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Abstract

How do portfolio choices and asset prices impact inequality when agents have stock
market participation constraints? To answer this question, we develop a new methodology
for using deep learning to characterize global solutions to macroeconomic models with
long-term assets, agent heterogeneity, and household optimization under financial frictions.
We first characterize the equilibrium recursively in the space of wealth shares and then
show how to train neural networks to approximate the equilibrium. This approach
extends deep learning tools to a general class of macro-finance models. We use our
toolkit to study how asset market participation constraints impact inequality. Market
segmentation generates endogenous volatility, which allows wealthy agents to take greater
of advantage high expected returns during a recession and amplifies inequality.

1 Introduction

There has been a large recent literature studying how heterogeneous agent portfolio decisions
and asset market participation constraints generate inequality. However, technical constraints
have forced the literature to either focus on rich distributions in models without aggregate
shocks or two-agent agent distributions in models with aggregate shocks and rich asset
pricing. Recent advances in deep learning have made it possible to construct global solutions
to high dimensional models (e.g. Gopalakrishna (2021), Han, Yang and E (2021), Gu,
Laurière, Merkel and Payne (2023)). In principle, this should make it possible to solve
the class of models required to study asset pricing and inequality: macroeconomic models
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with heterogeneous agents, aggregate risk, and financial frictions. However, in practice,
researchers have found it difficult to train neural networks to solve models with long-
term assets and complicated portfolio choice. In this paper, we show how to characterize
equilibrium in heterogeneous agent macro-finance models as collection of partial differential
equations (PDEs) and how to train a neural network to solve those PDEs.

We consider a class of dynamic, stochastic, general equilibrium economic models with
the following features. There is a short-term risk-free asset and a collection long-term risky
assets that offer claims to production in the economy. The economy is populated by a
large collection of price-taking agents who face idiosyncratic portfolio constraints and/or
uninsurable idiosyncratic shocks. This leads to a non-trivial distribution of wealth across the
agents. General equilibrium for this economy can be characterized by a collection of blocks.
(1) The first block is a high, but finite dimensional PDE capturing agent optimization. (2)
The second block is a law of motion for the distribution of wealth shares and other aggregate
state variables. (3) The third block is the set of conditions that ensure the price processes
are consistent with equilibrium.

We solve this model by using deep learning tools to train an Economic Model Informed
Neural Network (EMINN) that solves the general equilibrium blocks. This connects and
expands the approaches developed in Gu et al. (2023) and Gopalakrishna (2021). We use
neural networks to approximate derivatives of the value function and the prices of long-term
assets. We then use stochastic gradient descent to train the neural network to minimize the
error in the “master” equations that characterize equilibrium for the system. We exploit
our continuous time formulation to construct an algorithm that imposes portfolio choice
and market clearing explicitly in the master equations. This allows us to circumvent the
problems that have occurred in other deep learning papers trying to solve models with
portfolio choice.

We believe this is the first method than can satisfactorily find a global solution to models
with non-trivial optimization, distribution evolution, and equilibrium blocks, without having
to resort to low-dimensional approximations of the wealth distribution. Other macro-finance
models make assumptions to ensure that at least one of these blocks has a closed form
solution. To understand this, it is instructive to compare to some canonical models. First,
for a representative agent model, the distribution block 2 is not applicable because there is
no agent heterogeneity and equilibrium block 3 is less complicated because the goods market
condition much simpler. Second, for the continuous time version of Krusell and Smith (1998)
discussed in Gu et al. (2023), we have a distribution of agents so distribution block 2 is
non-trivial. However, this model has no long-term assets and closed form expressions for
prices in term of the distribution. So, the equilibrium block 3 is trivial to satisfy. Third, for
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models such as Basak and Cuoco (1998) and Brunnermeier and Sannikov (2014) discussed
in Gopalakrishna (2021), the HJBE can be solved in closed form. This means that agent
optimization block 1 can be solved analytically and substituted into the rest of the equations.

We use our solution to study how asset market participation constraints impact inequality
in the US economy. In our model, participation constraints in the capital market generate
endogenous capital price volatility. Wealthier agents that can participate in the asset market
are more able to take advantage of the excess returns generated by the capital price volatility.

Literature Review: Our paper is part of a growing computational economics literature
using deep learning techniques to solve economic models and overcome the limitations of
the traditional solution techniques. Many of these papers focus on solving heterogeneous
agent macroeconomic models in discrete time (e.g. Azinovic, Gaegauf and Scheidegger
(2022), Han et al. (2021), Maliar, Maliar and Winant (2021), Kahou, Fernández-Villaverde,
Perla and Sood (2021), Bretscher, Fernández-Villaverde and Scheidegger (2022), Fernández-
Villaverde, Marbet, Nuño and Rachedi (2023)) or using a discrete time approximation to
a system forward and backward differential stochastic equations (e.g. Han, Jentzen and E
(2018), Huang (2022)). Our work is part of a less developed literature attempting to deploy
deep learning techniques to solve the differential equations that arise in continuous time
economic models (e.g. Duarte (2018), Gopalakrishna (2021), Fernandez-Villaverde, Nuno,
Sorg-Langhans and Vogler (2020), Sauzet (2021)).

Few deep learning literature have solved models with long-term asset pricing and complicated
portfolio choice. Fernández-Villaverde, Hurtado and Nuno (2023) and Huang (2023) solve
an extension of Krusell and Smith (1998) with portfolio choice between short-term assets
with different risks. Azinovic and Žemlička (2023) solves a general equilibrium model
with long-term assets in discrete time by encoding equilibrium conditions and financial
constraints into neural network layers. Azinovic, Cole and Kubler (2023) employ low-
dimensional approximation of the wealth distribution, following Kubler and Scheidegger
(2018), and analyze long-term asset prices in the presence of aggregate and idiosyncratic
risk. The main contribution of this paper is to show how we can circumvent the difficulties
faced in these papers and solve general macro-finance problems without having to resort to
low-dimensional approximations of the wealth distribution.

The difficulty of pricing long-term assets with heterogeneous agents is determining the
equilibrium allocation and individual choice together, as also pointed out by Guvenen (2009)
who solves the problem on the wealth space with a two block updating, solving Bellman
equations and prices iteratively. We demonstrate that on the wealth share space, equilibrium
objects can be determined through a unified framework simultaneously.
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The rest of this paper is structured as follows. Section 2 outlines the economic model.
Section 3 introduces the numerical algorithm. Section 4 compares with three canonical
models: a complete market, a market with limited participation Basak and Cuoco (1998),
and a macroeconomic model with a financial sector Brunnermeier and Sannikov (2016).
Sector 5 solves the general model.

2 Economic Model

In this section, we outline the baseline economic environment that we solve in this paper.
The technique can be applied to more general models but we start with this as a concrete
example.

2.1 Environment

Setting: The model is in continuous time with infinite horizon. There is a perishable
consumption good and a durable capital stock. The economy is populated by a large, finite
collection of infinitely lived price taking agents, indexed by i ≤ I. The economy has the
following assets: short-term risk free bonds and capital stock.

Production: The production technology in the economy produces consumption goods according
to the production function:

Yt = eztKα
t L

1−α
t

where Kt is the capital used at time t, Lt is the labour used at time t, and zt is aggregate
productivity. Aggregate productivity evolves according to:

dzt = ζ(z̄ − zt)dt+ σzdW
0
t ,

with lower and upper reflecting boundaries at {zmin, zmax} and where W 0
t denotes an

aggregate Brownian motion process. We let Ft denote the filtration generated by W 0
t .

Any agent can use goods to create capital stock, kt, but all face adjustment costs so that
their capital evolves according to:

dkt = (ϕ(ιt)kt − δkt)dt

where Φ(ι)k := (ι − ϕ(ιt))k represents the resources used from investment rate ιt and δ is
a depreciation rate.
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Households: The economy is populated by a large, finite collection of infinitely lived price
taking agents, indexed by i ∈ I = {i : 0 ≤ i ≤ I}.1 Each household i ∈ [0, 1] has discount
rate ρ and gets flow utility u(ci,t) = c1−γ

i,t /(1 − γ). Households have an idiosyncratic labor
endowment ℓi,t at time t, which is drawn from set finite set L, with exogenous transition
matrix Λ. We interpret low l as unemployment and high l as employment.

Assets, markets, and financial frictions: Each period, there are competitive markets for
goods, capital trading, capital rental, and labor. We use goods as the numeraire. We let qt
denote the price of capital, rt denote the interest rate on bonds, υt denote the hiring rate
(or user cost) on renting capital, and wt denote the wage rate on labor. We guess and verify
that the capital price process satisfies:

dqt = µq,tqtdt+ σq,tqtdW
0
i,t

where µq,t, σq,t are the geometric drift and volatility of the qt respectively. Asset markets
are incomplete so households cannot insure their idiosyncratic labor shocks.

