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Abstract
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1 Introduction

Factor investing research has a long tradition dating back to Fama and French (1993). Typically,

researchers evaluate proposed strategies using historical data, assuming that the representative in-

vestor is endowed with abundant trading opportunities and can trade instantaneously, without

delay. This assumption may be justified in continuously traded, limit order book-driven equity

markets, where hedge funds and other active investors trade frequently. However, this assump-

tion is rendered questionable for illiquid assets, such as corporate bonds, where trading occurs in

fragmented, over-the-counter (OTC) markets. These markets are characterized by relatively sparse

trade frequency and the resulting trading delays are likely to significantly alter the performance of

factor strategies.1 To date, however, the literature is silent on how to quantify the cost of delays.

The trade delay can be inferred from the probability of a trade occurring in a given time period.

Econometricians could simply estimate the delay by observing how often a given security is traded

in the data. For example, if the estimated probability of trading per day is 5%, then the expected

delay is about 1/0.05=20 days.2

However, the fact that a bond trades once every 20 days does not mean that active factor

investors would have traded it only once every 20 days. One needs to understand why there were

no trades on the remaining 19 days. The lack of trades may be due to a lack of liquidity supply

from dealers, for example, due to their inventory capacity constraints, or a lack of liquidity demand

from customers, who buy and hold. If a lack of demand is the reason why we observed trades only

once every 20 days, then a factor investor, if they existed, could have traded the bond immediately

after placing an order. That is, we cannot take the historical data - a single equilibrium outcome -

as ‘given’ to estimate the probability of trades or the associated trade delay.

To overcome this challenge and quantify the delay costs, we use corporate bonds as an example of

an illiquid asset with infrequent transactions. We use the transaction data provided by TRACE and

infer the trading intensity, or the probability of a trade occurring in a given period, by forecasting

transactions using a set of covariates. The fitted value of the forecasts is, in principle, the probability

1For example, Andreani et al. (2023) document that corporate bonds trade, on average, only six times in a given
month. Many bonds exhibit zero trades within a month, and remain untraded for extended periods of time.

2If a delay is exponentially distributed with intensity λ, the mean delay is 1/λ.
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of transactions occurring. Under the assumption that transactions are independent over time, the

estimated probability can be converted into transaction delays using an exponential distribution.

In order to disentangle the liquidity supply and demand effects, we model the supply and demand

function for the probability of trading (or immediacy), which is treated as a service provided by

dealers. Investors who purchase immediacy do so by paying higher bid-ask spreads. In the data,

we observe an equilibrium in which demand is generated by real investors who are a mix of active

(e.g., mutual funds) and inactive (e.g., insurance companies). By modelling the supply and demand

functions, we can consider the counterfactual: assuming the supply curve is fixed, what happens if

we introduce an active factor investor into the economy and shift the demand curve? The addition

of active investors will change the equilibrium probability of trading and bid-ask spreads, providing

the trading delay that the representative investor would face, if they existed in the sample. The

explicit modelling of the liquidity supply and demand curves avoids simply taking the historical

transactions-based data as ‘given’.

We estimate the counterfactual in two steps. First, we ignore the slope of the supply curve and

estimate the counterfactual reflecting only the positive shift in demand. This provides the lower

bound on transaction costs because we ignore a potential increase in bid-ask spreads caused by the

increase in demand. To do this, we estimate the demand function where the probability of trading

is a linear function of bid-ask spreads and other bond characteristics. As a demand shifter, we

add to the function Li and Yu (2023)’s measure of investor composition, InvComp, which is the

bond-level average of the portfolio turnover rate of bondholders. Since bond ownership is persistent,

this variable can be viewed as a Bartik instrument and allows us to reliably quantify the shift in

liquidity demand.3

We estimate an OLS regression of trading frequency on InvComp and other characteristics

and confirm that bonds owned by more active investors are indeed more likely to be traded in the

future. A one standard deviation increase in InvComp increases the probability of trading by 1.7%

to 3.0%, depending on the size and direction of the trade. We then shift the liquidity demand curve

by increasing InvComp to the 99th percentile of the data to capture the idea that factor investors

3See Goldsmith-Pinkham et al. (2020) for a detailed overview of Bartik instruments.
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need to rebalance their portfolios regularly and trade bonds exactly at the end of the month, which

requires high immediacy.

The shift results in a significant increase in the probability of trades. For example, in the data,

transactions of $100,000 and $2 million occur 88% and 59% of the time within a month. In our

counterfactual, they increase to 93% and 67%, respectively.

We can interpret these estimates as follows: For $2 million trades, 41(=100-59) out of 100 days

have no trades in the data. Of these 41 days, 8(=67-59) days are attributable to inactive buy-and-

hold investors who do not need to trade. The remaining 33(=100-67) days represent the period

when dealers do not provide liquidity. If there were active factor investors in the data, bonds would

be traded on 67 out of 100 days.

In the counterfactual, the expected delays implied by the probability of trading shrink substan-

tially. Using the given data, the expected delays are 10 and 24 days for $100,000 and $2 million

transactions, respectively.4 The corresponding values in our counterfactual fall to 8 and 19 days,

closer to the values estimated in Kargar et al. (2023).

We then consider the shape of the liquidity supply curve. If the supply curve is upward sloping,

an outward shift in the demand curve would shift the equilibrium along the supply curve, increasing

bid-ask spreads and dampening the increase in the probability of trading. To compute the new

equilibrium values of trade probability and bid-ask spreads, we estimate the slope of both the supply

and demand functions. To remove the correlation between bid-ask spreads and unobserved drivers

of bond trading, we instrument bid-ask spreads with InvComp to estimate the supply faction and

dealer capital ratio of He et al. (2017) and dealer bond inventory to estimate the demand function.

We show that these instruments are significant drivers of bid-ask spreads: controlling for bond

characteristics such as bond age, rating, maturity, and size, InvComp and dealer inventory move

bid-ask spreads positively and the dealer capital ratio moves them negatively.

In the new counterfactual, we estimate that bid-ask spreads increase by 11 to 12 basis points

(bps) from the data, depending on the size of the trade. This is significant given that the corre-

sponding average spreads in the data are 65 bps and 34 bps, for a $100,000 or $2 million trade

4This conversion is done using the exponential distribution. Specifically, the expected delay is − 21
log(1−Prob)
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respectively. The widening of bid-ask spreads dampens the probability of trades demanded by the

factor investor. However, in our estimates, the liquidity demand curve is very inelastic and the

probability of trades in this counterfactual is similar to those that ignore the increase in bid-ask

spreads.

Next, we study how the estimated delays influence factor investing. We calculate the cost of

delays by jointly simulating delays and returns. With the simulated data, we construct portfolios

and compute factor returns with and without delays. The difference in gross and net returns is the

cost of delays, which is determined by the parameters of the data generation process. The delays

are due to situations where an investor places an order but cannot execute the trade, resulting

in a potentially missed investment opportunity. The signal that informs the investor’s decision to

buy the security may change before they can execute the order, and this creates an opportunity

cost. Similarly, if the investor wants to sell the security, she may end up holding it unintentionally

due to execution delays, further dragging down the performance of the portfolio with unintended

inventory.

We show that the delay cost depends on three parameters of the data generation process.

The first is the probability of trading, which controls the frequency of transactions and thus the

magnitude of delays. For this, we use the equilibrium value in our counterfactual described above.

The other two parameters are the factor turnover rate, which controls how quickly the signal

changes, and gross factor performance, which determines the magnitude of lost profits due to

delays. The cost of delay is high if the securities are traded infrequently, and the portfolio turnover

rate and gross performance are high. Importantly, the cost of delay cannot be approximated by

widening bid-ask spreads. Because it depends on gross performance, it penalizes the factor that

performs well before costs more than the bid-ask cost does.

Armed with the estimated costs of delays and bid-ask spreads, we test the potential performance

of corporate bond factor investing using 341 characteristics using the institutional grade Interconti-

nental Exchange (ICE) corporate bond pricing data that are free of market microstructure noise and

potential data errors. We make our data library publicly available on openbondassetpricing.com/data.

The data repository includes bond level data comprising the majority of all characteristics used to
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either predict bond returns or form factor portfolios and the time-series of the 341 bond factors.

To complement the publicly available data offering, and to aid replicability in the field, all

of our results can be reproduced with the newly developed PyBondLab package in Python. This

package is made available to the public and can be installed on any machine using pip (pip install

PyBondLab) to replicate our results. The package includes functionality to compute bond portfolios

rebalanced over any given horizon, as well as turnover which correctly accounts for endogenous

changes in portfolio value. Furthermore, various tools are provided to dampen portfolio turnover

including a buy-hold-spread (known as banding) and staggered holding periods. Detailed tutorials,

examples and documentation can be found on the PyBondLab download webpage.

We compute gross performance and portfolio turnover rates using this package and assign the

estimated delay costs to each of the 341 factors. The broad coverage of factors makes our study

the first comprehensive study of bond factor performance net of costs.

We find that delay costs significantly affect the performance of the factors we study, even

when we use the lower bound estimates for transaction costs. The adjustment for delay costs is

particularly important for factors which rely on past returns as the signals. Among the 341 factors

we study, the factor with the highest CAPM alpha is the factor based on the past one-month stock

returns (α = 0.69%). However, this type of factor has the highest delay costs: since its gross

performance is very high, it is painful for investors to miss the trading opportunity due to delays,

resulting in severe opportunity costs of 0.36% when the trade size is $100,000 and 0.44% when

the trade size is $2 million. These costs are exacerbated by the fact that the signal changes very

quickly, forcing investors to trade frequently. Other reversal/momentum-type strategies, such as

those based on three- or six-month changes in credit spreads or changes in option-implied volatility,

face similar problems and generate negative CAPM alphas after transaction costs.

Examining the 341 factors, 56 factors have statistically significant bond CAPM alphas before

transaction costs. However, once we account for delay costs and bid-ask spreads, none of the factors

have significant alphas. In the most lenient case, where trade size is large and cost estimates are

at the lower bound, only five factors have a CAPM alpha greater than 0.2% per month.

In addition to examining the factors individually, we also test whether a combination of factors
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can outperform the passive bond market index after transaction costs. For this purpose, we use

nine machine learning models proposed in the literature and estimate them to generate the highest

average returns before transaction costs. While all models generate economically large and signifi-

cant gross CAPM alphas out of sample, none of them generate positive CAPM alphas after costs.

These results suggest that accounting for transaction costs significantly changes the view of which

factors are useful in practice.

In summary, this paper fills a gap in the literature by proposing a method to estimate the main

impediment to factor investing in illiquid assets – delayed execution. In over-the-counter markets,

delay costs due to search frictions are of first order importance. This is in contrast to the stock

market with anonymous transactions through limit order books, where price impact is of paramount

importance. In dealer-driven markets, large trades have low bid-ask spreads (e.g., see Edwards et al.

2007) but suffer from delays due to the strategic behavior of dealers to pre-arrange transactions

(e.g., see Goldstein and Hotchkiss 2020; Choi et al. 2023 for evidence).5 This observation highlights

that considering only bid-ask spreads is not sufficient to evaluate the performance of factors in

illiquid markets. Therefore, in this paper, we quantify delay costs and comprehensively evaluate

the performance of corporate bond factors.

Our paper contributes to the rapidly growing literature that evaluates (and re-evaluates) the

performance of factor investing in the corporate bond market (e.g., Bali et al. 2020; Augustin

et al. 2020; Kelly et al. 2021; Sandulescu 2022; Binsbergen et al. 2023; Dickerson et al. 2023; Dick-

Nielsen et al. 2023). The paper closest to ours is Ivashchenko and Kosowski (2023), who study

the performance of nine factors after accounting for transaction costs. Our paper differs from

Ivashchenko and Kosowski (2023) in that we highlight the novel delay costs faced by investors and

employ a comprehensive factor data library in testing the performance of factor models spanning

the majority of characteristics used to form factor strategies.

This paper also relates to the extensive literature measuring illiquidity and transaction costs in

5Goldstein and Hotchkiss (2020) present the empirical evidence of trade delays in the corporate bond market. In
particular, they write “dealers will offer customers a trade-off between pricing and immediacy (liquidity). However,
... Dealers provide little immediacy when there are few trading opportunities. For example, for a bond that trades
at best once a month, investors retain price risk while dealers search for a counterparty to offset their trade,...”. Our
results empirically support the significance of their statement from the perspective of factor investing.
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the corporate bond market (e.g., Edwards et al. 2007; Chen et al. 2007; Feldhütter 2010; Bao et al.

2011; Schestag et al. 2016; Dick-Nielsen and Rossi 2018; Pinter et al. 2021; Choi et al. 2023; Kargar

et al. 2023). In particular, Bao et al. (2018), Bessembinder et al. (2018), and Wu (2022) examine

the role of post-crisis regulations on the liquidity of corporate bonds.6 More closely related papers

include O’Hara et al. (2018), who examine the market power in determining corporate bonds’ half

spreads, as well as Goldstein and Hotchkiss (2020) and Reichenbacher and Schuster (2022), who

argue that observed transaction costs strongly depends on transaction size and dealers’ strategic

inventory management. However, none of these papers quantify the impact of trading delays in

evaluating trading strategies.

Our paper aims to provide the best practice in accounting for transaction costs in the study of

the cross-section of corporate bond returns. Table 1 lists recent papers on this topic. The papers are

classified into two groups: the first group of papers does not consider net returns after transaction

costs and the second group does so. However, even among the papers in the second group, there is

substantial heterogeneity in the transaction cost estimates. For example, Bali et al. (2020), Jostova

et al. (2013), and Kelly et al. (2021) report significant trading profits arising from anomalies after

accounting for transaction costs while Chordia et al. (2017), Bartram et al. (2023), and Nozawa

et al. (2023) report anomalous returns largely disappear net of costs. However, none of the papers

account for delay costs.7

The remainder of the paper is organized as follows: Section 2 describes our data set; Section 3

provides detailed methods for calculating delay costs using simulated data; Section 4 estimates the

trade intensity and expected delays; Section 5 provides the evaluation of the factor performance;

Section 6 extends the baseline results with more advanced factor investment strategies; and Section

7 provides concluding remarks.

6More broadly, there is a strand of literature that studies the role of liquidity and dealer inventory in explaining
credit spreads and bond risk premiums. This body of research includes Lin et al. (2011); Friewald and Nagler (2019);
He et al. (2019); Goldberg and Nozawa (2021); Eisfeldt et al. (2023).

7The importance of transaction costs in other asset classes, such as stocks and options, are documented in Novy-
Marx and Velikov (2015), Novy-Marx and Velikov (2019), Chen and Velikov (2023), Detzel et al. (2023), and Avramov
et al. (2023).
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2 Data

2.1 Data for Constructing Bond Factors

Our datasets include daily bond data from Enhanced TRACE (TRACE) and the constituent

bonds from the Bank of America (BAML) Investment Grade and High Yield indices as made avail-

able via the Intercontinental Exchange (ICE). We source equity and accounting data from CRSP

and COMPUSTAT. We filter the data using standard approaches as prescribed by the literature

which is explicitly described in Internet Appendix A. To form bond factors and train the machine

learning models, we construct commonly used bond and equity variables used in the literature and

then merge these to the equity-based characteristics from Chen and Zimmermann (2022), CZ and

Jensen, Kelly, and Pedersen (2023), JKP.8 This data combines several monthly bond and stock-

based characteristics that have been shown the predict one-month ahead future corporate bond

excess returns. Our data includes 341 characteristics of which 40 are bond-based characteristics

and 301 are equity-based, covering the majority of all corporate bond return predictors used in

prior research. This data is publicly available for download on openbondassetpricing.com/data.

Detailed descriptions for the construction of our 53 custom-made bond and stock characteristics

are provided in Table A.4 of the Internet Appendix. Extensive documentation for the CZ and JKP

equity characteristics is available on the respective authors’ websites. Missing characteristic data

is set to its cross-sectional median at each month t. All characteristics are cross-sectionally rank

demeaned to lie in the interval [−1,1]. Overall, the data used to train the ML models with the

341 stock and bond characteristics comprises 19,768 bonds issued by 2,110 firms over the sample

period from January 1998 to December 2022 (T = 288).

