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Abstract

This paper explores the impact of carbon intensity on cryptocurrency pricing through
two channels: (1) the investment decisions of carbon-sensitive green investors, and (2)
carbon emissions associated with cryptocurrency production. The CAPM-like pricing re-
lation reveals two phenomena: first, ceteris paribus, the carbon premium in cryptocurren-
cies is lower compared to equities. Second, carbon intensity heightens cryptocurrencies’
market portfolio exposure, which can be mitigated by utilizing green resources in produc-
tion. Speculative behavior weakens carbon sensitivity, thereby lowering carbon premium in
cryptocurrencies. Additionally, regulations targeting cryptocurrency carbon footprints may
provoke negative market reactions as security concerns from lower energy use outweigh
environmental benefits.
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1 Introduction

The carbon intensity of cryptocurrency mining has raised significant concerns in recent years,

as the high energy consumption of the process contributes to a significant carbon footprint. For

instance, as of February 2023, Bitcoin mining alone consumes an estimated 95.63 TWh per

year, surpassing the electricity consumption of entire countries such as Ukraine (85.98 TWh)

and the Czech Republic (55.95 TWh).1 Such a high level of energy consumption results in a

substantial carbon footprint since much of the world’s electricity is still generated from fossil

fuels.

How does this substantial carbon footprint influence the pricing of cryptocurrencies? From

the perspective of cryptocurrency trading, on one hand, energy intensity is an integral part of

ensuring the security of many established cryptocurrencies like Bitcoin. Thus, higher carbon

intensity signals enhanced security and reduces the perceived risk of holding these cryptocur-

rencies. On the other hand, the presence of carbon-sensitive green investors in the market can

affect the demand for, and consequently, the prices of cryptocurrencies with a high carbon foot-

print. As discussed in Pástor, Stambaugh, and Taylor (2020), the carbon intensity of a financial

asset can negatively impact the utility of carbon-sensitive investors, prompting them to tilt their

portfolios towards carbon-friendly assets and away from carbon-intensive ones. Therefore, in-

vesting in carbon-friendly assets may be a more attractive option for such investors, and this

could negatively affect the pricing of cryptocurrencies with high carbon emissions.

The economic forces associated with carbon intensity of cryptocurrecnies extend beyond

mere trading activities. From the production perspective, the process of cryptocurrency mining

is notably carbon-intensive.2 As economies worldwide transition from carbon-intensive activi-

ties to carbon-neutral alternatives, cryptocurrency miners face substantial transition risks. One

of the primary risks miners face is increased regulation and compliance costs as governments

implement carbon-reducing policies. Furthermore, investors’ growing interest in carbon-neutral
1see https://ccaf.io/cbeci/index
2For instance, refer to the article at https://www.nytimes.com/2021/03/09/business/dealbook/bitcoin-climate-

change.html
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Figure 1. The trading and investment decisions of investors directly affect the price of carbon-intensive
cryptocurrencies and, indirectly, miners’ revenue. Additionally, miners are at risk from regulatory
changes targeting carbon emissions, which can directly influence their revenue and the cryptocurrency’s
price accordingly.

cryptocurrencies and preference for sustainable investments, as noted in the trading channel, re-

sults in a diminished demand for established carbon-intensive cryptocurrencies. Consequently,

this channel - also referred to as reputation risk - can result in a decline in both the price and

transaction volume of these cryptocurrencies. Such a decline directly impacts miners’ revenue,

as their compensation is in the form of cryptocurrencies. Ultimately, both these factors collec-

tively diminish miners’ revenue potential.

The impact of reduced mining revenue on cryptocurrency pricing can be understood in two

ways. First, to offset the decline in revenue, miners may attempt to collude to prioritize and

validate transactions with higher fees, a behavior that can directly affect cryptocurrency pricing

(Lehar and Parlour 2020). Second, diminished mining revenue renders operations infeasible for

a portion of existing miners. Consequently, the number of active miners on the cryptocurrency

platform decreases. This reduction in validators and entities maintaining the transaction ledger

adversely impacts platform security, potentially discouraging investment and trading on the

platform. Figure 1 illustrates the interaction between trading and production channels associated

with carbon emissions in cryptocurrency pricing.

In this study, I explore the impact of carbon intensity on cryptocurrency pricing through
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a stylized general equilibrium model that integrates both the trading and production channels

described previously. I model an ecosystem with overlapping generations of carbon-sensitive

green investors who trade two types of cryptocurrencies, an equity, and a riskfree asset. One

type of cryptocurrecy refers to the ones using Proof-of-Work (PoW) for consensus in the de-

centralized blockchain. PoW is a consensus mechanism in blockchain technology that requires

computational work to be performed in order to validate transactions and create new blocks.

The computational work in these platforms require energy consumption and produces a con-

siderable amount of carbon. Thus, I refer to them as carbon-intensive cryptocurrencies. The

computational work is conducted by entities called miners and in turn, they are rewarded with

newly-generated cryptocurrencies. The other type of cryptocurrency uses Proof-of-Stake (PoS)

for consensus in the decentralized blockchain. They are typically less-established platforms that

reach consensus through a process known as staking. Staking is the process of holding a certain

amount of cryptocurrency in a wallet or other designated accounts to support the operations of

a blockchain network. Like miners, Stakers are typically rewarded with cryptocurrencies for

contributing to the security and reliability of the network. Since staking does not require com-

putational power, it is considered energy efficient and I refer to the associated cryptocurrencies

as carbon-neutral.

Miners and stakers behave competitively and use the revenue from mining and staking

(block reward + transaction fee) to cover their operating expenses. It is worth noting that miners

use a portion of their mining revenue to cover the energy (electricity) cost of mining process,

while stakers do not face such costs. However, stakers do face the opportunity cost of staking

a certain amount of cryptocurrencies. For simplicity, the main text considers a single entity

performs both mining and staking, and this entity can be viewed as a validator in the blockchain

ecosystem. I relax this simplifying assumption in the Appendix by proposing that miners and

stakers are independent entities and that a social planner determines the resource allocation

between mining and staking.

Theoretically, assumptions within this ecosystem are made to present a pricing relation that

resembles the Capital Asset Pricing Model (CAPM). This CAPM-like relationship suggests
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that the price disparities between PoW and PoS cryptocurrencies arise from both their antici-

pated transactional benefits and their distinct carbon footprints, resulting in three predominant

pricing effects. First, the carbon intensity of cryptocurrency mining influences the level of ex-

posure to the market portfolio. This finding reveals the presence of a transition risk in carbon-

intensive cryptocurrencies, which is in line with previous studies on this concept (Bolton and

Kacperczyk 2021b). As the entire economy is transitioning to carbon-neutral activities, carbon-

intensive activities such as cryptocurrency mining face higher levels of risk, reflected in their

beta exposure to the market portfolio. The theory demonstrates that the beta exposure of PoW

cryptocurrency increases relative to its PoS counterpart as the carbon-intensity of PoW cryp-

tocurrency rises. However, when miners use renewable resources in their energy portfolios,

their beta exposure to the market portfolio will become relatively lower compared to the sce-

nario where they use only fossil fuels for energy generation. This finding implies that the market

demand for PoW cryptocurrencies is likely to decline in the future, unless miners take steps to

substitute fossil fuels with renewable resources.

Second, investors’ carbon sensitivity introduces a positive CAPM alpha for the carbon-

intensive PoW cryptocurrency, while no alpha term associated with carbon emissions appears

in the pricing relation of the carbon-neutral PoS cryptocurrency. This reflects the disutility

experienced by carbon-sensitive investors from holding the carbon-intensive cryptocurrency,

and the premium they require to compensate for their loss of utility. Third, a comparison of

the carbon alpha between PoW cryptocurrency and equity shows that, ceteris paribus, PoW

cryptocurrency exhibits a lower carbon alpha. This is attributed to the fact that the higher

carbon intensity in PoW cryptocurrency signals stronger network security—a critical aspect of

decentralized digital assets like cryptocurrencies. Stronger security reduces the perceived risk

associated with holding PoW cryptocurrency in the portfolio, effectively leading to a negative

premium.

Along with the carbon alpha, cryptocurrencies possess another alpha term associated with

their distinctive transactional benefits. Established carbon-intensive cryptocurrencies like Bit-

coin, or highly efficient ones such as Ethereum, are expected to exhibit a negative alpha related
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to transactional benefits. This, coupled with the positive carbon alpha, creates a complexity in

interpreting the overall alpha in the cross-sectional analysis. It is likely that a negative alpha is

observed for carbon-intensive cryptocurrencies since the negative alpha for transactional ben-

efits dominates the positive carbon alpha. To address this confounding factor in the empirical

verification of the theory, this paper proposes an Instrumental Variable (IV) analysis that demon-

strates how exogenous variation in carbon sensitivity affects the prices of PoW cryptocurrencies.

The results indicate that as investors’ carbon sensitivity increases, the prices of carbon-intensive

PoW cryptocurrencies decrease, supporting the existence of a carbon premium.

Considering the speculative nature of cryptocurrencies, I investigate the effect of speculative

behavior on carbon sensitivity. I extend the baseline model to study an ecosystem consisting

of two types of investors: rational investors, who optimize based on a subjective probability

measure that aligns with the objective measure, and overconfident investors, who base their op-

timal decisions on a subjective probability measure that deviates from the objective measure.

These overconfident investors are sometimes referred to as noise traders or speculators in the

literature (Sockin and Xiong (2020) and De Long, Shleifer, Summers, and Waldmann (1990)).

By endogenizing carbon sensitivity, I demonstrate that speculative trading weakens the aggre-

gate market’s carbon sensitivity and subsequently reduces the carbon premium. This occurs

because the speculative motive tends to overshadow the environmental concerns regarding the

carbon footprint of cryptocurrencies, leading investors to prioritize expected financial gains over

climate considerations.

The main theory findings are based on the assumption that investors are sensitive to car-

bon emissions. The direct outcome of this preference is a carbon alpha in the pricing relation

of PoW cryptocurrency. Additionally, exposure to transition risk is an indirect outcome of in-

vestors’ carbon sensitivity. While previous studies have provided extensive evidence of carbon

sensitivity in the equity market, it has not yet been documented in the crypto market. Hence, to

support theory findings, providing evidence of carbon sensitivity in the crypto market is crucial.

However, testing the implications of carbon sensitivity in the crypto market through an OLS re-

gression in the cross-section is not straightforward due to confounding factors like unobservable
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transactional benefits. Moreover, due to fundamental differences between the cryptocurrency

and equity markets, applying conventional equity market methods to the cryptocurrency market

is not feasible and may lead to erroneous results. To overcome empirical limitations, I employ

the Instrumental Variable (IV) method to investigate whether sensitivity to carbon emissions

affects cryptocurrency prices. According to the theory, if investors are carbon-sensitive, higher

carbon emissions should command a positive risk premium through two channels, a positive

alpha and an increase in beta coefficient. As discussed in Pástor, Stambaugh, and Taylor (2020)

and Pedersen, Fitzgibbons, and Pomorski (2021), higher expected returns correspond to lower

price levels. Therefore, if carbon-sensitivity is present in the market, we anticipate that positive

shocks to investors’ carbon sensitivity lower the prices of carbon-intensive PoW cryptocurren-

cies.

In order to test the argument presented above, it is necessary to identify an appropriate

proxy for carbon sensitivity, which is an unobservable preference parameter. Building upon

prior research such as the work by Andrei and Hasler (2015) and Chen, Kumar, and Zhang

(2020), I consider investors’ attention to carbon-related topics, henceforth referred to as carbon

attention, as a reflection of their carbon sensitivity. The rationale behind this is that as investors

become more carbon-sensitive, they are likely to pay more attention to new information about

carbon emissions. Thus, fluctuations in carbon attention can be utilized to infer the presence

of carbon sensitivity. A higher level of sensitivity leads to stronger fluctuations in attention

as investors react more strongly to new information. I employ Google Search Volume data to

gauge the fluctuations in carbon attention, encompassing a range of subjects such as ”carbon

emission,” ”greenhouse gas emission,” ”environment,” ”ESG,” and ”climate.” Subsequently,

I investigate whether fluctuations in carbon attention are reflected in the pricing of carbon-

intensive cryptocurrencies, which would suggest that carbon sensitivity is also priced.

To investigate whether carbon attention is priced in PoW cryptocurrencies, I focus exclu-

sively on the four leading PoW cryptocurrencies: Bitcoin, Ethereum, Litecoin, and Dogecoin.3

3It’s important to note that Ethereum underwent a significant transition to a PoS system with the Beacon Chain
merge in September 2022.
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This selection is driven by two primary considerations: firstly, cryptocurrencies represent a rel-

atively new asset class, and many lesser-known cryptocurrencies have only a limited amount

of time series data available. In contrast, these four cryptocurrencies provide at least five years

of comprehensive data on various factors crucial for our analysis. This data richness allows

for more robust and reliable results. Secondly, these cryptocurrencies are deeply established

in the market and tend to exhibit relatively lower volatility compared to their smaller counter-

parts, which often have market capitalization smaller than 1 billion dollars. Consequently, they

are less susceptible to speculative behavior and trading activities aimed at exploiting arbitrage

opportunities.

To construct a valid instrument for carbon attention, I consider the interplay of economic

forces associated with the network hash rate of PoW cryptocurrencies. The hash rate is a metric

that quantifies the computational power of a PoW platform, shedding light on both the network’s

carbon intensity and its security level. To separate the portion of the hash rate that is indicative

of carbon intensity from the aspect associated with perceived security, I regress the hash rate on

the Google search volume for terms such as ’Bitcoin hack,’ ’Ethereum hack,’ ’Litecoin hack,’

and ’Dogecoin hack.’ These search terms are presumed to echo investors concerns regarding the

security of these digital assets, with heightened search volumes possibly indicating increased

concerns about network security breaches. By extracting the residuals from this regression, I

can construct an instrument from hash rate that signals the network’s carbon intensity, while

ensuring it is uncorrelated with network security deduced from the hash rate.

Utilizing 2SLS regression and controlling for various factors, a significant negative relation

between investors’ carbon attention and the prices of BTC, ETH, LTC, and DOGE is discovered.

The results indicate that carbon attention is indeed priced, which implies that investors’ carbon

sensitivity has a discernible impact on the value of carbon-intensive cryptocurrencies.

Moreover, I direct attention to the Ethereum Beacon Chain merge to present further empiri-

cal evidence that confirms the presence of carbon sensitivity in the cryptocurrency market. This

noteworthy event occurred on September 15, 2022, signifying the transition of the Ethereum
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network from its existing PoW consensus algorithm to a PoS consensus algorithm. The merge

resulted in a remarkable 99.95% reduction in Ethereum’s energy consumption.4 Following this

event, I demonstrate a considerable increase in the proportional demand for Ethereum com-

pared to Bitcoin. This surge in demand is evident through the flow of money deposited into the

Ethereum platform via exchanges, leading to an upward push in the exchange rate of Ethereum

to Bitcoin. Furthermore, there has been a noticeable rise in the number of new Ethereum ad-

dresses created subsequent to the announcement of the Beacon Chain merge, surpassing the

growth seen in Bitcoin. This influx of new addresses further contributes to the increase in the

exchange rate of Ethereum to Bitcoin.

1.1 Related literature

This paper bridges two distinct strands of literature. One strand explores the effect of car-

bon emissions, or more broadly, climate change, on asset prices (Albuquerque, Koskinen, and

Zhang (2019), Avramov, Lioui, Liu, and Tarelli (2021), Bolton and Kacperczyk (2021a), Pástor,

Stambaugh, and Taylor (2020), Barnett, Brock, and Hansen (2020) and Pedersen, Fitzgibbons,

and Pomorski (2021)). Both Pástor, Stambaugh, and Taylor (2020) and Pedersen, Fitzgibbons,

and Pomorski (2021) propose theoretical frameworks that incorporate carbon, or more broadly

climate sensitivity into the utility function of investors. They show that climate sensitivity intro-

duces a positive CAPM alpha term in carbon-intensive stocks. This study expands on existing

research in two directions. First, it integrates the distinctive characteristics of cryptocurrencies,

particularly the interplay between network security and carbon intensity, into the prevailing

modeling framework. Second, it investigates the impact of carbon emissions from cryptocur-

rency production on the pricing of this digital asset. By introducing a new market participant

that produces cryptocurrencies using carbon-intensive processes, I highlight the presence of

transition risk in the cryptocurrency market. Furthermore, I endogenize the representative in-

vestor’s aversion to carbon emissions and provide insights into the factors that shape this prefer-

4https://www.forbes.com/sites/qai/2022/09/27/proof-of-stake-will-the-ethereum-merge-really-lead-to-a-
rally/?sh=4c498b65223d
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ence. Additionally, I explore the impact of speculation in the cryptocurrency market on carbon

sensitivity.