Financial frictions: Agents face different types of financial constraints h ∈ H that restrict
their consumption and/or asset choices. Let bi,t and ki,t denote the bonds and capital held
by agent i at time t. Let ai,t := bi,t+ qtki,t denote the household i’s net worth in real terms.
We denote the financial constraint on agent i by:

ΨH(i)(ai,t, bi,t) ≥ 0,

where the h = H(i) subscript indicates the type of constraint faced by agent i. Two examples
that are much studied in the literature are the borrowing constraint ΨH(i)(ai,t, bi,t) = ai,t ≥ 0
and non-participation in the equity market ΨH(i)(ai,t, bi,t) = ai,t − bi,t = 0. To make the
problem more tractable, we often model this as a “soft” constraint by imposing the penalty
function:

ψH(i)(ai,t, bi,t) := −1
2 ψ̄|ΨH(i)(ai,t, bi,t)|2

For convenience, we write the general algorithm under the assumption that the constraint
is a utility cost but also consider cases of resource costs in our application.

1We interpret the economy as an approximation to a competitive equilibrium with a continuum of price-
taking agents. In Gu et al. (2023) we compare this to other ways of approximating such equilibria.
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2.2 Equilibrium

Agent problems: Given their belief about the price processes, (r̂, q̂, υ̂, ŵ), each agent i
chooses consumption ci,t and bond holding bi,t to solve problem (2.1) below:

max
ci,bi

{
E0

[∫ ∞

0
e−ρt(u(ci,t) + ψH(i)(ai,t, bi,t))dt

]}
s.t. dai,t = bi,tr̂i,tdt+ (ai,t − bi,t)dR̂k,t + ŵtli,t − ci,tdt

(2.1)

where li,t ∈ L follows a continuous time Markov chain and dR̂k,t is the agent’s belief about
the return on holding capital:

dR̂k,t := υ̂t − ιtKt

q̂tKt
+ d(q̂tKt)

q̂tKt

=
(

υ̂t
q̂tKt

− ιt
q̂t

+ (ϕ(ιt) − δ) + µ̂q,t

)
dt+ σ̂q,tdWt

=: r̂k,tdt+ σ̂q,tdWt

Expanding out the price processes allows the wealth evolution to be written as:

dai,t = µa,tdt+ σa,tdWt, where

µa,t := bi,tr̂t + (ai,t − bi,t)r̂k,t + ŵtli,t − ci,t

σa,t := (ai,t − bi,t)σ̂q,t

(2.2)

Given their belief about the price processes, (r̂, q̂, υ̂, ŵ), the representative firm hires
capital stock Kt and labor Lt to solve problem (2.3):

max
Kt,Lt

{eztF (Kt, Lt) − υ̂tKt − ŵtLt} (2.3)

Distribution: The uninsurable idiosyncratic shocks and idiosyncratic differences in agent
portfolio constraints potentially generate a non-degenerate distribution of agent wealth
positions across the economy. We let gt = {(ai,t, li,t) : i ∈ I} denote the positions of agents
across the economy at time t for a given filtration Ft, where Ft is generated by aggregate
shock process {Wt}t≥0. With some abuse of terminology, we refer to gt as the distribution
across the economy.

(Sequential) Equilibrium Definition: Given an initial distribution g0, an equilibrium for
this economy consists a collection of F-adapted stochastic processes {cit, bit, gt, rt, υt, qt,
wt, Kt, yt : t ≥ 0, i ∈ I} such that:
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1. Agent and firm decision processes solve problems (2.1) and (2.3), given their belief
about the price process (r̂, q̂, υ̂, ŵ);

2. At each time t, equilibrium prices (rt, qt, υt, wt) solve the market clearing conditions:
(i) goods market

∑
i ci,t +

∑
i Φ(ιi,t)ki,t = y, (ii) bond market

∑
i bi,t = 0, (iii) capital

market
∑
i(ai,t − bi,t) = qtKt, and (iv) the labor market

∑
i li,t = L;

3. Agent beliefs about the price process are consistent with the optimal behaviour of all
agents in the sense that (r̂, q̂, υ̂, ŵ) = (r, q, υ, w).

2.3 Recursive Characterization of Equilibrium

We characterize the equilibrium recursively. We start by setting up the optimization
problem of the agents recursively in the “natural” state variables:

(z,K, g = {ai, li}1≤i≤I).

This characterization is convenient for understanding the agent optimization problem but
turns out to be hard for the neural network to solve. We then characterize equilibrium in
space of wealth shares, which turns out be more convenient for training the neural network.

2.3.1 Characterization in Natural State Variables

State variables and beliefs: We assume there exists a solution to the equilibrium that is
recursive in the aggregate state variables, (y,K, g), which we denote by (·). This means
that the states that appear in the household decision problem are (ai, li, ·). In this case,
beliefs about the price process can be characterized by beliefs about how the distribution
and aggregate capital stock evolves since prices are all implicitly functions of the aggregate
state variables. Formally, an agent’s beliefs about the evolution of the distribution are
characterized by their beliefs about the drift and covariance of other agents wealth and the
drift of capital stock, {µ̂aj (·), σ̂aj (·), µ̂K(·) : j ̸= i}, which imply beliefs about prices through
the pricing functions (r(·), υ(·), q(·), w(·)). Technically, agents also have beliefs about the
evolution of other agent’s labor status but we leave that implicit since it is unrelated to
agent decisions. We let Vi(ai, li, ·) denote household i’s value function. It is helpful to
characterize the equilibrim in terms of three blocks.

1. Agent optimization block: Given their beliefs, agent i chooses (ci, bi) to solve the
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Hamilton-Jacobi-Bellman Equation (HJBE) equation (2.4) below:

ρVi(ai, li, ·) = max
ci,bi,ιi

{
u(ci) + ψH(i)(ai, bi) + ∂Vi

∂ai
µai(ai, li, ci, bi, ι, ·) + ∂Vi

∂z
µz

+ ∂Vi
∂K

µ̂K(·) + λ(li)(Vi(ai, l̃i, ·) − Vi(ai, li, ·))

+ 1
2
∂2Vi
∂a2

i

σ2
ai

(bi, ·) + 1
2
∂2Vi
∂z2 σ

2
z + ∂2Vi

∂ai∂z
σai(bi, ·)σz

+
∑
j ̸=i

∂2Vi
∂ai∂aj

σai(bi, ·)σ̂aj (·) +
∑
j ̸=i

∂Vi
∂aj

µ̂aj (·)

+
∑
j ̸=i

λ(lj)(Vi(ai, li, ·; l̃j) − Vi(ai, li, ·; lj))

+
∑
j ̸=i

∂2Vi
∂aj∂z

σ̂aj (·)σz + 1
2

∑
j ̸=i,j′ ̸=i

∂2Vi
∂aj∂aj′

σ̂aj (·)σ̂a′
j
(·)
}

(2.4)

where l̃j is the complement of lj , the first three lines are the standard terms that would
appear in the individual agent optimization problem, and the last three lines capture the
impact of the distribution on the agent’s value function. The first order conditions with
respect to (ci, bi) are given by the following respectively:

[ci] : 0 = u′(ci) − ∂aVi(ai)

[bi] : 0 = − ∂Vi
∂ai

(r(·) − rk(·)) + ∂2Vi
∂a2

i

(ai − bi)σ2
q (·)

+ ∂2Vi
∂ai∂z

σq(·)σz(·) +
∑
j ̸=i

∂2Vi
∂ai∂aj

σq(·)σ̂aj (·) +
∂ψH(i)
∂bi

[ιi] : 0 = − 1
q̂(·) + ϕ′(ιi)

where Rk(·) − r(·) is the “risk-premium” in the economy. From these equations, we can
immediately see that ιi = (ϕ′)−1(1/q) =: ι is the same for agents.

Firm optimization implies the following first order conditions for firm demand for renting
capital and labor:

ĥ(·) = ez∂KF (K,L), ŵ(·) = ez∂LF (K,L),

2. State evolution block: The law of motion for each agent satisfies (2.2) and aggregate
capital stock satisfies:

dKt = (ϕ(ιt)Kt − δKt)dt. (2.5)
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3. Market clearing and belief consistency block: The equilibrium pricing functions (r(·),
υ(·), q(·), w(·)) are pinned down implicitly by the market clearing conditions in part 2
of the equilibrium definition. Under this recursive characterization, the belief consistency
condition becomes that each agent has correct beliefs about the evolution of wealth for the
other agents and aggregate capital stock:

(
µ̂aj (·), σ̂aj (·), µ̂K(·)

)
=
(
µaj (·), σaj (·), µK(·)

)

2.3.2 Characterization as Master Equations in Wealth Shares

We now re-characterize the equilibrium as a collection of “master” differential equations for
the neural network to train. The first change is to the characterization of the distribution.
It turns out that the recursive characterization in agent wealth levels leads to a complicated
fixed point problem that is hard for the Neural Network to train (we discuss in detail in
Section 3.4 after we introduce the algorithm.). Instead, it will be convenient to characterize
the equilibrium in terms of wealth shares. Let A :=

∑
j≥1 aj denote total wealth in the

economy. Let ηi := ai/A denote the share of wealth held by agent i. Then, the aggregate
state of the economy can be written in terms of wealth shares as (z,K, {ηj , lj}j≥1). We can
now restate the equilibrium conditions using the wealth shares as the state. For notational
convenience, we drop the explicit dependence on (z,K, {ηj , lj}j≥1) and, where possible.

