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Abstract

The boom in Environmental, Social, and Governance (ESG) investing has created

a demand for ESG ratings. ESG ratings, unlike credit ratings, measure multiple unre-

lated categories. We provide a model of ESG ratings competition where raters provide

information about these categories and set fees. Raters specializing in different cate-

gories maximizes the amount of information transmitted and total surplus, and is the

competitive outcome when investors are less concerned about ESG performance. When

investor concerns about ESG performance are large enough, the competitive outcome

is for them to generalize – splitting their effort among the categories, resulting in less

informative ESG ratings. In this case, generalizing increases the stand-alone value of

the ratings, and, hence, the raters’ pricing power. The possibility of greenwashing

by firms can make generalization the unique equilibrium. We also demonstrate that

specialization maximizes ratings disagreement and, thus, empirical measures of dis-

agreement may be poor measures of surplus.
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1 Introduction

Global sustainable investment has reached $30.3 trillion (GSIA, 2022). Underlying this

boom is the market to assess investments on environmental, social, and governance (ESG)

criteria. A large number1 of ESG rating providers have sprouted up to gather, analyze, and

aggregate data for investors. Nevertheless, ESG ratings have come under intense scrutiny

from the media, regulators, and academics for measurement and accuracy issues.2

Indeed, some studies use credit ratings as a benchmark for how inaccurate ESG ratings

are. However, a comparison between ESG ratings and credit ratings is like comparing ap-

ples to oranges. Aside from having well established data and methodologies, credit ratings

attempt to measure one variable: the probability a default will occur.3 ESG ratings measure

a panoply of subcategories within E, S, and G that are very different from each other. For

example, one of the largest raters, MSCI, states that within S, it includes the headings (with

many subheadings): Human Capital, Product Liability, Stakeholder Opposition, and Social

Opportunities, and within E, it includes the headings: Climate Change, Natural Capital,

Pollution & Waste, and Environmental Opportunities.

Large investors understand that ESG ratings are not credit ratings. They purchase

multiple ESG ratings and use the data from the categories rather than the aggregate score

(SustainAbility, 2020; ESMA, 2022).

Given this, we analyze the market structure of the ESG ratings industry. In our model,

there is a project that needs funding from an investor. In addition to the financial per-

formance, the investor cares about two categories of ESG performance. We consider these

may be two categories among E, S, and G, or two of their subcategories. This preference

may represent a concern about externalities, long-term performance, or potential scandals.

There are two ESG raters who choose how much effort to allocate to gathering information

on the two categories. The two raters then compete over the fees they charge the investor

for purchasing the gathered information.4 We assume that the ESG raters (i) provide the

rating by category rather than just an aggregate, and (ii) communicate their information

truthfully.

1The European Securities and Markets Authority states that there are 59 ESG rating providers in Europe
(ESMA, 2022). Still, the market is dominated by several larger providers.

2For examples, see “ESG ratings need regulation to fix inconsistencies and bias” by Hazel James Ilango,
energypost.eu, October 31, 2022, “Greenwashing Unmasked: A critical examination of ESG ratings and
actual environmental footprint” by Benjamin Laker, Forbes, August 4, 2023, and “ESG ratings: whose
interests do they serve?” by Kenza Bryan, Financial Times, October 3, 2023.

3Note that Moody’s states that they also measure the amount of recovery upon default.
4We note that unlike corporate credit ratings, which are paid for by issuers, ESG ratings are bought by

investors.
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We find that, in equilibrium, the investor will purchase ratings from both raters. The

investor may not be willing to, however, pay both raters their marginal value. This is

because, depending on the investor’s ESG preferences and the raters’ ratings design, the

combined value of the ratings, the maximum value the investor is willing to pay for ratings

from both raters, could be less than the sum of the marginal value of each rater. In this

case, the raters’ share from the combined value will depend on the stand-alone value of their

ratings (the maximum amount they could charge the investor if they were the only rater).

The stand-alone value thus has important implications for the equilibrium design of the

ratings. For instance, when the investor’s value for ESG performance is so high that she

needs a positive update about the project’s performance in both categories to invest, the

information about a single category has no value. In this case, a rater who specializes in one

category has no stand-alone value, which pushes the raters away from specialization. In fact,

in equilibrium, the raters will generalize: split their efforts between the rating categories.

Generalization, of course, leads to a costly duplication of effort.

When the investor’s value for ESG performance is low, positive information about one

category is sufficient for the investment. As such, the stand-alone values are large enough

that they do not distort the raters’ incentives. The investor will pay each rater the marginal

value of their ratings. In this case, raters will specialize: each rater will focus all of its effort

on one category.

For intermediate values of the investor’s value for ESG performance, there are multiple

equilibria – both specialization and generalization are equilibria. This is because, in this

range, the raters’ decisions to specialize or generalize become strategic complements.

We find that having the raters specialize in different categories maximizes value, where we

define value as the sum of the agents’ payoffs. This is because specialization maximizes the

amount of information transmitted. When investors place a high value on ESG performance,

this creates a wedge between the market solution and the value-maximizing solution as the

market provides less information through generalization. This occurs exactly when investors

value that information the most.

Many recent papers point to the divergence among ESG ratings as a metric for inaccuracy.

For example, Berg et al. (2022) document that the correlations between ESG ratings range

from 0.38 to 0.71; similar results are found in Chatterji et al. (2016), Christensen et al.

(2022), and Gibson Brandon et al. (2021). We demonstrate that the correlation between

the ratings of the two raters is minimized when the raters specialize in different categories.

Given the result that specialization is value maximizing, this implies that divergence is not
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a good measure of inaccuracy.5

There is much discussion of greenwashing in the ESG data provision: firms’ manipulation

of their perfomance data so as to improve public perception. We show that greenwashing will

impact the strategy of ESG raters - when greenwashing by firms is substantial, the unique

equilibrium will be generalization. This arises due to investors’ rational suspicion of ratings

due to greenwashing. Particularly, investors require a consistently high ESG performance

across categories for their investment, which pushes the raters toward generalization. This

implies that less information provision by firms makes ratings less informative (1) through

a direct effect, and (2) by influencing the industrial organization of the ESG raters.

Our results are robust to alternative specifications of the model, including asymmetric

costs of information acquisition for different categories, varying the allocation of market

power in pricing, looking at more general information structures, allowing the social planner’s

weight on ESG to differ from the investor’s, and allowing for divergence in measurement

methods.

Berg et al. (2022) point to three sources of divergence in ESG ratings. The first is “scope

divergence,” where ratings are based on different attributes. The second is “measurement

divergence,”where raters measure the same attribute differently. The last is “weight diver-

gence,”which captures raters weighting different attributes differently. Our model is able to

capture scope divergence and measurement divergence, but not weight divergence, as we do

not look at aggregate ratings. Berg et al. (2022) find little evidence of weight divergence; it

contributes to only 6% of the divergence.

There is some evidence of specialization in the current marketplace. Institutional Share-

holder Services (ISS), which has its roots as a proxy advisor, has been “praised most fre-

quently for its governance scoring”(SustainAbility, 2020, p. 14). Of course, all of the major

raters state that they have measurements for E, S, and G.

In the model, we are agnostic about why investors derive utility from the ratings. It

could be because they care about the externalities the firms impose. Alternatively, it could

be because it affects the firm’s payoffs through risk (physical, reputational, litigation, or

regulatory) or proxies for a long-term approach. Amel-Zadeh and Serafeim (2018) provide

survey evidence that institutional investors care about all of these (see their Table 3). In

our model, the only important elements are that these categories affect the investor’s payoff

5This is in line with a statement by Jean Christophe Nicaise Chateau from the European Commission:
“Users like the diversity of ratings. It gives them the ability to go to a number of different providers
depending on the type of information they’re looking for. The more they know about what they’re buying,
the more it will help them choose to go to the relevant data provider or ratings agency that may have a more
specialized approach.” See: https://www.sustainability.com/thinking/rating-the-raters-yet-again-increasing-
esg-scrutiny-makes-current-rate-the-raters-study-even-more-crucial/
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from investing in the project and, therefore, the investor would like to learn more information

about them.

In reality, the rating agencies themselves are unclear and varied in their objectives, dis-

cussing both risk and impact (for a summary, see Larcker et al., 2022). The literature also

finds very mixed evidence on the relationship between ratings and social outcomes (e.g.,

Raghunandan and Rajgopal, 2022) and the relationship between ratings and financial per-

formance (e.g., Hartzmark and Sussman, 2019). Berg et al. (2021) find that combining

ratings leads to a stronger relationship between ESG and financial performance.

Our model is complementary to models of credit rating competition, as in Bolton et al.

(2012), Bar-Isaac and Shapiro (2013), Bouvard and Levy (2018), and Piccolo (2021). How-

ever, we assume the raters tell the truth and do not depend on reputation. This permits us

to broaden the analysis and allow for revealing information on multiple categories.

Our paper also contributes to the literature on information sales.6 Admati and Pfleiderer

(1986) study how a monopolistic information provider should design signals about asset val-

ues when the value of its information is subject to dilution through equilibrium prices. Huang

et al. (2018) extend Admati and Pfleiderer (1986) to the case with multiple information sell-

ers. Bergemann et al. (2018) examine the optimal menu of signals sold by a monopolistic

information provider when it is uncertain about the buyer’s valuation of the information. A

key distinction of our model is that information providers decide how to gather information

about multiple, possibly unrelated, variables, and then sell their assessments to investors.

We show that raters may move away from specialization toward generalization, depending on

the investor’s preferences, while generalization by both raters results in inefficient duplication

of effort, and consequently, less overall information production.

The multidimensionality of relevant information in financial decisions has been analyzed

in models of financial markets (Goldstein and Yang, 2015; Goldstein et al., 2022) and bank

lending (Blickle et al., 2024). We contribute to this literature by studying the incentives of

an information intermediary to gather, design, and sell multidimensional information.

A growing body of literature theoretically investigates the functioning of capital markets

in financing socially responsible investments (Piccolo et al., 2022; Gupta et al., 2022; Piatti

et al., 2023; Oehmke and Opp, 2024), and regulations to facilitate the transition toward

a green economy (Oehmke and Opp, 2022; Hong et al., 2023; Huang and Kopytov, 2023;

Döttling and Rola-Janicka, 2023; Inderst and Opp, 2024). Some studies have explored the

asset pricing implications of ESG investing (e.g., see Pástor et al., 2021; Sauzet and Zerbib,

2022; Avramov et al., 2022). This paper contributes to this literature by exploring the

6For a review, see Bergemann and Bonatti, 2019.
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production of ESG information, which is a key input for the functioning of capital markets.

The rest of this paper is organized as follows. Section 2 presents the setup. In Section

3, we characterize the equilibrium outcomes, and compare them with the value-maximizing

outcomes. In Section 4, we explore the implications of disagreement between raters. In

Section 5, we analyze the impact of greenwashing on the design of ESG ratings. In Section

6, we demonstrate the robustness of the key results under alternative assumptions about the

information acquisition cost, the allocation of market power in pricing, and allowing for mixed

strategies. We also analyze the equilibrium outcomes when raters choose between different

measurement methods. Concluding remarks are in Section 7. Key proofs are in the appendix.

The online appendix has additional proofs and (i) shows that our results remain robust

when we allow for a more flexible information structure for the ratings, and (ii) examines

the socially optimal production of ESG information when investors’ ESG preferences are not

aligned with the social planner.

2 The Model

We consider a model of competition between two ESG raters to sell information to an

investor. There are three periods in the model: t = 0, 0.5, 1. There is a project that requires

investment I > 0, which generates a certain financial output of I + ∆, where ∆ > 0. A

deep-pocketed investor considers investing in the project.7 The investor is concerned about

the project’s ESG performance, denoted by u. ESG performance may capture externalities

of the project or long-term risk factors that contribute to or take away from the project’s

future cash flows. Therefore, ESG performance may be positive or negative. The investor

assigns weight β ≥ 0 to ESG performance. As such, from the investor’s perspective, the

total value created by the project is ∆ + βu.

The fundamental assumption in our model is that ESG performance has multiple dimen-

sions, which can be unrelated. For instance, ESG rating agencies evaluate firms based on

three major categories (environmental, social, and governance), with each category contain-

ing many sub-categories. The performance in one category (or subcategory) is not necessarily

related to or informative about the performance in the others. This multidimensionality of

non-financial performance differentiates our model from the equilibrium models of credit rat-

ings, where the investors’ objective is to learn about a default probability based on financial

data.

7Note that as there is only one investor, ESG raters in our model do not have the incentive to differentiate
in order to capture market share.
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For simplicity, we focus on two categories: A and B. The categories could represent the

major categories (i.e., E, S, and G), or subcategories of a major category. The project’s

performance in A and B is characterized by (wA, wB), where the performance is binary in

each category, i.e., wi ∈ {L,H}, where i = A,B. A priori, the probability of the high state

is η ∈ (0, 1) for each category. The probabilities are independent across the categories. The

project’s type is publicly realized in period 1.

The equation below specifies the ESG performance (u) as a function of the project’s type:

u =


V HH (wA, wB) = (H,H)

V HL (wA, wB) ∈ {(H,L), (L,H)}

V LL (wA, wB) = (L,L),

(1)

where:

V HH > 0, V LL < 0, V HL ∈ (V LL, V HH). (2)

We present our results under the assumption that the investor does not invest in the

project if no information about the project’s ESG performance is available. Assumption 1

formalizes this point. This assumption ensures that there is a demand for ESG information,

as no investment would take place without the information.

Assumption 1.

∆+ βE[u] = ∆ + β
{
η2V HH + 2(1− η)ηV HL + (1− η)2V LL

}
< 0. (3)

Furthermore, we assume that the investor is not indifferent between investing and not

investing when the project’s type is (H,L) or (L,H), as formalized by Assumption 2. This

assumption ensures that information about both categories is valuable for the investor, even

when information about the other category is perfectly available.

Assumption 2.

∆+ βV HL ̸= 0. (4)

2.1 ESG Rating Agencies

Information about u is provided by two non-cooperative ESG rating agencies. The raters are

indexed by j = 1, 2. In period zero, the raters design a rating technology that generates a

rating for each of the two categories. The ratings are denoted by Sj = (sAj , s
B
j ). The ratings

are binary, i.e., sij ∈ {h, l}, for j = 1, 2, and i = A,B. The rating technology is characterized

by the pair λλλj = (λA
j , λ

B
j ), where λi

j denotes the probability that the project receives a high
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rating in a category for which it has a high type, which we label as precision. Putting it

differently,

P (sij = h|wi = H) = λi
j, P (sij = h|wi = L) = 0, j = 1, 2, i = A,B. (5)

Note that under this signal structure, high-ratings perfectly reveal the underlying state.8

In Section OA.1, we consider a more general set of rating technologies that allow for both

false-positive and false-negative errors in the ratings, and demonstrate the robustness of our

results to our assumption about the signal structure. A few remarks about the ratings are

in order. The raters report their ratings truthfully. Hence, we assume away any strategic

behavior in the reporting of the ratings (as in, e.g., Bolton et al., 2012; Agrawal et al., 2023).

Moreover, the raters report the rating in each category separately, rather than reporting

an aggregated version. This is consistent with the fact that ESG rating agencies provide

the break-down of their ratings to their subscribers, and this clearly dominates an arbitrary

aggregation rule.

Since there is no false-positive error in the ratings, a high rating in a category by a rater

is enough to verify that the project has a high performance in that category. Therefore, it

is helpful to introduce the following notation for the combined ratings:

si =

h if si1 = h or si2 = h

l if si1 = si2 = l
i = A,B. (6)

The conditional probabilities for si = h, namely the probability of receiving a high rating in

category i from at least one of the raters, is:

P (si = h|wi = L) = 0,

λi ≡ P (si = h|wi = H) = 1− (1− λi
1)(1− λi

2) = λi
1 + λi

2 − λi
1λ

i
2, i = A,B.

(7)

We assume that the raters choose their rating technology under the following technolog-

ical constraint:

λA
j + λB

j ≤ 1. (8)

This constraint implies that each rater can perfectly disclose the project’s performance in one

of the categories, or provide a noisy rating for both categories. As a result, it is possible for the

8Note that (5) implies that in the extreme case of λi
j = 0, namely when rater j does not assess the project

in category i, rater j assigns rating l for category i. However, this rating is uninformative.
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raters to perfectly reveal the project’s type collectively.9 The ratings are independent across

the raters conditional on the project’s performance, which can capture different measurement

methodologies employed by ESG raters (Berg et al., 2022). All feasible rating technologies

are equally costly, and the marginal cost is set to zero.

Two types of rating technologies are particularly important in our analysis:

Definition 1. We say rater j ∈ {1, 2} specializes if λλλj ∈ {(1, 0), (0, 1)}. We denote

the specialized rating technologies in categories A and B by λλλSPA and λλλSPB , respectively.

Moreover, we say rater j ∈ {1, 2} generalizes if λλλj = λλλGN = (1
2
, 1
2
).

2.2 The Ratings Market

After designing the rating technologies simultaneously in period zero, the raters sequentially

offer their set of ratings to the investor at fees ϕ1 and ϕ2. Rater 1 sets its fee first. The

sequential fee-setting enables us to refine the equilibrium outcomes since the equilibrium

would not always be unique had we assumed a simultaneous fee-setting.10 In Section 6.2,

we show the robustness of our results to the case that both raters set their fees first with a

positive probability. After observing the fees, the investor decides whose ratings to purchase

given the posted fees. The investor can purchase ratings from one rater, from both raters,

or not purchase at all. The investor cannot see the ratings before purchasing them; the

information for each set of ratings is revealed after purchasing them.

We define V (λλλ1,λλλ2) as the expected value of the ratings to the investor when bought

together. Moreover, let OOO denote the uninformative rating technology, i.e., OOO = (0, 0).

Therefore, V (λλλ1,OOO) and V (OOO,λλλ2) are the “stand-alone” values of the ratings provided by

raters 1 and 2, respectively. Equation 9 formally defines the value function:

V (λλλ1,λλλ2; β) =
∑

sA,sB∈{h,l}

max{0,∆+ βE[u|sA, sB]}P (sA, sB). (9)

In equation 9, sA and sB denote the possible realizations of the combined ratings.

P (sA, sB) denotes the unconditional probability that (sA, sB) ∈ {h, l}2 realizes. The maxi-

mum operator indicates that the investor may decide to invest or not given the realization

of sA and sB. To avoid repetition, we omit the element β where possible, for simplicity.

9In Section 6.1, we demonstrate the robustness of our results in a case where the information acquisition
costs differ across the categories so the raters cannot perfectly reveal the project’s type. This assumption
helps us simplify the characterizations in the main model.

10To see this point, consider the following conceptually similar game: Suppose two players simultaneously
request a fraction of a cake, analogous to the overall surplus created by the ratings. The requests are accepted
as long as their sum does not exceed one. Then, any pair of fractions that sum up to one constitutes an
equilibrium.
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Figure 1. Sequence of actions and the investor’s payoff in the ratings market stage

Figure 1 displays the moves and the investor’s payoff. We assume that the investor

breaks ties in her purchasing decision according to the following order, with the first being

the most favored: (1) purchasing from both the raters, (2) purchasing only from Rater 1,

(3) purchasing only from Rater 2, (4) no purchase. We analyze and discuss the equilibrium

fees in detail in Section 3.1.

Timeline

Figure 2 presents the timeline of the model.

3 Equilibrium Choice of Rating Technology

This section analyzes what rating technologies the raters will choose. After solving for

the market equilibrium, we contrast the results with the rating technologies that maximize

surplus.

3.1 Equilibrium in the Ratings Market Stage

In this section, we analyze the raters’ equilibrium fees given a pair of rating technologies

(λλλ1,λλλ2). Lemma 1 provides the equilibrium fees.
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tt = 0

Raters simultaneously
choose rating technologies
λλλj = (λA

j , λ
B
j ), j = 1, 2.

Raters sequentially post
fees ϕj, j = 1, 2. Rater 1

moves first.

The investor decides to
purchase 0, 1, or 2 ratings.

t = 0.5

The project’s
ESG performance
(wA, wB) ∈ {H,L}2 is drawn.

Ratings realize:

Sj = (sAj , s
B
j ) ∈ {h, l}2

The investor decides whether
to invest in the project.

t = 1

(wA, wB) realize.

Payoffs realize

Figure 2. Timeline.

