimum discrepancy SDFs do not use any

information about the test assets in their construction, nor are they optimized to max-
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imize performance across the entire universe of test assets. Instead, such improvement

in pricing performance comes from economically meaningful nonlinearities in the factors

embedded in mγ(f). The only exception is the FF3, for which the linear specification is

already the optimal one within the set of SDFs we consider.

To assess the statistical significance of the improvements coming from nonlinearities,

the left panel of Figure 4 contains the SR2 difference together with bootstrapped 95%

confidence intervals for each factor model.23 For 7 out of the 9 models (excluding FF3),

the SR2 difference is statistically significant. The right panel of Figure 4 sheds further

light on how large are the relative improvements. In some cases, such as for the CAPM

and the BAB, the SR2 can even double relative to the linear specification. Interestingly,

the model that benefits the most from nonlinearities is the CAPM, such that there is

a stronger hurdle to beat it. Going back to Figure 3, while the linear approach implies

that both the HKM and FF3 models outperform the CAPM, the opposite is true when

we allow for nonlinearities. This is aligned with the literature showing that nonlinear

versions of the CAPM perform well in cross-sectional asset pricing (Harvey and Siddique,

2000; Dittmar, 2002; Chung, Johnson and Schill, 2006). However, nonlinearities are not

enough to make the CAPM comparable to the other multi-factor models in our analysis,

confirming the need to go beyond the market return as the only relevant state variable.

Another model that benefits substantially from incorporating nonlinearities is the

BAB. Even though it is outperformed by FF5 under the linear metric, its best nonlinear

SDF yields a SR2 that is 46% higher than that of the best nonlinear model of FF5. A

similar change in ranking can be observed for q4 and FF6, where the latter becomes

the preferred model under nonlinearities. Overall, the best performing factor model is

the DHS, followed by BS and FF5*. Since these three models benefit similarly from

nonlinearities, the ranking between them is the same compared to the linear case. In

this sense, such ranking is robust within the Cressie-Read family of nonlinearities when

23For each bootstrap sample, we estimate the Cressie-Read SDFs, project them into the universe of
assets, compute the squared Sharpe ratios of the mimicking portfolios, and compare the highest Sharpe
ratio with the one coming from the linear model in that sample. This takes into account the uncertainty
associated with the estimation of the SDFs, the mimicking portfolios and their Sharpe ratios. For a fair
comparison, for each bootstrap sample we exclude from the set of Cressie-Read SDFs the γ = 1 SDF,
such that the linear SDF is never a particular case in this set.
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considering the KNS anomalies as test assets.

It is worth noting that for nested factor models like the CAPM and FF3, it is not

possible under the traditional linear approach for the nested model to have a higher

ex-post SR2 than the nesting model. This is simply because with the nesting model

one has access to more investment opportunities and can find a risk-return trade-off at

least as good as the one attainable with the nested factors. The same is not true when

nonlinearities are allowed for. In fact, we see that the best nonlinear model of the CAPM

outperforms that of the FF3. The reason is that, in contrast to the linear case, the

mimicking portfolio of a nonlinear SDF loads on the entire universe of test assets, such

that investment opportunities are not nested anymore.

We next exploit the fact that the Cressie-Read SDFs are indexed by a single parameter

to analyze and interpret which nonlinearities lead to the improvements we document.

Figure 5 plots, for each factor model, the SR2 across γ. The horizontal line depicts the

performance of the linear SDF. A clear pattern can be observed across all factor models.

For γ < 1, the SR2 is always below the linear benchmark and rapidly decreases as γ

decreases. In contrast, pricing performance increases substantially for γ > 1 relative to

the linear SDF. To help understand that, we report in Figures OA.1 and OA.2 in the

Online Appendix how the volatility and mean of the mimicking portfolio of mγ varies

with γ for each factor model. First, the volatility of the mimicking portfolio of all the

nonlinear SDFs is above that of the linear SDF, which is natural as the latter is the

minimum variance SDF. However, the volatility is much higher for γ’s below one, while

it is close to the linear case for γ’s above one. This is because, as discussed in Section 4,

for γ < 1 skewness is maximized, such that the SDF is convex and reaches much higher

values for extreme factor returns. This makes the SDF considerably more volatile than

the ones for γ > 1 that minimize skewness and give less weight to extreme returns.

The result above could in principle already explain the low SR2 associated with γ < 1.