The second change is to work with the derivative of the value function. We define the
marginal value of wealth and the partial derivatives of the marginal value of wealth (the so
called “stochastic discount factors”) by:

ξi := ∂Vi
∂ai

, ∂aξi := ∂ξi
∂ai

= ∂2Vi
∂a2

i

, ∂ajξi := ∂ξi
∂aj

= ∂2Vi
∂aiaj

Once equilibrium is imposed, all the endogenous objects in the economy must be functions
of (z,K, {ηj , lj}j≥1). We can use Ito’s Lemma to express the drift and volatility of ξi in
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terms of derivatives of ξi with respect to (z,K, {ηj , lj}j≥1) in equilibrium:

ξiµξi
= ∂ξi
∂z

µz + ∂ξi
∂K

µK +
∑
j

∂ξi
∂ηj

ηjµηj ,t +
∑
j

∂2ξi
∂z∂ηj

ηjσηj ,tσz

+ 1
2
∂2ξi
∂z2 σ

2
z + 1

2
∑
j,j′

∂2ξ2
i

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t (2.6)

ξiσξi
= ∂ξi
∂z

σz +
∑
j

∂ξi
∂ηj

ηjσηj ,t (2.7)

ξiςξi,j = ξ̃i,j − ξi

where ξ̃i,j is ξi evaluated with lj changed to it’s complement l̃j .
The third change is that we impose belief consistency and market clearing conditions,

where possible.
We now rewrite the general equilibrium blocks with these changes imposed.

1. Agent optimization block: Applying the Envelope Theorem to the HJBE (2.4), imposing
belief consistency, and using Ito’s Lemma to collect terms leads to the continuous time
Euler equation (the so called “master equation” for the economy) for ξi. Given prices
(r, rk, q, µq, σq), agent optimization implies that (ξi, ci, bi, ιi) satisfy:

0 = − ρ+ r + µξi,t + ς̄ξi
+ 1
ξi

∂ψH(i)
∂ai

∣∣∣
ai=ηiq

(2.8)

u′(ci) = ξi

r − rk = σξi
σq + 1

ξi

∂ψH(i)
∂bi

∣∣∣
ai=ηiq

(2.9)

ιi = (ϕ′)−1
(
q−1

)
where µξi

satisfies (2.6), σξi
satisfies (2.7) and ς̄ξi

=
∑
j λ(lj)(ξ̃i,j − ξi).

2. State evolution block: Given prices (rt, rk, q, µq, σq) and agent optimization (ξ, c, b, ι), we
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can use Ito’s Lemma to get the law of motion for each wealth share ηj,t = aj,t/(qtKt):

ηjµηj ,t = 1
aj,t

[
rk,t(aj,t − bj,t) + bj,trt − (u′)−1(ξj,t)

]
− µq,t − µK,t + σq,t

(
σq,t − 1

aj,t
(aj,t − bj,t)σq,t

)

= rkt − µq,t − µK,t + bj,t
ηj,tqtKt

(rt − rk,t) − (u′)−1(ξj,t)
ηj,tqtKt

+ bj,t
ηj,tqtKt

σ2
q,t (2.10)

ηjσηj ,t =
[

1
aj,t

(aj,t − bj,t)σq,t − σq,t

]
= − bj,t

ηj,tqtKt
σq,t (2.11)

The evolution of Kt once again satisfies (2.5).

3. Equilibrium block: The market clearing conditions now become:

∑
i

ci + Φ(ι)K = y
∑
i

bi = 0
∑
i

(ηiA− bi) = K
∑
i

li = L

where the aggregate household wealth satisfies A :=
∑
j≥1 aj = qK and so the capital

market clearing condition simply becomes
∑
i ηi = 1. The rental rate and wage rate can

then immediately be expressed explicitly in terms of the state variables:

υ = ez∂KF (K,L) w = ez∂LF (K,L) (2.12)

The risk free rate is harder to handle because it can only be implicitly expressed in terms
of the state variables through its dependence on the stochastic processes for ξ and q (using
the agent first order conditions):

r = rk + σξi
σq + 1

ξi

∂ψH(i)
∂bi

The price of capital is even more difficult to handle because capital is a long-lived asset for
which the price can only be implicitly expressed in terms of the state variables using Itô’s
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Lemma:

qµq,t =
∑
j

∂q

∂ηj
ηjµηj ,t + ∂q

∂z
µz,t + ∂q

∂K
µK,t +

∑
j

∂2ξi
∂z∂ηj

ηjσηj ,tσz

+ 1
2
∑
j,j′

∂2q

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t + 1

2
∂2q

∂z2σ
2
z +

∑
j

λ(lj)(q̃i,j − qi)

qσq,t =
∑
j

∂q

∂ηj
ηjσηj ,t + ∂q

∂z
σz,t. (2.13)

These expressions for µq,t and σq,t are what makes the law of motion for capital “consistent”
with the process that we posited in the environment and so are often referred to as the price
consistency differential equations.

2.3.3 Comparison to Other Models

Why is this system of equations difficult to solve in our model? Because, unlike in most
models, all three blocks are non-trivial. To our knowledge, no other paper is able to
satisfactorily solve this system globally without imposing assumptions to make one of the
blocks trivial. To understand why this is the case, it is instructive to compare the model to
other macro-finance models.

(i). For a representative agent model, block 2 is not applicable because there is no distribution
and block 3 is less complicated because the goods market condition simply becomes
c + (ι − ϕ(ι))K = y, which can be substituted into equations in block 1. In this
case, the model can be simplified to a differential equation for q. For heterogeneous
agent models, following Krusell and Smith (1998), other papers approximate the
distribution by a low dimensional collection of moments and do not need to work
the agent distribution.

(ii). For the continuous time version of Krusell and Smith (1998) discussed in Gu et al.
(2023), we have a distribution of agents so block 2 is non-trivial. However, this model
has no long-term assets and closed form expressions for all prices in term of the
distribution (the only pricing equations are the explicit expressions (2.12)). So, block
3 is can be trivially satisfied and we can combine all equilibrium conditions into one
master equation.

(iii). For models such as Basak and Cuoco (1998) and Brunnermeier and Sannikov (2014)
discussed in Gopalakrishna (2021), the HJBE can be solved in closed form. This
means that block 1 can be solved analytically and substituted into the block 3.
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3 Algorithm

In this section, we outline our algorithm for solving the model. A “direct” application of deep
learning would be to parameterize the equilibrium objects and then train the neural networks
to minimize a loss function that combines condensed set of the general equilibrium equations
described in subsubsection 2.3.2. Although this approach should work in principle, many
researchers have found it very difficult to implement in practice. Instead, we simplify the
equations, choose a parsimonious parametrization and break the problem up into “linear”
blocks.

3.1 A Simplified Set of Equations

We start by reorganizing the set of equilibrium conditions to prepare the model for neural
network training. We start with consumption and goods market clearing. Let ωi := ci/ai =
ci/(ηiq) and θi := bi/ai = bi/(ηiq) denote the equilibrium consumption-to-wealth ratio and
bond-to-wealth ratio for agent i. From the goods market clearing condition, q satisfies:

q = ezK1−αL1−α + Φ((ϕ′)−1q−1)∑I
i=1 ωiηi

. (3.1)

Individual SDFs can then be expressed as:

ξi = u′(ωiηiqK), for i ∈ {1, 2, ..., I},

We now combine the first order conditions for portfolio choice. Substituting equation
(2.11) (the Ito’s Lemma expansion of ηjσηj ) and equation (2.7) (the Ito’s Lemma expansion
of σξ) into equation (2.9) (the agent portfolio choice first order condition) gives the equations:

ξi

(
r − rk
σq

)
=

∑
j<I−1

∂ξi
∂ηj

ηjσηj + ∂ξi
∂z

σz + 1
σq

∂ψi(ηiq,−η2
i σηiq/σq)

∂bi
, i = 1, . . . I

Rearranging and stacking the equations for i = 1, . . . I gives:

−σz



∂ξ1
∂z
...
...
∂ξI
∂z

 =



∂ξ1
∂η1

η1 ... ∂ξ1
∂ηI−1

ηI−1 ξ1
∂ξ2
∂η1

η1 ... ... ξ2
... ... ...

