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Abstract

Exchange operators use circuit breakers like volatility interruptions to prevent
transitory or error-induced price shocks. However, these mechanisms can impede
market efficiency if triggered by legitimate price changes due to new information. We
introduce a clustering approach to identify unnecessary volatility interruptions that
are triggered within persistent price trends, thereby delaying price discovery. Our
findings indicate that such interruptions are more likely to occur when liquidity and
order book activity are high and relevant news is present. To improve market design,
we propose a deep learning model that can predict unnecessary interruptions based
on pre-interruption market and news data.
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1. Introduction

Securities markets often face sudden, unsubstantiated price changes due to liq-
uidity shocks, erroneous orders, or uncertainty about the impact of unanticipated
company-specific or macroeconomic news. The emergence of algorithmic and high-
frequency trading with fully automated order submissions and cancellations at high
speed (O’Hara, 2015) has increased the occurrence and risk of short-term liquidity
imbalances and large transitory price changes (U.S. Securities and Exchange Com-
mission, 2016). These heightened volatility risks posed by modern securities mar-
kets require market operators and regulators to consider measures to mitigate them.
Therefore, exchanges around the globe use circuit breakers, i.e., market safeguards
such as trading halts or volatility interruptions, which pause or slow down trading
in the event of significant price changes. These safeguards aim to ensure price conti-
nuity and the proper functioning of fully electronic securities markets by preventing
transitory or error-induced price shocks.

Circuit breakers were first introduced on major stock exchanges in the late 1980s
(e.g., Lee et al., 1994; Lauterbach and Ben-Zion, 1993) and have been increasingly
adopted in securities markets worldwide. According to a 2016 survey among exchange
operators (Gomber et al., 2016), 86% of the responding trading venues employ circuit
breakers to ensure investor protection and market stability, up from 60% reported in a
similar survey conducted by the World Federation of Exchanges in 2008 (World Feder-
ation of Exchanges, 2008). Moreover, regulators in most jurisdictions mandate the use
of circuit breakers.1 However, their effectiveness remains a subject of ongoing debate.
Critics argue that circuit breakers unnecessarily disrupt the regular trading process,
potentially hindering market efficiency by delaying price discovery (Fama, 1988) and
causing volatility spillovers across time and markets (Subrahmanyam, 1994).

The main issue with the design of current circuit breakers is their reliance on sim-
plistic rule-based mechanisms, which trigger interruptions as soon as the price of a
security or index crosses a pre-defined threshold. Thus, these mechanisms do not dif-
ferentiate between legitimate market movements driven by fundamental information
and erratic price jumps caused by liquidity shocks, erroneous orders, misconfigured
trading algorithms, or fake news.2 As a result, existing circuit breakers are character-
ized by a trade-off between their protective role in maintaining market stability and
their potential adverse effects on market quality (Hautsch and Horvath, 2019).

The issue of simplistic circuit breaker rules leading to unnecessary trading inter-
ruptions becomes even more critical when considering the frequency of these events.
Rather than being rare events, circuit breakers are frequently triggered, even in the

1For example, the U.S. Securities and Exchange Commission mandates a trading pause for
individual stocks through the Limit Up/Limit Down mechanism in the event of sudden price swings,
and a market-wide circuit breaker in the form of a trading halt in case of a severe decline in the
S&P 500 Index (U.S. Securities and Exchange Commission, 2012). Similarly, the European financial
market regulation MiFID II mandates trading venues to have mechanisms in place to halt or restrict
trading in case of significant price movements (European Commission, 2014).

2See Bongaerts et al. (2024) for a related discussion on the issues arising from the simplistic and
backward-looking nature of current circuit breaker designs.
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most liquid stocks.3 For instance, the European Securities and Markets Authority
(ESMA) reported a peak of more than 3,000 circuit breaker events within a single
week in March 2020 due to market turmoil related to COVID-19 (European Securities
and Markets Authority, 2022). In our sample of German blue chip stocks, we observe
an average of 3.15 interruptions per day and nearly 100 interruptions per stock over
the observation period of almost five years. Consequently, identifying and avoid-
ing unnecessary interruptions could significantly enhance the effectiveness of circuit
breakers and improve overall market quality.

To address this issue and to contribute to solving the trade-off between market
stability and the negative impact of unnecessary interruptions, this paper introduces
a novel cluster-based approach utilizing volatility interruptions, the prevalent circuit
breaker mechanism in Europe. This method allows for the identification of those
volatility interruptions that are triggered during persistent price trends, where they
merely delay the incorporation of new information into prices. To the best of our
knowledge, this is the first framework designed to detect such unnecessary volatility
interruptions. Our study is based on a dataset of 3,899 historic volatility interruptions
in the 40 stocks of the benchmark index DAX40 from April 2019 to December 2023.
The dataset includes high-frequency order book, trade, and news data. By combining
an autoencoder model that consolidates order book information before and after each
interruption with a k-means algorithm, we classify 39.8% of the observed volatility
interruptions as unnecessary, i.e., interruptions that simply delay the price discovery
process.

To examine the drivers of unnecessary interruptions, an analysis utilizing probit
regressions reveals that unnecessary volatility interruptions are more likely to occur
during periods of high liquidity and volatility, the presence of relevant news, and
increased order book activity. Economically, these conditions suggest that the price
changes leading to the interruption are likely driven by shifts in value expectations and
corresponding trading activity. In such cases, the rule-based nature of current circuit
breaker mechanisms unnecessarily interferes with the trading process. Moreover, our
results suggest that volatility interruptions are more likely to be unnecessary when
the last price before the interruption is near the pre-defined threshold that triggers
the circuit breaker. When prices approach these thresholds due to sustained move-
ments throughout the trading day, even minor price fluctuations from normal trading
activity can activate the circuit breaker, causing unwarranted market disruptions.

The probit regression model also serves as a benchmark for predicting unnecessary
interruptions based on ex-ante order book, trade, and news information. However,
the predictive performance of this model is only marginally better than random guess-
ing. This suggests that more granular, non-linear dynamics in price and order book
behavior must be incorporated to predict unnecessary interruptions in advance.

Based on these findings, we develop a deep learning model that significantly en-
hances prediction capabilities by effectively capturing complex spatial and temporal

3For an overview of the number of circuit breaker events in selected empirical studies, see Bon-
gaerts et al. (2024), Table 2.
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relationships among input features. Unlike probit regression models, it eliminates
the need to aggregate input time series data and pre-select relevant variables, as it
is capable of processing raw data and autonomously identifying useful features. The
model combines convolutional neural networks (CNNs), an inception module, and
long short-term memory (LSTM) layers. The CNN component extracts features from
individual order book snapshots, while the inception module focuses on time-wise con-
volutions, summarizing features over time. These features are then processed by the
LSTM layer, capturing temporal changes essential for the classification task. Using
this advanced model, we are able to predict unnecessary volatility interruptions with
a precision between 60% and 100%, depending on the sensitivity to false negatives.

Our findings contribute to two strands of literature. First, our paper adds to
the extensive research stream that discusses and analyzes the effectiveness of cir-
cuit breakers from both theoretical and empirical perspectives.4 Circuit breakers can
help to “cool down” markets and reduce volatility by providing market participants
with time to reassess their trading strategies, inventories, and the impact of news (Ma
et al., 1989). However, these safeguards also interfere with trading and market liquid-
ity, making it difficult for liquidity providers to manage their inventories (Lauterbach
and Ben-Zion, 1993), delaying price discovery (Lehmann, 2019), and causing volatility
spillovers to other markets and subsequent trading periods (Subrahmanyam, 1994).
Despite these drawbacks, circuit breakers seem necessary to prevent erroneous price
jumps in today’s fully electronic securities markets (Subrahmanyam, 2013), where
order submissions, executions, and price determination occur autonomously at mil-
lisecond frequency (O’Hara, 2015). Empirical studies reach contradictory conclusions
regarding the effectiveness of circuit breakers in reducing volatility, although they
generally agree on their harmful effects on liquidity and price discovery (e.g., Abad
and Pascual, 2010; Hautsch and Horvath, 2019; Kim and Rhee, 1997).5 Based on an
in-depth analysis of trading interruptions at Nasdaq, Hautsch and Horvath (2019)
conclude that there is a trade-off between the protective role of trading interruptions
and their potentially adverse effects on volatility, liquidity, and price efficiency. Vari-
ations in distributions across different observation periods and datasets, along with
differences in the design of the safeguards (Clapham et al., 2017), may explain the
differing conclusions regarding their effectiveness in reducing volatility.

The study most closely related to ours is the model by Bongaerts et al. (2024),
which demonstrates that properly calibrated circuit breakers can prevent market runs
by curbing excessive trading. Like us, the authors argue that the current simplis-
tic, price-triggered circuit breaker mechanisms fail to differentiate between legitimate
liquidity demand and inefficient excessive trading. To enhance the current market
design, they propose a forward-looking circuit breaker that becomes increasingly re-
strictive as the expected welfare losses from market runs increase.

4For an overview of the literature, refer to the surveys by Abad and Pascual (2013) and Sifat
and Mohamad (2019).