However, for γ > 1, the mean of the SDF mimicking portfolio must be compensating its

additional volatility to yield a higher SR2 than the linear SDF. In fact, we find that

this is the case for all factor models except for FF3: for γ’s above one, the mean of the

mimicking portfolio is more negative than that of the linear SDF. This means that the
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nonlinearity eγ covaries positively with the economy-wide SDF, i.e., it offers an additional

insurance against systematic risk. In contrast, for γ < 1, the nonlinear term eγ has a

positive mean, reducing the mimicking portfolio insurance capacity relative to the linear

case and contributing even more for a low SR2. Therefore, higher degrees of absolute

risk aversion embedded in nonlinear SDFs indexed by γ > 1 increase the covariance with

the true marginal rate of substitution.

Finally, we investigate what are the most important anomalies to mimic factor non-

linearities. To facilitate interpretation, we group the 44 anomalies into seven categories,

following similar definitions as Lettau and Pelger (2020): momentum, reversals, value,

investment, profitability, frictions and other. Appendix B contains the detailed defini-

tions. As our measure of importance for each anomaly category, we consider the average

across all factor models of the maximum t-stat across the anomalies on a given category

in the regression of the best nonlinear SDF of the factor model on the universe of test

assets. The maximum t-stat within the category is a natural choice as the effect among

similar strategies may be dominated by a single anomaly.

Figure 6 reports the results. Overall, momentum strategies are the most important

test assets to mimic factor nonlinearities, with an average maximum t-stat across models

of 2.35. This provides a potential explanation for the momentum anomaly: it generates

a premium because it works as a proxy for nonlinearities of priced sources of risk. The

only other category with comparable maximum t-stat is investment. On the other hand,

anomalies related to frictions or low-risk, such as idiosyncratic volatility, are among the

least important in reproducing factor nonlinearities. This is also illustrated in Figure

OA.3 in the Online Appendix, showing the maximum t-stat per category for each model.

The exception is for the market factor, where these anomalies are useful in reproducing

nonlinear patterns. This is consistent with the evidence from Schneider, Wagner and

Zechner (2020) that low-risk anomalies are closely related to market co-skewness risk.

In sum, we show that factor nonlinearities are important to explain the cross-section

of returns. For nearly all factor models, squared Sharpe ratios improve substantially by

considering nonlinear SDFs. This means that economically meaningful nonlinear versions

of these factor models come closer to spanning the mean-variance frontier of the extended
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economy that includes all factors and test assets. Furthermore, model comparison is also

affected, as it is often the case that the ranking between two factor models changes if

we incorporate nonlinearities. Among test assets, momentum strategies are the most

important to mimic factor nonlinearities. In the next subsection, we provide further

evidence from different sets of test assets.

5.3. Different test assets

In this subsection, we conduct our analysis considering three alternative sets of test

assets: 118 anomalies from Hou, Xue and Zhang (2020); the 25 size/book-to-market port-

folios of Fama and French (1993); 49 industry portfolios; and only the factors themselves

(in this case, Rall consists only of the 19 unique factors across the 10 factor models). In

particular, we investigate whether the patterns of absolute pricing performance across γ

observed for the KNS anomalies are similar for other sets of test assets. Moreover, while

test assets are irrelevant for model comparison under the traditional linear approach

(Barillas and Shanken, 2017), we show in Section 3 that they are relevant in the case of

nonlinear SDFs as they are needed to mimic nonlinearities. Therefore, we analyze how

relative pricing performance varies with the set of test assets under consideration.

Figure OA.4 depicts, for each factor model and for each set of test assets, the SR2

across γ. Again, the horizontal line denotes the performance of the linear SDF, which

does not depend on the test assets. For most factor models, patterns are similar across

the different test assets. Namely, the squared Sharpe ratio is usually below the linear case

for γ < 1, while it is above for γ > 1. This reinforces our finding that nonlinear SDFs

associated with higher degrees of risk aversion tend to increase co-movement with the

economy-wide SDF. One interesting exception is the CAPM, for which SDFs associated

with γ’s below 1 lead to the highest Sharpe ratios for the alternative sets of test assets.