...
∂ξI
∂η1

η1 ... ∂ξI
∂ηI−1

ηI−1 ξI




ση1
...

σηI−1
rk−r
σq

+ 1
σq



∂ψ1
∂b1
∂ψ2
∂b2...
∂ψI
∂bI

 (3.2)

where the explicit dependence of ψi on σηi has been suppressed. This can be written in
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matrix form in the following way:

−σz
∂ξξξ

∂z
= M

σσσηηη
s

+ 1
σq

diag
(
∂ψψψ

∂bbb

)
(3.3)

where the vectors are ξξξ := [ξ1, . . . , ξN ]T , ηηη := [η1, . . . , ηN−1]T , σσσηηη := [ση1 , . . . , σηN−1 ]T ,
ψψψ := [ψ1, . . . , ψN ]T , and bbb := [b1, . . . , bN ]T , s := rk−r

σq
is the Sharpe ratio, and M denotes

the matrix:

M :=

 ∂ξξξ
∂ηηη ⊙

 ηηη

|

 ξξξ


Equation (3.3) shows the endogenous connection between agent wealth shares and the
stochastic price process: agent portfolio decisions react to the price process in the economy
and amplify the movement in the distribution. If ψi is linear in bi, then equation (3.3) is a
linear equation that can be solved explicitly for [σσσηηη, s]T .

Finally, we eliminate (ι, ccc, bbb, µξ, σξ, µK) from the equations in section 2.3.2 by making
the appropriate substitutions. This leaves the following system of equations. At state
X = (z,K, (ηi, li)i≤I), the equilibrium objects (ξξξ, q,ωωω,σσσηηη, s, σq,θ, µη, µq, r) must satisfy the
collection of equations:

0 = (r − ρ)ξi + ∂ξi
∂z

µz + ∂ξi
∂K

(ϕ((ϕ′)−1(q−1))Kt − δKt)

+
∑
j

∂ξi
∂ηj

ηjµηj ,t +
∑
j

∂2ξi
∂z∂ηj

ηjσηj ,tσz + 1
2
∂2ξi
∂z2 σ

2
z

+ 1
2
∑
j,j′

∂2ξ2
i

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t +

∑
j

λ(lj)(ξ̃i,j − ξi) + ∂ψi
∂ai

∣∣∣
ai=ηiq

(3.4)

q = ezK1−αL1−α + Φ((ϕ′)−1(q−1))∑I
i=1 ωiηi

, (3.5)

ξi = u′ (ωiηiqK) , for i ∈ {1, ..., I}, (3.6)

0 = −

 ∂ξξξ
∂ηηη ⊙

 ηηη

|

 ξξξ

σσσηηη
s

− σz
∂ξξξ

∂z
− 1
σq

diag
(
∂ψψψ

∂bbb

)
(3.7)

qσq =
∑
j

∂q

∂ηj
ηjσηj + ∂q

∂z
σz

θi = −
ηjσηj

σq
, for i ∈ {1, ..., I}, (3.8)

KµK =
(
ϕ
(
(ϕ′)−1

(
q−1

))
K − δKt

)
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rk − µq = z∂K(K,L)
qtKt

− (ϕ′)−1 (q−1)
qt

+ (ϕ(ιt) − δ) (3.9)

ηiµηi = rk − µq + θiσqs− µK − ωi + θiσ
2
q , for i ∈ {1, ..., I} (3.10)

qµq =
∑
j

∂q

∂ηj
ηjµηj + ∂q

∂z
µz + ∂q

∂K
µK +

∑
j

∂2ξi
∂z∂ηj

ηjσηjσz (3.11)

r = σqs+ z∂K(K,L)
qK

− (ϕ′)−1(q−1)
q

+ (ϕ((ϕ′)−1(q−1)) − δ) + µq (3.12)

Discussion: In general, working in the wealth space {aj} features an additional non-
trivial fixed point problem as the wealth dynamics contain µq and price dynamics requires
µaj . Thus, jointly pinning down µaj and µq requires a iterative scheme, as proposed in the
computation part of Guvenen (2009). However, in the wealth share space the state dynamics
do not depend on µq directly as implied by (3.10) and (3.9), due to the price effect does not
affect shares’ dynamics. Actually, the price’s geometric drift only helps determine the risk
free rate in (3.12) which enters into the Euler equation as part of the final loss. Following
the execution order from (3.5) to (3.12) turns out to be critical.

3.2 Neural network parametrization and loss function

Let X := (z,K, (ηi, li)i≤I) ∈ X denote the state vector in the economy and let X denote
the state space. We use neural networks to approximate sufficiently many variables to
allow us to calculate the remaining variables using matrix algebra. For our general model,
this requires approximating: the equilibrium consumption-to-wealth ratio policy for the
first agent in the economy with each type of financial constraint, {ωh(X)}h∈H, the price
volatility, σq(X), and the equilibrium constraint functions ∂bψh(X)}h∈H. We denote the
approximations by:

ω̂h : X → R, (X,Θωh
) 7→ ω̂h(X; Θωh

), ∀h ∈ H

σ̂q : X → R, (X,Θq) 7→ σ̂q(X; Θq),

∂bψ̂h : X → R, (X,Θψh
) 7→ ∂bψ̂h(X; Θψh

), ∀h ∈ H

where {Θωh
}h∈H, Θq, and {Θψh

}h∈H are the parameters in the neural network approximations
of ω̂h, σ̂q, and ∂bψ̂h respectively.

We can recover the approximate consumption policy function for each agent i with
constraint h from ω̂h because policies for all agents with a particular financial constraint
are symmetric. That is, let n(h) denote the position of the first agent economy in the
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economy with constraint h. Then ω̂i(X) for any i with constraint h can be recovered by
swapping the positions of the states for n(h) and i:

ω̂i(X) = ω̂H(i)
(
z,K, (. . . , (ηn(h), ln(h)) = (ηi, li),

. . . , (ηi, li) = (ηn(h), ln(h)), . . .)
)
. (3.13)

At state X, the error (or “loss”) in the Neural network approximations is given by the
following equations for h ∈ H:

Lωj (X) = (r − ρ)ξ̂i + ∂ξ̂i
∂z

µz + ∂ξ̂i
∂K

(ϕ((ϕ′)−1(q−1))Kt − δKt)

+
∑
j

∂ξ̂i
∂ηj

ηjµηj ,t +
∑
j

∂2ξ̂i
∂z∂ηj

ηjσηj ,tσz + 1
2
∂2ξ̂i
∂z2 σ

2
z

+ 1
2
∑
j,j′

∂2ξ̂2
i

∂ηj∂ηj′
ηjηj′σηj ,tσηj′ ,t +

∑
j

λ(lj)( ˆ̃ξi,j − ξ̂i) + ∂ψ̂i
∂ai

(3.14)

Lσ(X) = − qσ̂q +
∑
j

∂q

∂ηj
ηjσηj + ∂q

∂z
σz (3.15)

Lψj
(X) = − ∂ψ̂i

∂ai
+ ∂ψi
∂ai

(ai = ηiq, bi = θiηiqK) (3.16)

where ξ̂j = ξ̂(ω̂j(X)) for all j ∈ J , ψ̂j = ψ̂j(X) for all j ∈ J , σ̂q = σ̂q(X), and the other
variables are evaluated by solving the relevant equations in section 3.1.

Discussion on which neural network objects need to be approximated. We
approximate variables to ensure that the equations are linear given those variables. This
means that we always need to approximate ωj (or ξj) because the Euler equation (3.4) is
non-linear. If there are no financial constraints, ψj = 0 for all j ∈ J , then we do not need to
make any additional approximations because the risk allocation equation (3.7) can be solved
using matrix inversion. If the financial constraints are linear so that ∂ψψψ/∂bbb is independent of
portfolio choice, then we only need to approximate ωj and σq. For the general problem with
non-linear ∂ψψψ/∂bbb, then we also need to approximate the financial constraints, as described
in the general setup.

Discussions on Financial Constraints’ Impact on Risk Allocation. There are two
types of financial constraints in macroeconomic models: (1) constraint on the state variable,
i.e., a ≥ −a as in Aiyagari (1994); (2) constraint on the control variables, i.e., Kiyotaki and
Moore (1997). Though (1) type of financial constraint can be viewed as the constraint of
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cumulative effect of constraints on control variables, type (1) and (2) constraints are treated
differentluy. For the first type of constraint, we should treat them as softened constraints
to have a well-defined boundary conditions for the PDE, as in Gu et al. (2023). For the
second type of constraint, we could either treat them as soft or hard constraint because it
relates to the instant risk allocation.

3.3 Algorithm

We outline the algorithm in Algorithm 1 below. Given the current guesses of the neural
networks, we solve for equilibrium using the matrix algebra. We then update our guesses
for the neural network approximations.

