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Abstract

We analyse default risk coefficient estimation when borrowers can inflate, at quadratic cost, a
covariate used in credit scoring, with potential heterogeneity in latent sensitivities to interest
rates. A qualified version of Goodhart’s law obtains: When the posted model utilizes coefficients
from clean historical data, coefficients shift subsequently, provided the coefficient on the true
covariate is not zero. As shown, measurement error resulting from manipulation is negatively
correlated with the true covariate. This correlation shifts the slope coefficient upward unless
noise resulting from heterogeneous interest-rate sensitivities is sufficiently high. We next evaluate
internally consistent fixed point (Nash) models. If the clean covariate coefficient is not zero,
so Goodhart’s critique applies, intercept and/or slope coefficients of any Nash model must
undershoot clean data counterparts, and the Nash slope coefficient cannot be zero. Practically,
adaptive estimation converges to a fixed point if manipulation costs are sufficiently high. Finally,
an econometrician with commitment power optimally discourages manipulation with marginal
increases (decreases) in the posted model intercept (slope).

1 Introduction

An extant literature, beginning with Altman (1968), attempts to use historical statistical relation-

ships to estimate default probabilities. Problematically, the use of econometric models to estimate

default probabilities brings them into direct conflict with Goodhart’s law, which states that:1

Any observed statistical regularity will tend to collapse once pressure is placed upon

it for control purposes.

Fair Isaac Corporation (2018) notes that, “In markets where credit risk scoring models are

regulated and scrutinized, there is a strong requirement for the models, and the credit decisions

derived from them, to be explainable. The impact each variable has on the credit score must be
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Workshop on Strategic Interaction in Corporate Finance 2023, ASU Sonora Winter Conference 2024, and Lake
District CF Workshop 2024 for their comments and suggestions.

1See Goodhart (1975) and the related formal work of Lucas (1976).



traceable (transparent), clearly explained and palatable (understandable and acceptable) to lenders,

regulators and consumers.” Borrowers facing such models have an obvious incentive to game them.

Indeed, echoing Goodhart (1975), Mark Zandi, chief economist at Moody’s Analytics, has expressed

concern that, “The scoring models may not be telling us the same thing that they have historically,

because people are so focused on their scores and working hard to get them up, mucking with their

relationship to the underlying credit risk.” Supporting this concern, Liu, et al. (2010) and Caton,

et al. (2011) document that corporations engage in earnings management prior to bond flotations.

Although the issue of gaming of credit risk scores is oft-noted, it is not clear how to model

it formally, to say nothing of the challenge of how to address the problem econometrically. With

this in mind, this paper develops an analytical framework for assessing and addressing Goodhart’s

law in the context of canonical econometric models of credit risk. How do we incorporate data

manipulation into a formal statement of the default prediction problem? What kind of coefficient

shift should we expect to see? What tools are available for addressing Goodhart’s law here? Can

one expect econometric tâtonnement to equilibrium, with coefficient estimates being stable within

manipulated data?

The setting considered is as follows. Each borrower’s latent repayment probability is F (a+ bx),

with x ≥ 0, b ≥ 0, and F falling into one of three standard functional forms: uniform, logistic, or

normal. In the spirit of Goodhart (1975), the econometrician has access to clean data on outcomes y

and covariates x collected from a cohort of borrowers who did not face a default prediction model.2

The clean data allows the econometrician to correctly estimate the intercept and slope coefficients

(a, b).

The main task of the econometrician is to post a default prediction model with intercept and

slope parameters (α̃, β̃). Borrowers in a future cohort report their manipulated covariate x̃ ≥ x, un-

derstanding that their repayment probability will be computed according to F (α̃+ β̃x̃). Borrowers

incur quadratic costs to manipulate their covariate upward, with heterogeneous cost parameters c

associated with heterogeneity in borrower interest-rate sensitivities. Importantly, the cost parame-

ters c are assumed to be independent from the true covariate x. By construction, this independence

assumption rules out mechanical correlation between manipulation and the true covariate.

In order to understand how Goodhart’s law would manifest itself in default prediction, we

first consider a naive econometrician who posts coefficients (α̃, β̃) = (a, b). That is, the naive

econometrician uses the clean data parameters (a, b), and computes repayment probabilities for the

future cohort according to F (a+bx̃), despite x̃ ≥ x. Ex post, the econometrician tests for coefficient

instability by estimating new coefficients (α̂, β̂) using the manipulated data (y, x̃) collected from

the cohort of strategic borrowers. Consistent with Goodhart’s law, estimated coefficients are indeed

unstable across the historical and strategic cohort, with (α̂, β̂) ̸= (a, b) unless b = 0.

2Access to clean data is only assumed in our Goodhart-type thought experiments.
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A better understanding of coefficient shift is gained by noting that covariate manipulation rep-

resents an endogenous source of measurement error differing in kind from classical white noise error.

In particular, conditional upon c, manipulation is negatively correlated with the true covariate x.

As we show, this implies that, absent additional noise generated by heterogeneity in manipulation

costs (or interest-rate sensitivity), the coefficient on the manipulated covariate will exceed the orig-

inal coefficient on the unmanipulated covariate. That is, here we have a case in which manipulation

of a covariate actually serves to increase the apparent sensitivity of outcomes to that covariate.

A simple argument conveys the intuition. As we show, the incentive to manipulate decreases

with a borrower’s baseline credit score, since the interest rate is decreasing and convex in the

repayment probability. Therefore, if one were to consider, say, the best linear fit between two data

points x and x+∆x, the mean change in the numerator (the repayment probability) would be b∆x.

But in manipulated data, the change in the denominator is ∆x̃ < ∆x since manipulation decreases

with x. Thus, the slope increases to b∆x/∆x̃ > b.

Figure 1 provides illustrative econometric output, with manipulated covariates x̃ on the horizon-

tal axis and true repayment probabilities on the vertical axis.3 The top panel depicts a setting with

substantial cross-sectional heterogeneity in manipulation costs. Such cost heterogeneity scatters

observations away from the line of best fit, with the estimated slope falling below the clean data

slope b. The bottom panel captures a setting with lower cross-sectional variation in manipulation

costs. In this case, observations fall closer to the estimated line of best fit, with the slope coefficient

in manipulated data actually shifting above the clean data coefficient b. That is, here we have a

case in which manipulation of a covariate serves to increase the estimated sensitivity of outcomes to

that covariate. As we show, this type of upward shift in estimated slope tends to occur in settings

with low variation in manipulation costs.

After characterizing coefficient shift, we examine alternative econometric responses. We consider

first fixed point (Nash) coefficients (α∗, β∗) which are optimal given the induced covariates x̃, and

vice-versa. Notice, fixed points will be immune to the sort of parameter instability that troubled

Goodhart. Moreover, fixed points satisfy potential institutional demands for model coefficients to

be justifiable by the data. As we show, historical clean data coefficients (a, b) are fixed points if

and only if b = 0. If b > 0, a fixed point model must feature a lower intercept and/or slope than

(a, b), and the slope β∗ ̸= 0.

We next consider fixed point convergence. Practically, we show that so long as estimated

coefficients (α̂, β̂) are not too sensitive to posted model coefficients (α̃, β̃), econometricians will

converge to a fixed point if they simply iterate, utilizing the prior period’s coefficient estimates as

the next period’s posted model. In turn, this low sensitivity scenario occurs if manipulation costs

are sufficiently high and/or borrowers have sufficiently high latent quality (x).

3For ease of inspection, we replace (0,1) values of y with mean y.
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Figure 1: Goodhart’s Law. OLS estimation based on manipulated data x̃, with posted model coefficients

(a, b) = (0.5, 0.25). The figure assumes uniformly distributed cost c ∼ U [cd, cu], and uniformly distributed

on x ∼ U [xmin, xmax], with xmin = 0, and xmax = max{ 1−a
b

− δ, 1} to ensure repayment probability in [0, 1]

for all x, where δ equals the maximum manipulation for average x. The variance of manipulation cost is

high in the upper panel and low in the lower panel. The remaining parameters are r = 0 and l = 0.5.
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Finally, we analyze optimal coefficients (α∗∗, β∗∗) with full commitment. In contrast to fixed

point (Nash) models, where the econometrician treats the distribution of covariates as given, a

Stackelberg parameterization accounts for the effect of the posted model on borrower incentives.

Under commitment, the econometrician discourages borrower manipulation with marginal upward

(downward) adjustments in the posted model intercept (slope). This leads to an increase in predic-

tive power relative to fixed points. However, the increase in predictive power comes at the cost of

the model being difficult to rationalize since Stackelberg coefficients are inconsistent with the data

they generate, with (α∗∗, β∗∗) ̸= (α̂, β̂).

Our paper draws much inspiration from recent work of Frankel and Kartik (2022), and to a

lesser extent Hennessy and Goodhart (2023).4 Frankel and Kartik consider a more abstract setting,

linear prediction with idiosyncratic manipulation gains modelled as random variables potentially

correlated with the latent covariate. They show a Stackelberg principal finds it optimal to make

allocations less sensitive to the covariate than in Nash equilibrium. In contrast, we consider a

specific non-linear setting, default prediction via MLE, generating novel predictions regarding in-

centives for data manipulation and resulting econometric outcomes. For example, in the setting

we consider, there is endogenous negative correlation between manipulation and the latent covari-

ate which leads to slope coefficient overshooting absent noise from cross-sectional heterogeneity in

manipulation costs. In addition, in the setting we consider, incentives for manipulation are shaped

by the posted model intercept, not just the posted slope, complicating the search for fixed points

and optimal commitment models. We also show that outcomes vary in a non-linear way with the

true causal parameter b, while Frankel and Kartik consider the special case of b = 1. Finally, we

consider the conditions under which adaptive estimation will converge to a fixed point.

Another closely related paper is that of Rajan, Seru and Vig (2010). They demonstrate a

complementary variation of Goodhart’s law in credit markets: An increase in securitization rates

over time will weaken lender incentives to collect soft information, implying that historical estimates

of default probabilities will undershoot prospective default probabilities. Of course, one point of

contrast is that we focus on borrower moral hazard, not lender moral hazard. However, the more

important point of contrast methodologically is that we cast our analysis in an explicit econometric

framework, inspired by Frankel and Kartik (2022) and Hennessy and Goodhart (2023).