2.2 Data for Trade Intensity Estimates

We use Enhanced TRACE to estimate trading intensity and half spreads. We filter the TRACE

data by removing trades that are i) when issued, ii) with special conditions, iii) locked in, iv) have

more than two days of settlement. We also remove observations with extreme price reversals: if

8Available on openassetpricing.com and via WRDS respectively.
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the product of the two consecutive logarithmic price changes is less than -0.25 (e.g., a 50% increase

followed by a -50% decrease), then the observations in the middle are dropped. To estimate trade

intensity, we use only dealer-customer transactions. Finally, we restrict the bonds to those that

appear in both ICE and TRACE. Finally, we use eMAXX for bond ownership information. The

sample period is August 2002 through November 2022. Since this sample is shorter than the one

used to train the machine learning models, all factors, whether single signal-based or ML-based,

start in August 2002 and end in November 2022 for consistency. That is, the earlier sample is used

only to generate signals, train and validate the ML models.

3 Simulated Cost of Trade Delays

3.1 Simulation Methods

In this section, we estimate the cost of delays using simulated data. This allows us to cleanly

identify the cost without being influenced by the data structure, such as trade size and missing

observations. We assume that on a given day, a transaction occurs with an intensity λ and delay

τ follows an exponential distribution

τ i,t ∼ λe−λτ , (1)

with a mean delay of 1/λ days.

Now, we consider a stylized model of factor investing. We suppose that a bond i’s gross return

consists of predictable components and unpredictable shocks

ri,t+1 = βi,tft+1 + ui,t+1, (2)

βi,t+1 = ρβi,t + vi,t+1, (3)

where ui,t+1 and vi,t+1 are mean zero shocks and standard deviation σv and σu, independent of

each other. The parameter ρ is common across bonds and over time and determines the speed of

variation in the signal. Later, we show that ρ determines the portfolio turnover rate and σv

√
1− ρ2

determines the profitability of the long-short portfolios. We have a systematic risk factor ft in the
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dynamics whose risk premium determines the Sharpe ratio of the strategy.

We simulate the data using the system (1), (2) and (3) for i = 1, . . . , 1, 000 and T = 244 months.

Every month, we sort bonds into quintiles based on observed βi,t. Let Qt be a set of bonds in the

quintile in month t and Pt be a set of bonds in the portfolio in month t. Then, a net return on the

bonds in the portfolio is

rNet
i,t+1 =



ri,t+1 if i ∈ Pt−1 and i ∈ Qt,

ri,t+1((21− τ i,t+1)/21) if i /∈ Pt−1 and i ∈ Qt and τ i,t ≤ 21,

0 if i /∈ Pt−1 and i ∈ Qt and τ i,t > 21,

ri,t+1 if i ∈ Pt−1 and i /∈ Qt and τ i,t > 21.

ri,t+1((21− τ i,t+1)/21) if i ∈ Pt−1 and i /∈ Qt and τ i,t ≤ 21.

(4)

The first two lines represent the intended positions for the bonds. These bonds are included in

the portfolio either because the investor already holds them or has successfully acquired them. In

the case of a bond purchase, a delay of τ days reduces the return. The third line accounts for the

scenario of trade failure in initiating a new position, resulting in a zero rate of return. The fourth

and fifth lines pertain to bonds present in the portfolio from the previous month, which the investor

retains due to unsuccessful sales attempts.

For each simulation, we compute the equal-weighted average of bond returns across the quintile

portfolios. The high-minus-low factor for each simulation is then computed as the difference between

the fifth (P5) and first (P1) portfolios. In this simulation, the composition of bonds in portfolio P

deviates from what the signal suggests (Q) due to changing β and transaction delays. This delay

is costly because it leads to missed opportunities to trade.

3.2 Simulation Results

We simulate the data 1,000 times using the following sets of baseline parameters. In this section,

we remain agnostic about the true parameters of the model, in particular, about trade intensity, λ.

By studying a wide range of parameters, we can better understand the nature and quantity of the de-

lay costs in factor investing. To this end, we vary ρ = {0, 3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99, 0.9995}
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and λ = {1, 1/7, 1/21, 1/42, 1/252}. For each simulation run, we compute the average of gross and

net long-short portfolio returns. We then take the average across simulations. The difference

between the average gross and net returns is the cost of delay.

Table 2 reports the other parameters we select to match the sample size and volatility of the

factor. In each run, we draw βi,0 from a normal distribution with standard deviation σv/
√

1− ρ2

using the parameters of the stationary distribution. In this illustration, we set the half spread to

zero to focus on the cost of delay. Later, when we evaluate the net-of-cost performance of bond

factors, we include a half spread and subtract it from a return each time a bond trades.

Figure 1 plots the cost of delay as a function of portfolio turnover rate (which negatively depends

on ρ) and expected delay (1/λ days). In this figure, we fix σv = 0.2%
√
1− ρ2 to roughly match

gross average factor returns match the performance of the best 15 performing factors in the data

(0.56% per month). As we can see, the cost of delay increases with both the portfolio turnover rate

and decreases with the trading intensity, λ. Focusing on the case where a trade occurs on average

once a month 1/λ = 21, the figure shows that the cost of delay increases with the turnover rate.

The cost of delay is about 0.15% per month when the turnover rate is 50% or less, but increases

above 0.3% when the turnover rate is above 100%. This cost is substantial when compared to the

gross return of 0.56% per month. For an extremely illiquid bond that trades once a year, the cost of

delay increases more steeply with the turnover rate and tapers at the level of gross returns because

the delay cost cannot exceed the gross returns. As expected, the bonds that trade on average every

day (λ = 1), the cost of delay is smaller.

In Table 3 Panel A, we provide the cost of delays as a function of λ and turnover rates, providing

specific values plotted in Figure 1.

Next, we examine how gross returns affect the cost of delay. To do so, we fix the trading intensity

parameter λ = 1/21 (i.e., a bond is traded on average once a month) and vary the profitability

of the strategy σv = {0.05%, 0.10%, 0.20%, 0.30%} ×
√

1− ρ2. A higher value of σv results in a

greater dispersion of expected returns across bonds and thus a higher gross return for the long-short

strategy.

Figure 2 shows the cost of delay as a function of portfolio turnover and average gross portfolio
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returns holding trade intensity fixed at λ = 1/21. Table 3 provides the corresponding values that

are plotted. The cost increases with both turnover and gross returns, suggesting that the interaction

between the two contributes to transaction costs. In contrast, the standard measure of transaction

costs, which is half spread times the turnover rate, is independent of the factor’s gross profits. Our

results show that the cost of delay is more important for the strategy that is highly profitable before

transaction costs and has a high turnover rate.

The fact that the cost of delay depends on gross returns changes the preference within a menu

of factors. As we show later, the momentum-like factors that have high gross returns also have a

high turnover rate, while risk-based factors tend to have lower gross returns and turnover rates.

The question, then, is which types of strategies perform better after transaction costs. To see this,

we plot a contour set, or an indifference curve, of gross returns and turnover rate for a given net

return. Figure 3 shows the set. The net return is increasing in the gross return but decreasing in the

turnover rate, so the net return is increasing in the northwest direction. For example, any strategy

above the black indifference curve has a net return of 0.2% per month or more. If a strategy is on

the curve, it has a net return of 0.2% and any increase in the turnover rate must be accompanied

by an increase in the gross return to maintain the 0.2% level. Since the curve is convex in turnover

rate, a high turnover strategy requires increasingly higher gross returns to offset the increase in

costs and remain equally profitable.

As a contrast to the cost of delay, we plot the traditional transaction cost of bid-ask spreads in

the figure. These costs are a linear function of half spread h,

Net Return = Gross Return− h× Turnover, (5)

which implies a linear contour set for a given level of net return. As an example, in Figure 3, the

black dashed line represents the contour set of 0.2% when the transaction costs are bid-ask spreads

of 30 bps but with no delay costs.

Comparing the cost of delays (solid curve) and the cost of bid-ask spreads (dashed line), the

contour set using the bid-ask spreads is above the set using the cost of delays for a low turnover rate.
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This suggests that, for these factors, the net returns appear higher using the cost of delays than

using the bid-ask spreads. However, for a high turnover rate, the pattern is reversed. The reversal

occurs because the cost of delay increases with gross returns and thus it requires a greater increase

in gross returns to offset a given increase in turnover rate to keep the net return constant. Thus,

the cost of delay is qualitatively different from the cost of bid-ask spreads. If an investor considers

the cost of delay, she will prefer a factor that has a low turnover rate and low gross returns. If,

instead, she only considers the bid-ask spreads, she will prefer a factor with a high turnover rate

and high gross returns. As we will show, the factors based on past returns tend to have high gross

returns and high turnover rate. Therefore, including delay costs dramatically reduces the returns

of these factors, and the reduction is much greater than when we only consider bid-ask spreads.

4 Estimating Trade Intensity

To quantify the delay cost, we estimate the trade intensity facing an active investor who wishes

to rebalance portfolios every month. We consider monthly rebalancing given that it is standard

in the factor investing literature but also extend the analysis by extending the holding period and

introducing inertia in rebalancing in Section 6.1.

The probability of trades facing the active investor differs from the observed frequency of trades

because the data is generated by real investors including insurance firms who tend to buy and

hold. Thus, we consider a counterfactual scenario by introducing a hypothetical, small hedge

fund pursuing factor investing strategies. In this counterfactual, both trade intensity and the

compensation for the intensity, namely, half spreads will differ from the data. As we introduce

a new investor, dealers who provide liquidity will respond to her demand, potentially changing

immediacy and half spreads. Therefore, we need to specify liquidity supply and demand curves for

this exercise.

In our setup, we view the probability of trades, Probi,t[1i,t+1 = 1], as a service provided by

dealers. To compensate the dealers for the production of this service, customers have to pay half
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spreads, hi,t. More formally, the supply and demand curves for bond i in month t are:

Probi,t[1i,t+1 = 1] = γhi,t + ηSi,t + ϕXi,t, (6)

Probi,t[1i,t+1 = 1] = αhi,t + δDi,t + ζXi,t. (7)

The parameter γ is the sensitivity of trade intensity to half spreads. We expect γ ≥ 0 because

dealers require higher half spreads to supply immediacy. Si,t and Di,t are idiosyncratic supply and

demand shifters, respectively, which are not captured by the bond characteristics in vector Xi,t.

We use Eqs. (6) and (7) to estimate the changes in trade intensity and half spreads in response to

the shift in the demand curve caused by replacing passive investors in the data with hypothetical

active investors. The key to this exercise are the parameters δ, which measures how much the

demand shifts when the investor becomes active, and γ, which measures how dealers’ liquidity

provision reacts to a shift in the demand curve. In the following, we estimate these two parameters.

Estimating the probability of transactions is equivalent to estimating delays. Once we estimate

the probability of trading for an active investor, we can use the exponential distribution and back

out λ from the average probability of trade, given a trade size. Specifically, we set λ to satisfy the

following equation,

P̂ robi,t[1i,t+1 = 1] = 1− e−21×λ. (8)

4.1 Incidence of Transactions and Half Spreads

In Eqs. (6) and (7), we define the trade indicator function 1i,t as a dummy if a trade with a

size above threshold values (such as $100,000 or $2 million) occurs at least once a month.9 This is

motivated by the fact that larger transactions have lower half spreads, indicating that dealers are

more willing to accommodate smaller trades if there is a demand.

To confirm the relationship between size and half spreads, we follow O’Hara and Zhou (2021) to

compute the half spread for each trade. Let P̄ denote the transaction price of the last interdealer

trade that occurred before a customer-dealer trade. Then, the cost of the customer-dealer trade

9The dummy is defined at the month level rather than the day level. This is because at the day level, trades tend
to cluster within a few day window, violating the underlying assumption for the exponential distribution.
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for bond i is

hi,t = (logPi,t − log P̄i,t)× Ii,t (9)

where Ii,t is 1 if the trade is customer buy and −1 if the trade is customer sell. We allow the

reference trade to occur within the five-business day window preceding the trade. If there are

no interdealer trades within this window, the half spread for the trade is treated as missing. We

winsorize the half spreads at the 0.5 and 99.5 percentiles to reduce the influence of outliers.

Figure 4 plots average half spreads as a function of size. Consistent with Edwards et al. (2007),

half spreads decline sharply with trade size. These are explained by the bargaining power of large

customers (Duffie et al. 2005) and the strategic behavior of dealers to pre-arrange large trades

(e.g., Goldstein and Hotchkiss 2020, Choi et al. 2023). In Section 6.3, we separate these two effects

and confirm that both contribute to the declining pattern in halfspreads.10 Therefore, from the

client’s perspective, when dealers are willing to trade a large size, it is easy to execute all trades

smaller than that. Thus, we use the indicator variable that equals one when a minimum size trade

is observed and zero otherwise.

4.2 Estimating Demand Shift Due to Changes in Investor Base

To quantify the shift in the demand curve, Di,t, we use the investor composition measure of

Li and Yu (2023), denoted InvComp. This variable measures the average activeness of the bond

holders and is constructed as the portfolio turnover rate of investors averaged at the bond level.11

The idea is that the frequency with which investors receive a liquidity shock is persistent, and thus

10Our results show that halfspreads decline with investor size after controlling for their identity. This contrasts
with Pinter et al. (2021), who find that in the U.K. bond market, half spreads increase with trade size after controlling
for investor identity. The difference arises because U.S. dealers behave differently from the rest of the world due to
regulations such as the Volcker Rule and the TRACE disclosure requirement. The unique constraints imposed on
U.S. dealers make them behave more strategically to control their balance sheets.

11Specifically, for investor j in quarter q, the net transaction is

ntj,q =
|
∑

i holdingi,j,q −
∑

i holdingi,j,q−1|∑
i holdingi,j,q−1

,

and we use the four-quarter average to capture the investor’s preference,

NTj,q =
1

4

3∑
k=0

ntj,q−k.
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the investor whose portfolio turnover is high in the past will have a higher liquidity demand in the

future.

To estimate a shift in (7), we run a forecasting regression of transaction in month t+ 1,

1i,t+1 = α0 + αhi,t + δInvCompi,t + ζXi,t + ei,t+1, (10)

and compute a fitted value P̂ robi,t[1i,t+1 = 1]|InvComp for a given value of InvComp.

For the unbiased estimate for δ, we need

E[ei,t+1|InvCompi,t, hi,t, Xi,t] = 0. (11)

However, clearly, a liquidity price hi,t is an equilibrium object that is correlated with both InvCompi,t

and forecast error ei,t+1.
12 To eliminate the correlation, we use two proxies for liquidity sup-

ply shocks as instruments for hi,t including the dealer capital ratio of He et al. (2017), denoted

CAPi,t, and the 28-day inventory changes to capture the inventory pressure on dealers, denoted

∆Inventoryi,t. Since we are interested in estimating δ but not α, we replace hi,t in Eq. (7) with

CAPi,t,∆Inventoryi,t to estimate δ.

Table 4 Panel A reports the coefficient estimates, adjusted R2, and the associated t-statistics.

The right-hand-side variables are standardized for ease of interpretation. Standard errors are

clustered at the bond level. We find that the measure of investor composition positively predicts

the incidence of bond transactions, suggesting that investors with a history of frequent trading are

Finally, we aggregate at the bond level to obtain the investor composition measure,

InvCompi,q =

∑
j holdingi,j,q ×NTj,q∑

j holdingi,j,q
.

We use InvCompi,q to predict transactions in each month in quarter q + 1.
12If there are two right-hand-side variables, h and InvComp that are mean zero, then we can show that OLS

estimate for δ is

δ̂ = δ +
1

|D| (E[h2]E[InvComp · e]− E[h · InvComp]E[h · e]).

= δ +
1

|D|E[z2]E[InvComp∗ · e]

Therefore, if E[InvComp · e] = 0 and E[h · InvComp] = 0 or E[h · e] = 0, then δ̂ = δ. If InvComp is correlated with
h and h is correlated with the error term, then δ̂ is biased even if E[InvComp · e] = 0.
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more likely to demand liquidity. The dealer capital ratio predicts transactions positively, but only

for larger trade sizes. The changes in the dealer inventory predict customer sells negatively and

buys positively. The coefficients on the control variables also make sense: a bond with a lower

credit rating (higher numerical value of the rating), shorter maturity, and larger size tends to trade

more frequently.

Table 4 Panel B reports the regression-implied probability of trading. To obtain this value, we

compute the fitted values of the regression for each observation and average them. The average

probability of trading is higher for small transactions of $100,000, 88% and 87% for customer sells

and buys, respectively. This probability corresponds to trade intensity λ of 0.100 and 0.097 and the

expected delay (1/λ) of 10.0 and 10.4 days. For larger transactions of $2 million, the probability

drops to 59% and 58% for sells and buys. This corresponds to intensity λ = 0.042, 0.041 and an

expected delay of 23.7 and 24.4 days, respectively.