Lemma 1. If the rating technologies chosen by the raters are (λλλ1,λλλ2), then the following

fees are set in equilibrium:

ϕ1 = V (λλλ1,λλλ2)− V (OOO,λλλ2)

ϕ2 = min{V (λλλ1,λλλ2)− V (λλλ1,OOO), V (OOO,λλλ2)− V (OOO,OOO)}.
(10)

Lemma 1 states that Rater 1 is always paid the marginal value of its ratings, while Rater

2 may be paid less. The reason is that the sum of the marginal contributions can exceed the

total value created by the ratings, depending on the choice of rating technologies. In other

words,

V (λλλ1,λλλ2)− V (OOO,λλλ2)︸ ︷︷ ︸
Marginal contribution of Rater 1

+ V (λλλ1,λλλ2)− V (λλλ1,OOO)︸ ︷︷ ︸
Marginal contribution of Rater 2

≥ V (λλλ1,λλλ2)− V (OOO,OOO).︸ ︷︷ ︸
Total value created by the ratings

(11)

Consequently, the investor is not willing to pay both raters their marginal contribution.11

In this case, Rater 2 charges the stand-alone value of its rating technology, as it is the

maximum amount the rater can charge if the investor were only to buy Rater 2’s ratings.

Therefore, Rater 2’s fee is bounded by the stand-alone value of its ratings, affecting the

rater’s incentives in the design of its rating technology.12

11By rearranging equation 11, we obtain:

V (λλλ1,λλλ2)− V (λλλ1,OOO) ≥ V (OOO,λλλ2)− V (OOO,OOO). (11′)

This directly connects equation 11 to the Rater 2’s equilibrium payoff. Note that we can see from equation
11′ that the rating technologies are complements (the marginal value of the Rater 2 is larger than its stand-
alone value) when the inequality holds, and substitutes otherwise. We use this formulation in the appendix.

12In Section 6.2, we demonstrate the robustness of our results when both raters move first with a positive
probability, and consequently, both raters’ payoffs will depend on their stand-alone value with a positive
probability.
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3.2 Market Outcomes

With the characterization of the fees, we can analyze the equilibrium design of the ratings.

Note that (λλλ1,λλλ2) is an equilibrium outcome when λλλj, j = 1, 2, maximizes fee ϕj, given

the choice of the other rater. Proposition 1 characterizes the equilibrium outcomes in pure

strategies. In section 6.3, we analyze the set of mixed strategy equilibria.

Proposition 1. Under Assumptions 1 and 2, the only possible pure strategy equilibrium out-

comes are generalization by both raters and specialization by each rater in different categories.

The following provides the characterization in detail (up to symmetries in the actions):

a) If V HL ≥ 0, the only equilibrium outcome is that the raters specialize in different cate-

gories.

b) If V HL < 0, define:

β∗(λ) = sup{β|(1− η)(∆ + βV HL)

η(∆ + βV HH)
≥ λ− 1}, (12)

which is a decreasing function of λ.

b.1) If β∗(1
4
) is finite and β > β∗(1

4
), then the unique equilibrium is generalization by

both raters.

b.2) If β ≤ β∗(1
4
), specialization in different categories is an equilibrium. This is the only

equilibrium outcome, except when β ∈ [β∗( 9
16
), β∗(17

32
)]∪{β∗(1

4
)}. In this case, generalization

by both raters is also an equilibrium.

Proposition 1 states that if information about the project’s ESG performance is essen-

tial for the investment (Assumption 1), and information about both categories always has

a positive marginal value (Assumption 2), the only pure strategy equilibria are that the

raters either both generalize or specialize in different categories. In Section 6.3, where we

analyze the mixed strategy equilibria, we show that there is one additional equilibrium for

some parameter values: one where the raters fail to coordinate on the category in which

they specialize, and they randomize between specializing in categories A and B with equal

probabilities.

Part (a) of Proposition 1 states that specialization in different categories is the only

form of equilibrium when V HL ≥ 0. The intuition is that high performance in a single

category is sufficient for the investor to invest, which implies a positive stand-alone value for

specialization. In fact, specialization has the largest stand-alone value in this case. Moreover,

specialization in different categories identifies project types most efficiently, which means

specialization also has the largest marginal value given the other rater specializes in the
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other category. Therefore, in response to the other rater specializing, specialization in the

other category is the best response for both raters. Moreover, both ratings are purchased

in equilibrium since each rater identifies the high-performing projects in a single category;

thus, both ratings have a positive marginal value.

When V HL < 0, the equilibrium outcome depends on the investor’s decision when the

project has a mix of positive and negative ratings, i.e., sA = h and sB = l, or vice versa.

To this end, function β∗(λ), when λ ∈ [0, 1], represents the maximum value of β at which

the investor is willing to invest when the project has a high rating in category i and both

ratings are low in category −i (i.e., the other category), with a combined precision of λ−i

(where λ−i is defined in equation 7), and the argument of β∗(·) is λ = λ−i. Note that for

smaller values of λ, the investor with threshold type β∗(λ) has less tolerance toward negative

ratings, resulting in a negative relationship between β∗(λ) and λ. For instance, when β∗(0) is

finite and β > β∗(0), β is so large that a single high performance never justifies investment.

Specifically, we have:

β > β∗(0) ⇒ η(∆ + βV HH) + (1− η)(∆ + βV HL) < 0

⇒ E[∆ + βu|wA = H] = E[∆ + βu|wB = H] < 0.
(13)

In this case, learning only wA or wB holds no value for the investor since she invests only

when she receives a positive update about both categories. Therefore, Rater 2 cannot charge

a positive fee when it specializes, pushing the rater toward generalization, which yields the

highest stand-alone value. In response, Rater 1 moves away from specialization and chooses

to generalize.

More broadly, stand-alone values play a role in the market equilibrium when β is suffi-

ciently large. In our model, generalization has the highest stand-alone value when β∗(1
4
) is

finite and β > β∗(1
4
). In other words, when this condition holds, the investor prefers obtain-

ing a noisy signal about each category to a perfectly-revealing signal for a single category.

Given this, Rater 2 generalizes, and consequently, the unique equilibrium is generalization by

both raters. Here, the investor’s strong preference for ESG investments leads, surprisingly,

to less information being provided.

Another key force that shapes the market equilibrium is the strategic complementarity

in the design of ratings. To see the strategic complementarity, note that the marginal value

of specialization in a category is the highest when the other rater specializes in the other

category. As the other rater moves from specialization towards generalization, the overlap

between the two rating technologies increases, which reduces the marginal value of special-

ization. Conversely, the marginal value of generalization increases as the other rater moves
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Figure 3. This diagram illustrates the set of market equilibria for different values of β when
V HL < 0 and β∗(1

4
) is finite. “GN” and “SP” represent generalization by both raters and

specialization in different categories, respectively.

from specialization to generalization. As such, both specialization in different categories

and generalization by both raters can be equilibrium outcomes when the raters maximize

their marginal value. Because of this strategic complementarity, there are multiple equilib-

ria for some intermediate values of β. This occurs (1) when β ≥ β∗( 9
16
), corresponding to

when the marginal value of generalization is higher than the marginal value of specialization,

given the other rater generalizes (V (λλλGN ,λλλGN)− V (OOO,λλλGN) ≥ V (λλλSPi ,λλλGN)− V (OOO,λλλGN)),

i = A,B; and (2) β ≤ β∗(17
32
), corresponding to when the marginal value of generalization

(given the other rater generalizes) does not exceed the stand-alone value of generalization

(V (λλλGN ,OOO) ≥ V (λλλGN ,λλλGN)− V (λλλGN ,OOO)).

Figure 3 illustrates how the set of market equilibria varies with β when V HL < 0. Figure

4 displays the equilibrium outcomes for different values of β and V HL by depicting the raters’

best response behavior.

3.3 Value-maximizing Ratings

Next we analyze the choice of rating technologies that maximize the expected investment

value. In particular, we call pair (λλλ∗
1,λλλ

∗
2) “value-maximizing” if it is a global maximizer of

V (λλλ1,λλλ2), as defined in equation 9, given the technological constraint in equation 8.

A value-maximizing pair can be interpreted in different ways. First, it can describe the

solution to the social planner’s problem when the planner maximizes the total surplus of

the investor and the raters. Second, it can describe the situation where the social planner’s

objective is to maximize the expected social value of the investment and the social planner

has the same preferences (i.e., β) as the investor. In Section OA.2, we examine the situation

where the social planner and the investor may diverge in their valuations of ESG perfor-

mance. Third, if the raters could collude and jointly decide about their rating technologies,

they would choose a value-maximizing pair. As such, value-maximizing pairs provide us

with a natural benchmark to study the impact of raters’ competition on the production of

ESG information. Proposition 2 demonstrates that the only value-maximizing outcome is

specialization in different categories.
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(a) (b)

(c) (d)

Figure 4. This figure displays the best response of each rater (blue (dashed) line for Rater
1 and red (dotted) line for Rater 2) for different values of β and V HL. The intersection
points designate the equilibrium outcomes. The white (gray) area represents the outcomes
in which Rater 2 charges the marginal value (stand-alone value) of its ratings.

Proposition 2. Under Assumptions 1 and 2, the only value-maximizing outcome is special-

ization in different categories, i.e., (λλλ∗
1,λλλ

∗
2) = (λλλSPA ,λλλSPB), (λλλSPB ,λλλSPA).

Note that when the raters specialize in different categories, the project’s type is perfectly

revealed to the investor, which results in perfect investment efficiency. In other words, the

investment takes place iff it generates a positive value from the perspective of the investor

(i.e., ∆+βu > 0). No other pair of rating technologies implements this investment outcome

since they result in some inefficient overlap in the information produced for each category.

Figure 5 illustrates this point.

By juxtaposing Propositions 1 and 2, we learn that competition in the production of

ESG information results in generalization when β is large and V HL < 0, while the value-

maximizing solution is specialization. Note that the deviation from the value-maximizing

outcome happens when the investor is the most concerned about the project’s ESG perfor-

mance.

14



(a) (b)

Figure 5. This figure displays the investment area for a (a) non-value-maximizing and
(b) value-maximizing pair of rating technologies. In the figure, the parameter values are
assumed to be such that the investor needs to receive a positive update in both categories
to invest, i.e., when the condition in equation 13 is satisfied. The figure shows that when
the raters specialize in different categories, a (H,H)-project always receives investment. No
other pair can achieve this outcome.

The underlying insight here is that, while the specialization outcome maximizes the

investment value, Rater 2 has incentives to generalize because its payoff is tied to the stand-

alone value of its ratings. In other words, the strong demand for information about both

categories A and B creates an incentive for raters to generalize in equilibrium, as special-

ized ratings hold no stand-alone value for the investor. Of course, as demonstrated earlier,

strategic complementarities in the design of ratings can lead to generalization as well.

4 Disagreement in Ratings

Investors rely on ESG ratings and information to incorporate ESG considerations in their

investments. Nevertheless, the available ESG ratings vastly disagree in their assessment of

firms’ ESG performance, potentially creating confusion for investors (Chatterji et al., 2016;

Berg et al., 2022). In this section, we analyze the disagreement in the ratings implied by the

model for the value-maximizing and market equilibrium pairs of rating technologies.

To analyze the disagreement, we examine the correlation between the expected investment

payoff implied by each rater’s ratings; that is,
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Figure 6. Agreement in the expected investment payoffs implied by the ratings
(Agg(λλλ1,λλλ2)), as in equation 14. Darker values correspond to higher levels of agreement.
Top-left and bottom-right points correspond to the outcomes in which the raters specialize
in different categories. The middle point corresponds to the generalization outcome.

Agg(λλλ1,λλλ2) = Corr(E[∆ + βu|sA1 , sB1 ],E[∆ + βu|sA2 , sB2 ])

= Corr(E[u|sA1 , sB1 ],E[u|sA2 , sB2 ]).
(14)

We use this method of aggregation rather than being limited to an arbitrary aggregation

rule. Figure 6 illustrates how the disagreement varies with the choice of rating technology.

Darker points indicate more agreement (less disagreement). We see that specialization in

different categories, which is value-maximizing, results in the highest level of disagreement.

The agreement level is intermediate when both raters generalize. The highest level of agree-

ment would be obtained if both raters specialize in the same category. We formalize this

result in Proposition 3.

Proposition 3. Agg(λλλ1,λλλ2) is minimized when the raters specialize in different categories,

and maximized when the raters specialize in the same category.

To understand this result, note that disagreement arises from two sources: 1) providing

inaccurate, but independent, ratings for a category, or 2) allocating resources differently

among the categories. When both raters generalize, the former is the only source of dis-

crepancy, and when the raters specialize in different categories, the latter is the primary
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source. As a result, the disagreement observed in data can be attributed to a combination of

these two sources, which stem from specialization and technological limitations. Therefore,

disagreement in ESG ratings is efficient for investors when specialization is the driver.13

Berg et al. (2022) find that 38% of the discrepancy in the category ratings provided

by major ESG rating agencies can be attributed to the differences in the subcategories

examined (scope). This indicates that indeed a significant portion of the disagreement reflects

specialization by the raters, and is thus beneficial from a social welfare perspective.14

5 Greenwashing and the Design of Ratings

In our model, we assume that the ESG raters can assess the true type of the project. However,

in practice, ESG raters mostly utilize self-disclosed information provided by firms for their

assessments. It means that there is room for manipulation, which is typically referred to as

“greenwashing” in this context. For instance, a firm might announce a plan to reduce carbon

emissions, which would help the firm receive a better rating in the environmental category.

However, it likely would be difficult to assess the firm’s commitment to the plan. In this

section, we analyze how greenwashing impacts the raters’ design of their ratings.

Specifically, suppose the raters assess a potentially manipulated type of the project,

which we denote by (wA
M , wB

M), where wA
M , wB

M ∈ {H,L}. In particular, with probability

α, the project designer can successfully manipulate the type for any category with a low

performance. The equations below describe the relationship between manipulated and actual

types:

Prob(wi
M = H|wi = H) = 1, P rob(wi

M = H|wi = L) = α ∈ [0, 1), i = A,B. (15)

The probability α is lower when ESG disclosure requirements are tightened, or when

greenwashing is costlier. The main model in the text corresponds to the case that green-

washing is not possible, i.e., α = 0.

We maintain the mapping between types and ratings in equation 5 with the difference

being that the types are the manipulated types:

P (sij = h|wi
M = H) = λi

j, P (sij = h|wi
M = L) = 0, j = 1, 2, i = A,B. (16)

13This intuition is robust to the way the ratings are aggregated. For instance, had the raters reported a
precision-weighted average of their ratings, specialization in different (the same) categories would still induce
the lowest (highest) correlation in the aggregated ratings.

14Berg et al. (2022) find that divergence in measurement methodologies also substantially contributes to
the discrepancy in the ratings. In Section 6.4, we analyze the raters’ trade-offs in choosing among different
measurement methods.
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Note that the equations in (16) indicate that greenwashing results in the manipulation of the

ratings. In our model, the investor forms beliefs rationally. Hence, she correctly accounts

for the possibility of greenwashing in her evaluation of the project’s ESG performance given

a set of ESG ratings.

We assume that α is such that the ratings still induce investment when the project

receives a high rating in both categories. In particular,

∆ + βE[u|sA = sB = h] = ∆ + βE[u|wA
M = wB

M = H]

= ∆ +
β

(η + (1− η)α)2

{
η2V HH + 2η(1− η)αV HL + (1− η)2α2V LL

}
> 0.

(17)

Note that greenwashing introduces additional noise to the ESG ratings. For instance, a

high rating in both categories does not necessarily indicate high performance in both. Conse-

quently, greenwashing causes investors to discount the expected ESG performance based on

these ratings. For instance, if the investor requires a high performance only in one category

when there is no greenwashing, she might require a high rating in two categories to account

for the possibility of greenwashing. This can be thought of as a hedging mechanism against

the greenwashing risk. In Proposition 4, we describe how greenwashing impacts the equilib-

rium design of ratings, through its effect on the investor’s demand for ESG information.

Proposition 4. For any values of β and V HL, there exists an α∗ such that the unique

equilibrium is generalization by both raters when α > α∗ and α satisfies equation 17.

Proposition 4 states that when the amount of greenwashing is sufficiently large, the unique

equilibrium is generalization by both raters. The intuition is that when α is large enough,

the investor requires a high rating in both categories to invest in the project. As a result,

the stand-alone value of specialization is zero, which causes the raters to move away from

the specialization outcome. Note that alpha must not be so large as to make the information

in ESG ratings valueless (this is embodied in equation 17).

This result reveals a propagation mechanism through which greenwashing contaminates

ESG ratings. Greenwashing does not only result in noisier ESG information, but also might

push raters away from specialization since it is cumbersome to uncover the true performance

in any category. Therefore, greenwashing results in more generalization, which leads to even

less accurate ratings.
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6 Robustness of the Model

This section demonstrates the insights delivered by our model are robust to the key assump-

tions and modeling choices made in the baseline model. Section 6.1 relaxes the symmetry

between the two categories by allowing information production to be cheaper in one of the

categories. Section 6.2 allows the second rater to move first with a positive probability,

which enables us to examine the equilibrium outcomes for different allocations of surplus

among the raters. In these two sections, we show that the set of equilibrium outcomes and

value-maximizing outcomes remain qualitatively the same as the baseline model. Section

6.3 examines the equilibria in mixed strategies. Section 6.4 analyzes the raters’ equilib-

rium behavior when they choose among different methods of measuring performance in a

subcategory.

Additional robustness checks and discussions are provided in the Online Appendix. Sec-

tion OA.1 demonstrates the robustness of our results to the assumption that the ratings

have no false-positive error by considering a more general set of rating technologies that

allow for flexible amounts of both false-positive and false-negative errors in the ratings. Sec-

tion OA.2 examines the socially optimal information production when the investor and the

social planner place different weights on the importance of ESG performance.

6.1 Unequal Information Acquisition Cost Across Categories

Thus far, we have assumed that information acquisition in the two categories is equally

costly. In practice, performance is easier to measure in some categories than others. For

instance, the Trucost database, offered by S&P Global, provides detailed information on

firms’ emissions of a variety of greenhouse gases, which helps investors and raters assess

firms’ performance in the environmental category.15 However, exposure to biodiversity risk

is more complex to assess (Giglio et al., 2023). Therefore, the same amount of resources

could result in different levels of precision in the ratings for different categories. In this

section, we analyze how this heterogeneity impacts the equilibrium and value-maximizing

design of the ratings.

Specifically, consider the following modification of the technological constraint in equation

8:

λA
j +

λB
j

b
≤ 1, b ∈ (0, 1), j = 1, 2. (18)

In equation 18, b−1 captures the difficulty in acquiring information in category B, relative

to that in category A. Note that specializing in category B, i.e, λλλSPB
b = (0, b), results in

15For more information, see https://www.spglobal.com/esg/trucost.
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an imperfect rating about the project’s performance in category B, while specialization in

category A would perfectly disclose the project’s performance in category A.

We assume that b is large enough that specialization in category B has a positive marginal

value for the investor even when she is perfectly informed about the performance in category

A. Assumption 2′ formalizes this point. This Assumption boils down to Assumption 2 when

b = 1.

Assumption 2′.

V (λλλSPA ,λλλSPB
b ) > V (λλλSPA ,OOO). (19)

In Propositions 5 and 6, we characterize the market equilibria and value-maximizing out-

comes, respectively, in the presence of this heterogeneity in the information acquisition cost.

Note that the raters cannot choose λλλGN ≡ (1
2
, 1
2
) since it does not satisfy the technological

constraint in equation 18. However, we see that raters choose interior rating technologies in

equilibrium for some parameter values, mirroring the generalization outcome in our baseline

model.

Proposition 5. Under Assumptions 1 and 2′, the only possible equilibria in pure strategies

are specialization in different categories, and two more outcomes where both raters’ rating

technologies are interior (i.e., no rater specializes).16 The following provides the characteri-

zation of pure strategy equilibrium outcomes in detail:

a) If V HL ≥ 0, the only equilibrium outcome is that the raters specialize in different cate-

gories.

b) If V HL < 0:

b.1) When β > β∗( b
4
), the unique equilibrium outcome is that Rater 2 sets λλλ2 = (1

2
, b
2
)

and Rater 1 does not specialize.

b.2) When β ≤ β∗( b
4
), (λλλSPB

b ,λλλSPA) is always an equilibrium, and (λλλSPA ,λλλSPB
b ) is also

an equilibrium when β ≤ β∗( b
(b+1)2

). These outcomes are the only equilibria except when:

• β = β∗( b
4
), where the interior outcome specified in Part (b.1) is also an equilibrium.

• b is above a threshold, and β ∈ [β∗(x1), β
∗(x2)], where x1 > x2 >

b
(b+1)2

. In this case,

there is an interior equilibrium in which both raters choose the same rating technologies

with 1
2
≥ λA

j > λB
j ≥ b

2
, j = 1, 2.

