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Exchange operators use circuit breakers like volatility interruptions to prevent
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new information. We introduce a clustering approach to identify unnecessary volatil-
ity interruptions that occur within persistent price trends, delaying price discovery
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1. Introduction

Securities markets are frequently subject to sudden and unsubstantiated price fluc-
tuations caused by liquidity shocks, erroneous orders, or unexpected firm-specific or
macroeconomic news. The advent of algorithmic and high-frequency trading, which
involves fully automated order submissions and cancellations executed at extremely
high speeds (O’Hara, 2015), has amplified the frequency and severity of short-term
liquidity imbalances and transient price dislocations (U.S. Securities and Exchange
Commission, 2016). These heightened volatility risks inherent in modern securities
markets have prompted both market operators and regulators to adopt mitigating
measures. As a response, exchanges worldwide implement circuit breakers, which are
market safeguards such as trading halts or volatility interruptions, that temporarily
pause or slow trading during episodes of substantial price movement. These mecha-
nisms are designed to promote price continuity and maintain the orderly operation of
fully electronic securities markets by curbing transitory or error-induced price shocks.

Circuit breakers were first introduced on major stock exchanges in the late 1980s
(e.g., Lee et al., 1994; Lauterbach and Ben-Zion, 1993) and have been increasingly
adopted worldwide. In a 2016 survey among exchange operators (Gomber et al.,
2016), 86% of the responding trading venues employ circuit breakers to ensure in-
vestor protection and market stability, up from 60% reported in a similar survey
conducted by the World Federation of Exchanges in 2008 (World Federation of Ex-
changes, 2008). Moreover, regulators in most jurisdictions mandate the use of circuit
breakers.1 However, their effectiveness remains a subject of ongoing debate. Crit-
ics argue that circuit breakers unnecessarily disrupt the trading process, potentially
hindering market efficiency by delaying price discovery (Fama, 1988) and causing
volatility spillovers across time and markets (Subrahmanyam, 1994). Moreover, they
are associated with adverse effects on market liquidity (Hautsch and Horvath, 2019).

The main issue with the design of current circuit breakers is their reliance on sim-
plistic rule-based mechanisms, which trigger interruptions as soon as the price of a
security or index crosses a pre-defined threshold. Thus, these mechanisms do not dif-
ferentiate between legitimate market movements driven by fundamental information
and erratic price jumps caused by liquidity shocks, erroneous orders, misconfigured
trading algorithms, or fake news.2 As a result, existing circuit breakers are character-
ized by a trade-off between their protective role in maintaining market stability and
their potential adverse effects on market quality (Hautsch and Horvath, 2019).

The issue of simplistic circuit breaker rules leading to unnecessary trading inter-
ruptions becomes even more critical when considering the frequency of these events.

1For example, the U.S. Securities and Exchange Commission mandates a trading pause for
individual stocks through the Limit Up/Limit Down mechanism in the event of sudden price swings,
and a market-wide circuit breaker in the form of a trading halt in case of a severe decline in the
S&P 500 Index (U.S. Securities and Exchange Commission, 2012). Similarly, the European financial
market regulation MiFID II mandates trading venues to have mechanisms in place to halt or restrict
trading in case of significant price movements (European Commission, 2014).

2See Bongaerts et al. (2024) for a related discussion on the issues arising from the simplistic and
backward-looking nature of current circuit breaker designs.
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Rather than being rare events, circuit breakers are frequently triggered, even in the
most liquid stocks.3 For instance, the European Securities and Markets Authority
(ESMA) reported a peak of more than 3,000 circuit breaker events within a single
week in March 2020 due to market turmoil related to COVID-19 (European Securi-
ties and Markets Authority, 2022). In our sample of German blue chip stocks, we
observe an average of 5.27 interruptions per day and 161 interruptions per stock over
the observation period of six years.4 Consequently, identifying and avoiding unneces-
sary interruptions could significantly enhance the effectiveness of circuit breakers and
improve overall market quality.

To address this issue and to contribute to solving the trade-off between market
stability and the negative impact of unnecessary interruptions, this paper introduces a
novel cluster-based approach utilizing single-stock volatility interruptions, the preva-
lent circuit breaker mechanism in Europe. This method allows for the identification of
those volatility interruptions that are triggered during persistent price trends, where
they merely delay the incorporation of new information into prices. To the best of our
knowledge, this is the first framework designed to detect such unnecessary volatility
interruptions. Our study is based on a dataset of 7,899 historical volatility inter-
ruptions in the 49 stocks that were included in the DAX40 benchmark index at any
point during our observation period, which spans from April 2019 to December 2024.
The dataset includes high-frequency order book, trade, and news data. By combin-
ing an autoencoder model that consolidates order book information before and after
each interruption with a Gaussian Mixture Model (GMM), we classify 37% of the ob-
served volatility interruptions as unnecessary, i.e., interruptions that delay the price
discovery process and lead to a decrease in market quality.

To examine the drivers of unnecessary interruptions, an analysis utilizing probit
regressions reveals that unnecessary volatility interruptions are more likely to occur
during periods of high liquidity and the presence of relevant news. Economically, these
conditions suggest that the price changes leading to the interruption are likely driven
by shifts in value expectations and corresponding trading activity. In such cases,
the rule-based nature of current circuit breaker mechanisms unnecessarily interferes
with the trading process. Moreover, our results suggest that volatility interruptions
are more likely to be unnecessary when the last price before the interruption is near
the pre-defined threshold that triggers the circuit breaker. When prices approach
these thresholds due to sustained movements throughout the trading day, even mi-
nor price fluctuations from normal trading activity can activate the circuit breaker,
causing unwarranted market disruptions. While revealing the determinants of unnec-
essary volatility interruptions, the probit model is not able to predict unnecessary
interruptions based on ex-ante order book, trade, and news information.

Based on these findings, we develop a deep learning model that significantly en-
hances prediction capabilities by effectively capturing complex spatial and temporal

3For an overview of the number of circuit breaker events in selected empirical studies, see Bon-
gaerts et al. (2024), Table 2.

4After the cleaning steps shown in Table 2, the sample has an average of 4.59 interruptions per
day and 140.55 interruptions per stock.
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relationships among input features. Unlike probit regression models, it eliminates
the need to aggregate input time series data and to pre-select relevant variables, as
it is capable of processing raw data and autonomously identifying useful features.
The model combines convolutional neural networks (CNNs), an inception module,
and long short-term memory (LSTM) layers. The CNN component extracts features
from individual order book snapshots, while the inception module focuses on time-
wise convolutions, summarizing features over time. These features are then processed
by the LSTM layer, capturing temporal changes essential for the classification task.
Using this model, we are able to predict unnecessary volatility interruptions with a
precision of 82.5% and a recall of 20.4%. The high precision ensures a low rate of false
positives, i.e., avoiding interruptions only when they are truly unnecessary, while still
capturing a meaningful share of all unnecessary interruptions. To assess the broader
implications of deploying the model, we construct a simple welfare framework that
compares the estimated gains and losses from implementing the prediction model
alongside existing rule-based circuit breaker mechanisms. Our results show that the
model generates a net welfare gain, which scales meaningfully with the number of
stocks and trading venues where it is applied.

Our findings contribute to two strands of literature. First, our paper adds to
the extensive research stream that discusses and analyzes the effectiveness of circuit
breakers from both theoretical and empirical perspectives.5 Circuit breakers can help
to “cool down” markets and reduce volatility by providing market participants with
time to reassess their trading strategies, inventories, and the impact of news (Ma
et al., 1989). However, these safeguards can also disrupt trading and impair market
liquidity. They may hinder inventory management by liquidity providers (Lauterbach
and Ben-Zion, 1993), delay price discovery (Lehmann, 2019), and induce a “magnet
effect”, whereby prices accelerate toward the interruption threshold (Chen et al., 2024;
Subrahmanyam, 1994).6 Additionally, they can trigger volatility spillovers to other
markets and future trading sessions (Subrahmanyam, 1994).

Despite these drawbacks, circuit breakers seem necessary to prevent erroneous
price jumps in today’s fully electronic securities markets (Subrahmanyam, 2013),
where order submissions, executions, and price determination occur autonomously at
millisecond frequency (O’Hara, 2015). Empirical studies reach contradictory conclu-
sions regarding the effectiveness of circuit breakers in reducing volatility, although
they generally agree on their harmful effects on liquidity and price discovery (e.g.,

5For an overview of the literature, refer to the surveys by Abad and Pascual (2013) and Sifat
and Mohamad (2019).

6The magnet effect, which refers to the acceleration of prices toward a circuit breaker threshold,
has been formalized and empirically validated by Chen et al. (2024). The authors demonstrate that
as markets approach a trading halt, volatility increases sharply and returns exhibit increasingly
negative skewness. These findings suggest that circuit breakers can distort trading behavior and
tend to destabilize price formation during periods of significant market decline. Other empirical
evidence on the magnet effect of circuit breakers or price limits is mixed. Some studies find support
for its existence (e.g., Cho et al., 2003), while others do not (e.g., Abad and Pascual, 2007).
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Abad and Pascual, 2010; Hautsch and Horvath, 2019; Kim and Rhee, 1997).7 Based on
an in-depth analysis of trading interruptions at Nasdaq, Hautsch and Horvath (2019)
conclude that there is a trade-off between the protective role of trading interruptions
and their potentially adverse effects on volatility, liquidity, and price efficiency. Vari-
ations in distributions across different observation periods and datasets, along with
differences in the design of the safeguards (Clapham et al., 2017a), may explain the
differing conclusions regarding their effectiveness in reducing volatility.

The study most closely related to ours is the model by Bongaerts et al. (2024),
which demonstrates that properly calibrated circuit breakers can prevent market runs
by curbing excessive trading. Like us, the authors argue that the current simplis-
tic, price-triggered circuit breaker mechanisms fail to differentiate between legitimate
liquidity demand and inefficient excessive trading. To enhance the current market
design, they propose a forward-looking circuit breaker that becomes increasingly re-
strictive as the expected welfare losses from market runs increase. Another closely
related study is Moise (2025), which examines the economic triggers of single-stock
circuit breakers in the U.S. Although these mechanisms are intended to pause trad-
ing during high-volatility phases driven by informational shocks, the study finds that
they are often triggered by short-term liquidity shocks and are followed by reduced
liquidity across all types of stocks.

We contribute to the literature on circuit breakers by demonstrating that it is
possible to identify and avoid unnecessary interruptions. This can mitigate the ad-
verse effects of circuit breakers and potentially resolve the trade-off between their
protective role and their negative impact on market quality.

Second, we contribute to the emerging body of literature that applies machine
learning techniques to market microstructure research. For instance, Easley et al.
(2021) utilize machine learning methods to predict future levels of liquidity, volatility,
and other critical variables for market participants and researchers. Similarly, Kwan
et al. (2021) employ reinforcement learning to investigate the price discovery process,
while Sirignano and Cont (2019) leverage deep learning to forecast the direction of
price movements based on historical limit order book (LOB) data. Our study extends
the application of machine learning in market microstructure by exploring its use in
analyzing circuit breakers and its potential to enhance their design and effectiveness.

Overall, our findings can enhance circuit breaker mechanisms by reducing the
number of unnecessary interruptions. This can mitigate potential adverse effects of
these mechanisms on market quality (Hautsch and Horvath, 2019; Subrahmanyam,
1994) and ultimately improve market efficiency. We also discuss the key considera-
tions when implementing our proposed model in practice. Additionally, our findings
can inform discussions with both market operators and regulatory authorities regard-
ing the design and rules of circuit breakers.

7Exhibit 17.2 in the survey by Abad and Pascual (2013) provides a systematic comparison of
empirical studies examining whether circuit breakers reduce volatility, improve price discovery, or
interfere with liquidity and the trading process.
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The remainder of the paper is organized as follows: Section 2 provides an overview
of the institutional background, details on the dataset, and key descriptive statistics.
Section 3 outlines our methodology for clustering volatility interruptions and presents
the corresponding results. In Section 4, we describe a regression-based approach to
examine economic drivers of unnecessary volatility interruptions and the implications
for market quality. Section 5 introduces an advanced deep learning model for pre-
dicting unnecessary interruptions, evaluates its performance, and discusses effects
on overall welfare. Section 6 presents robustness checks and discusses limitations,
while Section 7 outlines key considerations for implementing our prediction model in
practice. Finally, Section 8 concludes.

2. Institutional background & data

2.1. Volatility interruptions on Xetra

Our analyses are based on volatility interruptions, which are the common type of
circuit breakers in European securities markets (Gomber et al., 2016). Instead of lead-
ing to a complete trading halt, volatility interruptions temporarily switch the trading
phase from continuous trading to an unscheduled call auction in individual stocks
once they are triggered. This is similar to the Limit Up/Limit Down mechanism in
the U.S., suggesting that our results are transferable to other markets. Our sample of
volatility interruptions represents data from the German trading venue Xetra. Xetra,
operated by Deutsche Börse in Frankfurt, is a fully automated, order-driven trading
system where buy and sell orders are matched based on price-time priority within
a standard open LOB. The system provides continuous trading for the immediate
execution of orders and scheduled auctions at specific times during the trading day.
These auctions determine opening and closing prices by pooling liquidity and match-
ing orders at a single clearing price. In contrast to other European markets, Xetra
also has a scheduled auction in the middle of the trading day (hereafter referred to as
intraday auction). Xetra is the most liquid market and reference market for German
equities and ETFs.

Like most European trading venues, Xetra employs rule-based circuit breakers
known as volatility interruptions to safeguard orderly price formation during con-
tinuous trading.8 A volatility interruption is triggered at the individual stock level
when the potential execution price of an incoming order breaches one of the prede-
fined price thresholds. These thresholds are defined by two symmetric price corridors
around reference prices: a dynamic range, centered on the last traded price, and a
static range, centered on the most recent auction price. The volatility interruption
mechanism is visualized in Figure 1.

8While our analysis focuses on the Single Volatility Interruption Model applicable to stocks, it is
important to note that Deutsche Börse also uses the Automated Corridor Extension (ACE) model,
introduced in November 2021, specifically for trading Exchange-Traded Funds (ETFs) and Exchange-
Traded Products (ETPs). The ACE mechanism allows a sequence of progressively widening price
corridors during periods of elevated volatility, aimed at facilitating a smooth transition back to
continuous trading. As our study focuses solely on DAX40 stocks, the ACE mechanism does not
apply to our dataset.
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If the potential execution price falls outside either corridor, continuous trading is
halted and trading switches to an unscheduled call auction, while the triggering order
remains unexecuted. This auction phase shall help to rebalance the order book and
ensure price continuity, thereby preventing disorderly trading conditions.9

The corridor widths are set individually by Deutsche Börse for each security, tak-
ing into account its historical volatility. While the exact corridor parameters are not
publicly disclosed, the static corridor can be reasonably estimated by measuring the
most extreme pre-interruption price movements relative to the most recent auction
price. Both the dynamic and static price corridors remain constant throughout the
trading day and are adjusted by the exchange operator only if a stock’s historical
volatility changes substantially, based on a weekly review process. By design, the dy-
namic corridor is narrower than the static one, allowing it to respond more sensitively
to sudden price swings during continuous trading.

Each volatility interruption consists of a 2-minute call auction phase, which is ex-
tended by a random end between 0 and 30 seconds. This random end is designed to
obscure the exact end time of the auction and thereby reduce the risk of strategic ma-
nipulation. If the final auction price remains outside an expanded version of the price
corridor, the interruption may be extended and manually resolved by the exchange in
consultation with the participant who triggered it (Deutsche Boerse Group, 2024).10

Once the auction concludes, continuous trading resumes, and the price determined in
the interruption auction becomes the new reference for the static corridor.