This means that, for pricing those sets of assets, accounting for positive coskewness with

the market factor is relatively more important than higher absolute risk aversion, which

is consistent with Harvey and Siddique (2000). Overall, with the exception of FF3,

incorporating nonlinearities often leads to improvements in absolute pricing performance

compared to the linear SDF when considering other sets of test assets.
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Figure 7 further plots the SR2 associated with the linear SDF and the best nonlinear

SDF for each factor model and each set of test assets. As can be seen, the magnitude of

the improvements in pricing performance coming from nonlinearities depends on the set

of test assets being priced. In particular, the most important implication is for defining

the best performing factor model. While under the linear case and the nonlinear case

with KNS anomalies the DHS outperforms BS, the opposite is true for all other sets of

test assets, where BS attains the highest SR2. The SR2 of the best nonlinear model of

BS can be even 35% higher than that of the DHS when pricing the 49 industry portfolios.

This highlights the relevance of test assets for model comparison once nonlinearities are

contemplated.

5.4. Nontraded factors

In this subsection, we investigate the implications of incorporating nonlinearities when

evaluating one-factor models composed of each of the 17 nontraded factors obtained from

Bryzgalova, Huang and Julliard (2023). The universe of test assets is the same as that of

the baseline analysis, i.e., the 19 traded factors and the 44 KNS anomalies. As we show in

Appendix A, for a given SDF specification (linear or nonlinear), the pricing performance

metric of a nontraded factor boils down to the squared Sharpe ratio of the mimicking

portfolio of the SDF that prices the mimicking portfolio of the nontraded factor.

Figure 8 plots, for each nontraded factor, the squared Sharpe ratio associated with

the linear SDF and the best nonlinear SDF within the Cressie-Read family.24 Similarly

to the results for traded factors, nonlinearities substantially improve pricing performance

relative to the linear case. In fact, for 9 out of the 17 models, the squared Sharpe ratio

more than doubles when nonlinearities are taken into account. There is one important

difference, however: for nontraded factors, the mimicking portfolios of both the linear

and nonlinear SDF load on all assets, while for traded factors the mimicking portfolio of

the linear SDF loads only on the factors in the model. Therefore, the evidence that non-

linearities also improve performance for nontraded factors indicates that the relevance of

24In the Online Appendix, Figure OA.5 reports the SR2 across γ, showing that for most factor models
the usual pattern of Sharpe ratios being higher (lower) than the linear case for γ > 1 (γ < 1) holds.
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nonlinearities in the traded factor case cannot be explained by the fact that the mimicking

portfolio of the nonlinear SDF trades on more assets than that of the linear SDF.

Figure 8 further shows that nonlinearities have strong implications for comparing non-

traded factors. This is evident from the notable shifts in rankings across different models.

For instance, among the 17 models, UNRATE jumps from the 12th position under lin-

earity to the 5th one under the nonlinear case. Moreover, while BWISENT is by far the

best overall model under the linear metric, it is matched by DIV when nonlinearities are

incorporated. This is because DIV benefits substantially from the nonlinear specifica-

tion, which is aligned with the fact that dividends are nonlinearly related to returns (see,

e.g., Giglio, Kelly and Kozak, 2023). The performances of BWISENT and DIV under

the nonlinear case are remarkable, as the Sharpe ratios associated with these one-factor

models are comparable to those of the best traded multi-factor models in Figure 3.

Nonlinearities are especially important for the pricing performance of consumption

factors: the squared Sharpe ratios of NONDUR and SERV more than triplicate with

the best nonlinear SDF. Breeden, Gibbons and Litzenberger (1989) discuss how the tra-

ditional consumption-CAPM (CCAPM) relies on a linear approximation that ignores

higher-order co-moments with consumption. Our results suggest that such approxima-

tion comes with a high cost. In particular, Breeden, Gibbons and Litzenberger (1989)

show that the empirical pricing performance of the CCAPM is similar to that of the

CAPM. We find the same for the CAPM and SERV under the linear metric. However,

under the nonlinear specification, SERV leads to higher Sharpe ratios, supporting the

idea of a nonlinear CCAPM.

5.5. Out-of-sample in the time-series

The results we discussed so far are out-of-sample in the cross-sectional dimension, in

the sense that we investigate the performance of SDFs obtained from a set of factors in

pricing test assets that were not used in the estimation. However, the results are based

on the whole sample period, such that they focus on ex-post maximum Sharpe ratios.

In the presence of estimation risk, these Sharpe ratios will be biased upward and differ

from what investors can actually attain in practice. In this subsection, we address this
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concern with a pricing exercise that is also out-of-sample in the time-series dimension.

For these results, we again consider the baseline set of 10 traded factor models and the

44 anomalies of Kozak, Nagel and Santosh (2020) as test assets.