Proposition 5 is similar to Proposition 1 for the baseline model. When V HL ≥ 0, spe-

cialization in different categories continues to be the only market equilibrium, even in the

16These outcomes are specified in the Appendix.
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(a) (b)

(c)

Figure 7. This figure displays the best response of each rater (blue (dashed) line for Rater
1 and red (dotted) line for Rater 2) for b = 0.8, and different values of β and V HL. The
intersection points designate the equilibrium outcomes. The white (gray) area represents
the outcomes in which Rater 2 charges the marginal value (stand-alone value) of its ratings.

presence of heterogeneous information acquisition costs. Figure 7(a) illustrates this outcome.

The equilibrium outcomes are similar when V HL < 0 and β is small.

Part (b.1) of Proposition 5 states that when β is large, the raters choose interior rating

technologies (see Figure 7(b)). Similar to the baseline model, the intuition is that specializa-

tion has no stand-alone value for high values of β, pushing Rater 2 away from specialization.

Also, similar to the baseline model, Part (b.2) of the proposition indicates that for some

intermediate values of β (when b is large), there is an equilibrium outcome in which the

raters do not specialize, due to strategic complementarities.

Another interesting implication of Part (b.2) of Proposition 5 is that due to the hetero-

geneity in the information acquisition costs, the indeterminacy between the two specialization

outcomes i.e., (λλλSPB
b ,λλλSPA) and (λλλSPA ,λλλSPB

b ), might break for some values of β. This possi-

bility is illustrated in Figure 7(c). In particular, for some values of β, the unique equilibrium

is (λλλSPB
b ,λλλSPA), in which Rater 2, who has a smaller bargaining power, specializes in cate-

gory A, which has a lower information acquisition cost. The other specialization outcome
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is not an equilibrium since λλλSPB
b has a low stand-alone value due to the higher information

acquisition cost associated with category B, which would result in a low fee if set by Rater

2.

Now, we discuss the value-maximizing outcomes. Proposition 6 presents the value-

maximizing pairs; that is, the set of pairs that maximize the investment value V (λλλ1,λλλ2),

given the technological constraint in equation 18.

Proposition 6. Under Assumptions 1 and 2′, specialization in different categories is the

unique value-maximizing pair.

Proposition 6 demonstrates the robustness of our earlier results that specialization in

different categories maximizes the surplus, even with the presence of heterogeneity in the

cost of information production. This result is intuitive since the overlap in information

production is minimized when the raters specialize in different categories.

6.2 Stochastic Ordering of the Fee-setting

In our baseline model, we assume that the Rater 1 always sets its fee first, which gives Rater

1 stronger bargaining power in the allocation of the surplus created by the ratings. In this

section, we relax this assumption by allowing Rater 2 to set its fee first with a positive

probability. In particular, suppose Rater 1 sets its fee first with probability p ∈ [0.5, 1].

Figure 8 presents the moves and the investor’s payoff considered in this section.

Note that this modification does not impact the investment value function (i.e., V (·, ·)).
As a result, specialization in different categories is the value-maximizing outcome.

Moreover, the expected payoff of each rater is a linear combination of the first-mover and

second-mover’s payoffs in equation 10:

π1(λλλ1,λλλ2) = p[V (λλλ1,λλλ2)− V (OOO,λλλ2)] + (1− p)min{V (λλλ1,OOO)− V (OOO,OOO), V (λλλ1,λλλ2)− V (OOO,λλλ2)}

π2(λλλ1,λλλ2) = (1− p)[V (λλλ1,λλλ2)− V (λλλ1,OOO)] + pmin{V (OOO,λλλ2)− V (OOO,OOO), V (λλλ1,λλλ2)− V (λλλ1,OOO)}.
(20)

Depending on whether the sum of the marginal value of the rating technologies exceeds

their combined value or not (i.e., whether equation 11 holds or not), each rater’s payoff is

either their marginal value or a linear combination of their marginal value and stand-alone

value. Specifically, when equation 11 holds, we have:

π1(λλλ1,λλλ2) = p[V (λλλ1,λλλ2)− V (OOO,λλλ2)] + (1− p)(V (λλλ1,OOO)− V (OOO,OOO))

π2(λλλ1,λλλ2) = (1− p)[V (λλλ1,λλλ2)− V (λλλ1,OOO)] + p(V (OOO,λλλ2)− V (OOO,OOO))
(21)
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Figure 8. Sequence of actions and raters’ payoff in the ratings market stage when the first
mover is randomly determined.

We see that p determines the allocation of surplus between the raters in this case. Both

raters receive their stand-alone value, plus a fraction of their marginal value. As such, p can

be thought of as a parameter capturing the allocation of bargaining powers. In Proposition

7, we characterize the equilibrium outcomes. The diagrams in Figure 9 illustrate how the

set of equilibrium outcomes varies with β.

Proposition 7. Under Assumptions 1 and 2, the only possible equilibrium outcomes in pure

strategies are generalization and specialization in different categories:

a) If V HL ≥ 0, the only equilibrium outcomes are specialization in different categories.

b) Suppose V HL < 0:

b.1) If p > 0.5, generalization by both raters is the unique market equilibrium when

β > β∗((1− 1
2p
)2).

b.2) If p > 0.5, specialization in different categories is always an equilibrium when

β ≤ β∗((1 − 1
2p
)2). Moreover, generalization by both raters is an equilibrium when β ∈

[β∗( 9
16
), β∗(17

32
)] ∪ [β∗(1+3p

16p
), β∗((1− 1

2p
)2)].

b.3) If p = 0.5, specialization in different categories is always an equilibrium. General-

ization by both raters is also an equilibrium when β ∈ [β∗( 9
16
), β∗(17

32
)] and β ≥ β∗( 5

16
).

The main message of Proposition 7 is that the key insights of the baseline model are
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(a) p > 0.5

(b) p = 0.5

Figure 9. This diagram illustrates the set of market equilibria for different values of β when
V HL < 0 and the probability that Rater 1 sets its fee first p ≥ 0.5. “GN” and “SP” represent
generalization by both raters and specialization in different categories, respectively.

robust to the choice of the fee-setting mechanism. Particularly, generalization by both raters

is the unique market equilibrium when β is sufficiently large (except for the knife-edge case

of p = 0.5). The intuition is that the rater with a lower bargaining power (Rater 2) assigns

a higher weight to the stand-alone value of its ratings, and specialization generates a small

stand-alone value when β is large. Hence, this rater benefits from producing information in

both categories to improve the stand-alone value of its ratings, and consequently, its pricing

power.

The set of market equilibria remains the same for some parameter values, namely when

V HL ≥ 0, and when V HL ≤ 0 and β < β∗(17
32
); In these cases, both raters charge the

marginal value of their ratings, thus their payoffs are the same as the baseline case. Both

generalization by both raters and specialization in different categories can be equilibria for

intermediate values of β due to the strategic complementarity motive discussed earlier.

6.3 Mixed Strategy Equilibria

In Section 3, we characterized the set of market equilibria in pure strategies. In this section,

we characterize the mixed strategy equilibria.

In order to simplify the characterization of the set of mixed strategy equilibria, we focus

on equilibria that are robust to small perturbations to β (the ESG preference parameter).

We formalizae this in Definition 2.

Definition 2. [Robust Equilibrium] Let σ1 and σ2 be some probability density functions

over the set of rating technologies. We say mixed strategies σ1 and σ2 constitute a “robust

equilibrium” if for i = 1, 2, σi is a best response to σ−i in a neighborhood of β.
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Intuitively, this refinement ensures that the raters’ choices of rating technology are robust

to some uncertainty about the investor’s preference parameter. One can verify that the pure

strategy equilibria characterized in Proposition 1 are robust, except at the threshold values

(i.e., β∗( 9
16
), β∗(17

32
), and β∗(1

4
)). In Proposition 8, we characterize the set of equilibria in

mixed strategies.

Proposition 8. Under Assumptions 1 and 2, the only outcome in mixed strategies that is a

robust equilibrium for some values of β is that both raters randomize between λλλSPA and λλλSPB

with equal probabilities. The following provides the details:

a) If V HL ≥ 0, the outcome above is an equilibrium. More generally, this is the only mixed

strategy equilibrium outcome when not restricting to robust equilibria.

b) If V HL < 0:

b.1) When β ≥ β∗(1
3
), there is no robust equilibrium in mixed strategies. If β > β∗(1

4
),

there is no equilibrium in mixed strategies even when not restricting to robust equilibria.

b.2) When β < β∗(1
3
), the only robust equilibrium in mixed strategies is the outcome

specified above.

Proposition 8 demonstrates that both raters might mix between specialization in the

two categories when V HL > 0 or when V HL < 0 and β is below a threshold value. This

is intuitive since the pure specialization outcomes, i.e., (λλλSPA ,λλλSPB) and (λλλSPB ,λλλSPA), re-

quire coordination among the raters. In the absence of this coordination, the raters might

randomly specialize in a category. Hence, with a positive probability, this leads to the inef-

ficient outcome that both raters specialize in the same category. For this outcome to be an

equilibrium, the raters should randomize with equal probabilities, as otherwise, the raters

would specialize in the category that the other rater specializes in with a lower probability.

Proposition 8 further states that this randomization between λλλSPA and λλλSPB is the only

possible robust equilibrium in mixed strategies.

However, this outcome is not an equilibrium when V HL < 0 and β is large. This is

because as the stand-alone value of specialization decreases with β, so does Rater 2’s payoff

from specialization. In particular, when β > β∗(1
3
) and Rater 1 randomizes between special-

ization in the two categories with equal probabilities, Rater 2 prefers to generalize instead

of randomizing between λλλSPA and λλλSPB .

Furthermore, Part (b.1) of Proposition 8 verifies the robustness of the key insight that

when β is sufficiently large, the unique equilibrium is generalization by both raters. The

intuition is that, in this case, generalization is the unique best response of Rater 2 to any

choice of rating technology by Rater 1. This arises from the fact that generalization achieves
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the highest stand-alone value when β ≥ β∗(1
4
), and, according to Lemma 1, Rater 2’s payoff

is capped by the stand-alone value of its ratings. Because Rater 1’s unique best response

to generalization is also generalization, the generalization outcome is the only equilibrium

outcome.

Overall, we see that allowing for mixed strategies does not affect the key insight developed

by the baseline model: The raters generalize when the investor assigns a large weight to ESG

performance, and may specialize otherwise.

6.4 Divergence in Measurement Methodologies

As discussed in Section 4, Berg et al. (2022) attribute 38% of ratings disagreement to raters

examining different subcategories, which is along the lines of what we call specialization.

They further attribute 56% of disagreement to differences in measurement. This observation

indicates that raters might use different methodologies for subcategories that they have in

common. In this section, we analyze the raters’ measurement decisions when there are

multiple methods available to measure performance in a single subcategory. We show that

the key insights from the baseline model are applicable to this analysis.

Specifically, we depart from the baseline model by assuming that the investor is only

concerned about the project’s performance in a single subcategory, say subcategory X. X

could represent a subcategory of the major categories E, S, or G. However, there are two

noisy variables, ma and mb, that can be used to measure the performance. For instance,

to measure a firm’s performance in providing occupational safety, one can examine the

number of employee injuries, as well as the number or frequency of safety training sessions.

Both measures inform investors about the firm’s commitment to creating a safe working

environment for its employees. Nonetheless, neither of these measures is perfect.

The performance in subcategory X is binary and represented by wX ∈ {H,L}, where
ηX ∈ (0, 1) is the probability of wX = H. The investor’s net payoff if she invests is ∆ + βu,

where:

u =

ΩH > 0 wX = H

ΩL < 0 wX = L.
(22)

As in our main model, we assume that no investment takes place in the absence of ESG

information. Thus, we modify Assumption 1 as follows:

Assumption 1′.

∆+ βE[u] = ηX(∆ + βΩH) + (1− ηX)(∆ + βΩL) < 0. (23)
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Measurement variables ma and mb are independent and have the following conditional

distributions:

Prob(mi = H|wX = H) = zH , P rob(mi = H|wX = L) = 1− zL, i = a, b, (24)

where zH , zL ∈ (0, 1) capture the precision of these variables. We assume that the measure-

ment variables are precise enough that the investor would invest if both variables indicate

high performance:

∆ + βE[u|mA = mB = H] > 0. (25)

Furthermore, as in Assumption 2, we rule out the possibility that the investor becomes

indifferent between investing and not investing when the two measures contradict:

Assumption 2′′.

∆+ βE[u|mA = H,mB = L] ̸= 0. (26)

Similar to the baseline model, the raters design rating technologies (λλλ1,λλλ2) that map the

performance measures into ratings saj and sbj, j = 1, 2:

P (sij = h|mi = H) = λi
j, P (sij = h|mi = L) = 0, j = 1, 2, i = a, b. (27)

Note that the raters can either perfectly measure the project’s performance in one of the

two methods, or generate some noisy ratings using both measurement methods. The raters

are subject to the same technological constraint (equation 8) and follow the same fee-setting

mechanism as in the baseline model. In Proposition 9, we describe the raters’ equilibrium

behavior:

Proposition 9. Under Assumptions 1′ and 2′′, the only possible pure strategy equilibrium

outcomes are that the raters specialize in different measurement methods, or generalize across

the two methods. Specifically, define:

PHH
m = ηXz

2
H + (1− ηX)(1− zL)

2,

PHL
m = ηXzH(1− zH) + (1− ηX)zL(1− zL),

V HH
m = E[u|mA = mB = H] =

ηXz
2
Hm

H + (1− ηX)(1− zL)
2mL

ηXz2H + (1− ηX)(1− zL)2
, and

V HL
m = E[u|mA = H,mB = L] =

ηXzH(1− zH)m
H + (1− ηX)zL(1− zL)m

L

ηXzH(1− zH) + (1− ηX)zL(1− zL)
.

(28)

a) If V HL
m ≥ 0, then the unique equilibrium is that the raters specialize in different measure-
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ment methods.

b) If V HL
m < 0, define:

β∗
m(λ) = sup{β| P

HL
m (∆ + βV HL

m )

PHH
m (∆ + βV HH

m )
≥ λ− 1}. (29)

b.1) If β∗
m(

1
4
) is finite and β > β∗

m(
1
4
), then the unique equilibrium is generalization by

both raters.

b.2) If β ≤ β∗
m(

1
4
), specialization in different measurement methods is an equilibrium.

If β ∈ [β∗
m(

9
16
), β∗

m(
17
32
)] ∪ {β∗

m(
1
4
)}, then generalization in different measurement methods is

also an equilibrium.

Proposition 9 states that both specializing in different measurement methods and general-

izing in those are possible equilibria, depending on the parameter values. The specialization

outcome is the unique equilibrium outcome when high performance in a single measurement

variable is sufficient to indicate positive ESG performance in the corresponding subcategory

(V HL
m ≥ 0). However, when β is sufficiently large and V HL

m is sufficiently small, which hap-

pens when the measurements have a large false-positive error (small zL), the raters generalize

across the two methods.

With a logic similar to Proposition 2, one can show that the combined value is maximized

when the raters specialize in different measurement methods. Therefore, the discrepancy

documented in the measurements across raters is efficient to the extent that it captures

specialization in independent methods of measurement.

7 Conclusion

ESG investing has become a key focus in financial markets. Investors need information on

ESG factors in order to allocate their capital. ESG raters provide this information, but

not without controversy. The media, regulators, and academics have attacked them for

providing inaccurate ratings. We construct a model of the market for ESG ratings. In

the model, raters provide information about multiple (unrelated) categories and set fees.

Specializing in different categories can maximize surplus. However, the competitive outcome

may be for raters to generalize among categories. We also demonstrate that specialization

maximizes disagreement among raters, and, hence, disagreement may be a poor measure

of welfare. Greenwashing by firms may push the raters towards generalizing. It would be

interesting to expand the model to allow for dynamics and reputation, and examine the role

of regulation.
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Appendix A: Proofs of Lemmas and Propositions

A.1 Proof of Lemma 1 (Equilibrium fees)

The following definition is helpful for analyzing the raters’ fee-setting behavior.

Definition A.1. The ratings generated by rating technologies λλλ1 = (λA
1 , λ

B
1 ) and λλλ2 =

(λA
2 , λ

B
2 ) are called “complements” if

V (λλλ1,λλλ2)− V (λλλ1,OOO) ≥ V (OOO,λλλ2)− V (OOO,OOO). (A.1)

Otherwise, we call the rating technologies “substitutes.”

First, we consider the case that the rating technologies are complements. Suppose Rater

1 sets ϕ1 above the stand-alone value of λλλ1, i.e., ϕ1 > V (λλλ1,OOO) − V (OOO,OOO). Therefore, the

investor prefers purchasing no ratings to purchasing only Rater 1’s ratings. To successfully

sell its ratings, Rater 2 should set ϕ2 such that the investor purchases its ratings with Rater 1’s

ratings, i.e., ϕ2 = V (λλλ1,λλλ2)−V (OOO,OOO)−ϕ1, or without Rater 1’s ratings, i.e., ϕ2 = V (OOO,λλλ2)−
V (OOO,OOO). Thus, Rater 2 sets ϕ2 = max{V (λλλ1,λλλ2)−V (OOO,OOO)−ϕ1, V (OOO,λλλ2)−V (OOO,OOO)}. Both
raters’ ratings are purchased when the first element is larger or when the elements are equal

(according to the tie-breaking rule). When the second element is strictly larger, only Rater

2’s ratings are purchased. Therefore, the maximum fee that Rater 1 can collect is:

ϕ1 = {V (λλλ1,λλλ2)− V (OOO,OOO)} − {V (OOO,λλλ2)− V (OOO,OOO)}

= V (λλλ1,λλλ2)− V (OOO,λλλ2) ≥ V (λλλ1,OOO)− V (OOO,OOO).
(A.2)

As a result, ϕ2 = V (OOO,λλλ2) − V (OOO,OOO), and both sets of ratings are purchased. Further-

more, it is suboptimal for Rater 1 to set ϕ1 below V (λλλ1,OOO) − V (OOO,OOO). It confirms the

equilibrium fees for the case that the rating technologies are complements.

Now, we analyze the case that the rating technologies are substitutes. That is, according

to Definition A.1, the following inequality holds:

V (λλλ1,λλλ2)− V (OOO,λλλ2) < V (λλλ1,OOO)− V (OOO,OOO). (A.3)

Similar to the previous case, suppose Rater 1 moves first and sets ϕ1. There are three

cases depending on the value of ϕ1:

• If ϕ1 ≥ V (λλλ1,OOO) − V (OOO,OOO), then the fee is larger than the stand-alone value of λλλ1
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and its marginal value given Rater 2’s ratings. Therefore, Rater 1’s ratings are not

purchased regardless of ϕ2.

• If V (λλλ1,λλλ2) − V (OOO,λλλ2) < ϕ1 < V (λλλ1,OOO) − V (OOO,OOO), then Rater 1’s fee is less than

the stand-alone value of its ratings and more than their marginal value given Rater

2’s ratings. Therefore, the ratings of both raters are not purchased together. To sell

its ratings, Rater 2 sets ϕ2 slightly below the value that makes the investor indifferent

between λλλ1 and λλλ2, i.e., ϕ2 = V (OOO,λλλ2) + ϕ1 − V (λλλ1,OOO) − ε (for a sufficiently small

value of ε > 0). With this choice, only λλλ2 is purchased, and Rater 1’s payoff is zero.

• If ϕ1 ≤ V (λλλ1,λλλ2) − V (OOO,λλλ2), then ϕ1 is less than or equal to the marginal value of

Rater 1’s ratings given λλλ2. Rater 2 sets its fee equal to the marginal value of λλλ2 given

λλλ1, i.e., ϕ2 = V (λλλ1,λλλ2)− V (λλλ1,OOO), and both sets of ratings are purchased.

Therefore, the maximum fee that Rater 1 can set to successfully sell its ratings is ϕ1 =

V (λλλ1,λλλ2) − V (OOO,λλλ2). In this case, ϕ2 = V (λλλ1,λλλ2) − V (λλλ1,OOO), and both sets of ratings are

purchased. We see that in both possibilities, Rater 1 sets ϕ1 equal to the marginal value of

its ratings, i.e., V (λλλ1,λλλ2)−V (OOO,λλλ2). Rater 2’s equilibrium fee is either V (OOO,λλλ2)−V (OOO,OOO),

or V (λλλ1,λλλ2)− V (λλλ1,OOO), whichever is smaller.

A.2 Proof of Proposition 1 (Characterization of market equilibria)

To prove the proposition, we show that rating technologies λλλ1 and λλλ2 can constitute an

equilibrium only if the raters specialize in different categories (i.e., (λλλ1,λλλ2) ∈ {(λλλSPA ,λλλSPB),

(λλλSPB ,λλλSPA)}), or both raters generalize (i.e., (λλλ1,λλλ2) = (λλλGN ,λλλGN)). After demonstrating

that these outcomes are the only possible forms of equilibria in Steps 1 and 2 , we complete

the characterization in Step 3.