5Exhibit 17.2 in the survey by Abad and Pascual (2013) provides a systematic comparison of
empirical studies examining whether circuit breakers reduce volatility, improve price discovery, or
interfere with liquidity and the trading process.
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We contribute to the literature on circuit breakers by demonstrating that it is pos-
sible to identify and avoid unnecessary interruptions. This can mitigate the adverse
effects of circuit breakers and potentially resolve the trade-off between their protec-
tive role and their negative impact on market quality. To the best of our knowledge,
no empirical study has yet attempted to differentiate between the circumstances in
which circuit breakers are triggered, although this is crucial in determining whether
an interruption is necessary.

Second, we contribute to the emerging body of literature that applies machine
learning techniques to market microstructure research. For instance, Easley et al.
(2021) utilize machine learning methods to predict future levels of liquidity, volatility,
and other critical variables for market participants and researchers. Similarly, Kwan
et al. (2021) employ reinforcement learning to investigate the price discovery process,
while Sirignano and Cont (2019) leverage deep learning to forecast the direction of
price movements based on historical limit order book (LOB) data. Our study extends
the application of machine learning in market microstructure by exploring its use in
analyzing circuit breakers and its potential to enhance the design and effectiveness of
these mechanisms.

Overall, our findings can enhance circuit breaker mechanisms by reducing the
number of unnecessary interruptions. This can mitigate potential adverse effects of
these mechanisms on market quality (Hautsch and Horvath, 2019; Subrahmanyam,
1994) and ultimately improve market efficiency. Additionally, our findings can in-
form discussions with both market operators and regulatory authorities regarding
the design and rules of circuit breakers.

The remainder of the paper is organized as follows: Section 2 provides an overview
of the institutional background, details on the dataset, and key descriptive statistics.
Section 3 outlines our methodology for clustering volatility interruptions and presents
the corresponding results. In Section 4, we describe the regression-based approach for
predicting unnecessary volatility interruptions and examine their economic drivers.
Section 5 introduces a more advanced deep learning model for predicting unnecessary
interruptions and evaluates its performance. Section 6 covers robustness checks and
discusses limitations. Finally, Section 7 concludes.

2. Institutional background & data

2.1. Volatility interruptions on Xetra

Our analyses are based on volatility interruptions, which are the common type of
circuit breakers in European securities markets (Gomber et al., 2016). Instead of lead-
ing to a complete trading halt, volatility interruptions temporarily switch the trading
phase from continuous trading to an unscheduled call auction in individual stocks
once they are triggered. This is similar to the Limit Up/Limit Down mechanism in
the U.S., suggesting that our results are transferable to other markets. Our sample of
volatility interruptions represents data from the German trading venue Xetra. Xetra,
operated by Deutsche Börse in Frankfurt, is a fully automated, order-driven trading
system where buy and sell orders are matched based on price-time priority within
a standard open LOB. The system provides continuous trading for the immediate
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execution of orders and scheduled auctions at specific times during the trading day.
These auctions determine opening and closing prices by pooling liquidity and match-
ing orders at a single clearing price. In contrast to other European markets, Xetra
also has a scheduled auction in the middle of the trading day (hereafter referred to as
intraday auction). Xetra is the most liquid market and reference market for German
equities and ETFs.

Like most other European markets, Xetra employs volatility interruptions. A
volatility interruption is a rule-based circuit breaker that is triggered during periods
of unusually high volatility, utilizing a dual price corridor mechanism as depicted in
Figure 1. Once a potential execution price exceeds either a dynamic range around the
last traded price or a static range around the last auction price, continuous trading
is paused, and trading switches to a non-scheduled call auction, i.e., a volatility
interruption. The width of these price ranges is determined by the exchange operator
on a stock-specific basis, taking into account each stock’s historical volatility.6 While
the exact price limits are not disclosed by the market operator, they can be estimated
fairly accurately by reverse-engineering them based on historical data at least for the
static price range. Volatility interruptions last 2 minutes plus a random auction end
of up to 30 seconds to avoid market manipulation. After the auction clearing price is
determined, trading resumes to continuous trading (Deutsche Boerse Group, 2024).7

Figure 1: Xetra price ranges for volatility interruptions
The static price range represents a symmetric corridor around the last auction price. The dynamic
price range represents a symmetric corridor around the last trade price. If the next potential price is
outside one or both of the two corridors, a volatility interruption is triggered, i.e., trading switches
from continuous trading to a call auction.

6In anticipation of events likely to cause heightened volatility (e.g., the day following the UK’s
referendum to leave the European Union), the market operator can declare a “fast market” condition,
which results in doubling the price ranges that trigger volatility interruptions.

7In the rare event when the auction price at the end of a volatility interruption is outside the
doubled price ranges, the volatility interruption is extended and concluded manually by the market
operator after consulting with the market participants who triggered the interruption.
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2.2. Data

For our analysis, we use volatility interruptions triggered in stocks of the DAX40,
Germany’s leading stock index that includes the largest German companies based
on market capitalisation. Our dataset covers the period from 20198 to 2023, taking
into account the DAX40 constituents as of the end of 2023 (see also Figure 10 in
Appendix A for a list of all included DAX constituents). In total, we observe 4,933
triggered interruptions for these stocks in this period. We collect 10 minutes of
order book, trade, and message data before and after each interruption from the
Deutsche Börse A7 market data platform, creating a 20-minute observation period
per event. To ensure a complete 20-minute observation window for each event, we
exclude 851 interruptions whose 10 minutes pre- or post-interruption period overlaps
with scheduled auctions (i.e., opening, intraday, or closing auction) and 183 that
overlap with other volatility interruptions in the same stock.9 This cleaning step
results in a final dataset which comprises 3,899 volatility interruptions. Details on
the quantity of removed observations for each cleaning step are depicted in Table 1.

Number of volatility interruptions

Total number of volatility interruptions 4,933
Overlapping with scheduled auctions 851
Overlapping with other volatility interrup-
tions

183

Final dataset 3,899
Percentage of the sample 79%

Table 1: Cleaning process and dataset summary

In our empirical study, we utilize Xetra market data with nanosecond granularity,
including limit prices and quantities for the top ten levels of the order book, trade
executions with corresponding prices and quantities, and order messages detailing
submissions, cancellations, and modifications. Furthermore, we incorporate news
data from RavenPack, which provides the number of news related to a stock around
a volatility interruption together with the relevance and sentiment scores associated
with each news item. This dataset from two different sources gives us a comprehensive
view of both market microstructure and external informational influences.

We resample the dataset into time series with a one-second frequency to syn-
chronize array length and time steps of the model inputs. Before deploying machine
learning techniques - specifically clustering and deep learning for prediction - we ap-
ply min-max normalization on all features, ensuring each sample is standardized on
a per-sample basis.

8Our observation periods starts with April 2019 as earlier data is not available on the Deutsche
Börse A7 market data platform.

9With these two filtering steps we also exclude the 159 instances of extended volatility interrup-
tions that occurred during our observation period.
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We use the entire dataset of volatility interruptions for the clustering process.
For the prediction task, we split the dataset into a training period from April 2019 to
November 2022, a validation period in December 2022, and a test period from January
to December 202310. For individual volatility interruptions, we further distinguish be-
tween an ex-ante “pre-interruption” phase and an ex-post “post-interruption” phase.
The selected observation windows of 10 minutes for each phase are short enough to
reflect the market’s high-frequency nature, yet sufficiently long to capture gradual,
longer-term movements that drive the price to the static triggering threshold.

2.3. Descriptive statistics

Descriptive statistics on the occurrence of volatility interruptions in our dataset
are provided in Table 2. During the observation period, DAX40 stocks on Xetra ex-
perienced an average of 3.15 volatility interruptions per trading day. However, there
are significant outliers, mainly due to market-wide events that triggered numerous
interruptions. For instance, the highest number of volatility interruptions on a single
trading day was 152. Thus, volatility interruptions are not rare events, even among
the most liquid German stocks, but occur frequently, underscoring the importance of
identifying and minimizing unnecessary interruptions of trading and price discovery.
With respect to variations across stocks, Zalando SE experienced the most volatility
interruptions (268), while Daimler Truck Holding AG had only 14 interruptions be-
tween 2019 and 2023. A detailed breakdown of the number of interruptions per stock
during our observation period is provided in Figure 10 in Appendix A.

mean median min max std

Volatility interruptions per day 3.15 1.00 0.00 152.00 7.90
Volatility interruptions per stock 97.48 78.00 14.00 268.00 64.90
Duration [sec] 135.05 135.08 120.00 150.00 8.66

Table 2: Descriptive statistics on the observed volatility interruptions in our sample

On average, volatility interruptions on Xetra lasted 135.05 seconds, closely align-
ing with the expected duration of 135 seconds, which includes a 120-second auction
phase followed by a random end of up to 30 seconds.

The histogram of volatility interruptions, as illustrated in Figure 2, reveals that
these interruptions are occurring regularly on Xetra. It shows significant concen-
tration of volatility interruptions during two global events between 2019 and 2023:
the COVID-19 pandemic outbreak around March 2020 and the Russian invasion of
Ukraine in late February 2022. Both events led to major disruptions and economic
turmoil across various sectors, resulting in a high number of volatility interruptions
during these periods. The frequency of volatility interruptions thereby correlates with
overall market volatility, as indicated by the volatility index VIX.