The theoretical findings of this paper are consistent with the empirical findings of Bolton and

Kacperczyk (2021b) and Bolton and Kacperczyk (2021a). Specifically, this paper establishes

that carbon intensity of PoW cryptocurrencies exposes them to a higher systematic risk, akin

to the notion of transition risk discussed by Bolton and Kacperczyk (2021b). Also, in line

with empirical findings of these two studies, this paper demonstrates that carbon sensitivity is

more pronounced in wealthier economies and economies with stricter regulations on carbon

emissions.

Another strand focuses on cryptocurrency pricing (Biais, Bisiere, Bouvard, Casamatta, and

Menkveld (2020), Schilling and Uhlig (2019), Cong, Li, and Wang (2021), Sockin and Xiong

(2020)). In this strand, researchers acknowledge the convenience yield from transacting on

blockchain platforms as a fundamental source of value. Additionally, Pagnotta (2022) exam-

ine the impact of cryptocurrency infrastructure elements, such as security, on pricing. In this

paper, I bridge the concepts from this strand with traditional asset pricing literature, propos-

ing a CAPM-like pricing relation that accounts for both the convenience yield and the carbon

intensity’s impact on cryptocurrency pricing. Specifically, I concentrate on the microfounda-

tion relating network security and cryptocurrency mining with carbon intensity. Utilizing this,

I derive a set a findings that shed light on the sustainability aspect of cryptocurrencies.

2 Model

In this section, I first describe a stylized representative agent ecosystem to identify the impact

of carbon emissions on cryptocurrency pricing. Then, I extend the model into a two-agent

speculative ecosystem which comprises of a rational agent and an overconfident agent (i.e. a

speculator).
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In the representative agent ecosystem: (i) I solve the investor’s optimization problem and

establish a CAPM-like pricing relation for the equity and cryptocurrency pricing; (ii) I describe

the optimal behavior of the competitive validator (miner and staker); (iii) By imposing the

market-clearing conditions, I develop a proposition that explains how carbon intensity affects

the beta exposure to the market portfolio; (iv) I endogenize carbon-sensitivity and identify the

structure of investor’s sensitivity to carbon emissions; and (v) I investigate the effects of policy

interventions aimed at reducing the climate impact of cryptocurrency mining. This contains a

study of how China’s mining ban in May 2021 affects the price of Bitcoin.

In the two-agent speculative ecosystem: (i) I solve the optimization problem of each agent

and establish a CAPM-like pricing relation for the equity and cryptocurrency pricing; (ii) I

demonstrate how speculative behavior weakens carbon sensitivity.

2.1 The representative agent ecosystem:

The economy is populated with an infinitely-lived validator (miner and staker) and overlapping

generations of investors who trades two types of cryptocurrencies, an equity, and a riskfree

asset. Investors are carbon-sensitive, implying that the carbon emissions of their portfolio will

adversely affect their utility.

I describe the two types of cryptocurrencies as follows: (1) a Proof-of-Work (PoW) cryp-

tocurrency which requires computational power and is carbon-intensive, (2) a Proof-of-Stake

(PoS) cryptocurrency which is energy-efficient and considered as carbon-neutral. The equity

can be regarded as a major index such as S&P 500. The riskfree asset is in zero net supply and

I normalize its return to 1. Also, one Dollar is set as the numeraire.

New cryptocurrencies (coins) are generated based on a predetermined rate. New coins are

generated in the form of block rewards and paid out to the validator. Let θkt be the number of

coins of type k’s platform at time t where k = w, s. k = w represents a PoW platform and

k = s represents a PoS platform. Also φk is the pre-determined coin generation rate of type k’s
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platform. We have:

θkt+1 = φkθkt φk > 1 (1)

Overlapping generations of investors live for two dates t and t+ 1. In this section, I assume

that there exists a representative agent in each generation. A young generation born at time t

is endowed with wealth Wt. This young generation allocates its wealth among four available

assets to maximize the utility of terminal payoff. Let rkt+1 be the return on cryptocurrency of

type k from t to t+ 1. Also, ret+1 describes the cum-dividend equity return from t to t+ 1.

These returns are assumed to follow a normal distribution with the mean Et[rkt+1] and variance

σ2
rk where k = w, s, e. Let fkt denote the transaction fee of trading one dollar value of type k

cryptocurrency at time t. To keep the model as simple as possible, I assume that the transac-

tion fee is exogenously given and is ex ante known by the investor. The budget constraint is

expressed as below:

Wt+1 = Wt(1 +Xs(rst+1 − f st ) +Xw(rwt+1 − fwt ) +Xeret+1) (2)

where Xs and Xw denote the weight of PoS and PoW cryptocurrencies in the representative

investor’s portfolio. Also, Xe denotes the weight of equity in her portfolio.

Besides the financial gain, cryptocurrencies offer distinctive transactional benfits. These

transactional benefits are unique to cryptocurrencies and cannot be provided by the equity or

the riskfree asset. These benefits can be viewed as the ”convenience yield” associated with hold-

ing cryptocurrencies. Inspired by previous studies (Cong, Li, and Wang (2021); Biais, Bisiere,

Bouvard, Casamatta, and Menkveld (2020); Abadi and Brunnermeier (2018); and Sockin and

Xiong (2020)), I define transactional benefits as the aggregation of platform productivity and

platform security. Security in this context refers to promoting honest behavior within the de-

centralized network of cryptocurrencies. In PoW cryptocurrency, security is achieved through

energy-intensive mining, making dishonesty economically unviable. Conversely, in PoS cryp-

tocurrency, security is maintained through a more energy-efficient process known as staking,
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which involves validators committing their own cryptocurrency holdings to support network

integrity. Platform productivity, on the other hand, refers to unique features specific to each

cryptocurrency, such as Ethereum’s smart contracts or Bitcoin’s efficiency in cross-border trans-

actions.

Let Skt denote the level of security that platform type k provides at time t to the represen-

tative investor per dollar value invested in the cryptocurrency. Additionally, let Akt denote the

productivity that the platform type k offers per dollar value invested at time t where k = w, s.

To quantify the perceived transactional benefits per dollar value invested in cryptocurrency

type k, denoted by λkt , I employ the CES aggregator as follows:

λkt = γSkt + (1− γ)Akt (3)

where 0 < γ < 1 and determines the relative importance of security and productivity in the

composition of the transactional benefits. I assume that Skt follows a normal distribution with

the mean of S̄k and variance of σ2
Sk. I will present a parsimonious microfoundation which

determines the structure of the mean and variance of network security. Also, I assume that Akt

follows a normal distribution with the mean of Āk and variance of σ2
Ak. The additive structure

of Eq. 3 implies that λkt is also normally distributed with the following mean and variance:

λ̄k = γS̄k + (1− γ)Āk

σ2
λk = γ2σ2

Sk + (1− γ)2σ2
Ak + 2γ(1− γ)cov(Skt , A

k
t )

In Eq. 3, security and productivity are assumed to be perfect substitutes. This assumption is

particularly chosen to maintain the model’s tractability and to enable the derivation of an ana-

lytical solution within the CARA-Normal framework. It’s important to note, however, that this

assumption is not restrictive in terms of the model’s outcomes. As demonstrated in Appendix

B, relaxing the assumption of perfect substitutability between security and productivity does
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not significantly alter the core results of the analysis.

In this model, both the productivity and platform security are treated as exogenous variables

provided to the representative investor. In the context of a PoS platform, the security dimension

is influenced by its inherent security mechanisms. Although PoS platforms have a complex

security infrastructure, exploring these details falls outside the primary scope of this study,

which concentrates on the implications of energy intensity and its associated carbon footprint.

Consequently, the microfoundations of PoS security are not explored in depth.

PoW security and carbon emissions: In the context of PoW cryptocurrency, security can

be characterized as the aggregation of the costs associated with generating network hash rate

and other security features. Let’s represent the per dollar value of the network hash rate and

security features by hwt and Fw
t , respectively. Understanding the role of hash rate in provision

of security necessitates an analysis of the interplay between energy consumption and hash gen-

eration. Cryptocurrency miners expend energy (electricity) to operate their mining rigs, which,

in turn, generate hashes. This dynamic can be mathematically represented as follows:

hwt = gewt (4)

here, g symbolizes the efficiency of mining rigs (the number of hashes generated per unit

of energy consumed) and ewt signifies the energy required for producing one dollar value of the

PoW cryptocurrency, which is referred to as energy intensity.

In order to disrupt the PoW blockchain, an entity must acquire the majority of the network’s

hash rate. Therefore, as miners dedicate more energy to hash generation, the resource expendi-

ture and associated costs required to acquire the majority of the network’s hash rate and disrupt

the blockchain increase, thereby enhancing the security of the PoW cryptocurrency. To charac-

terize the process governing the hash rate, it requires to first introduce the process for ewt . The

energy utilized for hash generation typically originates from two primary sources: fossil fuels

and renewable (green) resources. Consequently, the following relationship can be established
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to represent this energy mix:

ewt = αewFt + (1− α)ewGt (5)

where 0 ≤ α ≤ 1, and ewFt and ewGt represent the per dollar value of resources available for

hash generation from fossil fuels and green sources, respectively. Both ewFt and ewGt follow

AR(1) process with the following structure:

ewFt = ηwF + ϕwewFt−1 + εwFt (6)

ewGt = ηwG + ϕwewGt−1 + εwGt (7)

where Cov(εwFt , εwGt ) = 0. Therefore, the following process describes ewt :

ewt = ηw + ϕwewt−1 + εwt (8)

and the mean and variance have the following structure:

E[ewt ] =
αηwF + (1− α)ηwG

1− ϕw
(9)

V ar(ewt ) = α2σ2
wF + (1− α)2σ2

wG (10)

Considering above, the process for hwt yields the following structure:

hwt = µ+ ϕhwt−1 + εwt (11)

where ϕ = gϕw, µ = gηw, and V ar(hwt ) = g2V ar(ewt ). Let pFeng and pGeng represent the ex ante

known prices of fossil fuels and green energy, respectively. The assumption of known energy

prices aids in model tractability and assists in deriving a closed-form solution. Although this

represents a simplification, it aligns with some real-world practices, particularly the widespread

usage of futures contracts in the energy market. However, it’s important to note that relaxing this

assumption would not significantly impact our results. For example, employing a log-normal
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distribution for both energy prices and energy intensity, and then applying log-linearization,

could lead to similar findings. For a more detailed discussion on this topic, please refer to the

Appendix B.

Employing the CES aggregator to characterize PoW platform security yields:

Swt = π (Hash Costt) + (1− π) (Fw
t ) (12)

where 0 < π < 1. The Hash Costt has the following structure:

Hash Costt = pFeng × αewFt︸ ︷︷ ︸
First
term

+pGeng × (1− α)ewGt︸ ︷︷ ︸
Second
term

where the First term represents the per dollar capacity for hash generation from fossil fuels

and Second term represents the per dollar capacity for hash generation from green energy.

Fw
t follows a normal distribution with the constant mean of F̄w and variance of σ2

F . Fw
t

can be interpreted as the security provided by the blockchain’s cryptographic architecture. In

the PoW blockchain, each block contains a cryptographic hash, which is based on the data

within that block as well as the hash of the preceding block. As the blockchain expands, the

cryptographic links between the blocks strengthen, rendering it computationally impractical to

alter past blocks, thereby solidifying the integrity and reliability of the entire PoW blockchain

system.

The energy intensity of equity eet , is defined as energy consumption per dollar value of the

equity at time t. In the context of this discussion, there exists entities operating in the equity

market that expend energy to produce output. The energy intensity of equity is assumed to

follow an AR(1) process with the following structure:

eet = ηe + ϕeeet−1 + εet (13)
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where εet ∼ N(0, σ2
e).

The carbon intensity is defined as the amount of carbon emissions per dollar value of asset

type k at time t and is represented by Ck
t . As previously stated, PoS cryptocurrency is regarded

as a carbon-neutral asset, leading to the conclusion that Cs
t = 0. The carbon emissions is the

outcome of fossil fuel usage for energy generation. Let’s define ψ as the conversion rate of fossil

fuels usage to carbon emission, effectively representing the emission intensity of fossil fuels.

It’s straightforward to show that Cw
t follows an AR(1) process as delineated in the following

equation:

Cw
t = µwC + ϕwCC

w
t−1 + εwt (14)

where µwC = ψαηwF and ϕwC = ψαϕw. Consequently, the mean and the variance of Cw
t can be

expressed as C̄w =
µwC

1−ϕwC
and V ar(Cw

t ) =
σ2
Cw

1−(ϕwC)2
.

For equity, Ce
t denotes the carbon intensity of the equity at period t with a mean of C̄e and

a variance of σ2
Ce. Given that the detailed analysis of the microfoundations underlying equity

emissions falls outside the primary scope of this study, I will treat C̄e and σ2
Ce as given.

In this ecosystem, a cap on carbon emissions is established, and the carbon market must

clear at each time epoch. This emissions cap can be viewed as the initiative of a benevolent

social planner who internalizes the externalities associated with carbon emissions. Let Capt

denote the cap on carbon emissions at period t. It is important to note that the energy intensity

and carbon intensity can be either perfectly correlated (Corr(Ck
t , e

k
t ) = 1), which occurs when

all energy is produced from fossil fuels, or imperfectly correlated (Corr(Ck
t , e

k
t ) = α < 1)

when a portion of energy comes from green sources. To ensure positive values for energy in-

tensity, carbon intensity, and hash rate, I assume that the mean of their respective processes is

significantly larger than their volatility. In the Appendix B, I relax this assumption by consider-

ing a log-normal probability distribution for these three variables.

Utility function: Considering the Capital Asset Pricing Model (CAPM) as a benchmark,

the utility function of the representative investor is structured in the following manner to derive
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a pricing relation that both resembles and is comparable to CAPM:

Utility = −eAtŴt+1 (15)

where the terminal wealth (Ŵt+1) is considered a bundle which aggregates the pecuniary and

non-pecuniary benefits. The pecuniary benefits are derived from the capital gains of each asset,

while non-pecuniary benefits stem from the utility of transactional benefits and the disutility

associated with carbon emissions. At represents the coefficient of absolute risk aversion in

generation t. The choice of overlapping generations model implies time-varying preference pa-

rameters across generations. However, for simplicity, I drop the time subscript unless necessary.

Considering the above explanation, I identify the wealth bundle as below:

Ŵt+1 = Wt (δ1(1 +X′
t(rt+1 − ft))− δ2X

′
tCt + δ3X

′
tλt) (16)

where δ1, δ2, δ3 > 0, signifying the relative importance of different components within

the bundle. Also, X′
t = (Xw

t , X
s
t , X

e
t ) represents the vector of portfolio weights. The terms

rt+1, ft, Ct, and λt represent the vectorized formats of return, transaction fee, carbon inten-

sity, and transactional benefits, respectively. Specifically, δ1Wt(1 +X′
t(rt+1 − ft)) represents

the pecuniary component of the wealth bundle, while Wt (−δ2X′
tCt + δ3X

′
tλt) represents the

non-pecuniary component. In this framework, every component, whether it is pecuniary or

non-pecuniary in nature, is treated as a perfect substitute for the others. This simplifying as-

sumption is deliberately adopted to enable the derivation of an analytical solution within the

CARA-Normal framework. Such an approach facilitates comparative analysis with the CAPM.