2.2. Data

Our dataset spans the period from April 201911 to the end of 2024. For the
purpose of our analysis, we collect all instances of volatility interruptions affecting
stocks included in the DAX40, Germany’s benchmark stock index. While the DAX40
comprises the 40 largest listed German companies by market capitalization and is
periodically revised, we consider the full set of 49 stocks (see also Figure 11 in Ap-
pendix A for a list of all included DAX constituents) that were constituents of the
index at any point during the observation period. This approach ensures consistency
by holding the stock universe constant throughout the analysis, and helps prevent
survivorship bias by retaining all firms that were part of the DAX40 at any point
during the observation period. We only partially exclude Wirecard AG from the
sample starting on June 25, 2020, which marks the date of its insolvency filing, as
it no longer qualifies as a highly liquid stock and its collapse to penny stock status
could distort the dataset. Moreover, Linde PLC is included in the dataset only until
February 27, 2023, the date of its complete delisting from Xetra.

9Although not the focus of this paper, volatility interruptions may also occur during scheduled
auctions. If the indicative auction price at the end of the call phase lies outside the applicable
thresholds, the auction call phase is extended.

10There are only 196 extended volatility interruptions in our sample of 7,899 volatility interrup-
tions.

11Our observation period starts with April 2019 as earlier data is not available on the Deutsche
Börse A7 market data platform.
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Figure 1: Volatility interruption mechanism on Xetra
The static price corridor is defined symmetrically around the most recent auction price, while the
dynamic price corridor is centered around the last trade price. If the next potential execution
price lies outside either of these ranges, a volatility interruption is triggered, causing a switch from
continuous trading to a call auction phase. Black dots represent execution prices during continuous
trading, while the blue dot marks the potential execution price of the incoming order that triggered
the interruption. The white dot represents the auction price determined in the volatility interruption.
The dynamic price corridor is updated with each execution, the static corridor updates with each
new auction price.

In total, we observe 7,899 triggered interruptions for these 49 stocks (subsequently
also referred to as DAX40 stocks for simplicity) in this period. For individual volatility
interruptions, we further distinguish between an ex-ante “pre-interruption” phase and
an ex-post “post-interruption” phase. The selected observation windows of 2 minutes
for each phase are short enough to reflect the market’s high-frequency nature, yet
sufficiently long to capture gradual, longer-term movements that drive the price to
the static triggering threshold. For our main approach, we collect 2 minutes of order
book, trade, and message data before and after each interruption from the Deutsche
Börse A7 market data platform, creating a 4-minute observation period per event.
To ensure a complete 4-minute observation window for each event, we exclude 681
interruptions whose 2-minute pre- or post-interruption period overlaps with scheduled
auctions (i.e., opening, intraday, or closing auction), and 331 that overlap with other
volatility interruptions in the same stock.12 These cleaning steps result in the final
dataset, which comprises 6,887 volatility interruptions. Details of the quantity of
observations removed in each cleaning step are depicted in Table 1.

In our empirical study, we utilize Xetra market data with nanosecond granularity,
including limit prices and quantities for the top ten levels of the order book, trade
executions with corresponding prices and quantities, and order messages detailing
submissions, cancellations, and modifications. Furthermore, we incorporate news
data from RavenPack (Dow Jones and Press Release Edition), which provides the

12These two filtering steps also simultaneously exclude the 196 instances of extended volatility
interruptions that occurred during our observation period.
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Table 1: Cleaning process and dataset summary

In this table, we present an overview of the data cleaning process and the resulting dataset used for
the analysis of volatility interruptions. The first row reports the total number of observed volatility
interruptions before cleaning. The subsequent rows list the number of interruptions excluded due to
overlaps with scheduled auctions and other simultaneous volatility interruptions. The final dataset,
shown in the fourth row, contains the number of remaining volatility interruptions after excluding the
overlapping cases. The last row indicates the final sample size as a percentage of the original dataset.

Number of volatility interruptions

Total number of volatility interruptions 7,899
Overlapping with scheduled auctions 681
Overlapping with other volatility interrup-
tions

331

Final dataset 6,887
Percentage of the original dataset 87%

number of news related to a stock around a volatility interruption together with the
relevance and sentiment scores associated with each news item. This dataset from
two different sources gives us a comprehensive view of both market microstructure
and external informational influences.

As the subsequently introduced machine learning architectures benefit substan-
tially from a fixed input size, we downsample the data to 600 steps before and 600
steps after the event, resulting in a standardized sequence of 1,200 steps per sample.
For our main approach, which uses 2-minute pre- and post-interruption periods, this
corresponds to a downsampling frequency of 200 milliseconds, which reflects both the
high-frequency nature of trading blue chip stocks and sufficient time to observe pre-
and post-interruption price trends.13 Sampling at 200-millisecond intervals is con-
ducted using time-weighted averages for order book data, i.e., prices and volumes on
the first ten levels, to preserve as much informational content as possible. As a result,
derived metrics such as the relative quoted spread and order book depth are also
calculated as time-weighted averages. Trade data is aggregated by counting the num-
ber of trades within each 200-millisecond interval and summing their corresponding
volumes. News data is aggregated by counting the number of news items within each
interval and by taking the mean of the associated sentiment, relevance, and similarity
scores. Volatility is computed as the standard deviation of midpoint returns across
all 200-millisecond intervals within the respective pre- or post-interruption window.
A detailed description of all variables and their aggregation methods is provided in
Table 10 in Appendix A. Before deploying machine learning techniques, specifically
clustering and deep learning for prediction, we additionally apply min-max normal-

13In the robustness tests reported in Section 6, we evaluate alternative observation windows and
sampling frequencies while maintaining a constant input length of 1,200 time steps by proportionally
adjusting the sampling rate. Specifically, we rerun the entire prediction model using a sampling
frequency of 500 ms for a 5-minute window, 300 ms for a 3-minute window, and 100 ms for a
1-minute window around each volatility interruption.
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ization to all features, ensuring that each observed interruption is standardized indi-
vidually (per sample normalization). For bid and ask prices, normalization is based
on the minimum and maximum across all price levels within the order book observed
in the 200-millisecond intervals around each interruption. The same approach is ap-
plied to the volumes across all levels. All other calculated features are normalized
separately. While normalization is applied to the entire 1,200-step sequence for the
clustering task, it is restricted to the pre-phase for the prediction task to prevent any
information from the post-phase leaking into the input data.

We use the entire dataset of volatility interruptions for the clustering process. For
the prediction task, we apply a randomized split, dividing the data into 80% train
set, 4% validation set, and 16% test set. This approach helps prevent the model from
overfitting to the training data and ensures a more balanced subsample, particularly
by distributing events from volatile market periods, such as the COVID-19 pandemic
or the Russian invasion of Ukraine, more evenly. In addition, it tends to improve
model generalization by exposing the model to a broader range of market conditions
during the training process.

2.3. Descriptive statistics

Descriptive statistics on the occurrence of volatility interruptions in our dataset
are provided in Table 2. During the observation period, DAX40 stocks on Xetra
experienced an average of 4.59 volatility interruptions per trading day. However, there
are significant outliers, mainly due to market-wide events that triggered numerous
interruptions. For instance, the highest number of volatility interruptions on a single
trading day was 183. Thus, volatility interruptions are not rare events, even among
the most liquid German stocks, but occur frequently, underscoring the importance of
identifying and minimizing unnecessary interruptions of trading and price discovery.
In terms of variation across stocks, Delivery Hero SE recorded the highest number
of volatility interruptions with 449 events, whereas Linde PLC experienced only 13
interruptions, partly due to a slightly shorter observation period, as noted above. A
detailed breakdown of the number of interruptions per stock during our observation
period is provided in Figure 11 in Appendix A.

Table 2: Descriptive statistics on the observed volatility interruptions in our sample

In this table, we present descriptive statistics on the volatility interruptions observed in our sample.
The first row reports the number of volatility interruptions per trading day, with the respective
mean, median, minimum, maximum, and standard deviation shown in columns two to six. The
second row contains the corresponding statistics for the number of volatility interruptions per
stock. The third row provides information on the duration of volatility interruptions in seconds.
All values are computed based on the final cleaned dataset.

mean median min max std

Volatility interruptions per day 4.59 1.00 0.00 183.00 8.27
Volatility interruptions per stock 140.55 104.00 19.00 449.00 103.36
Duration [sec] 135.02 135.06 120.00 150.00 8.62
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On average, volatility interruptions on Xetra lasted 135.02 seconds, closely align-
ing with the expected duration of 135 seconds, which includes a 120-second auction
call phase followed by a random end of up to 30 seconds.

The histogram of volatility interruptions, as illustrated in Figure 2, reveals that
these interruptions are occurring regularly on Xetra. It shows significant concen-
tration of volatility interruptions during two global events between 2019 and 2024:
the outbreak of the COVID-19 pandemic in March 2020 and the Russian invasion of
Ukraine in late February 2022. Both events caused substantial disruptions and eco-
nomic uncertainty across different industry sectors, resulting in a surge in volatility
interruptions during those periods. The frequency of interruptions tends to correlate
with periods of broader market stress, as reflected by corresponding spikes in both
the number of interruptions and key measures of market quality, such as elevated
volatility levels and widening bid-ask spreads.14

Figure 3 illustrates the evolution of market quality and trading activity around
volatility interruptions in our dataset, thereby already differentiating between nec-
essary and unnecessary interruptions as identified in the subsequent Section 3. The
figure shows that liquidity, as measured by the average relative spread, remains rel-
atively stable before the start of an interruption. However, once continuous trading
resumes following the auction phase of the interruption, the spread increases sub-
stantially by an average of 58% for both necessary and unnecessary interruptions
compared to its level immediately prior to the interruption. Interestingly, the aver-
age relative spread is on a higher level in case of necessary interruptions compared to
those identified as unnecessary. Similarly, liquidity in terms of depth, measured by
the euro volume quoted at the first level of the order book (level-1 depth), remains
relatively stable, with a slight dip just before the interruption, but then declines by
an average of 50% after an unnecessary (32% after a necessary) interruption. Again,
liquidity in terms of order book depth is substantially higher before an unnecessary
interruption occurs. During the 2-minute observation window following the interrup-
tion, liquidity in terms of spreads gradually improves for both necessary and unnec-
essary interruptions, almost approaching pre-interruption levels. In contrast, market
depth shows a partial recovery only after unnecessary interruptions, though it does
not return to pre-interruption levels, while it remains persistently lower following
necessary interruptions throughout the 2-minute post-interruption period. Conse-
quently, volatility interruptions not only delay price discovery but are also associated
with reduced liquidity, leading to higher trading costs for market participants. Also
from this perspective, minimizing unnecessary interruptions would be beneficial for
market quality.

As expected, volatility increases just before a volatility interruption is triggered.
After the interruption, it spikes sharply by 265% after an unnecessary interruption

14The reduction in market liquidity during periods of heightened volatility is well documented.
Nagel (2012) shows that liquidity providers demand higher expected returns during times of market
stress, leading to a withdrawal of liquidity. We do not interpret elevated volatility and illiquidity as
competing explanations for periods with a large number of volatility interruptions; rather, they are
interrelated dimensions of broader market stress.
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Figure 2: Histogram of volatility interruptions and the evolution of average daily volatility and
liquidity in DAX40 stocks
The blue histogram displays the total number of volatility interruptions in DAX40 constituents on
Xetra for each trading day during the observation period from 2019 to 2024. The upper panel shows
the average daily volatility of DAX40 stocks (dashed line), calculated as the standard deviation of
log returns of the mid-price from the lit order book during continuous trading, sampled at a 1-minute
frequency. Volatility is annualized using the square root of time rule, assuming 8.5 trading hours
per day and 252 trading days per year. The lower panel presents the time-weighted average relative
bid-ask spread across all analyzed DAX40 stocks, serving as a proxy for market liquidity.
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(and even 307% after a necessary one), in the first few 200-millisecond intervals be-
fore gradually settling back to pre-interruption levels over the course of 2 minutes.
These descriptive statistics align with the findings of the majority of empirical studies
(e.g., Hautsch and Horvath, 2019), which also report increased volatility and reduced
liquidity following trading interruptions triggered by circuit breakers.

Figure 3: Average liquidity, trading activity, order book activity, and volatility around volatility
interruptions
This figure displays the average behavior of key market quality and activity metrics across 600
consecutive 200-millisecond intervals covering the 2-minute continuous trading periods preceding
and following a volatility interruption. Specifically, it plots the relative bid-ask spread, depth at
the first level of the order book, midpoint return volatility, number of trades, trading volume, and
number of order book updates. Trading activity during the call auction phase of the interruption
is excluded from the analysis. Since the Xetra order book is not visible during the auction phase
triggered by the volatility interruption, the other metrics cannot be calculated for the auction period.

Trading activity, measured by the number of trades and trading volume, expe-
riences spikes both immediately before a volatility interruption is triggered and es-
pecially immediately after continuous trading resumes after the interruption. Apart
from these two spikes, trading is rather stable around volatility interruptions, with a
slight increase in activity in the seconds following an interruption. A similar pattern
is observed in order book activity. The spike in trading activity just before a volatility
interruption may be driven by market participants responding to new information or
reassessing the stock’s expected value. It could also result from traders anticipating
the interruption and rushing to execute their trades before it takes effect, consis-
tent with the “magnet effect” hypothesis (Subrahmanyam, 1994; Chen et al., 2024).
In contrast, the heightened trading activity following the interruption likely stems
from participants seeking to execute their intended trades, manage their inventories,
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and update their orders and quotes—actions they were either unable or unwilling to
perform during the auction phase of the volatility interruption.

2.4. Alternative venues

To enhance the comprehensiveness of our analysis and account for potential cross-
listing effects, we incorporate data from alternative trading venues for DAX40 stocks.
Unlike Xetra, alternative venues in Europe do not implement rule-based circuit break-
ers comparable to those used on the primary exchange. Instead, they typically rely
on discretionary trading halts or enforce price limits that reject executable orders
beyond a certain threshold. Moreover, circuit breaker mechanisms in Europe are not
coordinated across venues, meaning that continuous trading typically proceeds unin-
terrupted on these platforms even when a volatility interruption is triggered for the
same stock on Xetra.

We obtain trade and order book data from the three largest alternative lit venues
offering continuous trading in DAX40 stocks from BMLL Data Lab: Aquis Europe,
Cboe Europe Equities, and Turquoise Europe. During the observation period, each
operator relocated its European equities trading venue from the UK to the EU due
to Brexit. To ensure continuous data coverage, we pair each UK trading book with
its corresponding EU successor venue.15

Figure 4 presents statistics on trading activity and market liquidity from 15 min-
utes before to 15 minutes after a volatility interruption on Xetra, across Xetra and
the three alternative venues. Across all platforms, trading activity intensifies in the
minutes immediately preceding the interruption and peaks in the first minute fol-
lowing it, before gradually returning to pre-interruption levels. This pattern is most
pronounced on Xetra and Cboe Europe, the largest alternative venue.

Notably, and in contrast to theoretical predictions suggesting volume migration to
unaffected venues during interruptions (Subrahmanyam, 1994), we observe no such
migration. On the contrary, trading activity on alternative venues nearly vanishes
during volatility interruptions on Xetra. This suggests that market participants
largely withdraw rather than reroute trading activity when the main market is paused
and the price signal of the reference market is not available.

The mean relative spreads on alternative venues also increase dramatically, by
more than fivefold on Cboe Europe compared to pre-interruption levels. This implies
that liquidity providers widen their quotes substantially when the main market is
paused, and that overall market participation declines. These findings are consistent
with prior research on circuit breakers in fragmented European markets (Clapham
et al., 2017b; Gomber et al., 2013), suggesting that despite the absence of formal
coordination, there is implicit alignment across venues driven by trader behavior and
risk aversion.

15The cut-off dates are based on the first day of observable trading activity on the new EU
venues: 12.11.2020 for Aquis (from AQXE to AQEU), 15.10.2019 for Cboe (from CHIX to CEUX),
and 04.01.2021 for Turquoise (from TRQX to TQEX).
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Figure 4: Trading activity and liquidity around volatility interruptions on the alternative venues
relative to Xetra
The figure displays the mean trade count (top) and mean relative quoted spread (bottom) per minute
interval from 15 minutes before to 15 minutes after a volatility interruption on Xetra, shown across
Xetra and the three largest alternative lit venues for DAX40 stocks: Cboe Europe, Aquis Europe,
and Turquoise Europe. Interval 0 corresponds to the volatility interruption on Xetra and spans an
average duration of 2 minutes and 15 seconds. To ensure comparability across all intervals, trade
counts are normalized and reported on a per-minute basis, adjusting for the actual duration of each
interval.
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3. Clustering and labeling of volatility interruptions

3.1. Methodology

To systematically identify unnecessary volatility interruptions, we analyze histor-
ical volatility interruptions by clustering them based on comprehensive LOB data in
the 2-minute windows preceding and following each interruption. By using the full
set of information contained within the LOB, i.e., limits and volumes of the first ten
levels at the bid- and ask-side of the order book, we ensure that only those volatil-
ity interruptions characterized by similar market dynamics both before and after the
event are grouped together.16 This approach avoids reliance on a limited set of hand-
crafted features from the LOB (e.g., spread or depth measures), offering a more robust
categorization of different types of volatility interruptions.