10We split the data into training, validation and test set chronologically rather than randomly,
as this approach reflects how a market operator, as a potential adopter of the mechanism, would
apply the prediction model in practice.
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Figure 2: Histogram of volatility interruptions during the observation period and development of
the VIX
The histogram in blue shows the total number of volatility interruptions in DAX40 constituents
on Xetra for each trading day of the considered time period from 2019 to 2023. The dashed line
provides the price development of the volatility index VIX over the same period.

Figure 3 illustrates the evolution of market quality and trading activity around
volatility interruptions in our dataset. The figure shows that liquidity, as measured
by the average relative spread, remains relatively stable before the start of a volatility
interruption. However, once continuous trading resumes following the auction phase
of the interruption, the spread increases by an average of 52% compared to its level
immediately prior to the interruption. Similarly, liquidity in terms of depth, measured
by the euro volume quoted across the first five levels of the order book (level 5 depth),
remains relatively stable, with a slight dip just before the interruption, but then de-
clines by an average of 56% after the interruption. During the 10-minute observation
window following the interruption, liquidity gradually improves in both breadth and
depth, though it does not fully recover to pre-interruption levels even after 10 min-
utes. Consequently, volatility interruptions not only delay price discovery but are
also associated with reduced liquidity, leading to higher trading costs for market par-
ticipants. Also from this perspective, minimizing unnecessary interruptions would be
beneficial for overall market quality.

As expected, volatility increases just before a volatility interruption is triggered.
After the interruption, it spikes sharply in the first few seconds before gradually
settling back to pre-interruption levels over the course of approximately 30 seconds.
These descriptive statistics align with the findings of the majority of empirical studies
(e.g., Hautsch and Horvath, 2019), which also report increased volatility and reduced
liquidity following trading interruptions triggered by circuit breakers.

Trading activity, measured by the number of trades and trading volume, experi-
ences sharp spikes both immediately before a volatility interruption is triggered and
immediately after the unscheduled auction phase concludes. Apart from these two
spikes, trading is rather stable around volatility interruptions, with a slight increase
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Figure 3: Average liquidity, trading activity, order book activity, and volatility around volatility
interruptions
This figure plots the average relative spread, depth on the top five order book levels, midpoint return
volatility, number of trades, trading volume, and number of order book updates in each of the 600
seconds of the continuous trading phase before and after a volatility interruption (i.e., excluding
the volume executed during the auction phase of the interruption). Since the Xetra order book is
not visible during the auction phase triggered by the volatility interruption, these metrics cannot be
calculated for that period.

in activity in the seconds following an interruption. A similar pattern is observed in
order book activity. The spike in trading activity just before a volatility interruption
may be driven by market participants responding to new information or reassessing
the stock’s expected value. It could also result from traders anticipating the inter-
ruption and rushing to execute their trades before it takes effect, consistent with
the “magnet effect” hypothesis Subrahmanyam (1994). In contrast, the heightened
trading activity following the interruption likely stems from participants seeking to
execute their intended trades, manage their inventories, and update their orders and
quotes—actions they were either unable or unwilling to perform during the auction
phase of the volatility interruption.

3. Clustering and labeling of volatility interruptions

3.1. Methodology

To systematically identify unnecessary volatility interruptions, we analyze histor-
ical volatility interruptions by clustering them based on comprehensive LOB data in
the 10-minute windows preceding and following each interruption. By using the full
set of information contained within the LOB, i.e., limits and volumes of the first ten
levels at the bid and ask side of the order book, we ensure that only those volatil-
ity interruptions characterized by similar market dynamics both before and after the
event are grouped together. This approach avoids reliance on a limited set of hand-
crafted features from the LOB (e.g., spread or depth measures), offering a more robust
categorization of different types of volatility interruptions.
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Based on this differentiation of various types of historically observed volatility
interruptions, we are able to investigate whether certain clusters exhibit a persistent
price trend in both the pre- and post-interruption phase. If such trends are present,
it would suggest that these interruptions may have merely delayed the natural price
formation process, rather than serving as a corrective function for unreasonable price
jumps.

To implement this categorization, we utilize an unsupervised clustering algorithm.
We apply the k-means clustering method due to its simplicity and computational ef-
ficiency. Given the high dimensionality and temporal dependencies inherent in LOB
time series, we first employ an autoencoder model to reduce the data to a lower-
dimensional set of informative features. This dimensionality reduction ensures that
the input to the k-means clustering algorithm consists of time-independent, mean-
ingful features that effectively capture the full range of market dynamics surrounding
each volatility interruption.

We base our autoencoder architecture on the DeepLOB model proposed by Zhang
et al. (2019), which has demonstrated efficacy in automatically extracting signifi-
cant features from LOB data. The encoder component of our model replicates the
DeepLOB model, while the decoder component is an exact inversion of the encoder.
A detailed illustration of the architecture for both the encoder and decoder is pro-
vided in Appendix B, in Figure 13 and Figure 14, respectively. We constrain the
latent space between the encoder and decoder to a size of 6411, ensuring the model
extracts only meaningful information from the LOB data. After training the model,
we further utilize only the encoder to transform the data for the k-means clustering.

The effectiveness of our clustering results is highly dependent on the choice of k,
the number of clusters. To identify the optimal k, we employ the elbow method, a
widely-used technique that sets the value of k where the marginal improvement from
adding an additional cluster becomes insignificant (Thorndike, 1953; Syakur et al.,
2018). This is typically identified as a “bend” or “elbow” in the plot of the sum
of squared distances between each sample and its corresponding cluster center for
different k. The cluster center, in this context, is defined as the average of all sample
midpoints within a given cluster.

While our clustering algorithm is primarily based on feature maps derived from
the LOB data, the elbow method is applied specifically to the midpoint data as we
aim to analyze the price determination around volatility interruptions in order to
identify unnecessary interruptions. This dual approach ensures that the clustering
model optimally represents both overall market dynamics and the price formation
process around volatility interruptions.

Finally, we classify clusters where volatility interruptions clearly delay the price
formation process, i.e., postpone the continuation of a persistent price trend where
the direction of the trend before and after the interruption remains consistent, as
unnecessary interruptions. In these cases, price changes leading to the volatility

11We opted for 64 as we evaluated various other parameter choices (i.e. 512, 256, 128, 64, 32)
and 64 was the smallest size with reasonable results as sizes < 64 would result in a much higher loss.
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interruption were obviously not caused by irrational or transitory price jumps re-
sulting from liquidity shocks or erroneous orders but reflected new information and
corresponding changes in expectations. Here, the volatility interruption defers the
incorporation of new information into prices and unnecessarily interrupts the trading
process with all negative implications for price discovery and liquidity. For instance,
if the midpoint exhibits an upward trend that triggers an interruption by exceeding
the upper threshold, and this trend continues in a similar manner after the interrup-
tion, it indicates that the market agreed on the upward movement. In such cases,
the interruption merely delays the ongoing price formation process and is therefore
consequently classified as unnecessary.

We introduce a binary target variable for the different types of volatility interrup-
tions where 1 represents an unnecessary interruption and 0 all other interruptions.

3.2. Results

The elbow method shows that a clustering algorithm with k = 12 provides an
optimal balance. This configuration introduces a sufficient number of clusters to
capture the individual dynamics of samples around volatility interruptions, while
avoiding an excessive number of clusters that could lead to redundancy. Figure 4
illustrates the inertia values for clustering models with varying k. The “elbow” point,
indicating where the marginal gain of adding more clusters diminishes, is observed at
k = 12.

Figure 4: Inertia values at different k
The elbow is determined as the point where the second derivative is maximized in absolute terms.
For this calculation every k < 6 is ignored as these values for k are not able to capture all complex
dynamics happening around a volatility interruption.

The clustering results from the k-means model are presented in Figure 5 and
Figure 7. These plots show the midpoint development of each volatility interruption
within the clusters, both before and after the volatility interruption, along with the
average midpoint trajectory across all observations in each cluster. The interruption
is marked at t = 0, with t = −600 corresponding to 10 minutes prior to and t = 600
corresponding to 10 minutes after the interruption, given that the data is sampled at
one-second intervals.

Figure 5 displays the first four clusters, which all exhibit a distinct pattern of
volatility interruptions delaying the price formation process. Here, the continuous
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upward or downward trends observed before the interruption persist into the post-
interruption phase. The auction phase of the volatility interruption appears to be
ineffective in establishing an efficient price for observations in these clusters and sim-
ply interrupts a price trend, thereby further hindering prompt price formation. In
these cases, the volatility interruption does not help to avoid welfare losses resulting
from unsubstantiated price jumps but only comes with the costs of delayed price dis-
covery, unrealized gains from trade, and worse market quality after the interruption.
Based on this clustering approach, we find that 39.8% of all samples are classified as
unnecessary volatility interruptions.12

Figure 5: Clustering results for the first four clusters identified as unnecessary interruptions
The plot shows the midpoint trends (in black) for the volatility interruptions in the first four clusters
identified as unnecessary interruptions as well as the cluster average (in red). The auction phase
at t = 0 is omitted as no continuous price determination happens during this period. For a better
visualization of the samples, the midpoint trend for both the pre-interruption period (t ∈ [−600,−1])
and post-interruption period (t ∈ [1, 600]) is smoothed by applying the Savitzky-Golay filter (Sav-
itzky and Golay, 1964) with a window length of 31 and a polynomial order of 2. The number of
observations in each cluster is given in parentheses under each subheading. The midpoint on the
y-axis is bound between 0 and 1 due to the min-max scaling.