However, as detailed in Appendix B, the robustness of the results is maintained even when the

assumption of perfect substitutability is relaxed.

Given this utility structure, the representative investor in generation t performs the following
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optimization over her expected utility function conditional on her information at time t:

Max
X

Et[−e−AŴt+1 ] (17)

In the following subsection, I present the solution for the representative investor’s problem.

Then, I characterize the equilibrium pricing relation.

2.1.1 Portfolio allocation and the CAPM-like relation

In this subsection, I solve the optimization problem of the representative investor and find the

equilibrium pricing relation within the context of this specific ecosystem.

Normal distribution of assets’ returns, transactional benefits, and carbon intensity allows us

to employ the normal characteristic function to rewrite the optimization problem of Eq. 17 as

below:

Max
X

−e−a[δ1(1+X′(Et[rt+1]−ft))−δ2X′ C̄+δ3X′ λ̄t]+
1
2
a2X′ΣTX (18)

where Et[rt+1] =


Et[r

w
t+1]

Et[r
s
t+1]

Et[r
e
t+1]



and ft =


fwt

f st

0

 λ̄ =


λ̄w

λ̄s

0

 C̄ =


C̄w

0

C̄e


We have ΣT = δ21Σ+ δ22ΣC + δ

2
3Σλ−2δ1δ2ΣrC +2δ1δ3Σrλ−2δ2δ3ΣCλ as the the variance-

covariance matrix of this ecosystem. Also, a = AWt signifies the coefficient of relative risk

aversion of the representative investor. Here, the effective risk aversion is aδ1, the effective

preference for carbon emission, which I referred to as carbon sensitivity, is aδ2, and the effective

preference for transactional benefits is aδ3. The signs of these effective preference parameters
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indicate that higher capital gain and transactional benefits enhance the investor’s utility, whereas

an increase in carbon emissions results in a utility loss.

Taking first order condition with respect to the vector of portfolio weightsX ′ = (Xw, Xs, Xe)

from Eq. 18 gives us the optimal portfolio weight in generation t:5

X∗ =
1

a
Σ−1
T (δ1(Et[rt+1]− ft)− δ2C̄+ δ3λ̄) (19)

Appendix A provides the proof. The optimal portfolio can be conceptually broken down into

three components. The first component (Σ−1
T (Et[rt+1] − ft)) represents the standard portfolio

with the highest Sharpe ratio, indicating the most efficient allocation of assets based on their ex-

pected financial gain. The second component (Σ−1
T C̄) represents the negative impact of carbon

emissions on the portfolio allocation and investment decision, reflecting the investor’s carbon

sensitivity. Lastly, the third component (Σ−1
T λ̄) illustrates the adjustment in portfolio allocation

influenced by transactional benefits, particularly in the context of cryptocurrency investments.

Utilizing the optimal portfolio allocation of the investor, I can characterize the equilibrium

return. Building on the conclusions of the preceding section, the mean transactional benefits for

both PoW (λ̄w) and PoS (λ̄s) cryptocurrencies are characterized as follows:

λ̄w = a1C̄
w + a2

λ̄s = γS̄s + (1− γ)Ās

where a1 = γπ
pFeng
ψ

· 1− ϕwC
1− ϕw

and a2 = γπ(1− α)pGeng
ηwG

1− ϕw
+ γ(1− π)F̄w + (1− γ)Āw

In this context, ”a1” represents the perceived impact of carbon intensity on network security.

5The portfolio weight must have a time subscript since it represents the optimal decision of generation t.
However, for the sake of brevity, I drop the time subscript.
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Let’s define XM as the market portfolio which consists of the 3 risky assets: PoW cryptocur-

rency, PoS cryptocurrency, and the equity. Therefore, in the market equilibrium, the market

weights represent the portfolio weight of each risky asset, i.e., X ′
M = (Xw

M , X
s
M , X

e
M). In light

of this equilibrium condition, the return of each risky asset at generation t can be derived as

follows:

Et[r
w
t+1] =

a

δ1
e′1ΣTXM + (fwt − δ3

δ1
a2) + (

δ2 − δ3a1
δ1

)C̄w (20)

Et[r
s
t+1] =

a

δ1
e′2ΣTXM + (f st −

δ3
δ1
λ̄s) (21)

Et[r
e
t+1] =

a

δ1
e′3ΣTXM +

δ2
δ1
C̄e (22)

where ei denotes the ith basis vector of Rn (having 1 in the ith place and 0 elsewhere).

Appendix A provides the proof. In Eq. 20, likewise the optimal portfolio allocation, the

expected return has 3 components. a
δ1
e′1ΣTXM represents the compensation for the volatility

of PoW cryptocurrency and its covariance with other risky assets in the market. δ2−δ3a1
δ1

C̄w

represents a premium for carbon emissions. This premium may be positive or negative, con-

tingent on how carbon intensity influences network security. Finally, fwt − δ3
δ1
a2 represents the

premium for the net of carbon-independent transactional benefits that the PoW cryptocurrency

is expected to offer.

In Eq. 21 and 22, there are 2 components that explain the expected return. For both equa-

tions, Similar to the PoW cryptocurrency, a
δ1
e′2ΣTXM (for PoS) and a

δ1
e′3ΣTXM (for equity)

represent the risk compensation. In PoS, f st − δ3
δ1
λ̄s represents the negative premium linked to

the net transactional benefits. For equity, δ2
δ1
C̄e represents the positive premium associated with

equity carbon emissions. Within the framework of CAPM, these premiums in excess of the

risk compensation are often referred to as ”alpha.” Here, the model finds a transactional bene-

fits alpha for PoS and PoW cryptocurrencies and a carbon alpha for PoW cryptocurrency and

equity.
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Comparing the expected return of PoW cryptocurrency with the equity, it becomes apparent

that the carbon alpha for each unit of emission is lower in PoW cryptocurrency than in equity.

Mathematically speaking, we have:

δ2
δ1
>
δ2 − δ3a1

δ1

This holds since a1 > 0. Interestingly, when the emission intensity (ψ) increases, the difference

between equity carbon alpha and the PoW carbon alpha decreases as indicated by
∂(

δ3a1
δ1

)

∂ψ
< 0.

Intuitively, when fossil fuels become more polluting, δ3a1 gets smaller which suggests that al-

though higher carbon emissions might be perceived as an indicator of stronger network security,

lower emission efficiency actually weakens the positive effect of this enhanced security.

Considering the expected returns of the three risky assets, I can develop a CAPM-like pric-

ing relation, as stated in the following Proposition.

Proposition 1: The expected return of each risky asset in this ecosystem follows a CAPM-

like relation as described below:

Et[r
w
t+1] = βwEt[r

M
t+1] +

δ2 − δ3a1
δ1

C̄w + (fwt − δ3
δ1
a2) (23)

Et[r
s
t+1] = βsEt[r

M
t+1] + (f st −

δ3
δ1
λ̄s) (24)

Et[r
e
t+1] = βeEt[r

M
t+1] +

δ2
δ1
C̄e (25)

Proof: see Appendix A.

where β = ΣTXM

σ̂2
M

and σ̂2
M = σ2

M + C̄M − T̄M represents the adjusted variance. Here,

C̄M = 1
a
X ′

M(δ2C̄) represents the average market premium for carbon emissions adjusted by

risk aversion and T̄M = 1
a
X ′

M(δ3λ̄−δ1ft) represents the average market premium for the net of

transactional benefits adjusted by risk aversion. Similar to the approach of Pástor, Stambaugh,

and Taylor (2020), one can normalize C̄M − T̄M = 0 and adjusts the alpha terms accordingly.

21



However, here I retain the current structure and and the adjustment is made to the variance term.

From an econometrics perspective, the inclusion of additional preference parameters causes the

CAPM beta to deviate from its conventional model value, which typically includes only risk

aversion as a preference parameter.

In Proposition 1, presence of carbon sensitive investors (δ2 > 0) introduces a positive car-

bon alpha to the pricing relation of equity, as documented in previous studies such as Pástor,

Stambaugh, and Taylor (2020) and Zerbib (2022). On the other hand, the sign of carbon al-

pha for PoW cryptocurrency is unclear. It can even be negative if investors perceive higher

emissions as a sufficiently strong signal of network security. Furthermore, the carbon alpha in

PoW cryptocurrency tends to be lower or equivalent per unit of carbon emission, suggesting

that cryptocurrency investors are less sensitive to the carbon emissions of this asset class when

compared to equity (stock) investors.

2.1.2 Competitive validator

A single entity called validator undertakes both mining and staking activities. This entity

is competitive, meaning that it uses the revenue from mining and staking (transaction fee +

block reward) to offset operating expenses. Specifically, mining expenses comprise equipment

maintenance costs and the expenditure on energy (electricity) necessary for the mining oper-

ations. Expenses related to staking are primarily the opportunity costs associated with staked

tokens. Moreover, the validator operates honestly and gains no private benefit from altering

the blockchain.6 In the latter part of this subsection and further explored in Appendix B, I dis-

cuss about a more comprehensive scenario where miners and stakers are treated as separate,

independent entities.

As our primary focus is on the impact of energy costs and associated carbon emissions, I

aggregate all other expenses, such as equipment maintenance, into a single term denoted as Mt.

6The concept of a representative validator simplifies the model for this analysis. However, introducing compe-
tition among miners in the setup does not significantly change the outcomes.
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Therefore, Mt encapsulates the sum of mining and staking expenses, excluding energy cost.

In the baseline model, I assume that the energy utilized for mining exclusively originates

from fossil fuels, thus ewt = ewFt . However, in Section 2.1.5, I will extend the model by con-

sidering a scenario where miners also use green energy for mining. Earlier, I discussed the

application of a linear conversion method to translate energy intensity into carbon intensity

(Barnett, Brock, and Hansen 2020). Hence, the relationship between energy intensity and car-

bon intensity can be expressed as follows:

Cw
t = ψewt (26)

Now defining pwt and pst as the price of one unit of PoW and PoS cryptocurrencies at time t

respectively, I characterize the budget constraint of the validator as below:

(θst+1 − θst )p
s
t︸ ︷︷ ︸

Block reward from staking

+ (θwt+1 − θwt )p
w
t︸ ︷︷ ︸

Block reward from mining

+ f stX
sWt︸ ︷︷ ︸

TX fee of PoS

+ fwt X
wWt︸ ︷︷ ︸

TX fee of PoW

= pFenge
w
t p

w
t (θ

w
t+1 − θwt )︸ ︷︷ ︸

Energy cost of mining

+ Mt︸︷︷︸
Other
expenses

(27)

Considering Eq. 1, I can express block reward as (φk − 1)θkt p
k
t for k = w, s. Note that θkt p

k
t

represents the market cap of type k’s cryptocurrency. Thus, we have:

(φk − 1)θkt p
k
t = (φk − 1)WtX

k (28)

for k = w, s. Replacing 28 into 27, and simplifying gives us:

(φw − 1 + fwt )X
w + (φs − 1 + f st )X

s = pFenge
w
t (φ

w − 1)Xw +
Mt

Wt

(29)

I use Eq. 29 along with the market-clearing conditions described in the next section to derive

relationship between systematic risk exposure and carbon intensity in cryptocurrency pricing.

Assuming a single validator carries an important implication: the validator can cross-subsidize
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resources between mining and staking. While this assumption reflects certain real-world sce-

narios, a more common perspective views miners and stakers as separate, independent entities.

In Appendix B, I explore this perspective by considering a representative miner and a repre-

sentative staker. Subsequently, I introduce a social planner to determine the optimal resource

allocation between mining and staking. I then demonstrate that the findings that emerge remain

consistent with the current ecosystem.

2.1.3 Market-clearing conditions

This ecosystem has two market-clearing conditions. First, the market for risky assets must clear.

Since the riskfree asset is in zero net supply, the market-clearing condition for risky assets is:

Xw +Xs +Xe = 1 (30)

Also, there is a cap for carbon emissions. So, the carbon market must clear which implies:

Cw
t WtX

w + Ce
tWtX

e = Capt (31)

where Capt represents the cap on carbon emissions at time t. As elaborated earlier, this emis-

sions cap may result from the actions of a benevolent social planner who internalizes the exter-

nalities associated with carbon emissions.
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2.1.4 Systematic impact of carbon emissions on cryptocurrency pricing

Gathering together the equations 29, 30, and 31, we form a linear system with three equations

and three unknowns, outlined as follows:
b1X

w + b2X
s = b3

Xw +Xs +Xe = 1

Cw
t X

w + Ce
tX

e = Capt
Wt

(32)

where b1 = (φw − 1)(1− pFenge
w
t ) + fwt

b2 = (φs − 1 + f st )

b3 =
Mt

Wt

Here, b1 represents the marginal revenue net of electricity cost of mining per dollar value

of PoW cryptocurrency, while b2 represents the marginal revenue of staking per dollar value

of PoS cryptocurrency. Additionaly, b3 represents the marginal operating cost. The solution to

this linear system gives the structure of optimal portfolio weights in equilibrium. The following

equations characterizes the solution.

Xw
M =

Ce
t (b2 − b3)− Capt

Wt
b2

Ce
t (b2 − 1)− Cw

t b2
(33)

Xs
M =

Ce
t (b3 − b1) +

Capt
Wt

b1 − Cw
t b3

Ce
t (b2 − 1)− Cw

t b2
(34)

Xe
M =

Cw
t (b3 − b2) +

Capt
Wt

(b2 − b1)

Ce
t (b2 − 1)− Cw

t b2
(35)

For technical reason, Cw
t

Ce
t
̸= b2−1

b2
must hold. The weights described in Eq. 33, 34, and 35

must be equivalent to the equilibrium weights described in Eq. 19. I utilize this equivalence
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to develop Proposition 2 which captures the impact of carbon intensity on systematic exposure

to the market portfolio. Prior to that, I provide the intuition for Eq. 33, 34, and 35 through a

baseline simulation. I consider each period as a year. I take the coin generation rate for PoW

cryptocurrency as φw − 1 = 0.002. This is taken based on BTC generation rate. Currently,

generation per block is 6.25 and each 10 minutes, a block is mined. Over a year, at this gen-

eration rate, almost 52500 new BTC will be generated. Considering the total number of BTC

which is almost 19000000, the 0.002 rate is obtained. For PoS, I take the coin generation rate

as φs − 1 = 0.046. This is obtained based on the annual inflation rate of ADA as one of the

leading PoS cryptocurrencies.

The average transaction fee per dollar value of transaction for PoW platform is fwt =

0.075. This is also obtained from Bitcoin. The average transaction fee is currencly around

50 satoshi/BTC. Each Satoshi is 0.00000001 BTC. Considering the average price of 15000$ for

Bitcoin, the average transaction fee of 0.075 is obtained. The average transaction fee per dollar

value of transaction for PoW platform is f st = 0.22. This is also taken from Cardano (ADA).

The average transaction fee in Cardano platform is 0.17 ADA per transaction. Mutliply it by

ADA’s avrage price over the sample, we obtain f st = 0.22.

I take the wealth of representative investor as Wt = 35000$. I consider 3 kWh for mining

one unit of PoW cryptocurrency. Also, I take the average energy price as 13.33 cent/kWh. I take

other operating expenses Mt = 10000$. To calculate per capita emission cap, I took the total

carbon emission in the U.S. as 4 Billion ton. Considering a population of 300000000 people,

the per capita emission would be Capt = 13.33.

As shown in Figure 2, the maximum weight in PoW cryptocurrency occurs when the carbon

footprint (intensity) of equity is high and the carbon footprint (intensity) of PoW cryptocurrency

is low. In this scenario, the optimal weight falls within the range of 20% to 25%. Additionally,

as the carbon footprint (intensity) of both equity and PoW approaches zero, the weight of PoW

in the investor’s portfolio significantly increases. This is due to the expectation that PoW cryp-

tocurrency offers transactional benefits and financial gains, unlike equity which provides only
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Figure 2. Simulation results This figure demonstrates the simulated weight of PoW cryptocurrency for
the given parameters.

financial gain.

To develop Proposition 2, I define the inverse of emission intensity ( 1
ψ

) as carbon efficiency.