First, we prove two helpful Lemmas. Lemma A.1 simplifies the value function. Lemma

A.2 provides a sufficient condition for a pair to form an equilibrium.

Lemma A.1. Let λ∗ be the solution to the following linear equation:

η(1− λ∗)(∆ + βV HH) + (1− η)(∆ + βV HL) = 0. (A.4)

Then, the combined value is:

V (λλλ1,λλλ2) =
{
λAλB + λA[λ∗ − λB]+ + λB[λ∗ − λA]+

}
η2(∆ + βV HH) (A.5)

,where [x]+ = max{x, 0}, and
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λi = λi
1 + λi

2 − λi
1λ

i
2, i = A,B. (A.6)

Proof. Note that according to Assumption 1, the investment does not take place when all

ratings are low, i.e., (sA, sB) = (l, l). Therefore, we can expand equation 9 as below

V (λλλ1,λλλ2) = (∆ + βV HH)η2λAλB

+
[(∆ + βV HH)η2λA(1− λB) + (∆ + βV HL)η(1− η)λA]+

P (sA = h, sB = l)
P (sA = h, sB = l)

+
[(∆ + βV HH)η2(1− λA)λB + (∆ + βV HL)(1− η)ηλB]+

P (sA = l, sB = h)
P (sA = l, sB = h)

= η2(∆ + βV HH)λAλB + ηλA[η(1− λB)(∆ + βV HH) + (1− η)(∆ + βV HL)]+

+ηλB[η(1− λA)(∆ + βV HH) + (1− η)(∆ + βV HL)]+.

(A.7)

By employing (A.4), we can rewrite (A.7) as below:

V (λλλ1,λλλ2) = η2(∆ + βV HH)λAλB + ηλA[η(∆ + βV HH)(λ∗ − λB)]+ + ηλB[η(∆ + βV HH)(λ∗ − λA)]+

=
{
λAλB + λA[λ∗ − λB]+ + λB[λ∗ − λA]+

}
η2(∆ + βV HH).

(A.8)

Lemma A.1 states that the value function is proportionate to v(λλλ1,λλλ2;λ
∗), where

v(λλλ1,λλλ2;λ
∗) = λAλB + λA[λ∗ − λB]+ + λB[λ∗ − λA]+

= max{λAλB, λAλ∗, λBλ∗, (λA + λB)λ∗ − λAλB}.
(A.9)

Therefore, according to Lemma 1, we can write the fees as below:

ϕj(λλλ1,λλλ2) = η2(∆ + βV HH)ϕ̂j(λλλ1,λλλ2), j = 1, 2

ϕ̂1(λλλ1,λλλ2) = v(λλλ1,λλλ2;λ
∗)− v(OOO,λλλ2;λ

∗)

ϕ̂2(λλλ1,λλλ2) = min{v(λλλ1,λλλ2;λ
∗)− v(OOO,λλλ2;λ

∗), v(OOO,λλλ2;λ
∗)− v(OOO,OOO;λ∗)}.

(A.10)

Therefore, a key insight we obtain from Lemma A.1 is that λ∗ is a sufficient variable to analyze

the raters’ best response behavior. Note that λ∗ is bigger than one when ∆ + βV HL > 0,

and it is less than one otherwise. Moreover, note that the mapping between λ∗ and β is the

inverse of β∗(λ), introduced in equation 12. That is, β = β∗(λ∗). Based on this observation,

we characterize the equilibria in terms of λ∗, and use the mapping to describe them in terms

of β.
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Lemma A.2. For rating technologies λλλ1,λλλ2, and λ̃λλ2, suppose the following inequalities hold:

V (λλλ1, λ̃λλ2) > V (λλλ1,λλλ2), V (OOO, λ̃λλ2) > V (OOO,λλλ2). (A.11)

Then, ϕ2(λλλ1, λ̃λλ2) > ϕ2(λλλ1,λλλ2). As a result, (λλλ1,λλλ2) is not an equilibrium.

Proof. The inequality below shows that Rater 2’s payoff is larger with λ̃λλ2 than with λλλ2, given

λλλ1. Therefore, (λλλ1,λλλ2) cannot be an equilibrium:

ϕ2(λλλ1, λ̃̃λ̃λ2) = min{V (λλλ1, λ̃λλ2)− V (λλλ1,OOO), V (OOO, λ̃λλ2)− V (OOO,OOO)}

> min{V (λλλ1,λλλ2)− V (λλλ1,OOO), V (OOO,λλλ2)− V (OOO,OOO)} = ϕ2(λλλ1,λλλ2).
(A.12)

An implication of Lemma A.2 is that to prove λλλ2 is a best response to λλλ1 for Rater 2, it

is sufficient to show that λλλ2 has the largest stand-alone value and combined value given λλλ1.

Moreover, we can also employ Lemma A.2 to prove that the technological constraint should

bind for both raters. Corollary A.1 formalizes this point.

Corollary A.1. If pair (λλλ1,λλλ2) forms an equilibrium, then the technological constraint 8

binds for both raters, i.e., λA
j + λB

j = 1, j = 1, 2.

Proof. Consider the contrary that the constraint does not bind for rater j ∈ {1, 2}. That is,
λA
j + λB

j < 1. λλλj should have a positive marginal value, as otherwise, this would imply that

λλλj earns a zero payoff for rater j (See Lemma 1). λλλj cannot be the best response since it is

straightforward to show that when ∆ + βV HL ̸= 0 (Assumption 2), there is an action that

obtains a positive payoff for any choice of the other rater.

Since λλλj has a positive marginal value, one can show that either ∂v(λλλ1,λλλ2)

∂λA
j

> 0 or ∂v(λλλ1,λλλ2)

∂λB
j

>

0. Moreover, if the rater increases the precision of its ratings in both categories, then the

stand-alone value strictly increases. Therefore, rater j can increase both the marginal value

and stand-alone value of its rating technology by switching to λλλ′
j = (λA

j
′
, λB

j
′
), where λi

j
′
> λi

j,

i = A,B. According to Lemma A.2, λλλ′
j obtains a higher payoff, which is a contradiction.

Therefore, the technological constraint should be binding for both raters in any equilibrium.

With this result, it is without loss to focus on pairs that the technological constraint 8

holds with equality for both raters. Now, we solve for the market equilibria in three steps.
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Step 1: Possible equilibria when λλλ1 and λλλ2 are substitutes

Now, we examine which pairs of (λλλ1,λλλ2) can form an equilibrium if the rating technologies

are substitutes. In this case, both raters charge their marginal contribution as their fee,

according to Lemma 1. Particularly, we show that the only possible equilibrium outcomes

are specialization in different categories and generalization by both raters. We divide cases

based on the value of λ∗, as defined in equation A.4.

• Case 1: λ∗ ≥ max{λA, λB}

Suppose Rater 2 does not specialize. We show that by specialization, the rater can

increase both the stand-alone value and the marginal value of its ratings, which demon-

strates the contradiction, according to Lemma A.2.

According to Lemma A.1, we have:

v(OOO,λλλ2) = λA
2 λ

B
2 + λA

2 [λ
∗ − λB

2 ]
+ + λB

2 [λ
∗ − λA

2 ]
+ = λ∗ − λA

2 λ
B
2

v(λλλ1,λλλ2) = λAλB + λA[λ∗ − λB]+ + λB[λ∗ − λA]+ = (λA + λB)λ∗ − λAλB.
(A.13)

In the first line of (A.13), we use the fact that λi
2 ≤ λi, i = A,B. Since λA

2 , λ
B
2 > 0,

the stand-alone value of λλλ2 is less than that of specialization:

v(OOO,λλλSPB) = v(OOO,λλλSPA) = λ∗. (A.14)

Moreover, it is straightforward to show that (λA + λB)λ∗ − λAλB is convex in λA
2 .

Therefore, the expression obtains its maximum value in one of the extreme values, i.e.,

λA
2 = 0, 1. Suppose the maximum value is obtained at λA

2 = 1, implying v(λλλ1,λλλ
SPA) >

v(λλλ1,λλλ2).

Therefore, according to Lemma A.2, Rater 2 can increase its payoff by switching to

λλλSPA . The argument for the case that Rater 1 does not specialize is similar. As a

result, the only possible equilibrium outcome in this case is specialization in different

categories.

• Case 2: max{λA, λB} > λ∗ ≥ min{λA, λB}

Note that λ∗ should be less than one since λA and λB are capped at one. Without

loss, assume λA ≥ λB. By applying equation A.9, we find v(λλλ1,λλλ2) = λAλ∗. If

no rater specializes, Rater 1 can increase the combined value, and consequently, its
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marginal value, by specializing in category A. If Rater 1 specializes in category A, then

v(λλλSPA ,λλλ2) = λ∗ since λB
2 ≤ λB < λ∗, implying ϕ2 = 0. Therefore, Rater 2 can increase

its payoff by specializing in category B since it obtains a strictly positive payoff. With

a similar argument, we can rule out the possibility that only Rater 2 specializes.

• Case 3: min{λA, λB} > λ∗

Note that according to Definition A.1, if (λλλ1,λλλ2) are substitutes, the rating technolo-

gies are substitutes in an open neighborhood of the pair. Therefore, the first-order

conditions are necessary for a pair to constitute an equilibrium.

Moreover, in this case, Lemma A.1 implies that v(λλλ1,λλλ2) = λAλB. Without loss,

assume λA
2 ≥ λB

2 . The first-order conditions imply:

∂v(λλλ1,λλλ2)

∂λA
1

≤ 0 ⇒ λA
2 − λB

2 ≥ (λB
1 − λA

1 )(1− λA
2 )(1− λB

2 ),

∂v(λλλ1,λλλ2)

∂λA
2

≥ 0 ⇒ λB
1 − λA

1 ≥ (λA
2 − λB

2 )(1− λA
1 )(1− λB

1 ),

(A.15)

where the equality holds for the first (second) inequality when the first (second) rater

does not specialize. It is straightforward to show that the only pairs that can satisfy

these conditions are specialization in different categories and generalization by both

raters.

Step 2: Possible equilibria when λλλ1 and λλλ2 are complements

The goal of this step is to demonstrate when λλλ1 and λλλ2 are complements, then they cannot

constitute an equilibrium unless the raters specialize in different categories, or they both

generalize.

First, we prove that for two rating technologies to be complements, we need to have

λA, λB > λ∗. To this end, we rule out the other possibilities:

• λ∗ ≥ λA, λB: In this case, λi
j ≤ λ∗, for i = A,B and j = 1, 2. Therefore, according to

equation A.9, we have:

v(λλλ1,OOO) = λ∗ − λA
1 λ

B
1 , v(OOO,λλλ2) = λ∗ − λA

2 λ
B
2

v(λλλ1,λλλ2) = (λA + λB)λ∗ − λAλB = (2− λA
1 λ

A
2 − λB

1 λ
B
2 )λ

∗ − λAλB.
(A.16)
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To prove that λλλ1 and λλλ2 are substitutes, we need to show:17

v(λλλ1,OOO) + v(OOO,λλλ2) > v(λλλ1,λλλ2)

⇐⇒ 2λ∗ − λA
1 λ

B
1 − λA

2 λ
B
2 > (2− λA

1 λ
A
2 − λB

1 λ
B
2 )λ

∗ − λAλB

⇐⇒ λAλB − λA
1 λ

B
1 − λA

2 λ
B
2 > −λ∗(λA

1 λ
A
2 + λB

1 λ
B
2 ).

(A.17)

Since λ∗(λA
1 λ

A
2 + λB

1 λ
B
2 ) is non-negative, we only need to show that λAλB − λA

1 λ
B
1 −

λA
2 λ

B
2 > 0, which is demonstrated by the inequalities below:

λAλB − λA
1 λ

B
1 − λA

2 λ
B
2 ≥ 0

⇐⇒ {1− λA − λB + λAλB} − {1− λA − λB + λA
1 λ

B
1 + λA

2 λ
B
2 } ≥ 0

⇐⇒ (1− λA
1 )(1− λB

1 )(1− λA
2 )(1− λB

2 ) + 1− (λA
1 + λB

2 )(2− λA
1 − λB

2 ) ≥ 0.

(A.18)

The inequality in (A.17) is strict since in (A.18), equality holds only when the raters

specialize in the same category, which results in λA
1 λ

A
2 +λB

1 λ
B
2 = 1 > 0. It implies that

any pair of rating technologies with λ∗ ≥ λA, λB are substitutes.

• max{λA, λB} > λ∗ ≥ min{λA, λB}: Without loss, assume λA > λB. It implies that

λB
1 , λ

B
2 < λ∗. Therefore:

v(λλλ1,λλλ2) = λAλ∗ ≤ λA
1 λ

∗ + λA
2 λ

∗ ≤ v(λλλ1,OOO) + v(OOO,λλλ2). (A.19)

The first inequality is obtained from the definition of λA in (7). The second inequality

is resulted from equation A.9. In (A.19), equality is never obtained. The reason is that

equality is obtained in the first inequality only when either λA
1 or λA

2 is zero, which

implies λB ≥ max{λB
1 , λ

B
2 } = 1. It is impossible since 1 ≥ λA > λ∗.

Therefore, λA, λB > λ∗ if λλλ1 and λλλ2 are complements, implying that v(λλλ1,λλλ2) = λAλB.

Similar to the argument in Case 3 at Step 1, at least one rater can increase the combined

value if the outcome is not specialization in different categories or generalization by both

raters. Rater 1 charges its marginal contribution; thus λλλ1 maximizes v(λλλ1,λλλ2) if (λλλ1,λλλ2) is

an equilibrium. Therefore, Rater 2 has to charge the stand-alone value of λλλ2. Now, we divide

the cases based on whether min{λA
2 , λ

B
2 } is less than λ∗.

• Case 1: λ∗ ≥ min{λA
2 , λ

B
2 }

Without loss, suppose λA
2 ≥ λB

2 . As shown in (A.15), according to the first-order

conditions, there are two possibilities: Either Rater 1 specializes in category B, or

17Note that v(OOO,OOO) = 0.
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sets λλλ1 such that λB
1 − λA

1 =
λA
2 −λB

2

(1−λA
2 )(1−λB

2 )
≥ λA

2 − λB
2 . If Rater 1 specializes, Rater

2 can increase the combined value and the stand-alone value of its rating technology

by specializing in category A, which means that the specialization would obtain a

higher payoff, according to Lemma A.2. If Rater 1 generalizes, Rater 2 should also

be generalizing, according to the first-order condition. We discuss the generalization

outcome in Step 3.

If Rater 1 neither specializes nor generalizes, Rater 2 can increase its payoff by spe-

cializing more, namely by increasing λA
2 :

λB
1 − λA

1 =
λA
2 − λB

2

(1− λA
2 )(1− λB

2 )
> λA

2 − λB
2 ⇒ λB

1 > λA
2

⇒ ∂v

∂λA
2

=
∂λAλB

∂λA
2

= (1− λA
1 )λ

B − (1− λB
1 )λ

A

= λB
1︸︷︷︸

1−λA
1

(λB
1 + λB

2 λ
A
1︸ ︷︷ ︸

λB
2 −λB

1 λB
2

)− λA
1︸︷︷︸

1−λB
1

(λA
2 + λB

2 λ
A
1︸ ︷︷ ︸

λA
1 −λA

1 λA
2

) > 0

∂v(OOO,λλλ2)

∂λA
2

=
∂max{λA

2 λ
∗, λ∗ − λA

2 λ
B
2 }

∂λA
2

> 0.

(A.20)

Therefore, according to Lemma A.2, λ2 cannot be the best response to λ1.

• Case 2: min{λA
2 , λ

B
2 } > λ∗

Note that λ∗ should be less than 1
2
, implying that v(OOO,λλλGN) = 1

4
. If Rater 2 generalizes,

Rater 1’s best response is also to generalize. Suppose λλλ2 = (λA
2 , λ

B
2 ) ̸= (1

2
, 1
2
). If λλλ1 and

λGN are complements, then Rater 2 can increase its payoff by generalizing as 1
4
> λA

2 λ
B
2 .

If λλλ1 and λGN are substitutes, then (A.18) implies that min{λA
1 , λ

B
1 } < λ∗. Assume

λB
1 ≥ λ∗ > λA

1 . Moreover, we show λ∗ > 1
4
:

(
1

2
+ λB

1 − 1

2
λB
1 )(

1

2
+ λA

1 − 1

2
λA
1 ) <

1

4
+ λB

1 λ
∗

⇒ λB
1 < 1 + λB

1 − λB
1

2
< 4λB

1 λ
∗ ⇒ 1

4
< λ∗.

(A.21)

Note that

ϕ̂2(λλλ1,λλλ
SPA) = min{λ∗, λB

1 (1− λ∗)}. (A.22)

Since ϕ̂2(λλλ1,λλλ2) = v(OOO,λλλ2) <
1
4
, we only need to show ϕ̂2(λλλ1,λλλ

SPA) > 1
4
to demonstrate

that λλλ2 is not the best response. It can be shown by noting that λ∗ ∈ (1
4
, 1
2
) and λB

1 ≥ 1
2
,

implying λB
1 (1− λ∗) > 1

4
.
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Step 3: Completing the characterization of the equilibria

Thus far, we have found that the possible equilibrium outcomes, for any value of λ∗, are:

(λλλSPA ,λλλSPB), (λλλSPB ,λλλSPA), (λλλGN ,λλλGN). (A.23)

We just need to examine which one of these outcomes forms an equilibrium for each value

of λ∗.

• Case 1: λ∗ > 9
16

This case covers Part a of the Proposition since λ∗ > 1 when V HL ≥ 0, as well as Part

b.2 when β ≤ β∗( 9
16
) and V HL < 0.

We first show that (λλλGN ,λλλGN) cannot be an equilibrium in this case. To see this, we

compare Rater 1’s payoff from generalization and specialization in response to general-

ization by Rater 2. According to Lemma 1, Rater 1 always obtains the marginal value

of its ratings, i.e., ϕ1 = V (λλλ1,λλλ2)− V (OOO,λλλ2). Therefore, λλλ1 should maximize the com-

bined value given λλλ2. The inequalities below show that v(λλλSPA ,λλλGN) > v(λλλGN ,λλλGN)

when λ∗ > 9
16
, which implies that the generalization outcome cannot be an equilibrium:

λ∗ ≥ 1 : v(λλλSPA ,λλλGN) =
3

2
λ∗ − 1

2
, v(λλλGN ,λλλGN) =

3

2
λ∗ − 9

16

λ∗ ∈ (
3

4
, 1) : v(λλλSPA ,λλλGN) = λ∗, v(λλλGN ,λλλGN) =

3

2
λ∗ − 9

16

λ∗ ∈ (
9

16
,
3

4
) : v(λλλSPA ,λλλGN) = λ∗, v(λλλGN ,λλλGN) =

9

16

⇒ v(λλλSPA ,λλλGN) > v(λλλGN ,λλλGN) ⇒ V (λλλSPA ,λλλGN) > V (λλλGN ,λλλGN).

(A.24)

In the inequality above, we use the fact that the value function is proportional to v(·, ·),
specified in (A.9).

It is straightforward to show that any rating technology is substitute with λλλSPA and

λλλSPB when λ∗ > 9
16
. Therefore, both raters charge their marginal contribution as their

fees, according to Lemma 1. Note that maximizing the marginal value for a rater

is equivalent to maximizing the combined value. In fact, specialization in different

categories achieves the highest combined value, as the project’s type would be per-

fectly revealed to the investor (we formally demonstrate this point in Proposition 2).

Therefore, specialization in different categories is the only equilibrium outcome in pure

strategies when λ∗ > 9
16
.
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• Case 2: λ∗ ∈ [17
32
, 9
16
]

This case corresponds to Part b.2 in the proposition when β ∈ [β∗( 9
16
), β∗(17

32
)] and

V HL < 0.

In this case, one can show that any two rating technologies are substitutes.18 Therefore,

both raters maximize the combined value of the ratings. We use this fact to prove

that the best response to specialization (generalization) is specialization in the other

category (generalization) for both raters.

In response to specialization, the raters’ best response is to specialize in the other

category since specialization in different categories achieves the highest combined value.

Next, we show Rater 1’s best response to generalization is generalization (the same logic

applies to Rater 2). Suppose λA
1 ≥ λB

1 , then λA = 1
2
+ 1

2
λA
1 ≥ 3

4
> λ∗. We consider

two possibilities for λB. If λB ≤ λ∗, then v(λλλ1,λλλ2) = v(λλλ1,λλλ
GN) = λAλ∗ ≤ λ∗ ≤ 9

16
=

v(λλλGN ,λλλGN). If λB > λ∗, analyzing the first-order conditions reveals that λAλB is

maximized at λA
1 = λB

1 = 1
2
(Note that λAλB is concave in λA

1 ).