For each factor model, we first estimate the mimicking portfolio of the linear SDF

pricing the factors using the entire past history of returns. Then, we keep the portfolio

weights in the next month to compute the out-of-sample return of selling the mimicking

portfolio.25 We repeat this procedure until the whole sample is exhausted, where we

require an estimation window of at least 20 or 30 years. For each factor model, we

follow the same procedure to compute the out-of-sample returns of selling the mimicking

portfolio of the best nonlinear SDF pricing the factors. The best nonlinear SDF is the

one that yields the highest SR2 in each (expanding) estimation window.

Table 2 reports, for each factor model, the squared Sharpe ratio of the out-of-sample

mimicking portfolios of the best nonlinear SDF and the linear SDF. As would be ex-

pected, ex-ante Sharpe ratios are generally smaller than their ex-post counterparts in

Figure 3. However, the relative comparison between the nonlinear and linear specifica-

tions is similar. With the 20-year expanding estimation window, nonlinearities improve

pricing performance out-of-sample for 8 out of the 10 factor models. This improvement

is statistically significant at the 10% level or better for half of these models.26 When

considering a 30-year expanding window instead, the nonlinear SDFs always outperform

the linear ones, albeit with reduced statistical significance due to a smaller sample.

We also consider spanning regressions of the nonlinear models on the linear models

and vice-versa. For both estimation windows, the alpha from regressing the nonlinear

SDF out-of-sample mimicking portfolio on the linear one is statistically significant for

6 out of the 10 factor models. In contrast, the alpha from regressing the linear SDF

mimicking portfolio on the nonlinear one is virtually always insignificant, that is, the

linear specification is spanned by the nonlinear one out-of-sample. These results reinforce

the idea that factor nonlinearities are priced, as they are important to explain the cross-

25The mimicking portfolio of an SDF has negative mean as it provides insurance against systematic
risk, such that one needs to sell it to get a risk premium. This is easily seen in the linear case where the
mimicking portfolio of the linear SDF is minus the tangency portfolio (see Equations 10 and 11).

26We assess statistical significance with the Barillas et al. (2022) test for differences in squared Sharpe
ratios.
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section of returns beyond the information contained in linear factor models.

The factor models in our analysis come from a long tradition in asset pricing attempt-

ing to explain cross-sectional variation in returns with a small number of factors that are

observable (i.e., defined by sorting on a given observed stock characteristic). The idea

that the SDF is a linear function of a few observable factors has been recently questioned

by Kozak, Nagel and Santosh (2020). Considering a large number of characteristics-based

portfolios, they use model selection techniques to show that an SDF that is a sparse lin-

ear function of those portfolios performs worse in pricing the cross-section than a sparse

linear SDF on high-variance principal components (PCs) summarizing information from

all the portfolios. We now analyze how nonlinearities affect the comparison between low-

dimensional observable factor models and low-dimensional latent factor models based on

PCs of the test assets, and how they fare relative to the out-of-sample mean-variance

efficient (MVE) portfolio. We also include models with risk-premium (RP) PCs following

the method of Lettau and Pelger (2020), which extracts latent factors that maximize

explained return variation while minimizing cross-sectional pricing errors.

Table 2 contains the out-of-sample SR2 associated with linear models based on dif-

ferent numbers of PCs (and RPs) and the MVE portfolio, all estimated on the training

window.27 With the 20-year expanding estimation window, the best PC model outper-

forms 4 of the linear factor models, but only 2 when nonlinearities are incorporated. The

RP models improve substantially relative to the PC ones. The only factor model that

beats the best RP model is the DHS under nonlinearities. With the 30-year expand-

ing window, the SR2 associated with the latent factor models are substantially smaller,

such that they are consistently outperformed by the nonlinear observable factor models.

Two of the factor models (BAB and FF5*) are even able to achieve the out-of-sample

MVE frontier under the nonlinear specification, with SR2 higher than the MVE portfo-

lio. These results suggest that the SDF is more likely to be a low-dimensional function

of observable factors if nonlinearities are contemplated.