Intuitively, when fossil fuels emit a lower level of carbon per unit of energy consumption (a low

ψ), they can be considered carbon-efficient. Thus, we have: Carbon Eff = 1
ψ

. I also define

the ratio of PoW carbon intensity to equity carbon intensity as It =
Cw

t

Ce
t

.

Assume, without loss of generality, that in equilibrium, Xw + Xs = n, Xw = m and

consequently Xe = 1 − n where n =
(b2−b1)(Ce

t−
Capt
Wt

)−Cw
t b3

Ce
t (b2−1)−Cw

t b2
. Considering this assumption, the

following Proposition describes the effect of carbon intensity on exposure to systematic risk.

Proposition 2: When the staking revenue is sufficiently high, meaning that b2 > b1
It+1

and

carbon efficiency of PoW cryptocurrency is sufficiently low, denoted by Carbon Eff < T

(where T is detailed in the Appendix), the beta of PoW cryptocurrency, which represents its
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exposure to market portfolio fluctuations, increases in comparison to PoS cryptocurrency as the

carbon intensity of the PoW cryptocurrency rises.

βw − βs = U (36)

∂U

∂Cw
t

> 0

where U =
a(∆σ)2

δ1Et[rMt+1]
(
Ce
t (b2 − b3)− Capt

Wt
b2

Ce
t (b2 − 1)− Cw

t b2
+

l

a(∆σ)2
)

and l = a((1− n)(σew − σes) + n(σsw − σ2
s))

Proof: see Appendix A.

Intuitively, when the available resources for mining have low carbon efficiency and the rev-

enue from staking is sufficiently high, validators have a strong financial incentive to shift from

mining to staking. This shift is driven by two factors: a cap on emissions that restricts PoW

cryptocurrency adoption, thereby reducing potential mining revenues, and a growing prefer-

ence for carbon-neutral investments, which promotes the adoption of PoS cryptocurrency and

increases potential staking revenue. As a result of this shift, the security of PoS cryptocur-

rency improves, making it a more appealing investment instrument. In this scenario, Ceteris

Paribus, the market tends to favor and invest more in the more energy-efficient PoS over PoW.

Proposition 2 underlines this dynamic, suggesting that increased carbon emissions from PoW

cryptocurrency mining contribute to heightened systematic risk in PoW cryptocurrency. This

perspective is in line with the notion of transition risks explored in the works of Bolton and

Kacperczyk (2021b) and Bolton and Kacperczyk (2021a).

2.1.5 When miners use renewable energies

Could utilizing green energy in cryptocurrency mining reduce systematic risk exposure? If we

interpret higher systematic risk exposure as a form of transition risk, then integrating green
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energy sources for mining should mitigate this risk. To explore this, and in line with the recent

trend in the Bitcoin mining industry, I will consider a scenario in which miners utilize renewable

green energy sources to mine PoW cryptocurrencies.7

Consider a scenario where the energy needed to mine one dollar’s worth of PoW cryptocur-

rency stems from a mix of fossil fuels and green energy, as detailed below:

ewt = αewFt + (1− α)ewGt (37)

where 0 < α < 1

As elaborated earlier, I assume a zero carbon footprint for green energy sources. Thus, it

becomes apparent that the carbon intensity of PoW cryptocurrency adjusts accordingly to reflect

the utilization of green energy sources in the mining process.

Cw
t = ψ̂ewt (38)

where ψ̂ = αψ

It’s straightforward that ψ̂ < ψ which implies that the use of green energy sources leads to

a reduction in the emission intensity of PoW cryptocurrency. Now, the following proposition

captures the mitigating effect of using green energy sources on exposure to the systematic risk.

Proposition 3: As miners use more green energy ((1 − α) increases), the relative beta

coefficient of PoW cryptocurrency experiences a decline in comparison to PoS cryptocurrency:

βw − βs = U (39)
7Several large mining pools have publicized their business plans to utilize green energy for Bitcoin mining.

Notable examples include Greenidge Generation and Hut 8, which use renewable energies for mining, as stated in
their business plans.
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∂U

∂(1− α)
< 0

where U =
a(∆σ)2

δ1Et[rMt+1]
(
Ce
t (b2 − b3)− Capt

Wt
b2

Ce
t (b2 − 1)− Cw

t b2
+

l

a(∆σ)2
)

and l = a((1− n)(σew − σes) + n(σsw − σ2
s))

Proof: see Appendix A.

Proposition 3 indicates that as miners transition from utilizing fossil fuels to renewable

resources (i.e., a decrease in α, and subsequently an increase in (1−α)), the systematic exposure

to the market portfolio decreases.

2.1.6 Endogenous carbon sensitivity

In this subsection, I endogenize carbon-sensitivity (aδ2) in the representative investor’s problem

described in Eq. 18 which results in the following problem:

Max
X,δ2

{−a[δ1(1 +X ′(Et[rt+1]− ft))− δ2(X
′C̄) + δ3(X

′ λ̄)] +
1

2
a2X ′ΣTX} (40)

s.t. Wt+1 = Wt(1 +Xs(r
s
t+1 − f st ) +Xw(r

w
t+1 − fwt ) +Xer

e
t+1)

The structure of optimal portfolio weight is similar to Eq. 19. To find the optimal carbon sensi-

tivity, one should take the F.O.C with respect to δ2. The structure of optimal carbon sensitivity

in generation t is described in the following equation:8

aδ2
∗ =

aδ1σrC + aδ3σCλ − Et[Capt]
Wt

σ2
C

(41)

8Recall that I dropped time subscript for the sake of brevity.
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where


X ′ΣCX = σ2

C

X ′ΣrCX = σrC

X ′ΣCλX = σCλ

For proof, see Appendix A. Eq. 41 outlines that the structure of carbon sensitivity can be

explained by four components. Firstly, when the correlation between carbon intensity and the

return (σrC) increases, the degree of carbon sensitivity increases. Intuitively, a strong correlation

suggests that carbon intensity poses a significant financial risk to the economy, necessitating a

high premium. Consequently, the elevated risk exposure resulting from higher carbon intensity

makes the representative investor more sensitive to carbon emissions. Also, the effect of the

correlation between carbon intensity and the return is determined by the effective risk aversion

aδ1, emphasizing the importance of financial risk protection in this component.

Second, the correlation between carbon intensity and transactional benefits provided by

cryptocurrencies (σCλ). We can interpret this component in two ways. Firstly, if we regard

carbon efficiency (defined as lower emissions intensity) as a key aspect of cryptocurrency pro-

ductivity, we would anticipate a negative correlation. Hence, the more productivity which stems

from higher carbon efficiency make the representative investor less carbon sensitive since ac-

tivity on such cryptocurrency platforms won’t harm the environment. Conversely, in scenar-

ios where increased productivity or enhanced security aligns with elevated carbon emissions,

the investor’s carbon sensitivity is heightened. In these instances, the appeal of transactional

benefits offered by cryptocurrencies might be overshadowed by their environmental cost. For

example, while Bitcoin’s reliability has cemented its status for international money transfers,

the realization of its significant carbon footprint could lead investors to seek more eco-friendly

alternatives.

Third, a higher expected cap on carbon emissions decreases the degree of carbon sensitivity.

Forth, higher wealth level increases carbon sensitivity. The third and forth components are

empirically documented in various studies such as Bolton and Kacperczyk (2021b). In wealthier

societies, investors tend to show a deeper concern for climate change and the ramifications of
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carbon emissions. Similarly, in economies with stricter carbon emissions regulation, a higher

level of environmental consciousness and carbon sensitivity among investors is often observed,

as detailed in Bolton and Kacperczyk (2021b).

2.1.7 China’s Bitcoin mining ban: A policy intervention to mitigate climate impact

In this subsection, I explore the potential market reactions to policy measures aimed at either

reducing the carbon footprint of cryptocurrency mining or at restricting mining activities for

other reasons. To provide better insight into this analysis, I focus on a notable event: In May

2021, China’s State Council issued a statement emphasizing the need to control financial risks

associated with cryptocurrencies, including Bitcoin mining. Subsequently, a ban on Bitcoin

mining was implemented in various provinces and regions within China. Shortly after the ban,

the hash rate on Bitcoin’s network experienced a substantial reduction of 50%. This mining ban

had a significant impact on the price of Bitcoin, which underwent a noteworthy decline from

nearly $55,000 to approximately $30,000 over the subsequent months.9

Given the pronounced negative shock to the hash rate, it is expected that both the energy

intensity and carbon intensity of Bitcoin decrease accordingly. Under the assumption that in-

vestors are carbon-sensitive, one might anticipate an appreciation in Bitcoin’s price as lower

carbon intensity attenuates the carbon premium. However, why do we observe such a substan-

tial price decline? Is this situation puzzling?

In the following, I will explain how the combined effects of carbon intensity on network

security and the carbon sensitivity of investors can account for this sharply negative market

reaction. The decision made by the China State Council was an exogenous and destructive

shock to Bitcoin miners who engage in hash production. One can interpret this exogenous

shock as a destructive jump that follows a Poisson distribution. To capture this, I re-define the

9https://worldcoin.org/articles/china-crypto-ban
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hash rate process as follows:

hwJt = µ+ ϕhwt−1 + εwt︸ ︷︷ ︸
Normal Path

− ηµY︸︷︷︸
Poisson Jump

(42)

here, η represents the jump size and Y follows a Poisson distribution with intensity θ given by:

P (Y = k) =
e−θθk

k!

Assuming that the jump component and the normal error terms are uncorrelated, the hash rate

process described by Eq. 42 has the following mean and variance:

h̄J =
µ− ηθ

1− ϕ

V ar(hwJt ) =
σ2
h + η2θ

1− ϕ2

The impact of the Poisson shock on the hash rate is reflected in the energy intensity, as shown

below:

ewt − ēw =
−ηµY + (hwt − h̄)

g

Assuming that all energy comes from fossil fuels (ewt = ψCw
t ), the impact of the Poisson jump

on carbon intensity can be interpreted as:

Cw
t − C̄w =

−ψηµY + ψ(hwt − h̄)

g

Therefore, the impact of jump on carbon intensity would be (1) a reduction in mean carbon

intensity and (2) an increase in the volatility of carbon intensity. The mean and variance of this

impact are given by:

Mean =
−ψηµθ
g

V ariance = (
ψηµ

g
)2θ
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The above characterization demonstrates that the jump component influences the volatility of

PoW cryptocurrency, its security (through affecting the hash rate), and its carbon intensity.

Assuming a large sample size, the Central Limit Theorem allows us to approximate the Poisson

distribution with a normal distribution (Ross 2014). Leveraging this property and the dynamics

described above, I quantify the net effect of the Poisson jump on the expected return of PoW

cryptocurrencies. Specifically, I evaluate the impact of the jump intensity (θ) and jump size (η)

on the expected return.

∂Et[r
w
t+1]

∂θ
= aXw

(
δ23(βπ)

2 η2

1− ϕ2
+ δ22(

ψηµ

g
)
2

− 2δ2δ3
βπψ

g
(ηµ)2

)
︸ ︷︷ ︸

volatility effect

+ δ3βπ
η

1− ϕ︸ ︷︷ ︸
security effect

− δ2
ψηµ

g︸ ︷︷ ︸
carbon effect

(43)

∂Et[r
w
t+1]

∂η
= aXw

(
δ23(βπ)

2 2ηθ

1− ϕ2
+ 2ηθ(

δ2ψµ

g
)
2

− 4δ2δ3
βπψ

g
ηθµ2

)
︸ ︷︷ ︸

volatility effect

+ δ3βπ
θ

1− ϕ︸ ︷︷ ︸
security effect

− δ2
ψθµ

g︸ ︷︷ ︸
carbon effect

(44)

The proofs for Equations 43 and 44 are located in Appendix A. Both equations uncover three

simultaneous effects of a jump on the expected return: the volatility effect, the security effect,

and the carbon intensity effect. The volatility effect can be either positive or negative, con-

tingent on the model parameters. The security effect is positive, signaling an increase in the

expected return (i.e., price depreciation).10 The carbon intensity effect is negative, resulting in

a decrease in the expected return (i.e., price appreciation). Therefore, capturing the net effect

is not straightforward. In the China case, the positive effect (price depreciation) dominates the

negative effect (price appreciation). Hence, while the carbon intensity of Bitcoin declines after

this event, the adverse impact on the Bitcoin platform’s security outweighs the effect of the

decline in carbon intensity.

10This is consistent with the finding of Pagnotta (2022)
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2.2 The two-agent speculative ecosystem

In this section, I investigate the impact of speculative behavior on cryptocurrency pricing and

carbon sensitivity. The environment considered is similar to the representative agent ecosys-

tem, with one key difference: each generation has two agents with different beliefs about the

expected returns. One agent is rational and optimizes her expected utility based on a subjective

probability measure that aligns with the objective measure. The other agent is overconfident

and optimizes her expected utility based on a subjective probability measure that deviates from

the objective measure. As in prior literature, I refer to the overconfident agent as a speculator

(Sockin and Xiong (2020); De Long, Shleifer, Summers, and Waldmann (1990)). In this envi-

ronment, both agents receive the same set of information, but process it differently. Addition-

ally, agents are non-cooperative and bet on the relative accuracy of their beliefs (David 2008).

To simplify the analysis, it is assumed that investors hold heterogeneous beliefs only regarding

the expected returns of cryptocurrencies.

Let W i
t denote the endowment of investor type i in generation t where i = R,O. Here,

R represents rational and O stands for overconfident. The aggregate wealth in the economy is

given by Wt = WR
t +WO

t .

The rational agent uses the objective probability measure to solve the following optimization

problem:

Max
X, δ2

Et[−e−A(δ1W
R
t+1−δ2WR

t X
′Ct+δ3WR

t X
′ λt)]

s.t. WR
t+1 = WR

t (1 +Xs(r
s
t+1 − f st ) +Xw(r

w
t+1 − fwt ) +Xer

e
t+1)

Similar to the representative agent case, I can use the normal characteristic function to rewrite

the above problem as follows:

Max
X,δ2

{−aR[δ1(1 +X ′
R(Et[rt+1]− ft))− δ2X

′
RC̄+ δ3X

′
Rλ̄] +

1

2
a2RX

′
RΣTXR}

where Et[·] represents the expectation function under the objective probability measure con-
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ditional on information available at time t. The structure of optimal portfolio weight for the

rational agent is identical to the optimal portfolio of the representative agent derived in the

previous section:

XR =
1

aR
Σ−1
T (δ1(Et[rt+1]− ft)− δ2C̄+ δ3λ̄)

where aR = AWR
t represents the relative risk aversion of the rational investor. Also, the optimal

carbon sensitivity of the rational investor would have the same structure as Eq. 41.

The overconfident investor solves the following optimization problem:

Max
X, δ̂2

EO
t [−e

−A(δ1WO
t+1−δ̂2WO

t X
′ Ct+δ3WO

t X
′ λt)] (45)

s.t. WO
t+1 = WO

t (1 +Xs(r
s
t+1 − f st ) +Xw(r

w
t+1 − fwt ) +Xer

e
t+1)

where δ̂2 represents the endogenous carbon sensitivity of the overconfident investor. Also,EO
t [·]

represents the expectation function under the subjective probability measure of the overconfi-

dent investor, conditional on the available information at time t.

A standard approach to solve a heterogeneous belief problem is to rewrite the expectation

function of the overconfident agent using the objective probability measure. To proceed with

this approach, I employ the Radon-Nikodym derivative, as detailed in Dumas, Kurshev, and

Uppal (2009):

EO
t [rt+1] = Et[ξrt+1] (46)

where ξ represents the Radon-Nikodym derivative and can be interpreted as overconfident in-

vestor’s (speculator’s) sentiment (see Sockin and Xiong (2020)). Also, one can write relation

between the perceived variance-covariance matrix in the view of overconfident and the variance-

covariance under the objective probability measure as below:

ΣO
T = ΛΣT (47)

where Λ is a 3×3 matrix that captures the deviation of the perceived variance-covariance matrix
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from its objective value in the view of the overconfident investor.