Based on this differentiation of various types of historically observed volatility in-
terruptions, we are able to investigate whether certain clusters exhibit an unintended
behavior regarding volatility interruptions, such as a persistent price trend in both
the pre- and post-interruption phase or a negative impact on market quality. The
presence of persistent price trends would suggest that these interruptions may have
merely delayed the natural price formation process, rather than serving as a corrective
function for unreasonable price jumps.

To implement this categorization, we utilize an unsupervised clustering algorithm.
We base the clustering method on Gaussian Mixture Models (GMMs), which offer
a flexible probabilistic approach to clustering. Unlike other clustering algorithms
such as k-means, GMMs account for cluster covariance structures and allow for soft
assignments, making them well-suited to capture the complex and overlapping nature
of market behaviors. Furthermore, the probability estimates provided by the GMM
allow us to account for the quality of fit of each observation to its assigned cluster.
Specifically, we only include those observations in a cluster which have a probability
of more than 90% belonging to this cluster.17 Given the high dimensionality and
temporal dependencies inherent in LOB time series, we start with an autoencoder
model to reduce the data to a lower-dimensional set of informative features. This
dimensionality reduction ensures that the input to the GMM clustering algorithm
consists of time-independent, meaningful features that effectively capture the full
range of market dynamics surrounding each interruption.

We base our autoencoder architecture on the DeepLOB model proposed by Zhang
et al. (2019), which has demonstrated efficacy in automatically extracting relevant fea-
tures from LOB data. The encoder component of our model replicates the DeepLOB
model, while the decoder component is an exact inversion of the encoder. A schematic
illustration of the whole clustering process is given by Figure 13 in Appendix B and

16We tested the inclusion of both the number of news items and their sentiment in addition to
order book information in the clustering process. However, this extension did not improve clustering
results. Due to the relatively low frequency of news events in the 2-minute window surrounding an
interruption (news are present in only 7.6% of all cases), the addition of news data introduced noise
rather than useful differentiation.

17This reduces the total number of observations allocated to the clusters from 6,887 as shown in
Table 1 to 5,371 as shown in Table 3.
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a more detailed visualization of the architecture for both the encoder and decoder
is provided in Figure 15 and Figure 16, respectively. We constrain the latent space
between the encoder and decoder to a size of 6418, ensuring the model extracts only
meaningful information from the LOB data. After training the model, we further
utilize only the encoder to transform the data for the clustering.

The effectiveness of our clustering results is dependent on the choice of k, the
number of clusters. To identify the optimal k, we employ the elbow method, a
widely-used technique that sets the value of k where the marginal improvement from
adding an additional cluster is largely reduced (Thorndike, 1953; Syakur et al., 2018).
This is typically identified as a “bend” or “elbow” in the plot of the sum of squared
distances between each sample and its corresponding cluster center for different k.

While circuit breakers are designed to stabilize markets in case of unsubstantiated
price jumps, they can adversely impact overall market quality, particularly when
triggered by legitimate price movements driven by fundamental information. This is
especially evident when volatility interruptions delay the price formation process, such
as when a clear and persistent price trend continues in the same direction before and
after the interruption. In such cases, the price changes preceding the interruption are
not the result of irrational behavior, liquidity shocks, or erroneous orders, but instead
reflect the incorporation of new information and evolving market expectations. Hence,
the volatility interruption unnecessarily defers price discovery and disrupts trading
activity, thereby impairing market efficiency and liquidity. Conversely, a volatility
interruption is considered effective if it leads to improved market quality or stabilized,
i.e., less extreme, price movements post-interruption.

Accordingly, we classify clusters in which volatility interruptions clearly delay price
discovery and worsen market quality as unnecessary. In line with previous research
emphasizing the need to evaluate circuit breakers across multiple dimensions (Abad
and Pascual, 2013; Hautsch and Horvath, 2019), our methodology accounts for various
indicators of market quality to identify instances where interruptions failed to fulfill
their intended protective role, with adverse effects outweighing its benefits. Compared
to today’s circuit breaker mechanisms, which rely solely on rule-based assessments of
execution prices relative to predefined thresholds, our approach incorporates multi-
ple relevant dimensions covering both price dynamics and market quality to assess
whether an interruption of continuous trading was reasonable or not.

To assess whether observations within a cluster exhibit a persistent price trend,
we employ a two-step statistical test setup on the midpoint returns. In the first step,
we independently test whether returns before and after the volatility interruption are
significantly greater than zero using a one-sided t-test. We evaluate significance using
the maximum p-value of the two tests, ensuring that both pre- and post-interruption
phases show statistically significant positive returns. This approach guarantees that
a persistent upward trend is only identified when both segments individually support

18We opted for 64 as we evaluated various other parameter choices (i.e., 512, 256, 128, 64, 32),
and 64 was the smallest size with reasonable results as sizes < 64 would result in a much higher loss.
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the hypothesis. To test for a persistent downward trend, we apply the same procedure
using one-sided tests for negative returns.

In the second step, we compare the results from the upward and downward trend
tests by taking the minimum of their respective maximum p-values. This allows us
to determine whether the observation is characterized by a statistically significant
persistent trend, either upward or downward, surrounding the interruption.

Furthermore, we assess potential negative effects on market quality by conducting
a series of t-tests on key metrics. Specifically, we test whether the bid-ask spread is
significantly wider in the post-interruption compared to the pre-interruption phase,
whether the depth at the top of the order book is significantly lower after the inter-
ruption, and whether the volatility of midpoint returns increases following the inter-
ruption. These tests complement the preceding analysis of persistent price trends.

A cluster is classified as representing unnecessary volatility interruptions only
if all four conditions are met at the 5% significance level: (1) the presence of a
persistent price trend, (2) a wider bid-ask spread, (3) reduced order book depth, and
(4) increased return volatility post-interruption.

In addition to the statistical framework used to identify unnecessarily triggered
volatility interruptions based on persistent price trends and deteriorated market qual-
ity, we apply a probabilistic filter to ensure that only interruptions with a high likeli-
hood of being genuinely detrimental to market efficiency are labeled as unnecessary.
Specifically, we classify an observation as unnecessary only if its probability of belong-
ing to one of the clusters identified as unnecessary exceeds 90%.19 This is determined
using the posterior probabilities derived from the GMM: for each observation, we sum
the probabilities of membership across all clusters deemed unnecessary. An observa-
tion is labeled as unnecessary only if this cumulative probability exceeds the 90%
threshold.

Further, we acknowledge that while a persistent upward or downward price trend
is a clear indication that a volatility interruption has deferred the price formation
process, a moderation of the pre-interruption trend in the post-interruption phase
may, in fact, align with the objectives of market operators or regulators, who may
regard such circuit breakers as effective. However, the statistical test described earlier
only detects significant positive or negative midpoint returns and does not account
for changes in the steepness of the price trend.

To address this limitation and enhance the robustness of our approach, we intro-
duce an additional measure to assess the dampening effect of volatility interruptions
on price trends. Specifically, we estimate the following regression model for each
cluster independently:

pc = β0 + β1t+ β2d+ β3(t · d) (1)

19We provide the distribution of those probabilities for each cluster in our main clustering ap-
proach in Figure 19 in Appendix C. Of the volatility interruptions identified as unnecessary, 2,536
have a probability greater than 90% of belonging to a single cluster classified as unnecessary, while
an additional 251 are classified based on a cumulative probability exceeding 90% across multiple
clusters identified as unnecessary.
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where pc represents the average midpoint price trend in Cluster c, t denotes the
time index (t ∈ {1, 2, ..., 1200}), and d is a binary indicator equal to 1 during the post-
interruption phase and 0 otherwise. The coefficient of the interaction term β3 captures
the change in the price trend due to the interruption. To quantify the dampening
effect, we compute the ratio β3/β1, which expresses the reduction in trend steepness
as a percentage. For example, a dampening effect of −0.5 indicates that the post-
interruption trend is 50% less steep than the pre-interruption trend.

In our analysis, we exclude clusters from being labeled as unnecessary if they
exhibit a dampening effect of 50% or more. This conservative criterion ensures that
only those interruptions which are highly likely to belong to an unnecessary cluster
and fail to meaningfully moderate the price trend are classified as unnecessary. The
dampening threshold, here set to 50%, is a flexible parameter that can be adjusted at
the discretion of market operators or regulators depending on their policy objectives.
We discuss this and further implementation considerations in Section 7.

3.2. Results

To examine which volatility interruptions are classified as unnecessary, Table 3
presents the results of the previously described statistical tests used to evaluate the
effectiveness of volatility interruptions across the identified dimensions. These tests
are applied to the clustering results obtained from the GMM. We opted for a param-
eterization of k = 12 for the GMM, which consequently results in twelve clusters (we
discuss this choice later in this section). The table is organized by cluster classifica-
tion, with the first five rows corresponding to clusters identified as unnecessary.

It is evident that every cluster of historically triggered volatility interruptions is
associated with a statistically significant deterioration in multiple dimensions of mar-
ket quality, namely, a widening of bid-ask spreads, a reduction in liquidity (measured
by order book depth), and an increase in midpoint return volatility during the post-
interruption phase. Given this result, the only dimension that clearly distinguishes
unnecessary volatility interruptions from others is the persistent continuation of a
price trend before and after the interruption.

As shown in Table 3, seven out of the twelve clusters exhibit such a persistent price
trend: Clusters 1, 4, 6, 7, 9, 10, and 12. However, two of these clusters (Clusters 4
and 10) show a substantial dampening of the price trend following the interruption,
with reductions of 74% and 63%, respectively. As these declines exceed our threshold
of a 50% dampening effect20, we do not classify these clusters as unnecessary. In these
cases, the circuit breaker appears to have effectively slowed further price acceleration.

The identification of unnecessary interruptions is thus limited to the remaining
five clusters, Clusters 1, 6, 7, 9, and 12, which are listed in the first rows of Table 3.
These five clusters are characterized by significant deterioration in market quality and
a persistent price trend unaffected by the interruption. Overall, this classification
results in 37% of the interruptions in our sample being labeled as unnecessary.

20We further discuss the choice of this parameter in Section 7, as this threshold leaves flexibility
for market operators or regulators to define what constitutes an effective volatility interruption based
on their specific policy objectives.
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Table 3: Evaluation of clustering results

This table presents the clustering results from the Gaussian Mixture Model (GMM), along with the
outcomes of the statistical evaluation of persistent price trends and declines in market quality. The
first column reports the assigned cluster label. The second column shows the p-value from the test
for a persistent price trend, while the third column indicates the magnitude of the dampening effect,
expressed as a proportion based on β3/β1 from Equation 1 (e.g., -0.5 indicates a dampening effect
of 50%). Columns four to six report the p-values from the market quality tests. The second-to-last
column indicates the number of observations assigned to each cluster after excluding those with
a probability less than 90% of belonging into the cluster. Thereby, the number of clustered
observations is reduced from 6,887 to 5,371. The final column shows whether the interruptions
within each cluster are classified as unnecessary, which also determines the sorting order of the
table. One star (*), two stars (**), and three stars (***) indicate a rejection of the null hypothesis
at the 90%, 95%, and 99% confidence levels, respectively.

Cluster Midpoint Dampening Spread Depth Volatility N Unnecessary
effect

1 0.00*** −0.45 0.00*** 0.00*** 0.00*** 715 Yes
6 0.01*** 0.29 0.00*** 0.00*** 0.00*** 109 Yes
7 0.00*** 0.23 0.00*** 0.00*** 0.00*** 606 Yes
9 0.00*** 2.07 0.00*** 0.00*** 0.00*** 505 Yes
12 0.00*** −0.39 0.00*** 0.00*** 0.00*** 601 Yes
2 0.48 −1.25 0.00*** 0.00*** 0.00*** 156 No
3 1.00 −1.87 0.00*** 0.00*** 0.00*** 610 No
4 0.00*** −0.74 0.00*** 0.00*** 0.00*** 562 No
5 0.37 −41.62 0.00*** 0.00*** 0.00*** 344 No
8 1.00 −2.68 0.00*** 0.00*** 0.00*** 398 No
10 0.00*** −0.63 0.00*** 0.00*** 0.00*** 445 No
11 1.00 −2.74 0.00*** 0.00*** 0.00*** 320 No
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A visualization of the clustering results from the GMM is provided in Figure 5
and Figure 7. These plots illustrate the average midpoint trajectory surrounding each
interruption within the identified clusters, both before and after the event, as well
as the average bid-ask spread, level-one depth, and midpoint return volatility. While
the visualizations depict only four selected measures, representing price and market
quality dynamics over a 2-minute window around each interruption, the underlying
clustering is based on a much richer representation of the data. Specifically, our
clustering approach relies on embeddings derived from the full LOB across the first ten
levels, treated as time series data encompassing the entire 2-minute window before and
after each interruption. The interruption event is aligned at t = 0, with t = −600 and
t = 600 corresponding to two minutes before and after the interruption, respectively,
based on a 200-millisecond sampling interval. Volatility is visualized as a marker,
representing average midpoint return volatility in both the pre- and post-interruption
phases.

Figure 5 presents the five clusters identified as containing unnecessary volatility
interruptions. Each of these clusters displays a distinct pattern in which the price
trend evident prior to the interruption persists afterward, suggesting that the inter-
ruption merely delays an ongoing price formation process. In such cases, the auction
phase of the interruption appears ineffective in facilitating efficient price discovery
and instead disrupts an established trend.

Clusters 1 and 12 are characterized by pronounced downward and upward mid-
point trajectories, respectively, both before and after the interruption. Clusters 7 and
9 show more moderate, yet clearly persistent, midpoint trends in either direction. De-
spite the variation in price movement intensity, all four of these clusters exhibit similar
deteriorations in market quality, namely, wider spreads, reduced depth, and increased
volatility following the interruption.

Cluster 6, by contrast, represents a more unique case of unnecessary interrup-
tions. Here, the midpoint remains relatively stable until shortly before the inter-
ruption, when a sharp upward movement occurs. This trend continues in the post-
interruption phase with only slight attenuation. Notably, the bid-ask spread in this
cluster widens significantly more after the interruption than in the other clusters la-
beled as unnecessary. This cluster, however, only accounts for a smaller proportion
of unnecessary volatility interruptions as it only includes 109 observations compared
to several hundred in the other unnecessary clusters.

Overall, in each of these five clusters, volatility interruptions do not prevent market
inefficiencies resulting from irrational price jumps, instead, they incur costs of delayed
price discovery, unrealized trading opportunities, and deteriorated market quality,
indicating that the interruptions in these cases do more harm than good.

To illustrate volatility interruptions identified as unnecessary, Figure 6 depicts the
midpoint price development for exemplary stocks where an unnecessary interruption
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Figure 5: Clustering results for the five clusters identified as unnecessary interruptions
The plot displays the average midpoint trend, level 1 depth, quoted spread, and volatility for all
volatility interruptions grouped within each cluster. The auction phase at t = 0 is omitted, as no
order book information is available and no price determination happens during this period. The
number of observations per cluster is shown in parentheses below each subplot title. Midpoint prices
and level 1 depth are min-max scaled and plotted on the left y-axis, ranging from 0 to 1. Quoted
spread and midpoint return volatility are shown on the right y-axis in basis points. Shaded areas
around the average midpoint trend represent 95% confidence intervals.
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occurred on a specific day.21 In each example, the interruption disrupts a persistent
price trend that began shortly after the release of significant ad-hoc news related to
the respective stock. Consequently, the price changes delayed by the interruption
were likely driven by this new information and corresponding shifts in value expecta-
tions. For the stocks shown in Panels A and B, the news was positive, resulting in a
sustained price increase (a significant upward revision in long-term financial targets
for Infineon Technologies and better-than-expected quarterly results for Rheinmetall).
In contrast, Panel C features negative news for Deutsche Bank (weaker performance
in the credit and derivatives business), leading to a sustained price decline.