Eliaz and Spiegler (2019) consider an economy in which each agent is part of the training data.

In their setting, incentives would seem to be aligned in that the objective of the principal is to predict

the agent’s most preferred outcome. Nevertheless, they identify the following problem likely to be

acute under Lasso estimation with sparsity: An agent may have an incentive to misreport given

that the report only matters in the event that the covariate’s coefficient is not zero.

Björkegren, Blumenstock and Knight (2020) consider the special case of absolute quadratic

manipulation costs demonstrating their method with Monte Carlo simulations. In addition, they

4Hennessy and Goodhart (2023) consider machine learning in linear settings with manipulation.
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offer a real-world implementation in a field experiment in Kenya. Brückner and Scheffner (2011) and

Hardt, et al. (2015) also analyze agents who can manipulate covariates. Brückner and Scheffner

consider only quadratic manipulation costs while Hardt, et al. only consider costs expressible

as max{0, g(x2) − f(x1)} for some (f, g) which includes linear manipulation costs but excludes

quadratic costs and other standard distance measures.

There is another line of research in computer science focusing on strategic manipulation of train-

ing data, e.g. Dekel, et al. (2010) and Chen, et al. (2018). This literature contemplates statistical

inference combined with mechanism design, with the core idea being to identify mechanisms that

induce truthful reporting in training data.

The remainder of the paper is as follows. Section 2 analyzes incentives for data manipulation.

Section 3 examines Goodhart’s law in the context of linear probability models. Section 4 examines

Goodhart’s law in the context of logit and probit models. Section 5 considers fixed points and

convergence. Section 6 considers optimal models under commitment. Section 7 extends some key

results to a multivariate setup.

2 Data Manipulation Incentives

This section begins with a description of the assumed institutional setting which features strategic

interaction between an econometrician and borrowers. We then consider the incentive of borrowers

to manipulate their covariate report. As shown, data manipulation incentives have a number of

intuitive properties.

2.1 Institutional Setting

We consider a single lender relying on model-based loan pricing, as described below. The loan

amount is normalized at 1. The outcome y is a binary random variable, with y = 1 denoting debt

repayment and y = 0 denoting default. In the event of default, the borrower recovers zero and the

lender recovers l, where 0 ≤ l < 1. The risk-free rate is r ≥ 0.

The true covariate x ≥ 0 is a random variable representing an independent draw from an

atomless cumulative distribution function H with probability density h. The variance of x is

σ2
x > 0. The conditional expectation of y given x, or the probability of debt repayment conditional

upon x, is:

E[y|x] = Pr[y = 1|x] = F (a+ bx), (1)

where b ≥ 0. The argument, call it z, to which the c.d.f. F is applied is labelled the credit score.

Each borrower’s true latent credit score is z = a+ bx.
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Equation (1) can be motivated by canonical structural models of default. For example, in the

log-normal economy considered by Merton (1974), the probability of repayment by a borrower

holding an asset with value V facing a zero coupon debt face value D due at time τ is given by:

Pr[y = 1|x] = N
=F

(µV − 1
2σ

2
V )τ

σV
√
τ

=a

+

(
1

σV
√
τ

)
=b

ln

(
V

D

)
=x

 . (2)

In the spirit of Goodhart (1975), we assume the econometrician has access to clean training

data consisting of (y, x) pairs collected from some historical cohort–a cohort that had no incentive

to manipulate since their data was not being used in setting interest rates.5 The question pondered

by Goodhart is the extent to which statistical regularities gleaned from clean historical data will

tend to break down if those regularities are used in allocating resources, with our specific interest

being the pricing of credit.

The mandate of the lender is to make loans subject to an institutional constraint that the

model-implied expected return is equal to the risk-free rate. More specifically, letting hats denoted

predicted values, the interest rate ι on each loan must satisfy:

1 + r = P̂r[y = 1](1 + ι) +
[
1− P̂r[y = 1]

]
l (3)

⇒ ι = l +
1 + r − l

P̂r[y = 1]
− 1.

For future borrowers, the lender only observes an endogenously manipulated covariate x̃ ≥ x.

A borrower’s cost of manipulation is cm2/2, with m ≡ x̃−x and c > 0 being a private independent

draw from cumulative distribution G with density g. The variance of c is σ2
c ≥ 0. Manipulation

costs are incurred at the end of the period, at the same time debt comes due. For example, one

may think of manipulation costs as capturing pecuniary penalties assessed once manipulation is

eventually detected. Alternatively, one may think of these costs as representing loss of going-concern

value, or ongoing costs associated with papering over the prior period’s accounting misstatement.

In summary, each prospective borrower has latent two-dimensional type (x, c), with type drawn

from joint distribution H × G. The maintained assumption that x ⊥ c precludes mechanistic

correlation between manipulation and the latent covariate. Any correlation between manipulation

and the true covariate is endogenous, arising from the implicit incentives generated by model-based

loan pricing.

5Alternatively, the first posted model can feature zero loading on the covariate, eliminating manipulation in that
cohort.
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The econometrician’s default prediction model (DPM) states how reported covariates (x̃) will

be mapped to an assessed repayment probability for future borrowers. In particular, repayment

probabilities will be computed according to

P̂r[y = 1|x̃] = F (α̃+ β̃x̃). (4)

The task of the econometrician is to specify the coefficients (α̃, β̃) of the posted econometric

model, perhaps relying on the estimates derived from the clean historical data (y, x). A borrower

responds to the posted DPM by reporting a covariate x̃.6 Since b ≥ 0, attention is confined to

posted models that load positively on the covariate (β̃ ≥ 0).

Substituting equation (4) into equation (3), the model-implied interest rate is:

ι(m,x, α̃, β̃) = l +
1 + r − l

F [α̃+ β̃(x+m)]︸ ︷︷ ︸
≡F̂

− 1. (5)

Recall, the borrower has limited liability and receives a payoff of zero if y = 0, as would be the

case in the event of a corporate default. Therefore, each borrower will minimize costs they will incur

in the event of solvency (y = 1): debt service plus manipulation costs.7 Optimal manipulation m∗

is pinned down by:

m∗(x, α̃, β̃, c) ∈ argmin
m

1

2
cm2 + ι(m,x, α̃, β̃). (6)

Before closing this subsection, it is useful to discuss empirically relevant settings that give rise

to the same program as (6), and identical econometric outcomes. To this end, assume manipulation

costs are non-pecuniary costs of the form ξm2/2, with ξ being a privately observed random variable.

Assume also that borrowers have heterogenous shadow values for end-of-period funds λ ≥ 1, with

λ also being a privately observed random variable. Finally, assume the econometrician only knows

the distribution G of the random variable c ≡ ξ/λ. Then we are in an isomorphic environment

where a borrower minimizes:

1

2
ξm2 + λι(m,x, α̃, β̃) = λ

[
1

2
cm2 + ι(m,x, α̃, β̃)

]
. (7)

Alternatively, the preceding program also arises if, say, credit card applicants can achieve total

clandestine borrowing λ using infinitesimal loans from atomistic banks. In either environment,

borrowers with high λ, and low c ≡ ξ/λ, are more interest rate sensitive in the sense of placing

greater weight on getting a good interest rate ι.

6Of course, in Nash equilibrium, the econometrician and borrowers move simultaneously.
7Recall, manipulation costs are end-of-period costs.
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With the preceding discussion in mind, we can return back to our baseline technology, noting

that variance in c can be understood as proxying for heterogeneity in interest-rate sensitivity arising

from differences in shadow values of internal funds or differences in total indebtedness.

2.2 Incentive for Data Manipulation

For brevity, let

Ω(z) ≡ [F (z)]−1 ⇒ ι(m,x, α̃, β̃) = l + (1 + r − l)Ω[α̃+ β̃(x+m)]− 1. (8)

The following lemma, relegated to the appendix, establishes some useful properties of Ω for the

three standard classes of default prediction models that we consider: linear probability, logit, and

probit.

Lemma 1. Let Ω(z) ≡ [F (z)]−1 where F (z) ≡ ez(1 + ez)−1 or F (z) ≡ N (z). Then Ω is strictly

decreasing and strictly convex on ℜ. If F (z) ≡ min{1,max{0, z}}, then Ω is strictly decreasing

and strictly convex on (0, 1).

We have the following first-order condition (FOC below) pinning down optimal manipulation:

cm∗ + ιm(m∗, x, α̃, β̃) = 0 ⇒ cm∗ + (1 + r − l)β̃Ω′[α̃+ β̃(x+m∗)] = 0. (9)

Intuitively, borrowers equate marginal manipulation costs with the marginal reduction in interest

rate that results from upward manipulation.

Importantly, the marginal gain to manipulation depends upon the specific properties of the

distribution F utilized by the econometrician, as well as the credit score z at which it is evaluated.

To see this, note that the marginal rate reduction generated by upward manipulation can be

decomposed into three parts as follows:

∂ι

∂m
=

∂z

∂m
× ∂F̂

∂z
× ∂ι

∂F̂
(10)

= β̃ × f(z)×
(
−1 + r − l

[F (z)]2

)
≤ 0.

That is, the marginal rate reduction is the product of: β̃ capturing the effect of manipulation m

on the credit score z; f(z) capturing the effect of z on imputed repayment probability F̂ ; and the

effect of F̂ on the interest rate.

As discussed below, for standard distributions F , the dominant force in equation (10) is the

final term which informs us that the interest rate is most sensitive to the imputed repayment

probability at low credit scores. The middle term in the marginal gain equation, F ′ = f , captures
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a subtle secondary force: For logit and probit models, manipulation gains are attenuated in the

tails of the distribution, where the imputed repayment probability has low sensitivity to the credit

score z. The more general point is that, while the choice of F is often based upon tractability, or

dictated by assumptions about underlying real technologies, as in the log-normal economy of Merton

(1974), the choice of distribution has subtle incentive implications, magnifying or attenuating local

manipulation incentives.