12Because the data was split chronologically into training, validation, and test sets (see Sec-
tion 2.2), the imbalance slightly varies across these subsets. Specifically, in the training set, 39.1%
of volatility interruptions are labeled as unnecessary, compared to 46.2% in the validation set and
44.7% in the test set.
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To illustrate volatility interruptions identified as unnecessary, Figure 6 depicts
the midpoint price development for exemplary stocks where an unnecessary volatility
interruption occurred on a specific day.13 In each example, the volatility interruption
disrupts a persistent price trend that began shortly after the release of significant
ad-hoc news related to the respective stock. Consequently, the price changes delayed
by the interruption were likely driven by this new information and corresponding
shifts in value expectations. For the stocks shown in Panels A, B, and C, the news
was positive, resulting in a sustained price increase (a significant upward revision
in long-term financial targets for Infineon Technologies, a major share repurchase
program by Deutsche Post DHL Group, and better-than-expected quarterly results
for Rheinmetall). In contrast, Panel D features negative news for Deutsche Bank
(weaker performance in the credit and derivatives business), leading to a sustained
price decline.

All other remaining clusters - not considered as unnecessary - are visualized in
Figure 7. These clusters do not show a delayed price formation as observed in the
earlier clusters and are therefore not labeled as clearly unnecessary.

The clusters depicted in Figure 7 demonstrate a positive contribution of volatility
interruptions to market stability. Volatility interruptions appear effective in “cooling
down” the market during periods of extreme price movements, providing market
participants with time to reassess available information and determine whether the
current price trend is justified as described by Ma et al. (1989). This behavior is
particularly evident in Clusters 6, 7, and 12, where the extreme price trends observed
before the interruption are almost entirely reversed in the post-interruption phase.
This suggests that, during the pre-interruption phase, the market may have either
been uncertain about the true valuation of an asset, overreacted to certain news, or
experienced substantial market impact from the execution of a large order. In these
cases, the interruption phase allowed for a reassessment, showing that the volatility
interruption served as a valuable safeguard and contributed directly to price discovery.

Clusters 5, 8, 10, and 11 display a similar behavior, though without the trend-
reversing effect observed in the other clusters. Instead, these clusters exhibit a trend-
breaking effect, where the price trend stabilizes around the auction price level in the
post-interruption phase. This suggests that the volatility interruption effectively con-
tributed to the price formation process, as prices tend to remain close to the price
level determined by the auction mechanism of the volatility interruption. Although
Cluster 9 also shows a continuous price trend before and after the interruption, it is
not classified as a cluster of unnecessary volatility interruptions due to the high level
of dispersion and noise within the cluster. In particular, we observe both upward and
downward movements of individual samples in the pre-interruption phase, contradict-
ing the interpretation of the cluster center as a stable, one-directed price trend. As

13Since all volatility interruptions in this exemplary sample occurred in the afternoon, we only
plot the period from the resumption of continuous trading after the intraday auction to market
close. No additional volatility interruptions or ad-hoc disclosures occurred for these stocks on the
respective dates. Ad-hoc news reports are included in the news data from RavenPack used in this
study.
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Figure 6: Examples of volatility interruptions identified as unnecessary
Panels A, B, C, and D show the midpoint price development (y-axis) in blue for Infineon Technologies,
Deutsche Post DHL Group, Rheinmetall, and Deutsche Bank, respectively, on days experiencing
unnecessary volatility interruptions. The start of the volatility interruption is marked in red, while
its conclusion and subsequent return to continuous trading is indicated in green. The black vertical
line denotes significant ad-hoc news releases. The x-axis displays time in local exchange time.
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Figure 7: Clustering results for the remaining clusters not identified as unnecessary interruptions
The plot shows the midpoint trends (in black) for the volatility interruptions in the eight remaining
clusters not identified as unnecessary interruptions as well as the cluster average (in red). The
auction phase at t = 0 is omitted as no continuous price determination happens during this period.
For a better visualization of the samples, the midpoint trend for both the pre-interruption period
(t ∈ [−600,−1]) and post-interruption period (t ∈ [1, 600]) is smoothed by applying the Savitzky-
Golay filter (Savitzky and Golay, 1964) with a window length of 31 and a polynomial order of 2.
The number of observations in each cluster is given in parentheses under each subheading. The
midpoint on the y-axis is bound between 0 and 1 due to the min-max scaling.



we apply the unnecessary label conservatively, we exclude samples from this cluster
from our classification of price-delaying volatility interruptions.

Consequently, the clusters shown in Figure 7 do not exhibit a price-delaying ef-
fect but rather support overall price discovery during volatile market phases and are
therefore not considered as unnecessary volatility interruptions. Figure 11 in Ap-
pendix A presents a histogram of the number of samples assigned to each cluster,
showing a relatively uniform distribution across all clusters, with cluster 9 consisting
of a comparatively smaller number of samples.

4. Prediction and drivers of unnecessary volatility interruptions - The re-
gression approach

4.1. Methodology

Building on the method developed in the previous section, we are able to identify
cases of unnecessary volatility interruptions. To improve the effectiveness of circuit
breakers and reduce the frequency of unnecessary interruptions, we aim to assess
whether it is possible to predict the necessity of a volatility interruption using only
pre-interruption (ex-ante) information. This predictive capability would enhance the
effectiveness of circuit breakers, preventing disruptions of price trends that are justi-
fied, e.g., due to company-specific or macroeconomic news. Moreover, we analyze the
market conditions that lead to unnecessary volatility interruptions.

For this purpose, we employ benchmark probit regression models to investigate
the predictability of unnecessary volatility interruptions and to reveal their economic
drivers. These models apply different sets of independent variables to explain the
binary dependent variable, which indicates whether an interruption was identified
as unnecessary. Given that our dependent variable is binary, probit regression is an
appropriate choice. It effectively models binary outcomes by producing a continuous
output that represents the probability of the dependent variable belonging to the
target class (here: unnecessary volatility interruptions).

Our first model focuses on the market quality conditions prior to the interruption,
with the goal of determining whether liquidity, volatility, or trading activity related
factors influence the likelihood of an interruption being unnecessary. Therefore, we
incorporate the average relative spread, order book depth, trading volume, midpoint
volatility and number of order book messages prior to each volatility interruption in
this analysis.

Factors beyond market data, such as news events, are often associated with price
adjustments. Therefore, we introduce a second probit regression model that incorpo-
rates news and contextual factors to account for macroeconomic conditions prior to
the volatility interruption. Inputs for this model include the number and relevance
of recent news articles related to the issuer of the affected stock, the frequency of
volatility interruptions across all stocks in the respective market (Xetra) within the

17



preceding hour14, the fast market indicator15, and the proximity of the current price
to the estimated static triggering threshold16.

A comprehensive overview of the variables used in both models, including their
calculations and a brief explanation of their informational content, is provided in
Table 5 in Appendix A.

To address the time-dependent nature of our input data, which covers 10 minutes
before each volatility interruption, we use an exponentially decaying average (or sum
for count- and volume-based variables such as the number of order book messages
and trading volume). This method assigns progressively less weight to data points
further from the interruption, ensuring that more recent information has a greater
influence on the model’s predictions. By transforming the time-series data into one
time-independent measure for each interruption, this approach makes it compatible
with the probit regression framework.

Following this approach, we set up the first probit regression - the market quality
model - using the following equation:

Pr (yi = 1|Xi) = Φ (α + β1 · rel spreadi + β2 · level 5 depthi

+β3 · trade volumei + β4 ·midpoint return volai

+β5 ·message counti)

(1)

where i ∈ {1, 2, ..., 3899} is the index for each observation, y is the binary tar-
get, Φ is the cumulative normal distribution and Xi = {rel spreadi, level 5 depthi,
trade volumei, midpoint return volai, message counti} is the list of independent
variables.

14The inclusion of the number of volatility interruptions across all DAX40 stocks within the
hour before the interruption is designed to capture the influence of broader market events, such
as the COVID-19 pandemic or the Russian invasion of Ukraine, which may trigger parallel price
adjustments across multiple stocks.

15The Xetra market supervision department can define a so called fast market for all stocks for a
specific day if unusually high volatility is anticipated. This could be the case if major macroeconomic
events or crucial announcements (e.g., by central banks, governments, or companies) are expected or
occurred before market opening, which affect the entire market. In such a case, the price corridors
for the triggering of volatility interruptions are doubled.

16Since the actual price thresholds of volatility interruptions on Xetra are not publicly disclosed,
we reverse-engineer the static threshold for each stock by observing the maximum price deviation
from the last auction price that did not trigger an interruption. Given that the market operator
may adjust these thresholds in response to overall market volatility, especially during volatile periods
such as the COVID-19 pandemic, we independently estimate the static price range for each stock
and month to account for potential adjustments. Figure 9 in Appendix A shows the resulting
approximated static price ranges. The distance of the last price prior to the interruption to the static
threshold offers insights into whether a significant price jump triggered the volatility interruption
or if only minor price changes were sufficient to initiate it. This distinction can provide valuable
information for differentiating between unnecessary and relevant interruptions.
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The second regression - the news and contextual factors model - is set up by the
following equation:

Pr (yi = 1|Xi) = Φ (α + β1 · news counti + β2 · news relevancei

+β3 · news counti × news relevancei

+β4 · vola interruptions marketi

+β5 · fast market dummyi

+β6 · distance to static barrieri)

(2)

where Xi = {news counti, news relevancei, vola interruptions marketi,
fast market dummyi, distance to static barrieri} is the list of all independent vari-
ables in the news and contextual factors model.