27That is, both the PCs (or RPs) of the universe of assets and the portfolio of PCs (or RPs) with
maximum Sharpe ratio for a given number of factors are estimated in the training window and kept fixed
in the following month. The MVE portfolio is simply the portfolio of all assets that maximizes Sharpe
ratio in the training window, which is kept in the following month to compute its out-of-sample return.
We have also considered a regularized MVE portfolio with Ridge and results are very similar.
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6. Conclusion

We extend the linear factor model approach to allow for the SDF to be a nonlinear

function of the factors. The pricing performance metric of the nonlinear model becomes

the Sharpe ratio of the mimicking portfolio of the nonlinear SDF. To investigate the role

of factor nonlinearities in explaining the cross-section of returns, we propose to use a

family of nonlinear SDFs that generalizes the linear case and is economically meaningful.

Empirically, we find that for a wide range of popular factor models, nonlinearities are

priced as they significantly improve the Sharpe ratio relative to the linear specification.

Furthermore, nonlinearities affect model comparison and often lead to different rankings

between models relative to the linear case. The preferred model depends on the test

assets, which are relevant for model comparison as they are needed to mimic factor

nonlinearities. Among test assets, momentum strategies are the most important to mimic

factor nonlinearities, which suggests that momentum generates a premium because it

proxies for nonlinearities of priced sources of risk.
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A. A general approach for nontraded factors

In this appendix, we take as given a model of nontraded factors f . In this case,

our framework can be seen as a four-step procedure. First, the mimicking portfolios of

the nontraded factors fp are calculated by projecting each factor onto the returns of the

universe of test assets Rall. Second, we identify an SDF m that prices fp:

E(mfp) = 0. (A.1)

Then, we run the two-step GLS CSR using the SDF m as a single nontraded factor to

obtain the pricing errors α. From Equation (6), the following holds:

α′V −1α = Sh2(Rall)− Sh2(mp), (A.2)

where mp is the mimicking portfolio of the SDF.

We now show that the traditional GLS CSR in Section 2 is the particular case of our

approach that uses in the second step the linear SDF that prices fp:

m∗ = 1− b′[fp − µfp ], b = Σ−1
fp
µfp . (A.3)

The SDF above is a linear function of the portfolio of the factors mimicking portfolios

b′fp with maximum squared Sharpe ratio. Therefore, if we run the GLS CSR on m∗ and

analyze the quadratic form in the pricing errors alphas, we have:

α′V −1α = Sh2(Rall)− Sh2(m∗
p) = Sh2(Rall)− Sh2(−b′fp) = Sh2(Rall)− Sh2(fp). (A.4)

The second equality stems from the fact that the mimicking portfolio of m∗ recovers

precisely the portfolio −b′fp since m
∗ is linear in the mimicking portfolios of the factors.28

The third equality holds because b′fp is already the portfolio of the factors mimicking

portfolios that yields the maximum squared Sharpe ratio Sh2(fp). That is, the GLS CSR

28First, note that fp,t = ApRt, where Ap is obtained from the regression ft = ap +ApRt + ut. This is
such that 1−b′[fp,t−µfp ] = 1−b′[ApRt−µfp ]. Then, in the regression 1−b′[ApRt−µfp ] = a+ARt+ηt,
A is equal to −b′Ap, while a = 1 + b′µfp .
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approach on the nontraded factors f is equivalent to using the linear SDF pricing fp in

the GLS CSR.

B. Data sources

Below we describe the sources for the data on the factors and test assets used in our

empirical analysis.

• Market factor, FF3, FF5, FF6, 25 size/book-to-market portfolios and 49 industry

portfolios: Kenneth French’s Data Library (https://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html).

• HKM intermediary risk factor: Asaf Manela’s website (https://apps.olin.wustl.

edu/faculty/manela/data.html).

• BAB factor: AQR website (https://www.aqr.com/Insights/Datasets/

Betting-Against-Beta-Equity-Factors-Monthly).

• DHS behavioral factors and FF5*: Kent Daniel’s website (http://www.kentdaniel.

net/data.php).

• q4 factors and 118 anomalies from Hou, Xue and Zhang (2020): Authors’ website

(https://global-q.org/factors.html).

• High-minus-low factor updated monthly: AQR website (https://www.aqr.com/

Insights/Datasets/The-Devil-in-HMLs-Details-Factors-Monthly).

• 44 anomalies from Kozak, Nagel and Santosh (2020): Serhiy Kozak’s website

(https://sites.google.com/site/serhiykozak/data).

• 17 nontraded factors from Bryzgalova, Huang and Julliard (2023): Jiantao Huang’s

website (https://sites.google.com/view/jiantaohuang/home).