For standard distributions F (Lemma 1), the marginal manipulation gain is decreasing in the

true covariate, with:

∂

∂x

∂ι

∂m
= (1 + r − l)β̃2[F (z)]−2

[
2[f(z)]2

F (z)
− F ′′(z)

]
︸ ︷︷ ︸

≡Ω′′(z)

(≥ 0) . (11)

Here too, a decomposition reveals the presence of potentially opposing forces. Applying the chain

rule we have:

∂

∂x

∂ι

∂m
=

∂

∂x

(
∂ι

∂F̂

∂F̂

∂m

)
(12)

=
∂F̂

∂m

∂2ι

∂x∂F̂
+

∂ι

∂F̂

∂2F̂

∂x∂m

= β̃2f2 ∂2ι

∂F̂ 2︸︷︷︸
>0

+ β̃2 ∂ι

∂F̂︸︷︷︸
<0

F ′′.

Notice, the sign of the second term is negative if F is locally convex. Intuitively, as x increases,

the imputed repayment probability becomes more sensitive to manipulation m if f is increasing.

It follows that if f is increasing, as is the case in the left tail of the distribution for logit and

probit, there is one channel causing marginal manipulation gains to increase with x. Nevertheless,

equation (11) informs us that for linear, logit and probit models, the dominant force is convexity

of the interest rate in F̂ which ensures diminishing marginal manipulation gains (ιxm ≥ 0) even

where F is locally convex.

For convex Ω (Lemma 1), the second-order condition (SOC below) for a local minimum is

necessarily satisfied, with:

c+ ιmm(m∗, x, α̃, β̃) = c+ (1 + r − l)β̃2Ω′′[α̃+ β̃(x+m)] > 0. (13)
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Applying the implicit function theorem to the borrower’s FOC, we obtain the following comparative

statics:

∂m∗

∂x
= −(1 + r − l)β̃2Ω′′[α̃+ β̃(x+m∗)]

c+ ιmm(m∗, x, α̃, β̃)
(14)

∂m∗

∂α̃
= −(1 + r − l)β̃Ω′′[α̃+ β̃(x+m∗)]

c+ ιmm(m∗, x, α̃, β̃)

∂m∗

∂β̃
= −

(1 + r − l)
[
β̃(x+m∗)Ω′′(α̃+ β̃(x+m∗)) + Ω′(α̃+ β̃(x+m∗))

]
c+ ιmm(m∗, x, α̃, β̃)

∂m∗

∂c
= − m∗

c+ ιmm(m∗, x, α̃, β̃)
.

If Ω is decreasing and convex, the first two comparative statics immediately above are negative:

Manipulation is decreasing in both α̃ and x. Intuitively, the incentive to manipulate decreases with a

borrower’s baseline credit score z = α̃+ β̃x. Again, this baseline effect can be understood as arising

from the fact that the interest rate ι (equation (5)) is a decreasing convex function of the imputed

repayment probability F̂ . Starting at higher initial F̂ , an incremental increase in F̂ through data

manipulation has a smaller effect on the interest rate.

An increase in the posted slope coefficient β̃ generates competing effects. On one hand, with

higher β̃, each manipulation increment has a larger effect on the credit score z, since ∂z/∂m = β̃.

This substitution effect stimulates data manipulation. However, starting at a given x > 0, an

increase in β̃ raises the baseline credit score. This income effect makes the interest rate (equation

(5)) less sensitive to increases in the imputed repayment probability F̂ , discouraging manipulation.

It is readily verified that the substitution effect dominates for β̃ sufficiently small. Conversely,

the income effect potentially dominates for β̃ sufficiently high. For example, in the case of linear

probability models, it is readily verified that the income effect dominates if β̃ > α̃/(2x).

The following proposition summarizes results from this section.

Proposition 1. If the posted (linear, logit, or probit) model features slope coefficient β̃ > 0,

manipulation is: decreasing in the true covariate x; decreasing in the posted model intercept α̃; and

increasing in the posted model slope for β̃ sufficiently small.

3 Goodhart’s Law in Linear Probability Models

This section analyzes how Goodhart’s Law would manifest itself if the true data generating process

was the linear probability model (LPM), with

E[y|x] = Pr[y = 1|x] = a+ bx. (15)
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Despite its practical limitations, the LPM is an attractive starting point since many arguments can

be expressed in terms of intuitive objects, such as covariances. Moreover, as we show, many results

for the LPM carry over to ML estimation.

To begin, it is useful to decompose the mean squared prediction error (MSPE) generated when

a univariate function υ(·) is applied to the measured covariate x̃.8 We have:9

E
[
(y − υ(x̃))2

]
= E

{
[(y − E(y|x̃)) + (E(y|x̃)− υ(x̃))]2

}
(16)

= E{(y − E(y|x̃))2 + (E(y|x̃)− υ(x̃))2 + 2(y − E(y|x̃))(E(y|x̃)− υ(x̃))]}

= E{(y − E(y|x̃))2}+ E
[
(E(y|x̃)− υ(x̃))2

]
+ 2E [(y − E(y|x̃))E(y|x̃)]− 2E [(y − E(y|x̃))υ(x̃)]

= E
[
[E(y|x̃)− y]2

]
+ E

[
[υ(x̃)− E(y|x̃)]2

]
.

Equation (16) shows the MSPE obtained by applying a default prediction model (function) υ

to a measured covariate x̃ can be viewed as consisting of two components. The first component is

the inherent loss arising from using the specific covariate x̃ as a basis for prediction. The second

component is the distance between the chosen function υ and the conditional expectation function.

Notice, if an econometrician were to treat the distribution of x̃ as predetermined, as in Nash

equilibrium, then the conditional expectation function is the optimal υ. However, a Stackelberg

leader would account for the effect of υ on the distribution of x̃, as stressed by Frankel and Kartik

(2022).

Suppose for the moment that data manipulation is impossible, with the econometrician choosing

υ to be the affine function υ(x) = α+ βx. We then have:

E
[
(y − α− βx)2

]
= E

[
[E(y|x)− y]2

]
+ E

[
[(α+ βx)− (a+ bx)]2

]
. (17)

Notice, if data manipulation is impossible, there is no incentive-based tradeoff in selecting the

parameters (α, β). After all, the first term is a fixed quantity representing inherent loss coming

from predicting y based upon x. Consequently, here MSPE is minimized by setting (α, β) = (a, b).

Thus, we have the following remark, which is also shown, below, to apply to ML estimators.

Remark 1. In an economy without data manipulation, the econometric procedure (OLS/MLE)

recovers the deep structural parameters (a, b) and each loan is correctly priced if interest rates are

set according to equation (5), with posted model coefficients (α̃, β̃) = (a, b).

Consider now the consequences of data manipulation. Recall x̃ denotes the covariate that would

be reported by a borrower who faced a model with posted coefficients (α̃, β̃), hence the common

tilde superscript. Suppose that, ex post, an econometrician were to collect data on the realized

8Frankel and Kartik (2022) present analogous expressions for their setup.
9The penultimate line is zero due to orthogonality of the prediction error to any univariate function of x̃.
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(y, x̃) pairs, and then estimate a linear prediction model with coefficients (α, β). Noting that y = y2,

with y and x̃ being independent conditional upon x, the MSPE can be expressed as:

E
[
(y − α− βx̃)2

]
= α2 + (1− 2α)E[y] + 2αβE [x̃] + β2E[x̃2]− 2βE{E [y|x]E [x̃|x]}. (18)

Applying the law of iterated expectations to the final term in the preceding equation, we find:

E{E [y|x]E [x̃|x]} = E {(a+ bx)E [x̃|x]} (19)

= aE [x̃] + bE [xx̃] .

Substituting the preceding expression into equation (18), we find that the MSPE can be expressed

parametrically as follows:

MSPE( α, β︸︷︷︸
Candidate

; α̃, β̃︸︷︷︸
Posted

, a, b︸︷︷︸
DGP

) = α2+(1−2α)[a+bE(x)]+2(α−a)βE [x̃]+β2E[x̃2]−2βbE [xx̃] . (20)

Care must be taken in interpreting the preceding equation since the probability distribution of the

x̃ varies with the parameters of the posted model (α̃, β̃).

An econometrician given ex post access to realized (y, x̃) pairs would obtain OLS coefficients

(α̂ols, β̂ols) ∈ argmin
α,β

MSPE(α, β; α̃, β̃, a, b). (21)

The preceding objective function is strictly concave, and the FOCs are:

0 = 2α̂− 2[a+ bE(x)] + 2β̂E[x̃] (22)

0 = 2(α̂− a)E[x̃] + 2β̂E
[
x̃2
]
− 2bE[xx̃].

Throughout, let β̂sw
ols denote the OLS coefficient arising from a regression of s on w, for arbitrary

(s, w). From the preceding FOCs we have:

α̂ols = a+ bE[x]− β̂E[x̃]. (23)

β̂ols = b× E[xx̃]− E[x]E[x̃]
E [x̃2]− (E[x̃])2︸ ︷︷ ︸

≡β̂xx̃
ols

.

That is, the OLS slope coefficient here is the product of the clean-data slope coefficient and the

slope coefficient from a regression of x on x̃. To develop intuition, note that the slope coefficient in

equation (23) can be thought of as a regression chain rule, in the sense that:

β̂ols︸︷︷︸
dŷ
dx̃

≈ b︸︷︷︸
∂ŷ
∂x

× β̂xx̃
ols︸︷︷︸
∂x
∂x̃

. (24)
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It is also useful to observe that the OLS slope coefficient can be rewritten as:10

β̂ols = b× ρxx̃ ×
σ2
x

σ2
x̃

(25)

= b× σ2
x + σxm

σ2
x + σ2

m + 2σxm

= b×
[
1− β̂mx̃

ols

]
= b×

[
1

1 + β̂mx
ols

]
.

The next lemma, demonstrated in the appendix, will prove useful in the analysis that follows.

Lemma 2. Suppose b > 0 and consider a posted model featuring β̃ > 0. If σ2
c > 0, then in the

limit as σ2
x tends to 0, β̂ols < b. If σ2

c = 0, then β̂ols > b.

The first part of Lemma 2, which follows from inspection of equation (25), is analogous to

classical econometric results. In particular, as σ2
x tends to zero, most of the variation in manipu-

lation is caused by cross-sectional variation in manipulation costs. This type of orthogonal (to x)

measurement error is akin to classical white noise measurement error, albeit with positive support

and non-spherical distribution.