As a third model, we introduce a comprehensive regression model that incorpo-
rates all independent variables used in the previously discussed models. This full
model aims to integrate a broad range of factors, including market quality metrics,
news, and other contextual variables, to predict the likelihood of an unnecessary
volatility interruption ex-ante. By encompassing all relevant factors, this full model
is anticipated to outperform the other models in the prediction task, offering a more
robust and accurate assessment.

To evaluate each model’s capability in accurately predicting the probability of a
volatility interruption being unnecessary using only ex-ante information, we apply
common classification metrics to the models’ outputs such as accuracy, precision, and
recall: Accuracy measures the overall agreement between predicted labels and true
labels. Precision for a specific class measures the proportion of true positives among
all predicted positives, reflecting the model’s likelihood of correctly predicting the tar-
get class (here: unnecessary volatility interruptions). Recall measures the proportion
of true positives identified out of all actual positives in the target class, indicating
the model’s ability to capture all relevant instances of unnecessary volatility inter-
ruptions. Following standard practice in evaluating prediction models, we conduct
an out-of-sample evaluation.

The primary goal of this study is the accurate identification of unnecessary volatil-
ity interruptions to minimize these interruptions and mitigate their negative effects.
Therefore, an ideal classification model should maximize both precision and recall
when classifying unnecessary interruptions. High precision ensures that when the
model predicts an interruption as unnecessary, it is highly likely to be correct. High
recall ensures that the model identifies as many unnecessary interruptions as possible.
However, prediction models regularly face a trade-off between precision and recall.
For the task at hand, i.e., improving current circuit breaker mechanisms, precision is
the key metric to optimize as a high precision ensures that the model predicts an un-
necessary interruption only when the prediction is highly likely to be correct, thereby
minimizing the risk of false positives. In a real-world implementation, it is less criti-
cal to capture every unnecessary interruption (recall), as each correctly identified and
avoided interruption would already improve market efficiency relative to the status
quo. However, false positives could disrupt price continuity and compromise overall
market stability. Therefore, the model’s precision must be prioritized to reduce the
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risk of misclassifying necessary interruptions as unnecessary, which is crucial to pre-
vent welfare losses caused by large transitory price swings due to, e.g., short-term
liquidity crashes, erroneous trading algorithms, or similar events.

The dataset is split into training and test subsets as described in Section 2. Specif-
ically, the training set is created by combining the training and validation sets. This
split is performed in a chronological manner, with the training subset containing
samples from 2019 to the end of 2022, and the test subset containing the remaining
samples from the year 2023.

4.2. Results

Table 3 presents the outcomes of the proposed regression models. The coefficients
in this table represent marginal effects, indicating the absolute increase (or decrease)
in the probability of the dependent variable for each explanatory variable. The clas-
sification metrics at the end of Table 3 reveal that the first two models - the market
quality and the news and contextual factors model - exhibit low predictive power,
with accuracy scores below 56%. Such low accuracy indicates that these models per-
form similar to a naive random guessing approach always predicting the majority
class of the imbalanced test sample, where 55.3% of the observations are not deemed
unnecessary.

Furthermore, the highest achieved precision scores for these models remain below
55%, underscoring their limited effectiveness in correctly identifying true positives,
i.e., unnecessary interruptions. The recall score for the first model reflects similarly
poor performance, with a maximum of only 57%. However, for the second model the
recall score is quite decent at nearly 76%. The higher recall is likely a result of the
model’s tendency to predict that a volatility interruption will be unnecessary in most
cases, leading to improved recall at the expense of precision and overall accuracy.

In summary, neither model demonstrates the ability to reliably predict, in an ex-
ante manner, whether a volatility interruption is unnecessary. These findings suggest
that the models may require further refinement or alternative approaches to improve
predictive accuracy.

In addition to serving as a benchmark prediction model, the probit regressions
enable identifying the economic conditions under which unnecessary volatility inter-
ruptions occur. In the first probit model, we do not observe significant results related
to volatility, suggesting that unnecessary volatility interruptions can occur during
both periods of high volatility and relatively calm phases. Thus, unnecessary inter-
ruptions appear to be influenced more by factors other than volatility. With respect
to liquidity, our findings reveal that high levels of liquidity prior to an interruption
significantly increase the likelihood of the volatility interruption being unnecessary.
Both a narrower bid-ask spread and larger depth at the top order book levels are
associated with a higher probability of the volatility interruption being unnecessary.
In such cases, the cause behind the price change triggering the interruption was not
a short-term liquidity shock, which is one reason why circuit breakers are in place.
Moreover, unnecessary interruptions are associated with high levels of order book
activity, suggesting that market participants might incorporate new information in
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Table 3: Marginal effects of probit regression models

This table shows the marginal effects of the proposed probit models. Marginal
effects describe the absolute change in the output probability given a change in the
independent variables. The relative spread and midpoint return volatility are given
in basis points (bps). The level 5 depth and the trade volume are given in hundred
thousand Euro. The message count is given in thousands.

Market Quality News and Contextual
Factors

Full Model

rel spread -0.0045** -0.0033*
(0.0020) (0.0019)

level 5 depth 0.0052** 0.0055**
(0.0026) (0.0022)

trade volume -0.0036*** -0.0036***
(0.0008) (0.0007)

midpoint return vola 0.0092 0.0153*
(0.0100) (0.0091)

message count 0.0082** 0.0097***
(0.0040) (0.0036)

news count -0.0038 -0.0033
(0.0034) (0.0035)

news relevance -0.1114*** -0.0954***
(0.0358) (0.0360)

news relevance interaction 0.0132** 0.0118**
(0.0052) (0.0052)

vola interruptions market -0.0020* -0.0019
(0.0012) (0.0013)

fast market dummy -0.0011*** -0.0010**
(0.0004) (0.0004)

distance to static barrier 0.1401*** 0.1129**
(0.0534) (0.0541)

Pseudo R2 0.007 0.008 0.013
Max. Accuracy 0.557 0.551 0.511
Max. Precision 0.546 0.463 0.553
Max. Recall 0.574 0.760 0.745

Standard errors in parentheses.
* p < .1, ** p < .05, ***p < .01
Maximum accuracy and maximum precision evaluated using multiple thresholds rang-
ing from 0.4 to 0.8 (in 0.05 steps) to turn the continuous probability output of the
model into a classification of 0 and 1.
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their resting orders leading to many order modifications (or cancellations and sub-
sequent submissions with changed volumes and prices). Conversely, lower trading
volumes are also a relevant factor contributing to unnecessary volatility interrup-
tions. High order book activity and liquidity combined with low trading volume may
suggest increased participation by algorithmic or high-frequency traders and reduced
activity from institutional investors in these market conditions. Algorithmic and high-
frequency trading is typically characterized by a high number of messages per trade
and smaller trade sizes (Friederich and Payne, 2015), whereas institutional investors
tend to execute larger volumes. However, our dataset does not reveal different types
of market participants.

Based on the second regression model, our analysis of the impact of news and
contextual factors reveals that the presence of relevant news, as indicated by the
interaction term between news count and relevance score, significantly increases the
likelihood of a volatility interruption being unnecessary. This finding supports the
hypothesis that unnecessary interruptions may disrupt the ongoing price discovery
process, thereby delaying the integration of new information into stock prices. Ad-
ditionally, the proximity of the current price to the static price limit significantly
affects the classification of the volatility interruption; the closer the price is to this
limit, the more likely the interruption is unnecessary. This observation suggests that
the existing simplistic rule-based volatility interruption mechanism fails to accurately
assess market conditions leading up to the interruption. The mechanism triggers an
interruption as soon as the next possible price exceeds the price range, irrespective of
whether this breach results from a large, sudden price jump or gradual price adjust-
ments during normal trading conditions if the price is already close to the threshold.
Furthermore, significant factors that reduce the likelihood of an unnecessary volatil-
ity interruption include the activation of the fast market indicator and the number
of triggered volatility interruptions in all DAX40 constituents in the previous hour.
When market operators anticipate high volatility, fast market is activated, resulting
in doubled price ranges. If doubled ranges are breached, the likelihood of the interrup-
tion being necessary increases. Similarly, if numerous volatility interruptions across
all stocks have already been triggered in the past hour, it indicates a volatile market,
making further interruptions more justified to stabilize the market using safeguards.

The results from the full model, which combines both proposed models, demon-
strate that the observed effects remain consistent, highlighting the robustness of the
findings. Additionally, the coefficient for volatility becomes significant at the 10%-
level, suggesting that higher volatility also increases the probability of an interruption
being unnecessary. One possible explanation is that volatility interruptions are more
likely to be necessary if they are triggered in relatively calm market phases with lower
levels of volatility in the pre-interruption period, e.g., due an erroneous or very large
order. Similar to the first two models, the prediction accuracy of the full model with
a maximum precision of 55% is still not sufficient although it includes both market
quality and context-related variables. In terms of accuracy, it even performs slightly
worse than a naive random guessing approach.