Figure 6: Examples of volatility interruptions identified as unnecessary
Panels A, B, and C show the midpoint price development (y-axis) in blue for Infineon Technologies,
Rheinmetall, and Deutsche Bank, respectively, on days experiencing unnecessary volatility interrup-
tions. The start of the volatility interruption is marked in red, while its conclusion and subsequent
return to continuous trading is indicated in green. The black vertical line denotes significant ad-hoc
news releases. The x-axis displays time in local exchange time.

All remaining clusters, shown in Figure 7, are not classified as unnecessary. Based
on our statistical evaluation, these clusters do not exhibit signs of delayed price forma-

21Since all volatility interruptions in this exemplary sample occurred in the afternoon, we only
plot the period from the resumption of continuous trading after the intraday auction to market
close. No additional volatility interruptions or ad-hoc disclosures occurred for these stocks on the
respective dates. Ad-hoc news reports are included in the news data from RavenPack used in this
study.
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Figure 7: Clustering results for the remaining clusters not identified as unnecessary interruptions
The plot displays the average midpoint trend, level-1 depth, quoted spread, and volatility for all
volatility interruptions grouped within each cluster. The auction phase at t = 0 is omitted, as no
order book information is available and no price determination happens during this period. The
number of observations per cluster is shown in parentheses below each subplot title. Midpoint prices
and level-1 depth are min-max scaled and plotted on the left y-axis, ranging from 0 to 1. Quoted
spread and midpoint return volatility are shown on the right y-axis in basis points. Shaded areas
around the average midpoint trend represent 95% confidence intervals.
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tion, as indicated by the absence of a continued price trend following the interruption,
a key characteristic of the earlier clusters identified as unnecessary. While volatility
interruptions in the remaining clusters are also associated with lower post-interruption
liquidity and elevated volatility (see Table 3), they appear to contribute positively
to price stability. Specifically, they are followed by either a stabilization or reversal
of the pre-interruption price movement, or at least a substantial dampening of the
ongoing price trend compared to pre-interruption dynamics. Consequently, interrup-
tions in these clusters seem effective in “cooling down” the market during periods of
extreme price movements, giving participants time to reassess available information
and determine the validity of price movements, as described by Ma et al. (1989).

This behavior is particularly evident in Clusters 3, 8, and 11, where the extreme
price trends observed before the interruption are almost entirely reversed in the post-
interruption phase. This suggests that, during the pre-interruption phase, the market
may have either been uncertain about the true value of an asset, overreacted to certain
news, or experienced substantial market impact from the execution of a large order.
In these cases, the interruption phase allowed for a reassessment, showing that the
interruption served as a valuable safeguard and contributed directly to price discovery.

Clusters 4 and 10 display a similar behavior, though without the trend-reversing
effect observed in the other clusters. Instead, these clusters exhibit a trend-breaking
effect, where the price trend stabilizes around the auction price level in the post-
interruption phase or at least is dampened to a reasonable degree. This suggests that
the volatility interruption effectively contributed to the price formation process, as
prices tend to remain close to the price level of the volatility interruption.

The remaining two clusters, 2 and 5, are characterized by relatively steady price
trajectories without a clear upward or downward trend. Despite the absence of sus-
tained price movements, interruptions in these clusters were likely triggered by sud-
den, extreme price jumps occurring within otherwise calm market conditions. In such
cases, the volatility interruption appears to have served a valuable corrective function
by safeguarding the price discovery process from potentially erroneous or irrational
market movements leading to a stable price level after the interruption.

The choice of the number of clusters (k = 12) merits further discussion. As
outlined earlier, we apply the elbow method to determine the point at which adding
additional clusters results in only marginal improvements in clustering performance.
The results of this procedure are shown in Figure 18 in Appendix C. This figure
presents the sum of squared distances between each observation and its assigned
cluster center across a range of values for k (k ∈ {2, 3, ..., 30}).

To robustly identify the elbow point, we apply two established methods: (1)
detecting the point at which the second derivative of the interpolated curve reaches
its maximum, and (2) determining the point with the greatest perpendicular distance
to the diagonal connecting the first and last entries of the curve. Both approaches are
widely used for identifying the inflection point of the curve, and using both provides
a more reliable assessment. The results suggest that an optimal balance is achieved
at k = 9 or k = 11, depending on the method.

Given that increasing the number of clusters beyond this point does not incur
significant computational costs, aside from added complexity in handling and visual-
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ization22, we interpret the outcome of the elbow method as a lower bound for selecting
k. Additionally, we argue that an even number of clusters is preferable in our con-
text, as we expect a degree of symmetry between clusters characterized by upward
and downward price movements.

Based on these considerations, we select k = 12, which satisfies the lower bound
suggested by the elbow method while aligning with our expectation of directional
symmetry. This configuration introduces a sufficient number of clusters to capture
the heterogeneity in market dynamics around volatility interruptions without intro-
ducing excessive redundancy. A sensitivity analysis on the effect of varying k on
the identification of unnecessary volatility interruptions is provided in Table 14 in
Appendix D showing only a moderate effect of the choice of other k for the final
labeling into unnecessary interruptions. With an average of 82%, the vast majority
of volatility interruptions identified as unnecessary remain consistent across different
cluster specifications when using k ∈ {10, 12, 14, 16, 18}.

4. Drivers and implications of unnecessary volatility interruptions

4.1. Methodology

We investigate the market conditions that lead to unnecessary interruptions using
probit regression models. These models apply different sets of independent variables
to explain the binary dependent variable, which indicates whether an interruption
was identified as unnecessary. Given that our dependent variable is binary, probit
regression is an appropriate choice. It effectively models binary outcomes by pro-
ducing a continuous output that represents the probability of the dependent variable
belonging to the target class (here: unnecessary volatility interruptions).

Our first model focuses on the market quality conditions prior to the interrup-
tion, with the goal of determining whether liquidity, volatility, or trading activity
related factors influence the likelihood of an interruption being unnecessary. There-
fore, we incorporate the average relative spread, order book depth, trading volume,
midpoint volatility, and number of order book messages prior to each interruption in
this analysis.

Factors beyond market data, such as news events, are often associated with price
adjustments. Therefore, we introduce a second probit regression model that incorpo-
rates news and contextual factors to account for macroeconomic conditions prior to
the interruption. Inputs for this model include the number and relevance of recent
news articles related to the issuer of the affected stock, the number of necessary and
unnecessary volatility interruptions across all DAX40 stocks in the respective market

22Technically, clustering quality continues to improve as k increases, up to the theoretical extreme
where each observation forms its own cluster.
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(Xetra) within the preceding hour23, the fast market indicator24, trade data from
three alternative venues25, and the proximity of the last price prior to the interrup-
tion to the estimated static triggering threshold.26 A comprehensive overview of the
variables used in both models, including their calculations and a brief explanation of
their informational content, is provided in Table 10 in Appendix A.

To address the time-dependent nature of our input data, which covers two minutes
before each volatility interruption, we use an exponentially decaying average (or sum
for count- and volume-based variables such as the number of order book messages
and trading volume). This method assigns progressively less weight to data points
further from the interruption, ensuring that more recent information has a greater
influence on the model’s predictions. By transforming the time series data into one
time-independent measure for each interruption, this approach makes it compatible
with the probit regression framework.

Following this approach, we set up the first probit regression - the market quality
model - using the following equation:

Pr (yi = 1|Xi) = Φ (α + β1 · rel spreadi + β2 · level 1 depthi

+β3 · trade volumei + β4 ·midpoint return volai

+β5 ·message counti)

(2)

where i ∈ {1, 2, ..., 6887} is the index for each observation, y is the binary tar-
get, Φ is the cumulative normal distribution and Xi = {rel spreadi, level 1 depthi,
trade volumei, midpoint return volai, message counti} is the list of independent
variables.

23The inclusion of the number of volatility interruptions separately counted for those identified
as necessary and unnecessary across all DAX40 stocks within the hour preceding an interruption
should capture the influence of broader market-wide events, such as the COVID-19 pandemic, which
can trigger simultaneous price adjustments across multiple stocks.

24The Xetra market supervision department can define a so called fast market for all stocks for a
specific day if unusually high volatility is anticipated. This could be the case if major macroeconomic
events or crucial announcements are expected or occurred before market opening, which affect the
entire market. Then, the price corridors for the triggering of volatility interruptions are doubled.

25As described in Section 2, we use trade data from Aquis Europe, Cboe Europe Equities, and
Turquoise Europe.

26Since the actual price thresholds are not publicly disclosed, we reverse-engineer the static thresh-
old for each stock by observing the maximum price deviation from the last auction price that did
not trigger an interruption. Given that the market operator may adjust these thresholds in response
to overall market volatility, especially during volatile periods, we independently estimate the static
price range for each stock and month to account for potential adjustments. Figure 10 in Appendix A
shows the resulting approximated static price ranges. The distance of the last price prior to the
interruption to the static threshold offers insights into whether a significant price jump triggered the
volatility interruption or if only minor price changes were sufficient to initiate it. This distinction
can provide valuable information for differentiating between unnecessary and relevant interruptions.
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The second regression - the news and contextual factors model - is set up by the
following equation:

Pr (yi = 1|Xi) = Φ (α + β1 · news counti + β2 · news relevancei

+β3 · news counti × news relevancei

+β4 · unnecessary interruptionsi

+β5 · necessary interruptionsi

+β6 · fast market dummyi

+β7 · distance to static barrieri

+β8 · trade count alt venuesi)

(3)

where Xi = {news counti, news relevancei, unnecessary interruptionsi,
necessary interruptionsi, fast market dummyi,
distance to static barrieri, trade count alt venuesi} is the list of all independent
variables in the news and contextual factors model.

As a third model, we introduce a comprehensive regression model that incorpo-
rates all independent variables used in the previously discussed models. This full
model aims to integrate a broad range of factors, including market quality metrics,
news, and other contextual variables, to explain the likelihood of an unnecessary
volatility interruption ex-ante. By encompassing all relevant factors, this full model
is anticipated to offer a more robust and accurate assessment.

While the primary objective of this section is to identify the key drivers that lead
to the triggering of unnecessary volatility interruptions, the predictive performance of
the proposed empirical models also serves as a baseline for assessing the feasibility of
ex-ante prediction of such events. To evaluate each model’s capability in accurately
predicting the probability of a volatility interruption being unnecessary using only ex-
ante information, we apply common classification metrics to the models’ outputs such
as accuracy, precision, and recall: Accuracy measures the overall agreement between
predicted labels and true labels. Precision for a specific class measures the propor-
tion of true positives among all predicted positives, reflecting the model’s likelihood
of correctly predicting the target class (here: unnecessary volatility interruptions).
Recall measures the proportion of true positives identified out of all actual positives
in the target class, indicating the model’s ability to capture all relevant instances of
unnecessary volatility interruptions.

In line with standard model evaluation practices, we conduct an out-of-sample test
based on randomly splitting the dataset into training, validation, and test subsets as
described in Section 2. For the described regression models, we use both the training
and validation sets for training as we do not have to control for model overfitting
given the limited number of parameters in the probit models. In addition to standard
performance metrics, we report the highest precision score achieved at a minimum
recall score of 0.2. This score is obtained by varying the decision threshold applied to
the model’s probabilistic output (e.g., classifying values above 0.5 as unnecessary) and
identifying the highest precision attainable while maintaining at least 0.2 recall. While
all other classification metrics are reported using the default threshold of 0.5, the
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precision-at-recall score offers insights into how alternative thresholds may improve
precision for a fixed recall level.

The primary goal of this study is the accurate identification of unnecessary volatil-
ity interruptions to minimize these interruptions and mitigate their negative effects.
Therefore, an ideal classification model should maximize both precision and recall
when classifying unnecessary interruptions. High precision ensures that when the
model predicts an interruption as unnecessary, it is highly likely to be correct. High
recall ensures that the model identifies as many unnecessary interruptions as possible.
However, prediction models regularly face a trade-off between precision and recall.
For our task, i.e., improving circuit breaker mechanisms, precision is the key metric
as a high precision ensures that the model predicts an unnecessary interruption only
when the prediction is highly likely to be correct, thereby minimizing the risk of false
positives. In a real-world implementation, it is less critical to capture every unneces-
sary interruption (recall), as each correctly identified and avoided interruption would
already improve market efficiency relative to the status quo. However, false positives
could disrupt price continuity and compromise overall market stability. Therefore,
the model’s precision must be prioritized to reduce the risk of misclassifying necessary
interruptions as unnecessary, which is crucial to prevent welfare losses caused by large
transitory price swings due to, e.g., short-term liquidity crashes or erroneous trading
algorithms. We discuss the welfare implications of preventing unnecessary volatility
interruptions under the existence of false positives in Section 5.3.

4.2. Results - drivers of unnecessary interruptions

Table 4 presents the outcomes of the regression models. The coefficients in the
table represent marginal effects, indicating the absolute increase (decrease) in the
probability of the dependent variable given a variation for each explanatory variable.

The probit regressions help identify the market conditions under which unnec-
essary volatility interruptions occur. In the first model, trading volume does not
show a significant effect, indicating that unnecessary interruptions may arise during
both high and low activity periods. This suggests that trading volume is not a pri-
mary driver. In contrast, liquidity conditions play a more prominent role: narrower
bid-ask spreads and greater depth at the top of the order book are significantly as-
sociated with a higher likelihood of an interruption being unnecessary. In such cases,
the cause behind the price change triggering the interruption was not a short-term
liquidity shock, which is one reason why circuit breakers are in place.

Additionally, higher pre-interruption price volatility decreases the probability of
an interruption being unnecessary, supporting the idea that circuit breakers are more
justified during turbulent market conditions. Conversely, unnecessary interruptions
tend to occur in calmer, more stable phases where markets are functioning efficiently
and external intervention is less warranted.

Necessary interruptions are also linked to elevated order book activity, reflecting
increased order submissions, modifications, or deletions, which is typical of volatile or
uncertain markets. In contrast, unnecessary interruptions are often triggered during
more orderly phases, reinforcing the view that they may disrupt rather than support
efficient price discovery.
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Table 4: Marginal effects of probit regression models

This table presents the marginal effects from the probit models, where the dependent variable is a

binary indicator of unnecessary volatility interruptions. Independent variables are listed in the first

column. Marginal effects represent the absolute change in predicted probability due to a one-unit

change in each variable. All variables are exponentially weighted means over the two-minute window

before the interruption, except for trading volume, news count, trade count on alternative venues,

and volatility interruption count, which are exponentially summed. The fast market dummy equals

one if active. Counts of unnecessary/necessary interruptions reflect all such events in the preceding

hour. Relative spread and volatility are in basis points (bps); level-1 depth and trade volume

in hundreds of thousands of euros; message count in thousands. Standard errors are reported in

parentheses. * p < 0.1, ** p < 0.05, ***p < 0.01.

Market Quality News and Contextual Full Model
Factors

rel spread −0.0044*** −0.0027***
(0.0010) (0.0010)

level 1 depth 0.0722*** 0.0699***
(0.0124) (0.0123)

trade volume −0.0001 −0.0005
(0.0003) (0.0003)

midpoint return vola −0.0604*** −0.0559***
(0.0087) (0.0089)

message count −0.0173*** −0.0167***
(0.0025) (0.0026)

news count −0.0008** −0.0007**
(0.0003) (0.0003)

news relevance −0.1583*** −0.0818**
(0.0004) (0.0004)

news relevance interaction 0.0709* 0.0792**
(0.0368) (0.0356)

unnecessary interruptions 0.0046*** 0.0033***
(0.0011) (0.0011)

necessary interruptions −0.0024*** −0.0016***
(0.0004) (0.0004)

fast market dummy −0.0002*** −0.0001**
(0.0001) (0.0001)

distance to static barrier 0.2762*** 0.0678*
(0.0384) (0.0400)

trade count alt venues −0.0011*** 0.0006**
(0.0002) (0.0003)

Pseudo R2 0.0623 0.0333 0.0691
Accuracy 0.6138 0.5730 0.6074
Precision 0.5670 0.4265 0.5464
Recall 0.3210 0.0629 0.3579
Precision at recall 20 0.5670 0.5033 0.5536
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In the second regression model, the analysis of news and contextual factors shows
that the presence of relevant news, captured by the interaction between news count
and relevance score, significantly increases the likelihood of an interruption being
unnecessary. This supports the hypothesis that such interruptions can hinder the
price discovery process by delaying the incorporation of new information into prices.