The second part of Lemma 2 is more novel: The OLS slope coefficient is greater than its clean

data counterpart if σ2
c = 0. A simple graphical argument complementary to that in the introduction

conveys the intuition here. If σ2
c = 0, manipulation is a univariate decreasing function of x. With

this in mind, suppose, say, only two points in the support of x, say x1 and x2 where x2 > x1.

Suppose also that only the low types manipulate by more than a trivial amount. Noting that the

outcome variable y is unaffected by manipulation, it is apparent that the slope of the line of best

fit must rotate upwards. Finally, inspection of the final lines of equation (25) reveals that the

estimated slope is greater than the clean data slope b if manipulation decreases at rate sufficient

to ensure the best linear fit to m is decreasing in x, as well as x̃, which is apparently the case if

σ2
c = 0 (Lemma 2).

Inspection of equation (23) also leads directly to the following proposition.

Proposition 2. Consider a linear probability model for default and suppose the true covariate x

has no explanatory power in predicting default in clean historical data (b = 0). Then regardless of

the parameters (α̃, β̃) of the posted model, the OLS/MSPE coefficient estimates derived from the

resulting manipulated data will be (α̂ols, β̂ols) = (a, b) = (a, 0).

Proposition 2 informs us that b = 0 ⇒ β̂ = 0, regardless of the parameters of the posted model.

Phrased colloquially, the econometrician cannot get something from nothing. Intuitively, if b = 0,

10See Jorn-Steffen Pischke’s lecture notes on measurment error for similar expressions.
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the random variables (x, c) privately observed by borrowers, as well as their incentive compatible

manipulation m, are uninformative about default risk. The proposition also informs us that some

statistical regularities (b = 0) observed in clean historical data can actually remain robust over

time, even if borrowers are induced to manipulate by a posted model featuring β̃ > 0.

Let us now formally evaluate Goodhart’s law when the econometrician utilizes a linear proba-

bility model. In particular, suppose the econometrician recovers the parameters (a, b) using clean

training data, and then naively informs future strategic borrowers that repayment probabilities will

be computed as F (a+bx̃). Finally, let us suppose the econometrician re-estimates the intercept and

slope parameters ex post using OLS (or ML in later sections) using the resulting manipulated data

drawn from this strategic cohort. We label the resulting estimates as Goodhart estimates, since this

is the type of econometric practice Goodhart contemplated, although it is certainly not a practice

he advocated. In the present context we have

Goodhart Estimates: (α̂ols, β̂ols) ∈ argmin
α,β

MSPE( α, β︸︷︷︸
Candidate

; a, b︸︷︷︸
Posted

, a, b︸︷︷︸
Historical

). (26)

From Proposition 2 it follows that if b = 0, the Goodhart estimates will be equal (a, 0). That

is, if b = 0, coefficient estimates will remain stable over time. In fact, this claim holds a fortiori

since posting a model with slope b = 0 induces zero manipulation, so the Goodhart estimate must

be the equal to the (true) coefficients that obtain in clean historical data. Conversely, we know

that if the econometrician posts a model with a positive slope, there will be a positive measure of

manipulation. That is:

β̃ = b > 0 ⇒ E [x̃] > E [x] . (27)

Combining the preceding equation with equation (23), we have the following proposition.

Proposition 3. Consider a linear probability model for default, with the posted model featuring

intercept and slope parameters set at their values (a, b) within clean historical data. The OLS/MSPE

estimates derived from the resulting data will remain equal to (a, b) if and only if the unmanipulated

covariate has no explanatory power (b = 0). If the unmanipulated covariate has explanatory power

(b > 0), then α̂ols < a and/or β̂ols < b. Further, if b > 0 and σ2
c = 0, then β̂ols > b and α̂ols < a.

Figure 2 illustrates Goodhart’s law in linear default prediction models, as detailed in Proposition

3. The left (right) panels consider relatively high (low) cross-sectional variation in manipulation

costs c. In each figure, the clean data causal parameter b is varied along the horizontal axis, allowing

us to illustrate how coefficient shift varies with the deep structural parameter b. Notice, as b is varied,

the causal effect of x increases. The econometrician relies on the clean data coefficient and posts

a model with β̃ = b. Thus, as one moves along the horizontal axis incentives for manipulation are

changing along with changes in the true causal relationship between y and the latent variable x.
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Figure 2: Goodhart’s Law - Linear prediction model. We plot OLS Goodhart estimates for (α̃, β̃) =

(a, b), with b ∈]0, b]. In the first column the variance of manipulation cost is high, in the second it is low. In

the third row we plot the difference between the MSPE with and without manipulation. The figure assumes

c ∼ U [cd, cu] and x ∼ U [xmin, xmax], with xmin = 0, and xmax = max{ 1−a
b

− δ, 1} to ensure repayment

probability is in [0, 1] for all x and all β̃, where δ equals the maximum manipulation for average x. We set

a = 0.5, and b = 0.3 to ensure consistency across the different models, that is manipulation incentives are

similar for the linear and the logit model. The remaining parameters are r = 0 and l = 0.5.
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To begin, we note that Figure 2 assumes the clean data intercept term is a = 0.5. It is

apparent from the top two panels that the estimated intercept α̂ undershoots a, as a crude means

of countering upward manipulation of the covariate. As the posted model slope β̃ = b is increased,

the estimated intercept falls further in order to counter higher manipulation.

The middle panel of Figure 2 examines the behavior of slope coefficients in manipulated data.

As the posted model slope b increases, manipulation increases, shifting the estimated coefficient in

manipulated data (β̂) away from b. Comparing across the two middle panels, we see that the nature

of slope coefficient shift depends upon the degree of cross-sectional variation in manipulation costs

c. There is upward coefficient shift (β̂ > b) in the right panel and attenuation in the left panel

(β̂ < b), consistent with Lemma 2.

Consider finally the bottom panels of Figure 2 which measure the difference between the MSPE

that emerges in the manipulated data versus the MSPE in clean data. When the lender posts a

model with β̃ = b, and b is large, manipulation levels are high. This manipulation leads to lower

predictive power compared to the clean data benchmark.

4 Manipulable Data in Logit and Probit Models

The remainder of the paper assumes the true data generating process is given by equation (1), with

F being the logistic or normal distribution, as in logit and probit models.

4.1 Maximum Likelihood Estimation

Consider first an empirical likelihood function L and corresponding log likelihood L in an economy

without data manipulation:

L ≡
I∏

i=1

(F (α+ βxi))
yi(1− F (α+ βxi))

1−yi (28)

L ≡
I∑

i=1

yi ln(F (α+ βxi)) + (1− yi) ln(1− F (α+ βxi)). (29)
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Using the law of iterated expectations, an expected log likelihood function can be computed as:

1

I
E [E(L|x)] =

1

I

∫
X

[
E

(
I∑

i=1

yi lnF (α+ βxi) + (1− yi) ln(1− F (α+ βxi))|xi

)]
h(x)dx(30)

=
1

I

∫
X

[
I∑

i=1

E {yi lnF (α+ βxi) + (1− yi) ln(1− F (α+ βxi))|xi}

]
h(x)dx

=

∫
X

{lnF (α+ βx)E(y|x) + ln(1− F (α+ βx))[1− E(y|x)]}h(x)dx.

Substituting the conditional expectation function into the preceding equation, we obtain the fol-

lowing expected log likelihood function for an economy without data manipulation:

L =

∫
X

{
F (a+ bx) lnF (α+ βx)

+[1− F (a+ bx)] ln[1− F (α+ βx)]

}
h(x)dx. (31)

Considering the integrand in L, we note that, as shown by Pratt (1981), lnF and ln(1 − F ) are

concave for F taken to be either standard normal or logistic. Moreover, the objective is concave

since the composition of a concave function with a linear function is concave.

In the absence of data manipulation, the MLE intercept and slope (α̂, β̂) satisfy the following

FOCs: ∫
X

[
F (a+ bx)

F (α̂+ β̂x)
− 1− F (a+ bx)

1− F (α̂+ β̂x)

]
f(α̂+ β̂x)h(x)dx = 0 (32)

∫
X

[
F (a+ bx)

F (α̂+ β̂x)
− 1− F (a+ bx)

1− F (α̂+ β̂x)

]
xf(α̂+ β̂x)h(x)dx = 0.

Note, the preceding FOCs are satisfied at (α̂, β̂) = (a, b). That is, in the absence of data manipula-

tion, the expected log likelihood is maximized when coefficient estimates are set equal to the true

parameters (a, b). Conniffe (1987) argues this property represents an argument in favor of MLE

estimation.

Moving away from the classical MLE environment, consider instead the expected log likelihood

function given manipulated covariates x̃ that emerge in response to posted model parameters (α̃, β̃).
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Applying the law of iterated expectations, and using the conditional expectation function, we

have:11

1

I
E [E(L|x, c)] =

1

I

∫
C

∫
X

 I∫
i=1

E [yi ln(F (α+ βx̃i)) + (1− yi) ln(1− F (α+ βx̃i))|xi, ci]

h(x)g(c)dxdc (33)

=

∫
C

∫
X

{E [y ln(F (α+ βx̃)) + (1− y) ln(1− F (α+ βx̃))|x, c]}h(x)g(c)dxdc

=

∫
C

∫
X

{E(y|x)E[ln(F (α+ βx̃))|x, c] + (1− E(y|x))E[ln(1− F (α+ βx̃))|x, c]}h(x)g(c)dxdc

=

∫
C

∫
X

{
F (a+ bx)E[ln(F (α+ βx̃))|x, c]

+(1− F (a+ bx))E[ln(1− F (α+ βx̃))|x, c]

}
h(x)g(c)dxdc.

Substituting the function m this into equation (33), we obtain the following expected log like-

lihood function:

L(α, β; α̃, β̃, a, b) =
∫
C

∫
X

[
F (a+ bx) ln[F (α+ βx+ βm(x, α̃, β̃, c))]

+[1− F (a+ bx)] ln[1− F (α+ βx+ βm(x, α̃, β̃, c))]

]
h(x)g(c)dxdc.