The normal characteristic function implies that the overconfident agent solves the following

optimization problem:

Max
X,δ̂2

{−aO[δ1(1+X ′
O(Et[ξrt+1]− ft))− δ̂2X

′
OC̄+ δ3(X

′
O λ̄t)]+

1

2
a2OX

′
O(ΛΣT )XO} (48)

The first order condition with respect to the portfolio weight gives the optimal portfolio of

the overconfident agent:

XO =
1

aO
Σ−1
T Λ−1(δ1(Et[ξrt+1]− ft)− δ̂2C̄+ δ3λ̄) (49)

In the following, I elaborate on two points. Firstly, the carbon sensitivity of the overcon-

fident investor depends on her sentiment (i.e., speculative motive). Second, as the overconfi-

dent investor becomes more optimistic and speculates more aggressively, her carbon sensitivity

weakens.

To characterize the equilibrium expected return and the optimal endogenous carbon sensi-

tivity, I start by defining the following:

Et[ξrt+1] = Et[rt+1]−Bt (50)

where Bt = Et[(ξ − 1)rt+1]

Bt reflects the impact of speculation on the expected return in the market, also regarded as the

”bubble” component. Next, I derive the optimal carbon sensitivity in the following proposition.

Proposition 4: In generation t, the optimal aggregate carbon sensitivity has the following

structure:

δagg2 =
δ1(σrC − WO

t

Wt
σBC) + δ3σCλ +

Et[Capt]
aWt

σ2
C

(51)
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where σBC = X ′E[(B̃t −Bt)
′(C̃t − C̄)]X

Proof: See Appendix A

Let’s define κ = σBC

σ2
C

represent the disparity in carbon sensitivity from the perspective of an

overconfident investor, as opposed to when the same investor adopts a rational viewpoint. As

evident, this disparity is induced by speculation, underscoring that ”the carbon sensitivity of the

overconfident investor depends on her sentiment (i.e., speculative motive).” In the following, I

derive the equilibrium expected return by imposing the market-clearing condition:

WtXM = WO
t XO +WR

t XR (52)

Proposition 5: In generation t, the equilibrium expected return in the speculative environ-

ment follows:

Et[rt+1] =
a

δ1
Σ̂TXM − (I+ Λ)−1(Bt +

κ

δ1
C̄)− (

δ3
δ1
λ̄− ft) +

δ2
δ1
C̄ (53)

where Σ̂T = ΦΣT represents the adjusted matrix of ΣT . The adjustment factor is Φ =

1
det(I+Λ−1)

adj(I+ Λ−1), and adj(.) represents the adjugate matrix.

The CAPM-like relation has the following structure:

Et[rt+1] = βEt[r
M
t+1]− (I+ Λ)−1(Bt +

κ

δ1
C̄)− (

δ3
δ1
λ̄− ft) +

δ2
δ1
C̄ (54)

where β = Σ̂TXM
⌢
σ

2 .

Proof: See Appendix A.

An immediate implication of Proposition 5 is that the disparity between the carbon sensitiv-

ity of overconfident and rational investors is priced in the market. Building upon the findings of

Proposition 4, I can now prove the argument I presented earlier in this section: ”as the overconfi-

38



dent investor becomes more optimistic and speculates more aggressively, her carbon sensitivity

weakens.” When an overconfident investor is relatively more optimistic, she assigns a higher

weight to desirable returns and a lower weight to undesirable returns compared to a rational

investor. To characterize this behavior, I will approximate the normal distribution of returns

with a binomial path. Thus, assuming that we observe two states: an ”Up” state with positive

return denoted by rU > 0, and a ”Down” state with negative return denoted by rD < 0. Both

states are equally likely. This approximation implies that:

Et[rt+1] =
1

2
rUt+1 +

1

2
rDt+1 (55)

To ensure that no arbitrage opportunity exists, The expected return must be positive which

implies that rUt+1 >
∣∣rDt+1

∣∣. In the view of overconfident investor, the expected return has the

following structure:

EO
t [rt+1] =

1

2
ξ1r

U
t+1 +

1

2
ξ2r

D
t+1 (56)

where {ξ1, ξ2} are discrete states counterpart of Radon-Nikodym derivative ξ which was

defined earlier. Optimism in overconfident view implies that ξ1 > 1 and ξ2 < 1. The proper-

ties of Radon-Nikodym derivative and some further derivations are provided in the Appendix

A. Intuitively, an optimistic overconfident assigns higher probability to ”Up” state which is de-

sirable and lower probability to ”Down” state which is undesirable. Now, by considering this

characterization, and the definition of κ = σBC

σ2
C

, I develop the following proposition.

Proposition 6: When the overconfident investor is relatively more optimistic and speculat-

ing in the market (i.e. ξ1 > 1 and ξ2 < 1), we observe that κ > 0, which indicates a weakening

of carbon sensitivity.

Proof: See Appendix A.

Since the aggregate carbon sensitivity in the market is the wealth-weighted average of the

carbon sensitivity of each type, i.e., δagg2 =
WR

t

Wt
δ2+

WO
t

Wt
δ̂2, a weakening in the carbon sensitivity
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of the overconfident investor would lead to a weakening of the aggregate carbon sensitivity in

the market as well.

3 Some empirical evidence

The theoretical findings of the paper are based on the assumption that investors are carbon-

sensitive. While this hypothesis is empirically well-supported in the equity market, its appli-

cability to the cryptocurrency market has not yet been tested. Additionally, from a theoretical

perspective, introducing a new preference parameter into a model influences price behavior.

Thus, providing empirical evidence for the actual existence of this preference is imperative to

substantiate the credibility of the theoretical findings. To this end, I present empirical evidence

to support the notion of carbon sensitivity within the cryptocurrency market. Firstly, I em-

ploy the Instrumental Variable approach to demonstrate that carbon sensitivity is factored into

cryptocurrency pricing. Secondly, I offer further supporting evidence for carbon sensitivity by

analyzing the Ethereum Beacon Chain merge event.

3.1 Impact of carbon sensitivity on cryptocurrency prices

This section provides empirical evidence supporting the existence of carbon sensitivity in the

cryptocurrency market. There are three important considerations in this analysis. Firstly, carbon

sensitivity is not directly observable, necessitating the use of a proxy to capture this preference

parameter.

Secondly, employing a simple OLS regression analysis could yield misleading results under

certain conditions. For instance, in times of increased carbon sensitivity, a carbon-intensive

cryptocurrency might offer significant non-pecuniary transactional benefits. However, since an

econometrician cannot directly measure or observe these benefits, and given that the carbon

alpha and the alpha for these non-pecuniary benefits have opposing signs, an OLS analysis may
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face endogeneity issues.

Third, the structure of the cryptocurrency market is significantly different from that of the

equity market. In the equity market, there are a large set of stocks, and no single stock has the

majority of market share. Thus, by constructing portfolios and calculating returns, we can re-

duce the noise and obtain reliable results. Unlike the equity market, the cryptocurrency market

is highly volatile and has a dominant player, which is Bitcoin. Since its emergence in 2009,

Bitcoin has always held more than 50% of the cryptocurrency market share. Combined with

Ethereum, their market share has sometimes exceeded 85% of the total. In addition, smaller

cryptocurrencies are highly correlated with Bitcoin and Ethereum, and even if one constructs an

equally weighted portfolio, the noise component would still remain pronounced. Furthermore,

since PoW cryptocurrencies are mined in different areas of the world using various energy

sources and mining rigs, unlike equities, estimating their carbon emissions is not straightfor-

ward.

In light of these considerations, I adopt an empirical approach, which is detailed below, to

test whether cryptocurrency investors are carbon sensitive. To address the first consideration,

I draw on previous research on attention, such as the studies conducted by Andrei and Hasler

(2015). They argue that when investors are sensitive to a particular topic, new information

causes fluctuations in their attention toward that topic. Conversely, if there is no sensitivity to

an issue, new information is unlikely to shift investors’ attention. Therefore, following the foot-

steps of previous studies,11 I use Google search volume for carbon-related topics as a proxy for

investors’ carbon attention. Fluctuations in carbon-related search volume can indicate investors’

sensitivity to the impact of carbon emissions. My goal is to demonstrate whether fluctuations in

carbon attention, induced by carbon sensitivity, are reflected in the pricing of PoW cryptocur-

rencies. To achieve this, I collect data on investors’ attention towards topics such as ”carbon

emission,” ”greenhouse gas emission,” ”climate,” ”environment,” and ”ESG” to capture the im-

pact of investors’ carbon sensitivity.

11See, for example, Andrei and Hasler (2015), Chen, Kumar, and Zhang (2020), and Choi, Gao, and Jiang
(2020), among others
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To mitigate potential endogeneity concerns and obtain a reliable estimate of the relation-

ship between carbon-intensive PoW cryptocurrency prices and investors’ carbon sensitivity, I

employ an instrumental variable approach. The estimation results reveal that an increase in

investors’ carbon attention leads to a decrease in the price of these cryptocurrencies. This de-

cline in price suggests that investors demand a higher expected return for investing in PoW

cryptocurrencies, reflecting their carbon sensitivity.

I focus exclusively on four well-established PoW cryptocurrencies: Bitcoin, Ethereum, Lite-

coin, and Dogecoin.12 One of the reasons for selecting these cryptocurrencies is the availability

of extensive data, with at least five years of historical information (equivalent to around 60

monthly observations) for each. This data richness allows for more robust and reliable results.

Additionally, these cryptocurrencies are deeply established in the market and exhibit relatively

lower volatility compared to smaller counterparts, which often have market caps less than 1

billion dollars. Consequently, they are less susceptible to speculative behavior, market manipu-

lation, and trading activities aimed at exploiting arbitrage opportunities.

3.1.1 Data

I merge two data sources to conduct the empirical analysis. Data for the prices and hash rates

of Bitcoin, Ethereum, Litecoin, and Dogecoin are obtained from coinmetrics.io. Additionally,

I collect data on market capitalization, realized volatility (RV), and the number of active wallet

addresses for these four cryptocurrencies to control for various factors in the analysis. This data

is available on a daily frequency. To align with the Google search data and ensure consistency,

I aggregate this daily data into a monthly dataset for a comprehensive analysis.

Additionally, to analyze the impact of the Beacon Chain merge, I gather data on the num-

ber of new wallet addresses and the exchange deposits for Bitcoin and Ethereum from coin-

metrics.io. These exchange deposits represent the inflow of funds into these cryptocurrencies

12It’s important to note that Ethereum underwent a significant transition to a PoS system with the Beacon Chain
merge in September 2022.

42



through exchanges. I retain the daily frequency for these two features.

The data collection spans five years, from January 2018 to the January 2023. For Bitcoin,

Litecoin, and Dogecoin, the dataset includes 60 observations, representing monthly data. How-

ever, for Ethereum, there is a gap in the data following the Beacon Chain merge in September

2022. Consequently, I exclude observations from September 2022 onward for Ethereum. For

the specific analysis of the Beacon Chain merge, I collect daily data from July 2022 to Novem-

ber 2022, which captures approximately two and a half months before and after the merge.

Its crucial to note that extending this data range might lead to unreliable results, as a longer

range could include other events that might influence Ethereum or the broader crypto market.

A summary of the statistics for the cryptocurrency features is presented in Table 1.

Variables Mean Std. dev. Min Max
BTC price (USD) 20509.08 16820.82 3659.201 60684.55
ETH price (USD) 1161.375 1190.12 107.5334 4442.732
LTC price (USD) 97.3452 56.98269 28.58892 263.289
DOGE price (USD) 0.0639779 0.0958728 0.0019219 0.4418706
BTC cap (USD) 3.83e+11 3.20e+11 6.39e+10 1.15e+12
ETH cap (USD) 1.34e+11 1.41e+11 1.12e+10 5.22e+11
LTC cap (USD) 6.37e+09 3.83e+09 1.70e+09 1.78e+10
DOGE cap (USD) 8.43e+09 1.26e+10 2.27e+08 5.72e+10
BTC hash (MH/s) 1.24e+08 7.16e+07 2.21e+07 2.97e+08
ETH hash (MH/s) 391.808 296.9157 137.6272 1027.384
LTC hash (MH/s) 310.8362 121.8788 136.6777 681.0606
DOGE hash (MH/s) 293.1968 129.1495 102.8585 685.1851
BTC 30-day RV 0.0410665 0.0243679 0.0098636 0.1438445
ETH 30-day RV 0.0508009 0.0219743 0.0149183 0.1168316
LTC 30-day RV 0.052693 0.0300589 0.0080375 0.2177028
DOGE 30-day RV 0.0573091 0.0381475 0.015616 0.3018972
BTC new addresses 407175.2 35324.86 311779 523145
ETH new addresses 95098.56 38228.53 58897 228738
BTC exchange deposit (USD) 4.94e+08 5.28e+08 1.15e+08 5.76e+09
ETH exchange deposit (USD) 4.06e+08 2.99e+08 3.81e+07 2.39e+09

Table 1. Summary of statistics for cryptocurrencies The table provides monthly statistics for price,
market cap, hash rate, and realized volatility for four cryptocurrencies: Bitcoin, Dogecoin, Ethereum,
and Litecoin. Additionally, the table includes daily statistics for the number of new wallet addresses and
the exchange deposits into BTC and ETH, presented in the bottom four rows.
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I collect data on Google search volume to construct a proxy for investors’ attention toward a

topic. This methodology aligns with previous studies such as Andrei and Hasler (2015), Chen,

Kumar, and Zhang (2020), and Choi, Gao, and Jiang (2020), among others. I then aggregate the

weekly data to create a monthly dataset for the following topics: carbon emissions, greenhouse

gas emissions, ESG, climate, and environment. This approach allows to infer investor sensitivity

towards carbon emission-related issues. To represent the level of interest in these topics, Google

normalizes the data relative to the highest point within a specific time interval, where a value of

100 represents the peak interest, and a value of 0 represents the least interest in a given topic.

In addition to the above-mentioned topics, inspired by the approach of Liu and Tsyvinski

(2021), I also consider investors’ negative attention to infer about their perception toward se-

curity. I collect data on Google search volume for topics such as ”Bitcoin hack”, ”Ethereum

hack”, ”Litecoin hack”, and ”Dogecoin hack.” Attention toward these topics reflects investors’

perception of the network security in these PoW cryptocurrencies. High search volumes for

these terms suggest increased investor concerns about the security of these PoW cryptocurren-

cies. By aggregating weekly data, I produce a monthly average of relative interest in each topic.

Table 2 represents a summary statistics of the variables and parameters that have been used in

this paper.

Variables Mean Std. dev.
carbon Emission 44.479 21.146
Environment 44.799 9.514
Climate 55.668 17.849
ESG 36.758 25.07
Greenhouse Gas Emission 53.098 15.536
Bitcoin Hack 16.99098 7.746626
Ethereum Hack 19.93607 11.59983
Dogecoin Hack 5.580328 5.974714
Litecoin Hack 12.06844 10.67873

Table 2. Summary of statistics for attention The statistics for attention toward the five topics of carbon
emission, climate, ESG, greenhouse gas emission and environment are presented. Also, attention toward
hack related topics are presented
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3.1.2 2SLS regression

Hash rates and prices are non-stationary; therefore, I transform them into their natural loga-

rithms to achieve stationarity. My aim is to construct an instrument that impacts PoW cryp-

tocurrency prices solely through the carbon sensitivity channel. To construct this instrumental

variable, I draw on the microfoundations of PoW cryptocurrencies outlined in the theory sec-

tion. As discussed in Eq. 4 and 12, the network hash rate is linked to both network security

and energy intensity (carbon intensity). Considering this, first I run the regression of log hash

rate on attention toward the topic of hack in different cryptocurrencies. As discussed earlier,

attention toward the topic of hacks reflects investors’ perception of network security in a given

cryptocurrency. Let Hashit denote the log of hash rate for cryptocurrency i at time t where

i = BTC,ETH,LTC,DOGE. Then, I run the the following regression for each cryptocur-

rency.

Hashit = α + βHack Attentionit + εit (57)

Taking the residuals from regression 57 isolates the component of the hash rate that is un-

correlated with perceptions toward network security. Consequently, this component is solely

reflective of the energy intensity and carbon intensity in PoW cryptocurrencies. Let’s call this

residual component Residualit.