Algorithm 1 Pseudo Code
1: Initialize neural network objects {ω̂h}h≤H , {∂bψ̂h}h≤H , and σ̂q with parameters

{Θωh
}h≤H , {Θψh

}h≤H , and {Θq} respectively.
2: Initialize optimizer.
3: while Loss > tolerance do
4: Sample N new training points:

(
Xn =

(
zn,Kn, (ηi, li)ni≤N−1

))N
n=1

.
5: Calculate equilibrium at each training point Xn:

a. Compute (ω̂ni )i≤I using equation (3.13) and the current approximation {ω̂h}h≤H

evaluated at Xn.

b. Compute qn and (ξni )i≤I using equations (3.5) and (3.6) and (ω̂ni )i≤I .

c. Solve for σσσnηηη and sn using equation (3.7) and the current approximations for
{ω̂h}h≤H , {∂bψ̂h}h≤H , and σ̂q (and their automatic derivatives).

d. Solve for portfolio choice θn from (3.8).

e. Compute µη, µq, r using (3.10), (3.11), and (3.12).

5: Construct loss as:

L̂(X) =
∑
h

1
N

∑
n

|L̂ωh
(Xn)| +

∑
h

1
N

∑
n

|L̂ψh
(Xn)| + 1

N

∑
n

|L̂σ(Xn)|

where L̂ωh
, L̂ψh

, and L̂σ are defined by (3.14), (3.16), and (3.15) with ωh, ∂bψ, and
σq replaced by their neural network approximation.

6: Update {Θωh
}1≤i≤H , {Θψh

}1≤h≤H , and {Θq} using ADAM optimizer.
7: end while
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3.4 Advantage of Wealth Share Characterization

Having described the algorithm, we can now explain why it is helpful to solve the model on
the wealth share space rather than the wealth space.

The major difficulty faced by the deep learning macroeconomics literature is that it
is necessary to impose market clearing in the sampling. This is partly because trying to
impose market clearing in the loss function generates instability. It is also because for asset
pricing problems, in particular, sampling schemes that don’t impose market clearing often
lead the neural network learn a trivial mapping “q = q” due to the summation of individual
wealth equating to q. To overcome these problems, we restrict the sample space to enforce
market clearing.

If we sample in the a space, then we end up needing to restrict a to a subspace that
depends upon equilibrium prices. To make this concrete, consider the goods market clearing
condition, the capital market clearing condition, and the borrowing constraint:

∑
i

c(ai) +
∑
i

Φ(ιi,t)ki,t = ezK,
∑
i

ai = qK, ai ≥ ā

If we sample in a space, then we need to draw a values in a way that respects these
conditions. This restricts a to an I − 1 dimensional hyperplane A(z,K, q) that depends
upon z, K, and the equilibrium q.

Restricting a to the equilibrium hyperplane causes a number of problems when we don’t
have a closed form expression for q and so need neural network approximations for both V̂
and q̂.2 First, it is hard to control how frequently the sampled agents hit the borrowing
constraint. Second, numerical instability arises because the V̂ has another neural network,
q̂, as an input. This second problem is particularly acute for deep learning based algorithms
because there is no easy way to retain the computational graph for q when calculating auto-
derivatives for V . To understand this, recall that the loss function depends upon V̂ (X; ΘV )
and q̂(X; Θq):

Loss(X) = F(X, V̂ (X; ΘV ), q̂(X; Θq))

This means that, in principle, the parameter update step in the stochastic gradient descent
2For example, in Gu et al. (2023) we had a closed form expression for the prices and so we did not face

these difficulties.
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algorithm should look like the following:

θV,n+1 = θV,n − αV,n
∂Loss

∂θV
,

θq,n+1 = θq,n − αq,n
∂Loss

∂θq
,

where αV,n and αq,n denote the rate of updating. However, when we impose equilibrium
sampling and so need to express V̂ as an implicit function of q̂, then we need to detach q̂

in the θV update step and detach V̂ in the θq update step. So, in practice, the algorithm
looks like:

θV,n+1 = θV,n − αV,n
∂Loss

∂V̂

∂V̂

∂θV
,

θq,n+1 = θq,n − αq,n
∂Loss

∂q̂

∂q̂

∂θq
,

This “diverted” gradient based updating is very likely to get stuck at local minima, particularly
when there is high curvature in the problem. An additional problem is that computing the
evolution of the distribution requires the asset returns rq, r, µq, σq but at the same time
µq, σq are pinned down by the the consistency conditions, which in turn depend upon the
distribution evolution. This creates a fixed point problem that does not have a simple closed
form solution for µq, σq in most heterogeneous agent economic models and so suggests that
we need to introduce auxiliary neural networks for µq, σq. Resolving these issues requires a
staggered updating approach similar to that proposed by Guvenen (2009).

Working in the wealth share space rather than the wealth space resolves these issues.
This is because, in the wealth share characterization, the capital market clearing condition
is automatically satisfied because of the accounting relation:

∑
i ηi = 1. This, in turn,

means that we are able impose market clearing in the sampling without needing to allow
the neural network approximation V̂ to take q̂ as an input.

4 Three Testable Models

We compare neural network solution to analytical results (for complete market model) and
finite difference solutions (for incomplete market models) solved by HJB equations.

4.1 Complete Market Model

We make the following modifications to map the model mentioned in section 2 to a Lucas
Tree model. We set the capital share α to be one. We set both the capital depreciation rate
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δ and the capital conversion function to be zero. We fix the capital level Kt to be one and
remove all penalty functions. To further simplify our notations, we introduce the output
level yt = ezt .

Without financial frictions, there is simple aggregation of individual’s Euler equations
as stated in main text, which coincides with the representative agent’s pricing equation.
Let us consider y’s process follows the geometric Brownian motion’s case:

dyt = µytdt+ σytdW
0
t .

In representative agent’s world, by standard Lucas tree pricing formula, asset price is
determined by discounted flow of dividend:

q(y0) = E
[∫ ∞

0
e−ρt u

′(ct)
u′(c0)ytdt

]
= y0E

[∫ ∞

0
e−ρt(yt/y0)1−γdt

]

Note that for geometric Brownian motion, the distribution of output is given by:

ln(yt/y0) ∼ N
(

(µ− 1
2σ

2)t, σ2t

)
which means (the integral and expectation operator are interchangeable):

E(yt/y0)1−γ = (1 − γ)(µ− 1
2σ

2)t+ 1
2(1 − γ)2σ2t

= (1 − γ)µt+ 1
2(γ − 1)γσ2t

≡ −ǧt

Therefore, asset prices are given by:

q(y0) = y0

∫ ∞

0
e−ρte−ǧtdt = y0

ρ+ ǧ
= y0

ρ+ (γ − 1)µ− 1
2γ(γ − 1)σ2

By goods market clearing condition, we know that ct = yt, which means the consumption
policy is:

c =
[
ρ+ (γ − 1)µ− 1

2γ(γ − 1)σ2
]
q

For γ = 5, µ = 0.02, σ = 0.05, ρ = 0.05 in the numerical example, c/q = 10.5%, which
means: q(1) = 1/10.5% ≈ 9.5.

Though aggregation results hold, we still incorporate the wealth heterogeneity and
solve by our algorithm. Note that the instant risk allocation is determined by simple
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Figure 1: Solution to As-if representative agent model. Right panel: consumption-wealth
ratio of agent 1.

matrix inversion from (3.2) and there’s no other unknowns for price’s risk consistency,
it is unnecessary to parameterize σq. We find that our solution aligns with the “as-if”
representative agent’s solution quite well. The estimated time cost for model with 5 agents
is about 2 mins, 10 agents is about 10 mins and 20 agents is about 20 mins. The difference
between consumption rule solved neural network and analytical solution is less than 0.1%
(for 5, 20 agents)/ 0.5% (for 20 agents).

Num of Agents Euler Eq Error Diff Time Cost
5 <1e-4 <0.1% 2 mins
10 <1e-4 <0.5% 10 mins
20 <1e-3 <0.5% 20 mins

Table 1: Summary of the algorithm performance and computational speed. “Diff” means
the difference between representative agent case’s solution and brute-force. All errors are
in absolute value (L1 loss).
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4.2 Asset Pricing with Restricted Participation

We still adopt the modifications that are done in the first subsection to mimic the endowment
economy. There are two price taking agents in this infinite horizon economy: expert and
household. The financial friction we use is that household cannot participate the stock
market. Mathematically, it is stated as:

Ψi(ai, bi) = − ψ̄i
2 (ai − bi)2, ψ̄h = ∞, ψ̄e = 0.

Again, the output yt follows a geometric Brownian motion:

dyt = µytdt+ σdZt.