(34)

Let us define the MLE estimator (α̂, β̂) for an economy with true structural parameters (a, b),

with data being generated by borrowers who face the posted model (α̃, β̃). We have:

MLE : (α̂, β̂) ∈ argmax
α,β

L( α, β︸︷︷︸
Candidate

; α̃, β̃︸︷︷︸
Posted

, a, b︸︷︷︸
DGP

). (35)

Differentiating equation (34) we have the following FOCs for intercept and slope coefficients,

respectively:

L1(α̂, β̂; α̃, β̃, a, b) =

∫
C

∫
X

 F (a+bx)

F [α̂+β̂x+β̂m(x,α̃,β̃,c)]

− 1−F (a+bx)

1−F [α̂+β̂x+β̂m(x,α̃,β̃,c)]

 f [α̂+ β̂x+ β̂m(x, α̃, β̃, c)]h(x)g(c)dxdc = 0 (36)

L2(α̂, β̂; α̃, β̃, a, b) =

∫
C

∫
X

 F (a+bx)

F [α̂+β̂x+β̂m(x,α̃,β̃,c)]

− 1−F (a+bx)

1−F [α̂+β̂x+β̂m(x,α̃,β̃,c)]

 (x+m)f [α̂+ β̂x+ β̂m(x, α̃, β̃, c)]h(x)g(c)dxdc = 0.

The SOCs are:

L11(α̂, β̂; α̃, β̃, a, b) < 0

L22(α̂, β̂; α̃, β̃, a, b) < 0

11Note that conditional upon x, m and x̃ are uninformative about y.
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and ∣∣∣∣∣ L11(α̂, β̂; α̃, β̃, a, b) L12(α̂, β̂; α̃, β̃, a, b)

L21(α̂, β̂; α̃, β̃, a, b) L22(α̂, β̂; α̃, β̃, a, b)

∣∣∣∣∣ > 0.

Notice, the FOCs with data manipulation are identical in form to those arising when manipulation

is impossible (equation (32)), but now the manipulated covariate x̃ takes the place of the true

covariate x.

In light of the preceding FOCs, it is useful to consider the special case in which b = 0. Note,

regardless of the parameters of the posted model, (α̃, β̃), MLE performed on the manipulated data

will return the true coefficients (a, 0), with

L1(a, 0; α̃, β̃, a, 0) = 0 (37)

L2(a, 0; α̃, β̃, a, 0) = 0.

Thus, we have the direct analog of Proposition 2, but now in the context of MLE.

Proposition 4. Suppose the true covariate x has no explanatory power in predicting default in

clean historical data (b = 0). Then regardless of the parameters (α̃, β̃) of the model posted, the MLE

coefficient estimates derived from the resulting manipulated data will be (α̂, β̂) = (a, b) = (a, 0).

4.2 Comparative Statics: Posted Model

Related to Goodhart’s law is the more general question of how posting a model changes incentives,

observables, and coefficient estimates. In order to examine this question, this subsection presents

comparative static results for the effect of changes in (α̃, β̃) on (α̂, β̂) holding fixed the deep causal

parameters (a, b). That is, we examine the effect of changes in the posted model on estimated

coefficients arising from agents responding to the posted model. Anticipating, this analysis is of

independent technical interest since it is related to the question of fixed point convergence, as

discussed in detail below.

Consider first the effect of changing the posted model slope, holding fixed the posted model

intercept. Computing the total differential of the FOCs given in equation (36) we obtain:

L11dα̂+ L12dβ̂ + L14dβ̃ = 0 (38)

L21dα̂+ L22dβ̂ + L24dβ̃ = 0.
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Rearranging terms, we obtain the following comparative statics:[
dα̂/dβ̃

dβ̂/dβ̃

]
= −

[
L11(α̂, β̂; α̃, β̃, a, b) L12(α̂, β̂; α̃, β̃, a, b)

L21(α̂, β̂; α̃, β̃, a, b) L22(α̂, β̂; α̃, β̃, a, b)

]−1 [
L14(α̂, β̂; α̃, β̃, a, b)

L24(α̂, β̂; α̃, β̃, a, b)

]

= −
(

1

L11L22 − L12L21

)
︸ ︷︷ ︸

<0

[
L22L14 − L12L24

−L21L14 + L11L24

]
. (39)

Following analogous steps, we obtain the following comparative statics regarding the effect of

changes in the posted model intercept, holding fixed the posted model slope:[
dα̂/dα̃

dβ̂/dα̃

]
= −

(
1

L11L22 − L12L21

)
︸ ︷︷ ︸

<0

[
L22L13 − L12L23

−L21L13 + L11L23

]
. (40)

Figure 3 presents numerical comparative statics results in the context of logit estimation.12

Consider first the left panels in the figure which present comparative statics for (α̂, β̂) resulting

from alternative values of the posted model intercept α̃. As the posted model intercept increases,

each borrower has a higher baseline credit score and diminished incentive to manipulate since,

we recall, the interest rate is a decreasing convex function of the credit score. Since borrowers

manipulate less, the estimated intercept α̂ shifts upward, with the estimated slope falling by a

small amount. As shown in the bottom left panel, the difference between the expected likelihood

ratio attained in manipulated data (L) and its clean data counterpart (L0) also shrinks as the

posted intercept α̃ is increased, consistent with less manipulation.

The right panels in Figure 3 present comparative statics for alternative values of the posted

model slope β̃. As the posted model slope increases, borrowers tend to have a stronger incentive

to manipulate. With more manipulation, the estimated intercept α̂ shifts downward to counter

manipulation. However, the estimated slope increases, consistent with strong negative correlation

between manipulation (measurement error) and the regressor. Equation (25) hints that upward

slope shift may well be expected. Finally, as shown in the bottom right panel, the difference

between the likelihood ratio attained in manipulated data (L) and its clean data counterpart (L0)

increases as the posted slope β̃ is increased, consistent with the idea that more manipulation leads

to diminished predictive power.

Finally, it is important to note the magnitude of the various comparative statics. In partic-

ular, the estimated coefficients vary less than one-for-one with changes in the posted coefficients,

at least at the assumed parameter values. This hints at the possibility that MLE estimation per-

formed on manipulated data can represent a contraction mapping, with concomitant implications

for convergence, a topic discussed below.

12Probit results are similar and available upon request.
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Figure 3: Comparative Statics - Logit prediction model. MLE estimates, (α̂, β̂), against the posted

credit prediction model, (α̃, β̃), given the data generating process (a, b) = (0, 0.5). We plot (α̂, β̂) in a range

for (α̃, β̃) around the fixed point model (α∗, β∗) = (−0.14, 0.54). In the third line we plot the difference

between the optimal likelihood with manipulation and without manipulation. We assume c ∼ U [cd, cu]

with cd = 0.6 and cu = 1.4, and a logit prediction model, F (z) = ez(1 + ez)−1, with z = α̃ + β̃x), where

x ∼ U [xmin, xmax], with xmin = 0, and xmax = 1. The remaining parameters are r = 0, and l = 0.5.
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Figure 4: Comparative Statics - Logit prediction model. This is the same as Figure 3, under

the logit prediction model (MLE) with DGP parameters (a, b) = (0, 0.5), except x ∼ U [0, 0.5] and c ∼
U [0.0060, 0.0140]. With these parameters the fixed point model is (α∗, β∗) = (0.028, 0.043).
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In Figure 4 we perform the same comparative statics exercise as in Figure 3, but now we shift

down the manipulation cost support, which increases manipulation for each x, and reduce the

upper bound for x, which increases the proportion of lower quality borrowers who have stronger

manipulation incentives. As shown, in this environment, estimated coefficients are much more

sensitive to the coefficients of the posted model. Intuitively, borrowers are much more responsive

to the posted model if they face low manipulation costs and/or they have low latent credit quality.

4.3 Goodhart’s Law in Logit and Probit Models

To illustrate how Goodhart’s law would manifest itself if logit or probit is employed, suppose as

above that the econometrician recovers the deep parameters (a, b) using clean historical training

data. Suppose also that, in light of Remark 1, the lender decides that, for the next cohort of

borrowers, it will set interest rates according to (5), with the posted default prediction model

coefficients set at (α̃, β̃) = (a, b). Estimating on the resulting manipulated data, the econometrician

would obtain:

Goodhart Estimates = (α̂, β̂) ∈ argmax
α,β

L(α, β; a, b︸︷︷︸
Posted

, a, b︸︷︷︸
Historical

). (41)

Parameter instability of the sort suggested by Goodhart (1975) is easily shown if the clean

covariate has predictive power (b > 0). In particular, suppose b > 0 and consider any candidate

coefficients (α, β) such that α ≥ a and β ≥ b > 0. Notice, the FOC for the intercept would be

violated at such a candidate coefficient vector, with:

L1(α, β; a, b, a, b) =

∫
C

∫
X

[
F (a+bx)

F [α+βx+βm(x,a,b,c)]

− 1−F (a+bx)
1−F [α+βx+βm(x,a,b,c)]

]
f [α+ βx+ β̂m(x, a, b, c)]h(x)g(c)dxdc < 0.

The preceding inequality, along with Proposition 4, establishes the following proposition, the

MLE analog of Proposition 3.13

Proposition 5. Consider a logit/probit model for default, with the posted model featuring intercept

and slope parameters set at their value (a, b) under clean historical data. The MLE estimates (α̂, β̂)

derived from the resulting data will remain equal to (a, b) if and only if the unmanipulated covariate

has no explanatory power (b = 0). If the unmanipulated covariate has explanatory power (b > 0),

then α̂ < a and/or β̂ < b.

Before proceeding, it is useful to gain a better sense of the consequences of Goodhart’s law

in MLE settings by way of numerical analysis. To this end, Figure 5 represents the MLE logit

counterpart to Figure 2. Once again, we plot the coefficients that arise in data generated by

13Proposition 3 offers greater clarity regarding slope overshooting.
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Figure 5: Goodhart’s Law - Logit prediction model. We plot MLE Goodhart estimates for (α̃, β̃) =

(a, b), with b ∈]0, b], where a = 0 and b = 1. In the first column the variance of manipulation cost is high,

in the second colums it is low. In the third row we plot the difference between the optimal likelihood with

and without manipulation. We use the same assumptions as in Figure 3 for the default prediction model,

manipulation cost and the remaining parameters, except for the assumption on c ∼ U [cd, cu].
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strategic borrowers manipulate data in response to the posting of a model utilizing the clean data

parameters (a, b). This naive econometric procedure is captured in equation (41). The left (right)

panels consider relatively high (low) cross-sectional variation in manipulation costs. In each figure,

the clean data slope parameter b is varied along the horizontal axis, allowing us to illustrate how

the Goodhart effect varies with the true causal parameter b.