The proximity of the current price to the static price limit also significantly in-
creases the probability of an interruption being classified as unnecessary. This in-
dicates that the existing rule-based mechanism, which triggers interruptions solely
when the next potential price exceeds predefined bounds, lacks the flexibility to dif-
ferentiate between abrupt market disruptions and gradual price movements occurring
near the threshold.

Another significant factor reducing the probability of unnecessary interruptions
is the activation of the fast market indicator. When high volatility is anticipated,
this indicator expands price limits, and interruptions under these conditions are more
likely to be necessary.

Market context further influences interruption classification: a higher number of
unnecessary interruptions in the preceding hour increases the likelihood of another
unnecessary interruption, while a higher number of necessary interruptions decreases
it. This suggests that clusters of similar types of interruptions tend to occur in
distinct market regimes: unnecessary ones during stable periods and necessary ones
during volatile phases. When one regime dominates, the likelihood of corresponding
interruptions rises.

Regarding cross-listing effects, the trade count on three alternative venues before
the interruption yields mixed results: a negative effect in the second regression model
and a positive one in the full model. As such, no definitive conclusion can be drawn
about the role of cross-market activity in predicting unnecessary interruptions.

The results from the full model, which combines both individual models, largely
confirm the earlier findings, underscoring their robustness. The only notable incon-
sistency remains the ambiguous role of trade activity on alternative venues.

The classification metrics reported at the end of Table 4 indicate that the first
two models exhibit limited predictive power, with accuracy scores below 62%. This
performance is comparable to a naive baseline that simply predicts the majority
class in the imbalanced test set, where 58.2% of the observations are classified as not
unnecessary. Similarly, the full model achieves an accuracy of just 60.7%, falling short
of a satisfactory threshold for predictive reliability.

When assessing each model’s best precision at a minimum recall of 20% (as shown
by the ”precision at recall 20” metric), none exceeds a precision of 57%, highlighting
their limited effectiveness in correctly identifying true positives, i.e., unnecessary in-
terruptions. In fact, precision remains below 57% across all models, and recall is even
lower, peaking at 36% for the full model.

In summary, none of the models demonstrate a reliable ability to predict, ex-ante,
whether an interruption is unnecessary. These results suggest the need for model
refinement or alternative modeling strategies to improve predictive performance.

Overall, unnecessary volatility interruptions are more likely to occur during active
price formation processes, especially in the presence of relevant news, when overall
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liquidity is high and volatility is low. These market conditions suggest that current
price changes are supported by market participants, and interruptions in such situa-
tions unnecessarily disrupt ongoing price discovery processes. Furthermore, triggering
interruptions when prices are close to the static price limit is more likely to be unnec-
essary, highlighting the inherent problem of simplistic, rule-based circuit breakers.

However, our analysis shows that predicting unnecessary volatility interruptions
ex-ante based on our probit regressions is neither feasible nor adequate for improving
the circuit breaker mechanism. While the probit regressions offer insights (explain-
ability) into the factors driving different types of volatility interruptions, the com-
plexity of the market conditions in which these interruptions occur goes beyond the
capacity of such models to capture dynamic interactions between various factors.

Therefore, we propose a comprehensive deep learning model designed to capture
and model the complex relationships between multiple market quality and contextual
factors in Section 5.

4.3. Implications of unnecessary interruptions for market quality

Having established that unnecessary volatility interruptions are more likely to
be triggered under liquid market conditions, it is important to examine whether
their market implications differ from those of necessary interruptions. As shown in
Section 2 and illustrated in Figure 3, the triggering of any volatility interruption is, on
average, associated with a deterioration in market quality, consistent with the findings
of Hautsch and Horvath (2019). However, Figure 3 also indicates that the widening of
bid-ask spreads is less pronounced for interruptions classified as unnecessary compared
to those deemed necessary. In this section, we aim to formally test whether the impact
on market quality differs significantly depending on the type of the interruption.
Therefore, we run the following regression model shown in Equation 4:

∆MarketQualityi = α + β1 · unnecessaryi + δ′ ·Xi + ϵi (4)

Where ∆MarketQualityi is the difference in the respective market quality mea-
sure (i.e., average relative spread, average depth at the top of the order book, and
midpoint return volatility measured as the standard deviation of all 200-millisecond
intervals) between the post- and the pre-interruption period (e.g., ∆rel spreadi =
rel spreadi,post − rel spreadi,pre). The term unnecessaryi is a dummy variable that
equals 1 if the interruption i is classified as unnecessary, and 0 otherwise. The control
vector Xi includes all explanatory variables used in the full probit model (see Ta-
ble 4), but computed using standard time-weighted averages instead of exponential
averages to ensure consistency with the calculation of market quality changes.

The results reported in Table 5 show that unnecessary interruptions are associated
with smaller declines in liquidity and less accelerating levels of volatility. The coeffi-
cient on unnecessaryi is negative and significant for the change in relative spreads, in-
dicating that spreads widen significantly less after unnecessary interruptions. Specif-
ically, the increase in the relative spread is 0.3 bps lower compared to the average
spread increase of 1.27 bps after an interruption, corresponding to a reduction of
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26.9%. Similarly, the reduction in order book depth is significantly less pronounced
for unnecessary interruptions (by 54.9% relative to the unconditional average reduc-
tion of e8,030). Finally, the increase in volatility after an interruption is smaller for
unnecessary interruptions, corresponding to a reduction of 17.5% relative to the aver-
age increase in volatility after an interruption. Together, these findings suggest that
unnecessary volatility interruptions tend to come with less adverse effects on market
quality compared to interruptions deemed necessary. This suggests that the market
situation after the interruption mirrors the unnecessary nature of the interruption.

Table 5: Impact of unnecessary interruptions on market quality

This table reports the results of the regression specified in Equation 4, which tests whether
unnecessary volatility interruptions affect market quality differently from interruptions classified
as necessary. The dependent variables include ∆rel spread, the change in the time-weighted
average relative spread, ∆level 1 depth, the change in the time-weighted average depth at the
top of the order book, and ∆return vola, the change in volatility measured as the standard
deviation of midpoint returns over 200-millisecond intervals. Each variable is computed as the
difference between the post- and pre-interruption phases (Post− Pre). The row labeled Average∆
reports the unconditional average of these differences across all volatility interruptions. The key
explanatory variable, unnecessary, is a binary indicator equal to 1 if the interruption was classified
as unnecessary. The control variables mirror those used in the full probit model reported in Table 4,
but are calculated using standard time-weighted averages (rather than exponential averages) to
ensure consistency with the dependent variable definitions. For brevity, coefficients of the control
variables are omitted. The full output is provided in Table 12 in Appendix C. Standard errors are
reported in parentheses. * p < 0.1, ** p < 0.05, ***p < 0.01.

∆rel spread ∆level 1 depth ∆return vola
Average∆ 1.27bps −0.08(e100k) 0.32bps

constant 3.6333*** 0.2615*** 0.6777***
(0.3536) (0.0211) (0.0590)

unnecessary −0.3268*** 0.0434*** −0.0588***
(0.1168) (0.0070) (0.0195)

controls included Yes Yes Yes

R-squared 0.0730 0.5704 0.1430
R-squared Adj. 0.0711 0.5696 0.1413
Observations 6887 6887 6887

5. Prediction of unnecessary volatility interruptions using deep learning

5.1. Methodology

Building on the results presented in Section 4, we propose a deep learning model
designed to predict the likelihood of a volatility interruption being unnecessary, using
only information available prior to its triggering. Unlike the models employed in the
previous section, our deep learning approach can effectively model complex spatial
and temporal non-linear relationships among various input factors. This capability
eliminates the need to aggregate input time series into a single value per feature,
as required in the probit regressions using exponential aggregations. Moreover, it
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removes the necessity of pre-selecting potentially relevant independent variables, as
the model’s architecture inherently identifies and extracts useful features.

Consequently, our deep learning model can process raw information directly with-
out relying on pre-calculated measures. This approach enables us to leverage large
volumes of unprocessed data preceding each volatility interruption, capturing the full
spectrum of dynamics and relationships among various factors that influence whether
the interruption would be unnecessary.

The classification model incorporates two distinct data streams: LOB data and
time-dependent news and contextual information. We further differentiate the model
setup into two prediction setups: (1) the market data model, and (2) the full model,
which distinguish themselves solely based on the input data used. The market data
model only uses market data for the prediction and is therefore easier to implement
in terms of data requirements. The full model uses additional data, especially news
and trade data from alternative trading venues. We discuss practical considerations
to implement the models in Section 7. The following subsections describe the deep
learning architecture, thereby focusing on the full model, as the implementation of
the reduced market data model only requires leaving out the non-market data for the
model input data.

The LOB data stream
The LOB data stream comprises 600 snapshots (equivalent to two minutes sampled

at a 200-millisecond frequency) of LOB data, each containing ten levels of price and
quantity information for both the bid and ask sides. The model structure for the LOB
data stream is inspired by the architecture of DeepLOB (Zhang et al., 2019). The
initial part of the architecture features a CNN comprising multiple neurons responsible
for convolution operations. The CNN aims to extract useful features from single
LOB snapshots, potentially encompassing convolutions of bid- and ask-side price
levels or comparisons of prices and quantities. This distinguishes it from the probit
regressions (Section 4), as it autonomously extracts useful features by design from the
order book data, removing the need for pre-calculated and time-aggregated measures.
Consequently, it should lead to more meaningful features to be extracted and later
used, since the model itself employs the features needed for successful classification
or dimensionality reduction.

Subsequent to the feature extraction by the CNN layers, the architecture em-
ploys an inception module, focusing on time-wise convolution rather than convolution
within a single orderbook snapshot. This module is designed to extract features based
on the ones previously computed over a specific time frame, summarizing them into
one value. For instance, it could calculate the maximum spread over the last five time
steps. The extracted features are then fed into an LSTM layer, which captures tem-
poral changes in these features essential for the time-dependent characteristics of the
LOB data stream. Two key modifications have been made to the original DeepLOB
architecture of Zhang et al. (2019): the dropout layer’s activation probability is re-
duced to 0.02, which has demonstrated improved performance. Additionally, the
architecture is truncated after the final LSTM layer to produce a feature vector for
concatenation with the news and contextual data stream.
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The news and contextual data stream
Analogous to the regression-based news and contextual factors model in Section 4,

the news and contextual data stream in the deep learning model is designed to cap-
ture information that is not directly observable in market data but may influence
whether an interruption is deemed unnecessary. This stream covers the same types
of information as those used in the second probit regression in Section 4. However,
instead of aggregating this information, as it was done for the regressions, we utilize
the raw time series data as input for the deep learning model.

Given the deep learning model’s higher expressive power and its ability to au-
tonomously extract relevant features for prediction, we include a broader array of in-
formation in the news and contextual data stream beyond the pre-selected measures
used earlier. This enables the incorporation of a wide range of contextual factors
during the model training process, aiming to capture as many potential dynamics
and relationships as possible to enhance prediction accuracy.

In addition to the factors used in the regression model, we include the number
of past interruptions for the affected stock besides the number of interruptions in
all DAX40 stocks, aiming to capture stock-specific high-volatility dynamics. Our
hypothesis is that multiple interruptions in the same stock may indicate unnecessary
interruptions triggered by a substantial but relevant change in the fundamental value
of the stock. We also incorporate the number of interruptions at both the stock and
market level (i.e., across all DAX40 stocks) over the past 24 hours to account for
long-term dynamics. For all variables capturing the number of past interruptions,
we distinguish between those identified as unnecessary and those that are not, which
enables the model to differentiate between the types of past interruptions and assess
their potentially distinct informational contributions when predicting the necessity of
future interruptions.27 To enrich the trade data, we add the number of executed trades
and their average trade volume. In terms of news data, we include the sentiment score
of each news item and the similarity of new information to past news, which helps
to determine whether the news is recent or if its content may already be reflected
in prices. Furthermore, we include order message data, encompassing the number
of order submissions, cancellations, and modifications, to provide a detailed view of
activities within each order book update. Lastly, we factor in the current minute of the
observation, recognizing that key announcements by central banks or similar entities
often occur at specific times, such as on the quarter, half, or full hour.28 Furthermore,

27Even in a real-world implementation, where unnecessary interruptions might ideally not be
triggered, such events would still be identifiable in the historical data. A market operator’s systems
can track whether an interruption would have been triggered under existing rules, even if it was ulti-
mately prevented based on our proposed model’s classification as unnecessary. Therefore, it remains
both feasible and meaningful to condition on the historical occurrence of unnecessary interruptions
in the prediction process.

28For example, the European Central Bank’s monetary policy decisions are published in a press
release at 14:15 CET (equals local time for the trading venue Xetra) followed by a press conference
at 14:45 CET. See https://www.ecb.europa.eu/press/govcdec/mopo/html/index.en.html.
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we augment the data stream by incorporating information on trades executed on
three alternative trading venues. This addition enables us to capture trading activity
beyond the main market in the lead-up to an interruption as trading behavior on
other venues may offer valuable insights into the causes of volatility observed on the
primary market. For instance, if all markets exhibit similar dynamics and activity
patterns, this suggests that the main market is functioning properly. Conversely, a
significant discrepancy between the main market and alternative venues may indicate
the presence of erroneous behavior or market dysfunction on one of the platforms.

In summary, the news and contextual data stream includes the following features:
the number of past volatility interruptions in both the overall market and the indi-
vidual stock over the last hour and the past 24 hours, differentiated by unnecessary
and necessary interruptions; a dummy variable indicating whether fast market is ac-
tive; trade data from the main market and three alternative venues, including the
number of trades, total trade volume, and average volume per trade; news data com-
prising the number of news items, sentiment, relevance, and similarity scores; the
number of aggregated order book snapshots per time interval; the relative distance
to the approximated static price barrier; message activity, including counts of order
submissions, cancellations, and modifications; and the current minute of the observa-
tion. A detailed overview of these features, including their calculation methods and
informational content, is provided in Table 10 in Appendix A.

The news and contextual data stream is first processed through an LSTM layer to
capture temporal dependencies and extract relevant features. This is then followed
by a fully connected layer. Unlike the LOB channel, we avoid using a CNN layer for
the news and contextual data channel, as there is no rationale to assume meaning-
ful spatial interactions between individual features, such as news sentiment and past
volatility interruptions.

The combined model
The combined model architecture integrates the outputs from both data streams.

The LOB data channel’s feature vector is concatenated with the feature vector from
the news and contextual data channel. The resulting combined feature map is then
passed through a final fully connected layer, which outputs the probability of the
volatility interruption being unnecessary. A schematic illustration of the whole pre-
diction process is given by Figure 14 in Appendix B with a detailed visualization of
the entire model architecture provided in Figure 17.

The deep learning approach is expected to outperform the regression models pro-
posed in Section 4 as it leverages not only pre-calculated features but also raw time
series data from the market, alternative venues, news, and other contextual factors.
Moreover, it enables the model to automatically extract relevant features for the clas-
sification task, potentially leading to more accurate predictions. However, a drawback
of this approach is the reduced explainability, as the model’s internal operations be-
come more complex and less transparent.
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Model training and evaluation
For training the model, the dataset was split into training, validation, and test

subsets as described in Section 2. The split was conducted on a random basis. Due
to the imbalanced distribution of the class labels, the training dataset was over-
sampled using the Synthetic Minority Oversampling Technique (SMOTE) (Chawla
et al., 2002). Oversampling ensures a more balanced training dataset, leading to a
more effective training process and potentially better classification performance. The
training set was exclusively used for model training. During the training process, the
validation set was used to monitor loss and accuracy metrics on a small out-of-sample
subset. This monitoring was essential to detect potential overfitting. If overfitting
was observed, the training process would have been interrupted and terminated. The
test subset, which was never used in the training process to prevent information leak-
age, was utilized to evaluate the model’s performance using the standard classification
metrics accuracy, recall, and precision as already discussed in Section 4. Additionally,
we consider the Fβ-score to assess the balance between precision and recall.