Now, I run 2SLS regression using Residualit as the instrument. The first stage regression is:

Attentiont = α0i + α1iResidual
i
t + α2iControls

i
t + εit (58)

The second stage is as follows:

Priceit = β0i + β1i ̂Attentiont + β2iControls
i
t + eit (59)
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The coefficient of interest is β1i. In both stages of the analysis, I control for the size of the

cryptocurrency, which is represented by the natural logarithm of market capitalization. Addi-

tionally, I account for the 30-day realized volatility of returns, serving as an indicative measure

of speculative activities. A rise in speculative activity often leads to heightened volatility and

vice versa, as elaborated by Dumas, Kurshev, and Uppal (2009). In Appendix B, I repeat the

analysis with different sets of control variables and demonstrate that the results reported in the

main text remain robust.

If β1i becomes negative, it implies that stronger attention to carbon emissions has a negative

impact on the price (depreciates the price) of PoW cryptocurrencies. Such a finding lends

support to the assumption that investors are carbon-sensitive.

Table 3. BTC 2SLS estimation
(1) (2) (3) (4) (5) (6)

BTC Price BTC Price BTC Price BTC Price BTC Price BTC Price
Carbon Emission -0.1913672∗∗∗

(-3.81)

Environment -0.4886356∗∗

(-2.36)

Climate -0.121581∗∗∗

(-4.38)

GHG Emission -0.1427119∗∗∗

(-4.32)

ESG -0.0837787∗∗∗

(-12.55)

PC(1) -0.0263804 ∗∗∗

(-6.01)

Constant -16.22733∗∗∗ -14.54274∗∗∗ -15.63318∗∗∗ -16.12167∗∗∗ -16.86588∗∗∗ -16.72143∗∗∗

(-84.36) (-24.29) (-107.42) (-102.33) (-174.86) (-92.38)
Controls YES YES YES YES YES YES
Observations 61 61 61 61 61 61
F − stat 10.8704 5.54038 18.6033 14.533 57.9809 27.1401
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01
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3.1.3 Effect of carbon sensitivity on Bitcoin price

In this section, I present the results of 2SLS estimation for Bitcoin. The results, as shown in

Table 3, reveal a strong negative relation between investors’ attention to carbon emission, green-

house gas emission, ESG, climate, and environment and the price of Bitcoin. I also construct

a composite measure for carbon attention by taking the first principal component of attention

to these five topics. Column (6) presents the regression results using this composite measure.

These findings support the assumption that cryptocurrency investors are carbon-sensitive. All

coefficients are statistically significant, and the Wald test confirms that the F-stat is greater than

10 in all regressions with the exception of ”Environment”, indicating that ResidualBTCt is a

valid instrument for carbon attention. This exception suggests that ResidualBTCt is not as ef-

fective an instrument for gauging attention to ”Environment” as it is for the other categories.

This discrepancy may be attributed to the fact that environmental topics cover a broad spectrum,

many aspects of which are not directly associated with carbon emissions or climate change.

3.1.4 Effect of carbon sensitivity on Ethereum price

In this section, I presents the results of 2SLS estimation for Ethereum. The results, as shown

in Table 4, also reveal a strong negative relationship between the attention to carbon emission,

greenhouse gas emission, ESG, climate, and environment and the price of Ethereum. Column

(6) presents the regression results using the composite measure. These findings further sup-

port the assumption that investors are sensitive to carbon emissions, similar to Bitcoin. It is

important to note that I exclude data from September 2022 onwards due to the Beacon Chain

merge, which has transitioned Ethereum into an environmentally friendly cryptocurrency. The

Wald test reveals a relatively high F-stat for all attention variables, with the exception of ”Envi-

ronment”. This suggests that a segment of climate attention may pertain to topics not directly

linked to the topic of Environment.
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Table 4. ETH 2SLS estimation
(1) (2) (3) (4) (5) (6)

ETH Price ETH Price ETH Price ETH Price ETH Price ETH Price
Carbon Emission -0.2433865∗∗∗

(-5.19)

Environment -1.431186
(-1.39)

Climate -0.1845539∗∗∗

(-4.83)

GHG Emission -0.2042883∗∗∗

(-5.16)

ESG -0.1228259∗∗∗

(-18.85)

PC(1) -0.0404422∗∗∗

(-6.72)

Constant -17.67146∗∗∗ -13.62421∗∗∗ -17.11804∗∗∗ -17.79246∗∗∗ -18.50761∗∗∗ -18.59822∗∗∗

(-126.76) (-4.52) (-87.04) (-127.15) (-331.43) (-111.52)
Controls YES YES YES YES YES YES
Observations 58 58 58 58 58 58
F − stat 23.4755 1.79966 18.6319 26.5833 63.2226 35.8544
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.1.5 Effect of carbon sensitivity on Litecoin price

In this section, I present the results of 2SLS estimation for Litecoin. The results, as shown in

Table 5, reveal a a strong negative relation between price and and carbon attention similar to

Bitcoin and Ethreum. Here, we also observe an insignificant coefficient for attention to climate.

In other cases, coefficients are significant. Also, the Wald test represents a relatively high F-stat,

implying that the hash rate is a valid instrument for carbon attention.
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Table 5. LTC 2SLS estimation
(1) (2) (3) (4) (5) (6)

LTC Price LTC Price LTC Price LTC Price LTC Price LTC Price
Carbon Emission -0.2588251∗∗∗

(-5.79)

Environment -0.5612355∗∗∗

(-3.74)

Climate 1.125417
(0.74)

GHG Emission -0.1771417∗∗∗

(-6.24)

ESG -0.1264595∗∗∗

(-15.10)

PC(1) -0.0415502∗∗∗

(-7.45)

Constant -17.14847∗∗∗ -15.45295∗∗∗ -24.74867∗∗ -17.10713∗∗∗ -18.07457∗∗∗ -17.94431∗∗∗

(-60.88) (-24.18) (-2.37) (-65.38) (-147.52) (-74.62)
Controls YES YES YES YES YES YES
Observations 61 61 61 61 61 61
F − stat 20.7027 19.8869 0.637196 44.3142 27.905 29.7491
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.1.6 Effect of carbon sensitivity on Dogecoin price

In this section, I present the results of 2SLS estimation for Dogecoin. In Table 6, we also

observe a strong negative relationship between carbon attention and DOGE price. However,

similar to ETH and LTC, the coefficient of climate attention is insignificant. The Wald test

indicates weak correlation between DOGE hash rate and attention toward carbon emission and

greenhouse gas emission.
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Table 6. DOGE 2SLS estimation
(1) (2) (3) (4) (5) (6)

DOGE Price DOGE Price DOGE Price DOGE Price DOGE Price DOGE Price
Carbon Emission -0.2430837∗∗∗

(-2.97)

Environment -0.4071554∗∗

(-2.33)

Climate 0.3945112
(0.80)

GHG Emission -0.13016∗∗∗

(-3.89)

ESG -0.1156866∗∗∗

(-11.66)

PC(1) -0.0349909∗∗

(-4.40)

Constant -24.76878∗∗∗ -23.79735∗∗∗ -26.25048∗∗∗ -24.92615∗∗∗ -25.33594∗∗∗ -25.57466∗∗∗

(-235.10) (-45.20) (-16.65) (-443.79) (-762.82) (-186.68)
Controls YES YES YES YES YES YES
Observations 61 61 61 61 61 61
F − stat 6.49274 7.26493 0.808558 19.2462 13.5639 12.1386
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.1.7 Instrument validity: exclusion restriction

In this section, my aim is to demonstrate that the proposed instrument satisfies the exclusion

restriction condition, meaning it is uncorrelated with other factors influencing cryptocurrency

prices.

For this purpose, I regress the proposed instrument on proxies indicative of speculative activ-

ities and fundamental valuation in PoW cryptocurrencies. Following a large body of literature,

including Dumas, Kurshev, and Uppal (2009), I use 30-days realized volatility as a reflective

measure of speculative activities in the cryptocurrency market. Higher realized volatility is in-

dicative of increased speculative activities, which in turn influence prices. Also, in line with Liu
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and Tsyvinski (2021) and Lashkaripour (2023), I consider the number of active wallet addresses

as a component that captures the fundamental value of a given cryptocurrency. Users engaged

in on-chain transactions, as opposed to merely trading on exchanges, directly benefit from trans-

actional advantages like swift cross-border money transfers. Hence, the number of active wallet

addresses can serve as an indicator of the fundamental value in cryptocurrencies. For some

cryptocurrencies in our sample, data on the number of active wallet addresses is unavailable.

Therefore, I use the market value to realized value (MVRV) ratio as an alternative measure. The

realized value in cryptocurrencies refers to the value of the circulating supply. A low MVRV

ratio suggests that a significant portion of the current cryptocurrency supply is engaged in on-

chain activities, reflecting fundamental market activities. Considering this explanation, I run

the following regression:

Residualit = ϕ0 + ϕ1RV
i
t + ϕ2Fundametal

i
t + εit (60)

Here, RV i
t refers to the 30-days realized volatility of cryptocurrency i at time t where i =

BTC,ETH,LTC,DOGE. Also, Fundametalit denotes either the number of active wallet

addresses or the MVRV ratio of cryptocurrency i at time t. The result of the regression are

presented in Table 7.

The findings presented in Table 7 reveal that all coefficients are statistically insignificant,

except for Litecoin. This general lack of significance suggests that the instrument does not

correlate with the proxies for speculative activities or the fundamental value of cryptocurrencies,

thereby reinforcing its validity as a reliable instrument. The significant coefficient of 30-day

realized volatility for Litecoin should not affect the 2SLS results, as this variable has been used

as a control variable in both stages.
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Table 7. Instrument validity: Exclusion restriction
(1) (2) (3) (4)

Bitcoin Residual Ethereum Residual Litecoin Residual Dogecoin Residual
30-days RV -9.28288 -6.013041 -11.35569∗∗∗ 2.243628

(-1.57) (-1.12) (-3.38) (1.30)

# New Wallets -3.35e-06 -1.36e-06
(-0.49) (-0.49)

# Active wallets 8.74e-06
(1.45)

MVRV -0.3126974 0.0866549 0.0661064 -0.2338657
(-1.48) (0.45) (0.64) (-1.25)

Constant -1.760304∗∗∗ 0.2951925 0.5309032∗∗∗ 0.1399178
(-2.95) (0.76) (2.78) (0.92)

Observations 61 58 59 58
R− Square 0.3889 0.0314 0.2019 0.0488
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

3.2 Evidence from Beacon Chain merge

The Beacon Chain merge refers to the process of integrating the Beacon Chain, a PoS blockchain,

with the Ethereum mainnet, thereby replacing the existing Ethereum PoW mechanism. On Au-

gust 24, 2022, the Ethereum Foundation Blog announced that the transition to proof-of-stake

would be activated on September 15, 2022.13 As a result of this merge, the energy consumption

of Ethereum dropped by almost 99.95%.14

In this section, I aim to examine the response of investors to this significant event. If cryp-

tocurrency investors are indeed carbon-sensitive, a notable reaction to this event should be evi-

dent. In order to provide insight, I undertake a comparative analysis between Ethereum (which

transitioned from being carbon-intensive to carbon-neutral) and Bitcoin (the leading carbon-

intensive cryptocurrency), both before and after the announcement of the Beacon Chain merge.

13https://blog.ethereum.org/2022/08/24/mainnet-merge-announcement
14https://ethereum.org/en/energy-consumption/
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Specifically, the primary focus is to determine whether investors exhibit a noticeable increase

in interest and engagement with Ethereum compared to Bitcoin after the merge. I provide the

following evidence using a subset of the data described in Section 3.1.1.

Initially, I present a first-hand evidence by regressing the exchange rate of Ethereum to

Bitcoin on a time dummy variable. This dummy variable takes the value of zero for pre-

announcement dates and one for post-announcement dates of the Beacon Chain merge. I control

for size (log of market capitalization) along with time trend by including the the 3-day Mov-

ing Average of the exchange rate as a control variable. Table 8 represents the result of the

regressions.

Table 8. Evidence from Beacon Chain merge
(1)

(ETH price/BTC price)
Time Dummy 0.0014382∗∗∗

( 3.01)

MA(ETH price/BTC price) 0.6950107∗∗∗

(16.14)

Size 0.0119667∗∗∗

(6.42)

Constant -0.2884263∗∗∗

(-6.26)
Observations 142
R2 0.8957
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

The positive coefficient of the time dummy underscores an increase in the ETH to BTC

exchange rate, signifying a surge in demand for Ethereum compared to Bitcoin following the

Beacon Chain merge. The rise in the exchange rate suggests that Ethereum becomes relatively

more valuable compared to Bitcoin, potentially due to a reduction in the carbon premium asso-

ciated with Ethereum since carbon-sensitive investors now regard Ethereum as a cryptocurrency
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with low carbon intensity.

In what follows, I present evidence that highlights the increase in investors’ interest and

demand for Ethereum following the Beacon Chain merge. To substantiate this, I use two proxies

for demand. Firstly, I consider the number of new wallet addresses as an indicator of investors’

interest in investing and transacting on the Ethereum network. Secondly, acknowledging that

some investors trade Ethereum on exchanges like Binance and Kraken, I use new deposits into

Ethereum via these exchanges as an alternative measure of investor demand. I apply z-score

normalization to both the number of new wallet addresses and new deposits. Then, I run the

following two regressions.

log
(
ETH pricet
BTC pricet

)
= a0 + a1Time Dummyt + a2New Addrt

+a3 (New Addrt × Time Dummyt) + a4ETH Sizet + εt

log
(
ETH pricet
BTC pricet

)
= b0 + b1Time Dummyt + b2Excg Dept

+b3 (Excg Dept × Time Dummyt) + b4ETH Sizet + εt

The regression results are presented in Table 9. The first regression shows that the demand

for Ethereum, triggered by the Beacon Chain merge, has had a significant positive impact on the

Ethereum-to-Bitcoin exchange rate. Specifically, the coefficient of the interaction term reveals

a noticeable influence of the demand on the post-merge exchange rate. When compared to

the entire sample, we observe a change in sign and an increase in magnitude, indicating a

shift in investors’ behavior and a stronger inclination to invest in Ethereum after the event. In

the second regression, we observe a similar pattern. The Beacon Chain merge has led to an

increase in the exchange rate, and the coefficient of the interaction term confirms that investors’

demand for Ethereum after the event has played a significant role in driving up the exchange

rate. These results provide evidence that investors have responded to the event, and their interest

in Ethereum has significantly increased. Therefore, we can conclude that the energy efficiency

54



of Ethereum has become a major consideration for investors, and the improvement in energy

efficiency has stimulated them to reallocate their investments toward Ethereum.

Table 9. Demand for Ethereum
(1) (2)

Log excg rate Log excg rate
Time Dummy 0.0082413∗∗∗ 0.0063679∗∗∗

(7.36) (10.76)

New addr -0.0029583∗

(-1.67)

Excg dept -0.0013314 ∗

(-1.90)

Time Dummy*New addr 0.0041912 ∗∗

(2.31)

Time Dummy*Excg dept 0.0021722∗∗∗

(2.89)

Size 0.0394412∗∗∗ 0.0343309 ∗∗∗

(19.13) (17.78)

Constant -0.9546452∗∗∗ -0.8204789∗∗∗

(-17.77) (-16.36)
Observations 142 142
R2 0.7407 0.7260
t statistics in parentheses
∗ p < 0.10, ∗∗ p < 0.05, ∗∗∗ p < 0.01

4 Conclusion

Cryptocurrency production, commonly referred to as mining, requires significant energy use,

leading to a substantial carbon footprint. In this study, I introduce a stylized general equilibrium

model to examine the impact of carbon intensity on cryptocurrency pricing. I identify two main

pricing effects. First, ceteris paribus, the carbon premium in cryptocurrencies is lower compared
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to that in equities. Second, the beta exposure to the market portfolio intensifies as the carbon

intensity of cryptocurrencies increases. However, this level of beta exposure diminishes when

miners use renewable resources for energy generation. The first effect arises as higher carbon

intensity indicates stronger network security, thus reducing the security risk in the decentralized

network of PoW cryptocurrencies, resulting in a negative risk premium. The second effect,

which can be interpreted as transition risk, is an indirect outcome of a cap on carbon emissions

and investors’ carbon sensitivity.