To begin, we note that Figure 5 assumes the clean data intercept term is a = 0. It is apparent

from the top two panels that the estimated intercept α̂ shifts below a, as a crude means of countering

upward manipulation of the covariate. More specifically, as the posted model slope β̃ = b is

increased, the estimated intercept falls in order to counter ever-increasing manipulation.

The middle panel of Figure 5 illustrates the behavior of slope coefficients. Once again, we

see that the direction of slope coefficient shift depends upon the volatility of manipulation cost

parameters c. There is upward shift (β̂ > b) in the right panel (low cost variability) and attenuation

(β̂ < b) in the left panel (high cost variability), as suggested by Lemma 2.

Consider finally the bottom panels of Figure 5 which measure the difference between the ex-

pected log likelihood ratio that emerges in the manipulated data versus its clean data analog.

As shown, if the lender posts a model with β̃ = b, with b large, there will be strong incentives

for manipulation. This manipulation leads to lower predictive power compared to the clean data

benchmark.

5 Fixed Point Models

Proposition 5 shows that if the true covariate has explanatory power (b > 0), there will be incon-

sistency between a posted econometric model featuring clean data coefficients (a, b) and the MLE

estimates (α̂, β̂) that would be obtained if ex post estimation was then performed on the resulting

data. This is the sort of inconsistency that troubled Goodhart (1975): Statistical regularities that

break down if one and uses them for control purposes. To avoid Goodhart’s critique, one might

hope to find a model that remains robust even when it is used for control purposes. Such models

are the focus of the present section.

5.1 Fixed Points Defined

A fixed point model is a pair of coefficients (α∗, β∗) such that:

(α∗, β∗) ∈ argmax
α,β

L( α, β︸︷︷︸
Candidate

;α∗, β∗︸ ︷︷ ︸
Posted

, a, b︸︷︷︸
DGP

). (42)
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In words, a fixed point model maximizes the expected log likelihood function given the distribution

of covariates that arises from posting it. In the language Goodhart (1975), a fixed point model

constitutes a statistical regularity that remains robust after being used for control purposes.

We note that a fixed point constitutes the Nash equilibrium model of a game in which borrowers

submit covariates and the econometrician simultaneously posts coefficients. It is also time-consistent

in that the econometrician would have no incentive to change the posted model after collecting data

and estimating coefficients using, say, a subsample of data generated by borrowers responding to

that posted model. Thus, borrowers could trust a fixed point model even if the econometrician

lacked the power to commit to the original posted coefficients. Finally, a fixed point model can be

viewed as satisfying an institutional constraint that models be rationalizable in a particular sense:

A fixed point model can be shown to be optimal ex post within the data it generates.

5.2 Properties of Fixed Point Models

Consider first existence of fixed points. To begin, we note that a fixed point satisfies the following

FOCs:

L1(α
∗, β∗, α∗, β∗, a, b) = 0 (43)

L2(α
∗, β∗, α∗, β∗, a, b) = 0.

Applying the implicit function theorem to the preceding system of two equations, we have the

following useful lemma.

Lemma 3. Suppose (α∗
0, β

∗
0) represents a fixed point for given clean data parameters (a, b). Suppose

also that when evaluated at (α∗
0, β

∗
0 , α

∗
0, β

∗
0 , a, b),∣∣∣∣∣ L11 + L13 L12 + L14

L21 + L23 L22 + L24

∣∣∣∣∣ ̸= 0.

Then there exists a neighborhood of (a, b) and a function Ψ defined on this neighborhood such that

(α∗, β∗) = Ψ(a, b) uniquely solves:

L1[Ψ(a, b),Ψ(a, b), a, b] = 0

L2[Ψ(a, b),Ψ(a, b), a, b] = 0.

That is, if one can pin down a fixed point at a particular point in (a, b) space, a local continuum

of unique fixed points can be shown to exist provided the relevant Jacobian condition is satisfied.

With this in mind, it is convenient to note that Proposition 5 guarantees existence of a unique fixed

point when b = 0, as discussed in the following remark.
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Remark 2. Suppose b = 0. Then regardless of the intercept a, there is a unique fixed point model

(α∗
0, β

∗
0) = (a, b).

For further insight, we expand the terms in the FOC for a fixed point:

0 = L1(α
∗, β∗;α∗, β∗, a, b) (44)

=

∫
C

∫
X

[
F (a+bx)

F [α∗+β∗x+β∗m(x,α∗,β∗,c)]

− 1−F (a+bx)
1−F [α∗+β∗x+β∗m(x,α∗,β∗,c)]

]
f [α∗ + β∗x+ β∗m(x, α∗, β∗, c)]h(x)g(c)dxdc

0 = L2(α
∗, β∗;α∗, β∗, a, b)

=

∫
C

∫
X

[
F (a+bx)

F [α∗+β∗x+β∗m(x,α∗,β∗,c)]

− 1−F (a+bx)
1−F [α∗+β∗x+β∗m(x,α∗,β∗,c)]

]
[x+m(x, α∗, β∗, c)]f [α∗ + β∗x+ β∗m]h(x)g(c)dxdc.

From these FOCs, we obtain the following propositions.

Proposition 6. A posted econometric model with intercept and slope parameters (a, b) (derived

from clean historical data) represents an MLE fixed point if and only if the unmanipulated covariate

has no explanatory power (b = 0). If the unmanipulated covariate has explanatory power (b > 0),

any fixed point model (α∗, β∗) features α∗ < a and/or β∗ < b.

Consider first the sufficiency component of the first stated claim. If b = 0, then posting (α̃, β̃) =

(a, b) results in zero manipulation. And we know that here

x̃ = x ⇒ (α̂, β̂) = (a, b) = (a, 0) ≡ (α̃, β̃). (45)

Since the necessity component of the first stated claim follows from the second stated claim, we

need only establish that claim. To this end, suppose b > 0, and note that the FOCs immediately

above cannot be satisfied if the bracketed term is negative for all x. That is, from the FOCs it

follows that:

β∗ ≥ b > 0 ⇒ α∗ < a (46)

α∗ ≥ a ⇒ β∗ < b.

Intuitively, since borrowers manipulate their covariates upwards, an MLE estimator must respond

by shifting down the intercept and/or slope.

The following proposition is also easily verified.

Proposition 7. If the unmanipulated covariate has explanatory power, any MLE fixed point will

assign explanatory power to the manipulated covariate.
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To prove the preceding proposition, consider b > 0 but suppose to the contrary that there exists

a fixed point model featuring β∗ = 0. Posting β∗ = 0 results in zero manipulation, but with x̃ = x

the MLE estimate is β̂ = b > 0, contradicting the fixed point claim.

Figure 6 contrasts fixed point coefficients (42) with Goodhart estimates (41), evaluated at

alternative values of the clean data causal parameter b. The figure allows one to assess how close

the econometrician would get to an internally consistent fixed point model after just one round

of estimation on the manipulated data that emerges in response to naively posting a model with

parameters (a, b). As shown, the gap between Goodhart estimates and fixed points grows larger

for higher values of b. Nevertheless, it is worth noting the bottom panel which shows that although

Goodhart estimates are not internally consistent, they may well achieve the same predictive power

as fixed point models. Indeed, insisting upon a fixed point model is properly viewed as a constraint

on the econometrician.

5.3 Fixed Point Iteration

In theory, a social planner who knew the entire structure of the economy, including the relevant

manipulation technologies and parameters, could solve for fixed points by finding roots of equation

(43). However, this model-based approach is likely to be infeasible given its informational require-

ments. This then leaves open the question of whether and how econometricians could work their

way to a fixed point model.

With this question in mind, recall Proposition 6 informs us that, if b > 0, posting the clean data

coefficients (a, b) will result in coefficients (α̂, β̂) ̸= (a, b). Nevertheless, it is natural to ask whether

econometricians could converge to a fixed point simply by iterating on this procedure, using this

period’s estimated coefficients as the next periods’s posted coefficients.

To this end, let (αn+1, βn+1) denote the model that will be posted to borrower cohorts in

iteration round n + 1. Then consider the following mapping T , which corresponds to an adaptive

iteration strategy:

(αn+1, βn+1) ≡ T (αn, βn) = argmax
α,β

L(α, β, αn, βn, a, b). (47)

That is, let T correspond to a simple adaptive econometric strategy which uses the current period’s

MLE estimate as the next period’s posted model. Notice, in practice, an econometrician using an

adaptive strategy need only use the (y, x̃) data generated by the prior cohort.

Applied here, the contraction mapping theorem offers sufficient conditions for the adaptive

iteration strategy to converge to a fixed point. In particular, we have the following remark.
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Figure 6: Fixed point model vs Goodhart - Logit prediction model. For (α̃, β̃) = (a, b), with

b ∈]0, b], we plot against b in the first panel the MLE estimate α̂ and in the second panel β̂/b. We

consider the fixed point program, (α∗, β∗) = argmax(α,β) L(α, β;α∗, β∗; a, b), and the program (α̂, β̂) =

argmax(α,β) L(α, β; a, b; a, b). In the third panel we plot the difference between the optimal likelihood under

fixed point, LF , and the optimal likelihood in the Goodhart’s case, LG. We use the same assumptions as in

Figure 5 for the default prediction model, manipulation cost and the remaining parameters.

30



Remark 3. Let D be a closed convex domain in ℜ2 and let T : D → ℜ2 be continuously differen-

tiable. Suppose that

(α, β) ∈ D ⇒T (α, β) ∈ D.

Suppose also that there exists q < 1 such that at all points in D:∥∥∥∥∥ ∂T1
∂α

∂T1
∂β

∂T2
∂α

∂T2
∂β

∥∥∥∥∥ ≤ q.