Boundary Conditions. We focus on the case that η ∈ (0, 1], as the economy is ill-defined
when experts are wiped out from the economy, i.e., nobody holds the tree in equilibrium.
To get the right boundary, we use the asset prices and consumption policy ωe from the
representative agent’s solution:

ωe(1, y) = ρe + (γ − 1)µ− 1
2γ(γ − 1)σ2, q(1, y) = y

ωe(1, y) .

Model Solution. The estimated time to solve the limited participation problem by neural
network is about 5 minutes. We compare the finite difference solution (technical details can
be found from the appendix) with the neural network solution on η’s dimension in figure 2
for y = 1. We can see that neural network well captures the high non-linearity (left-upper
panel) and amplification (right-lower panel) by high risk-aversion.

4.3 A Macroeconomic Model with Productivity Gap

The setup follows Brunnermeier and Sannikov (2016). There are two types of agents in this
infinite horizon economy: experts and households. We allow households to hold capitals
but in a less productive way. The productivity of experts and households is zh, ze (zh < ze)
respectively. Their relative risk-aversion are both γ. Output grows at exogenous drift
µy = yµ, volatilty yσ, and experts cannot issue outside equities. In addition, we assume
there’s a constraint for no short-selling from households’ side, which can be formally written
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Figure 2: Solution to restricted stock market participation model.

as: 
Ψh(ah, bh) = − ψ̄h

2 (min{ah − bh, 0})2, ψ̄h = ∞

Ψe(ae, be) = − ψ̄e
2 (ae − be)2, ψ̄e = 0.

The output flow on households’ side and experts’ side can be written as:

de,t = zeyt, dh,t = zhyt, dyt = ytµdt+ ytσdZt

The capital return from households’ side and experts’ side:

rqe,t = de,t
qt

+ µq,t, r
q
h,t = dh,t

qt
+ µq,t.

We could rewrite the financial friction as return’s gap: ae−ah
qσq . For the first two equations,
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we have:
− 1
ξe
∂ξe

∂y
σy = 1

ξe
∂ξe

∂η
ση −

rf − rqh
σq

+ ye − yh
qσq

− 1
ξh
∂ξh

∂y
σy = 1

ξh
∂ξh

∂η
ση −

rf − rqh
σq

+ 0
⇔ nnn = M

 ση
rf −rq

h
σq

+

ye−yh
qσq

0


︸ ︷︷ ︸

∂2ψψψ

The main difficulty for Brunnermeier and Sannikov (2016)’s model is that we need to
preserve computational graph when output is a function of risk allocation, which means
resorting to non linear solver, as in Gopalakrishna (2021), is not applicable here. The
algorithm in section 3 still applies here, however. Compared to the previous two examples,
we have to parameterize only one more equilibrium object, because of the closed form
relationships between the equilibrium objects. In practice, we introduce the auxiliary neural
network for the capital allocation (or say, the output function), which turned to be most
efficient, κ = η + λ = η + Nλη

β, where Nλ is a trainable neural net and β is solved from
the asymptotic solution for η → 0. Such parameterization effectively captures the high
non-linearity as η goes to zero.

Model Solution. The estimated time to solve the model by neural network is about 5
minutes. Again, we compare the finite difference solution with neural network solution
in figure 3 for y = 1. We set up the range of η to be the crisis region in Brunnermeier
and Sannikov (2016), which is defined by inefficient capital allocation as κ < 1. We can
see that the neural network solution well captures most of the amplification in that crisis
region, despite the volatility gap between finite difference solution and neural network’s
when η → 0, which is not quantitatively relevant because of the negligible amount of time
the economy spends in this deep crisis region. Matching such extremely high non-linearity
as η goes to be very close to zero has already been studied well in Gopalakrishna (2021)
and is beyond the scope of our paper.
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Figure 3: Solution to the model with productivity gap.

5 Solution to the General Model

In this section, we solve a version of limited participation model with heterogeneous households,
representative expert, investment frictions and production with capital share is less than
one using the algorithm described in section 3. This model is close to the model studied in
Fernández-Villaverde et al. (2023) and Guvenen (2009), but has heterogeneous household,
long-term firm equity pricing problem and dynamic amplification altogether. We first
explain how this model is connected to the general model in section 2 then discuss the
results.

Relation to the Generic Environment. There are I − 1 ex-ante identical households
whose labor endowments are drawn from set li ∈ {l, l}, with a 2 × 2 transition matrix

Λ =

 λ1 1 − λ1

1 − λ2 λ2

. There is one representative expert (labeled as I), whose labor
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endowment lI is zero. All households cannot hold capital. The penalty functions are:

Ψi(ai, bi) = − ψ̄i
2 (ai − bi)2, ψ̄i =

 ∞ 1 ≤ i ≤ I − 1
0 i = I

For tractability, the function form for investment friction is:

ϕ(ι) = 1
φ

log(1 + φι),

which simplifies the asset price’s expression in equation (3.1) as:

q(X) = ezKα−1L1−α + 1/φ∑I+1
i=1 ω̂i(X)ηi + 1/φ

.

Solution. We solve the model with I = 11. We plot the equilibrium consumption-
wealth ratio (scattered plot) and endogenous price volatility (histogram) with sampled data
on figure 4. As our solution approach works on the equilibrium wealth share space, it is
impossible to plot policy function versus individual wealth by keeping other agents wealth
share ηj ̸=i, capital level K, and productivity z unchanged. For households labor endowment
distribution in the sampled data set, we construct it as the invariant distribution on l-space.
We do a uniform sampling for variable K from the interval [K,K] which is endogenously
determined by productivity process.

From the left panel of figure 4, we observe a decreasing households’ consumption-wealth
ratio. As individual’s wealth goes close to zero, they could still have labor income to
consume. This explains a high ω for households for low η. For the expert, we observe a
constant consumption wealth ratio which equals the discount rate because the substitution
effect and income effect cancel out by the assumption of log utility. From the right panel of
figure 4, we can directly see the endogenous volatility effect as the histogram stands to the
right to the blue vertical line, which labels the fundamental volatility. Such amplification
by the financial sector cannot be observed in a model with log utility and no labor income,
since ∂q/∂ηj = 0 across agents if experts and households have the same discount rate.

To see why we have the amplification effect through endogenous risk dynamics, we plug
in the expression for σηj (2.11) in equation (2.13):

⇒ σq =
1
q
∂q
∂zσz

1 +
∑
j

1
q
∂q
∂ηj

θj,t
= 1
q

∂q

∂z
σz +

∞∑
i=1

(−)i
∑

j

1
q

∂q

∂ηj
θj,t

i .
In an economy without financial frictions, where the asset price q is only a function of TFP’s
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realization, the consistency for volatility implies:

σq = 1
q

∂q

∂z
σz.

The difference between the price volatility in these two economies is the endogenous amplification
term3:

∆σq =
∞∑
i=1

(−)i
∑

j

1
q

∂q

∂ηj
θj,t

i ,
which also contributes to the risk-premium. Individuals are making portfolio decision θj

by perceiving this extra price volatility in equilibrium and thus the fundamental risk is
amplified in a non-linear way. Therefore, agents who have better access to the financial
market, i.e., ∂q

∂η < 0 are taking leverage, i.e., θj,t < 0, to earn a higher risk premium.
Fernández-Villaverde et al. (2023) do not have amplification through price dynamics as
there is no investment friction in their model, though the distribution still enters as a state
variable in HJB equations.
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Figure 4: Solution to the main model. The L-1 training loss is 2 × 10−3.

3In Brunnermeier and Sannikov (2016), they assume a capital depreciation shock which leads to a similar
expression for ∆σq.
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6 Conclusion

In this paper, we have developed a new methodology that uses deep learning to characterize
global solutions to macroeconomic models with long-term assets, agent heterogeneity, and
non-trivial household portfolio choice. We used the methodology to explore how limited
participation in asset markets leads to amplification of the capital price process. More
generally, we believe this technique provides the toolkit for exploring how asset pricing
relates to inequality across investors and institutions.
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A Derivations of Analytical Results

In this section, we provide the derivations for the Euler equation we used in section 2. The
first subsection introduces a heuristic derivation from a continuous-time approximation
of the discrete time Euler equation without financial frictions and jumps. The second
subsection derives from HJB equation and envelop theorem in the most generic setup.