The complete list of anomalies from Kozak, Nagel and Santosh (2020) considered in

our analysis is (we include those available for our sample period): size,value,prof,
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dur,valprof,fscore,nissa,accruals,growth,aturnover,gmargins,divp,ep,cfp,noa,

inv,invcap,igrowth,sgrowth,lev,roaa,roea,sp,divg,mom,indmom,valmom,valmomprof,

mom12,momrev,lrrev,valuem,nissm,strev,ivol,betaarb,season,indrrev,indrrevlv,

indmomrev,ciss,price,age,shvol. For their definitions and original papers where they

first appeared, see Kozak, Nagel and Santosh (2020). Following a similar definition as

Lettau and Pelger (2020), we groups these anomalies in the following categories:

• momentum: mom,indmom,valmom,valmomprof,mom12,momrev

• reversals: lrrev,strev,indrrev,indrrevlv,indmomrev

• value: value,dur,divp,ep,cfp,sgrowth,lev,sp,divg,valuem

• investment: nissa,accruals,growth,noa,inv,invcap,igrowth,nissm,ciss

• profitability: prof,valprof,fscore,aturnover,gmargins,roaa,roea

• frictions: size,ivol,betaarb,shvol

• other: season,price,age

The complete list of anomalies from Hou, Xue and Zhang (2020) considered in our

analysis is (we include those available for our sample period): cim_12,cim_1,cim_6,ile_

1,ilr_12,ilr_1,ilr_6,im_12,im_1,im_6,p52w_12,p52w_6,r11_12,r11_1,r11_6,r6_

12,r6_1,r6_6,resid11_12,resid11_1,resid11_6,resid6_12,resid6_6,rs_1,sim_12,

sim_1,sue_1,sue_6,bmj,bmq_12,bm,cpq_12,cpq_1,cpq_6,cp,dp,dur,ebp,em,epq_12,

epq_1,epq_6,ep,ir,rev_12,rev_1,rev_6,spq_12,spq_1,spq_6,sp,vhp,aci,cei,dac,

dbe,dcoa,dfin,dfnl,dii,dlno,dnca,dnco,dnoa,dpia,dwc,ia,ig2,ig,ivc,ivg,noa,

nsi,oa,pda,poa,pta,ta,ato,cla,cop,cto,droe_12,droe_1,droe_6,eg_12,eg_1,eg_

6,gpa,opa,ope,roe_1,roe_6,sgq_1,tbiq_12,tbiq_6,eprd,etl,etr,hs,ioca,oca,ol,

r10a,r10n,r15a,r1a,r1n,r20a,r5a,r5n,beta_1,dtv_12,isff_1,ivff_1,me,srev,tv_

1. For their definitions and original papers where they first appeared, see Hou, Xue and

Zhang (2020).
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Table 1: Summary statistics for factor returns

Factor Mean (%) Std (%) t-stat SR

MKT 0.55 4.49 2.90 0.42
FIRFT 1.01 6.69 3.55 0.52
BAB 0.89 3.44 6.14 0.90
FIN 0.75 3.83 4.61 0.67
PEAD 0.61 1.87 7.76 1.14
SMB 0.18 3.01 1.44 0.21
HML 0.35 2.91 2.85 0.41
ME 0.25 3.07 1.97 0.29
IA 0.37 1.86 4.70 0.69
ROE 0.53 2.54 4.99 0.73
RMW 0.27 2.30 2.78 0.40
CMA 0.31 1.94 3.86 0.56
MKT* 0.54 3.13 4.08 0.59
SMB* 0.14 1.94 1.69 0.24
HML* 0.24 1.67 3.38 0.49
RMW* 0.24 1.45 4.02 0.59
CMA* 0.23 1.20 4.49 0.65
UMD 0.65 4.36 3.53 0.51
HMLm 0.33 3.55 2.22 0.32

This table reports summary statistics (mean, standard deviation,

t-statistic of the mean and annualized Sharpe ratio) for each of

the factors in our analysis. The sample ranges from July 1972 to

October 2018 (556 months).
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Table 2: Out-of-sample pricing performance

Panel A: 20-year expanding estimation window

CAPM HKM BAB DHS FF3 q4 FF5 FF5* FF6 BS
SR2 Lin 0.26 0.21 0.76 1.81 0.28 0.97 0.57 1.45 0.81 0.98
SR2 Nonlin 0.87 0.12 1.50 2.19 0.27 1.11 0.96 1.74 0.93 1.02