Then T is a contraction mapping on D. Moreover, for any initial posted model (α0, β0) ∈ D, the

sequence (αn+1, βn+1) ≡ T (αn, βn) converges to a unique point (α∗, β∗) satisfying T (α∗, β∗) =

(α∗, β∗).

In order to clarify the preceding remark, we note that in the present application it has been

shown above that:[
∂T1
∂α

∂T1
∂β

∂T2
∂α

∂T2
∂β

]
=

 ∂α̂
∂α̃

∂α̂

∂β̃
∂β̂
∂α̃

∂β̂

∂β̃


= −

(
1

L11L22 − L12L21

)[
L22L13 − L12L23 L22L14 − L12L24

−L21L13 + L11L23 −L21L14 + L11L24

]
.

Thus, convergence of the adaptive econometric procedure to a unique fixed point can be understood

as hinging upon estimated coefficients not being too sensitive to posted coefficients, consistent with

T being a contraction mapping. To take a trivial example, if data manipulation were impossible,

MLE coefficient estimates would be completely insensitive to posted coefficients, and all elements

of the relevant Jacobian would be equal to zero.

Two other technical points are worthy of note here. First, in order for the Jacobian condition in

Remark 3 to be satisfied on some closed convex domain D about a fixed point (α∗, β∗), it must be

satisfied at the fixed point itself. Thus, evaluating the Jacobian at (α∗, β∗) provides a useful first

check for potential convergence. Second, and more practically, the converse of Remark 3 provides

a useful diagnostic: If adaptive estimation fails to converge, borrower behavior must be responsive

to posted model coefficients.

To further illustrate these arguments, we provide two numerical examples, one with convergence

and the other without convergence. To begin, consider Figure 7, which utilizes the same parameter

values and distributions as Figure 3, with the first posted model naively using the clean data

coefficients (a, b). As shown in Figure 7, in this setting adaptive estimation (equation (47)) converges

to a fixed point. Notice, there is a large gap between the first round estimates and the fixed point,

consistent with Goodhart’s law. However, the gap narrows dramatically after the second round

of estimation. Apparently, here the opportunity to estimate coefficients on just one round of

manipulated data helps the econometrician greatly in converging to a fixed point.
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Figure 7: Convergence of adaptive expectations to fixed point model. We compare α̂ and β̂ obtained

by iterating the Goodhart estimation under adaptive expectations to the solution of fixed point model, under

the logit prediction model (MLE) with DGP parameters (a, b) = (0, 0.5). The fixed point model is (α∗, β∗) =

(−0.14, 0.54). In each iteration, the Goodhart estimate is (α̂n, β̂n) = argmaxα,β L(α, β; α̂n−1, β̂n−1, a, b), for

n = 1, 2, . . ., where (α̂0, β̂0) = (a, b). We use the same assumptions as in Figure 3 for the default prediction

model, manipulation cost and the remaining parameters.

A better understanding of Figure 7 can be gained by revisiting Figure 3. We note that Figure 3

captures the elements of the relevant Jacobian (Remark 3) at the fixed point. Of particular interest

is the fact that, at least for these parameter values, the elements of the Jacobian are less than 1 in

absolute value, consistent with the preceding sufficient conditions for fixed point convergence.

Notwithstanding the example in Figure 7, fixed point convergence is by no means guaranteed.

After all, convergence requires that estimated coefficients be sufficiently insensitive to the coeffi-

cients of the posted model. However, we recall from Figure 4 that estimated coefficients will have

high sensitivity to the posted model if borrowers are of low quality and/or have low manipulation

costs. Indeed, Figure 8 shows that for the parameter values assumed in Figure 4, convergence fails.

In fact, estimated coefficients jump sharply from round to round, with the oscillations becoming

wider with more rounds of estimation.

Failure to converge might well be expected in Figure 8 if one accounts for the fact that the

norm of the relevant Jacobian is:14

∥J∥ =

∥∥∥∥∥ ∂T1
∂α

∂T1
∂β

∂T2
∂α

∂T2
∂β

∥∥∥∥∥ =
√
Λmax (J⊤J) = 2.0977,

14While there are several possible definitions of the norm, these definitions generate the same topology in the space

of square matrices. For convenience, we use the spectral norm, ∥A∥ = sup
{

∥Ax∥
∥x∥ , x ̸= 0

}
, which is the norm induced

on the space of square matrices by the vector norm ∥·∥ on R2.
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Figure 8: A case of non-convergence to fixed point model. We compare α̂ and β̂ obtained by iterating

the Goodhart estimation under adaptive expectations to the solution of fixed point model. We use the same

parameters and model assumptions as in Figure 4.

where Λmax (·) is the largest eigenvalue. By way of contrast, the corresponding matrix norm for

the example in Figure 7, with convergence, is only 0.2730.

6 Default Prediction with Commitment Power

The preceding section considered fixed point models as a potential response to Goodhart’s law.

Indeed, in contrast to clean data models (a, b > 0), fixed point models satisfy an attractive internal

consistency standard, being ex post optimal responses to the distribution of data they generate.

Nevertheless, the broader admonition of Goodhart is not an insistence upon internal consistency.

Rather, the broader admonition is that the data will change if incentives change. But notice, the

Nash econometrician in program (42) fails to take this argument fully on board. After all, the

Nash econometrician effectively treats the distribution of reported covariates as given, rather than

accounting for endogeneity of the data.

By way of contrast, a commitment model (α∗∗, β∗∗) satisfies

(α∗∗, β∗∗) ∈ argmax
α,β

L( α, β︸︷︷︸
Estimated

; α, β︸︷︷︸
Posted

, a, b︸︷︷︸
DGP

). (48)

At this point it is instructive to contrast the Nash econometric program in equation (42) with the

preceding commitment model program. Notice, in the Nash program, the econometrician takes as

predetermined the posted model and resulting distribution of covariates. In stark contrast, in the
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commitment program, the econometrician chooses the posted model, and with it, the distribution

of manipulated covariates.

Recall, the FOCs for any MLE estimator, including Nash econometric models, are L1 = L2 = 0.

These FOCs ensure optimal prediction given the data. By way of contrast, a commitment model

satisfies the following FOCs:

L1(α
∗∗, β∗∗;α∗∗, β∗∗, a, b) = −L3(α

∗∗, β∗∗;α∗∗, β∗∗, a, b)

L2(α
∗∗, β∗∗;α∗∗, β∗∗, a, b) = −L4(α

∗∗, β∗∗;α∗∗, β∗∗, a, b).

That is, an econometrician with commitment power sacrifices a bit on ex post prediction power

in order to increase prediction power ex ante. She does so by taking into account the effects of

the posted econometric model on borrower covariate reports, and these effects are captured by the

partial derivatives L3 and L4. Phrased differently, with commitment power, the econometrician

achieves a higher likelihood ratio than the econometrician posting a Nash model, but does so by

way of adopting an econometric model that is ex post inefficient, violating L1 = L2 = 0. Turning

next to signs, we recall that an increase in the posted model intercept (slope) tends to decrease

(increase) manipulation. This would suggest that L3 > 0 and L4 < 0. In turn, one anticipates that

the commitment model features a higher intercept (L1 < 0) and lower slope than a fixed point

model (L2 > 0).

Denoting m(x, α∗∗, β∗∗, c) by m∗∗, the FOC for the commitment model intercept is:

∫
C

∫
X

[
F (a+bx)

F [α∗∗+β∗∗x+β∗∗m∗∗]

− 1−F (a+bx)
1−F [α∗∗+β∗∗x+β∗∗m∗∗]

]
f [α∗∗ + β∗∗x+ β∗∗m∗∗]h(x)g(c)dxdc (49)

= −
∫
C

∫
X

[
F (a+bx)

F [α∗∗+β∗∗x+β∗∗m∗∗]

− 1−F (a+bx)
1−F [α∗∗+β∗∗x+β∗∗m∗∗]

]
f [α∗∗ + β∗∗x+ β∗∗m∗∗]β∗∗m2(x, α

∗∗, β∗∗, c)h(x)g(c)dxdc.

Or, more compactly:

0 =

∫
C

∫
X

[ (
F (a+bx)

F [α∗∗+β∗∗x+β∗∗m∗∗] −
1−F (a+bx)

1−F [α∗∗+β∗∗x+β∗∗m∗∗]

)
f [α∗∗ + β∗∗x+ β∗∗m∗∗][1 + β∗∗m2(x, α

∗∗, β∗∗, c)]h(x)g(c)

]
dxdc. (50)

The FOC for the commitment model slope is:

∫
C

∫
X

[
F (a+bx)

F [α∗∗+β∗∗x+β∗∗m∗∗]−
1−F (a+bx)

1−F [α∗∗+β∗∗x+β∗∗m∗∗]

]
f [α∗∗ + β∗∗x+ β∗∗m∗∗][x+m(x, α∗∗, β∗∗, c)]h(x)g(c)dxdc

= −
∫
C

∫
X

[
F (a+bx)

F [α∗∗+β∗∗x+β∗∗m∗∗]−
1−F (a+bx)

1−F [α∗∗+β∗∗x+β∗∗m∗∗]

]
f [α∗∗ + β∗∗x+ β∗∗m∗∗]β∗∗m3(x, α

∗∗, β∗∗, c)h(x)g(c)dxdc
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Or more compactly:

0 =

∫
C

∫
X

[ (
F (a+bx)

F [α∗∗+β∗∗x+β∗∗m∗∗] −
1−F (a+bx)

1−F [α∗∗+β∗∗x+β∗∗m∗∗]

)
f [α∗∗ + β∗∗x+ β∗∗m∗∗][x+m∗∗ + β∗∗m3(x, α

∗∗, β∗∗, c)]h(x)g(c)dxdc

]
. (51)

The following proposition follows directly upon inspecting the preceding FOCs.

Proposition 9. A posted econometric model with intercept and slope parameters (a, b) (derived

from clean historical data) represents an optimal commitment model if the unmanipulated covariate

has no explanatory power (b = 0).