A.1 A Heuristic Derivation

We consider the discrete time version of Euler equation without jumps and financial frictions:

E
[
β
u′(ct+1)
u′(ct)

(
qt+1 + dt+1

qt

)]
= 1,

where qt, qt+1 are asset price at time t and t + 1, dt+1 is the dividend at time t + 1. Note
that marginal value of wealth is connected with marginal utility by optimal consumption
decision:

u′(ct) = ξt,

we could essentially rewrite Euler equation as:

E
[
β
ξt+1
ξt

(
qt + (dt+1 + qt+1 − qt)

qt

)]
= 1

Now, consider the case that time step is sufficiently small, i.e., replace t+ 1 as t+ ∆t:

β = e−ρ∆t,

ξt+1
ξt

= 1 + µξ,t∆t+ σξ,t∆ϵ,
qt+1
qt

= 1 + µq,t∆t+ σq,t∆ϵ,

dt+1
qt

= πt∆t
qt

+ O(∆πt∆t
qt

),

where πt is the net profit process from production, ∆ϵ is normally distributed random
variable with mean zero and variance ∆t (E[∆ϵ∆ϵ] = ∆t). As we only keep up to order of
∆t, the dividend price ration can be essentially simplified as dt+1

qt
= πt∆t

qt
. Plug in all above

equations, Euler Equation can be expressed as:

E
[
(1 − ρ∆t)(1 + µξ,t∆t+ σξ,t∆ϵ)

(
1 + (πt

qt
+ µq,t)∆t+ σq,t∆ϵ

)]
= 1
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Drop all higher order terms ∆ϵ∆t,∆t∆t again, and we have:

−ρ+ µξ,t +
(
πt
qt

+ µq,t

)
︸ ︷︷ ︸

rq,t

+ σξ,tσq,t = 0 (A.1)

Similarly, we could also derive the Euler equation by considering the return on risk-free
assets, which is:

−ρ+ rt + µξ,t = 0 (A.2)

Taking the difference between (A.1) and (A.2), we get the first order condition for portfolio
choice again:

rq,t − rt = σξ,tσq,t.

With financial constrains, however, Euler equation becomes inequality and the above derivations
no longer apply. The next subsection explores the full problem in a recursive way.

A.2 Full Derivation

Taking the envelope condition and imposing belief consistency to get the continuous time
“Euler” equation. To apply all first order conditions, including the portfolio choice and
consumption decision, we first work on the wealth space, then convert to the wealth share
space and impose all equilibrium conditions.
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Lets take the first order derivative w.r.t ai for the HJB equation (2.4):

ρ
∂Vi(ai, li, ·)

∂ai
=u′(ci)

∂ci(·)
∂ai

+
∂ψH(i)(ai, bi)

∂ai
+
∂ψH(i)(ai, bi)

∂bi

∂bi
∂ai

+ ∂2Vi
∂a2

i

µai(ai, li, ci, bi, ι, ·)

+ ∂Vi
∂ai

(∂µai(ai, li, ci, bi, ι, ·)
∂ai

+ ∂µai(ai, li, ci, bi, ι, ·)
∂ci

∂ci
∂ai

+ ∂µai(ai, li, ci, bi, ι, ·)
∂bi

∂bi
∂ai

)
+ ∂2Vi
∂ai∂z

µz + ∂2Vi
∂ai∂K

µ̂K(·) + λ(li)
(∂Vi(ai, l̃i, ·)

∂ai
− ∂Vi(ai, li, ·)

∂ai

)
+ 1

2
[∂3Vi
∂a3

i

σ2
ai

(bi, ·) + 2∂
2Vi
∂a2

i

σai(bi, ·)
(∂σai(bi, ·)

∂ai
+ ∂σai(bi, ·)

∂bi

∂bi
∂ai

)]
+ 1

2
∂3Vi
∂ai∂z2σ

2
z

+ ∂3Vi
∂a2

i ∂z
σai(bi, ·)σz + ∂2Vi

∂ai∂z

(∂σai(bi, ·)
∂ai

+ ∂σai(bi, ·)
∂bi

∂bi
∂ai

)
σz

+
∑
j ̸=i

∂3Vi
∂a2

i ∂aj
σai(bi, ·)σ̂aj (·) + ∂2Vi

∂ai∂aj

(∂σai(bi, ·)
∂ai

+ ∂σai(bi, ·)
∂bi

∂bi
∂ai

)
σ̂aj (·)

+
∑
j ̸=i

∂2Vi
∂ai∂aj

µ̂aj (·) +
∑
j ̸=i

λ(lj)
(∂Vi(ai, li, ·; l̃j)

∂ai
− ∂Vi(ai, li, ·; lj)

∂ai

)

+
∑
j ̸=i

∂3Vi
∂ai∂aj∂z

σ̂aj (·)σz + 1
2

∑
j ̸=i,j′ ̸=i

∂3Vi
∂ai∂aj∂aj′

σ̂aj (·)σ̂a′
j
(·).

Note that all agents are not internalizing the price effect in the competitive equilibrium,
which means there is no need to further differentiate assets’ returns with respect to ai. By
plugging in all first order conditions, terms related to ∂ci(·)

∂ai
, ∂bi
∂ai

and ∂σai (bi,·)
∂ai

are canceled
out. Rewrite the above equation in terms of marginal life-time utility ξi = ∂Vi(ai,li,·)

∂ai
, the

simplified expression of HJB after we take the first order derivative w.r.t ai is:

ρξi(ai, li, ·) =
∂ψH(i)(ai, bi)

∂ai
+ ∂ξi
∂ai

µai(ai, li, ci, bi, ι, ·) + r̂ξi(ai, li, ·)

+ ∂ξi
∂z

µz + ∂ξi
∂z

µ̂K(·) + λ(li)
(
ξi(ai, l̃i, ·) − ξi(ai, li, ·)

)
+ 1

2
∂2ξi
∂a2

i

σ2
ai

(bi, ·)

+ 1
2
∂2ξi
∂z2 σ

2
z + ∂2ξi

∂ai∂z
σai(bi, ·)σz +

∑
j ̸=i

∂2ξi
∂ai∂aj

σai(bi, ·)σ̂aj (·)

+
∑
j ̸=i

∂ξi
∂aj

µ̂aj (·) +
∑
j ̸=i

λ(lj)
(
ξi(ai, li, ·; l̃j) − ξi(ai, li, ·; lj)

)

+
∑
j ̸=i

∂2ξi
∂aj∂z

σ̂aj (·)σz + 1
2

∑
j ̸=i,j′ ̸=i

∂2ξi
∂aj∂aj′

σ̂aj (·)σ̂a′
j
(·).

To further simplify the expression and make the connection to dynamics on the wealth
share space. We consider the generalized Itô’s lemma with jump for ξi. The expected
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drift part contains µξi
ξi which summarizes the drift by continuous process and ς̄ξi

ξi, which
summarizes the expect difference before and after jump.

µξi
ξi =∂ξi

∂ai
µai(ai, li, ci, bi, ι, ·) +

∑
j ̸=i

∂ξi
∂aj

µ̂aj (·) + ∂ξi
∂z

µz + ∂ξi
∂z

µ̂K(·)

+ 1
2
∂2ξi
∂a2

i

σ2
ai

(bi, ·) + 1
2
∂2ξi
∂z2 σ

2
z + 1

2
∑

j ̸=i,j′ ̸=i

∂2ξi
∂aj∂aj′

σ̂aj (·)σ̂a′
j
(·)

+ ∂2ξi
∂ai∂z

σai(bi, ·)σz +
∑
j ̸=i

∂2ξi
∂ai∂aj

σai(bi, ·)σ̂aj (·) +
∑
j ̸=i

∂2ξi
∂aj∂z

σ̂aj (·)σz

ς̄ξi
ξi =λ(li)

(
ξi(ai, l̃i, ·) − ξi(ai, li, ·)

)
+
∑
j ̸=i

λ(lj)
(
ξi(ai, li, ·; l̃j) − ξi(ai, li, ·; lj)

)

Still, given all the states at time t, the value of µξi
and ς̄ξi

won’t change if we switch to the
wealth share space. Plug in the expression for µξi

and ς̄ξi
, then we can get Euler equation

in continuous-time as in equation (2.8).
To see the expression for risk-premium, we consider the volatility term, still as a scalar

which does not vary over different state spaces, loading on the aggregate shock dWt in Itô’s
lemma:

σξi
ξi = ∂ξi

∂ai
(ai − bi)σq +

∑
j ̸=i

σ̂aj (·) + ∂ξi
∂z

σz(·)

Plug it into the portfolio choice and we can get (2.9).

B Additional Details of the Quantitative Model

First, we discuss the size effect of households in the quantitative model. We start from the
model with a unit mass of continuum households, indexed by i ∈ Ih = [0, 1], and a unit
mass of continuum experts, indexed by i′ ∈ Ie = [1, 2]. In this setup, all clearing conditions
are stated as follows:∫

i∈Ih

cidi+
∫
i∈Ih

ci′di
′ + Φ(ι)K = ezF (K,L) [goods market]∫

i∈Ih

(ai − bi)di+
∫
i′∈Ih

(ai′ − bi′)di′ = qK [capital market]∫
i∈Ih

bidi+
∫
i′∈Ih

bi′di
′ = 0 [bond market]∫

i∈Ih

lidi = L [labor market]
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We assume that each household’s size is 1
I−1 and expert’s size is one. Then we could

construct the mapping from continuous type to finite number of agents:

∫
i∈Ih

(·)idi → 1
I − 1

I−1∑
i=1

(·)i,∫
i∈Ie

(·)i′di′ → (·)I .