Like in the regression-based approach, the precise identification of unnecessary
interruptions is prioritized over general model accuracy. It is more important to detect
unnecessary interruptions with high precision to avoid false positives, even if this
comes at the expense of lower overall accuracy. Therefore, the deep learning model
is also optimized to maximize precision when identifying unnecessary interruptions.

5.2. Results

The model training for the full model converged after 128 iterations. The evolution
of the loss function during the training process is documented in Figure 12 in Ap-
pendix A. The main objective of this study is to achieve an optimal balance between
high precision and recall for predicting unnecessary interruptions, with the primary
emphasis on precision to avoid missclassified but relevant interruptions. This balance
can be adjusted by testing different cut-off values29 for the predicted probabilities
that indicate unnecessary interruptions.

Figure 8 presents the precision-recall curve, which illustrates the trade-off between
precision and recall at different thresholds. This curve is instrumental in identifying
an optimal threshold for the underlying prediction task. It becomes evident that
thresholds ranging from 0.7 to 0.9 appear to be suitable, given the classification task
at hand. While those above 0.7 lead to sufficiently high precision scores, thresholds
above 0.75 do further increase precision, which, on the other hand, comes at the cost
of a higher decrease in recall. To analyze the impact of the different thresholds within
this range on model performance more closely, Table 6 presents the precision and re-
call scores for thresholds ranging from 0.7 to 0.9. The results indicate that using a
threshold of 0.85 or higher yields high precision scores exceeding 84% in identifying
unnecessary interruptions. However, this comes at the cost of lower recall scores,

29As the output of the model is a continuous value (i.e., the probability of the sample being in
the target class), the value needs to be transformed into a binary value representing the class which
is done by defining a cut-off value. Every output higher than the cut-off value is considered as part
of the target class, in this case, an unnecessary volatility interruption.
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Figure 8: Precision-recall curve of model outputs at different thresholds for labeling as unnecessary
This figure shows the achieved precision and recall scores for predicting the target class of unnecessary
volatility interruptions at different thresholds. The recall scores are depicted in orange on the left
y-axis, while the precision scores are shown in blue on the right y-axis. On the x-axis are different
thresholds for the translation of the probabilistic model output to binary results.

with only a relatively small proportion (2% to 13%) of all actually unnecessary inter-
ruptions being detected. Conversely, implementing the model with lower thresholds
results in significantly higher recall scores. For instance, at a threshold of 0.7, the
recall reaches nearly 30%, indicating that nearly one-third of all unnecessary interrup-
tions are correctly identified. However, the precision at this level is lower, just under
75%, indicating that approximately 25% of the interruptions labeled as unnecessary
are not part of that class. Larger thresholds are also supported by the Fβ-score, which
summarizes a model’s predictive performance by balancing precision and recall. With
a β of 0.1 (0.2), ten (five) times more weight is placed on achieving high precision in
predicting unnecessary interruptions, thereby minimizing false positives. This means
avoiding predictions of unnecessary interruptions when they are in fact justified. For
a β of 0.1, the optimal balance between precision and recall is achieved at a threshold
of 0.875, whereas for a β of 0.2, the score reaches its peak at a threshold of 0.775.

We provide a corresponding analysis for the reduced prediction model that relies
solely on market data in Appendix C. The precision-recall curve is shown in Figure 20,
and detailed classification metrics for various thresholds are reported in Table 11. The
results suggest similar threshold behavior in terms of identifying optimal performance;
however, overall classification metrics are consistently lower compared to the full
model. For instance, at a threshold of 0.875, the reduced model achieves a precision
that is 1.5 percentage points lower than the full model, and its recall is only half as
large. At a threshold of 0.775, the lite model’s precision decreases by 4.5 and its recall
by 2 percentage points. In summary, while the reduced model performs slightly worse
than the full model, its predictive quality remains reasonably robust.
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Furthermore, we conduct a sensitivity analysis on different lengths of the obser-
vation window preceding each interruption, which serve as input for the prediction
model. The results are presented in Appendix D, with the precision-recall curves for
the additional windows of 5, 3, and 1 minutes shown in Figure 21, and detailed clas-
sification metrics provided in Table 13. Overall, the predictive performance remains
relatively consistent across the tested windows. Shorter windows, i.e., those using
more granular market data, generally lead to improved predictive accuracy. How-
ever, this trend holds only up to a two-minute window. While the 1-minute window
still outperforms the longer ones, its performance declines slightly compared to the
two-minute window, suggesting decreasing performance for shorter time frames.

Table 6: Classification metrics of the deep learning prediction model

Classification scores in this table are obtained by predicting the test dataset, where the minority
class of unnecessary interruptions represents 41.8% of the observations. We report results for
β ∈ {0.1, 0.2} for the Fβ-score to emphasize the importance of predicting unnecessary volatility
interruptions with a high precision to avoid false positives, i.e., predicting an interruption to be
unnecessary although it is actually relevant.

Threshold Accuracy Precision Recall Fβ=0.1 Fβ=0.2

0.700 0.659 0.743 0.282 0.731 0.699
0.725 0.651 0.760 0.241 0.744 0.702
0.750 0.650 0.782 0.226 0.763 0.714
0.775 0.649 0.825 0.204 0.800 0.738
0.800 0.643 0.825 0.184 0.798 0.728
0.825 0.635 0.830 0.158 0.796 0.713
0.850 0.626 0.845 0.130 0.801 0.698
0.875 0.617 0.882 0.098 0.817 0.674
0.900 0.590 0.846 0.024 0.631 0.364

Given these findings, when aiming for a conservative application of the prediction
model, a β of 0.1 should be used, for which our prediction model yields a precision of
above 88% at a recall of nearly 10%. With a β of 0.2, which should be picked in cases
of less conservative implementations, a precision of above 82% with a recall of 20% is
achieved by the proposed model. This offers the potential to prevent the triggering
of a volatility interruption when there is a high likelihood that this interruption is
unnecessary. Such an approach would minimize delays in price determination and
enhance overall market quality by mitigating the negative consequences of volatil-
ity interruptions. Our approach can either be fully integrated into a circuit breaker
mechanism or serve as a decision support system for market operators to shorten
the auction phase if the probability of an unnecessary interruption increases, as more
data becomes available during the auction. When implementing this approach in real-
world exchange systems, the optimal threshold selection should depend on the level
of automation relative to human intervention. In a largely automated environment,
a more restrictive mechanism (i.e., higher thresholds) is preferable to minimize false
positives. In contrast, when the mechanism is used as a decision support system with
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a higher level of human supervision, a less restrictive setting may be more suitable
tolerating more false positives, as final decisions are reviewed manually by the market
supervision team. Accordingly, in settings with high automation, using an Fβ-score
with a lower β could help identify a suitable threshold, as this is emphasizing preci-
sion and stressing the sensitivity to false positives. Conversely, in lower automation
settings, a higher β may be more appropriate, as it places greater emphasis on recall,
reducing the risk of missed detections. In the following Section 5.3 we further discuss
the choice of the decision threshold from a general welfare perspective.

5.3. Welfare implications

To evaluate the practical relevance of the proposed prediction model, we exam-
ine its implications for market quality and welfare. While the model is designed
to complement existing safeguard mechanisms by predicting whether a volatility in-
terruption triggered according to the rule-based system is necessary, it leads to a
trade-off between precision (correctly identifying unnecessary interruptions) and re-
call (capturing as many unnecessary interruptions as possible). To translate model
performance into welfare outcomes, we distinguish between four possible prediction
outcomes, each with different implications for market quality and welfare.

First, when the model predicts an interruption to be necessary and the interruption
is indeed necessary (a true negative), no change in welfare arises relative to the current
rule-based system, since the interruption is triggered under both regimes. Second,
if the model incorrectly predicts an interruption to be necessary when it was in fact
unnecessary (a false negative), the interruption is still triggered as it would be in the
rule-based system, and again no welfare change occurs.

Third, welfare improvements arise in the case of a true positive, where the model
correctly identifies an unnecessary interruption and allows continuous trading to
proceed. To quantify the welfare gain in such cases, we focus on the increase in
transaction costs typically observed following a volatility interruption.30 Specifically,
we estimate the change in the average effective spread from the pre- to the post-
interruption period and multiply this difference by the trading volume executed in
the post-interruption window. Averaging this across all true positives yields an esti-
mated welfare gain of e1,128.40 per avoided unnecessary interruption, with this case
occurring in 7.55% of all interruptions. This calculation is a lower-bound estimate,
as it does not account for additional benefits, such as increased order book depth,
uninterrupted opportunities for risk sharing (see Chen et al., 2024), and improved
price efficiency that would arise from avoiding an unnecessary interruption.

Fourth, cases where the model incorrectly prevents a necessary interruption (false
positives) may lead to disorderly market conditions and unsubstantiated price jumps.

30As shown in the market quality analysis in Section 2, volatility interruptions are associated with
widened bid-ask spreads, reduced order book depth, and increased volatility in the post-interruption
phase. This is consistent with the findings of Hautsch and Horvath (2019).
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Estimating the welfare loss in these cases is more complex.31 To approximate this
cost, we construct a counterfactual price path by extrapolating the pre-interruption
trend32 and compare it to the price established during the auction of the volatility
interruption. The difference between these two prices, multiplied by the auction
volume, provides a proxy for the welfare loss from failing to interrupt continuous
trading. This yields an estimated loss of e3,017.76 per false positive, which occurs
in 1.60% of model predictions.

Aggregating the gains and losses from all four prediction outcomes (for a prediction
threshold of 0.775), weighted by their empirical frequencies, and multiplying them by
the number of volatility interruptions results in the net average welfare effect when
applying the model. Table 7 summarizes the welfare impact per prediction type,
along with the associated frequencies and total welfare contribution. Based on the
total number of 85633 volatility interruptions observed in DAX40 stocks during 2024,
the estimated annual welfare gain amounts to e31,595. Extending the analysis to all
stocks traded on Xetra, which experienced 68,457 interruptions in 2024, the model
would generate an estimated total annual gain of e2.53 million, showing that these
gains scale meaningfully.34 If implemented across all asset classes on Xetra or even
across other trading venues that employ single-stock circuit breakers, the potential
welfare gains would scale further.

We emphasize that these figures are not precise forecasts but serve as back-of-the-
envelope estimates intended to approximate the potential welfare impact of the model.
The calculations are intentionally conservative, focusing solely on measurable changes
in transaction costs. They do not account for additional benefits such as improved
order book depth, more efficient risk sharing, or enhanced price efficiency, which
would likely amplify the welfare gains from prevented unnecessary interruptions.

To further explore the welfare implications of the model’s application, we analyze
how different prediction thresholds, which directly affect the trade-off between pre-
cision and recall, translate into overall welfare gains associated with the prediction
model. Higher thresholds increase the model’s precision, reducing the risk of misclas-

31Unlike theoretical models such as Chen et al. (2024), empirical analyses are limited by the fact
that trader utility is unobservable, and differences in trader types or motives cannot be discerned.
Furthermore, because all observed interruptions in the data were triggered, the counterfactual sce-
nario (i.e., what would have happened without the interruption) cannot be directly observed. Fol-
lowing Chen et al. (2024), we adopt a paternalistic planner’s perspective, where speculative gains
due to price jumps in the absence of a justified interruption are considered inefficient.

32To estimate the counterfactual price path, we use a regression model similar to the one employed
to identify the dampening effect (see Equation 1), but restrict it to the pre-interruption period and
fit it separately for each volatility interruption: pi = β0 + β1t. Here, pi denotes the midpoint price
observed at each 200-millisecond interval in the pre-interruption phase and t is a time index ranging
from 1 to 600. The counterfactual price is then projected at 2 minutes and 15 seconds after the
interruption trigger, corresponding to the average duration of a volatility interruption.

33In 2024, a total of 856 volatility interruptions occurred in the analyzed DAX40 stocks after
applying the data cleaning steps detailed in Table 1, i.e., excluding cases without sufficient continuous
trading in the pre-interruption window.

34A total of 125,224 volatility interruptions occurred on Xetra in 2024. This includes 68,457
interruptions in equities, 26,994 in ETFs, 23,530 in ETNs, and 6,243 in ETCs.
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Table 7: Estimated welfare impact by prediction outcome and aggregate annual gains

This table summarizes the welfare impact of each prediction outcome, including the estimated
gain or loss per event, its empirical frequency, and its contribution to average welfare. The
results are based on the full model using 2-minute pre- and post-interruption observation windows
and a prediction threshold of 0.775. Annual welfare gains are estimated using the observed
number of volatility interruptions in DAX40 stocks and across all stocks traded on Xetra in 2024.
All values are reported in thousand euros, except for frequencies, which are expressed as percentages.

Prediction Outcome Welfare Impact Frequency Welfare Effect Welfare Effect
per Event DAX40, 2024 all Stocks, 2024

(N = 856) (N = 68,457)

True Negative 0 61.40% 0 0
False Negative 0 29.45% 0 0
True Positive +1,128.40 7.55% 72.93 5,832.14
False Positive -3,017.76 1.60% -41.33 -3,305.39

Net Welfare Gain per Year 31.60 2,526.75

sifying necessary interruptions as unnecessary, but come at the cost of lower recall.
Conversely, lower thresholds raise recall but risk a greater number of false positives.

To quantify this trade-off, we compute the net average welfare gain per interrup-
tion for a range of threshold values, taking into account the corresponding precision
and recall scores, as well as the estimated welfare gains and losses associated with
true positives and false positives. As shown in Figure 9, welfare is maximized at a
threshold of 0.775, where precision with 82.5% (see Table 6) is high enough to avoid
costly false positives, while recall with 20.4% remains sufficient to avoid a meaningful
number of unnecessary interruptions. We also find that the model starts to yield net
positive welfare contributions from a threshold of 0.70 onwards. Below this point, the
cost of incorrect predictions begins to outweigh the benefits from correctly identified
unnecessary interruptions. Above the optimal threshold of 0.775, welfare decreases
again due to further decreases in recall.

In summary, our analysis suggests that implementing the prediction model, par-
ticularly in a high-precision configuration, can lead to meaningful improvements in
market quality and overall welfare, while preserving the existing rule-based system as
a fallback in uncertain cases that do not cross the prediction threshold to be classified
as unnecessary.

6. Limitations and robustness tests

While this study offers valuable insights into improving the effectiveness of circuit
breaker mechanisms in securities markets, certain limitations should be acknowledged
when interpreting and applying our findings.

Our analysis primarily examines a specific implementation of circuit breakers -
volatility interruptions. Although volatility interruptions are a common safeguard
across European stock exchanges, they are less frequently used in other parts of the
world (Gomber et al., 2016). In the U.S., circuit breakers are typically implemented as
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Figure 9: Net economic effect given different prediction thresholds
This figure shows the net welfare effect when applying the prediction model with varying prediction
threshold between 0.6 and 0.9, and scaled on an annual basis based on the 856 volatility interruptions
observed in the analyzed DAX40 stocks in 2024. The results are based on the full model using 2-
minute pre- and post-interruption observation windows. Annual welfare effects are reported in euros.

trading halts, with the Limit Up/Limit Down mechanism governing single-stock trad-
ing halts (U.S. Securities and Exchange Commission, 2012). Despite the differences
between volatility interruptions and trading halts, both types of circuit breakers are
triggered based on pre-determined price thresholds. Our methodology is broadly ap-
plicable to rule-based circuit breakers in general, making our results relevant to other
mechanisms, including the U.S. Limit Up/Limit Down mechanism. Nonetheless, fur-
ther comprehensive analyses should be conducted before generalizing our findings to
other circuit breaker implementations.