Figure 9 contrasts fixed point coefficients with optimal coefficients under commitment, for al-

ternative values of the clean data causal parameter b. As shown, the commitment model features a

higher intercept than the fixed point model. Intuitively, the commitment model nudges borrowers

away from manipulation by using a higher intercept. On the other hand, the commitment model

features a lower slope, which induces less manipulation. It is also interesting to note that the gap

between the commitment model and fixed point model is non-monotonic in b. We conjecture that

as b gets larger, the paramount concern is capturing the predictive power of the true covariate, so

that ex post efficiency of the fixed model takes precedence over nudging.

7 Multivariate Extension

In the interest of analytical tractability, attention has been confined to estimating coefficients of a

univariate econometric model. Indeed, it is well-known that little can be said about effects aris-

ing from measurement error in more than one regressor (see Greene (1997)), let alone endogenous

manipulation that depends upon the coefficients of the regression model per Goodhart’s law. Nev-

ertheless, results analogous to those presented above are readily obtained in a multivariate setting,

provided that manipulation is confined to a single regressor. To take the simplest case, consider

OLS/MSPE estimation of the following linear probability model:

Pr[y = 1|x,w] = E[y|x,w] = a+ bx+ kw. (52)

Assume that in contrast to x, the covariate w ≥ 0 cannot be manipulated.

The objective is to find coefficients:

(α̂, β̂, κ̂) ∈ arg min
(α,β,κ)

E
[
(y − α− βx̃− κw)2

]
. (53)
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Figure 9: Fixed point model and commitment model - Logit prediction model. For (α̃, β̃) = (a, b),

with b ∈]0, b], we plot against b in the first panel the MLE estimate α̂ and in the second panel β̂/b. We

consider two alternative programs: the fixed point program, (α∗, β∗) = argmax(α,β) L(α, β;α∗, β∗; a, b), and

the program under commitment, (α∗∗, β∗∗) = argmax(α,β) L(α, β;α, β; a, b). In the third panel we plot the

difference between the optimal likelihood with manipulation (under commitment or fixed point), L, and the

optimal likelihood with no manipulation, L0. We use the same assumptions as in Figure 5 for the default

prediction model, manipulation cost and the remaining parameters.
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Noting that y = y2 here, the preceding expression for the MSPE can be written as:

MSPE = α2 + (1− α)E[y] + 2αβE[x̃] + 2ακE[w] + 2κβE[wx̃]
+β2E[x̃2] + κ2E[w2]− 2κE[wy]− 2βE[x̃y].

(54)

Focusing on the final term in the preceding equation, we note that conditional independence of x̃

and y implies:

E {E[x̃y|x,w]} = E {E[x̃|x,w]E[y|x,w]} (55)

= E {E[x̃|x,w](a+ bx+ kw)}

= aE[x̃] + bE[x̃x] + kE[x̃w].

And similarly, conditional independence of w and y implies:

E {E[wy|x,w]} = E {E[w|x,w]E[y|x,w]}

= E {w(a+ bx+ kw)}

= aE[w] + bE[xw] + kE[w2].

Substituting the two preceding equalities into equation (54) allows us to rewrite the MSPE as

follows:

MSPE = α2 + (1− 2α){a+ bE[x] + kE[w]}+ 2αβE[x̃] + 2ακE[w] + 2κβE[wx̃] + β2E[x̃2] + κ2E[w2]

−2β{aE[x̃] + bE[x̃x] + kE[x̃w]} − 2κ{aE[w] + bE[xw] + kE[w2]}.

From the FOC for the intercept, we find:

α̂ = a+ bE[x] + kE[w]− β̂E[x̃]− κ̂E[w]. (56)

The FOC for β̂ is:

0 = α̂E[x̃] + κ̂E[wx̃] + β̂E[x̃2]− {aE[x̃] + bE[x̃x] + kE[x̃w]}. (57)

Substituting the expression for the intercept (56) into the FOC for β̂ we obtain:

0 = aE[x̃] + bE[x]E[x̃] + kE[w]E[x̃]− β̂ (E[x̃])2 − κ̂E[w]E[x̃] (58)

+κ̂E[wx̃] + β̂E[x̃2]− {aE[x̃] + bE[x̃x] + kE[x̃w]}.

Rearranging terms we obtain:

β̂ = b× βxx̃
ols + (k − κ̂)βwx̃

ols . (59)
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Finally, the FOC for κ̂ is:

0 = α̂E[w] + β̂E[wx̃] + κ̂E[w2]− {aE[w] + bE[xw] + kE[w2]}. (60)

Substituting the expression for the intercept (56) into the FOC for κ̂ we obtain:

κ̂ = k + b× βxw
ols − β̂ × βx̃w

ols (61)

= k + (b− β̂)× βxw
ols − β̂ × βmw

ols .

From equations (56), (59) and (61), we have the following analog of Propositions 2 and 4,

establishing the impossibility of getting something from nothing, with:

b = 0 ⇒
(
α̂, β̂, κ̂

)
= (a, b, k) =(a, 0, k). (62)

It thus follows that if b = 0, then (a, 0, k) represents both a Goodhart estimate and a fixed point,

consistent with Proposition 6.

We also have the following result demonstrating the analog of Propositions 3 and 5, the necessity

of at least some downward coefficient slope if b > 0. In particular,

β̂ ≥ b > 0 and κ̂ ≥ k ⇒ α̂ < a. (63)

Since a fixed point model is just a special case of the estimator here, it follows that any fixed point

model must also feature some downward coefficient shift, consistent with Proposition 6.

Finally, consistent with Proposition 7, it is readily verified that b > 0 implies a fixed point

model cannot feature β̂ = 0. After all, if the posted model features a coefficient of zero on the

manipulable covariate, there will be no manipulation, in which case the MSPE estimator would be

(a, b, k), a contradiction.

8 Conclusion

This paper contributes to a growing literature on econometric responses to data manipulation,

focusing on default prediction models. We suggest a number of natural directions for future work.

First, it would be useful to consider settings in which multiple covariates can be manipulated,

although it is likely that analytical results would be much more difficult to obtain. Second, it

would be useful to consider whether and how standard machine-learning tools could be adapted

in light of data manipulation, again in the context of logit and probit-type credit risk prediction.

Finally, as the stock of such models grows, it would be useful to evaluate the performance of

alternative models empirically.
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Appendix

Lemma 1. Let Ω(z) ≡ [F (z)]−1 where F (z) ≡ ez(1 + ez)−1 or F (z) ≡ N (z). Then Ω is strictly

decreasing and strictly convex on ℜ. If F (z) ≡ min{1,max{0, z}}, then Ω is strictly decreasing

and strictly convex on (0, 1).

Proof.

To begin, note that, assuming differentiability, we have

Ω′(z) = −[F (z)]−2f(z) ≤ 0

Ω′′(z) = [F (z)]−2

[
2[f(z)]2

F (z)
− F ′′(z)

]
Notice, the first inequality is strict for Logit and Probit models. Consider next the linear probability

model for z ∈ (0, 1). We have

Ω′(z) = − 1

z2
< 0

Ω′′(z) = 2z−3 > 0

Consider next Logit. We have:

F (z) ≡ ez

1 + ez

F ′(z) =
(1 + ez)ez − e2z

(1 + ez)2
=

ez

(1 + ez)2

F ′′(z) =
(1 + ez)2ez − 2e2z(1 + ez)

(1 + ez)4
=

ez(1− ez)

(1 + ez)3
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Thus,

Ω′′(z) = [F (z)]−2

[
2[f(z)]2

F (z)
− F ′′(z)

]
= [F (z)]−2

[
2e2z

(1 + ez)4
1 + ez

ez
− ez(1− ez)

(1 + ez)3

]
= [F (z)]−2

[
2ez

(1 + ez)3
− ez(1− ez)

(1 + ez)3

]
= [F (z)]−2

[
2ez − ez + e2z

(1 + ez)3

]
= [F (z)]−2

[
ez(1 + ez)

(1 + ez)3

]
= [F (z)]−2

[
ez

(1 + ez)2

]
=

(1 + ez)2

e2z
ez

(1 + ez)2

=
1

ez
> 0

Thus we have established that Ω is strictly decreasing and convex in the case of Logit.

Finally, let us establish convexity when we consider the Normal CDF. We have:

F (z) =
1√
2π

z∫
−∞

e−
1
2
t2dt

F ′(z) =
1√
2π

e−
1
2
z2

F ′′(z) = − z√
2π

e−
1
2
z2 = −zF ′(z)

Thus we have:

Ω′′(z) = [F (z)]−2

[
2[f(z)]2

F (z)
− F ′′(z)

]
= [F (z)]−2

[
2[f(z)]2

F (z)
+ zf(z)

]
= [F (z)]−2f(z)

[
2f(z)

F (z)
+ z

]
= [F (z)]−2f(z)

[
2f(−z)

1− F (−z)
+ z

]
= [F (z)]−2f(z) [2h(−z) + z]

= [F (z)]−2f(z) [h(−z) + h(−z) + z] > 0
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Where the last line follows from Baricz (2008), who shows that for a standard normal random

variable h(−s) + s > 0.■

Lemma 2. Suppose b > 0 and consider any posted model featuring β̃ > 0. If σ2
c = 0, then β̂ols > b.

If σ2
c > 0, then in the limit as σ2

x tends to 0, β̂ols < b.

Proof.

The second result in the lemma follows from the fact that the slope coefficient can be rewritten

as:

β̂ols = b× ρxx̃ ×
σ2
x

σ2
x̃

.

For the first result, note that with c constant, the manipulated covariate is a univariate function of

x. Moreover, an arbitrary point x0:

d

dx
x̃(x0) = 1 +m′(x0) ∈ (0, 1).

Note that, in the preceding equation, the fact that m′ > −1 follows from the fact that an agent

with a lower true type cannot find it optimal to choose the same or higher report than a higher

type, since the lower type faces the same marginal benefit to data manipulation point-wise, but

faces higher marginal costs. Since the reported covariate is strictly monotone in x, we may apply

the implicit function theorem and note that:

d

dx̃
x(x̃0) =

1

1 +m′[x(x̃0)]
> 1.

With this in mind, consider that β̂xx̃ represents the slope of the best linear approximation of x

using x̃. Suppose then to the contrary of the maintained assertion that β̂xx̃ < 1. Then the assumed

line of best fit would cross the function x at most one time, from above. This cannot be optimal

since a positive rotation of the line originally posited would result in lower MSPE.■
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