We now consider the probability that an active investor would experience. In Figure 5, the

demand curve shifts to the right, reflecting the fact that we introduce active investors in the

market who requires greater liquidity than the actual investors in the data. We aim to quantify the

magnitude of the shift by comparing the equilibrium in the data, EData, with the counterfactual,

ELB, as if the supply curve is a vertical line.

Since this investor does not buy and hold and requires liquidity at the end of each month, we set

the liquidity demand variable, InvComp, at the 99th percentile. We then compute the fitted value

of the regression (10), keeping the coefficients unchanged, and report the average “hypothetical”

probability of trading at the bottom of Table 4. The hypothetical probability of sell, estimated at

95.3% and 70.9% for $100,000 and $2 million, respectively, is higher than the observed frequency

of trade (87.7% and 58.8%), which reduces delays. Converting the monthly probability of trades

into trade intensity using the exponential distribution, the expected delay for $100,000 transactions

shortens to 6.9 days (λ = 0.145) for the hypothetical investor. For trades with a size of $2 million,

the expected delay decreases from 23.7 days (λ = 0.042) to 17.0 days (λ = 0.059). Therefore, for a

factor investor, the transaction delays are less than what we observe in the data.

The estimates above ignore dealers’ reaction to the increased demand for immediacy. Thus, the
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estimated costs should be treated as the lower bound of transaction costs. While this procedure

has the advantage of needing only a simple regression, it has the drawback of not capturing dealers’

strategic behavior that provides greater immediacy in exchange for higher half spreads. That is,

in practice, dealers’ liquidity supply function is upward-sloping, and their behavior increases the

half spreads and reduces the counterfactual probability of trades, both of which would increase

transaction costs from the level documented above.

4.3 Estimating Supply and Demand Elasticity

Next, we consider how h and λ react if there is a positive shift in a demand curve and dealers

are allowed to react by raising half spreads. Such a reaction is modelled as an equilibrium moving

along the liquidity supply curve, shown in point ECF in Figure 5. To quantify the change in

half spreads and the probability of transactions, we need to estimate the supply and demand

sensitivity parameters, γ and α. As before, an empirical challenge arises due to unobservable bond

characteristics driving both λi,t and ei,t, implying E[ei,t+1|Xi,t, hi,t] ̸= 0. To tackle this problem,

we use the two-stage least square estimates. First, we regress half spreads on a set of instruments,

hi,t = a+ bZi,t + cXi,t + ui,t, (12)

and obtain the fitted value of the regression, ĥi,t. As before, for the supply function, the instru-

ment Zi,t is the investor composition measure, and for the demand function, it includes the dealer

inventory measure and dealer capital ratio.

Next, we replace hi,t in Equation (10) with ĥi,t to estimate the demand sensitivity parameter α.

We repeat the same procedure for the supply function to estimate γ. Based on these parameters,

we can compute the counterfactual changes in half spreads and the trade probability by

ProbCF − ProbData =
ProbLB − ProbData

1− α/γ
, (13)

hCF − hData =
ProbCF − ProbData

γ
, (14)
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where ProbLB is the probability of transactions assuming no reactions by the dealers.

Table 5 reports the estimates of the first-stage regression in (12). We find that the intermediary

capital ratio predicts half spreads negatively, while the 28-day dealer inventories and the log investor

composition predicts them positively. Large t-statistics indicate that they are valid instruments

that generate variation in half spreads after controlling for known determinants of bond illiquidity

such as credit ratings, size, and age. In this regression, we pool all transactions regardless of trade

size to maximize the number of observations. Still, the number is less than the entire sample used

to predict trade incidence because if there is no trade in a month, the observation of half spreads

is missing. Thus, in the second stage, we use a fitted value of half spreads, ĥi,t, for all observations

including those with missing hi,t. This is necessary because if we drop observations with missing

hi,t, then the probability of transactions will be severely upward biased.

Using the instrumented half spreads, now we estimate the second-stage regression and report

the results in Table 6. Panel A reports the estimated slope coefficients, α and γ. Looking at the

slope of the demand curve α for customer sell, the estimates are -0.008 and -0.075 for the trade

size of $100,000 and $2M, respectively. The corresponding values for customer buys are 0.004 and

-0.040, respectively. These estimates suggest that the liquidity demand are relatively insensitive

to price changes. In the data, when a customer wants to trade, then she does so regardless of

variations in half spreads charged by dealers.

Turning to the supply curve, the slope coefficients γ are estimated at 0.447 and 0.710 for

$100,000 and $2M customer sells, respectively. The values for customer buys are highly similar.

The positive slope implies that dealers are willing to increase liquidity provision for a given increase

in half spreads. Thus, it is important to account for dealers’ reaction to the increased customer

activities. If we introduce hypothetical, active investor engaging in factor investing, then dealers

will increase the half spreads from the level observed in the data.

Panel B of Table 6 reports the probability of transactions and half spreads in the new equi-

librium. We find that the equilibrium level of the probability of transactions is highly similar to

the counterfactual documented in Table 4. Because the demand curve is relatively flat, its parallel

shift leads to the almost same increase in the equilibrium quantity. The new equilibrium will have
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higher half spreads than what is observed in the data as well. We estimate that, an increased

liquidity demand leads to an increase in half spreads by 10 to 12 bps. Therefore, once we account

for dealers’ reaction function, the factor investor experiences not only a delay but also an increase

in half spreads.

4.4 Delay Costs Based on the Counterfactual Trade Intensity

Now, we estimate the cost of delays based on the estimated trade intensity, λ =0.042, 0.058,

0.100,0.145. The first two values correspond to the estimates for the trade size of $2 million,

and the last two are those of $100,000. As before, we vary the profitability of the strategy σv =

{0.05%, 0.10%, 0.20%, 0.30%} ×
√

1− ρ2 and plot the relationship between the cost of delay and

portfolio turnover rate. The other parameters remain the same as in Figure 2. For this exercise,

we also add to the plot the cost arising from half spreads defined in (9).

Figure 6 shows the cost of delays and bid-ask spreads. In Panels (a) and (b), we plot the

cost when trade size is $100,000. In this case, the bid-ask spread cost dominates the cost of delay

because delays are short and the spread is large for small transactions. In Panels (c) and (d), we

plot the cost for a trade size of $2 million. As trade intensity falls, the cost of delays becomes

substantial. In both Panels (c) and (d), the delay cost exceeds the bid-ask spread costs when the

gross average return of the strategy is set to replicate the performance of the top 15 bond factors

(0.56% per month).

Figure 7 shows the net returns of the simulated strategies. Panels (a) and (b) correspond to the

cases with a trade size of $100,000. In this case, net returns fall almost linearly with the turnover

rate because the bid-ask spread cost linearly increases with turnover. Panels (c) and (d) correspond

to the case with a trade size of $2 million. In this case, the net return decreases more steeply with

the turnover rate when its gross return is higher (e.g. 0.84%) than when the gross return is lower

(e.g. 0.14%). This reflects the fact that the delay cost increases with the gross return.

We can infer the effect of estimation bias in λ by comparing Panels (a)/(c) with (b)/(d) in

Figures 6 and 7. For more direct analysis, in Figure 8, we plot the cost of delay before and

after accounting for the bias corresponding to the lack of liquidity demand. For this plot, we
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fix σv = 0.20%. We compute the cost of delays using the average λData in the data and the

counterfactual λLB by setting InvComp to the 99th percentile.

In Figure 8, we find that accounting for the liquidity demand effect reduces the cost of delay.

From the perspective of active investors, the bond market is more active than the average frequency

observed in the data, and thus transactions are more likely to occur, which is reflected in a higher

value of λ.

4.5 Validations of the Estimates

Estimates by Credit Rating

In the results above, we find that lower credit quality (i.e., higher value of credit rating) is

associated with a higher probability of transactions. To assess a potential bias driving this result,

we repeat the analysis using the subsample of IG bonds and HY bonds. We focus on customer sells

because the results for customer buys are highly similar. Table 7 reports the estimates by credit

rating. In the data, HY bonds are traded more frequently than IG bonds. Thus, the expected delay

in the data is 10.6 days for $100,000 trades for IG bonds and 8.6 days for HY bonds. However,

this leads to the counter-intuitive conclusion that HY bonds are easier to trade with shorter delays,

reminding us that we cannot take the data as given because some investors optimally choose not to

trade bonds. In the data, IG bonds are more likely to be held by buy-and-hold insurance companies

for regulatory reasons. This pattern gives the impression that IG bonds are illiquid.

The counterfactual trading intensity obtained from the regression accounts for this bias. If an

investor tries to trade actively then the expected delay for IG bonds would be 7.1 and 16.3 days with

a trade size of $100,000 and $2M, respectively. These values are very similar to the corresponding

values for HY bonds, which are 6.2 and 15.6 days, respectively. Therefore, the apparent ‘liquidity’

of HY bonds is fully explained by the different investor compositions in the data and adjusting for

it helps avoid the conclusion that HY bonds are easier to trade than IG bonds.
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Time-Series of Delays

For further confirmation, Figure 9 plots the estimated delay based on the regression in Table 4

averaged over bonds by month. There is a break in the data in January 2005, which corresponds

to a change in the ICE index criterion that removes small bonds from the sample. Since the

amount outstanding is one of the most important predictors of a trade, an increase in the amount

outstanding significantly reduces the delay. Thereafter, delays slowly decrease, reaching 8.9 days

and 18.5 days for $100,000 and $2 million trades, respectively, by the end of the sample.

The decreasing trend may reflect the introduction of electronic trading platforms as studied

in O’Hara and Zhou (2021). However, Kargar et al. (2023) shows that the volume share of the

electronic platform is still small, at 16.4% for the period January 2017 to March 2021.

Compared to the results of Kargar et al. (2023), our estimate of delays for $100,000 transactions

is comparable: In their Figure 6, the delay for voice odd-lot trades by the most connected customer

is about 10 to 12 days,13 while that for an electronic platform is 4 days. Our estimate of around

7-day delay for $100,000 trades lies between these two estimates. Our estimate of the delay for a

$2 million trade is longer than that of Kargar et al. (2023). In their Figure 6, the delay for voice

round lot trades is about 10 to 12 days while our estimates in Table 4 is around 19 days. The

difference likely reflects the difference in the sample – their voice trade is still matched to orders

first placed on the electronic platform, which represents 18.1% of the total volume in TRACE.

Since our sample includes all bonds in TRACE, our delay estimate for large trades is longer.

Robustness

Our results are not sensitive to the specification of the investor liquidity demand variable. In

Internet Appendix Tables A.1, A.2 and A.3, we conduct robustness tests by running logit regressions

instead of linear regressions, allowing for the nonlinear dependence of the probability of trading

on investor composition, and introducing the interaction between investor composition and bond

characteristics. The resulting counterfactual trade intensities are not significantly different from

13They show delays as a function of the number of failed inquiries, and we have to integrate over them to get the
average delays. Since we do not know the distribution of requests, we only know the range of delays.
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those in Table 4.

5 Performance of the Corporate Bond Factors

In this section, we comprehensively examine the performance of corporate bond factors after

transaction costs.

5.1 Analytical Framework

To generate the 341 corporate bond factors, we compute monthly bond total returns in the

standard manner: Ri,t+1 =
Pi,t+1+AIi,t+1+Ci,t+1

Pi,t+AIi,t
− 1, where Pi,t+1 is the clean price of bond i in

month t+ 1, AIi,t+1 is the accrued interest, and Ci,t+1 is the coupon payment, if any.

In the main results, the factors are assumed to be rebalanced monthly (at the end of the month),

based on characteristic-based signals observed to the factor investor at month-end. Bond excess

returns, rt+1, are defined as the bond total return minus the one-month risk-free rate of return

from Kenneth French’s webpage. Following the literature (Novy-Marx and Velikov 2015, Chen

and Velikov 2023) who evaluate hundreds of equity factors/anomalies, we form the high-minus-low

factor strategy using deciles with (bond) market capitalization as the weights. The long (short)

position is assumed to be decile ten (one) such that all factors are sign-corrected to be increasing

in expected returns.

We compute monthly turnover as follows,

TOp,t+1 =
∑
i∈Nt

∣∣∣∣wi,p,t+1 −
1 +Ri,t+1

1 +Rp,t+1
wi,p,t

∣∣∣∣ , (15)

TOf,t+1 =
1

2

∑
p∈1,10

TOp,t+1

where TOf,t+1 is the monthly turnover for factor f . Equation (15) follows Novy-Marx and Velikov

(2015) and accounts for endogenous changes in portfolio weights month-to-month due to changes

in bond value.
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Risk-Adjustments To compute factor alphas, we use both the gross bond market factor and

the net bond market factor computed with real net return data. We estimate the net bond CAPM

(CAPMB) alpha by running time series regressions of the factor excess returns on the corporate

bond market factor:

rft = α+ βMKTBNet,t + εt, (16)

where MKTBNet,t is the excess returns of BlackRock’s corporate bond exchange-traded funds

(ETFs), averaged between the investment-grade ETF (Ticker: LQD) and the high-yield ETF

(Ticker: HYG) using the total market value of corporate bonds in each respective rating category as

the weights. We use the ETF returns because they reflect the cost of buying and holding the bond

market portfolios. Therefore, ETF returns provide a fair benchmark to evaluate the performance of

trading strategies net of costs. The detailed construction method of the market factor is provided in

Appendix B. We find that the average excess returns on our ETF-based market factor is 0.32% per

month, while the corresponding value for the value-weighted market bond portfolio of Dickerson

et al. (2023) is 0.36% over the same period. The lower value of the ETF returns suggests that even

holding the market portfolio is somewhat costly for investors. To account for autocorrelation in

the returns, we adjust the standard errors using Newey and West (1987) 12 lags.

Transaction Cost Mitigation We implement a suite of rule-based cost mitigation techniques in-

cluding fewer portfolio break-points (quintiles), staggered rebalancing and buy-hold spreads (band-

ing) following Novy-Marx and Velikov (2019). These methods reduce turnover at the cost of

potentially reduced expected returns and are discussed in detail later on.

Open Source Bond Asset Pricing To aid replicability, all out-of-sample factor returns and

associated turnovers are computed with the PyBondLab Python software package. The software

is also used to implement the transaction-cost mitigation methodologies. Detailed user guides

and additional information can be located here. The software can be used in conjunction with

the publicly available factor characteristic data and bond returns that we make available on

openbondassetpricing.com/data. In addition, the time-series of our factor returns (341 of them)
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and monthly turnovers that are used in the main results are available for download here.

5.2 Empirical Results: Net of Cost Performance

We examine the performance of the 341 corporate bond factors using simulated transaction

costs. The delay and bid-ask spread costs are assigned to each factor based on its turnover rate and

gross returns. Based on the counterfactual trading intensity for a given trade size, we construct a

grid of transaction costs in the same manner as in Table 3 Panel B. We then linearly interpolate

the grid to find the corresponding value for each factor. We take the gross returns and α in the

data as given (i.e., we do not simulate them) and subtract the transaction costs obtained from the

simulation.

In Table 8, we report the distribution of the CAPM alphas across the 341 bond factors. Panel

A reports the distribution before transaction costs. The average and median gross CAPM alpha

are 9 bps and 6 bps per month. The number of factors that earn non-trivial alphas in the range

of [0.1%,0.2%) and [0.2%,∞) is 69 and 50, respectively. The number of factors with statistically

significant alphas is 56. In a nutshell, using PyBondLab, we successfully identify a significant number

of factors that reliably outperform the bond market.

In Panel B, we report the net-of-cost α using the lower bound estimates for transaction costs

with trade size of $100,000 and $2 million. With transaction costs, the number of factors with non-

trivial alphas decline dramatically. The number of factors in buckets [0.1%,0.2%) and [0.2%,∞)

is 3 and 0 with a trade size of $100,000 and 6 and 5 with a trade size of $2 million. None of the

factors earn significantly positive alphas.

To understand the dramatic changes in CAPM α, in Table 9, we report the gross and net CAPM

α of the top-performing factors for trade sizes $100,000 and $2 million. Specifically, we sort them

by gross CAPM alpha and select the top 15 characteristics. We find that the profitable factors

before costs fall into two groups. First, there are factors based on past returns, including past

1-month stock returns (ret10), past three- and six-month changes in credit spreads (mom3mspread

and mom6mspread), and transformed stock returns (trend factor, Han et al. 2016). These factors

tend to have high gross alpha and turnover rates because the signal changes quickly.
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Second, there are credit spread-related characteristics. Unlike return-based measures, these

factors tend to have lower turnover rates because the price of a bond does not change dramatically.

For example, bond price, a close relative to the bond book-to-market ratio of Bartram et al. (2023)

has the second best gross CAPM alpha of 0.63% per month with the turnover rate of 30%.