Case 3: λ∗ ∈ (1
4
, 17
32
)

Similar to the previous case, one can show that Rater 1’s best response to specialization

is specialization in the other category. However, Rater 2’s fee can be the stand-alone

value or the marginal value its ratings depending on λ∗. It is straightforward to show

that λλλSPA and λλλSPB are substitutes when λ∗ > 1
2
and complements when λ∗ ≤ 1

2
. When

the two specialized rating technologies are substitutes, similar to Rater 1’s case, we can

verify that in response to specialization, specialization in the other category is Rater

2’s best response. When the two specialized technologies are complements, then Rater

2 obtains the stand-alone value of its ratings, which is λ∗. When λ∗ ≥ 1
4
, specialization

has the largest stand-alone value. Therefore, the optimality of specialization in this

case can be verified as below:

ϕ2(λλλ
SPA ,λλλ2) = min{V (λλλSPA ,λλλ2)− V (λλλSPA ,OOO), V (OOO,λλλ2)} ≤ V (OOO,λλλ2)

≤ V (OOO,λλλSPB) = ϕ2(λλλ
SPA ,λλλSPB).

(A.25)

One can observe that λλλGN is complement with itself when λ∗ < 17
32
. We use this fact

to demonstrate that Rater 2’s best response to generalization is not generalization.

Consider the following possibilities:

18The only exception is (λλλGN ,λλλGN ) that are at the borderline of being complements when λ∗ = 17
32 , while

being substitutes when λ∗ > 17
32 .
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– λ∗ ∈ (1
2
, 17
32
): The payoff of Rater 2 is the stand-alone value of its ratings in a

sufficiently small neighborhood of λλλGN
2 since 2V (OOO,λλλGN) < V (λλλGN ,λλλGN). In this

neighborhood v(OOO,λλλ2) = λ∗ − λA
2 λ

B
2 . Therefore, generalization does not locally

optimize Rater 2’s payoff, implying that the generalization outcome cannot be an

equilibrium.

– λ∗ ∈ (1
4
, 1
2
]: In this case, ϕ̂2(λλλ

GN ,λλλGN) = 1
4
since the pair (λλλGN ,λλλGN) are comple-

ments. Now, define λA
2 = 1

4λ∗ + ε < 1, for a sufficiently small value of ε > 0. Note

that:

v(OOO,λλλ2) ≥ λA
2 λ

∗ >
1

4

v(λλλGN ,λλλ2)− v(λλλGN ,OOO) = (
1

2
+

1

2
λA
2 )(

1

2
+

1

2
λB
2 )−

1

4
=

1

4
+

1

4
λA
2 λ

B
2 >

1

4
.
(A.26)

Therefore, by applying Lemma A.2, we find that ϕ2(λλλ
GN ,λλλ2) > ϕ2(λλλ

GN ,λλλGN).

• Case 4: λ∗ < 1
4

This case corresponds to Part b.1 of the proposition. In this case, one can show that

any rating technology is complement with generalization. Moreover, λλλSPA and λλλSPB

are complements. Therefore,

ϕ̂2(λλλ
SPA ,λλλSPB) = λ∗ <

1

4
= ϕ̂2(λλλ

SPA ,λλλGN). (A.27)

As such, specialization in different categories is not an equilibrium. Generalization by

both raters is an equilibrium since generalization has the highest stand-alone value,

thus it maximizes Rater 2’s payoff. Moreover, with a similar argument to Case 2, one

can show that Rater 1’s best response to generalization is generalization.

A.3 Proof of Proposition 2 (Value-maximizing ratings)

We show that the value function V (λλλ1,λλλ2) attains its maximum only when

(λλλ1,λλλ2) ∈ {(λλλSPA ,λλλSPB), (λλλSPB ,λλλSPA)}. (A.28)

Note that specialization in different categories achieves the highest possible investment value

since the project’s type is fully revealed, so the investment always takes place efficiently. We

show that no other pair of rating technologies can achieve the investment value created by

the specialization outcomes, i.e., V (λλλSPA ,λλλSPB).
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For this purpose, we use equation A.9. Recall that equation A.9 defines function v(λλλ1,λλλ2)

that is proportionate to the value function V (λλλ1,λλλ2). We divide the cases into two:

∆ + βV HL > 0: In this case, λ∗ > 1, where λ∗ is defined in equation A.4. For the

specialization outcome, we find the following from equation A.9:

v(λλλSPA ,λλλSPB) = 2λ∗ − 1. (A.29)

Note that all three elements in the right-hand side of (A.9) are positive or zero for any pair

of (λλλ1,λλλ2). Therefore:

v(λλλ1,λλλ2) = (λA + λB)λ∗ − λAλB. (A.30)

Note that λA and λB (defined in (7)) are in [0, 1]. Therefore,

(1− λA)(1− λB) ≥ 0

⇒ 1− λAλB ≤ 2− λA − λB ≤ (2− λA − λB)λ∗

⇒ v(λλλ1,λλλ2) = (λA + λB)λ∗ − λAλB ≤ 2λ∗ − 1 = v(λλλSPA ,λλλSPB).

(A.31)

Equality holds only when λA = λB = 1, corresponding to the specialization outcome.

∆ + βV HL < 0: In this case, only projects with type (H,H) receive investment in the

optimal investment outcome. Note that if the second or third term in (A.7) are positive, a

project with type (H,L) or (L,H) receives investment with a positive probability, which is

inefficient. Therefore, for a value-maximizing pair, we should have V = λAλBη2(∆+βV HH).

The maximum value is obtained when λA = λB = 1, which corresponds to the specialization

outcome.

A.4 Proof of Proposition 3 (Disagreement)

When the raters specialize in different categories, they are providing information about two

independent categories. Therefore, their ratings are independent, and as a result, have a

zero correlation, i.e., Agg = 0. However, when the raters specialize in the same category,

they are perfectly revealing the project’s type in that category. Therefore, their rating has a

perfect correlation, i.e., Agg = 1. Since Agg ∈ [0, 1], we observe that these outcomes obtain

the extreme possible values of Agg.
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A.5 Proof of Proposition 4 (Market equilibrium with greenwash-

ing)

Define V HH
M and V HL

M as below:

V HH
M = E[u|wA

M = wB
M = H] =

η2V HH + 2η(1− η)αV HL + (1− η)2α2V LL

η2 + 2η(1− η)α + (1− η)2α2

V HL
M = E[u|wA

M = H,wB
M = L] =

ηV HL + (1− η)αV LL

η + (1− η)α
.

(A.32)

According to Condition 17, V HH
M > 0, implying that ∆+ βV HH

M > 0. Note that assump-

tion 1 implies that ∆ + βV HH
M converges to a negative number as α → 1. Therefore, there

exists ᾱ ∈ (0, 1) such that ∆ + βV HH
M = 0 when α = ᾱ.19 Therefore, Condition 17 implies

that α < ᾱ. It is also clear that V HL
M > V LL.

Therefore, we can use Proposition 1 for the preference parameters (V LL, V HL
M , V HH

M ) to

characterize the equilibrium outcomes. According to Proposition 1, the unique equilibrium

is generalization by both raters when β > β∗(1
4
), which corresponds to λ∗ < 1

4
. We have (See

equation A.4):

λ∗ = 1 +
(1− η)(∆ + βV HL

M )

η(∆ + βV HH
M )

. (A.34)

Note that in the neighborhood of ᾱ, V HL
M < 0. Therefore, λ∗ converges to −∞ as α goes

to ᾱ (the denominator goes to zero and the numerator converges to a negative number),

implying the presence of α∗ such that λ∗ < 1
4
when α is sufficiently close to ᾱ.

19There is a unique ᾱ = 0 for which ∆ + βV HH
M = 0 since V HH

M is decreasing in α. This can be verified
by noting that:

V HH
M = V LL +

η2(V HH − V LL) + 2η(1− η)α(V HL − V LL)

η2 + 2η(1− η)α+ (1− η)2α2

= V LL +
η2(V HH − V LL) + 2η(1− η)α(V HL − V LL)

η2 + 2η(1− η)α

η2 + 2η(1− η)α

η2 + 2η(1− η)α+ (1− η)2α2

= V LL + (V HL − V LL +
η2(V HH − V HL)

η2 + 2η(1− η)α
)(1− { (1− η)α

η + (1− η)α
}2).

(A.33)

The expressions inside the parentheses in the last line of (A.33) are decreasing in α. Therefore, V HH
M , as a

function of α, crosses zero only once.
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Online Appendix for “The Market for ESG Ratings”

Ehsan Azarmsa and Joel Shapiro

This Online Appendix contains supplementary results and proofs not included in the main

manuscript. Section OA.1 demonstrates the robustness of our results to the assumption that

the ratings have no false-positive error. Section OA.2 discusses the socially optimal com-

munication when the social planner values ESG performance differently from the investor.

Section OA.3 provides the omitted proofs from Appendix A.

OA.1 General Information Structure

In our main model, we assume that a high rating perfectly reveals the firm’s performance in

the corresponding category. In other words, there is no false-positive error in the ratings. In

this section, we relax this assumption by allowing the rating technologies to generate both

false-positive and false-negative errors in the ratings.

Specifically, each rater chooses conditional probabilities λλλj = (λAH
j , λAL

j , λBH
j , λBL

j ) ∈
[0, 1]4, where:

λiH
j = Prob(sij = h|wi = H), λiL

j = Prob(sij = l|wi = L), j = 1, 2, i = A,B, (OA.1)

and the technological constraint is:

λAH
j + λAL

j + λBH
j + λBL

j ≤ 3. (OA.2)

Note that a higher value of λiH
j or λiL

j corresponds to a more precise rating in category i for

rater j. Equation (OA.2) implies that the raters face two types of trade-offs. The first is the

trade-off between the precision of the ratings in categories A and B. The second trade-off,

which is absent in our baseline model, is between the level of false-negative and false-positive

errors in the ratings for each category. For instance, they can make their ratings more tilted

toward high ratings by equally increasing the conditional probability of a high rating for

both performance levels, i.e., λiH
j , λiL

j → λiH
j + ε, λiL

j − ε, for category i ∈ {A,B} and rater

j ∈ {1, 2}.
Without loss of generality, we impose the conditions below to ensure that a high-performing

project is not less likely to receive a high rating in a category than a low-performing one:

Prob(sij = h|wi = H) ≥ Prob(sij = h|wi = L)

⇒ λAH
j ≥ 1− λAL

j , λBH
j ≥ 1− λBL

j , j = 1, 2.
(OA.3)
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The baseline model corresponds to the case with λAL
j = λBL

j = 1, j = 1, 2, implying no

false-positive errors in the ratings. The conditions above nest the technological constraint

in the baseline model (equation (8)), implying that all feasible rating technologies in the

baseline model remain available. For instance, the specialized rating technologies correspond

to λλλSPA = (1, 1, 0, 1) and λλλSPB = (0, 1, 1, 1),20 and generalization corresponds to λλλGN =

(1
2
, 1, 1

2
, 1). To make the results comparable to those for the baseline setup, we set the right-

hand side of Constraint OA.2 to three. This choice keeps these special rating technologies

at the frontier of the rating technologies available to the raters.

Similar to the baseline model, the raters first simultaneously decide on their rating tech-

nologies, and then they sequentially set fees. The investor then decides which ratings to

purchase and, lastly, decides whether or not to invest in the project given the realized rat-

ings.

To simplify the characterization of the equilibria, we assume that the investor is so averse

to investing in (L,L)-projects that she does not invest if, given her information, there is a

positive probability that the project has low performance in both categories. This can be

thought of as assigning a very low value to V LL.

In Proposition OA.1, we describe the market equilibria in pure strategies. We once again

employ the notion of robust equilibria, which is defined in Definition 3, to refine the set of

equilibria.

Proposition OA.1. Under Assumptions 1 and 2, generalization by both raters and special-

ization in different categories are the only outcomes that can form a robust equilibrium in

pure strategies for some values of β. The following provides the characterization in detail:

a) If V HL ≥ 0, then the only robust equilibrium outcome is that the raters specialize in

different categories. This equilibrium outcome remains unique even when not restricting to

robust equilibria.

b) Suppose V HL < 0:

b.1) If β > β∗(0), the unique robust equilibrium is that both raters generalize. This

uniqueness holds even when not restricting to robust equilibria.

b.2) If β ∈ (β∗(1
2
), β∗(0)], there is no robust equilibrium.

b.3) If β ≤ β∗(1
2
), the unique robust equilibrium is that the raters specialize in different

categories.

20λλλSPA is informationally equivalent to any other rating technology that perfectly reveals the project’s
performance in category A and provides an uninformative rating for category B, i.e., λλλSP ′

A = (1, 1, x, 1− x),
for x ∈ [0, 1]. Likewise, λλλSPB is equivalent to λλλSP ′

B = (y, 1− y, 1, 1) for any y ∈ [0, 1]. For brevity, we do not
report these equivalent choices in our characterizations.
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The proof is provided in Section OA.3.6. Proposition OA.1 demonstrates that the key

insights developed in the baseline model continue to hold if we allow for a more flexible set of

rating technologies. Thus, they are robust to our earlier assumption about the information

structure.

As stated in Part (a) of Proposition OA.1, the unique equilibrium is that the raters

specialize in different categories when V HL ≥ 0. The intuition is similar to the baseline case:

In this case, a single rating ensuring a high performance in a category is enough for the

investor to invest. As a result, the stand-alone value of specialization is large enough that

specialization in different categories, the value-maximizing outcome, is an equilibrium. We

show this equilibrium outcome is unique as well.

When V HL < 0, the unique equilibrium is generalization when the investor is highly

concerned about the project’s ESG performance (i.e., high β). To understand the intuition,

consider the extreme case where V HL

V HH < 0 is very negative; that is, the loss from investing in

a (L,H)- or (H,L)-project is substantially larger than the gain from investing in a (H,H)-

project. In this case, the investor is more concerned about the false-positive error in the

ratings than the false-negative error because the former might lead to investment in projects

with low performance in a category, resulting in a very low payoff, while the latter just

inefficiently screens out some good projects, which is not as costly. As a result, the raters

have a strong incentive to eliminate the false-positive error in their ratings, reducing the

model to the baseline setup, where we find that generalization is the unique equilibrium

outcome when β exceeds a threshold value.

Furthermore, there is no robust equilibrium for some intermediate values of β, as stated

in Part (b.2) of Proposition OA.1. This is because neither specialization nor generalization

maximizes the stand-alone value of the ratings when β ∈ (β∗(1
2
), β∗(0)), given that we

consider a more flexible set of rating technologies. As a result, Rater 2 chooses a rating

technology that depends on β, implying that the equilibrium is not robust to β.

Specialization achieves the largest stand-alone value when β ≤ β∗(1
2
). With this obser-

vation, we show that the best response to specialization is to specialize in the other category

for both raters. Therefore, specialization in different categories forms an equilibrium, which

is the only robust equilibrium outcome.

OA.2 When Social Surplus Does Not Equal Investor Surplus

The investor might underweight or overweight the importance of the ESG performance com-

pared to the socially optimal benchmark. For instance, the investor might not be represen-

tative of the group benefiting or impacted by the investment, or may have incorrect beliefs
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about the value of the ESG performance. However, as it is the investor who buys the ESG

rating, this could lead to another source of inefficiency in the production of ESG information.

In this section, we analyze how the misalignment between the social benefit and investor’s

preferences impacts the optimal design of rating technologies.

For this analysis, we assume that the social planner has a different β than the investor,

which we denote by βSP . Therefore, the social value created by the investment is ∆+βSPu.

We assume that both β and βSP also satisfy Assumption 1, implying that both the investor

and the social planner need positive information about the project’s ESG performance to

approve the investment. Furthermore, to simplify our exposition, we assume that ∆ +

βSPV HL < 0, meaning that the social planner only approves projects that have a high

performance in both categories.

The goal is to find the socially optimal choices of (λλλ1,λλλ2) when the investor uses the

realized ratings to guide her investment decision. To this end, we derive the expected social

value generated by pair (λλλ1,λλλ2), which we denote by W (λλλ1,λλλ2), as below:

W (λλλ1,λλλ2) =
∑

sA,sB∈{h,l}

E[(∆ + βSPu)I{E[∆ + βu|sA, sB] ≥ 0}|sA, sB]P (sA, sB). (OA.4)

In equation (OA.4), ∆ + βSPu is the social welfare when the investment takes place.

The indicator function I{E[∆ + βu|sA, sB] ≥ 0} represents whether the investment takes

place given the ratings realized. We call a pair of rating technologies “socially optimal” if

it maximizes W (λλλ1,λλλ2), given the technological constraint in equation (8). In Proposition

OA.2, we characterize the socially optimal pairs of rating technologies.

Proposition OA.2.

a) If ∆ + βV HL < 0, then it is socially optimal that the raters specialize in different cate-

gories to implement perfect disclosure. The investment takes place iff the project has a high

performance in both categories.

b) If ∆+ βV HL > 0:

b.1) When ∆ + βSP{ηV HH + (1 − η)V HL} ≥ 0, it is socially optimal that the raters

specialize in the same category. The investment takes place iff the project has a high perfor-

mance in this category.

b.2) When ∆ + βSP{ηV HH + (1 − η)V HL} < 0, it is socially optimal that the raters

provide no information. The investment does not take place in this case.

Section OA.3.7 provides the proof. Proposition OA.2(a) states that perfect disclosure
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(a) (b)

Figure OA.1. This figure displays the impact of an increase in the disclosure in a category
on the investment outcome. Figure (a) corresponds to no disclosure. Figure (b) displays
the effect of some disclosure in category B. The disclosure leads to some investment in the
projects with a high performance in category B. The investment is socially efficient for the
(H,H)-type and inefficient for the (L,H)-type. The increase in the disclosure might or might
not be socially optimal depending on the composition of these two types.

of the ESG information is socially optimal, when ∆ + βSPV HL and ∆ + βV HL are both

negative. In this case, the investor and social planner agree on which type of projects should

receive investment; thus, perfect disclosure is socially optimal.

When ∆ + βSPV HL is negative and ∆ + βV HL is not, perfect disclosure is not optimal

since some project types would inefficiently receive investment. In this case, depending on

the relative importance of ESG performance for the social planner, he might decide not to

disclose any ESG information or only disclose partially.

We make two observations here. First, in order for this parameter constellation to hold,

it must be that V HL is negative and, therefore, the social planner has a stronger preference

for ESG performance than the investor (βSP > β). Second, when ∆ + βV HL ≥ 0, more

disclosure leads to more investment since the investor just wants to screen out (L,L)-type

projects. The social planner prefers to also screen out (H,L)-type projects. Therefore, the

social planner’s decision depends on the risk that (H,L)-type projects may arise. When this

risk is high enough, the social planner prefers no information to be provided by the raters,

so as to induce the investor not to invest.

Figure OA.1 illustrates this point. The figure shows the impact of slightly increasing

disclosure when the social planner and investor disagree on the optimal investment decision.
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Figure OA.1a corresponds to the case with no disclosure, which leads to no investment due

to Assumption 1. In Figure OA.1b, there is some disclosure in category B. The disclosure

identifies some projects with wB = H, which the investor finds attractive to invest. Whether

the increase in investment is socially optimal depends on the composition of the project

types that receive investment and the social investment payoff associated with each type.

If the additional investment mostly goes to (H,L)-type projects, or if their resulting social

investment payoff (∆ + βSPV HL) is sufficiently low, then the social planner prefers not to

increase the disclosure. Overall, a key insight provided in this section is that more ESG

disclosure is not necessarily desirable when the investor’s preferences are not aligned with

those of the social planner.

OA.3 Omitted Proofs

This section provides the proof of Propositions in Section 6, OA.1, and OA.2.

OA.3.1 Proof of Proposition 5 (Market equilibria with heterogeneous informa-

tion acquisition costs)

Recall from the proof of Proposition 1 that the raters’ preferences across outcomes depend

solely on λ∗, as defined in equation A.4. The details are provided in equations A.9 and A.10.

We establish the proof through three steps. First, we determine the values of λ∗ for which

the specialization outcomes—i.e., (λλλSPA ,λλλSPb−B), (λλλSPb−B,λλλSPA)—constitute an equilibrium.

Second, employing a method akin to the proof of Proposition 1, we demonstrate that there

is only one possible interior equilibrium outcome in which the rating technologies are substi-

tutes, and find that this interior outcome is an equilibrium only when b exceeds a threshold

value. Lastly, we establish that there is only one possible interior equilibrium outcome in

which the ratings are complements. This interior outcome is the unique equilibrium when

λ∗ < b
4
.