SR2 Diff p-value 0.00 – 0.00 0.06 – 0.21 0.04 0.13 0.21 0.41
Nonlin-Lin α p-value 0.00 0.66 0.00 0.00 0.41 0.08 0.00 0.07 0.18 0.24
Lin-Nonlin α p-value 0.04 0.29 0.18 0.79 0.32 0.82 0.42 0.83 0.98 0.49

MVE 1PC 1RP 3PC 3RP 5PC 5RP 7PC 7RP
SR2 Other Models 2.55 0.02 0.54 0.54 1.94 0.73 1.59 0.72 1.60

Panel B: 30-year expanding estimation window

CAPM HKM BAB DHS FF3 q4 FF5 FF5* FF6 BS
SR2 Lin 0.36 0.04 0.79 0.69 0.08 0.48 0.48 1.08 0.40 0.61
SR2 Nonlin 0.52 0.07 1.39 1.04 0.09 0.54 0.74 1.28 0.62 0.82

SR2 Diff p-value 0.16 0.30 0.05 0.09 0.47 0.37 0.11 0.13 0.13 0.21
Nonlin-Lin α p-value 0.05 0.45 0.00 0.04 0.82 0.34 0.03 0.07 0.08 0.14
Lin-Nonlin α p-value 0.73 0.70 0.69 0.41 0.96 0.73 0.71 0.63 0.68 0.97

MVE 1PC 1RP 3PC 3RP 5PC 5RP 7PC 7RP
SR2 Other Models 1.26 0.01 0.16 0.01 0.37 0.23 0.35 0.17 0.30

This table reports, in Panel A (Panel B), statistics of our out-of-sample analysis as detailed in Section
5.5 based on a 20-year (30-year) expanding estimation window. For each factor model, we report the
annualized squared Sharpe ratio of the out-of-sample mimicking portfolio of the best nonlinear SDF (SR2

Nonlin) and the linear SDF (SR2 Lin). The best nonlinear SDF is the one within γ ∈ [−3, 30], with a grid
with spacing of 1, that yields the highest SR2 in the estimation window. We also report p-values for: (i) a
one-sided test (Barillas et al., 2022) of the null hypothesis that the SR2 difference between the nonlinear
and the linear model is below zero against the alternative that it is positive (SR2 Diff p-value); (ii) the
alpha of regressing the nonlinear mimicking portfolio returns on the linear ones (Nonlin-Lin α p-value); (iii)
the alpha of regressing the linear mimicking portfolio returns on the nonlinear ones (Lin-Nonlin α p-value).
Finally, we report the SR2 of the out-of-sample MVE portfolio, PC and RP portfolios with 1, 3, 5 and 7
principal components. The universe of test assets is composed of the 19 factors and the 44 anomalies from
Kozak, Nagel and Santosh (2020). The sample ranges from August, 1972 to October, 2018.
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Fig. 1: CAPM minimum discrepancy SDFs. This figure plots in the left panel three SDFs
pricing the market factor (γ = −2, m∗ and γ = 4) as a function of the factor returns. The right
panel plots the difference between each nonlinear SDF (γ = −2 and γ = 4) and the linear SDF
m∗. The sample ranges from July, 1972 to October, 2018.
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Fig. 2: Factor correlations. This figure depicts a heatmap plot of the correlation matrix of
the factors. The sample ranges from July, 1972 to October, 2018.
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Fig. 3: Squared Sharpe ratio of linear vs. best nonlinear model. This figure plots, for
each factor model, the squared Sharpe ratio (SR2) coming from the best nonlinear SDF and
from the linear SDF. The best nonlinear model is the one within γ ∈ [−3, 30], with a grid with
spacing of 1, that yields the highest SR2. Sharpe ratios are annualized. The sample ranges
from July, 1972 to October, 2018.
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Fig. 4: Sharpe ratio difference of linear vs. best nonlinear model. The left panel of
this figure plots, for each factor model, the difference between the squared Sharpe ratio (SR2)
coming from the best nonlinear SDF and from the linear SDF, together with bootstrapped 95%
confidence intervals based on 1,000 bootstrap samples. The best nonlinear model is the one
within γ ∈ [−3, 30], with a grid with spacing of 1, that yields the highest SR2. Sharpe ratios
are annualized. The right panel plots the relative improvement coming from nonlinearities for
each model, that is, the SR2 ratio of the nonlinear and linear models minus one. The sample
ranges from July, 1972 to October, 2018.
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Fig. 5: Squared Sharpe ratio across γ. This figure plots, for each factor model, the squared
Sharpe ratio (SR2) across γ in blue. For each γ, the corresponding minimum discrepancy SDF
pricing the factor model is obtained. Then, the SR2 of its mimicking portfolio is reported. We
consider γ ∈ [−3, 30], with a grid with spacing of 1. The red horizontal line depicts the SR2 of
the linear SDF. Sharpe ratios are annualized. The sample ranges from July, 1972 to October,
2018.
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Fig. 6: Anomaly importance in the mimicking portfolio. This figure plots, as aggregated
measure of importance of each anomaly category in mimicking factor nonlinearities, the average
across factor models of the maximum t-stat of the anomalies within the category from the
regression of the best nonlinear SDF nonlinear component on the universe of test assets. The
sample ranges from July, 1972 to October, 2018.
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Fig. 7: Squared Sharpe ratio of linear vs. best nonlinear model for different test
assets. This figure plots, for each factor model, the squared Sharpe ratio (SR2) coming from
the best nonlinear SDF, for each set of test assets, and from the linear SDF. The best nonlinear
model is the one within γ ∈ [−3, 30], with a grid with spacing of 1, that yields the highest SR2.
Sharpe ratios are annualized. The sample ranges from July, 1972 to October, 2018.
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Fig. 8: Squared Sharpe ratio of linear vs. best nonlinear model for nontraded
factors. This figure plots, for each nontraded one-factor model, the squared Sharpe ratio
(SR2) coming from the best nonlinear SDF and from the linear SDF. The best nonlinear model
is the one within γ ∈ [−3, 30], with a grid with spacing of 1, that yields the highest SR2. Sharpe
ratios are annualized. The sample ranges from October, 1973 to December, 2016.
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OA.1. Additional Empirical Results