Examining the net α for a trade size of $100,000, the net α in Table 9 is generally low: 10

out of the 15 characteristics have negative alphas, and none of them earns a positively significant

alpha. This is mostly due to the bid-ask spread costs. When the trade size is small, the cost of

delay tends to be small but the bid-ask spreads are quite high and dominate the gross alpha. Net

alpha is particularly low for signals that are based on past returns due to their high turnover rate.

When trade size is increased to $2 million, the bid-ask spread shrinks dramatically. On the

other hand, the delay cost increases and partly offsets the benefit of the lower spread. For example,

the strategy based on past 1-month stock returns has the delay cost of 0.44% per month and the

bid-ask spread costs of 0.65%.

Figure 10 visualizes the relationship between turnover rate, gross CAPM alphas, and net alphas.

In the plot, each point represents a factor plotted against its gross return and turnover rate. As

before, the factors above the curve are those that achieve the given level of net return after delay

and bid-ask spread costs. Using the trade size of $100,000 (Panel A), most of the factors are below

the 10 bps threshold, meaning that they earn less than 0.1% per month after costs. Since the curve

is steeply upward sloping, there is almost no chance for a factor with a turnover rate of 50% or

more to generate meaningful net returns.

Figure 10 Panel B shows the performance of the factors when the trade size is $2 million.

Thanks to lower bid-ask spread costs, the curve is flatter than in Panel A, and the number of

factors with meaningful net returns increases. Now, eight factors have net returns above 0.1%, and

several factors have net returns above 0.2%. Still, the vast majority of factors have turnover rates

way too high to be profitable after transaction costs.

Since the net-of-cost factor performance is quite weak even when the cost is estimated using

the lower bound, their performance is even worse if we use the counterfactual equilibrium where

dealers require higher bid-ask spreads in response to the increased liquidity demand. Panel C of
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Table 8 reports the distribution of the CAPM alphas when these counterfactual estimates are used.

The number of factors in buckets [0.1%,0.2%) and [0.2%,∞) is 1 and 0 with a trade size of $100,000

and 8 and 1 with a trade size of $2 million. Again, none of the factors earn significantly positive

alphas.

6 Extensions of Our Framework

6.1 Different Investment Horizons and Banding

The factors outlined in prior sections, which utilize the high-minus-low decile sort prevalent

in the academic literature, may overestimate the true trading costs associated with these factors.

In reality, investment managers could employ a variety of techniques to reduce turnover whilst

attempting to minimize the loss in expected returns. To address this, we use several rules-based

cost mitigation techniques including staggered rebalancing where only a fraction of the position

is traded each month (Jegadeesh and Titman, 1993) and “banding” (also known as a buy/hold

spread) introduced by Novy-Marx and Velikov (2015). The buy/hold spread technique implements

thresholds for portfolio rebalancing, imposing a more stringent criterion for initiating new positions

compared to maintaining existing ones. By introducing this inertia into the trading process, the

method effectively creates a “band” around current positions, potentially preserving strategy per-

formance while significantly reducing trading frequency. For both the staggered rebalancing and

banding turnover reduction method, we utilize the PyBondLab open source bond portfolio software.

Staggered partial rebalancing This technique rebalances a fraction of the portfolio holdings

each month and was first used by Jegadeesh and Titman (1993). In any month t + 1, the factor

return is the equally weighted average month t+1 return of the factor strategy implemented in the

prior month and up to H months earlier, where H is the staggered holding period. For example, if

H = 3, this mechanically limits the one-sided monthly portfolio turnover to be ≤ 33.33%.

Table 10 shows the distribution of CAPM alphas when the holding period is extended to three

months. As expected, the slower rebalancing reduces the efficiency of the factor performance before
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transaction costs. Comparing the results with a one-month holding period in Table 8, the average

gross alpha decreases from 9 bps to 8 bps and the number of significant factors decreases from 56

to 36. However, net performance improves slightly due to a sharp reduction in the turnover rate.

For example, the average net alpha for trade sizes of $100,000 and $2 million with the lower bound

cost estimates increases from -41 bps and -14 bps to -22 bps and -6 bps, respectively. Thus, it is in

fact more profitable for bond investors to rebalance portfolios infrequently.

In Table 11, we list the top 15 factors with the highest gross alphas using the lower-bound cost

estimates. The table confirms that the turnover rates of these factors are much lower than Table

9, which reduces both delay and bid-ask spread costs.

Banding Novy-Marx and Velikov (2015) and Novy-Marx and Velikov (2019) demonstrate that

banding is the most successful method for reducing portfolio turnover in the equity market. We

follow their suggestion and create a band with a width of two around the first and tenth portfolios.

This means that, once a bond is included in the portfolios one or ten, then it stays in the same

portfolio as long as the bond’s signal remains in the first three or last three deciles. The idea is that

as long as the signal is “strong enough” then an investor keeps the position even after observing

small changes in the signal. This is another way of reducing portfolio turnover rates.

Table 12 reports the distribution of the net CAPM alphas with banding. Unlike Novy-Marx and

Velikov (2015), banding does not improve the average net CAPM alphas relative to the strategy

with longer holding periods. The average net CAPM alphas are -24 bps and -7 bps, which are

slightly below the values reported in Table 10. However, banding improves the right tail of the

distribution: now, the number of factors with net alphas more than 0.1% per month increases to

12 (trade size of $100,000) and 23 (trade size of $2 million) from the corresponding values of 5 and

16 in Table 10, respectively. One of the 341 factors has statistically significant CAPM alpha with

banding. For completeness, Table 13 reports the top 15 factors with banding.

In summary, both methods of reducing portfolio turnover are effective in improving net CAPM

alphas. This suggests that in future bond research it is important to study the performance of

factors with a holding period longer than one month.
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6.2 Combining Characteristics

In the previous section, we have shown that taken individually, the transaction costs including

delays dwarf the performance of bond factors in most cases. However, this does not mean that the

optimal combination of factors is dominated by transaction costs. Machine learning models are

known to provide an excellent ex-ante combination of factors without inducing look-ahead bias.

Thus, we revisit the standard machine learning models employed in the literature (e.g. Bali et al.

2023) and study the effect of transaction costs on these models.

Estimating the Machine Learning Models

Following the notation in Gu, Kelly, and Xiu (2020), we describe a corporate bond’s return in

excess of T-bill rates as an additive prediction error model: Ri,t+1 = Et(Ri,t+1) + ϵi,t+1, where,

Et(Ri,t+1) = g∗(zi,t). Bonds are indexed as i = 1, . . . , N and months by t = 1, . . . , T . Our objective

is to isolate a representation of Et(Ri,t+1) as a function of predictor variables that maximizes the out-

of-sample explanatory power for realized Ri,t+1. We denote those predictors as the K-dimensional

vector zi,t, and assume the conditional expected return g∗(·) is a flexible function of these predictors.

All of our model estimates minimize the mean squared prediction errors (MSE). In total, we consider

six linear and non-linear machine learning models including penalized linear regression techniques:

Lasso (LASSO), Ridge (RIDGE) and Elastic Net (ENET); non-linear regression tree ensemble

methods including random forests (RF), and extreme trees (XT); and feed forward neural networks

(NN). In addition, we form the linear ensemble model (LENS), the nonlinear ensemble model

(NENS) and the ensemble across all models (ENS), which is the equally-weighted average across

the respective models one-month ahead predictions (Rapach, Strauss, and Zhou, 2010).

For the first estimation as of July 2002, we source the last 55 months of data back to Jan-

uary 1998, and estimate the respective ML model. We measure excess returns at t and the 341-

dimensional vector of bond characteristics at t − 1. We perform cross-validation using a 70:30

training-validation split which preserves the temporal ordering of the panel data. We then use

the vector of characteristics available at time t to produce a forecast of bond excess returns for

t + 1. These forecasts (expected returns) are available to the bond portfolio manager at time t,
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meaning they can trade on them at the end of the month. Thereafter, all models are re-trained

every 12-months and cross-validated every five-years with an expanding window.14 We provide

additional details related to the cross-validation and training of the respective models in Section C

of the Internet Appendix.

Performance of Machine-Learning Models After Costs

We turn to the performance of the machine learning models relative to the simulated transaction

costs. We take the gross returns and alpha in the data as given (i.e., we do not simulate them) and

subtract the transaction costs obtained from the simulation.

In Table 14, we report the gross and net CAPM α of the ML strategies. When we use the

lower bound cost with a trade size of $2 million, the net alpha, or the difference between the gross

alpha and the simulated total cost, ranges from -0.15% to -0.52%, which is much lower than the

gross alpha. The net alphas are much lower than gross alphas because the models are estimated to

maximize average gross returns without taking into account portfolio turnover rates. As a result,

the models place a large weight on rapidly changing factors such as the short-term reversal factor.

Therefore, when estimating machine learning models with illiquid assets, it is essential to penalize

high turnover rates. In this regard, the methodology of Bredendiek et al. (2019) is a fruitful attempt

to address the issue of transaction costs.

6.3 Half Spreads By Investor Size in the U.S. Corporate Bond Markets

In this section, we revisit the relationship between bid-ask spreads and trade size and con-

firm that bid-ask spreads decrease with trade size. This result implies that bid-ask spreads are

insufficient measure of transaction costs.

To this end, we examine insurance firms’ transactions in eMAXX. We add to TRACE the

information about the insurance firm’s size for each trade. Using eMAXX’s firm id, we aggregate

all corporate bond holdings in quarter q and merge the data to all transactions by the firm in

quarter q + 1.

14This gives the models an advantage in that they are re-trained and re-cross-validated multiple times over our
sample.
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We begin the analysis by reporting the average and median half spreads by trade size and

investor size category. For trade size, we classify trades into four groups, including (0,100,000],

(100,000,500,000], (500,000, 1M], (1M,∞]. For investor size, we use the 20, 40, 60, and 80 percentiles

of the size distribution for the cutoff.

Table 15 reports the mean and median half spreads in each category. We find that the half

spreads decline in both investor and trade sizes. Controlling for trade size, the average and median

spread declines as we move from the small investor category to the large investor category. This

finding is consistent with O’Hara et al. (2018) and confirms the prediction of Duffie et al. (2005).

However, controlling for investor size, the spreads also decline from small to large trades.

The number of observations shows that investor size and trade size are positively correlated,

as expected. However, there are plenty of observations in which large investors trade with a small

size. For example, there are 17,489 observations where the top 20% insurance firms trade with a

size less than $100,000. The smallest insurance firms still trade with a size of more than $1 million:

there are 55, 636 of such instances in our data.

To estimate the impact of trade size more precisely, we follow Pinter et al. (2021) and estimate

the following trade-level panel regression:

ci,k,t = βv × log(Volume)i,t + τ t + αi + λb +Y′
k,tδC + εv, (17)

where ci,k,t is the trading cost as computed in Equation (9) for client i trading bond k on day

t, log(Volume)i,k,t is the natural logarithm of the given trade’s notional, τ t are trade-day fixed

effects, αi (λb) are client (broker) fixed effects respectively. The vector Yk,t captures bond-level

characteristics that we use as controls including bond rating, coupon, maturity and the log of the

issue size (amount outstanding). The key coefficient of interest is the estimated value of βv: if the

half-spread continues to decrease after controlling for the client base, we would expect βv to remain

negative and statistically different from zero.

In columns (1) and (4) of Table 16, we confirm the results from prior research documenting

a negative relationship between half-spreads and trade size (volume) without and with bond-level
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controls. In columns (2) and (5), after including client-level fixed effects, the sign and magnitude of

the βv coefficient remains unchanged, reinforcing our results from the double sort above. It would

appear that the ‘Size Penalty’ does not exist in the U.S. corporate bond market. As an additional

test, we also include broker fixed effects in columns (3) and (6). βv remains robustly negative.

The economic significance of the size premium (captured by βv) is sizeable. A one standard

deviation increase in the log of trading volume decreases half-spreads by about 0.104% in column

(1).15 Relative to the average half-spread of 0.179%, this change is economically large. Once

including client fixed effects in column (2), the effect remains sizeable and results in a 0.07%

decrease in half-spreads.

The evidence from the U.S. insurance firms’ transactions shows that both investors’ bargaining

power and dealers’ strategic behavior are at work in explaining the observed transaction costs. The

second channel suggests that for an investor, there is a hidden cost of trading with a large size that

is missed by the observed half spread. Observed spreads for large trades are low due to the dealers’

strategic behavior to pre-arrange trades for risky transactions, creating delays for investors. In

sum, these results suggest that it is essential to include the delay costs to accurately capture the

transaction costs borne by bond investors, especially when trade size is large.

7 Conclusion

In this article, we propose a novel method to quantify the cost of delays that factor investors

would face in an illiquid, OTC-based market. The key is to disentangle the drivers of trade occur-

rence and estimate the probability of trades with a counterfactual in which the liquidity demand

curve is shifted outward by the introduction of active factor investors. We propose instrumental

variable estimates for the supply and demand curve to pin down the new equilibrium.

The estimated probability of trades are used as inputs to the simulation, which generates the

cost of delays. The cost is a function of both portfolio turnover rates and factor gross performance.

Unlike the transaction costs arising from bid-ask spreads, the delay cost is more severe for factors

with higher gross performance due to increased opportunity costs.

15The standard deviation of the log of trading volume is 1.73.
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We create a publicly available data library of corporate bond factors, spanning 341 characteris-

tics. The data library comprises both bond-level panel data, including all underlying characteristics

to aid replicability in the field, and the time-series of our 341 out-of-sample factor returns. In ad-

dition, we introduce the PyBondLab package, which enables researchers to generate factors with

various conditions in terms of the number of factors, holding periods, transaction cost mitigation

techniques, and portfolio weights. We use this package to generate factors and assess their gross

and net performance.

Empirically, the transaction costs are large. They are more pronounced for momentum-type

factors in which the signal is based on past asset returns. Since these signals move rapidly and are

highly profitable before costs, the delay cost tends to be high, eliminating net bond CAPM alphas.

We test several cost mitigation techniques proposed in the literature and confirm that they work

well in reducing costs. Still, it is a challenge to find corporate bond factors that reliably outperform

the market after transaction costs.
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Figure 1: Cost of Delay (Percent Per Month)
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We plot the difference in average returns between the gross factors that do not have delays and the net factors

that are subject to delays. Delays follow an exponential distribution with parameter λ, which measures the

trade intensity on a day. We vary the signal persistence parameter ρ to change the portfolio turnover rate.
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Figure 2: Cost of Delay (Percent Per Month)
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We plot the difference in average returns between the gross factors that do not have delays and the net factors

that are subject to delays. Delays follow an exponential distribution with parameter λ, which measures the

trade intensity on a given day. We vary the signal persistence parameter ρ to change the portfolio turnover

rate.
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Figure 3: Indifference Curve For Different Net Returns
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We plot the combination of the monthly portfolio turnover rate and the gross returns that produces a given

level of net returns. Each line represents the indifference curve with a target level of net returns, ranging

from 0.1% per month to 0.3% per month. The plot is based on the assumption that the average delay is 21

days (λ = 1/21). We vary ρ and σv to generate different values of turnover rates and gross returns. Bid-Ask

Costs represent a line for (Gross Returns) = (Target Net Returns of 0.20%) + 0.19 * (Turnover Rate).
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Figure 4: Median Half Spreads By Trade Size
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This figure plots the median half-spreads for bond transactions of given trade size. Half spreads are defined in

Eq. (9). Each day, we compute the volume-weighted average of all transactions above a trade-size threshold

and then take the average within the month. The figure plots the median values in the panel data given

trade size.
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Figure 5: Liquidity Supply and Demand
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This figure illustrates the supply and demand curves for corporate bond liquidity, where the quantity is

measured by the probability of transactions, Prob[1 = 1], and the price is by half spreads charged by

dealers, h. EData denotes the equilibrium observed in the data, which is the intersection between the supply

curve S and the demand curve D. D′ denotes the hypothetical demand curve when an active investor is

introduced and ELB is the hypothetical equilibrium if the supply curve is flat. ECF is the counterfactual

with an active investor and dealers responding to the introduction of the active investor.
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Figure 6: Cost of Delay (Percent Per Month) by Trade Intensity
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(b) λ = 0.145
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(c) λ = 0.042
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(d) λ = 0.058

We plot the difference in average returns between the gross factors that do not have delays and the net factors

that are subject to delays. Delays follow an exponential distribution with parameter λ, which measures the

trade intensity on a day. We vary signal persistence parameter ρ to change the portfolio turnover rate.
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Figure 7: Net Returns (Percent Per Month) by Trade Intensity
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(b) λ = 0.145
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(c) λ = 0.042
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(d) λ = 0.058