Specialization outcomes

Let BRj(λλλ−j) denote the set of best response rating technologies for rater j ∈ {1, 2}, when
the other rater chooses λλλ−j. Since the first rater effectively optimizes the combined value

of the ratings by maximizing the marginal value of its ratings, it is straightforward to show

λλλSPA = BR1(λλλ
SPB
b ) and λλλSPB

b = BR1(λλλ
SPA
b ). Therefore, we only need to find values of λ∗ for

which specialization in a category is the best response for the second rater when the first

rater specializes in the other category.
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First, we prove that λλλSPA = BR2(λλλ
SPB
b ) iff λ∗ ≥ b

4
, implying that (λλλSPB

b ,λλλSPA) is an

equilibrium outcome for this set of values of λ∗. When λ∗ ≥ b
4
, λλλSPA yields the highest

stand-alone value. The argument as follows: The stand-alone value of λλλ2 = (λA
2 , λ

B
2 ) is

max{λ∗ − λA
2 λ

B
2 , λ

A
2 λ

∗, λB
2 λ

∗, λA
2 λ

B
2 }. The first three terms are maximized at (1, 0), and

attain a value of λ∗. λA
2 λ

B
2 ≤ b

4
when λA

2 + b−1λB
2 ≤ 1. Therefore, λλλSPA = (1, 0) obtains the

highest stand-alone value when λ∗ ∈ [ b
4
, 1].

Moreover: v(λλλSPB
b ,λλλ2) = max{(λA

2 + λB)λ∗ − λA
2 λ

B, λA
2 λ

B, λ∗λB} (See equation A.9).

The first two terms are maximized at λλλ2 = λλλSPA , and attain a value of (1 + b)λ∗ − b and

b, respectively. These two values exceed λ∗, which is the maximum value that the third

term can obtain. Therefore, λλλSPA is Rater 2’s best response to λλλSPB
b , and consequently,

(λλλSPB
b ,λλλSPA) is an equilibrium outcome when λ∗ ≥ b

4
.

To see that this outcome is not an equilibrium outcome when λ∗ < b
4
, note that λλλGN

b1
≡

(1
2
, b
2
) has a larger stand-alone value, and λλλGN

b1
and λλλSPB

b are complements for these values of

λ∗:

v(λλλSPB
b ,λλλGN

b1
) =

3

4
b− 1

4
b2, v(λλλSPB

b ,OOO) = bλ∗, v(OOO,λλλGN
b1

) =
b

4

⇒ v(OOO,λλλGN
b1

) + v(λλλSPB
b ,OOO) =

b

4
+ bλ∗ <

b

4
+

b2

4
<

3

4
b− 1

4
b2 = v(λλλSPb−B,λλλGN

b1
)

⇒ ϕ̂2(λλλ
SPB
b ,λλλSPA) ≤ λ∗ <

b

4
= ϕ̂2(λλλ

SPB
b ,λλλGN

b1
).

(OA.5)

Now, we show that λλλSPB
b = BR2(λλλ

SPA), and consequently (λλλSPA ,λλλSPB
b ) is an equilibrium,

iff λ∗ ≥ b
(1+b)2

. To see this, note that λλλ2 = λλλSPB
b has the highest marginal value when

λλλ1 = λλλSPA . Therefore, the only possibility for λλλSPB
b ̸= BR2(λλλ

SPA) is the existence of λλλ2 with

a higher stand-alone value such that λλλ2 and λλλSPA are complements. More specifically, these

two conditions should jointly hold for some λλλ2 for (λλλSPA ,λλλSPB
b ) not to be an equilibrium:

v(OOO,λλλ2) > v(OOO,λλλSPB
b )

v(λλλSPA ,λλλ2) ≥ v(λλλSPA ,OOO) + v(OOO,λλλ2).
(OA.6)

These inequalities imply λA
2 , λ

B
2 ≥ λ∗. The second inequality further implies:

λB
2 ≥ λ∗ + λA

2 λ
B
2 ⇐⇒ λB

2 (1− λA
2 ) ≥ λ∗ ⇐⇒ b(1− λA

2 )
2 ≥ λ∗. (OA.7)

Moreover, the first inequality in (OA.6) implies:

λA
2 λ

B
2 > bλ∗ ⇐⇒ λA

2 (1− λA
2 ) > λ∗. (OA.8)
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By combining the inequalities above, we find that λA
2 exists that satisfies both inequalities

iff λ∗ < b
(1+b)2

, which proves our claim.

Interior equilibrium outcomes with substitute rating technologies

Now, we analyze interior equilibrium outcomes in which the rating technologies are substi-

tutes. By interior, we mean outcomes in which at least one rater does not specialize. Suppose

(λλλ1,λλλ2) is an equilibrium pair of rating technologies where λλλ1 and λλλ2 are substitutes. Similar

to the proof of Proposition 1, if min{λA, λB} ≤ λ∗, we can show that the pair cannot consti-

tute an equilibrium unless (λλλ1,λλλ2) ∈ {(λλλSPA ,λλλSPB
b ), (λλλSPB

b ,λλλSPA)} since at least a rater can

increase the combined value and stand-alone value (if necessary) by switching to specializa-

tion. If λA, λB ≥ λ∗, then v(λλλ1,λλλ2) = λAλB. Note that both raters effectively maximize the

combined value by optimizing the marginal value of their rating technologies. Since the set

of pairs that the rating technologies are substitutes is open (according to Definition A.1),

the following first-order conditions should hold (by taking the derivative of v(λλλ1,λλλ2) = λAλB

with respect to λA
1 and λA

2 , and considering that technological constraint 18 binds for both

raters):

[λA
1 ] : (1− λA

2 )λ
B = b(1− λB

2 )λ
A

[λA
2 ] : (1− λA

1 )λ
B = b(1− λB

1 )λ
A.

(OA.9)

Note that these conditions result in a symmetric pair, i.e., λA
1 = λA

2 . Let us denote this

rating technology by λλλGN
b2

= (x, y). The first-order conditions imply the following equation

for x and y (in addition to x+ b−1y = 1):

(1− x)(2y − y2) = b(1− y)(2x− x2). (OA.10)

An implication of equation OA.10 is that x ≥ y:

2y − y2

1− y
= b

2x− x2

1− x
⇒ (1− y)−1 − (1− y) < (1− x)−1 − (1− x) ⇒ y < x, (OA.11)
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where we used the fact that (1− z)−1 − (1− z) is an increasing function in [0, 1]. Moreover,

equation OA.10 implies that x ≤ 1
2
. To see this, consider the contrary:

(1− x)(2y − y2) = b(1− y)(2x− x2)
y=b(1−x)
======⇒ (1− x)2(2− y) = (2x− x2)(1− y)

if x ≥ 1
2=====⇒ 1

4
> (1− x)2 =

1− y

2− y
(2x− x2) =

1− b(1− x)

2− b(1− x)︸ ︷︷ ︸
> 1

3

(2x− x2)︸ ︷︷ ︸
> 3

4

>
1

4
,

(OA.12)

which is a contradiction. Hence, x ≤ 1
2
.

(λλλGN
b2

,λλλGN
b2

) constitutes an equilibrium when λ∗ ≤ λAλB = (2x − x2)(2y − y2) (since

Rater 1 should not benefit from deviating to λλλSPA) and λλλGN
b2

is substitute with itself. In

other words, the following inequalities should hold:

v(λλλGN
b2

,λλλGN
b2

) ≥ λ∗ ⇐⇒ (2x− x2)(2y − y2) ≥ λ∗

2V (λλλGN
b2

,OOO) > V (λλλGN
b2

,λλλGN
b2

) ⇐⇒ 2max{xy, xλ∗, yλ∗, (x+ y)λ∗ − xy} > (2x− x2)(2y − y2)

(OA.13)

If x, y ≥ λ∗, then the left-hand side in the second inequality of (OA.13) is 2xy, which

implies:

2xy > (2x− x2)(2y − y2) ⇒ 2 > (2− x)(2− y) ≥ (2− x)2 ≥ 9

4
> 2, (OA.14)

which is not possible. Additionally, we cannot have x ≥ λ∗ > y since that would imply:

2xλ∗︸︷︷︸
<λ∗

> (2x− x2)(2y − y2) ≥ λ∗. (OA.15)

Therefore, x, y < λ∗, which implies that the left-hand side in the second inequality of

(OA.13) is (x+ y)λ∗ − xy. This implies that the following inequality for x and y:

2(x+ y)(2x− x2)(2y − y2)− 2xy ≥ 2(x+ y)λ∗ − 2xy > (2x− x2)(2y − y2). (OA.16)

Note that x and y are functions of b. One can show that there exists threshold value

b∗ ∈ (0, 1) such that this inequality holds when b > b∗. When b < b∗, (λλλGN
b2

,λλλGN
b2

) is never

an equilibrium. Conversely, when b ≥ b∗, there exists an interior range of λ∗ for which

(λλλGN
b2

,λλλGN
b2

) is an equilibrium.
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Figure OA.2. The dashed line depicts the choices of λA
1 that maximize λAλB given λλλ2.

The dark circle represents (λλλGN
b2

,λλλGN
b2

), where λλλGN
b2

= (x, y).

Interior equilibrium outcomes with complement rating technologies

As shown in the proof of Proposition 1, λA, λB ≥ λ∗ when two ratings are complements (See

Step 2 in the proof). Therefore, λλλ1 is set to maximize λAλB, given λλλ2. We show that the

only possible interior equilibrium outcome with complement rating technologies is the one

with λλλ2 = λλλGN
b1

= (1
2
, b
2
). Note that this is the only interior outcome for which ∂V (OOO,λλλ2)

∂λA
2

= 0;

specifically, the stand-alone is maximized locally.

Figure OA.2 depicts the pairs of (λλλ1,λλλ2) for which λλλ1 has the highest marginal value

given λλλ2. Note that (λλλGN
b2

,λλλGN
b2

) is also among these pairs, as marked by a dark circle in the

Figure.

Consider pair (λλλ1,λλλ2) that corresponds to a point on the dashed line, where λλλ2 ̸= λλλGN
b1

and λA
2 ≥ x, i.e., (λA

1 , λ
A
2 ) is left to (x, x) on the dashed line in Figure OA.2. This means

that ∂V (λλλ1,λλλ2)

∂λA
2

> 0. The proof for the other case is similar. There are two possibilities for λA
2 :

• λA
2 ∈ [x, 1

2
): We show that ∂v(OOO,λλλ2)

∂λA
2

> 0 in this case, which means that Rater 2 can

increase its payoff by increasing λA
2 . Since λA

2 ≥ x > y ≥ λB
2 , there are three possibili-

ties.

– If λA
2 > λB

2 > λ∗, then

∂v(OOO,λλλ2)

∂λA
2

=
∂λA

2 λ
B
2

∂λA
2

= b(1− 2λA
2 ) > 0. (OA.17)
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– If λA
2 ≥ λ∗ ≥ λB

2 , then

∂v(OOO,λλλ2)

∂λA
2

=
∂λA

2 λ
∗

∂λA
2

= λ∗ > 0. (OA.18)

– If λ∗ > λA
2 > λB

2 . Note that since λ
A
2 > b

1+b
, λ∗ should also exceed b

1+b
. Therefore,

∂v(OOO,λλλ2)

∂λA
2

=
∂[λA

2 λ
∗ + λB

2 λ
∗ − λA

2 λ
B
2 ]

∂λA
2

=

(1− b)λ∗ − b+ 2b λA
2︸︷︷︸

> b
1+b

> (1− b)λ∗ − b+ 2
b2

1 + b
= (1− b)(λ∗ − b

1 + b
) > 0.

(OA.19)

• λA
2 > 1

2
: Similar to the previous case, one can show that if min{λA

2 , λ
B
2 } ≤ λ∗, then

∂v(OOO,λλλ2)

∂λA
2

> 0; It means that Rater 2 can increase both the stand-alone value and

marginal value of its ratings by increasing λA
2 .

Now, suppose min{λA
2 , λ

B
2 } > λ∗. Since λB

2 = b(1− λA
2 ) <

b
2
, this implies that λ∗ < b

2
.

Since λλλ1 maximizes λAλB given λλλ2, we have the following first-order condition:

λB
1 − bλA

1 ≤ bλA
2 − λB

2 + (1− b)λA
2 λ

B
2

(1− λA
2 )(1− λB

2 )
, (OA.20)

where the inequality is strict only for the extreme values of λA
1 . Given that λA

2 > 1
2
,

the expression above implies that:

λB
1 − bλA

1 > 0 ⇒ λB
1 >

b

1 + b
>

b

2
> λ∗. (OA.21)

The inequalities in (A.18) imply that if λA
1 , λ

B
1 > λ∗, then λλλ1 and λλλGN

b1
are also com-

plements (Note that λλλGN
b1

= (1
2
, b
2
) and 1

2
> b

2
> λ∗). Therefore, Rater 2 can increase

its payoff by switching to λλλGN
b1

:

ϕ̂2(λλλ1,λλλ2) = λA
2 λ

B
2 = bλA

2 (1− λA
2 ) <

b

4
= ϕ̂2(λλλ1,λλλ

GN
b1

). (OA.22)

If λA
1 < λ∗ < λB

1 , then λλλ1 and λλλ2 cannot be an equilibrium if λλλ1 and λλλGN
b1

are also

complements, with a logic similar to what is used in equation OA.22. If λλλ1 and λλλGN
b1

OA.11



are substitutes, then we have:

v(λλλ1,OOO) + v(OOO,λλλGN
b1

) > v(λλλ1,λλλ
GN
b1

)

⇒ λB
1 λ

∗ +
b

4
> (

1

2
+

λA
1

2
)(
b

2
+ (1− b

2
λB
1 ))

(OA.23)

By expanding the right-hand side and making some rearrangements, we obtain:

λ∗λB
1 >

b

4
+ (

3

4
− b

2
)λB

1 − (
b−1

2
− 1

4
)λB

1

2

=
b

4
λB
1 + { b

4
+

3

4
(1− b)λB

1 − (
b−1

2
− 1

4
)λB

1

2}.
(OA.24)

The expression inside the curly brackets is positive. To verify this, note that the

expression is concave in λB
1 , implying that the minimum values are obtained in one of

the extreme values, i.e., λB
1 = 0, b. It is straightforward to verify that the expression

is non-negative for both values. Therefore, λ∗ > b
4
. Now, we show that Rater 2 can

increase its payoff by switching to λλλSPA , which implies that λλλ1 and λλλ2 cannot form an

equilibrium:

ϕ̂2(λλλ1,λλλ
SPA) = min{λB

1 − λB
1 λ

∗, λ∗} > min{ b
2
(1− b

4
),
b

4
} =

b

4
> ϕ̂2(λλλ1,λλλ2). (OA.25)

Therefore, the only possible interior pair with complement rating technologies is (BR1(λλλ
GN
b1

),λλλGN
b1

).

Suppose BR1(λλλ
GN
b1

) = (zA, zB). Since λλλGN
b1

should optimize the stand-alone value locally,

than λ∗ ≤ b
2
. Moreover, by examining the first-order condition in (OA.20), we find:

zB − bzA =
(1− b)b

2(1− b
2
)
> 0 ⇒ zA <

1

2
. (OA.26)

When λ∗ ≤ b
4
, λλλGN

b1
has the highest stand-alone value and is complement with any other

rating technology. Therefore, it is an equilibrium. However, it is not an equilibrium when

λ∗ > b
4
, as Rater 2 can increase its payoff by specializing in category A:

ϕ̂2((z
A, zB),λλλSPA) = min{v((zA, zB),λλλSPA)− v((zA, zB),OOO)} = min{zB(1− zA), λ∗}

= min{b(1− zA)
2, λ∗} >

b

4
= v(OOO,λλλGN

b1
) = ϕ̂2((z

A, zB),λλλGN
b1

).

(OA.27)
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OA.3.2 Proof of Proposition 6 (Value-maximizing pairs with heterogeneous in-

formation acquisition costs)

From Lemma A.1, recall that the value created by pair (λλλ1,λλλ2) is:

V (λλλ1,λλλ2) = (∆ + βV HH)v(λλλ1,λλλ2)

v(λλλ1,λλλ2) = λAλB + λA[λ∗ − λB]+ + λB[λ∗ − λA]+.
(OA.28)

We show that for any pair such as (λ̂1, λ̂2), we have v(λ̂1, λ̂2) ≤ v(λλλSPA ,λλλSPB
b ), and

equality is only obtained when raters specialize in different categories. Define,

λ̂i = λ̂i
1 + λ̂i

2 − λ̂i
1λ̂

i
2, i = A,B. (OA.29)

There are three possibilities:

• λ∗ > λ̂A, λ̂B: In this case, v(λ̂1, λ̂2) = (λ̂A + λ̂B)λ∗ − λ̂Aλ̂B. Since the expression is

convex in λA
1 and λA

2 , the maximum value should be attained when both raters special-

ize. It is straightforward to show that specialization in different categories dominates

specialization in the same category.

• max{λ̂A, λ̂B} ≥ λ∗ ≥ min{λ̂A, λ̂B}: In this case, we have:

v(λ̂1, λ̂2) = max{λ̂A, λ̂B}λ∗ ≤ λ∗ < b = v(λλλSPA ,λλλSPB
b ), (OA.30)

where b > λ∗ is implied from Assumption 2′.

• λ̂A, λ̂B > λ∗: In this case, v(λ̂1, λ̂2) = λ̂Aλ̂B. We show that λ̂Aλ̂B ≤ b, and equality is

only achieved when the raters specialize in different categories:

λ̂Aλ̂B ≤ (λ̂A
1 + λ̂A

2 )(λ̂
B
1 + λ̂B

2 ) ≤ b(λ̂A
1 + λ̂A

2 )(2− λ̂A
1 − λ̂A

2 ) ≤ b. (OA.31)

Note that equality is achieved when λ̂A
1 λ̂

A
2 = λ̂B

1 λ̂
B
2 = 0 and λ̂A

1 + λ̂A
2 = 1, which occur

only when raters specialize in different categories.

OA.3.3 Proof of Proposition 7 (Random ordering of the fee-setting)

With steps similar to those in the proof of Proposition 1, one can show that the only equilibria

are generalization and specialization in different categories. With this fact, we only need to

examine for what values of β these outcomes form an equilibrium.
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In the proof of Proposition 1, we show that any two ratings are substitutes when λ∗ > 17
32
,

where λ∗ is defined in equation A.4. In this case, since the raters receive the marginal value

of their ratings, the payoffs are similar to the baseline case (p = 1), and consequently, so are

the equilibrium outcomes. This corresponds to Parts a and b.2.

Now, we analyze for what values of λ∗, specialization in different categories is an equi-

librium, when λ∗ < 17
32
. Note that the specialization outcome is value-maximizing, and

specialization in a category obtains the largest stand-alone value when λ∗ ≥ 0.25. Therefore,

one can show that no other action yields a higher expected payoff for either of the raters.

As such, specialization in different categories remains an equilibrium when λ∗ ≥ 0.25 for all

values of p ∈ [0.5, 1].

When λ∗ < 0.25, the specialized rating technologies are complements. In this case, the

first rater’s expected payoffs is:

π2(λλλ
SPA ,λλλSPB) = (1− p)(1− λ∗) + pλ∗ = 1− p+ (2p− 1)λ∗. (OA.32)

In response to λλλ1 = λλλSPA , consider Rater 2 alternatively chooses λλλ2 = (λA
2 , λ

B
2 ). It is

straightforward to show that λλλSPB dominates λλλ2 if λA
2 ≤ λ∗, and it is suboptimal to set

λA
2 > λB

2 . Thus, suppose λB
2 ≥ λA

2 > λ∗. Rater 2’s expected payoff is:

π2(λλλ
SPA ,λλλ2) = (1− p)(λB

2 − λ∗) + pλA
2 λ

B
2 ⇒ dπ2

dλB
2

= 1− 2pλB
2 . (OA.33)

Note that if p = 0.5, the profit function is increasing in λB
2 , which implies that λλλSPB

is indeed Rater 2’s best response to λλλSPA . If p > 0.5, then the highest expected payoff

Rater 2 can obtain from choices with λB
2 ≥ λA

2 > λ∗ is when λB
2 = 1

2p
. One can show

that the expected payoff from this choice exceeds that from specializing in category B when

λ∗ < (1− 1
2p
)2. In this case, specialization in different categories is not an equilibrium.

Generalization is complement with itself when λ∗ ≤ 17
32
. Therefore, the second rater’s

expected payoff from generalization is:

π2(λλλ
GN ,λλλGN) = (1− p)(

9

16
− 1

4
) + p

1

4
=

1

4
+

1− p

16
. (OA.34)

Again, assume λB
2 ≥ λA

2 . It is straightforward to show that λλλ2 = λλλGN yields a higher

expected payoff compared to all choices with λA
2 , λ

B
2 ≥ λ∗ since λA

2 λ
B
2 ≤ 1

4
and generalization

has the highest marginal value given the other rater generalizes when λ∗ < 9
16
. Moreover,

when λ∗ ≤ 1
4
, generalization has the highest stand-alone value among all rating technologies,

implying that generalization is always an equilibrium when λ∗ ≤ 1
4
.
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When λ∗ > 1
4
, among choices with λA

2 < λ∗, specialization yields the highest expected

payoff. Therefore, we only need to find for what values of λ∗, π2(λλλ
GN ,λλλSPB) > π2(λλλ

GN ,λλλGN).