Fig. OA.1: Volatility of SDF mimicking portfolio across γ. This figure plots, for each
factor model, the standard deviation (in %) of the mimicking portfolio of mγ across γ in blue.
For each γ, the corresponding minimum discrepancy SDF pricing the factor model is obtained.
Then, the standard deviation of its mimicking portfolio is reported. We consider γ ∈ [−3, 30],
with a grid with spacing of 1. The red horizontal line depicts the standard deviation of the
mimicking portfolio of the linear SDF. The sample ranges from July, 1972 to October, 2018.
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Fig. OA.2: Mean of SDF mimicking portfolio across γ. This figure plots, for each factor
model, the mean (in %) of the mimicking portfolio of mγ across γ in blue. For each γ, the
corresponding minimum discrepancy SDF pricing the factor model is obtained. Then, the mean
of its mimicking portfolio is reported. We consider γ ∈ [−3, 30], with a grid with spacing of
1. The red horizontal line depicts the mean of the mimicking portfolio of the linear SDF. The
sample ranges from July, 1972 to October, 2018.

2



Fig. OA.3: Anomaly importance in the mimicking portfolio of each factor model.
This figure plots, as measure of importance of each anomaly category in mimicking the factor
nonlinearities of each model, the maximum t-stat of the anomalies within the category from the
regression of the best nonlinear SDF nonlinear component on the universe of test assets. The
sample ranges from July, 1972 to October, 2018.
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Fig. OA.4: Squared Sharpe ratio across γ for different test assets. This figure plots,
for each factor model, the squared Sharpe ratio (SR2) across γ for different sets of test assets.
For each γ, the corresponding minimum discrepancy SDF pricing the factor model is obtained.
Then, the SR2 of its mimicking portfolio is reported. We consider γ ∈ [−3, 30], with a grid
with spacing of 1. The black horizontal line depicts the SR2 of the linear SDF. Sharpe ratios
are annualized. The sample ranges from July, 1972 to October, 2018.
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Fig. OA.5: Squared Sharpe ratio across γ for nontraded factors. This figure plots, for
each nontraded factor model, the squared Sharpe ratio (SR2) across γ in blue. For each γ,
the corresponding minimum discrepancy SDF pricing the mimicking portfolio of the nontraded
factor is obtained. Then, the SR2 of its mimicking portfolio is reported. We consider γ ∈
[−3, 30], with a grid with spacing of 1. The red horizontal line depicts the SR2 of the linear
SDF. The first plot depicts the results for the traded CAPM as a benchmark. Sharpe ratios are
annualized. The sample ranges from October, 1973 to December, 2016.

5