We plot the net factors that are subject to delays and half spreads. Delays follow an exponential distribution

with parameter λ, which measures the trade intensity on a day. We vary signal persistence parameter ρ to

change the portfolio turnover rate. For Panels (a) and (b), we use a half spread of 37 bps and for Panels (c)

and (d), we use a half spread of 9 bps.
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Figure 8: Effect of Demand Frequency Adjustment on Delay Costs
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We plot the difference in average returns between the gross factors that have no delays and the net factors
that have delays. Delays follow an exponential distribution with parameter λ, which measures the trading
intensity on a day. We vary the signal persistence parameter ρ to change the portfolio turnover rate. For
this plot, we set σv = 0.2% ×

√
1− ρ2 so that the gross factor return is 0.56% per month. The data are

based on the trading intensity parameter λ estimated with the data, and the counterfactual is based on λ
for the most active investor with the 99th percentile portfolio turnover rate. The left panel compares delay
costs when the target trade size is $100,000 and the right panel is for a trade size of $2 million.
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Figure 9: Median Delays Over Time
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This figure plots the median delay in each month. We use the estimate of the logit regression reported in

Table 4 and compute the expected delay (1/λ) for each bond in each month. The data uses the predictor

of trades in the data and Hyp (’hypothetical’) uses the 99th percentile of the investor composition measure

instead of the values in the data. Each month, we compute the median across bond delays separately for

the trades with $100,000 and $2 million.
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Figure 10: Turnover Rate and Gross Returns of 341 Strategies
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Panel B: Trade Size = $2 million
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We plot the combination of monthly portfolio turnover rate and gross returns that produces a given

level of net returns. Each curve represents the indifference curve with a target level of net returns,

ranging from 0.1% per month to 0.3% per month. The plot is based on the estimated counterfactual

trade intensity for a given trade size. We vary ρ and σv to generate different values of turnover

rates and gross returns. A dot shows the gross returns and turnover rate of 341 corporate bond

factors.
48



Table 1: List of Papers on the Cross-Section of Corporate Bonds

Article Cost Estimates

Panel A. Papers Without Transaction Costs
Bai, Bali, and Wen (2019)
Bai, Bali, and Wen (2021)
Bali, Subrahmanyam, and Wen (2021a)
Bali, Subrahmanyam, and Wen (2021b)
Ceballos (2023)
Chen, Wang, and Wu (2022)
Chung, Wang, and Wu (2019)
Dang, Hollstein, and Prokopczuk (2023)
Dick-Nielsen, Feldhütter, Pedersen, and Stolborg
(2023)
Duan, Li, and Wen (2021)
Friewald and Nagler (2016)
Gebhardt, Hvidkjaer, and Swaminathan (2005a)
Gebhardt, Hvidkjaer, and Swaminathan (2005b)
Haesen, Houweling, and Zundert (2017)
Huang, Qin, and Wang (2013)
Li, Yuan, and Zhou (2023)
Lin, Wang, and Wu (2011)
Tao, Wang, Wang, and Wu (2022)

Panel B. Papers Incorporating Transaction Costs
Bali et al. (2020) Roll measure of Bao et al. (2011)
Bali, Beckmeyer, and Goyal (2023) Fixed at 35bps
Bartram, Grinblatt, and Nozawa (2023) Portfolio-level bid-ask spreads
Bredendiek, Ottonello, and Valkanov (2023) Round-trip transaction costs
Cao et al. (2023) Estimates following Edwards et al. (2007)
Choi and Kim (2018) Considers transaction costs as characteristics
Chordia et al. (2017) Portfolio-level bid-ask spreads
He, Feng, Wang, and Wu (2024) Fixed at 20 to 80bps
Houweling and Zundert (2017) Maturity-rating, following Chen et al. (2007)
Israel, Palhares, and Richardson (2018) Maturity-rating, following Chen et al. (2007)
Ivashchenko (2023) Average 12m moving average of bond bid-ask

spreads
Ivashchenko and Kosowski (2023) Estimates following Kyle and Obizhaeva (2016)
Jostova et al. (2013) Estimates following Edwards et al. (2007)
Kelly, Palhares, and Pruitt (2021) Fixed at 19bps
Lin, Wu, and Zhou (2017) Break-even transaction costs
Nozawa, Qiu, and Xiong (2023) Bond-level bid-ask spreads
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Table 2: Simulation Parameters

N 1,000 σf 2.00
T 244 σu 0.2

σv 0.002
√
1− ρ2 E[f ] 1.00

This table reports the set of parameters used in the simulation analysis.
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Table 3: Simulated Cost of Delay, Percent Per Month

Panel A. Fix σv = 0.002 and Vary λ

λ Expected Turnover Rate (%)

Delay 4.1 16.3 35.7 50.4 71.2 87.2 100.8 112.9 123.7 133.7

1.000 1 0.005 0.022 0.048 0.071 0.111 0.143 0.173 0.198 0.223 0.247
0.143 7 0.008 0.035 0.074 0.107 0.157 0.194 0.229 0.256 0.282 0.306
0.048 21 0.014 0.054 0.115 0.160 0.227 0.275 0.316 0.347 0.373 0.396
0.024 42 0.019 0.070 0.153 0.210 0.289 0.341 0.383 0.410 0.432 0.452
0.004 252 0.056 0.168 0.321 0.397 0.461 0.491 0.513 0.522 0.530 0.537

Panel B. Fix λ = 0.048 and Vary σv

σv Gross Turnover Rate (%)

Returns 4.1 16.3 35.7 50.4 71.2 87.2 100.8 112.9 123.7 133.7

0.0005 0.136 0.004 0.014 0.028 0.037 0.055 0.068 0.081 0.089 0.095 0.101
0.0010 0.274 0.007 0.027 0.057 0.078 0.113 0.137 0.159 0.175 0.187 0.199
0.0020 0.552 0.014 0.054 0.115 0.160 0.227 0.275 0.316 0.347 0.373 0.396
0.0030 0.830 0.021 0.080 0.174 0.242 0.342 0.413 0.473 0.520 0.558 0.593

This table reports the simulated cost of delays, which is the difference between gross and net returns. Half spreads are set to zero so that

the difference only reflects the cost of delay. λ is the trade intensity and σv is the volatility of factors. We use the speed of mean reversion of

the signal, ρ, ranging from 0.3 to 0.9995 which corresponds to the monthly turnover rate of 4.1% to 133.7%. Other parameters are T = 244,

N = 1, 000, and the number of paths is 1,000.
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Table 4: Forecasting Regression of Corporate Bond Transactions

Customer Sell Customer Buy

$100K $2M $100K $2M

Panel A. Regression Estimates
log invcomp 0.018 (22.74) 0.028 (30.23) 0.017 (21.11) 0.030 (31.42)

inventory28 -0.010 (-37.29) -0.047 (-63.54) 0.009 (28.94) 0.045 (55.28)
capratio 0.002 (1.67) 0.016 (17.02) 0.000 (-0.22) 0.013 (13.78)
rating 0.054 (29.14) 0.109 (60.60) 0.054 (28.65) 0.111 (61.45)
maturity -0.017 (-9.26) -0.008 (-5.71) -0.020 (-11.60) -0.002 (-1.68)
log facevalue 0.099 (66.64) 0.206 (151.89) 0.104 (68.30) 0.203 (142.50)
coupon -0.028 (-16.18) -0.003 (-1.52) -0.028 (-15.97) 0.002 (1.34)
age -0.031 (-17.91) -0.077 (-44.15) -0.036 (-20.22) -0.078 (-45.64)
Intercept 0.877 (623.95) 0.588 (463.61) 0.868 (610.82) 0.576 (450.68)

Adj. R2 0.142 0.251 0.151 0.248
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade ProbData 0.877 0.588 0.868 0.576

ProbLB 0.931 0.673 0.920 0.665

λ λData 0.100 0.042 0.097 0.041

λLB 0.127 0.053 0.120 0.052
Exp. Delay data 10.014 23.672 10.362 24.442
(days) cntr. factual 7.873 18.779 8.320 19.184

This table reports the coefficient estimates for the regressions of the bond trading dummy on characteristics in Equation (10). Variable
invcomp is the investor composition of Li and Yu (2023), which measures the activeness of bond investors at the end of the previous quarter.
Variable inventory28 is the difference between customer buys and customer sells in the preceding 28 days, capratio is the intermediary capital
ratio of He et al. (2017) on the previous month. The right-hand-side variables are standardized for ease of interpretation. Values in parentheses
are t-statistics clustered at the bond level. The sample is at the month frequency, spanning August 2002 to November 2022.
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Table 5: First Stage Regression of Half Spreads on Instruments

Demand Curve Supply Curve
Estimate Estimate

capratio -0.250 (-27.94)
inventory28 0.015 (2.91)
log invcomp 0.040 (4.74)
rat 0.524 (23.82) 0.521 (23.42)
tau 0.331 (27.55) 0.334 (27.97)
log facevalue -0.022 (-2.14) -0.010 (-0.96)
coupon 0.158 (11.58) 0.152 (11.23)
age 0.138 (11.58) 0.147 (12.24)
Intercept 1.655 (166.25) 1.661 (169.10)

Adj. R2 0.062 0.055
N 703,346 703,346

This table reports the estimates of the panel regressions of half spreads on the set of instruments. Half
spreads for each trade is computed as the difference between a dealer-customer transaction price and the
most recent interdealer transaction price. Then, the trade-level data is aggregated at the monthly frequency.
Variable invcomp is the investor composition of Li and Yu (2023), which measures the activeness of bond
investors at the end of the previous quarter. Variable inventory28 is the difference between customer buys
and customer sells in the preceding 28 days, capratio is the intermediary capital ratio of He et al. (2017)
on the previous month. The right-hand-side variables are standardized for ease of interpretation. Values
in parentheses are t-statistics clustered at the bond level. The sample is at the month frequency, spanning
August 2002 to November 2022.
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Table 6: IV Estimates of the Liquidity Demand and Supply Curves

Customer Sell Customer Buy

$100K $2M $100K $2M

Panel A. Regression Estimates
Liquidity Demand

ĥ -0.008 (-2.19) -0.075 (-19.76) 0.004 (1.00) -0.040 (-10.36)
rating 0.061 (21.66) 0.153 (54.57) 0.055 (19.40) 0.136 (47.96)
maturity -0.016 (-7.46) 0.015 (7.78) -0.023 (-11.10) 0.008 (4.12)
log facevalue 0.101 (66.82) 0.207 (146.11) 0.107 (69.18) 0.207 (148.17)
coupon -0.024 (-13.01) 0.013 (7.04) -0.026 (-13.68) 0.015 (8.05)
age -0.034 (-18.73) -0.072 (-38.80) -0.040 (-21.90) -0.079 (-42.98)
Intercept 0.890 (148.69) 0.712 (110.67) 0.862 (142.08) 0.643 (98.44)
Adj. R2 0.138 0.239 0.148 0.237
N 814,145 814,145 814,145 814,145

Liquidity Supply

ĥ 0.447 (22.78) 0.710 (30.27) 0.432 (21.14) 0.739 (31.33)
rating -0.179 (-17.68) -0.261 (-21.15) -0.171 (-16.18) -0.275 (-22.14)
maturity -0.166 (-25.23) -0.245 (-31.18) -0.164 (-23.91) -0.249 (-31.62)
log facevalue 0.103 (67.92) 0.210 (151.47) 0.109 (70.17) 0.210 (154.40)
coupon -0.096 (-25.70) -0.111 (-26.85) -0.094 (-24.21) -0.109 (-26.03)
age -0.097 (-30.43) -0.182 (-50.99) -0.100 (-30.52) -0.187 (-52.05)
Intercept 0.134 (4.07) -0.591 (-15.12) 0.151 (4.38) -0.651 (-16.57)
Adj. R2 0.141 0.241 0.151 0.239
N 814,145 814,145 814,145 814,145

Panel B. Counterfactuals
Prob. Trade Data 0.877 0.588 0.868 0.576

ProbLB 0.931 0.673 0.920 0.665
ProbCF 0.930 0.665 0.920 0.661

hCF − hData 0.117 0.108 0.121 0.114

Panel A reports the estimates of the liquidity demand and supply functions in Equations (7) and (6). We regress the bond trading dummies

on the half spreads and the set of control variables. ĥ is an instrumented half spread with the intermediary capital ratio of He et al. (2017)
and 28-day dealer inventory changes for the demand function estimates and with the investor composition measure of Li and Yu (2023) for
the supply function. Values in parentheses are t-statistics clustered at the bond level. The sample is at the monthly frequency, spanning
August 2002 to November 2022. Panel B reports the average probability of trades in the data and the counterfactuals obtained from the
estimated demand function. ProbLB is the counterfactual due to a parallel shift in the demand curve by setting the InvComp at the 99th
percentile. ProbCF and hCF are the counterfactual equilibrium probability of transactions and half spreads, respectively, which account for
the slope of the demand and supply curves.
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Table 7: Forecasting Regression of Corporate Bond Transactions By Credit Rating

IG Bonds: Customer Sell HY Bonds: Customer Sell

$100K $2M $100K $2M

Panel A. Regression Estimates
log invcomp 0.016 (16.71) 0.034 (31.44) 0.011 (9.54) 0.009 (6.61)

inventory28 -0.001 (-31.39) -0.005 (-55.85) -0.001 (-19.40) -0.004 (-35.00)
capratio 0.006 (0.09) 1.458 (20.09) 0.234 (2.35) 0.534 (4.76)
rating 0.009 (11.92) 0.018 (24.89) 0.007 (6.54) 0.018 (16.84)
maturity -0.001 (-6.94) -0.001 (-5.13) -0.003 (-4.96) -0.002 (-4.08)
log facevalue 0.167 (58.09) 0.323 (137.92) 0.117 (34.52) 0.286 (76.50)
coupon -0.017 (-14.84) 0.004 (3.75) -0.010 (-7.61) -0.010 (-6.69)
age 0.000 (-14.06) 0.000 (-40.41) 0.000 (-8.48) 0.000 (-18.37)
Intercept -0.076 (-3.56) -1.521 (-81.77) 0.262 (9.02) -1.117 (-34.50)

Adj. R2 0.149 0.250 0.119 0.222
N 580,855 580,855 233,290 233,290

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade ProbData 0.862 0.545 0.914 0.696

ProbLB 0.947 0.724 0.966 0.740

λ λData 0.094 0.037 0.117 0.057

λLB 0.140 0.061 0.161 0.064
Exp. Delay data 10.589 26.694 8.559 17.613
(days) cntr. factual 7.148 16.310 6.206 15.584

This table reports the coefficient estimates for the logit regressions of the bond trading dummy on characteristics in Equation (10). The left
panel uses IG bonds and the right panel uses HY bonds. Variable invcomp is the investor composition of Li and Yu (2023), which measures
the activeness of bond investors at the end of the previous quarter. Variable inventory7 is the difference between customer buys and customer
sells in the preceding seven days, capratio is the intermediary capital ratio of He et al. (2017) on the previous month. The right-hand-side
variables are standardized for ease of interpretation. Values in parentheses are t-statistics clustered at the bond level. The sample is at the
month frequency, spanning August 2002 to November 2022.
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Table 8: CAPM α of 341 Bond Risk Factors After Costs of Delays

Distribution # of Factors w. CAPM Alpha # of Signifi-

Mean 10% 50% 90% [0%, 0.1%) [0.1%, 0.2%) [0.2%, ∞) cant Factors

Panel A. Performance Before Transaction Costs
Gross α 0.093 -0.017 0.060 0.241 167 69 50 56

Panel B. Lower Bound Estimates of Delay
Panel B1. Trade Size of $100K
Net α -0.411 -1.301 -0.237 -0.039 14 3 0 0
DelayCost 0.026 0.001 0.008 0.077
BACost 0.478 0.092 0.300 1.392

Panel B2. Trade Size of $2M
Net α -0.141 -0.500 -0.078 0.027 45 6 5 0
DelayCost 0.034 0.002 0.012 0.101
BACost 0.199 0.041 0.130 0.564

Panel C. Counterfactual Estimates of Delay
Panel C1. Trade Size of $100K
Net α -0.498 -1.571 -0.286 -0.055 11 1 0 0
DelayCost 0.026 0.001 0.008 0.077
BACost 0.565 0.108 0.354 1.645

Panel C2. Trade Size of $2M
Net α -0.204 -0.677 -0.115 0.005 29 8 1 0
DelayCost 0.035 0.002 0.012 0.102
BACost 0.263 0.054 0.172 0.743