This translates into:
1− p

4
+ pλ∗ >

1

4
+

1− p

16
⇒ λ∗ >

1 + 3p

16p
. (OA.35)

OA.3.4 Proof of Proposition 8 (Mixed strategy equilibria)

a) According to equation A.4, λ∗ ≥ 1 when V HL > 0. Therefore, Lemma A.1 implies that

the value functions are proportional to:

v(λλλ1,λλλ2) = (λA + λB)λ∗ − λAλB. (OA.36)

Moreover, any two rating technologies are substitutes when λ∗ ≥ 1 (shown in the proof of

Proposition 1). Therefore, both raters receive their marginal contribution as their payoff.

To prove the statement in Part a of the proposition, we show that the best response to any

mixed strategy is specialization or randomizing between specializing in the two categories.

The expression above is convex in λA
1 and λA

2 . Since a linear combination of convex

functions is also convex, the expected payoffs are also convex when the other rater follows a

mixed strategy. Therefore, the best response to any mixed strategy is to choose among the

extreme values, i.e., λA
i ∈ {0, 1}, corresponding to λλλSPB and λλλSPA .

It is straightforward to show that if rater −i specializes in a category with a higher

probability, the unique best response for rater i is to specialize in the other category. There-

fore, the only possible mixed strategy equilibrium is that both raters randomize between

specializing in the two categories with equal probabilities.

Part b.1) When λ∗ < 1
4
, Rater 2’s best response is always generalization, and it is

unique:

ϕ2(λλλ1,λλλ2) ≤ V (OOO,λλλ2) ≤ V (OOO,λλλGN) = ϕ2(λλλ1,λλλ
GN). (OA.37)

In the inequalities above, the first inequality is obtained from Lemma 1. The second in-

equality reflects that generalization has the highest stand-alone value when λ∗ ≤ 1
4
, and

the equality in the end is resulted from the fact that generalization is complement with any

other rating technology when λ∗ ≤ 1
4
. Therefore, the only equilibrium is that both raters

generalize, even when considering mixed strategy equilibria.

b.2) Suppose (σ1, σ2) is a pair of mixed strategies that constitute a robust equilibrium.

Let Λi, i = 1, 2, be the support of σi; that is, the set of rating technologies that are selected

with a positive probability by rater i. Since Rater 1’s payoff is always the marginal value
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of its ratings, any λλλ1 ∈ Λ1 should maximize the expected combined value given σ2 in a

neighborhood of β. Therefore, any rating technology in Λ1 should maximize the expression

below in a neighborhood of λ∗

λλλ1 ∈ argmax v(λ̂λλ, σ2; λ̃
∗), ∀ λλλ1 ∈ Λ1, λ̃

∗ ∈ (λ∗ − ε, λ∗ + ε), (OA.38)

where

v(λ̂λλ, σ2; λ̃
∗) =

∫ 1

0

v(λ̂λλ,λλλ2; λ̃
∗)σ2(λλλ2)dλ

A
2 . (OA.39)

Now, we show that the robustness of (σ1, σ2) implies that if there is an interior solution, then

the solution is the unique best response to σ2.

If λλλ1 is an interior solution, it implies that the right derivative of v(λ̂λλ, σ2; λ̃
∗) is zero at

λ̂A = λA
1 in a neighborhood of λ∗.21 Therefore,

∂2v(λλλ1, σ2;λ
∗)

∂+λA
1 ∂λ

∗ = 0. (OA.40)

Note that ∂
∂+λA

1
v(·, σ2;λ

∗) is linear in λ∗:

∂v(λλλ1, σ2;λ
∗)

∂+λA
1

=
∑

λλλ2∈Λ2

∂

∂λA
1

λAλBI{λ∗≤λA,λB}σ2(λλλ2)

+λ∗[ ∑
λλλ2∈Λ2

(1− λA
2 )I{λ∗≥λB}σ2(λλλ2)−

∑
λλλ2∈Λ2

(1− λB
2 )I{λ∗≥λA}σ2(λλλ2)

]
.

(OA.41)

Equation OA.40 implies that the second line in (OA.41) is zero. Moreover, the expression

in the bracket is weakly increasing in λA
1 . Consider the contrary that there is another interior

solution, say λλλ′
1. Therefore, the signs of λA − λ∗ and λB − λ∗ should be the same for any

pair of λλλ1 and λλλ′
1 with any rating technology in Λ2. Therefore, the first term should be zero

for both interior solutions. However, it would contradict with the concavity of λAλB since

the derivative cannot be zero for both λλλ1 and λλλ′
1.

Now, we show that λλλSPA or λλλSPB cannot be optimum. To see this, note that expression

OA.41 implies that V (λλλSPA , σ2) − V (λλλ1, σ2) increases in λ∗ or stays unchanged since the

second term in (OA.41) is weakly increasing in λA
1 . If it increases, it means that λλλ1 and λλλSPA

cannot be jointly optimal in a neighborhood of λ∗. Even if the second term in (OA.41) is

zero for both λλλ1 and λλλSPA , the concavity of the first term implies that λλλ1 and λλλSPA cannot

21Since function v is the maximum of multiple differentiable functions, the right derivative is not smaller
than the left derivative at any point. Therefore, if the right derivative is negative and there is a kink at λλλ1

for some λλλ2 ∈ Λ2, then the left derivative is also negative, meaning that λλλ1 could not be a local optimum.
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be jointly optimal. A similar argument also applies to λλλSPB . Therefore, if σ2 has an interior

best response, the best response is unique. One can show that the only possibility that two

actions are among the robust best responses of Rater 2 to a pure strategy of Rater 1 is that

those two actions are λλλSPA and λλλSPB .

Therefore, the only possibility for a robust mixed strategy equilibrium is that both raters

randomize between specializing in the two categories. With a logic similar to part (a), the

raters should randomize with equal probabilities. One can show that this mixed strategies

is dominated by generalization when λ∗ < 1
3
.

OA.3.5 Proof of Proposition 9 (Divergence in measurement)

Define Vm(λλλ1,λλλ2) as the combined value of the ratings. By applying equation 9, we find:

Vm(λλλ1,λλλ2) = PHH
m λAλB(∆ + βV HH

m ]) + [PHH
m λA(1− λB)(∆ + βV HH

m ) + PHL
m λA(∆ + βV HL

m )]+

+[PHH
m λB(1− λA)(∆ + βV HH

m ) + PHL
m λB(∆ + βV HL

m )]+

= PHH
m (∆ + βV HH)

{
λAλB + λA[λ∗

m − λB]+ + λB[λ∗
m − λA]+

}
,

(OA.42)

where λ∗
m is such that

PHH
m (1− λ∗

m)(∆ + βV HH
m ) + PHL

m (∆ + βV HL
m ) = 0. (OA.43)

Therefore, the payoffs, and consequently the equilibrium outcomes, depend on λ∗
m in a

manner similar to how they depend on λ∗ in Proposition 1.

OA.3.6 Proof of Proposition OA.1 (Market equilibria with the general structure

of rating technologies)

By expanding equation 9, one can show that the combined value of any two rating technolo-

gies can be written as below:

V (λλλ1,λλλ2) = η2(∆ + βV HH)v(λλλ1,λλλ2)

v(λλλ1,λλλ2) = lAMB + lBMA − lAlB,
(OA.44)
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where:

li = 1− (1− λiH
1 I{λiL

1 = 1})(1− λiH
2 I{λiL

2 = 1}), i = A,B

M i = [λiH
1 λiH

2 + (λ∗ − 1)(1− λiL
1 )(1− λiL

2 )]+ + [(1− λiH
1 )λiH

2 + (λ∗ − 1)λiL
1 (1− λiL

2 )]+

+[λiH
1 (1− λiH

2 ) + (λ∗ − 1)(1− λiL
1 )λiL

2 ]+ + [(1− λiH
1 )(1− λiH

2 ) + (λ∗ − 1)λiL
1 λiL

2 ]+, i = A,B,

(OA.45)

and λ∗ is defined in equation A.4. The intuition for equation OA.44 is as follows: The

investment takes place only if the possibility of type (L,L) is ruled out by the realized

ratings. For instance, if λAL
1 = 1, sA1 has no false-positive error, meaning that Prob(wA =

L|sA1 = h) = 0. If wA = H, with probability lA, the project receives a high rating in category

A that is free of a false-positive error. Given this high rating is in category A, the investor

might invest depending on the realizations of sB1 and sB2 , which lead to an expected payoff of

ηV HHMB, explaining the first term in equation OA.44. The intuition for the second term

is similar. The last term corrects for double-counting. Now, we analyze the equilibria for

different values of λ∗:

λ∗ ≥ 1λ∗ ≥ 1λ∗ ≥ 1

This case corresponds to V HL ≥ 0 (See equation A.4). Since λ∗ ≥ 1, all terms in M i in

equation OA.45 are positive. Therefore, MA = MB = λ∗, and consequently

v(λλλ1,λλλ2) = (lA + lB)λ∗ − lAlB. (OA.46)

Since λ∗ ≥ 1 ≥ lA, lB, the combined value is increasing in lA and lB. As a result, it is

suboptimal to set λiL
j < 1 for any i = A,B. The same logic applies to stand-alone values. In

other words, it is suboptimal for the raters to introduce false-positive errors in their ratings

since it would reduce li. Therefore, λAL
j = λBL

j = 1, j = 1, 2, which simplifies the game to

the baseline case. According to Proposition 1, the only equilibrium in pure strategies are

specialization in different categories.

λ∗ < 0λ∗ < 0λ∗ < 0

This case corresponds to Part b.1. We prove the following statements:

Statement 1: (λλλGN ,λλλGN) is an equilibrium for any λ∗ < 0.

Statement 2: There is no other equilibrium for these values of λ∗.
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Proof of Statement 1: According to Lemma 1, Rater 2 receives the minimum of the

stand-alone value of its ratings and their marginal value. With this observation, we only

need to show: (1) λλλGN continues to uniquely maximize the stand-alone value when λ∗ < 0.

In the generalization outcome, Rater 2 obtains V (OOO,λλλGN), which exceeds its payoff from

other choices of rating technology, as they have a lower stand-alone value22. (2) Rater 1’s

best response to λλλGN is also λλλGN .

The stand-alone value of rating technology λλλ2 = (λAH
2 , λAL

2 , λBH
2 , λBL

2 ) can be obtained

from equation OA.44:

v(OOO,λλλ2) = λAH
2 I{λAL

2 = 1}[λBH
2 + (λ∗ − 1)(1− λBL

2 )]+

+λBH
2 I{λBL

2 = 1}[λAH
2 + (λ∗ − 1)(1− λAL

2 )]+ − λAH
2 λBH

2 I{λAL
2 = 1}I{λBL

2 = 1}.
(OA.47)

According to equation OA.47, the stand-alone value would be zero if both λAL
2 and λBL

2

are less than one. This is intuitive since if λAL
2 , λBL

2 < 0 and the investor observes a high

rating in both categories from Rater 2 (i.e., sA2 = sB2 = h), there is still a positive probability

that the project has low performance in both categories. Hence, the investor never invests

if she only purchases Rater 2’s rating technology, resulting in a payoff of zero. Therefore, it

is suboptimal for Rater 2 to choose a rating technology with λAL
2 , λBL

2 < 1, as it would lead

to a payoff of zero.

If λAL
2 = 1 and λBL

2 < 1, it is straightforward to employ equation OA.47 to show that the

stand-alone value of λλλ2 = (λAH
2 , 1, λBH

2 , λBL
2 ) is strictly less than that of λλλ′

2 = (λAH
2 , 1, λBH

2 +

λBL
2 − 1, 1). We earlier proved that generalization has the highest stand-alone value among

rating technologies with λAL
2 = λBL

2 = 1 (i.e., the set of rating technologies with no false-

positive error). Therefore, generalization maximizes the stand-alone value under the more

general information structure when λ∗ < 0, which completes step (1).

Step (2) is to prove that Rater 1’s best response to generalization is generalization. To

this end, we only need to show that it is suboptimal to set λAL
1 < 1 or λBL

1 < 1 when

λλλ2 = λλλGN and λ∗ < 0; because, Proposition 1 implies that generalization is the best response

in the set of rating technologies with no false-positive error, i.e., λAL
1 = λBL

1 = 1.

Specifically, define λλλ′
1 = (λAH

1 +λAL
1 −1, 1, λBH

1 +λBL
1 −1, 1). We prove that V (λλλ′

1,λλλ
GN) >

V (λλλ1,λλλ
GN) if λAL

1 < 1 or λBL
1 < 1. Consider the case that both λAL

1 < 1 and λBL
1 < 1 hold.

22Note that we earlier showed that generalization is complement with itself when λ∗ ≤ 17
32 .
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The proof strategy for the other possibilities is similar:

v(λλλ1,λλλ
GN ) =

1

2

[1
2
+ {1

2
λBH
1 + (λ∗ − 1)(1− λBL

1 )}+︸ ︷︷ ︸
< 1

2
(λ

BH
1 +λ

BL
1 −1)

+
1

2
+ {1

2
λAH
1 + (λ∗ − 1)(1− λAL

1 )}+︸ ︷︷ ︸
< 1

2
(λ

AH
1 +λ

AL
1 −1)

]
− 1

4

< (
1

2
+

1

2
(λBH

1 + λBL
1 − 1))(

1

2
+

1

2
(λAH

1 + λAL
1 − 1)) = v(λλλ′

1,λλλ
GN )

(OA.48)

As such, any rating technology with λAL
1 < 1 or λBL

1 < 1 is dominated by a rating

technology with λAL
1 = λBL

1 = 1, which is the set of available rating technologies in the

baseline case. Therefore, generalization is the unique best response for Rater 1 in response

to λλλ2 = λλλGN .

Proof of Statement 2:

Recall that in the baseline model, where we consider the restricted case with λAL
j =

λBL
j = 1, j = 1, 2, Rater 2’s best response to any rating technology is to generalize. The

intuition is that any two rating technologies with no false-positive error are complements, and

generalization yields the highest stand-alone value for Rater 2. However, this argument does

not work in the more general case considered here since λλλGN is substitute with some rating

technologies. To prove that (λλλGN ,λλλGN) remains the unique equilibrium in pure strategies,

we rule out other possibilities of (λλλ1,λλλ2) in several steps. In particular, we divide the cases

based on the values of λAL
1 , λBL

1 , λAL
2 , λBL

2 .

λAL
1 , λBL

1 < 1:λAL
1 , λBL

1 < 1:λAL
1 , λBL

1 < 1: The combined value in this case is,

v(λλλ1,λλλ2) = λAH
2 I{λAL

2 = 1}MB + λBH
2 I{λBL

2 = 1}MA − λAH
2 λBH

2 I{λAL
2 = 1}I{λBL

2 = 1},
(OA.49)

whereMA andMB are defined in (OA.45). If λAL
2 < 1, then Rater 1’s rating for categoryBhas

no impact on the investor’s decision, and consequently, the combined value. Therefore,

specializing in category A would increase the combined value, which generates no false-

positive error in category A. A similar argument applies when λBL
2 < 1. If λAL

2 = λBL
2 = 1,

then one can show that the combined value increases if Rater 1 switches to λλλ′
1 = (λAH

1 +

λAL
1 − 1, 1, λBH

1 + λBL
1 − 1, 1). Therefore, there is no equilibrium in which λAL

1 , λBL
1 < 1.

λAL
1 , λBL

1 = 1:λAL
1 , λBL

1 = 1:λAL
1 , λBL

1 = 1: In this case, λλλ1 is complement with λλλGN . Therefore, Rater 2 can obtain

ϕ2 = V (OOO,λλλGN) by generalizing, which is the largest possible payoff. As such, λλλGN is Rater

2’s best response, meaning that the only possible pure strategy equilibrium in this case is

(λλλGN ,λλλGN).

λAL
1 = 1, λBL

1 < 1:λAL
1 = 1, λBL

1 < 1:λAL
1 = 1, λBL

1 < 1: First, we show that we should have λAL
2 = 1. If λAL

2 , λBL
2 < 1, then

the stand-alone value of λλλ2 is zero, which means that the rater can increase its payoff by
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switching to another rating technology with a positive marginal value and the stand-alone

value (such as generalization).

If λAL
2 < 1, λBL

2 = 1, then the combined value is:

v(λλλ1,λλλ2) = λAH
1 λBH

2 + λAH
1 [λBH

1 (1− λBH
2 ) + (λ∗ − 1)(1− λBL

1 )]+

+λBH
2 [λAH

2 (1− λAH
1 ) + (λ∗ − 1)(1− λAL

2 )]+.
(OA.50)

Rater 2 can increase both the combined value and stand-alone value of its ratings by switching

to λλλ′
2 = (λAH

2 +λAL
2 −1, 1, λBH

2 , 1). To see this, take the derivative of (OA.50) with respect to

λAH
2 and λAL

2 , and note that the latter is larger than the former since 1− λ∗ > 1 ≥ 1− λAH
1 .

The only remaining possibility is λAL
2 = 1. It implies that a high rating in category A,

either from Rater 1 or 2, is sufficient to ensure that wA = H. In this case, the combined

value is:

v(λλλ1,λλλ2) = (λAH
1 + λAH

2 − λAH
1 λAH

2 )MB, (OA.51)

where

MB = max{λBH
2 λBH

1 + (λ∗ − 1)(1− λBL
2 )(1− λBL

1 ), λBH
2 + (λ∗ − 1)(1− λBL

2 ),

λBH
1 + (λ∗ − 1)(1− λBL

1 ), λBH
2 + λBH

1 − λBH
2 λBH

1 + (1− λ∗)(1− λBL
2 λBL

1 )}
(OA.52)

The four items above reflect the four possibilities in the investment rule: The first item

corresponds to the case that the investment requires a high rating in category B from both

raters. The second (third) item represents the possibility that only the rating of Rater 2 (1)

in category B is used for the investment. The last item corresponds to the possibility that

a single high rating in category B is enough for the investment, in addition to receiving a

high rating in category A. If MB is equal to the second, third, or last item, then Rater 2

can increase the stand-alone and the combined value, by switching to λλλ2 = (λAH
2 , 1, λBH

2 +

λBL
2 − 1, 1). Therefore, if (λλλ1,λλλ2) forms an equilibrium and λAL

1 = λAL
2 = 1, then MB should

be equal to the first item.23

With this observation, we can write the combined value as below:

v(λλλ1,λλλ2) = (λAH
1 + λAH

2 − λAH
1 λAH

2 )(λBH
2 λBH

1 + (λ∗ − 1)(1− λBL
2 )(1− λBL

1 )). (OA.53)

Note that Rater 1 chooses λλλ1 to maximize the combined value. The first-order conditions

with respect to λBH
1 and λBL

1 reveal that we should have λBH
1 = 1. This is because λλλ2

has a positive stand-alone value, which implies that λBH
2 > (1 − λ∗)(1 − λBL

2 ). Therefore,

23Here, we use the result from Lemma A.2.

OA.21



λλλ1 = (a, 1, 1, 1− a), for some a ∈ [0, 1].

Furthermore, a < 1
1−λ∗ . This is because the first-order conditions for Rater 2 imply that

we should have λBL
2 = 1 if a ≥ 1

1−λ∗ . This implies that Rater 1’s best response is to specialize

in category A, i.e., a = 1,24 which is ruled out earlier.

If λλλ1 are λλλ2 are substitutes, then by examining the first-order conditions with respect to

λBH
2 and λBL

2 , we find that we should have λBH
2 = 1 since we just showed that 1 > (1−λ∗)a.

This would imply λλλ2 = (b, 1, 1, 1− b) for some b ∈ [0, 1]. However, in the inequalities below,

we show that rating technologies of this form are all complements:

v((a, 1, 1, 1− a), (b, 1, 1, 1− b))− v((a, 1, 1, 1− a),OOO)− v(OOO, (b, 1, 1, 1− b))

= (a+ b− ab)(1 + (λ∗ − 1)ab)− a(1 + (λ∗ − 1)a)− b(1 + (λ∗ − 1)b)

= −ab+ (1− λ∗)(a2 + b2 − ab(a+ b− ab))

≥ a2 + b2 − ab(1 + a+ b− ab) = a2 + b2 − ab(2− (1− a)(1− b)) ≥ a2 + b2 − ab ≥ 0.