Overall, unnecessary volatility interruptions are more likely to occur during ac-
tive price formation processes, characterized by increased order book activity and
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the presence of relevant news. Despite high levels of liquidity, trading volumes are
moderate. In such conditions, liquidity providers are more likely to continue quot-
ing rather than exiting the order book despite potentially higher levels of volatility.
These market conditions suggest that current price changes are supported by mar-
ket participants, and volatility interruptions in such situations unnecessarily disrupt
ongoing price discovery processes. Furthermore, triggering interruptions when prices
are close to the static price limit is more likely to be unnecessary, highlighting the
inherent problem of simplistic, rule-based circuit breakers.

However, our analysis shows that predicting unnecessary volatility interruptions
ex-ante based on our probit regressions is neither feasible nor adequate for improving
the circuit breaker mechanism. While the probit regressions offer insights (explain-
ability) into the factors driving different types of volatility interruptions, the com-
plexity of the market conditions in which these interruptions occur goes beyond the
capacity of such models to capture dynamic interactions between various factors.

Therefore, the next section proposes a comprehensive deep learning model de-
signed to capture and model the complex relationships between multiple market
quality and contextual factors.

5. Prediction of unnecessary volatility interruptions - The deep learning
approach

5.1. Methodology

Building on the results presented in Section 4, we propose a deep learning model
designed to predict the likelihood of a volatility interruption being unnecessary using
only information available prior to its triggering. Unlike the models employed in the
previous section, our deep learning approach can effectively model complex spatial
and temporal non-linear relationships among various input factors. This capability
eliminates the need to aggregate input time series into a single value, as it is required
for the probit regressions using the exponential mean. Moreover, it removes the
necessity of pre-selecting potentially relevant independent variables, as the model’s
architecture inherently identifies and extracts useful features.

Consequently, our deep learning model can process raw information directly with-
out relying on pre-calculated measures. This approach enables us to leverage large
volumes of unprocessed data preceding each volatility interruption, capturing the full
spectrum of dynamics and relationships among various factors that influence whether
the interruption would be unnecessary.

The classification model incorporates two distinct data streams: LOB data and
time-dependent news and contextual information. The following subsections describe
the deep learning architecture:

The LOB data stream
The LOB data stream comprises 600 snapshots (equivalent to 10 minutes) of LOB

data, each containing ten levels of price and quantity information for both the bid
and ask sides. The model structure for the LOB data stream is inspired by the
architecture of DeepLOB (Zhang et al., 2019). The initial part of the architecture
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features a CNN comprising multiple neurons responsible for convolution operations.
The CNN aims to extract useful features from single LOB snapshots, potentially
encompassing convolutions of bid and ask-side price levels or prices and quantities.
This distinguishes it from the previous approach using probit regression (Section 4), as
it autonomously extracts useful features by design from the order book data, removing
the need for pre-calculated and time-aggregated measures. Consequently, it should
lead to more meaningful features to be extracted and later used since the model itself
employs the features needed for successful classification or dimensionality reduction.

Subsequent to the feature extraction by the CNN layers, the architecture em-
ploys an inception module, focusing on time-wise convolution rather than convolu-
tion within a single orderbook snapshot. This module is designed to extract features
based on the ones previously computed over a specific time frame, summarizing them
into one value. For instance, it could calculate the maximum spread over the last five
time steps. The extracted features are then fed into an LSTM layer, which captures
temporal changes in these features essential for the time-dependent characteristics
of the stream of LOB data. Two key modifications have been made to the original
DeepLOB architecture of Zhang et al. (2019): the dropout layer’s activation probabil-
ity is reduced to 0.02, which has demonstrated improved performance. Additionally,
the architecture is truncated after the final LSTM layer to produce a feature vector
for concatenation with the news and contextual data stream.

The news and contextual data stream
Analogous to the regression-based news and contextual factors model in Section 4,

the news and contextual data stream in the deep learning model is designed to cap-
ture information that is not directly observable in market data but may influence
whether an interruption is deemed unnecessary. This stream covers the same types
of information as those used in the second probit regression in Section 4. However,
instead of aggregating this information, as it was done for the regressions, we utilize
the raw time series data as input for the deep learning model.

Given the deep learning model’s higher expressive power and its ability to au-
tonomously extract relevant features for prediction, we include a broader array of
information in the news and contextual data stream, beyond the pre-selected mea-
sures used earlier. This enables the incorporation of a wide range of contextual factors
during the model training process, aiming to capture as many potential dynamics and
relationships as possible to enhance prediction accuracy.

In addition to the factors used in the regression model, we include the number
of triggered volatility interruptions for the affected stock, aiming to capture stock-
specific high-volatility dynamics. Our hypothesis is that multiple volatility inter-
ruptions in the same stock may indicate unnecessary interruptions triggered by a
substantial but relevant change in the fundamental value of the stock. We also in-
corporate the number of volatility interruptions at both the stock and market level
over the past 24 hours to account for long-term dynamics. To enrich the trade data,
we add the number of executed trades and their average trade volume. In terms of
news data, we include the sentiment score of each news item and the similarity of new
information to past news, which helps to determine whether the news is recent or if

24



its content may already be reflected in prices. Furthermore, we include order message
data, encompassing the number of order submissions, cancellations, and modifica-
tions, to provide a detailed view of activities within each order book update. Lastly,
we factor in the current minute of the observation, recognizing that key announce-
ments by central banks or similar entities often occur at specific times, such as on the
quarter, half, or full hour.17

In summary, the news and contextual data stream includes the following features:
the number of past volatility interruptions in both the market and the individual
stock in the last hour and in the last 24 hours, a dummy variable for the fast market
indicator, trade data (including the number of trades, trade volume, and average vol-
ume per trade), news data (including the number of news items, sentiment, relevance,
and similarity), the number of aggregated order book snapshots for each time inter-
val, the relative distance to the approximated static barrier, message data (including
the number of order submissions, cancellations, and modifications) and the current
minute of the observation. A detailed overview of these features, their calculations,
and their informational content is provided in Table 5 in Appendix A.

The news and contextual data stream is first processed through an LSTM layer to
capture temporal dependencies and extract relevant features. This is then followed
by a fully connected layer. Unlike the LOB channel, we avoid using a CNN layer for
the news and contextual data channel, as there is no rationale to assume meaning-
ful spatial interactions between individual features, such as news sentiment and past
volatility interruptions.

The combined model
The combined model architecture integrates the outputs from both data streams.

The LOB data channel’s feature vector is concatenated with the feature vector from
the news and contextual data channel. The resulting combined feature map is then
passed through a final fully connected layer, which outputs the probability of the
volatility interruption being unnecessary. A detailed illustration of the entire model
architecture is provided in Figure 15 in Appendix B.

The deep learning approach is expected to outperform the regression models pro-
posed in Section 4 as it leverages not only pre-calculated features but also raw time
series data from the market, news, and other contextual factors. Moreover, it enables
the model to automatically extract relevant features for the classification task, po-
tentially leading to more accurate predictions. However, a drawback of this approach
is the loss of explainability, as the model’s internal operations become more complex
and less transparent.

17For example, the European Central Bank’s monetary policy decisions are published in a press
release at 14:15 CET (equals local time for the trading venue Xetra) followed by a press conference
starting at 14:45 CET. See https://www.ecb.europa.eu/press/govcdec/mopo/html/index.en.

html.
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Model training and evaluation
For training the model, the dataset was split into training, validation, and test

subsets as described in Section 2. The split was conducted chronologically: the train-
ing subset contains samples from April 2019 to November 2022 and the validation
subset contains samples from December 2022, while the test subset consists of samples
from the year 2023. Due to the imbalanced distribution of the class labels, the train-
ing dataset was oversampled using the Synthetic Minority Oversampling Technique
(SMOTE) (Chawla et al., 2002). Oversampling ensures a more balanced training
dataset, leading to a more effective training process and potentially better classifica-
tion performance. The training set was exclusively used for model training. During
the training process, the validation set was used to monitor loss and accuracy metrics
on a small out-of-sample subset. This monitoring was essential to detect potential
overfitting. If overfitting was observed, the training process would have been inter-
rupted and terminated. The test subset, which was never used in the training process
to prevent information leakage, was utilized to evaluate the model’s performance using
the standard classification metrics accuracy, recall, and precision as already discussed
in Section 4. Additionally, we consider the Fβ-score to assess the balance between
precision and recall.

As with the regression-based approach, the precise identification of unnecessary
volatility interruptions is prioritized over general model accuracy. It is more important
for the model to detect unnecessary interruptions with high precision to avoid false
positives, even if this comes at the expense of lower overall accuracy. Therefore,
also the deep learning model is optimized to maximize precision when identifying
unnecessary interruptions.

5.2. Results

The model training converged after 128 iterations. The evolution of the loss func-
tion during the training process is documented in Figure 12 in Appendix A. The main
objective of this study is to achieve an optimal balance between high precision and
recall for predicting unnecessary volatility interruptions, with the primary empha-
sis on precision to avoid missclassified but relevant interruptions. This balance can
be adjusted by testing different cut-off values18 for the predicted probabilities that
indicate unnecessary interruptions.