This table reports the distribution of the bond CAPM alphas across the 341 risk factors we generate. Every
month, we sort bonds into deciles based on the latest value of the signals and form value-weighted portfolios.
A factor is the return difference between the tenth and first deciles. The factors are signed to guarantee that
their gross average returns are non-negative (i.e., the factors are sign-corrected to be increasing in expected
returns). Panel A reports the distribution of the CAPM α before transaction costs. Panel B reports
the distribution using the lower bound estimates for transaction costs and Panel C reports that using the
counterfactual equilibrium estimates. The sample is from August 2002 to November 2022. t-statistics are
adjusted by Newey-West 12 lags.
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Table 9: Profitability of Bond Factors, Top 15 Gross α with Transaction Costs at the
Lower Bound

Trade Size: $100K Trade Size: $2M

Signal Turnover Gross α Net α DelayCost BACost Net α DelayCost BACost

ret10 175 0.691 -1.314 0.360 1.644 -0.399 0.441 0.649
(3.26) (-6.19) (-1.88)

bondprice 30 0.632 0.159 0.100 0.373 0.331 0.139 0.162
(2.27) (0.57) (1.19)

mom6mspread 103 0.603 -0.979 0.309 1.273 -0.316 0.396 0.522
(2.71) (-4.40) (-1.42)

yldtoworst 30 0.519 0.040 0.101 0.378 0.215 0.141 0.164
(2.11) (0.16) (0.87)

yield 30 0.516 0.045 0.099 0.372 0.217 0.138 0.161
(2.10) (0.18) (0.88)

spread 33 0.512 -0.015 0.111 0.416 0.178 0.154 0.180
(2.06) (-0.06) (0.71)

sprtod2d 40 0.441 -0.155 0.091 0.506 0.097 0.127 0.218
(3.14) (-1.10) (0.69)

seas11na 65 0.440 -0.459 0.083 0.816 -0.017 0.111 0.346
(3.16) (-3.29) (-0.12)

TrendFactor 124 0.438 -1.290 0.195 1.533 -0.416 0.242 0.612
(2.60) (-7.64) (-2.47)

dts 29 0.437 -0.019 0.096 0.360 0.147 0.134 0.156
(1.93) (-0.08) (0.65)

swapspread 32 0.433 -0.076 0.101 0.407 0.115 0.141 0.176
(1.91) (-0.33) (0.51)

strucvalue 45 0.432 -0.243 0.106 0.568 0.040 0.147 0.244
(2.83) (-1.59) (0.26)

spreadvol 23 0.415 0.075 0.049 0.292 0.221 0.068 0.127
(2.07) (0.37) (1.10)

ratingxspread 24 0.410 0.042 0.067 0.301 0.185 0.094 0.131
(1.56) (0.16) (0.71)

mom3mspread 126 0.406 -1.405 0.253 1.559 -0.528 0.313 0.621
(2.56) (-8.86) (-3.33)

This table reports the CAPM α of the 15 best signals and the transaction cost estimates based on the
simulation. The simulated costs are assigned to each strategy using the strategy’s gross returns and turnover
rates. Net α is the difference between gross α and the simulated total costs. In computing simulated costs,
we use the lower bound estimates of trade intensity λLB reported in Table 4.
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Table 10: CAPM α of 341 Bond Factors: 3-Month Holding Period

Distribution # of Factors w. CAPM Alpha # of Signifi-

Mean 10% 50% 90% [0%, 0.1%) [0.1%, 0.2%) [0.2%, ∞) cant Factors

Panel A. Performance Before Transaction Costs
Gross α 0.082 -0.009 0.061 0.213 190 72 35 36

Panel B. Lower Bound Estimates of Delay
Panel B1. Trade Size of $100K
Net α -0.218 -0.517 -0.172 -0.024 19 4 1 0
DelayCost 0.012 0.001 0.006 0.029
BACost 0.289 0.077 0.241 0.622

Panel B2. Trade Size of $2M
Net α -0.060 -0.207 -0.046 0.049 60 9 7 0
DelayCost 0.017 0.001 0.009 0.040
BACost 0.125 0.034 0.105 0.267

Panel C. Counterfactual Estimates of Delay
Panel C1. Trade Size of $100K
Net α -0.271 -0.625 -0.220 -0.034 12 3 1 0
DelayCost 0.012 0.001 0.006 0.029
BACost 0.341 0.091 0.285 0.735

Panel C2. Trade Size of $2M
Net α -0.100 -0.285 -0.080 0.025 42 9 4 0
DelayCost 0.017 0.001 0.009 0.041
BACost 0.165 0.045 0.139 0.352

This table reports the distribution of the bond CAPM alphas across the 341 factors we generate. Every
month, we sort bonds into deciles based on the latest value of signals and form value-weighted portfolios. We
hold the bonds over a staggered three-month period, such that only 33.33% of the portfolio is rebalanced each
month (Jegadeesh and Titman, 1993). A portfolio return in month t is the average of the three strategies
run in the month. A factor is the return difference between the tenth and first deciles. The factors are
signed to guarantee that their gross average returns are non-negative (i.e., the factors are sign-corrected to
be increasing in expected returns). Panel A reports the distribution of the CAPM α before transaction costs.
Panel B reports the distribution using the lower bound estimates for transaction costs and Panel C reports
that using the counterfactual equilibrium estimates. The sample is from August 2002 to November 2022.
t-statistics are adjusted by Newey-West 12 lags.
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Table 11: Bond Factors, Top 15 Gross α: 3-Month Holding Period

Trade Size: $100K Trade Size: $2M

Signal Turnover Gross α Net α DelayCost BACost Net α DelayCost BACost

bondprice 18 0.547 0.272 0.052 0.223 0.377 0.072 0.097
(2.08) (1.03) (1.44)

mom6mspread 53 0.430 -0.345 0.115 0.660 -0.011 0.159 0.282
(2.10) (-1.69) (-0.05)

spread 20 0.409 0.099 0.058 0.252 0.218 0.081 0.110
(1.61) (0.39) (0.86)

yldtoworst 21 0.402 0.080 0.065 0.258 0.200 0.090 0.112
(1.63) (0.32) (0.81)

yield 20 0.402 0.082 0.064 0.255 0.202 0.089 0.111
(1.63) (0.33) (0.82)

ret10 60 0.370 -0.455 0.079 0.747 -0.055 0.107 0.318
(3.38) (-4.16) (-0.50)

ratingxspread 16 0.370 0.134 0.041 0.196 0.228 0.056 0.086
(1.37) (0.49) (0.84)

dts 21 0.354 0.020 0.067 0.267 0.145 0.093 0.116
(1.70) (0.10) (0.69)

swapspread 20 0.352 0.048 0.054 0.249 0.168 0.075 0.109
(1.51) (0.21) (0.72)

spreadvol 19 0.339 0.067 0.035 0.238 0.188 0.048 0.104
(1.51) (0.30) (0.84)

rmax521d 48 0.322 -0.351 0.075 0.598 -0.039 0.104 0.257
(1.76) (-1.91) (-0.21)

seas11na 38 0.316 -0.186 0.027 0.475 0.072 0.040 0.205
(2.55) (-1.49) (0.58)

rating 9 0.314 0.178 0.017 0.119 0.238 0.024 0.053
(1.15) (0.65) (0.87)

sizeb 10 0.310 0.166 0.014 0.130 0.233 0.019 0.057
(1.85) (0.99) (1.39)

strucvalue 26 0.304 -0.067 0.047 0.324 0.098 0.066 0.141
(2.02) (-0.44) (0.65)

This table reports the CAPM α of the 15 best signals and the transaction cost estimates based on the
simulation. The simulated costs are assigned to each strategy using the strategy’s gross returns and turnover
rates. Net α is the difference between gross α and the simulated total costs. In computing simulated costs,
we use the lower bound estimates of trade intensity λLB reported in Table 4.
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Table 12: CAPM α of 341 Bond Factors: Banding

Distribution # of Factors w. CAPM Alpha # of Signifi-

Mean 10% 50% 90% [0%, 0.1%) [0.1%, 0.2%) [0.2%, ∞) cant Factors

Panel A. Performance Before Transaction Costs
Gross α 0.078 -0.010 0.058 0.210 194 61 37 45

Panel B. Lower Bound Estimates of Delay
Panel B1. Trade Size of $100K
Net α -0.244 -0.695 -0.107 0.016 29 11 1 0
DelayCost 0.015 0.001 0.005 0.036
BACost 0.308 0.061 0.158 0.826

Panel B2. Trade Size of $2M
Net α -0.071 -0.273 -0.023 0.050 81 15 8 1
DelayCost 0.019 0.001 0.006 0.046
BACost 0.129 0.027 0.069 0.350

Panel C. Counterfactual Estimates of Delay
Panel C1. Trade Size of $100K
Net α -0.300 -0.835 -0.140 -0.001 25 8 1 0
DelayCost 0.015 0.001 0.005 0.036
BACost 0.363 0.072 0.186 0.976

Panel C2. Trade Size of $2M
Net α -0.112 -0.366 -0.045 0.036 57 11 8 1
DelayCost 0.020 0.001 0.007 0.046
BACost 0.170 0.036 0.092 0.462

This table reports the distribution of the bond CAPM alphas of the 341 factors we create. Every month,
we sort bonds into deciles based on the latest value of signals and form value-weighted portfolios. Once a
bond joins portfolio 1 (10), we hold the bonds in the portfolio as long as these bonds remain in the first
(last) three deciles (Novy-Marx and Velikov, 2015). A factor is the return difference between portfolios 10
and 1. The factors are signed to guarantee that their gross average returns are non-negative (i.e., the factors
are sign-corrected to be increasing in expected returns). Panel A reports the distribution of the CAPM α
before transaction costs. Panel B reports the distribution using the lower bound estimates for transaction
costs and Panel C reports that using the counterfactual equilibrium estimates. The sample is from August
2002 to November 2022. t-statistics are adjusted by Newey-West 12 lags.
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Table 13: Bond Factors, Top 15 Gross α: Banding

Trade Size: $100K Trade Size: $2M

Signal Turnover Gross α Net α DelayCost BACost Net α DelayCost BACost

ret10 142 0.681 -1.318 0.355 1.644 -0.403 0.435 0.649
(3.48) (-6.73) (-2.06)

mom6mspread 60 0.486 -0.404 0.144 0.746 -0.026 0.194 0.318
(2.57) (-2.14) (-0.14)

bondprice 11 0.459 0.290 0.027 0.142 0.359 0.038 0.062
(2.39) (1.51) (1.87)

mom3mspread 87 0.361 -0.880 0.156 1.085 -0.296 0.205 0.452
(2.42) (-5.88) (-1.98)

IndRetBig 67 0.352 -0.594 0.105 0.841 -0.144 0.140 0.356
(2.60) (-4.39) (-1.07)

TrendFactor 78 0.347 -0.718 0.096 0.969 -0.187 0.127 0.407
(2.57) (-5.33) (-1.39)

yldtoworst 12 0.331 0.152 0.032 0.147 0.222 0.045 0.065
(1.98) (0.91) (1.32)

yield 11 0.331 0.156 0.032 0.144 0.224 0.044 0.063
(1.97) (0.93) (1.33)

spread 10 0.328 0.176 0.025 0.128 0.237 0.034 0.056
(1.74) (0.93) (1.26)

kurt 12 0.328 0.166 0.015 0.146 0.242 0.021 0.064
(2.91) (1.48) (2.15)

spreadvol 10 0.315 0.168 0.017 0.130 0.234 0.024 0.057
(1.68) (0.90) (1.25)

ret31 96 0.312 -0.978 0.094 1.197 -0.302 0.121 0.494
(2.89) (-9.06) (-2.80)

dVolCall 164 0.297 -1.515 0.167 1.644 -0.557 0.205 0.649
(3.60) (-18.38) (-6.76)

ratingxspread 8 0.282 0.166 0.016 0.100 0.215 0.022 0.044
(1.37) (0.81) (1.05)

rmax521d 67 0.278 -0.662 0.100 0.840 -0.211 0.133 0.356
(1.66) (-3.96) (-1.26)

This table reports the bond CAPM α of the 15 best signals and the transaction cost estimates based on
simulation. The simulated costs are assigned to each strategy using the strategy’s gross returns and turnover
rates. Net α is the difference between gross α and the simulated total costs. In computing simulated costs,
we use the lower bound estimates of trade intensity λLB reported in Table 4.
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Table 14: Profitability of ML Strategies Based On Simulated Cost of Transactions

Trade Size: $100K Trade Size: $2M

Signal Turnover Gross α Net α DelayCost BACost Net α DelayCost BACost

enet 124 0.731 -1.231 0.433 1.529 -0.419 0.539 0.611
(3.34) (-5.63) (-1.92)

ens 124 0.808 -1.158 0.438 1.528 -0.347 0.545 0.611
(3.26) (-4.67) (-1.40)

lasso 140 0.698 -1.396 0.450 1.644 -0.501 0.551 0.649
(3.20) (-6.40) (-2.30)

lens 125 0.795 -1.186 0.441 1.540 -0.367 0.548 0.615
(3.49) (-5.21) (-1.61)

nens 114 0.778 -1.040 0.404 1.415 -0.305 0.511 0.572
(3.13) (-4.19) (-1.23)

nn 136 0.659 -1.421 0.436 1.644 -0.523 0.533 0.649
(3.09) (-6.67) (-2.46)

rf 103 0.469 -1.050 0.244 1.276 -0.366 0.313 0.523
(2.41) (-5.39) (-1.88)

ridge 116 0.747 -1.076 0.391 1.433 -0.324 0.492 0.578
(3.61) (-5.20) (-1.56)

xt 99 0.810 -0.771 0.350 1.232 -0.148 0.451 0.507
(3.40) (-3.24) (-0.62)

This table reports the bond CAPM α of the ML algorithms and the transaction cost estimates based on the
simulation. The simulated costs are assigned to each ML factor using the factor’s gross returns and turnover
rates. Net α is the difference between gross α and the simulated total costs. In computing simulated
costs, we set the counterfactual trade intensity parameter λ = 0.145 and λ = 0.058 to replicate the trade
frequency of trade size $100,000 (left panel) and $2 million (right panel). The linear models with penalization
comprise an elastic net (enet), Lasso (lasso), Ridge (ridge) and the Linear Ensemble (lens). The nonlinear
models comprise a feedforward neural network (nn), tree-based aggregation methods comprising an extremely
randomized set of trees (xt) and a random forest (rf). nens is the nonlinear ensemble and ens is the ensemble
across all models.
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Table 15: Average and Median Half Spreads (Percent) of Insurance Firms’ Bond Trade

Investor Size Category

Trade Size Category Small 2 3 4 Large

(0,100K] mean 0.486 0.354 0.405 0.268 0.237
(100K,500K] mean 0.461 0.170 0.228 0.157 0.131
(500K,1M] mean 0.312 0.113 0.116 0.083 0.086
(1M,∞] mean 0.223 0.095 0.084 0.072 0.088

(0,100K] median 0.199 0.130 0.168 0.087 0.090
(100K,500K] median 0.233 0.060 0.078 0.048 0.041
(500K,1M] median 0.151 0.047 0.044 0.032 0.031
(1M,∞] median 0.119 0.040 0.021 0.017 0.025

(0,100K] n 26,173 13,224 17,119 19,474 17,489
(100K,500K] n 68,185 37,586 36,437 40,139 36,044
(500K,1M] n 31,427 22,981 20,327 21,536 17,743
(1M,∞] n 55,636 98,332 96,935 95,836 100,222

This table reports the summary statistics of half spreads for insurance firms’ transaction of corporate bonds in

TRACE. For each trade, a half spread is computed as the difference in price between the transaction and the latest

interdealer transaction. Then, the spread is classified into bins based on their trade size and the insurance firm’s

total bond holding in the preceding quarter. The sample is from July 2002 to December 2022.
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Table 16: Trading Costs and Trade Size in the Corporate Bond Market.

(1) (2) (3) (4) (5) (6)

Log(Volume) −0.06 −0.04 −0.05 −0.05 −0.03 −0.05
(−14.45) (−13.14) (−14.14) (−14.59) (−12.09) (−14.26)

Day FE Yes Yes Yes Yes Yes Yes
Client FE No Yes No No Yes No
Broker FE No No Yes No No Yes

Controls No No No Yes Yes Yes
Obs. 881,504 881,474 881,369 731,080 731,042 730,960
R2 0.039 0.088 0.059 0.055 0.090 0.067

This table regresses trading costs (the bond half-spread) on the log of trade size, various fixed effects and
bond-level control variables. The bond level control variables include bond rating, coupon, maturity and
the log of the issue size (amount outstanding). t-statistics in parentheses are based on two-way clustered
standard errors at the day and client level.
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A Data and Variable Construction

The following sections describe the various databases that we use in the paper. Across all

databases, we filter out bonds which have a time-to-maturity of less than 1-year. Furthermore, for

consistency, across all databases, we define bond ratings as those provided by Standard & Poors

(S&P). We include the full spectrum of ratings (AAA to D), but exclude bonds which are unrated.