The above mapping rule makes the total labor supply bounded and does not vary for
different Is, as l ≤ 1

I−1
∑I−1
i=1 li ≤ l and E

[
1
I−1

∑I−1
i=1 li

]
= E[l], which ensures the capital

level does not blow up to infinity as I → ∞. In addition, household i’s wealth share defined
through the capital market clearing condition:

1
I − 1

I−1∑
i=1

ai + aI = qK [wealth space]

1
I − 1

I−1∑
i=1

ηi + ηI = 1 [wealth share space]

is still approximately 1 − ηI instead of 1−ηI
I−1 , which ensures households’ marginal utility

ξi ∝ (ωiηi)−γ does not explode as I → ∞. Such renormalization step, leaving formulas of
wealth share dynamics unchanged, turns out to be crucial for the neural network to train
on the part of state space without extreme curvature for large Is.

C Finite Difference Solutions

We exploit the scalability, as in textbook Campbell and Viceira (2002), for geometric
Brownian motion’s case to get a preciser solution by focusing only on one dimensional
differential equation. For scalable income process, we postulate the price function as:
q = f(η)y, where η is the expert’s wealth share with no loss of generality, i.e., η = η1.
The value function can be written as:

Vi = 1
ρi

(ωiηiq)1−γ

1 − γ
= (ωiηif(η))1−γ

ρi

y1−γ

1 − γ
≡ vi

y1−γ

1 − γ
,
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where vi can be viewed as the value function on η’s space only. From the first order
condition4:

c−γ
i = 1

ρi

(ωiηiq)1−γ

ηiq
⇒
(
ci
y

)γ
= ηif(η)

vi
, ωi = [ηif(η)]

1
γ

−1
v

− 1
γ

i (C.1)

From the goods market clearing conditon, we have:

1 =
∑
i ci
y

=
∑
i

(
ηif(η)
vi

) 1
γ

= y ⇒ f(η) = 1[∑
i

(
ηi
vi

) 1
γ

]γ (C.2)

The HJB for scaled value functionvi (note: for y1−γ which appears in V , we still need to
take the Itô’s lemma on it)

[ρi − (1 − γ)µ+ γ

2 (1 − γ)σ2 − ωi]vi = [µη + (1 − γ)σση]η
∂vi
∂η

+ 1
2
∂2vi
∂η2 η

2σ2
η (C.3)

where µη, ση are from (2.10) and (2.11). The price of risk which appears in the asset pricing
condition is determined by Itô’s Lemma:

ξi = vi
ηif(η)y

−γ ⇒ σξ = σv − σf − ση − γσ = v′
i(η)ηση
vi

− f ′(η)ηση
f

− ση − γσ.

To solve the ODE in a stable way, it is standard in the literature to convert them into a
system of quasi-linear parabolic PDEs by adding “false-transient” method Mallinson and
de Vahl Davis (1973) and use the upwind scheme Courant, Isaacson and Rees (1952). We
approximate the partial derivatives by upwind scheme, introduce the pseudo time-steps into
(C.3):

[ρi − (1 − γ)µ+ γ

2 (1 − γ)σ2 − ωi]vi = [µη + (1 − γ)σση]η
∂vi
∂η

+ 1
2
∂2vi
∂η2 η

2σ2
η + ∂vi

∂t
,

and update value function in an implicit scheme to solve the differential equation. The
matrix form is:

ρ̌ρρIvt+dt = Mvt+dt + vt+dt − vt
dt

,

where M is the differential matrix by upwind scheme, and I is the identity matrix. In
implementation, time step dt is set to be small to ensure the algorithm’s stability.

4This expression leads to the boundary condition at η = 1: f(1)
ve

= 1
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C.1 Solution to the Limited Participation Model

The distributional dynamics for limited participation model are:

µη =(1 − η)(ωh − ωe) +
(

−1 − η

η

)
(rf − rq + (σq)2)

ση =1 − η

η
σq,where rf − rq = σξσq.

By the consistency condition for price volatility, we have:

f(η)yσq = f ′(η)yση + f(η)σy → σq = σ

1 − f ′(η)
f(η) (1 − η)

.

The boundary conditions: f(1) = 1
ρe+(γ−1)µ− 1

2γ(γ−1)σ2 , ve(1) = f(1).

Algorithm. Set up grids: ηn = linspace(∆η, 1−∆η, 1/∆η−1). Initialize the value function
as vi,0(·) = ρi + (γ − 1)µ− 1

2γ(γ − 1)σ2.
While Error > ϵ:

1. Compute ωe, ωh, f(η) by equation (C.1), (C.2).

2. Compute dq
dη ,

dve
dη ,

dvh
dη by upwind scheme, use the boundary condition if µ1−∆η > 0

required.

3. Construct the terms in HJB. Then update vi,t+dt by implicit scheme.

4. Compute Error = |ve,t+dt − ve,t| + |vh,t+dt − vh,t|.

C.2 Solution to the Macroeconomic Model with a Productivity Gap

Given the expert’s capital share holding κ, the wealth share η’s risk ση is (κ − η)σq. The
goods market clearing condition (C.2) is replaced by:

f(η) = κηze + (1 − κ)(1 − η)zh[∑
i

(
ηi
vi

) 1
γ

]γ
By the consistency condition for price volatility, we have:

f(η)yσq = f ′(η)yση + f(η)σy → σq = σ

1 − f ′(η)
f(η) (κ− η)

The boundary conditions are f(0) = ah
ωh(0) , f(1) = ae

ωe(1) .
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Algorithm. Set up grids: ηn = linspace(∆η, 1−∆η, 1/∆η−1). Initialize the value function
as vi,0(·) = ρi + (γ − 1)µ− 1

2γ(γ − 1)σ2.
While Error > ϵ:

1. Compute ωe, ωh by equation (C.1).

2. Approximate f ′(η) by finite difference. For η = ∆η : ∆η : 1 − ∆η, solve (f(η), κ, σq)
from the following set of equations: (1) if κ < 1

ρeωeη + ρhωh(1 − η) = κze + (1 − κ)zh

σq = σ

1 − f ′(η)
f(η) (κ− η)

ze − zh
q

= κ− η

η(1 − η)σ
2
q .

(C.4)

(2) if κ > 1, set κ to be 1, then only solve q, σq from the first two equations in (C.4).

3. Compute dve
dη ,

dvh
dη by upwind scheme.

4. Construct the terms in HJB. Then update vi,t+dt by implicit scheme.

5. Compute Error = |ve,t+dt − ve,t| + |vh,t+dt − vh,t|.
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D Parameters

D.1 Economic Parameters

D.1.1 Parameters for the “as-if” Complete Market Model

Parameter Symbol Value
Risk aversion γ 5.0
Agents’ Discount rate ρ 0.05
Output Growth Rate µ 2%
Volatility of Growth σ 5%

D.1.2 Parameters for the Limited Participation Model

Parameter Symbol Value
Risk aversion γ 5.0
Households’ Discount rate ρh 0.05
Experts’ Discount rate ρh 0.05
Output Growth Rate µ 2%
Volatility of Growth σ 5%

D.1.3 Parameters for the Macroeconomic Model with a Financial Sector

Parameter Symbol Value
Risk aversion γ 1.0
Households’ Discount rate ρh 0.04
Experts’ Discount rate ρe 0.06
Households’ Productivity ze 0.11
Experts’ Productivity zh 0.05
Output Growth Rate µ 2%
Volatility of Growth σ 5%

39



D.1.4 Parameters for the Quantitative Model

Parameter Symbol Value
Capital share α 0.3
Depreciation δ 0.05
Risk aversion γ 1.0
Households’ Discount rate ρh 0.05
Experts’ Discount rate ρe 0.05
Reversion rate β 0.50
Volatility of TFP σ 0.01
Transition rate (1 to 2) λ1 0.4
Transition rate (2 to 1) λ2 0.4
Low labor productivity n1 0.3
High labor productivity n2 1 + λ2/λ1(1 − n1)
Investment friction φ 10.0
Drift in O-U Process β 1.0
Volatility in O-U Process σ 0.01
Maximum TFP zmax log(0.5)
Minimum TFP zmin log(0.4)
Mean TFP Z zmin+zmax

2

D.2 Neural Network Parameters

All neural networks used in the models are simple feed-forward neural networks. All
optimizers used are ADAM.

Model Num of Layers Num of Neurons Learning Rate
“As-if” Complete Model 4 64 0.001
Limited Participation Model 5 64 0.001
BruSan Model 5 32 0.001
Quantitative Model 4 64 0.001
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