Another limitation is the absence of information on the specific orders that trig-
gered the interruptions in our dataset. This data would provide crucial insights to
better assess whether these orders were erroneous or reasonable. With access to the
triggering order, we could directly identify misconfigured or error-induced orders for
which a interruption is necessary. Additionally, such data could enhance our predic-
tion models by providing valuable information to better identify unnecessary inter-
ruptions. The triggering order is not included in public market data feeds. However,
as the market operator has knowledge of this order, the inclusion of this information
into our proposed approach will likely further increase its performance.

To ensure the robustness of our findings and to account for potential alternative
explanations for unnecessary interruptions, we conduct several robustness tests based
on the probit regression in Section 4, with results detailed in Appendix D.

Table 15 reports the results of a regression analysis that includes stock fixed ef-
fects to control for stock-specific influences. Dummy variables were included for each
stock, but the coefficients for these dummies were found to be statistically insignif-
icant, indicating that stock-specific factors do not materially affect the results. The
coefficient for the interaction term capturing relevant news remains in the same direc-
tion as in the main analysis but loses statistical significance. This suggests that while
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the underlying relationship holds, it may be sensitive to stock-specific variation. The
loss of significance is likely attributable to the limited number of news observations in
the dataset, i.e., only 7.6% of volatility interruptions are associated with news events,
reducing statistical power, particularly when partitioned across individual stocks. All
other coefficients remain consistent with the main results, reinforcing the conclusion
that stock-fixed effects do not substantially alter the findings.

As highlighted in Figure 2 and described in Section 2, our dataset was significantly
affected by the COVID-19 pandemic. To account for potential pandemic-related
effects, we conducted a robustness test incorporating a COVID-19 dummy variable for
all samples triggered between February and May 2020. Table 16 presents the results
of this analysis, showing that unnecessary interruptions tend to occur less frequently
during the market turmoil caused by the COVID-19 pandemic, although this effect
is not statistically significant in the full model. In this setup, the coefficient of the
news interaction term is also found to be insignificant, while the direction remains the
same as in the main analysis. The same applies for the coefficient of the distance to
the static barrier in the full model, indicating some sensitivity to the presence of high
market-wide volatility. All other effects remained consistent with our main results.
This suggests that our approach is applicable across periods of both high and low
volatility and is not influenced by market-wide disruptions.

Lastly, we tested for potential year-specific effects by including dummy variables
for each year in our observation period in a regression analysis. The results, presented
in Table 17, show that, similarly to the COVID-19 dummy, the year 2020 tends to be
less associated with unnecessary interruptions, although not being significant in the
full model. The only year that shows a significant effect across all models is 2024, also
with a negative effect on the likelihood of unnecessary interruptions. This finding is
plausible, as 2024 stands out as the only year in our sample without major market-
wide disruptions, such as the COVID-19 pandemic or the Russian invasion of Ukraine.
In the absence of such events, there is less need for rapid incorporation of market-
moving information, which may reduce the occurrence of unnecessary interruptions.
Apart from this sensitivity to more stable market periods, no notable deviations from
our main results were observed. This suggests that our findings are robust across
different years and not driven by year-specific anomalies.

7. Practical Implementation

7.1. Key implementation decisions

This section outlines the key decisions and considerations necessary for implement-
ing our prediction model. Market operators and regulators can use these implementa-
tion guidelines, along with the configurable parameters and performance benchmarks
outlined in the subsequent section for integration of the model in real-world trading
systems. We assume that a rule-based volatility interruption mechanism or a similar
single-stock circuit breaker triggered based on deviations from reference prices already
exists. Table 8 provides an overview of all implementation decisions.

Choice of observation window and sampling frequency: To ensure applicability in
high-frequency markets, we use an observation window of 2 minutes before and after
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each volatility interruption. Simultaneously, we apply a high sampling frequency of
200 milliseconds, capturing fine price dynamics as relevant for financial markets in
a high-frequency trading environment. We also conduct a sensitivity analysis using
alternative windows of 1, 3, and 5 minutes with corresponding sampling frequencies of
100, 300, and 500 milliseconds, respectively. These parameters can be further tailored
based on trading intensity across different stock segments.

Number of clusters: For the clustering approach, the number of clusters should be
sufficiently large to capture the diversity of market dynamics surrounding volatility
interruptions. Accordingly, the chosen number should not fall below the threshold
identified by the elbow method. While a larger number of clusters can enhance the
model’s ability to distinguish between different market conditions, it may also reduce
interpretability and make visualizations and manual inspection more complex.

Statistical significance thresholds for market quality changes: Our classification
method evaluates changes in market quality indicators (such as spread, depth, and
volatility) before and after interruptions using hypothesis testing. Thresholds for
statistical significance (e.g., 90%, 95%, or 99%) can be selected based on the desired
level of conservativeness in identifying unnecessary interruptions.

Dampening effect threshold: We define an interruption as unnecessary only if the
price trend continues in the same direction and is not dampened by more than 50%.
This 50% dampening threshold is parameterizable and can be adjusted according to
what is considered a “sufficient” post-interruption dampening.

Use of external data sources: The full model incorporates external data sources
such as news, their sentiment and relevance, and trading activity on alternative
venues. However, given potential limitations in real-time data access and process-
ing, we also provide a reduced model that relies solely on internal market data from
Xetra. Both variants are evaluated, allowing for flexible adoption based on available
infrastructure.

Insufficient pre-interruption data for prediction: In practice, overlapping volatility
interruptions or insufficient pre-interruption data do not pose a major challenge for
implementation. If the model cannot access a full observation window, e.g., due to
proximity to a previous interruption or auction, a conservative fallback approach can
be applied, allowing the interruption to proceed under current rules. To operationalize
this, the system must track the elapsed time since the last auction or interruption:
at least 2 minutes after a scheduled auction or 4 minutes after a prior interruption
are required to ensure clean data windows.

Full integration in the matching engine vs. decision support system: The predic-
tion model can be implemented in two distinct operational settings. First, it can be
fully integrated into the existing rule-based circuit breaker mechanism, automatically
determining whether continuous trading should be interrupted based on the model’s
classification. Alternatively, it can serve as a decision support system for market
supervision. In this semi-automated setting, the model could, for example, assist in
terminating interruptions earlier when they are predicted to be unnecessary. This
mode offers greater discretion and comes with less stringent latency requirements.
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Table 8: Overview of configurable implementation parameters

This table provides an overview of configurable parameters and model choices relevant for
implementing the prediction framework in a live trading environment.

Parameter / Model Choice Options / Values

Observation window 1, 2, 3, or 5 minutes
Sampling frequency 100ms, 200ms, 300ms, or 500ms
Number of clusters 12 (default, adjustable)
Significance threshold for market quality changes 90%, 95%, or 99%
Post-interruption dampening threshold 50% (adjustable between 0% and 100%)
External data inputs None / News / Alternative venue data
Insufficient pre-interruption data Trigger interruption as in rule-based system
Deployment mode Full integration / Decision support system

7.2. Computational requirements

While data aggregation, feature calculation, and model training is computationally
intensive and takes several hours depending on system architecture (see Table 9), the
prediction latency is extremely low. On our infrastructure, the CNN-based model gen-
erates a prediction in approximately 27 milliseconds.35 Given that trades in DAX40
stocks occur on average every 20 seconds, and that the executable order triggering the
interruption is not included in the input data, the model has ample time to compute
its prediction. Furthermore, it can process predictions incrementally with each in-
coming order book update, making inference latency non-critical in practical settings.
In latency-optimized trading environments, further reductions in inference time are
achievable by the respective market operator.

Table 9: Approximate computation times for model components

This table reports the approximate runtimes for the main components of the model pipeline. The

average inference time (the most latency-sensitive element for practical deployment) is based on 100

runs, with the corresponding standard deviation included in parenthesis to reflect runtime variability.

Component Approximate Runtime

Data aggregation 24 hours
Feature calculation 3 hours
Normalization 2 minutes
Clustering (training) 2 hours
Prediction model training 1 hour
Prediction / inference 27 ms (SD = 4.81 ms)

35System specifications: 2x Nvidia A100 40GB, 256 GB RAM, AMD EPYC 74F3 3.2 GHZ 24-
Core Processor.
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8. Conclusion

Our study addresses a significant gap in the literature on circuit breakers, as it
demonstrates that it is possible to identify and avoid unnecessary trading interrup-
tions. Interruptions caused by circuit breakers can negatively impact market quality
by delaying price discovery and disrupting liquidity, leading to a trade-off between
their protective role and adverse effects on market quality (Hautsch and Horvath,
2019). Our research presents a novel approach based on machine learning techniques
to identify unnecessary volatility interruptions that delay price discovery because they
are triggered within an ongoing price trend before and after the interruption and are
characterized by reductions in market quality. Based on this identification, we further
develop a deep learning model that is able to predict unnecessary volatility interrup-
tions using ex-ante order book information, news, and other contextual features. This
approach enables a more nuanced application of circuit breakers, facilitating the de-
velopment of advanced market safeguards that are only triggered when necessary.
Therefore, our study adds to the discussion of improved circuit breaker mechanisms,
such as the forward-looking circuit breaker proposed by Bongaerts et al. (2024). Our
study also contributes to the broader literature on market microstructure by applying
advanced machine learning techniques to a critical market design aspect.

By analyzing the circumstances in which unnecessary volatility interruptions are
triggered, we find that they are more likely to occur when liquidity is high and when
relevant news are present. Large price fluctuations observed under these conditions
rather point to well-functioning price discovery instead of erroneous price jumps.
Moreover, volatility interruptions are also more likely to be unnecessary when the
last price prior to the interruption is near the triggering threshold. This indicates
that the existing simplistic rule-based mechanism is not capable of differentiating
between plausible price changes and unsubstantiated price jumps.

The practical implications of our findings are considerable. Exchange operators
can utilize our predictive model to enhance their safeguard mechanisms by reduc-
ing the frequency or duration of unnecessary interruptions, thereby improving overall
market efficiency. A welfare analysis confirms that implementing the model in practice
leads to a net gain in welfare. Moreover, the model offers a novel approach to mitigat-
ing the magnet effect associated with rule-based circuit breakers (Chen et al., 2024).
Since interruptions are only triggered if not predicted to be unnecessary, the approach
decouples the direct link between price proximity to the threshold and the initiation
of an interruption. This softening of the rule-based mechanism can reduce the incen-
tive for traders to anticipate or accelerate toward interruptions, thereby dampening
the self-reinforcing dynamics associated with the magnet effect that typically exac-
erbate market volatility. Additionally, our results can inform regulatory discussions,
potentially leading to more nuanced and effective rules for circuit breakers.

Future research can apply our methodology to different markets and types of
circuit breakers, further validating the robustness of our findings. Additionally, ex-
ploring other machine learning techniques and incorporating non-public information
from market operators will likely enhance the predictive accuracy of our models.
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Appendix A: Variable description and additional descriptive statistics

This section provides a description of all variables used and their respective cal-
culations in Table 10. Additional descriptive statistics on the approximated static
price limits are shown in Figure 10. The number of volatility interruptions per stock
during the observation period is illustrated in Figure 11 and the evolution of the loss
function during training of the prediction model is depicted in Figure 12.

Table 10: Detailed explanation of all variables used in the models in Section 4 and Section 5

The first column lists the variable names. The second column indicates in which models each
variable is used in: P1 refers to the market quality model, P2 to the news and contextual factors
model, and P3 to the full model from the probit regressions discussed in Section 4.1. MQ denotes the
regression model to analyze the implications of unnecessary interruptions for market quality applied
in Section 4.3, and DL refers to the deep learning model described in Section 5. The third column
provides a description of each variable and its calculation method. The final column details how
the 200-millisecond intervals are aggregated into a single value. For the probit regressions, we apply
exponential weighting, whereas the MQ regression in Section 4.3 employs time-weighted aggregation.
In this column, “none” refers to no aggregation method as the calculation of the measure results in a
single value rather than a time series (e.g., volatility or number of news in the past ten minutes) and
“last” means the last observation prior to the interruption is used. In the DL model, the variables
are not further aggregated across the time intervals but used as a time series, also denoted as “none”.

Feature Model Calculation Aggregation
method

rel spread P1, P3,
MQ

Measures the difference between the best
bid and ask prices relative to the mid-
point.

Mean

level 1 depth P1, P3,
MQ

Sum of the quoted Euro volume at the first
five order book levels.

Sum

trade volume P1, P3,
MQ, DL

Euro volume of all executed trades. Sum
(DL: none)

midpoint return
vola

P1, P3,
MQ

Measures overall volatility by calculating
the standard deviation of midpoint re-
turns. Returns are based on the respective
sampling frequency.

None

message count P1, P3,
MQ

Number of all messages (submissions,
deletions, modifications).

Sum

news count P2, P3,
MQ, DL

Number of news articles mentioning the
corresponding company in the last ten
minutes.

Sum
(DL: none)

news relevance P2, P3,
MQ, DL

Average relevance score of news articles
mentioning the corresponding company in
the last ten minutes. Relevance is defined
by how prominently the company is refer-
enced in the article, such as in the headline
or concluding sentence.

Mean
(DL: none)

continued . . .
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. . . continued

Feature Model Explanation Aggregation
method

unnecessary -
interruptions

P2, P3,
MQ, DL

Measures the number of triggered volatil-
ity interruptions across all DAX40 con-
stituents in the last hour being labeled un-
necessary. In the deep learning model, we
additionally calculate this measure based
on the last 24 hours and for the respective
stock.

Last
(DL: none)

necessary -
interruptions

P2, P3,
MQ, DL

Measures the number of triggered volatil-
ity interruptions across all DAX40 con-
stituents in the last hour not being la-
beled unnecessary. In the deep learning
model, we additionally calculate this mea-
sure based on the last 24 hours and for the
respective stock.

Last
(DL: none)

fast market
dummy

P2, P3,
MQ, DL

Dummy variable whether the fast market
indicator is set by the market operator or
not.

None

distance to static
barrier

P2, P3,
MQ, DL

Distance of the current price to the ap-
proximated static price range. The value
is bounded between zero and one with one
being close to the barrier and zero being
further away.

Last
(DL: none)

trade count
alt venues

P2, P3,
MQ, DL

Measures the overall number of trades exe-
cuted across the three alternative trading
venues (Aquis, Turqoise, Cboe). In the
deep learning model is this measure split
into three variables each representing one
exchange.

Sum
(DL: none)

count trades DL Number of executed trades. None
count buys DL Number of buyer initiated trades. None
count sells DL Number of seller initiated trades. None
avg trade volume DL Average trade size in Euro. None
news sentiment DL Average sentiment score of news articles

mentioning the corresponding company in
the last ten minutes.

None

news similarity DL Measures the average similarity of news
articles mentioning the corresponding
company in the last ten minutes to other
older news articles.

None

continued . . .
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. . . continued

Feature Model Explanation Aggregation
method

count add DL Number of messages representing the
adding of a new order.

None

count delete DL Number of messages representing the dele-
tion of a persisting order.

None

count modify DL Number of messages representing the
modification of a persisting order.

None

ob changes DL Number of order book updates. None
minute of hour DL Number representing the current minute

in the time series. Bounded between zero
and 59.

None

last auction
price return

DL Return of the observed price and the last
auction price.

None

Figure 10: Approximated static price ranges for all DAX40 constituents
This figure shows the approximated static price ranges based on the largest price deviation seen
from the last auction price, which serves as reference price for the static threshold triggering the
interruption. For brevity and better visualization, only the yearly approximated thresholds are
shown, although monthly approximations are used in the models. Missing bars are due to the
stock’s later listing (e.g., Daimler Truck Holding AG emerged from a spin-off and was first traded
in December 2021).
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Figure 11: Total number of volatility interruptions for each DAX stock between 2019 and 2024
This figure shows the number of volatility interruptions for each DAX stock from 2019 to 2024. We
consider each stock that was part in the DAX during this period as part of our sample. The count
of volatility interruptions in this figure is prior to any data cleaning processes.