Figure 8 presents the precision-recall curve, which illustrates the trade-off between
precision and recall at different thresholds. This curve is instrumental in identifying
an optimal threshold for the underlying prediction task. It becomes evident that
thresholds ranging from 0.6 to 0.75 appear to be suitable given the classification task
at hand. While those above 0.6 lead to sufficiently high precision scores, thresholds
above 0.75 do not further increase precision but only lead to a decrease in recall.

18As the output of the model is a continuous value (i.e. the probability of the sample being in
the target class) the value needs to be transformed into a binary value representing the class which
is done by defining a cut-off value. Every output higher than the cut-off value is considered as part
of the target class, in this case, an unnecessary volatility interruption.
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Figure 8: Precision-recall curve of model outputs at different thresholds for labeling as unnecessary

To analyze the impact of the different thresholds within this range on model per-
formance more closely, Table 4 presents the average precision and recall scores over
100 repeated predictions for thresholds ranging from 0.6 to 0.75. The results indicate
that using a threshold of 0.7 or higher yields high precision scores exceeding 65% in
identifying unnecessary volatility interruptions. However, this comes at the cost of
lower recall scores, with only a relatively small proportion (2% to 8%) of all actually
unnecessary interruptions being detected. Conversely, implementing the model with
lower thresholds results in significantly higher recall scores. For instance, at a thresh-
old of 0.6, the recall is nearly 30%, indicating that nearly one-third of all unnecessary
interruptions are correctly identified. However, the precision at this level is lower, just
under 60%, indicating that approximately 40% of the interruptions labeled as unnec-
essary are actually not part of that class. Larger thresholds are also supported by the
Fβ-score, which summarizes a model’s predictive performance by balancing precision
and recall. With a β of 0.1 (0.2), ten (five) times more weight is placed on achieving
high precision in predicting unnecessary volatility interruptions, thereby minimizing
false positives. This means avoiding predictions of unnecessary interruptions when
they are in fact justified. For a β of 0.1, the optimal balance between precision and
recall is achieved at a threshold of 0.75, whereas for a β of 0.2, the score reaches its
peak at a threshold of 0.65.

Given these findings, thresholds between 0.65 and 0.75 appear to offer a bal-
anced performance in accurately identifying unnecessary volatility interruptions. Us-
ing these thresholds, a precision between 60% and 100% can be achieved, offering the
potential to prevent the triggering of a volatility interruption when there is a high
likelihood that this interruption is unnecessary. Such an approach would minimize
delays in price determination and enhance overall market quality by mitigating the
negative consequences of volatility interruptions. Our approach can either be fully
integrated into a circuit breaker mechanism or serve as a decision support system
for market operators to shorten the auction phase if the probability of an unneces-
sary interruption increases as more data becomes available during the auction. When
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Table 4: Classification metrics of the deep learning prediction model

Threshold Accuracy Precision Recall Fβ=0.1 Fβ=0.2

0.600 0.580 (0.01) 0.561 (0.01) 0.293 (0.01) 0.555 (0.01) 0.541 (0.01)
0.625 0.574 (0.01) 0.564 (0.01) 0.221 (0.01) 0.555 (0.01) 0.532 (0.01)
0.650 0.579 (0.01) 0.597 (0.01) 0.183 (0.00) 0.584 (0.01) 0.549 (0.01)
0.675 0.575 (0.02) 0.619 (0.02) 0.134 (0.01) 0.598 (0.02) 0.544 (0.01)
0.700 0.569 (0.03) 0.659 (0.03) 0.080 (0.00) 0.615 (0.03) 0.515 (0.02)
0.725 0.567 (0.04) 0.803 (0.04) 0.045 (0.00) 0.687 (0.03) 0.487 (0.02)
0.750 0.563 (0.00) 1.000 (0.00) 0.024 (0.00) 0.708 (0.02) 0.385 (0.03)

Classification scores in this table are obtained by predicting the test dataset 100 times, where the

minority class of unnecessary interruptions represents 44.7% of the observations in the test sample.

The table reports the average classification score as well as the corresponding standard deviation

in parentheses. We report results for β ∈ {0.1, 0.2} for the Fβ-score to emphasize the importance

of predicting unnecessary volatility interruptions with a high precision to avoid false positives, i.e.,

predicting an interruption to be unnecessary although it is actually relevant.

implementing this approach in real-world exchange systems, the optimal threshold
selection should depend on the level of automation relative to human intervention. In
a largely automated environment, a more restrictive mechanism (i.e., higher thresh-
olds) is preferable to minimize false positives. In contrast, when the mechanism is
used as a decision support system with a higher level of human supervision, a less
restrictive setting may be more suitable tolerating more false positives, as final deci-
sions are reviewed manually by the market supervision team. Accordingly, in settings
with high automation, using an Fβ-score with a lower β could help identify a suitable
threshold, as this is emphasizing precision and stressing the sensitivity to false posi-
tives. Conversely, in lower automation settings, a higher β may be more appropriate,
as it places greater emphasis on recall, reducing the risk of missed detections.

Therefore, the model can be tailored to the to the respective market operator’s
needs to define thresholds that satisfy his requirements on avoiding false positives
versus detecting as many unnecessary volatility interruptions as possible. For de-
cision support systems used by market operators who manually supervise volatility
interruptions, a less restrictive threshold may be preferable. On the other hand,
for automatic mechanisms aimed at canceling unnecessary volatility interruptions, a
more restrictive threshold would be more appropriate.

6. Limitations and robustness tests

While this study offers valuable insights into improving the effectiveness of circuit
breaker mechanisms in securities markets, certain limitations should be acknowledged
when interpreting and applying our findings.

Our analysis primarily examines a specific implementation of circuit breakers —
volatility interruptions. Although volatility interruptions are a common safeguard
across European stock exchanges, they are less frequently used in other parts of the
world (Gomber et al., 2016). In the U.S., circuit breakers are typically implemented as
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trading halts, with the Limit Up/Limit Down mechanism governing single-stock trad-
ing halts (U.S. Securities and Exchange Commission, 2012). Despite the differences
between volatility interruptions and trading halts, both types of circuit breakers are
triggered based on pre-determined price thresholds. Our methodology is broadly ap-
plicable to rule-based circuit breakers in general, making our results relevant to other
mechanisms, including the U.S. Limit Up/Limit Down mechanism. Nonetheless, fur-
ther comprehensive analyses should be conducted before generalizing our findings to
other circuit breaker implementations.

Regarding our dataset, another limitation is the absence of information on the spe-
cific orders that triggered the volatility interruptions. This data would provide crucial
insights into whether these orders were erroneously sent to the exchange or were rea-
sonable. With access to the triggering order, we could directly identify misconfigured
or error-induced orders for which a volatility interruption is necessary. Additionally,
such data could enhance our prediction models by providing valuable information to
better identify unnecessary interruptions. Unfortunately, the triggering order is not
included in public market data feeds. However, as the market operator has knowledge
of this order, the inclusion of this information into our proposed approach will likely
further increase its performance.

To ensure the robustness of our findings and to account for potential alternative
explanations for unnecessary volatility interruptions, we conducted several robustness
tests based on the probit regression in Section 4, with results detailed in Appendix C.

Table 6 presents the results of a regression analysis that includes stock fixed effects
to control for any stock-specific factors that might influence our results. We included
dummy variables for each stock, and the coefficients for these stock dummies were
found to be insignificant. All other effects remained consistent with our original
analysis, suggesting that stock-specific factors do not influence our main results.

As highlighted in Figure 2 and described in Section 2, our dataset was significantly
affected by the COVID-19 pandemic. To account for potential pandemic-related
effects, we conducted a robustness test incorporating a COVID-19 dummy variable
for all samples triggered between February and May 2020. Table 7 presents the results
of this analysis, showing an insignificant coefficient for the COVID-19 dummy variable
in the full model, while all other effects remained consistent with our main results.
This suggests that our approach is applicable across periods of both high and low
volatility and is not influenced by market-wide disruptions.

Lastly, we tested for potential yearly effects by conducting a regression analysis
that included dummy variables for each year within our observation period. The
results, depicted in Table 8, revealed no significant coefficients for the yearly dummy
variables, and no deviations were observed compared to our main results. This in-
dicates that our findings are stable across different years and are not influenced by
year-specific factors.
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7. Conclusion

Our study addresses a significant gap in the literature on circuit breakers as it
demonstrates that it is possible to identify and avoid unnecessary interruptions. Inter-
ruptions caused by circuit breakers can negatively impact market quality by delaying
price discovery and disrupting liquidity, leading to a trade-off between their protective
role and adverse effects on market quality (Hautsch and Horvath, 2019). Our research
presents a novel approach based on machine learning techniques to identify unneces-
sary volatility interruptions that are triggered within an ongoing price trend before
and after the interruption, thus leading to an unnecessary delay in price discovery.
Based on this identification, we further develop a deep learning model that is able
to predict unnecessary volatility interruptions using ex-ante order book information,
news, and other contextual features. This approach enables a more nuanced applica-
tion of circuit breakers, facilitating the development of advanced market safeguards
that are only triggered when necessary. Therefore, our study adds to the discussion
of improved circuit breaker mechanisms, such as the forward-looking circuit breaker
proposed by Bongaerts et al. (2024). Our study also contributes to the broader lit-
erature on market microstructure by applying advanced machine learning techniques
to a critical market design aspect.