(OA.54)

Therefore, λλλ1 = (a, 1, 1, 1− a) and λλλ2 = (λAH
2 , 1, λBH

2 , λBL
2 ) should be complements. The

combined value is:

v(λλλ1,λλλ2) = (a+ λAH
2 − aλAH

2 )(λBH
2 + (λ∗ − 1)a(1− λBL

2 )). (OA.55)

Furthermore, we should have λBL
2 < 1, as otherwise, a = 1, namely specialization in category

A would be optimal, to which generalization is Rater 2’s best response. However, one can

show that Rater 2 can increase the stand-alone value of its ratings by changing λH
2 and λL

2

to λH
2 − ε and λL

2 + ε, for some sufficiently small ε > 0.25 This perturbation is only feasible

when λλλ1 and λλλ2 are on the border between the complements and substitutes regions. In

other words, the sum of the stand-alone values should be equal to the combined value:

v(λλλ1,λλλ2) = v(λλλ1,OOO) + v(OOO,λλλ2) ⇒ (a+ λAH
2 − aλAH

2 )(λBH
2 + (λ∗ − 1)a(1− λBL

2 ))

= a(1 + (λ∗ − 1)a) + λAH
2 (λBH

2 + (λ∗ − 1)(1− λBL
2 )).

(OA.56)

Note that Rater 1 chooses λλλ1 to maximize the combined value given λλλ2. Therefore, the

24Note that both rating technologies (1, 1, 1, 0) and (1, 1, 0, 1) represent specialization in category A.
25Note that λBH

2 > 0, as otherwise, the stand-alone value of λλλ2 would be zero.
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combined value should not increase by switching to λλλSPB :

V (λλλSPB ,λλλ2) ≤ V (λλλ1,λλλ2) ⇒ λAH
2 ≤ a(1 + (λ∗ − 1)a) + λAH

2 (λBH
2 + (λ∗ − 1)(1− λBL

2 ))

⇒ λAH
2 (1− λBH

2 + (1− λ∗)(1− λBL
2 )) ≤ a(1 + (λ∗ − 1)a).

(OA.57)

Note that Constraint (OA.2), along with λAL
2 = 1, implies that:

λAH
2 ≤ 2− λBH

2 − λBL
2 ≤ 1− λBH

2 + (1− λ∗)(1− λBL
2 ). (OA.58)

Moreover, note that

a(1 + (λ∗ − 1)a) ≤ 1

4(1− λ∗)
, (OA.59)

where the upper bound is attained at a = 1
2(1−λ∗)

. Therefore, by combining inequalities

OA.57-OA.59, we find:

λAH
2 ≤

√
1

4(1− λ∗)
<

1

2
. (OA.60)

Likewise, the combined value should not increase if Rater 1 switches to λλλSPA :

V (λλλSPA ,λλλ2) ≤ V (λλλ1,λλλ2)

⇒ λBH
2 + (λ∗ − 1)(1− λBL

2 ) ≤ a(1 + (λ∗ − 1)a) + λAH
2 (λBH

2 + (λ∗ − 1)(1− λBL
2 ))

⇒ λBH
2 + (λ∗ − 1)(1− λBL

2 ) ≤ 1

1− λAH
2

a(1 + (λ∗ − 1)a) ≤ 1

2(1− λ∗)
.

(OA.61)

Therefore, by combining the last two inequalities, we find:

ϕ̂2 ≤ v(OOO,λλλ2) = λAH
2 (λBH

2 + (λ∗ − 1)(1− λBL
2 )) <

1

4(1− λ∗)
. (OA.62)

However, it is a contradiction since Rater 2 can increase its payoff by switching to λλλ′
2 =

( 1
2(1−λ∗)

, 1, 1, 1 − 1
2(1−λ∗)

). Because, it achieves a stand-alone value of 1
4(1−λ∗)

, and it is com-

plement with λλλ1 = (a, 1, 1, 1− a), as demonstrated in (OA.54).

As such, there is no equilibrium in which λAL
1 = 1, λBL

1 < 1. Likewise, we can rule out

the possibility that λAL
1 < 1, λBL

1 = 1. It completes the proof of the second statement.

λ∗ ∈ [0, 1)λ∗ ∈ [0, 1)λ∗ ∈ [0, 1)

This case corresponds to Parts b.2 and b.3 of the proposition. We examine the robust

equilibrium outcomes by dividing the cases based on λAL
2 , λBL

2 , λAL
1 , λBL

1 . Specifically, we
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examine which pairs of (λλλ1,λλλ2) form a robust equilibrium under, namely the pair is an

equilibrium in a neighborhood of λ∗.

Note that the stand-alone value of λλλ2 should be positive so Rater 2 obtains a positive

fee. Therefore, λAL
2 ≥ 1 or λBL

2 ≥ 1.

λAL
2 = λBL

2 = 1:λAL
2 = λBL

2 = 1:λAL
2 = λBL

2 = 1: In this case, λλλ2 generates no false-positive error, and belongs to the

baseline set of feasible rating technologies. However, λλλ1 can be chosen from the general

set. By analyzing the first-order conditions, one can show that if λAH
2 > λ∗, then λAL

1 = 1.

Moreover, if λAH
2 < λ∗, then λAH

1 = 1.26 Likewise, either λBH
1 or λBL

1 is equal to one depending

on whether λBH
2 is smaller or bigger than λ∗.

Therefore, λλλ1 has to take one of the following three forms:

• λλλ1 = (1, x, 1, 1− x) for some x ∈ (0, 1): The combined value in this case is

v(λλλ1,λλλ2) = λAH
2 λBH

2 +λAH
2 [1−λBH

2 +(λ∗−1)x]++λBH
2 [1−λAH

2 +(λ∗−1)x]+. (OA.63)

If 1− λBH
2 + (λ∗ − 1)x ≤ 0, then the realization of sB1 has no impact on the investor’s

decision. As a result, Rater 1 could increase its payoff by specializing in category A,

which is against the assumption about λλλ1. Therefore, 1− λBH
2 + (λ∗ − 1)x > 0. With

the same logic, the last term in equation OA.63 should also be positive.

By analyzing the first-order conditions, we find that the only possibility is that x =

λAH
2 = λBH

2 = 0.5. Therefore, v(λλλ1,λλλ
GN) = 0.25 + 0.5λ∗. However, it is less than

v(λλλSP ,λλλGN):

v(λλλSP ,λλλGN) = max{0.5, λ∗} ≥ 0.5(0.5 + λ∗) = v(λλλ1,λλλ
GN). (OA.64)

Equality is achieved only for λ∗ = 0.5. Therefore, there cannot be a robust equilibrium

in this scenario.

• λλλ1 = (x, 1, 1, 1− x) for some x ∈ (0, 1):27 The combined value is

v(λλλ1,λλλ2) = (x+ λAH
2 − xλAH

2 )(λBH
2 + [1− λBH

2 + (λ∗ − 1)x]+). (OA.65)

If 1− λBH
2 + (λ∗ − 1)x ≤ 0, then sB1 has no impact on the investor’s decision since the

investor would invest only when sB2 = h and either sA1 or sA2 are also h. This implies

26We do not analyze the knife-edge case that λAH
2 or λBH

2 is λ∗ since the outcome cannot be a robust
equilibrium.

27The extreme cases (i.e., x = 0, 1) correspond to specialization in one of the categories, which are analyzed
in the next case.
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that λλλ1 is a suboptimal choice. If 1− λBH
2 + (λ∗ − 1)x > 0, then sB2 is redundant since

MB = 1 + (λ∗ − 1)x, meaning that the investor invests when sB1 = h and either sA1

or sA2 is h. It is straightforward to show that Rater 2 can increase both stand-alone

value and combined value by switching to λλλSPA . As such, there is no equilibrium in

this scenario.

• λλλ1 = (x, 1, 1−x, 1) for some x ∈ [0, 1]: In this case, λλλ1 also belongs to the set of rating

technologies in the baseline model. In Proposition 1, we show that the only possible

equilibria in pure strategies are generalization by both raters and specialization in

different categories. Therefore, we only need to examine if those outcomes remain in

equilibrium when we expand the set of rating technologies available to the raters.

– The generalization outcome (λλλGN ,λλλGN): We show that the generalization outcome

is not an equilibrium for any value of λ∗ ∈ (0, 1). To demonstrate this point, we

show that (1) λλλGN is not Rater 1’s best response to λλλGN when λ∗ > 0.5. And,

(2) λλλGN is not Rater 2’s best response to λλλGN when λ∗ ≤ 0.5.

Define λλλ(x) = (x, 1, 1, 1 − x). We show that when λ∗ ∈ (0.5, 1), v(λλλ(x),λλλGN) >

v(λλλGN ,λλλGN) for some x ∈ (0, 0.5), which proves (1) since Rater 1 effectively

maximizes the combined value.

v(λλλ(x),λλλGN) = 0.5(1 + x)(1 + (λ∗ − 1)x), x < 0.5. (OA.66)

For x̂ = λ∗

2(1−λ∗)
, we have:

v(λλλ(x̂),λGNλGNλGN) = 0.5 +
λ∗2

8(1− λ∗)
>

9

16
= v(λGNλGNλGN ,λGNλGNλGN) λ∗ > 0.5. (OA.67)

It proves (1).

To prove (2), we note that λλλGN is complement with itself when λ∗ ≤ 17
32
. In fact,

any two rating technologies are complements in a neighborhood of (λGNλGNλGN ,λGNλGNλGN)

when λ∗ ≤ 0.5 < 17
32
. Therefore, λλλGN is complement with λλλ′

2 = (1
2
, 1, 1

2
+ ε, 1− ε)

for a sufficiently small value of ε > 0. λλλ′
2 generates a larger stand-alone value:

v(OOO,λλλ′
2) =

1

2
(
1

2
+ ε+ (λ∗ − 1)ε) = 0.25 + 0.5λ∗ = 0.25 > v(OOO,λλλGN). (OA.68)

As such, the generalization outcome is not an equilibrium when λ∗ ∈ (0, 1),

whereas it was an equilibrium in the baseline case for some values of λ∗ in this
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range.

– Specialization in different categories (λλλSPA ,λλλSPB), (λλλSPB ,λλλSPA): We show that

(1) this outcome is not an equilibrium when λ∗ ∈ [0, 0.5), and (2) this outcome

remains an equilibrium when λ∗ ∈ [0.5, 1].

To prove (1), note that λλλSPA and λλλSPB are complements when λ∗ ∈ [0, 0.5):

v(λλλSPA ,OOO) + v(OOO,λλλSPB) = 2λ∗ < 1 = v(λλλSPA ,λλλSPB). (OA.69)

Therefore, rating technologies are complements in a neighborhood of (λλλSPA ,λλλSPB).

Let ε > 0 be sufficiently small such that λλλ(1−ε) = (1 − ε, 1, 1, ε) and λλλSPB are

complements. The inequality below demonstrates that the stand-alone value of

λλλ(1−ε) exceeds that of specialization:

v(OOO,λλλ(1−ε)) = (1− ε)(1 + (λ∗ − 1)(1− ε))

= λ∗ + (1− 2λ∗)ε(1− 1− λ∗

1− 2λ∗ ε) > λ∗ = v(OOO,λλλSPA).
(OA.70)

Therefore, λλλSPA is not Rater 2’s best response to λλλSPB .

To prove (2), we show that specialization in a category maximizes the stand-

alone value. From Proposition 2, we know that for any value of λ∗, specializing in

category A (B) obtains the highest combined value when the other rater specializes

in category B (A). Therefore, according to lemma A.2. Each rater’s best response

to specialization is to specialize in the other category.

To prove that specialization obtains the largest stand-alone value, we need to

show this choice maximizes the following objective function (assuming λAL
2 = 1

to ensure a positive stand-alone value):

max
λ
AH
2 +λ

BH
2 +λ

BL
2 ≤2

v(OOO,λλλ2) = λAH
2 max{λ∗, λBH

2 + (λ∗ − 1)(1− λBL
2 )}. (OA.71)

Since λ∗ ∈ (0, 1], λBH
2 = 1, as otherwise, the stand-alone value could be increased

by slightly increasing λBH
2 and decreasing λBL

2 by the same amount. Therefore,

the rating technology with the largest stand-alone value is λλλ(x) = (x, 1, 1, 1 − x)

for some x ∈ [0, 1]. In fact, x should maximize x(1 + (λ∗ − 1)x). The maximizing

value of x is one for λ∗ ∈ [0, 1] and it is x∗ = 1
2(1−λ∗)

for λ∗ ∈ (0, 0.5). Since

x = 1 corresponds to λλλSPA , we see that specialization obtains the highest stand-

alone value. Hence, specialization in different categories is an equilibrium when
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λ∗ ∈ [0.5, 1].

λAL
2 = 1 and λBL

2 < 1:λAL
2 = 1 and λBL

2 < 1:λAL
2 = 1 and λBL

2 < 1:28 First, we show that it is not possible to have λAL
1 < 1 in equi-

librium. If λBL
1 < 1 too, then sA1 has no impact on the investor’s decision, implying that it

cannot happen in equilibrium since Rater 1’s payoff would increase by switching to λλλSPB . If

λBL
1 = 1, the combined value is:

v(λλλ1,λλλ2) = λAH
2 λBH

1 + λAH
2 [λBH

2 (1− λBH
1 ) + (λ∗ − 1)(1− λBL

2 )]+

+λAH
2 [(1− λBH

2 )(1− λBH
1 ) + (λ∗ − 1)λBL

2 ]+ + λBH
1 [λAH

1 (1− λAH
2 ) + (λ∗ − 1)(1− λAL

1 )]+

+λBH
1 [(1− λAH

1 )(1− λAH
2 ) + (λ∗ − 1)λAL

1 ]+.

(OA.72)

In equation OA.72, the terms correspond to the investor’s value from signal realizations

(sA2 = h, sB1 = h),(sA2 = h, sB1 = l, sB2 = h),(sA2 = h, sB1 = l, sB2 = l),(sA2 = l, sA1 = h, sB1 = h),

and (sA2 = l, sA1 = l, sB1 = h), respectively. If the third or fifth term is positive, then

signal realizations in categories B and A, respectively, have no impact on the investor’s

decision, which cannot happen in equilibrium since Rater 1 could increase the combined

value by specializing in one of the categories. Moreover, the fourth term should be positive,

as otherwise, the realization of sA1 has no impact on the investor’s decision. Moreover, if

λAH
2 > λ∗, Rater 1 can increase its payoff by switching to λ1λ1λ1

′ = (λAH
1 + λAL

1 − 1, 1, λBH
1 , 1),

which would violate the assumption that λAL
1 < 1. Therefore, we should have λAH

2 < λ∗,

which implies that λAH
1 = 1. That is, λλλ1 = (1, 1 − y, y, 1) for some y ∈ [0, 1]. Thus, the

combined value can be rewritten as below:

v(λλλ1,λλλ2) = y[1 + (λ∗ − 1)y] + λAH
2 [λBH

2 (1− y) + (λ∗ − 1)(1− λBL
2 )]+. (OA.73)

The first term in equation OA.73 represents the stand-alone value of λλλ1, and the second-

term is less than the stand-alone value of λλλ2. Therefore, two rating technologies are sub-

stitutes. As a result, λλλ2 should maximize the combined value given λλλ1. The first-order

conditions imply that if y > λ∗, then λBL
2 = 1, which contradicts our original assumption.

Therefore, y < λ∗, which further implies λBH
2 = 1. As a result, the only possibility is that

λλλ2 = (x, 1, 1, 1− x) for some x ∈ [0, 1]. The combined value is:

x+ y − xy + (λ∗ − 1)(x2 + y2). (OA.74)

The first-order conditions with respect to x and y imply that x = y = 1
1+2(1−λ∗)

. This

28The argument is similar for λAL
2 < 1 and λBL

2 = 1
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implies a combined value of v(λλλ1,λλλ2) =
1

1+2(1−λ∗)
= y, which is less than λ∗, as shown earlier.

Therefore, Rater 1 can increase the combined value by specializing in a category, meaning

that λλλ1 and λλλ2 cannot form an equilibrium. Therefore, there is no equilibrium in which

λAL
2 = λBL

1 = 1 and λBL
2 , λAL

1 < 1.

Lastly, we analyze the possibility that λAL
1 = 1 and λBL

1 ≤ 1. The combined value is:

v(λλλ1,λλλ2) = λAMB, (OA.75)

where λA = λAH
1 + λAH

2 − λAH
1 λBH

1 , and MB is defined in equation OA.45. By examining

the first-order conditions, we find that we should have either λBH
1 = 1 or λBL

1 = 1 for a

robust equilibrium. Moreover, since a robust equilibrium cannot be on the borderline of the

set of complement rating technology pairs for all values in a neighborhood of λ∗, λλλ2 should

maximize the combined value or stand-alone value in a neighborhood of (λλλ1,λλλ2), depending

on whether λλλ1 and λλλ2 are substitutes or complements.

First, we rule out the possibility that the rating technologies are complements: For

λ∗ ∈ [0.5, 1], λλλSPA and λλλSPB maximize the stand-alone value. For λ∗ < 0.5, the rating

technology that maximizes the stand-alone value depends on λ∗, so it cannot be part of a

robust equilibrium. Therefore, λλλ1 and λλλ2 should be substitutes.

By analyzing the first-order conditions, we can show that there are two possibilities:

either λBH
2 = 1 or λBL

2 = 1, where the latter is ruled out by the case assumption, as analyzed

earlier. Similarly, one can show either λBH
1 = 1 or λBL

1 = 1. Therefore, we only need to

examine the following possibilities:

• λλλ1 = (y, 1, 1− y, 1), λλλ2 = (x, 1, 1, 1−x), and λλλ1 and λλλ2 are substitutes: x and y should

maximize the combined value, which is:

v(λλλ1,λλλ2) = (x+ y − xy)(1− y + [y + (λ∗ − 1)x]+). (OA.76)

If the term inside the bracket is positive, we should have y = 1, and consequently

λλλ1 = λλλSPA , which is analyzed earlier.

• λλλ1 = (y, 1, 1, 1− y), λλλ2 = (x, 1, 1, 1− x), and λλλ1 and λλλ2 are substitutes: The combined

value is

v(λλλ1,λλλ2) = (x+ y − xy)(1 + (λ∗ − 1)xy). (OA.77)

By examining the first-order conditions, we find that x = y and they depend on λ∗.

Thus, there is no robust equilibrium under this possibility.
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OA.3.7 Proof of Proposition OA.2 (Socially optimal information design)

Similar to Lemma A.1, one can show that the social value function can be written as below:

W (λλλ1,λλλ2) = η2(∆ + βSPV HH)w(λA, λB),

w(λλλ1,λλλ2) = λAλB + λA[λ∗
SP − λB]I{λ∗ ≥ λB}+ λB[λ∗

SP − λA]I{λ∗ ≥ λA},
(OA.78)

where λ∗ is defined in (A.4), and λ∗
SP is defined similarly for βSP :

η(1− λ∗
SP )(∆ + βSPV HH) + (1− η)(∆ + βSPV HL) = 0. (OA.79)

From (OA.78), we can see that for a socially optimal design, (λA, λB) should maximize

w(λA, λB).

a) In this case, ∆+βSPV HL and ∆+βV HL have the same signs; that is, they both agree

that only projects with type (H,H) should receive investment. Therefore, it is trivial that the

social planner can implement the socially optimal investment decision by perfectly disclosing

the project’s type, which is achieved when the raters specialize in different categories.

b) From (A.4) and (OA.79), we can see that λ∗ > 1 > λ∗
SP . In particular, λSP ∗ ∈ [0, 1)

when ∆ + βSP{ηV HH + (1 − η)V HL} ≥ 0 (Part b.1), and λ∗
SP < 0 otherwise (Part b.2).

Since λA, λB ≤ 1, we can write w(λA, λB) in (OA.78) as below:

w(λA, λB) = λ∗
SP (λ

A + λB)− λAλB. (OA.80)

When λ∗
SP < 0, it is clear that w(λA, λB) ≤ 0 and the equality is attained only when

λA = λB = 0. It proves the statement in Part (b.2).

Now, we consider the case that λ∗
SP ∈ [0, 1), corresponding to Part (b.1). Note that when

the raters specialize in the same category, we have λA = 1, λB = 0 or λA = 0, λB = 1, which

results in w = λ∗
SP . The inequalities below show that λ∗

SP ≥ w(λA, λB) for any λA and λB

in this case:
λA, λB ≤ 1 ⇒ (1− λA)(1− λB) ≥ 0

⇒ λAλB ≥ λA + λB − 1 ⇒ λAλB ≥ λ∗
SP (λ

A + λB − 1)

⇒ λ∗
SP ≥ λ∗

SP (λ
A + λB)− λAλB = w(λA, λB).

(OA.81)

Equality is obtained when λA = 1, λB = 0 or λA = 0, λB = 1. These outcomes correspond

to specialization in the same category.
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