Figure 12: Loss during the training of the classification model for both the training and testing
subset
This figure depicts the evolution of the loss function during model training. On the y-axis, the loss,
calculated as the binary crossentropy, is shown. The x-axis shows the training iteration called epoch.
The blue line depicts the loss for the training dataset and the orange one the loss for the validation
dataset.
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Appendix B: Architectures of the deep learning models

This section provides more detailed insights into the deep learning model archi-
tectures and the whole process on how cluster labels and label predictions for unnec-
essary volatility interruptions are obtained. In Figure 13 and Figure 14, schematic
visualizations are depicted, describing the process of generating cluster labels and
the prediction of a volatility interruption being unnecessary or not. In Figure 15,
the encoder, and in Figure 16, the decoder architecture of the autoencoder model
from Section 3 are shown in detail. Figure 17 shows the detailed architecture of the
prediction model from Section 5.

Figure 13: Schematic visualization of the clustering pipeline
This figure shows a schematic visualization of the whole pipeline to obtain cluster assignments. On
the left-hand side, the input data is shown, which is a time series of order book snapshots. The middle
part illustrates the autoencoder architecture. On the right-hand side, the GMM is contemplated.

Figure 14: Schematic visualization of the prediction pipeline
In this figure, the whole pipeline to obtain label predictions for unnecessary volatility interruptions
is visualized. On the left-hand side, the two input data streams are illustrated: the LOB data stream
and the news and contextual data stream. In the middle, the deep learning model architecture is
described, combining the two data streams. On the right-hand side, the final probability output
using a sigmoid function is shown.
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Figure 15: Architecture of the implemented encoder part of the autoencoder model
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Figure 16: Architecture of the implemented decoder part of the autoencoder model
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Figure 17: Architecture of the implemented classification model
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Appendix C: Additional results

Choice of the number of clusters and cluster probabilities

This section shows the results of the elbow method applied in order to evaluate
the choice of the number of cluster k as in Section 3. The results are displayed in
Figure 18. Further, we provide insights on the probability distribution of cluster
assignments in Figure 19.

Figure 18: Result of the elbow method
This figure displays the sum of squared distances from all observations to their respective cluster
centers, computed from GMM clustering for various values of k. The blue curve represents an
interpolation of these values to visualize the overall trend. The dashed gray line denotes the diagonal
connecting the endpoints at k = 2 and k = 30. The two vertical lines indicate the optimal number
of clusters as identified by two variants of the elbow method: one based on the maximum second
derivative (curvature) of the curve, and the other based on the point with the greatest perpendicular
distance to the diagonal.
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Figure 19: Distribution of cluster probabilities for each cluster
This figure presents, for each cluster, a histogram of the probabilities of observations assigned to the
specific cluster. The number of observations in the respective probability bucket is depicted on the
y-axis and the probability on the x-axis.
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The reduced deep learning prediction model

This section presents the prediction results of the reduced deep learning prediction
model. The reduced model solely relies on market data as the input data. In Fig-
ure 20, we present the resulting precision-recall curve, and in Table 11, a more detailed
overview of achieved classification results given different prediction thresholds.

Figure 20: Precision-recall curve of the model outputs at different thresholds for labeling as un-
necessary in case of the reduced model
This figure shows the achieved precision and recall scores for predicting the target class of unnec-
essary volatility interruptions at different thresholds. The recall scores are depicted in orange on
the left y-axis, while the precision scores are shown in blue on the right y-axis. On the x-axis are
different thresholds for the translation of the probabilistic model output to binary results.

Table 11: Classification metrics of the reduced deep learning prediction model

Classification scores in this table are obtained by predicting the test dataset, where the minority
class of unnecessary interruptions represents 41.8% of the observations. We report results for
β ∈ {0.1, 0.2} for the Fβ-score to emphasize the importance of predicting unnecessary volatility
interruptions with a high precision to avoid false positives, i.e., predicting an interruption to be
unnecessary although it is actually relevant.

Threshold Accuracy Precision Recall Fβ=0.1 Fβ=0.2

0.700 0.655 0.725 0.280 0.713 0.683
0.725 0.659 0.771 0.262 0.756 0.717
0.750 0.644 0.766 0.213 0.746 0.696
0.775 0.637 0.780 0.184 0.756 0.694
0.800 0.627 0.772 0.154 0.742 0.669
0.825 0.622 0.789 0.130 0.752 0.661
0.850 0.615 0.810 0.102 0.758 0.639
0.875 0.602 0.867 0.056 0.759 0.558
0.900 0.587 0.875 0.015 0.561 0.275

62



Table 12: Impact of unnecessary interruptions on market quality

This table reports the full results of the regression specified in Equation 4, which tests whether
unnecessary volatility interruptions affect market quality differently from interruptions classified
as necessary. The dependent variables include ∆rel spread, the change in the time-weighted
average relative spread, ∆level 1 depth, the change in the time-weighted average depth at the
top of the order book, and ∆return vola, the change in volatility measured as the standard
deviation of midpoint returns over 200-millisecond intervals. Each variable is computed as the
difference between the post- and pre-interruption phases (Post− Pre). The row labeled Average∆
reports the unconditional average of these differences across all volatility interruptions. The key
explanatory variable, unnecessary, is a binary indicator equal to 1 if the interruption was classified
as unnecessary. The control variables mirror those used in the full probit model reported in Table 4,
but are calculated using standard time-weighted averages (rather than exponential averages)
to ensure consistency with the dependent variable definitions. Standard errors are reported in
parentheses. * p < 0.1, ** p < 0.05, ***p < 0.01.

∆rel spread ∆level 1 depth ∆return vola
Average∆ 1.27bps −0.08(e100k) 0.32bps

constant 3.6333*** 0.2615*** 0.6777***
(0.3536) (0.0211) (0.0590)

unnecessary −0.3268*** 0.0434*** −0.0588***
(0.1168) (0.0070) (0.0195)

rel spread −0.1058*** −0.0013*** 0.0239***
(0.0082) (0.0005) (0.0014)

level 1 depth 0.0000*** 0.0000*** 0.0000**
(0.0000) (0.0000) (0.0000)

midpoint return vola 0.8623*** −0.0181*** −0.3362***
(0.0645) (0.0039) (0.0108)

trade volume 0.0007* 0.0004*** 0.0002***
(0.0003) (0.0000) (0.0001)

message count −0.0237*** −0.0008*** 0.0050***
(0.0021) (0.0001) (0.0003)

news count 0.2627*** −0.0031 0.0672***
(0.0826) (0.0049) (0.0138)

news relevance −0.0005* 0.0000 0.0002***
(0.0003) (0.0000) (0.0000)

news relevance interaction −0.0005*** 0.0000 −0.0002***
(0.0002) (0.0000) (0.0000)

unecessary interruptions −0.0004*** 0.0000 0.0000***
(0.0001) (0.0000) (0.0000)

necessary interruptions 0.0002*** 0.0000 0.0000
(0.0000) (0.0000) (0.0000)

fast market dummy 0.0025*** 0.0000 0.0000
(0.0004) (0.0000) (0.0001)

distance to static barrier −1.9209*** 0.0156 −0.4375***
(0.3477) (0.0208) (0.0580)

trade count alt venues 0.0003 −0.0001*** 0.0001**
(0.0003) (0.0000) (0.0001)

R-squared 0.0730 0.5704 0.1430
R-squared Adj. 0.0711 0.5696 0.1413
Observations 6887 6887 6887
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Appendix D: Robustness tests and sensitivity analysis

Sensitivity analysis regarding observation windows and sampling frequencies

This section shows the results for the prediction of unnecessary volatility inter-
ruptions based on different observation windows prior to the interruption. In Fig-
ure 21, we present the precision-recall curves of prediction models using 5-, 3-, 2-,
and 1-minute observation windows prior to the interruption. The sampling frequency
changes accordingly to the used observation window. To be precise, data is sampled
on 500-, 300-, 200-, and 100-millisecond frequencies for the 5-, 3-, 2-, and 1-minute
observation windows. In Table 13 a more detailed and comparable view on the predic-
tion results is shown by reporting different classification metrics, namely the accuracy,
precision, recall, and the precision at recall score at a minimum recall of 0.2 and 0.1.

Figure 21: Precision-recall curve for prediction models given different preceding observation win-
dows
This figure shows the achieved precision and recall scores for predicting the target class of unnec-
essary volatility interruptions at different thresholds for different observation windows. The recall
scores are depicted in orange on the left y-axis, while the precision scores are shown in blue on the
right y-axis. On the x-axis are different thresholds for the translation of the probabilistic model out-
put into binary results. Each single figure shows the achieved results for the deep learning prediction,
given a specific length of preceding information prior to the triggering of the volatility interruption.
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Table 13: Classification metrics of the prediction models given different preceding observation
windows

This table shows classification results for the deep learning prediction model given different lengths of
the preceding observation window. The accuracy score, precision score, and recall score is calculated
at the standard threshold of 0.5. Precision and recall are given for the target class of unnecessary
volatility interruptions. The precision at recall metric states the maximum achievable precision score
while attaining a minimum recall. In this table, this score is given for a minimum recall of 0.1 and 0.2.

Window Accuracy Precision Recall Precision at Precision at
(minutes) recall 20 recall 10

5 0.66 0.60 0.59 0.75 0.82
3 0.69 0.64 0.58 0.79 0.84
2 0.68 0.60 0.68 0.82 0.88
1 0.67 0.61 0.58 0.80 0.87

Robustness test regarding the labeling approach

Table 14 provides a sensitivity analysis regarding the consistency of the labeling
approach when varying the number of clusters k.

Table 14: Labeling consensus given different values of k

This table shows the relative number of consistently labeled volatility interruptions when varying
the number of clusters k. For the sake of clarity, we do not report the consensus in both ways as
these are the same the other way round. Values are given as percentages.

k=10 k=12 k=14 k=16 k=18

k=10 100
k=12 71 100
k=14 79 85 100
k=16 86 77 85 100
k=18 86 75 83 93 100
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Robustness tests regarding the drivers of unnecessary interruptions

In this section, we provide different robustness tests for the results of the probit
regression in Section 4. In Table 15, we present an OLS regression using stock-fixed
effects in order to test for any stock-level effects. We use an OLS regression and not
a probit model, as probit models tend to perform poorly with too many parameters,
which is the case in this analysis. In Table 16, we provide the probit regressions
using a binary variable indicating the turbulent COVID-19 market phases, in order
to analyze the robustness of our results against such market-wide events. This binary
variable is one for observations between February and May 2020. In Table 17, we
present the results of the probit model using binary variables for each year in our
sample period, in order to test for any time-dependent effects not currently captured
by our model.

Table 15: OLS regression results with stock fixed effects

This table shows the results from OLS regressions analogous to the models described in Section 4.

Here, the results are not based on probit regressions, but on OLS regressions, as the inclusion of

stock fixed effects introduces 48 dummy variables, and probit regressions do not perform well when

comprising a large amount of parameters. The relative spread and midpoint return volatility are

given in basis points (bps). The level-1 depth and the trade volume is given in hundred thousand

Euro. The message count is given in thousands. Standard errors are reported in parentheses. *

p < 0.1, ** p < 0.05, ***p < 0.01.

Market Quality News and Contextual Full Model
Factors

const 0.4948*** 0.2482*** 0.4369***
rel spread −0.0047*** −0.0028***
leve 1 depth 0.0835*** 0.0773***
trade volume −0.0003 −0.0005
midpoint return vola −0.0511*** −0.0480***
message count −0.0083*** −0.0086***
news count −0.0002 −0.0001
news relevance −0.1479*** −0.0760**
news relevance interaction 0.0164 0.0260
unnecessary interruptions 0.0043*** 0.0030***
necessary interruptions −0.0023*** −0.0015***
fast market dummy −0.0002*** −0.0001**
distance to static barrier 0.2366*** 0.0733*
trade count alt venues −0.0010*** 0.0003

R-squared 0.0862 0.0569 0.0923
R-squared Adj. 0.0792 0.0492 0.0841
Stock FE Yes Yes Yes
Accuracy 0.6392 0.6120 0.6428
Precision 0.6235 0.5922 0.6245
Recall 0.3449 0.2299 0.3644
Precision at Recall 20 0.6235 0.5922 0.6245
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Table 16: Marginal effects of probit regression models including a COVID-19 dummy variable

This table shows the marginal effects of the proposed probit models. Marginal effects describe the

absolute change in the output probability given a change in the independent variables. The COVID-

19 dummy variable marks all observations between February and May of 2020. The relative spread

and midpoint return volatility are given in basis points (bps). The level-1 depth and the trade

volume are given in hundred thousand Euro. The message count is given in thousands. Standard

errors are reported in parentheses. * p < 0.1, ** p < 0.05, ***p < 0.01.

Market Quality News and Contextual Full Model
Factors

rel spread −0.0034*** −0.0027***
(0.0009) (0.0009)

leve 1 depth 0.0692*** 0.0681***
(0.0113) (0.0112)

trade volume −0.0001 −0.0003
(0.0003) (0.0003)

midpoint return vola −0.0614*** −0.0566***
(0.0079) (0.0081)

message count −0.0176*** −0.0175***
(0.0023) (0.0024)

covid dummy −0.0620*** −0.0360* −0.0086
(0.0157) (0.0203) (0.0203)

news count −0.0004 −0.0003
(0.0002) (0.0002)

news relevance −0.1887*** −0.1097***
(0.0348) (0.0342)

news relevance interaction 0.0353 0.0468
(0.0309) (0.0290)

unnecessary interruptions 0.0044*** 0.0033***
(0.0010) (0.0010)

necessary interruptions −0.0022*** −0.0016***
(0.0004) (0.0004)

fast market dummy −0.0002*** −0.0001**
(0.0001) (0.0001)

distance to static barrier 0.2269*** 0.0404
(0.0369) (0.0379)

trade count alt venues −0.0014*** 0.0004
(0.0002) (0.0003)

Pseudo R2 0.0645 0.0332 0.0689
Accuracy 0.6206 0.5945 0.6161
Precision 0.5484 0.4930 0.5373
Recall 0.3538 0.0757 0.3692
Precision at Recall 20 0.5484 0.5035 0.5373
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Table 17: Marginal effects of probit regression models including dummy variables for each year

This table shows the marginal effects of the proposed probit models. Marginal effects describe the
absolute change in the output probability given a change in the independent variables. The relative
spread and midpoint return volatility are given in basis points (bps). The level-1 depth and the trade
volume are given in hundred thousand Euro. The message count is given in thousands. Standard
errors are reported in parentheses. * p < 0.1, ** p < 0.05, ***p < 0.01.

Market Quality News and Contextual Full Model
Factors

rel spread −0.0034*** −0.0023**
(0.0009) (0.0009)

level 1 depth 0.0731*** 0.0709***
(0.0113) (0.0113)

trade volume 0.0001 −0.0002
(0.0003) (0.0003)

midpoint return vola −0.0592*** −0.0570***
(0.0079) (0.0082)

message count −0.0198*** −0.0191***
(0.0024) (0.0025)

year 2020 −0.0693*** −0.0692** −0.0387
(0.0266) (0.0283) (0.0278)

year 2021 −0.0354 0.0069 −0.0443
(0.0308) (0.0314) (0.0310)

year 2022 0.0200 0.0126 0.0092
(0.0263) (0.0266) (0.0266)

year 2023 −0.0358 −0.0338 −0.0477*
(0.0283) (0.0287) (0.0285)

year 2024 −0.0823*** −0.0656** −0.0950***
(0.0288) (0.0294) (0.0291)

news count −0.0004 −0.0003
(0.0002) (0.0002)

news relevance −0.1864*** −0.1047***
(0.0348) (0.0343)

news relevance interaction 0.0370 0.0472
(0.0307) (0.0290)

unnecessary interruptions 0.0040*** 0.0029***
(0.0010) (0.0010)

necessary interruptions −0.0021*** −0.0015***
(0.0004) (0.0004)

fast market dummy −0.0002*** −0.0001**
(0.0001) (0.0001)

distance to static barrier 0.2062*** 0.0389
(0.0366) (0.0373)

trade count alt venues −0.0015*** 0.0005*
(0.0002) (0.0003)

Pseudo R2 0.0679 0.0365 0.0727
Accuracy 0.6264 0.6098 0.6289
Precision 0.5585 0.5417 0.5586
Recall 0.3667 0.2329 0.3950
Precision at Recall 20 0.5585 0.5417 0.5586
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