For each database that we consider, we (the authors) do not winsorize or trim bond returns in any

way.

A.1 Corporate Bond Databases

Mergent Fixed Income Securities Database (FISD) database

Mergent Fixed Income Securities Database (FISD) for academia is a comprehensive database

of publicly offered U.S. bonds. Research market trends, deal structures, issuer capital structures,

and other areas of fixed income debt research.

We apply the standard filters to the FISD data as they relate to empirical asset pricing in

corporate bonds,

1. Only keep bonds that are issued by firms domiciled in the United States of America,

COUNTRY DOMICILE == ‘USA’.

2. Remove bonds that are private placements, PRIVATE PLACEMENT == ‘N’.

3. Only keep bonds that are traded in U.S. Dollars, FOREIGN CURRENCY == ‘N’.

4. Bonds that trade under the 144A Rule are discarded, RULE 144A == ‘N’.

5. Remove all asset-backed bonds, ASSET BACKED == ‘N’.

6. Remove convertible bonds, CONVERTIBLE == ‘N’.

7. Only keep bonds with a fixed or zero coupon payment structure, i.e., remove bonds with a

floating (variable) coupon, COUPON TYPE != ‘V’.
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8. Remove bonds that are equity linked, agency-backed, U.S. Government, and mortgage-backed,

based on their BOND TYPE.

Bank of America Merrill Lynch (BAML) database

The BAML data is provided by the Intercontinental Exchange (ICE) and provides daily bond

price quotes, accrued interest, and a host of pre-computed corporate bond characteristics such as

the bond option-adjusted credit spread (OAS), the asset swap spread, duration, convexity, and

bond returns in excess of a portfolio of duration-matched Treasuries. The ICE sample spans the

time period 1997:01 to 2022:12 and includes constituent bonds from the ICE Bank of America High

Yield (H0A0) and Investment Grade (C0A0) Corporate Bond Indices.

ICE Bond Filters. We follow Binsbergen, Nozawa, and Schwert (2023) and take the last quote

of each month to form the bond-month panel. We then merge the ICE data to the filtered Mergent

FISD database.

The following ICE-specific filters are then applied:

1. Only include corporate bonds, Ind Lvl 1 == ‘corporate’

2. Only include bonds issued by U.S. firms, Country == ‘US’

3. Only include corporate bonds denominated in U.S. Dollars, Currency == ‘USD’

BAML/ICE Bond Returns. Total bond returns are computed in a standard manner in ICE,

and no assumptions about the timing of the last trading day of the month are made because the

data is quote based, i.e., there is always a valid quote at month-end to compute a bond return. This

means that each bond return is computed using a price quote at exactly the end of the month, each

and every month. This introduces homogeneity into the bond returns because prices are sampled

at exactly the same time each month. ICE only provides bid-side pricing, meaning bid-ask bias

is inherently not present in the monthly sampled prices, returns and credit spreads. The monthly
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ICE return variable is (as denoted in the original database), is trr mtd loc, which is the month-to-

date return on the last business day of month t. We use this return specification (in excess of the

one-month risk free rate of return) and the bond returns in excess of a portfolio duration matched

U.S. Treasury bond returns denoted as ex rtn mtd in the ICE dataset as the dependent variables

to train the machine learning models.

Enhanced TRACE Database

TRACE provides data on corporate bond transactions. Since we measure the profitability of fac-

tor investing from an end-user perspective, we use only dealer-customer transactions (cntra mp id

= ‘C’). We remove trades that are i) when-issued (wis fl != ‘Y’), ii) locked-in (lckd in ind !=

‘Y’), iii) with special conditions (sale cndtn cd = ‘@’ or sale cndtn cd = ‘’).

In addition, we restrict our sample to those with standard settlement days (days to sttl ct =

‘’ or days to sttl ct = ‘000’ or days to sttl ct = ‘001’ or days to sttl ct = ‘002’).

However, some transaction records contain prices that appear to reflect clerical/recording errors.

We avoid simply removing outliers in terms of prices and returns because such procedures bias the

standard deviation of returns downward and inflate Sharpe ratios. Furthermore, if we simply

removed very low returns, we would eliminate the bond that defaulted, leading to a spurious

profitability of a strategy. To avoid these problems, we apply the reversal filter of Bessembinder

et al. (2008) with a wider band. That is, we examine the log price changes of a bond using two

consecutive transactions. If a product of two adjacent log price changes is less than -0.25 (i.e., a

50% decline followed by a 50% increase), then we consider the price record in the middle to be an

error and remove it.

After applying these filters, we compute the average price of a bond on a day, separately for

dealer buys and dealer sells. These daily averages are used to calculate net returns in the main

results of the paper.
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A.2 Bond and stock characteristics

We describe our 53 ‘custom-made’ bond and equity characteristics in Table A.4. Panel A de-

scribes our 37 bond-based characteristics which span the vast majority of those used in the literature

which forms corporate bond factors. Panel B describes additional equity-based characteristics that

are not included in publicly available equity repositories, but have all been used in research that

attempts to predict bond returns or form bond factors. All rank demeaned characteristics are made

publicly available on openbondassetpricing.com/data.

For the publicly available equity databases, we follow Chen and Velikov (2023) and drop char-

acteristics that are discrete (i.e., exchange indicators) or dominated by missing values at the stock

level. When there are overlaps between the Chen and Zimmermann (2022), CZ, and Jensen et al.

(2023), JKP characteristics we drop the CZ version of the characteristic. In total, after dropping

characteristics based on the above, we are left with 137 CZ characteristics and 151 JKP character-

istics.

B Net of Fees Corporate Bond Market Factor

We risk-adjust our net of cost strategies with a realistic corporate bond market factor that com-

bines tradable passively managed investment grade and high yield exchange traded funds (ETFs).

We source the BlackRock iShares iBoxx Investment Grade (ticker: LQD) and High Yield (ticker:

HYG) ETF net returns from the CRSP Mutual Funds database as provided by WRDS. The LQD

ETF has an inception date of 2002:06 which spans the full length of our out-of-sample period. The

HYG inception date is 2007:03. To address the shorter sample period for HYG, we source high

yield gross return data from the Bloomberg-Barclays (BB) High-Yield bond index. Thereafter, we

estimate a simple OLS regression of the HYG net returns on the BB gross returns such that we

can extrapolate values for HYG before 2007:03,

RHY G,t = β0 + βBB ·RBB,t + εt,

R̂HY G,t = −0.095
(−2.010)

+ 0.883
(60.13)

·RBB,t,
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where RHY G,t and RBB,t are the net of cost and gross returns of the HYG ETF and BB High-Yield

bond index over the sample period 2007:03–2023:06 (T = 251). The intercept, β0 is estimated at

−9.5 basis points (statistically significant from zero at the 5% nominal level), which captures the

fact that HYG is adversely impacted by trading costs and ETF fees. From the OLS estimation

above, we set the net return value of the HYG index to R̂HY G before 2007:03 and to the actual net

return of the HYG index thereafter. We denote this return RHY G.

To generate the MKTBNet factor, we require appropriate weights for the representative in-

vestor to apportion their funds between HYG and LQD. To do this, we source all bonds that are

included in the Bank of America Merrill Lynch Investment Grade (C0A0) and High Yield (H0A0)

corporate indices and compute their respective market capitalizations (Clean Price × Units Out-

standing). The weight for each index for each month is simply the sum of the respective index

market capitalization at month t divided by the total market capitalization. On average, over the

sample period, the investor apportions 19.90% to the high yield index and 80.10% to the investment

grade index. Finally, the MKTBNet factor is computed as,

RNet
MKTB,t+1 = (RHY G,t+1 · ωHY G,t +RLQD,t+1 · ωLQD,t)−Rf,t+1,

where ωHY G,t is the weight in the HYG ETF, ωLQD,t is the weight in the LQD ETF and Rf,t+1 is

the one-month risk-free rate of return from Kenneth French’s webpage.

We report summary statistics for the MKTBNet, MKTBGross (computed using the same

weights as above with the Bloomberg-Barclays Investment Grade and High Yield index gross re-

turns) and MKTB available from openbondassetpricing.com in Table A.5.

C Machine Learning Model Estimation and Cross-Validation

For all of our machine learning models, we cross-validate the model hyperparameters every five-

years and re-train the model every 12-months with an expanding window. Within each window we

perform the cross-validation with a 70:30 training-validation split. For example, if we have window

of 1,000 temporally ordered observations, 1-700 are used to train the model and the remaining 300
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are used for validation. We graphically depict the sample splitting strategy for the training and

cross-validation in Figure A.1. For all models except for the feed forward neural network we utilize

the sklearn Python package (Pedregosa et al., 2011). We use the tensorflow Python package to

estimate the neural network.

We report the respective sets of hyperparameters which we cross-validate over in Table A.6.

Linear Models with Penalties Panel A reports the hyperparameters for the linear models with

penalties for the Lasso (LASSO), Ridge (RIDGE) and the Elastic Net (ENET). For the LASSO-

style penalty, we cross-validate over 100 possible ℓ1 penalties which change dynamically with the

sample. The 100 potential ℓ1 penalties are set by default with sklearn with a logarithmic scale.

The maximum penalty is set to be the smallest value such that the coefficients are all set to zero.

The minimum penalty is set to be 0.001 scaled by the maximum penalty. The ℓ2 (RIDGE) penalties

are defined as 100 values between 0.0001 and 1 with a logarithmic scale. The elastic net model

hyperparameters are tuned with the 100 possible ℓ1 penalties which change dynamically with the

sample and a set of ℓ1 vs. ℓ2 ratios.

Nonlinear Tree-Based Ensembles Panel B reports the hyperparameters for the tree-based

nonlinear ensemble models which includes the Random Forest (RF) and Extremely Randomized

Trees (XT). For both ensemble models, we use 100 estimators (trees). We also follow Gu et al.

(2020) and set the maximum tree depth to be ∈ [2, 4, 6]. Thereafter, we allow the trees to consider

a maximum of 5,10,15 or 30 features (characteristics) at each split point. Finally, at each end node

of the tree (final leaf), we impose a minimum of 1, 10 or 50 samples (i.e., bond returns) in each

leaf.

Feed Forward Neural Network Ensemble Panel C reports the hyperparameters for the feed

forward neural network (NN). We estimate a shallow network with a single layer and 32 neurons.

Since our sample starts off with a relatively smaller sample size than that of Gu et al. (2020) and

other work which utilizes equity data only, we set the batch size to 1024 (with batch normalization)

and the number of epochs to 100. We cross-validate over the learning rate which is ∈ [0.001, 0.01]
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and an ℓ1 penalty ∈ [0.001, 0.01]. We also implement early stopping with the ‘patience’ parameter

set to 5. The prediction variance of each individually estimated neural network is high. In order

to reduce prediction variance across estimated neural network models, at each training date we

estimate 10 models with different randomly assigned initial weights. In doing so, we select the best

performing 5 models based on the smallest mean squared error estimated in the validation sample

at that training date. This means, that at each date t + 1, we produce five predictions from the

five best performing models estimated at the training date. The overall t + 1 prediction is the

average over these five best performing models. At each training date, we then repeat this process

ten times, yielding ten ensembled predictions. The final NN prediction for each month t+ 1 is the

average over these ten ensembled predictions, i.e., an ensemble over the ensemble.

D Additional Results

This section reports the additional tables referred to in the paper.
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Training Sample Validation Sample

Time

Figure A.1: Sample Splitting for Cross-Validation of Model Hyperparameters.

This figure shows the sample splitting scheme used for cross-validation of the machine learning model hyperparameters
for the various machine learning models we consider. The forecasting exercise involves an expanding window that
starts in January 1998. The initial window spans 1998:01–2002:07 (T = 55), and then expands forward each and
every month until the sample end on 2022:12. The first (last) out-of-sample forecast is made in 2002:07 (2022:11) for
the following month 2002:08 (2022:12). Hence, the out-of-sample ML portfolio returns commence in 2002:08 and end
in 2022:12, T = 245. For each window, the blue area represents the training sample and the grey area represents the
validation sample. The former consists of the first 70% of the observations while the latter consists of the final 30%
of observations. The training and the validation samples are contiguous in time and not randomly selected in order
to preserve the time series dependence of the data.
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Table A.1: Logit Regression of Corporate Bond Transactions

Customer Sell Customer Buy

$100K $2M $100K $2M

Panel A. Regression Estimates
log invcomp 0.270 (23.13) 0.158 (28.44) 0.247 (22.12) 0.163 (29.72)

inventory28 -0.260 (-45.46) -0.382 (-80.93) 0.331 (60.68) 0.398 (91.88)
capratio 0.111 (12.27) 0.101 (20.10) 0.092 (10.55) 0.087 (17.08)
rating 0.679 (34.65) 0.611 (60.17) 0.657 (34.90) 0.620 (61.66)
maturity -0.136 (-9.98) -0.025 (-3.39) -0.159 (-12.25) 0.006 (0.74)
log facevalue 1.587 (78.30) 1.239 (146.26) 1.598 (81.97) 1.222 (145.81)
coupon -0.245 (-12.68) 0.023 (2.40) -0.231 (-12.32) 0.049 (5.27)
age -0.188 (-14.85) -0.414 (-40.35) -0.216 (-17.65) -0.420 (-41.85)
Intercept 2.817 (150.49) 0.533 (76.25) 2.732 (152.55) 0.472 (67.33)

Pseudo R2 0.230 0.221 0.236 0.219
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade data 0.877 0.588 0.868 0.577

cntr. factual 0.937 0.672 0.927 0.664
λ data 0.100 0.042 0.096 0.041

cntr. factual 0.132 0.053 0.125 0.052
Exp. Delay data 10.013 23.670 10.363 24.441
(days) cntr. factual 7.587 18.833 8.015 19.249

This table reports the coefficient estimates for the logit regressions of the bond trading dummy on characteristics. Variable invcomp is the
investor composition of Li and Yu (2023), which measures the activeness of bond investors at the end of the previous quarter. Variable
inventory28 is the difference between customer buys and customer sells in the preceding 28 days, capratio is the intermediary capital ratio
of He et al. (2017) on the previous month. The right-hand-side variables are standardized for ease of interpretation. The sample is at the
month frequency, spanning August 2002 to November 2022.
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Table A.2: Forecasting Regression of Corporate Bond Transactions: Nonlinear Model

Customer Sell Customer Buy

$100K $2M $100K $2M

Panel A. Regression Estimates
invcomp 0.051 (11.58) 0.016 (2.95) 0.053 (11.80) 0.008 (1.45)
1/invcomp -0.008 (-22.79) -0.009 (-30.48) -0.008 (-23.24) -0.009 (-29.80)
invcomp2 -0.003 (-9.25) -0.001 (-2.63) -0.003 (-9.51) 0.000 (-1.02)
log invcomp -0.055 (-15.59) -0.034 (-9.38) -0.058 (-16.15) -0.030 (-8.14)

inventory28 -0.001 (-37.70) -0.005 (-63.79) 0.001 (29.28) 0.004 (55.46)
capratio 0.297 (4.77) 1.426 (23.00) 0.191 (3.05) 1.240 (19.74)
rating 0.014 (28.30) 0.028 (60.13) 0.014 (27.81) 0.028 (60.87)
maturity -0.001 (-7.03) 0.000 (-1.64) -0.002 (-9.29) 0.000 (2.27)
log facevalue 0.145 (66.09) 0.302 (153.29) 0.153 (67.79) 0.299 (142.95)
coupon -0.013 (-16.91) -0.002 (-2.27) -0.014 (-16.70) 0.001 (0.69)
age 0.000 (-15.20) 0.000 (-41.07) 0.000 (-17.47) 0.000 (-42.37)
Intercept -0.066 (-3.69) -1.4888 (-89.20) -0.11421 (-6.23) -1.48129 (-84.95)

Pseudo R2 0.148 0.257 0.157 0.255
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade data 0.877 0.588 0.868 0.576

cntr. factual 0.912 0.587 0.896 0.585
λ data 0.100 0.042 0.097 0.041

cntr. factual 0.116 0.042 0.108 0.042
Exp. Delay data 10.014 23.672 10.362 24.442
(days) cntr. factual 8.636 23.732 9.272 23.882