Given the presence of unobserved confounding factors, such as unobservable transactional

benefits, testing the implications of the theory is not straightforward. Hence, I employ Instru-

mental Variable approach to assess the influence of investors’ carbon sensitivity. I consider

investors’ attention to carbon and climate-related topics as an indicator of their carbon sensitiv-

ity. Empirically, I uncover a strong negative relationship between investors’ attention to carbon

or climate-related topics, such as carbon emissions, ESG, greenhouse gas emissions, environ-

ment, and climate, and the prices of major carbon-intensive cryptocurrencies. This empirical

finding supports the theoretical prediction of a negative premium associated with carbon sensi-

tivity. I also provide further evidence from the Ethereum Beacon Chain merge to confirm the

existence of carbon sensitivity in the cryptocurrency market. I also demonstrate that speculative

behavior in the cryptocurrency market weakens investors’ carbon sensitivity.

56



References

Abadi, Joseph, and Markus Brunnermeier, 2018, Blockchain economics, Working paper, Na-

tional Bureau of Economic Research.

Albuquerque, Rui, Yrjö Koskinen, and Chendi Zhang, 2019, Corporate social responsibility

and firm risk: Theory and empirical evidence, Management Science 65, 4451–4469.

Andrei, Daniel, and Michael Hasler, 2015, Investor attention and stock market volatility, The

review of financial studies 28, 33–72.

Avramov, Doron, Abraham Lioui, Yang Liu, and Andrea Tarelli, 2021, Dynamic ESG Equilib-

rium, Available at SSRN 3935174.

Barnett, Michael, William Brock, and Lars Peter Hansen, 2020, Pricing uncertainty induced by

climate change, The Review of Financial Studies 33, 1024–1066.

Biais, Bruno, Christophe Bisiere, Matthieu Bouvard, Catherine Casamatta, and Albert J

Menkveld, 2020, Equilibrium bitcoin pricing, The Journal of Finance.

Bolton, Patrick, and Marcin Kacperczyk, 2021a, Do investors care about carbon risk?, Journal

of financial economics 142, 517–549.

Bolton, Patrick, and Marcin Kacperczyk, 2021b, Global pricing of carbon-transition risk, Work-

ing paper, National Bureau of Economic Research.

Campbell, John Y, and Luis M Viceira, 2002, Strategic asset allocation: portfolio choice for

long-term investors. (Clarendon Lectures in Economic).

Chen, Yao, Alok Kumar, and Chendi Zhang, 2020, Dynamic ESG preferences and asset prices,

Available at SSRN 3331866.

Choi, Darwin, Zhenyu Gao, and Wenxi Jiang, 2020, Attention to global warming, The Review

of Financial Studies 33, 1112–1145.

57



Cong, Lin William, Ye Li, and Neng Wang, 2021, Tokenomics: Dynamic adoption and valua-

tion, The Review of Financial Studies 34, 1105–1155.

David, Alexander, 2008, Heterogeneous beliefs, speculation, and the equity premium, The Jour-

nal of Finance 63, 41–83.

De Long, J Bradford, Andrei Shleifer, Lawrence H Summers, and Robert J Waldmann, 1990,

Noise trader risk in financial markets, Journal of political Economy 98, 703–738.

Dumas, Bernard, Alexander Kurshev, and Raman Uppal, 2009, Equilibrium portfolio strategies

in the presence of sentiment risk and excess volatility, The Journal of Finance 64, 579–629.

Lashkaripour, Mohammadhossein, 2023, Why Does the Inefficient and Energy-intensive Bit-

coin Remain Highly Valued?, Available at SSRN 4606401.

Lehar, Alfred, and Christine A Parlour, 2020, Miner collusion and the bitcoin protocol, Avail-

able at SSRN 3559894.

Liu, Yukun, and Aleh Tsyvinski, 2021, Risks and returns of cryptocurrency, The Review of

Financial Studies 34, 2689–2727.

Pagnotta, Emiliano S, 2022, Decentralizing money: Bitcoin prices and blockchain security, The

Review of Financial Studies 35, 866–907.
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A Appendix A

A.1 Proof of Equation 19:

Optimizing the Eq. 18 is equivalent to optimizing the following equation:

Max
X

{−a[δ1(1 +X ′(Et[rt+1]− ft))− δ2X
′ C̄+ δ3(X

′ λ̄)] +
1

2
a2X ′ΣTX} (61)

Now, taking first order condition with respect to vector X and restructuring completes the proof

of Equation 19.

A.2 Proof of Equations 20, 21, and 22:

Using Eq. 19, one can write the following:

aΣTXM = δ1(Et[rt+1]− ft)− δ2C̄+ δ3λ̄ (62)

A simple restructuring gives us:

Et[rt+1] =
a

δ1
ΣTXM + ft +

δ2
δ1
C̄− δ3

δ1
λ̄ (63)

Now, using the basis vector, one can easily prove the findings of Equations 20, 21, and 22.

A.3 Proof of Proposition 1:

Let’s multiply the vector of market portfolio to both sides of Eq. 62. We have:

aX ′
MΣTXM = δ1(X

′
MEt[rt+1]−X ′

M ft)− δ2X
′
MC̄+ δ3X

′
M λ̄ (64)
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Considering X ′
MΣTXM = σ2

M as the variance of the market portfolio on the left-hand-side,

one can write the following:

a

δ1
σ2
M = Et[r

M
t+1]−X ′

M ft −
δ2
δ1
X ′

MC̄+
δ3
δ1
X ′

M λ̄ (65)

where Et[rMt+1] is the expected return of the market portfolio. Let’s define C̄M = 1
a
X ′

M(δ2C̄)

which represents the average carbon emissions premium of the market portfolio (X ′
MCt) ad-

justed by the relative risk aversion. Also, let’s define T̄M = 1
a
X ′

M(δ3λ̄− δ1ft) which represents

the average of net transactional benefits premium of the market portfolio normalized by relative

risk aversion. Now, we can define σ̂2
M = σ2

M + C̄M − T̄M as an adjusted variance of the market

portfolio. In some works, like the one of (Pástor, Stambaugh, and Taylor 2020), they normalize

the market average values of various terms to zero. Here, I keep the average value and adjust

the variance of the market portfolio accordingly. Thus, the CAPM-like pricing relation in this

economy becomes:

Et[rt+1] = βEt[r
M
t+1] +

δ2
δ1
C̄+ (ft −

δ3
δ1
λ̄) (66)

where β = ΣTXM

σ̂2
M

.

A.4 Proof of Proposition 2:

Assuming, without loss of generality, that Xw +Xs = n, Xw = m, and Xe = 1 − n holds in

equilibrium, where n > 0 and m > 0. In equilibrium, the following first order conditions hold

for PoW and PoS cryptocurrencies respectively:

−a(δ1(Et[rwt+1]−fwt )+δ3λ̄w−δ2C̄w)+
1

2
a2(2Xwσ2

w+2(n−Xw)σsw+2(1−n)σew) = 0 (67)

−a(δ1(Et[rst+1]− f st ) + δ3λ̄
s) +

1

2
a2(2(n−Xw)σ2

s + 2Xwσsw + 2(1− n)σes) = 0 (68)
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Subtracting Eq. 68 from Eq. 67 gives:

−a(δ1(∆Et[rt+1]−∆ft)+δ3(∆λ̄)−δ2C̄w)+a2(Xwσ2
w−(n−Xw)σ2

s+(n−2Xw)σsw+(1−n)σew−(1−n)σes) = 0

(69)

Restructuring Eq. 69 gives:

a((Xwσ
2
w+Xwσ

2
s−2Xwσsw)+(1−n)σew−(1−n)σes−nσ2

s+nσsw) = (δ1(∆Et[rt+1]−∆ft)+δ3(∆λ̄)−δ2C̄w)

(70)

It’s clear that σ2
w+σ

2
s−2σsw = (σw − σs)

2. Also, we can define the following to ease notational

complexity:

l = a((1− n)(σew − σes) + n(σsw − σ2
s))

Thus, we have:

aXw(σw − σs)
2 = δ1(∆Et[rt+1]−∆ft) + δ3(∆λ̄)− δ2C̄

w − l (71)

which results is:

Xw =
δ1(∆Et[rt+1]−∆ft) + δ3(∆λ̄)− δ2C̄

w − l

a(∆σ)2
(72)

Considering Eq. 33, we have:

Ce
t (b2 − b3)− Capt

Wt
b2

Ce
t (b2 − 1)− Cw

t b2
+

l

a(∆σ)2
=
δ1(β

w − βs)Et[r
M
t+1]

a(∆σ)2
(73)

Restructuring the above equation gives:

βw − βs = U (74)

where U =
a(∆σ)2

δ1Et[rMt+1]
(
Ce
t (b2 − b3)− Capt

Wt
b2

Ce
t (b2 − 1)− Cw

t b2
+

l

a(∆σ)2
)

Now, I want to derive the sign of the first order derivative of U with respect to Cw
t . To
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proceed, first I take the first order derivative with respect to Cw
t from

Ce
t (b2−b3)−

Capt
Wt

b2

Ce
t (b2−1)−Cw

t b2
.

∂

(
Ce

t (b2−b3)−
Capt
Wt

b2

Ce
t (b2−1)−Cw

t b2

)
∂Cw

t

=
Ce
t (b2 − b3)b2 − Capt

Wt
b22

(Ce
t (b2 − 1)− Cw

t b2)
2 (75)

For the first order derivative to be positive, we require:

Ce
t (b2 − b3)b2 −

Capt
Wt

b22 > 0

After some simplification, we have:

Ce
t (b2 − b3) >

Capt
Wt

b2

In equilibrium, we have Capt
Wt

= mCw
t + (1 − n)Ce

t . Also, considering the definition of

carbon efficiency, we have Cw
t = Carbon Eff × ewt . Replacing these into the above equation

gives us:

b2 − b3
b2

> m
ewt
Ce
t

× Carbon Eff + (1− n) (76)

Further simplification implies that the first order derivative is positive if the following in-

equality holds:

Carbon Eff <
(nb2 − b3)C

e
t

mb2ewt
(77)

Second, I take the first order derivative with respect to Cw
t from l

a(∆σ)2
. Prior to taking the

first order derivative, let’s analyze the sign of (σsw − σ2
s). Intuitively, we expect that investors

increase their investment in the PoW cryptocurrency when the PoS cryptocurrency becomes

63



riskier. Mathematically speaking, we have:

σ2
s ↗ ⇒ Xw ↗⇒ l ↘

This implies that σsw − σ2
s > 0. Furthermore, let’s assume that the correlation of PoW and

PoS cryptocurrencies with equity are close to each other. This is also supported by real-world

data as cryptocurrencies are highly correlated with each other. Thus, we have σew − σes ≃ 0.

Therefore, the sign of first order derivative of l
a(∆σ)2

with respect to Cw
t is equivalent to the sign

of first order derivative of n =
(b2−b1)(Ce

t−
Capt
Wt

)−Cw
t b3

Ce
t (b2−1)−Cw

t b2
with respect to Cw

t since the former is a

positive affine transformation of the latter. So, to evaluate the sign, we only need to calculate the

first order derivative of n with respect to Cw
t . For notational simplicity, let’s write n as follows:

n =
A−BCw

t

C −DCw
t

(78)

A = (b2 − (φw − 1)− fwt )(C
e
t −

Capt
Wt

)

B = b3 − (φw − 1)(Ce
t −

Capt
Wt

)pFeng
1

ψ

C = Ce
t (b2 − 1)

D = b2

The first order derivative of Eq. 78 with respect to Cw
t has the following structure:

∂(
A−BCw

t

C−DCw
t
)

∂Cw
t

=
AD −BC

(C −DCw
t )

2 (79)

In order to have a positive sign, we require that AD > BC. This means that:

(Ce
t −

Capt
Wt

)(b2 − (φw − 1)− fwt )b2 > (b3 − (φw − 1)(Ce
t −

Capt
Wt

)pFeng
1

ψ
)Ce

t (b2 − 1) (80)
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For ease of understanding, let’s define the followings:

f = (Ce
t −

Capt
Wt

)(b2 − (φw − 1)− fwt )b2

g = b3C
e
t (b2 − 1)

q = (φw − 1)(Ce
t −

Capt
Wt

)pFengC
e
t (1− b2)

To complete the proof, I proceed with the following lemma:

Lemma 1: q > 0 if the staking revenue is sufficiently high, meaning that b2 > b1
It+1

.

Proof: By definition, φw−1 > 0. Also pFeng and Ce
t are positive. 15 It’s also straightforward

to show that (1 − b2) > 0, since the revenue per dollar value invested in PoS cryptocurrncy

is lower than one dollar; i.e., the revenue is less that 100% of the actual investment. Now, to

complete the proof, we only have to show that Ce
t −

Capt
Wt

> 0. From the equilibrium condition,

we can rewrite it as Ce
t −

Capt
Wt

= nCe
t −mCw

t > 0. Hence we have:

n

m
>
Cw
t

Ce
t

(81)

Considering Equations 34 and 33, we can replace the following for n
m

:

n

m
=

(b2 − b1)Qt − b3C
w
t

b2Qt − b3Ce
t

where Qt = Ce
t −

Capt
Wt

A simple use of algebra gives:

(b2 − b1)Qt < b2QtIt

15From the assumption of the main text, we assume that mean of Ce
t is sufficiently higher than its variance to

ensure that carbon intensity is positive.
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Note that since m > 0, we have b2Qt − b3C
e
t < 0 and by using algebra, the direction of

inequality changes.

A simple restructuring of

(b2It + b2 − b1)Qt > 0

For Qt = Ce
t −

Capt
Wt

to be positive, we need:

(b2It + b2 − b1) > 0 (82)

Thus, we have:

b2 >
b1

1 + It
(83)

The above inequality indicates that the revenue from staking must reach a certain threshold to

incentivize validators to engage in staking. The proof is complete.

Now, I continue with the proof of Proposition 2. Considering that the condition described

in inequality 83 holds, then the first order derivative of n with respect to Cw
t will be positive if

the following relation holds:

Carbon Eff <
f − g

q
(84)

Combining equations 77 and 84, it’s straightforward to show that ∂U
∂Cw

t
> 0 when the follow-

ing condition holds:

Carbon Eff < T

where T =Min

{
(nb2 − b3)C

e
t

mb2ewt
,
f − g

q

}
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A.5 Proof of Proposition 3:

To prove this propsition, I use the chain rule as below:

∂U

∂(1− α)
=

∂U

∂Cw
t

· ∂Cw
t

∂(1− α)
(85)

In Proposition 2, I showed that ∂U
∂Cw

t
> 0 under the condition b2 > b1

It+1
and Carbon Eff < T .

Now, I have to calculate ∂Cw
t

∂(1−α) as below:

∂Cw
t

∂(1− α)
= −ψewt (86)

Since the energy intensity (ewt ) and emission intensity (ψ) are strictly positive, thus we have
∂Cw

t

∂(1−α) = −ψewt < 0. So, the multiplication of a positive and a negative value will be negative
∂U

∂(1−α) =
∂U
∂Cw

t
· ∂Cw

t

∂(1−α) < 0 and the proof is complete.

A.6 Proof of Equation 41:

Taking F.O.C from Eq. 40 with respect to δ2 gives us the following:

aX ′C̄+
1

2
a2X ′(2δ2ΣC − 2δ1ΣrC − 2δ3ΣCλ)X = 0 (87)

Further simplification gives:

X ′C̄+ aδ2σ
2
C − aδ1σrC − aδ3σCλ = 0 (88)
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Where the market level variance of carbon emissions and its covariances with expected return

and cryptocurrency platform productivity are presented below:

X ′ΣCX = σ2
C

X ′ΣrCX = σrC

X ′ΣCλX = σCλ

By considering above equations and restructuring Eq. 88, we have:

aδ2 =
aδ1σrC + aδ3σCλ − Et[Capt]

Wt

σ2
C

where X ′C̄ = Et[Capt]
Wt

reflects the emission cap per dollar value of the ecosystem.