By analyzing the circumstances in which unnecessary volatility interruptions are
triggered, we find that they are more likely to occur when liquidity is high, when there
is increased activity in form of submissions and cancellations in the order book, and
when relevant news reports are present. Large price fluctuations observed under these
conditions rather point to well-functioning price discovery instead of erroneous price
jumps. Moreover, volatility interruptions are also more likely to be unnecessary when
the last price prior to the interruption is near the triggering threshold. This indicates
that the existing simplistic rule-based mechanism is not capable of differentiating
between plausible price changes and unsubstantiated price jumps.

The practical implications of our findings are substantial. Exchange operators
can leverage our models to refine their safeguard mechanisms, avoiding or shortening
unnecessary interruptions and improving overall market efficiency. Additionally, our
results can inform regulatory discussions, potentially leading to more nuanced and
effective rules for circuit breakers.

Future research could build on our work by applying our methodology to different
markets and types of circuit breakers, further validating the robustness of our findings.
Additionally, exploring other machine learning techniques and incorporating non-
public information from market operators will likely enhance the predictive accuracy
of our models.
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Appendix A: Variable description and additional descriptives

Table 5: Detailed explanation of all variables used in the
models in Section 4 and Section 5

Feature Model Explanation

rel spread P1, P3 Measures the difference between the best bid
and ask prices relative to the midpoint.

level 5 depth P1, P3 Sum of the quoted Euro volume at the first
five order book levels.

trade volume P1, P3, DL Euro volume of all executed trades.
midpoint return vola P1, P3 Measures overall volatility by calculating the

standard deviation of midpoint returns.

message count P1, P3 Number of all messages (submissions, dele-
tions, modifications).

news count P2, P3, DL Number of news articles mentioning the cor-
responding company in the last 10 minutes.

news relevance P2, P3, DL Average relevance score of news articles men-
tioning the corresponding company in the
last 10 minutes.

vola interruptions
market

P2, P3, DL Measures the number of triggered volatility
interruptions across all DAX40 constituents
in the last hour. In the deep learning model,
we additionally calculate this measure based
on the last 24 hours.

fast market dummy P2, P3, DL Dummy variable whether the fast market in-
dicator is set by the market operator or not.

distance to static
barrier

P2, P3, DL Distance of the current price to the approx-
imated static price range. The value is
bounded between 0 and 1 with 1 being close
to the barrier and 0 being far away.

vola interruptions
instrument

DL Measures the number of triggered volatility
interruptions in the same instrument in the
last hour. In the deep learning model, we
additionally calculate this measure based on
the last 24 hours.

count trades DL Number of executed trades.
count buys DL Number of buyer initiated trades.
count sells DL Number of seller initiated trades.
avg trade volume DL Average trade size in euro.

continued . . .
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. . . continued

Feature Model Explanation

news sentiment DL Average sentiment score of news articles
mentioning the corresponding company in
the last 10 minutes.

news similarity DL Average similarity score of news articles men-
tioning the corresponding company in the
last 10 minutes.

count add DL Number of messages representing the adding
of a new order.

count delete DL Number of messages representing the dele-
tion of a persisting order.

count modify DL Number of messages representing the modi-
fication of a persisting order.

ob changes DL Number of order book updates.
minute of hour DL Number representing the current minute in

the time series. Bounded between 0 and 59.
last auction
price return

DL Return of the current price and the last auc-
tion price.

P1 represents the market quality model, P2 the news and contextual factors model
and P3 the full model in the probit regressions discussed in Section 4. DL refers to
the deep learning model described in Section 5.
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Figure 9: Approximated static price ranges for all DAX40 constituents
This figure shows the approximated static price ranges based on the largest price deviation seen
from the last auction price, which serves as reference price for the static threshold triggering the
interruption. For brevity and better visualization, only the yearly approximated thresholds are shown
although monthly approximations are used in the models. Missing bars are due to the stock’s later
listing (e.g., Daimler Truck Holding AG emerged from a spin-off and was first traded in December
2021).

Figure 10: Total number of volatility interruptions for each DAX40 stock between 2019 and 2023
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Figure 11: Histogram of the clustering results

Figure 12: Loss during the training of the classification model for the training and testing subset
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Appendix B: Architectures of the deep learning models
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Figure 13: Architecture of the implemented encoder part of the autoencoder model
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Figure 14: Architecture of the implemented decoder part of the autoencoder model
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Figure 15: Architecture of the implemented classification model
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Appendix C: Additional results and robustness tests

Table 6: OLS regression results with stock fixed effects

This table shows the results from OLS regressions analogous to the models de-
scribed in Section 4. Here, the results are not based on probit regressions, but on
OLS regressions as the inclusion of stock fixed effects introduces 39 dummy variables
and probit regressions do not perform well when comprising a large amount of pa-
rameters. The relative spread and midpoint return volatility is given in basis points
(bps). The level 5 depth and the trade volume is given in hundred thousand Euro.
The message count is given in thousands.

Market Quality News and Contextual
Factors

Full Model

const 0.4460*** 0.3637*** 0.3342***
rel spread -0.0046** -0.0031
level 5 depth 0.0058** 0.0042*
trade volume -0.0034*** -0.0034***
midpoint return vola 0.0136 0.0190**
message count 0.0061 0.0049
news count -0.0053 -0.0042
news relevance -0.1263*** -0.1134***
news relevance interaction 0.0113** 0.0106*
vola interruptions market -0.0017 -0.0018
fast market dummy -0.0012*** -0.0012***
distance to static barrier 0.1811*** 0.1605***
Stock FE Yes Yes Yes
R-squared 0.0291 0.0296 0.0355
R-squared Adj. 0.0180 0.0183 0.0230

Standard errors in parentheses.
* p < .1, ** p < .05, ***p < .01
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Table 7: Marginal effects of probit regression models including a COVID-19 dummy variable

This table shows the marginal effects of the proposed probit models. Marginal
effects describe the absolute change in the output probability given a change in the
independent variables. The COVID-19 dummy variable marks all observations be-
tween February and May of 2020. The relative spread and midpoint return volatility
is given in basis points (bps). The level 5 depth and the trade volume is given in
hundred thousand Euro. The message count is given in thousands.

Market Quality News and Contextual
Factors

Full Model

rel spread -0.0037* -0.0037*
(0.0020) (0.0020)

level 5 depth 0.0040* 0.0039*
(0.0022) (0.0022)

trade volume -0.0033*** -0.0031***
(0.0007) (0.0007)

midpoint return vola 0.0116 0.0151*
(0.0091) (0.0091)

message count 0.0083** 0.0087**
(0.0035) (0.0037)

covid dummy -0.0412* -0.0073 0.0102
(0.0215) (0.0244) (0.0259)

news count -0.0044 -0.0040
(0.0034) (0.0035)

news relevance -0.1248*** -0.1129***
(0.0359) (0.0361)

news relevance interaction 0.0154*** 0.0140***
(0.0052) (0.0052)

vola interruptions market -0.0019 -0.0023*
(0.0013) (0.0014)

fast market dummy -0.0010** -0.0010**
(0.0004) (0.0004)

distance to static barrier 0.1411** 0.1334**
(0.0568) (0.0572)

Pseudo R-squared 0.0071 0.0069 0.0115

Standard errors in parentheses.
* p < .1, ** p < .05, ***p < .01
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Table 8: Marginal effects of probit regression models including dummy variables for each year

This table shows the marginal effects of the proposed probit models. Marginal
effects describe the absolute change in the output probability given a change in the
independent variables. The relative spread and midpoint return volatility is given
in basis points (bps). The level 5 depth and the trade volume is given in hundred
thousand Euro. The message count is given in thousands.

Market Quality News and Contextual
Factors

Full Model

rel spread -0.0037* -0.0032
(0.0020) (0.0020)

level 5 depth 0.0041* 0.0037*
(0.0022) (0.0022)

trade volume -0.0030*** -0.0029***
(0.0007) (0.0007)

midpoint return vola 0.0097 0.0130
(0.0091) (0.0091)

message count 0.0075** 0.0079**
(0.0036) (0.0037)

year 2020 -0.0328 0.0093 0.0018
(0.0380) (0.0390) (0.0396)

year 2021 -0.0459 -0.0296 -0.0372
(0.0436) (0.0430) (0.0435)

year 2022 0.0071 0.0408 0.0146
(0.0371) (0.0365) (0.0372)

year 2023 0.0395 0.0626 0.0425
(0.0388) (0.0383) (0.0390)

news count -0.0042 -0.0038
(0.0034) (0.0035)

news relevance -0.1138*** -0.1048***
(0.0360) (0.0362)

news relevance interaction 0.0147*** 0.0136***
(0.0052) (0.0052)

vola interruptions market -0.0017 -0.0019
(0.0013) (0.0013)

fast market dummy -0.0009** -0.0009**
(0.0004) (0.0004)

distance to static barrier 0.1364** 0.1210**
(0.0551) (0.0556)

Pseudo R-squared 0.0088 0.0091 0.0127

Standard errors in parentheses.
* p < .1, ** p < .05, ***p < .01
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