This table reports the estimates of the logit regression of monthly bond transactions. The estimates follow that of Table A.1, except we add
the nonlinear transformation of the investor composition measure of Li and Yu (2023).
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Table A.3: Forecasting Regression of Corporate Bond Transactions: Interactions between Investor Compositions
and Bond Characteristics

Customer Sell Customer Buy

$100K $2M $100K $2M

Panel A. Regression Estimates
log invcomp 0.259 (28.51) 0.172 (17.96) 0.266 (27.91) 0.179 (16.91)
log invcomp rat -0.004 (-12.16) -0.002 (-6.50) -0.003 (-11.58) -0.002 (-5.16)
log invcomp tau 0.000 (1.59) 0.000 (2.39) 0.000 (2.80) 0.000 (1.93)
log invcomp fv -0.037 (-29.88) -0.016 (-12.19) -0.038 (-29.29) -0.016 (-11.38)
log invcomp cpn 0.002 (4.63) -0.005 (-9.08) 0.002 (3.65) -0.006 (-10.99)
log invcomp age 0.000 (3.33) 0.000 (1.69) 0.000 (2.27) 0.000 (2.11)

inventory28 -0.001 (-38.36) -0.005 (-63.47) 0.001 (32.22) 0.004 (56.44)
capratio 0.064 (1.07) 1.170 (18.69) -0.046 (-0.77) 0.987 (15.54)
rating 0.007 (11.26) 0.025 (33.60) 0.007 (11.04) 0.026 (34.89)
maturity -0.001 (-4.99) 0.000 (-0.47) -0.001 (-5.24) 0.000 (1.00)
log facevalue 0.074 (28.97) 0.276 (81.88) 0.080 (29.47) 0.273 (72.46)
coupon -0.008 (-7.54) -0.011 (-8.38) -0.009 (-8.18) -0.011 (-8.32)
age 0.000 (-8.26) 0.000 (-23.36) 0.000 (-10.37) 0.000 (-24.74)
Intercept 0.484 (25.79) -1.195 (-47.03) 0.454 (22.61) -1.185 (-41.62)

Pseudo R2 0.148 0.252 0.157 0.250
N 814,145 814,145 814,145 814,145

Panel B. Model-Based Estimates of Trade Intensity and Delays
Prob. Trade data 0.877 0.588 0.868 0.576

cntr. factual 0.959 0.731 0.948 0.725
λ data 0.100 0.042 0.097 0.041

cntr. factual 0.152 0.062 0.141 0.062
Exp. Delay data 10.014 23.672 10.362 24.442
(days) cntr. factual 6.583 16.014 7.106 16.247

This table reports the estimates of the logit regression of monthly bond transactions. The estimates follow that of Table A.1, except we add
the interaction terms between the investor composition measure of Li and Yu (2023) and bond characteristics such as credit rating (rat), time
to maturity (tau), log face value (fv), coupon rate (cpn), and time since the issuance (age).
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Table A.4: List of the Corporate Bond and Stock Characteristics.

Num. ID Characteristic Name and Description Reference Source

Panel A: Bond Characteristics Available on openbondassetpricing.com/data

1 age Bond age. The number of years the bond has been in
issuance scaled by the tenor of the bond.

Israel et al. (2018) BAML/ICE

2 ave12mspread Rolling 12-month moving average of bond option ad-
justed credit spreads skipping the prior month

Elkamhi et al. (2021) BAML/ICE

3 bond mom ipr 6-month bond credit momentum skipping the prior
month. Demeaned with duration-times-spread.

Israel et al. (2018) BAML/ICE

4 bond price Bond price. Clean price of the bond. Bartram et al. (2023) BAML/ICE

5 convexity Bond convexity. Convexity of the bond. – BAML/ICE

6 coupon Bond coupon. The annualised bond coupon payment in
percent (%)

Chung et al. (2019) BAML/ICE

7 dspread First difference in bond option adjusted credit spread. – BAML/ICE

8 dts Duration-times-spread. Annualized bond duration mul-
tiplied by the bond option adjusted credit spread.

Dor et al. (2007) BAML/ICE

9 duration Bond duration. The derivative of the bond value to the
credit spread divided by the bond value, and is calcu-
lated by ICE

Israel et al. (2018) BAML/ICE

10 emp value Empirical bond value. Defined as the percentage dif-
ference between the actual credit spread and the fitted
(“fair”) credit spread for each bond. The fitted spread
is derived from cross-sectional regressions of the log of
bond option adjusted credit spreads onto the log of du-
ration, bond ratings and bond credit return volatility.
Demeaned with duration-times-spread.

Israel et al. (2018) BAML/ICE

11 faceval Face value. The bond amount outstanding in units Israel et al. (2018) BAML/ICE

12 impliedspread The fitted spread used to estimate the 33. value char-
acteristic.

Houweling and Van Zun-
dert (2017)

BAML/ICE

13 kurtosis Bond kurtosis. Rolling bond excess kurtosis com-
puted with a minimum amount of rolling observations
equalling 12 which then expands up to 60-months

– BAML/ICE

14 ltrev30 6 Bond long-term reversal (medium-term). Computed as
the rolling sum of the prior 30-months of bond returns
(minimum 12 monthly values) minus the rolling sum of
the most recent 6-month returns (minimum 6 monthly
values).

Subrahmanyam (2023) BAML/ICE

15 ltrev48 12 Bond long-term reversal (long-term). Computed as the
rolling sum of the prior 48-months of bond returns (min-
imum 12 monthly values) minus the rolling sum of the
most recent 12-month returns (minimum 6 monthly val-
ues).

Bali et al. (2021) BAML/ICE

16 mom3mspread Mom. 3m log(Spread). The log of the spread 3 months
earlier minus current log spread

– BAML/ICE

17 mom6 Corporate bond momentum. The sum of the last 6-
months of bond returns minus the prior month

Gebhardt et al. (2005) BAML/ICE

18 mom6ind Corporate bond portfolio industry momentum. The
sum of the last 6-months of bond portfolio returns mi-
nus the prior month. Portfolios are formed based on the
Fama-French Industry 17 classification

Kelly et al. (2021) BAML/ICE

19 mom6mspread Mom. 6m log(Spread). The log of the spread 6 months
earlier minus current log spread

– BAML/ICE

20 mom6xrtg Corporate bond momentum multiplied by bond rating.
The sum of the last 6-months of bond returns minus the
prior month multiplied by the bond’s numerical rating
AAA = 1, ... , D = 22

Kelly et al. (2021) BAML/ICE

21 rating Bond S&P rating. Bond numerical rating. AAA = 1,
... , D = 22

Kelly et al. (2021) BAML/ICE

22 ratingxspread Corporate bond ratings multiplied by credit spread. – BAML/ICE

23 sizeb Bond market capitalization. Computed as bond units
amount outstanding multiplied by the clean price of the
bond

Houweling and Van Zun-
dert (2017)

BAML/ICE

24 skew Bond skewness. The rolling 60-month skewness of bond
total returns. We require a minimum of 12 observations,
once this threshold is hit, the rolling window expands
upward to 60-months

Kelly et al. (2021) BAML/ICE
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25 sprtod2d Spread-to-Distance-to-Default. Spread-to-D2D is the
option-adjusted spread, divided by one minus the CDF
of the distance-to-default

Kelly et al. (2021) CRSP/COMP

26 spread Bond option adjusted credit spread. The option ad-
justed spread of the bond provided by ICE

Kelly et al. (2021) BAML/ICE

27 spreadvol Volatility of the first difference of the bond option ad-
justed credit spread. Rolling period of 24-months with
a minimum required observations of 12

– BAML/ICE

28 strevb Short-term bond reversal. Defined as the previous
months bond return

– BAML/ICE

29 struc value Structural bond value. Defined as the percentage dif-
ference between the actual credit spread and the fit-
ted (“fair”) credit spread for each bond. The fitted
spread is derived from cross-sectional regressions of the
log of bond option adjusted credit spreads onto the log
of the probability of default computed with firm-level
distance-to-default. Demeaned with duration-times-
spread.

Israel et al. (2018) BAML/ICE

30 swap spread Bond swap spread. The swap spread of the bond pro-
vided by ICE

Kelly et al. (2021) BAML/ICE

31 tmt Bond time to maturity – BAML/ICE

32 value Bond value. Defined as the percentage difference be-
tween the actual credit spread and the fitted (“fair”)
credit spread for each bond. The fitted spread is de-
rived from cross-sectional regressions of the log of bond
option adjusted credit spreads onto the 3-month change
in spreads, maturity and credit ratings.

Houweling and Van Zun-
dert (2017)

BAML/ICE

33 var Historical 95% value-at-risk. Rolling 36-month bond to-
tal 95% value-at-risk. We require a minimum of 12 ob-
servations, once this threshold is hit, the rolling window
expands upward to 36-months

Bai et al. (2019) BAML/ICE

34 vixbeta VIX beta. Rolling 60-month regression of bond returns
on the Fama French 3-factors (Mkt-RF ,SMB,HML,
the default risk factor DEF , and the interest rate risk
factor, TERM and the first difference in the CBOE VIX
and lagged VIX. The VIX beta in month t is the sum
of the coefficient on VIX and lagged VIX. We require a
minimum of 12 observations, once this threshold is hit,
the rolling window expands upward to 60-months

Chung et al. (2019) BAML/ICE

35 volatility Bond return volatility. Rolling 36-month bond total
return volatility. We require a minimum of 12 obser-
vations, once this threshold is hit, the rolling window
expands upward to 36-months

Kelly et al. (2021) BAML/ICE

36 yield Bond yield. The yield-to-maturity of the bond provided
by ICE

Gebhardt et al. (2005) BAML/ICE

37 yld to worst Bond yield-to-worst. The yield-to-worst of the bond
provided by ICE

– BAML/ICE

Panel B: Equity Characteristics Available on openbondassetpricing.com/data

38 book lev Book leverage. Shareholder’s equity and long-/short-
term debt (DLTTQ + DLCQ) and minority interest (MIBTQ)
minus cash and inventories (CHEQ), divided by share-
holder’s equity minus preferred stock

Kelly et al. (2021) COMP

39 book prc Book-to-price. Firm Book-to-price is the sum of share-
holder’s equity and preferred stock divided by equity
market capitalization for the issuing firm

Kelly et al. (2021) CRSP/COMP

40 chg gp at Profitability change. The 5-year change in gross prof-
itability

Asness et al. (2019) COMP

41 d2d Distance-to-default. Computed as in Bharath and
Shumway (2008)

Bharath and Shumway
(2008)

CRSP/COMP

42 debt ebitda Debt-to-EBITDA. Total debt (DLTTQ + DLCQ) divided
by EBITDA (SALEQ − COGSQ − XSGAQ)

Kelly et al. (2021) CRSP/COMP

43 eqtyvol Equity volatility defined as the month-end value from a
180-day rolling-period

Campbell and Taksler
(2003)

CRSP

44 gp at Profitability. Sales (REVTQ) minus cost-of-goods-sold
(COGSQ), divided by assets (ATQ)

Choi and Kim (2018) COMP

45 gross prof ipr Demeaned profitability. Duration-times-spread de-
meaned gp at

Israel et al. (2018) COMP/ICE

46 me Equity market capitalization Choi and Kim (2018) CRSP

47 mkt lev Market leverage. Market capitalization and long-/short-
term debt (DLTTQ + DLCQ) and minority interest (MIBTQ)
and preferred stock minus cash and inventories (CHEQ),
divided by market capitalization

Kelly et al. (2021) CRSP/COMP
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48 mkt lev ipr Demeaned Market leverage. Duration-times-spread de-
meaned mkt lev

Israel et al. (2018) COMP/ICE

49 ni me Earnings-to-price. Net income (NIQ) divided by market
equity

Correia et al. (2012) CRSP/COMP

50 operlvg Operating leverage. Sales (SALEQ) minus EBITDA
(SALEQ − COGSQ − XSGAQ), divided by EBITDA

Gamba and Saretto (2013) COMP

51 stock mom ipr Demeaned equity momentum. Duration-times-spread
demeaned momentum (sum of the past 6 months, skip-
ping the most recent month).

Israel et al. (2018) COMP/ICE

52 totaldebt Total firm debt (DLTTQ + DLCQ) Kelly et al. (2021) COMP

53 turnvol Turnover volatility. Turnover volatility is the quarterly
standard deviation of sales (SALEQ) divided by assets
(ATQ). The volatility is computed over 80 quarters, with
a minimum required period of 10 quarters. Thereafter,
the volatility is averaged (smoothed) over the preceding
4-quarters in a rolling fashion

Kelly et al. (2021) CRSP/COMP

This table presents information on the 53 characteristics that are generated by the authors and which are

made publicly available on openbondassetpricing.com/data. The remaining characteristics are sourced

from the publicly available equity data repositories build by Chen and Zimmermann (2022) and Jensen

et al. (2023). Panel A reports the 37 characteristics which relate to bond -only characteristics which are con-

structed using the BAML/ICE corporate bond dataset. Panel B reports the 16 characteristics which relate to

equity-and-bond characteristics which are constructed using CRSP and COMPUSTAT (COMP). Additional

resources and description notes for the equity openassetpricing.com-based data can be downloaded here.

Documentation for the Jensen et al. (2023) data can be found here.
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Table A.5: Summary Statistics for the Corporate Bond Market Factor.

Panel A: Corporate Bond Market Factor Statistics

MKTBNet MKTBGross MKTB

Mean 0.316 0.367 0.364
(2.14) (2.36) (2.32)

SD 2.06 1.95 1.91
SR 0.53 0.65 0.66

Panel B: Pairwise Correlations

MKTBNet MKTBGross MKTB

MKTBNet 1
MKTBGross 0.982 1
MKTB 0.973 0.992 1

Panel A reports the monthly factor means (Mean), the monthly factor standard deviations (SD), and the

annualized Sharpe ratios. The MKTBNet factor is constructed as the weighted-average of the BlackRock

iShares iBoxx Investment Grade (ticker: LQD) and High Yield (ticker: HYG) ETF net returns from the

CRSP Mutual Funds database. The MKTBGross factor is constructed as the weighted-average of the

Bloomberg-Barclays Investment Grade and High Yield index gross returns. The MKTB factor is the value-

weighted bond market factor publicly available from openbondassetpricing.com. Panels A and B are based

on the sample period 2002:08 to 2022:12 (245 months). t-statistics are in round brackets computed with the

Newey-West adjustment with 12-lags.
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Table A.6: Hyperparameters Across the Machine Learning Models.

Panel A: Linear Models with Penalties: LASSO, RIDGE & ENET

Parameter sklearn mnemonic Value

Intercept fit intercept=True True
ℓ1 penalty alphas Variable
ℓ2 penalty alphas ∈ [0.0001, . . . , 1]
Num. Penalties n alphas 100
ℓ1 ratio l1 ratio ∈ [0.001, 0.01,0.99,0.999]

Panel B: Tree-Based Ensembles: RF and XT

Parameter sklearn mnemonic Value

Num. Trees n estimators 100
Max depth max depth ∈ [2,4,6]
Split features max features ∈ [5,10,20]
Min leaf samples min samples leaf ∈ [1,10,50]

Panel C: Feed Forward Neural Network: NN

Parameter tensorflow mnemonic Value

Layers Dense 1
Neurons Dense 32
Activation activation=‘relu’ ReLu
Epochs epochs 100
Batch size batch size 1024
Batch normalization BatchNormalization True
Optimizer optimizers.Adam Adam
Patience patience 5
Learning rate learning rate ∈ [0.001, 0.01]
ℓ1 penalty regularizers.l1 ∈ [0.001, 0.01]
Ensemble - 10
Grand Ensemble - 10

This table reports the respective hyperparameters that are chosen via a cross-validation scheme with a 70:30

train-validate split that maintains the temporal ordering of the data. The cross-validation is conducted

every 5-years commencing on 2002:07 using an expanding window. The set of hyperparameters are chosen

which yield the smallest mean squared error (MSE) in the validation sample. Panel A reports the hyper-

parameters for the linear models which include Lasso (LASSO), Ridge (RIDGE) and Elastic Net (ENET)

penalties respectively. Panel B reports the hyperparameters for the set of tree-based ensembling nonlinear

models which includes the random forest (RF) and extremely randomized trees (XT). Panel C reports the

hyperparameters for the feed forward neural network (NN). All models except for the NN are estimated with

sklearn. The NN is estimated with tensorflow.
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