A.7 Proof of Proposition 4:

I can rewrite the optimization problem of the overconfident investor under the objective proba-

bility measure as below:

Max
XO, δ̂2

{−aO[1+δ1X ′
O(Et[ξrt+1]−ft)+δ3(X

′
O λ̄)−δ̂2X ′

OC̄]+
1

2
a2OX

′
O(Σ̂

O
T+δ̂

2
2ΣC−2δ1δ̂2ΨΣrC−2δ3δ̂2ΣCλ)XO}

(89)

where Σ̂O
T = ΣO

T − δ̂22ΣC + 2δ1δ̂2ΨΣrC + 2δ3δ̂2ΣCλ

here Σ̂O
T is the part of variance-covariance matrix that is independent of δ̂2. Also Ψ refers

to a 3 × 3 matrix used to adjust the covariance between carbon emissions and expected return

calculated under the objective probability measure, to reflect the perception of the overconfident

investor regarding the covariance between these two variables in the ecosystem. I characterize

this matrix later

Taking F.O.C with respect to carbon sensitivity of overconfident investor (δ̂2) gives:

aOX
′
OC̄− a2O(δ̂2X

′
OΣCXO − δ1X

′
O(ΨΣrC)XO − δ3X

′
OΣCλXO) = 0 (90)
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The covariance between expected return and carbon emissions in the view of overconfident

investor can be written as below:

ΨΣrC = E[(ξrt+1 − Et[ξrt+1])
′(Ct − C̄)] (91)

Using the definition of Bt, I can write the right-hand-side of above equation as below:

E((rt+1 − Et[rt+1]− (B̃t −Bt))
′(Ct − C̄)) = ΣrC − ΣBC (92)

Thus, the matrix Ψ has the following structure:

Ψ = I− ΣBCΣ
−1
rC (93)

Now consider the following:

X ′E((rt+1 − Et[rt+1]− (B̃t −Bt))
′(Ct − C̄))X = σrC − σBC (94)

where σrC = X ′ΣrCX

and σBC = X ′ΣBCX

Replacing the above argument into the F.O.C and restructuring completes the proof as de-

scribed below:

δ̂2 =
δ1(σrC − σBC) + δ3σCλ +X ′

OC̄

aOσ2
C

(95)

It’s also straightforward to show that the optimal carbon sensitivity of the rational investor

(δ2) has the following structure:

δ2 =
δ1σrC + δ3σCλ +X ′

RC̄

aRσ2
C
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The aggregate carbon sensitivity in this economy can be described as below:

δagg2 =

(
WR
t

Wt

)
δ2 +

(
WO
t

Wt

)
δ̂2

By further simplification, we can derive the following structure for the aggregate carbon

sensitivity in this economy:

δagg2 =
δ1(σrC − WO

t

Wt
σBC) + δ3σCλ +

Et[Capt]
aWt

σ2
C

A.8 Proof of Proposition 5:

Plugging the optimal portfolio weights into the market clearing condition gives us:

WtXM = WO
t

1

AWO
t

Σ−1
T Λ−1(δ1(Et[ξrt+1]−ft)+δ3λ̄−δ̂2C̄)+WR

t

1

AWR
t

Σ−1
T (δ1(Et[rt+1]−ft)+δ3λ̄−δ2C̄)

(96)

Multiply both sides of the above equation with ΣT and restructuring gives us:

aΣTXM = δ1(Et[rt+1]− ft) + δ3λ̄− δ2C̄+ Λ−1(δ1(Et[ξrt+1]− ft) + δ3λ̄− δ̂2C̄) (97)

As shown in Proposition 4, I can write δ̂2 = δ2 − κ where κ = aδ1
σBC

σ2
C

. One can restructure

the above equation as below:

aΣTXM = (I+Λ−1)(δ3λ̄− δ1ft− δ2C̄)+ δ1(I+Λ−1)Et[rt+1]+Λ−1(δ1Et[(ξ−1)rt+1]+κC̄)

(98)
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Consider the following and plug-in into the above equation:

Et[ξrt+1] = Et[rt+1]−Bt

where Bt = Et[(ξ − 1)rt+1]

Then, restructuring and pre-multiplying by (I+ Λ−1)−1 gives us:

Et[rt+1] =
a

δ1
(I+ Λ−1)−1ΣTXM − (I+ Λ−1)−1Λ−1(Bt +

κ

δ1
C̄)− (

δ3
δ1
λ̄− ft) +

δ2
δ1
C̄ (99)

Using algebra, one can write (I+ Λ−1)−1Λ−1 as below:

(I+ Λ−1)−1Λ−1 = (I+ Λ)−1 (100)

Also, using standard algebra gives us:

(I+ Λ−1)−1 =
1

det(I+ Λ−1)
adj(I+ Λ−1) (101)

Let’s define the above matrix Φ = 1
det(I+Λ−1)

adj(I + Λ−1) which can be interpreted as an

adjustment factor. Indeed, Φ adjusts the variance in the market by incorporating the speculativ

behavior of overconfident investors.

By defining the adjusted variance as Σ̂ = ΦΣ, we can complete the first part of the proof as

below:

Et[rt+1] =
a

δ1
Σ̂TXM − (I+ Λ)−1(Bt +

κ

δ1
C̄)− (

δ3
δ1
λ̄− ft) +

δ2
δ1
C̄

To derive the CAPM-like relation, we follow the similar procedure as the representative

agent case. The return on the market portfolio in this environment can be calculated as below:

Et[r
M
t+1] =

a

δ1
X ′

M Σ̂TXM −X ′
M(I+ Λ)−1(Bt +

κ

δ1
C̄)−X ′

M(
δ3
δ1
λ̄− ft) +

δ2
δ1
X ′

MC̄ (102)
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Now, defining ⌢
σT

2
= X ′

M Σ̂XM + C̄M − T̄M − B̄ where B̄M = X ′
M(1+ Λ)−1(B+ κ

δ1
Ct)

let us to write a CAPM-like relation as below:

Et[rt+1] = βEt[r
M
t+1]− (I+ Λ)−1(Bt +

κ

δ1
C̄)− (

δ3
δ1
λ̄− ft) +

δ2
δ1
C̄

where β =
Σ̂XM

⌢
σT

2

A.9 Proof of Proposition 6:

We want to prove that if ξ1 > 1 and ξ2 < 1, then κ > 0. To show that κ > 0, I need to prove

that σBC > 0.

It’s necessary to point out two things. First, the speculation is only in the cryptocurrency

market. Second, the carbon emissions of PoS cryptocurrency is zero. Thus, we can write σBC

as below:

σBC = X2
wE[(B̃

w
t −Bw

t )(C
w
t − C̄w)] (103)

Therefore, we only need to show that if ξ1 > 1 and ξ2 < 1 then we haveE[(B̃w
t −Bw

t )(C
w
t −

C̄w)] > 0.

Let’s consider CU and CD as the carbon emissions in Up and Down states respectively

where CU > 0 and CD > 0 and CU > CD. Now, using the structure of covariance function

E[(B̃w
t −Bw

t )(C
w
t − C̄w)] = E[B̃w

t C
w
t ]− C̄wBw

t , we can write the following:

Et[B̃
w
t C

w
t ] =

1

2
(ξ1 − 1)rUCU +

1

2
(ξ2 − 1)rDCD (104)

Using the property of Radon-Nikodym derivative implies (Shreve et al. 2004):

E[ξ] =
1

2
ξ1 +

1

2
ξ2 = 1 (105)
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Considering this property, we can write Eq. 104 as below:

Et[B̃
w
t C

w
t ] =

1

2
(ξ1 − 1)(rUCU − rDCD) (106)

Also, we can calculate Bw
t as below:

Bw
t =

1

2
(ξ1 − 1)(rU − rD) (107)

Considering Eq. 106 and 107, we can write the covariance function as below:

E[(B̃w
t −Bw

t )(C
w
t − C̄w)] =

1

4
(ξ1 − 1)(CU − CD)(rU + rD) (108)

We know that (CU−CD) > 0 since the carbon emissions of PoW cryptocurrency is positive.

Also, PoW cryptocurrency must offer positive risk premium which implies that rU >
∣∣rD∣∣.

Thus, rU + rD > 0.

Therefore, if ξ1 > 1, then σBC > 0 which completes the proof. Note that the propetry of

Radon-Nikodym derivative described in Eq. 105 implies that when ξ1 > 1, we should observe

ξ2 < 1.

A.10 Proof of Equations 43 and 44:

With the possibility of a Poisson jump, the following holds for carbon intensity:

CwJ
t − C̄w = −ψηµY

g
+
ψ

g
(hwt − h̄) (109)

Thus, the impact of Poisson jump on the mean and variance of carbon intensity can be char-

avterized as below:
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 V ar(CwJ
t − C̄w) = (ψηµ

g
)
2
θ + some term

Mean(CwJ
t − C̄w) = −ψηµθ

g

(110)

The effect of jump on the mean and variance of transactional benefits is as follows:

 Mean(λwJt ) = βπ µ−ηθ
1−ϕ + some term

V ar(λwJt ) = (βπ)2
σ2
h+η

2θ

1−ϕ2 + some term
(111)

Now, we can use the following expression to derive the first order derivative:

∂Et[r
w
t+1]

∂θ
=
∂ae′1ΣTXM

∂θ
+
∂(−δ3λ̄wJ)

∂θ
+
δ2C̄

wJ

∂θ
(112)

A simple use of algebra give us the following:

∂Et[r
w
t+1]

∂θ
= aXw

(
δ23(βπ)

2 η2

1− ϕ2
+ δ22(

ψηµ

g
)
2

− 2δ2δ3
βπψ

g
(ηµ)2

)
+ δ3βπ

η

1− ϕ
− δ2

ψηµ

g

A similar path would give us the expression for ∂Et[rwt+1]

∂η
.

B Appendix B

B.1 Model extension by relaxing the simplifying assumptions:

Let’s assume that the representative investor has a quadratic utility function, described as below.

Note that it is also possible to consider that the representative investor has a power utility, with

log-normal variables determining her wealth bundle. Such an approach yields the same trade-

off between the mean and variance of the wealth bundle, characterized by risk aversion. For

further details, see Chapter 2 of Campbell and Viceira (2002).

Et

[
U(Ŵt+1)

]
= Et[Ŵt+1]−

A

2
V ar(Ŵt+1) (113)
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where Ŵt+1 represents the wealth bundle and is the aggregation of pecuniary wealth and non-

pecuniary benefits. The dynamics of Ŵt has the following structure:

Ŵt+1 = WtX
′Jt+1 (114)

where Jt+1 =


Jwt+1

Jst+1

Jet+1

 represents the vector of aggregated pecuniary and non-pecuniary

benefits in each asset. The Cobb-Douglas aggregator is used to describe Jt+1.

Jwt+1 = (eR
w
t+1)α(eλ

w
t )β(e−C

w
t )1−α−β (115)

Jst+1 = (eR
s
t+1)α(eλ

s
t )β (116)

Jet+1 = (eR
e
t+1)α(e−C

s
t )1−α−β (117)

where Rk
t+1 = 1 + rkt+1. Here, Jt is log-normally distributed.

Taking F.O.C with respect to X from Eq. 113 gives the optimal portfolio weights:

X =
1

a
Σ−1
J (Et[Jt+1]) (118)

To find the expected return relation, I restructure the the above equation:

aΣJX = Et[Jt+1] (119)

The normal characteristic function allows us to write the following:

Et[Jt+1] = eαE[Rw
t+1]+βλ̄

w−(1−α−β)C̄w+ 1
2
1′ΣJ1 (120)

Thus, we have:

eαE[Rw
t+1]+βλ̄

w−(1−α−β)C̄w+ 1
2
1′ΣJ1 = aΣJX (121)
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Now, let’s define 1′ΣJ1 = σ2
T . Then, taking natural logarithm from both sides gives the follow-

inf expression for PoW cryptocurrency:

αE[Rw
t+1] + βλ̄w − (1− α− β)C̄w +

1

2
σ2
T = ln(ae′1ΣJX) (122)

For PoS cryptocurrency and Equity, the procedure is the same. By, restructuring the Eq. 122,

we have the following:

E[Rw
t+1] +

1

2
σ̂2
T = ln(ae′1ΣJX)− β

α
λ̄w +

1− α− β

α
C̄w (123)

where σ2
T = ασ̂2

T and 1
2
σ̂2
T is the log-normal adjustment. The above equation identifies 3 priced

components for PoW cryptocurrency similar to Theorem 2 in the main text. For PoS cryptocur-

rency and equity, we can use a similar approach to derive the results of Theorem 2.

Now, let’s assume that variables described in the theory section are log-normally distributed.

In other words, let’s assume that λkt , ekt , Ck
t , andRk

t are log-normally distributed for k = w, s, e.

The rationale behind this assumption is that the variables such as carbon emissions do not admit

negative values. Now, in order to solve the model, we must define a new aggregator to bundle

together the financial gain from the expected return, the non-pecuniary transactional benefits of

crypturrencies, and the disutility of carbon intensity. To do so, I retain the structure I proposed

earlier in this section and define the following Cobb-Douglas aggregator:

Jwt+1 = (eln(R
w
t+1))α(eln(λ

w
t ))β(e− ln(Cw

t ))1−α−β

Jst+1 = (eln(R
s
t+1))α(eln(λ

s
t ))β

Jet+1 = (eln(R
e
t+1))α(e− ln(Cs

t ))1−α−β

Here, ln(Rk
t+1), n(λ

w
t ), and ln(Cw

t ) are normally distributed. Hence, utilizing this struc-

ture for the aggregator along with appropriate parameters give similar results to what we have

derived in Eq. 122, 123, and Theorem 2.
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B.2 Relaxing the assumption of a single competitive validator

In this section, I move away from the simplifying assumption of a single representative entity

producing both PoW and PoS cryptocurrencies. Instead, I posit that one representative en-

tity produces PoW cryptocurrencies and is called ”miner,” while another representative entity

produces PoS cryptocurrencies and is referred to as a ”staker.” The miner expends energy to

produce hashes and ensure the blockchain security. In compensation, the miner receives trans-

action fees and block reward. To characterize this, I formulate the miner’s profit as below:

Miner′sprofit = (θwt+1 − θwt )p
w
t + fwt XwWt − pFenge

w
t p

w
t (θ

w
t+1 − θwt )−Mw

t (124)

where Mw
t denotes the maintenance costs associated with mining, such as the maintenance cost

of mining device.

The staker holds a certain value of PoS cryptocurrencies in a wallet and, in return, receives

cryptocurrency rewards in the form of transaction fees and block rewards. It’s important to

note that there are no maintenance costs associated with staking. The staker only incurs the

opportunity cost of the staked tokens. To depict this, I formulate the staker’s profit as follows:

Staker′s profit = (θst+1 − θst )p
s
t + f stXsW −M s

t (125)

where M s
t denotes the time-varying opportunity cost of staked tokens. For brevity, let’s define

Mt = Mw
t +M s

t . In this ecosystem, I introduce a social planner who determines the optimal

resource allocation between mining and staking as characterized below:

Max
ω

 ω
(
(θwt+1 − θwt )p

w
t + fwt XwWt − pFenge

w
t p

w
t (θ

w
t+1 − θwt )−Mw

t

)
+(1− ω)

(
(θst+1 − θst )p

s
t + f stXsW −M s

t

)


where 0 ≤ ω ≤ 1. Taking first order condition with respect to ω yields the optimal resource
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allocation as outlined below:

(θwt+1 − θwt )p
w
t + fwt XwWt + (θst+1 − θst )p

s
t + f stXsW = pFenge

w
t p

w
t (θ

w
t+1 − θwt ) + (M s

t +Mw
t )

This corresponds to Eq. 27. Thus, the conclusions drawn from the single validator assumption

remain valid when considering separate and independent miners and stakers.
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