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Abstract

Several countries now require banks or money market funds to impose state-contingent costs

on short-term creditors to absorb financial stress. We study these requirements as part of the

broader prudential toolkit in a model with five key ingredients: banks may face an aggregate

stress state with high withdrawals; a fire-sale externality motivates a mix of non-contingent

and state-contingent regulation; banks may use shadow technologies to circumvent regulation;

parameters of the shadow technologies may be private information; and bailouts may occur.

We characterize the optimal policy for various combinations of these ingredients and demon-

strate that the threat of shadow activities constrains state-contingent regulation more than non-

contingent regulation, especially when imperfect information and limited commitment coexist.

The planner triggers shadow activities with positive probability under imperfect information,

and shadow activities that deplete resources in the stress state elicit larger bailouts under limited

commitment, rendering the requirement of state-contingent costs a weak instrument.
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1 Introduction

Financial crises involve high social costs so banks are heavily regulated. Some regulations intro-

duce state-contingency into the returns of short-term creditors while others do not. Examples of

non-contingent regulation include liquidity and capital requirements, which aim to increase the

resiliency of banks to outflows and losses so that depositors and other debt-holders are unaffected.

Examples of state-contingent regulation include dynamic liquidity fees at institutional prime money

market funds when redemption volume is high (U.S.) and bail-ins of debt instruments at banks

when capitalization is low (Europe). In both cases, state-contingent regulation introduces explicit

variability into investor payoffs to decrease outflows or absorb losses that would otherwise be large.

A major impediment to designing effective regulation is the information gap between banks and

regulators. Regulators only see what banks report, and banks can restructure activities within the

discretion allowed by accounting standards to provide reports that circumvent the corrective aim of

regulation. Bank-sponsored shadow banking is a form of regulatory circumvention. The literature

on shadow banking has boomed since the global financial crisis, focusing on activities that are

meant to circumvent largely non-contingent regulation; see Acharya et al. (2013) for a prominent

example on capital requirements and Hachem and Song (2021) for liquidity requirements. However,

little is known about shadow activities that are meant to circumvent state-contingent regulation,

including how these activities might impact the effectiveness of non-contingent regulation and how

they might affect the size of government bailouts.

In this paper, we study the optimal mix of state-contingent and non-contingent regulation

when banks may find it profitable to engage in regulatory circumvention. We characterize this

mix as a function of the cost parameters of the shadow activities available to banks, the planner’s

information about these parameters, and the planner’s ability to commit to a bailout policy. This

allows us to speak to the optimal mix of regulation for a wide range of environments, from the most

to least favorable for the planner. We show that state-contingent regulation is more likely to be

constrained by the threat of shadow activities; the range of cost parameters over which the planner

cannot implement the unconstrained optimum is larger than for non-contingent regulation. If the

planner has imperfect information, then shadow activities are triggered with positive probability

and we show that the circumvention of state-contingent regulation interacts more aggressively with
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the size of the bailout in the absence of commitment, resulting in endogenously asymmetric welfare

losses from uncertainty about (or overestimation of) the cost parameters of the state-contingent

shadow technologies available to banks.

We start with a benchmark model of bank liquidity management that motivates the use of both

state-contingent and non-contingent regulation. Banks in the model obtain funding that can be

withdrawn either early or late in the tradition of Diamond and Dybvig (1983). If an aggregate

stress state occurs, all banks experience significant early withdrawals, which may require them to

raise cash from outside investors by selling assets at an endogenously-determined market price. In

anticipation of this, banks make liquidity choices before the realization of the stress state. The key

ingredient in our benchmark formulation is that there are two liquidity choices: an ex-ante liquidity

ratio and a haircut on early withdrawals in the stress state. A bank determines the haircut it will

apply as part of the contract offered to depositors (or short-term creditors more generally) and

allocates its funding between cash and a long-term investment project before aggregate uncertainty

is resolved. Banks make both decisions taking as given the market price in the stress state, giving

rise to a classic pecuniary externality. An individual bank neglects that selling fewer projects in

the stress state raises the sale price of these projects, allowing other banks to cover a given cash

shortfall with fewer project sales. Accordingly, each bank holds less cash and applies a lower haircut

than would be socially optimal.

In response to the pecuniary externality, the planner introduces a floor on the ex-ante liquidity

ratio (non-contingent regulation) along with a floor on the haircut that must be applied in the stress

state (state-contingent regulation). Which regulation is used more—in the sense of contributing

more to a decline in the cash shortfall in the stress state—depends on the probability and severity

of the stress state. We show that the planner will use state-contingent regulation more than non-

contingent regulation when the stress state is severe but unlikely; relying more on non-contingent

regulation would imply idle cash with high probability and lead to a welfare gain from imposing

marginally higher costs on depositors to forego marginally fewer projects. This underscores that

state-contingent and non-contingent regulation are not perfect substitutes.

We then add three ingredients to the benchmark model. The first ingredient is shadow activities

that banks can use to relax binding regulation. With two regulations, we consider two shadow

activities. The first allows banks to invest in more projects without affecting the liquidity ratio
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on their balance sheet. The second allows banks to impose less state-contingency on depositors

without affecting the contracted haircut. While both activities are engaged before the resolution of

uncertainty, only the cost of the state-contingent action is incurred in the stress state, augmenting

the amount of liquidity that the bank needs to generate through project sales. The cost of the

non-contingent action is instead incurred as part of the portfolio allocation decision, detracting

from the amount of funding invested in the bank’s project.

Shadow activities are privately beneficial to banks in the presence of binding regulation but

socially wasteful, so the planner never finds it optimal to trigger them, leading to implementation

constraints on the design of regulation. These constraints require that the marginal benefit of

each shadow activity to banks does not exceed the marginal cost. We show that the lowest cost

parameter at which the planner can implement the unconstrained optimum without violating the

implementation constraint for state-contingent regulation exceeds the lowest cost parameter at

which he can do so without violating the one for non-contingent regulation. In other words, state-

contingent regulation is more likely to be constrained by the threat of shadow activities than

non-contingent regulation. This reflects that the marginal benefits of the two shadow activities to

banks are the same while the marginal cost of the state-contingent activity is only incurred in the

stress state and at a price that neglects the externality.

If both regulatory instruments are constrained by shadow activities, then both must be set below

their unconstrained solutions. If only one regulatory instrument is constrained, then the planner

will compensate when the externality is sufficiently strong by setting the other regulation above

its unconstrained solution. In this case, we show that the welfare loss from changing one shadow

activity from prohibitively expensive to free, conditional on the other shadow activity remaining

prohibitively expensive, is the same for both activities if the stress state probability is such that

the two regulations would be used equally in the absence of shadow activities. At this particular

probability, then, the total welfare loss from each shadow activity is symmetric, which serves as a

useful baseline against which to compare the effects of additional ingredients.

The second ingredient is a bailout instrument for the planner. A bailout in the stress state

diverts funds from the production of a socially valuable public good but decreases the amount of

liquidity that banks need to raise through project sales. By increasing the sale price of projects,

this decreases the incentives of banks to hold liquidity and apply haircuts, which is the classic moral
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hazard concern associated with bailouts. We show that the threat of shadow activities leads the

planner to use the bailout instrument for bailout costs at which he would not otherwise. We also

show that the planner’s ability to commit to a bailout size matters for optimal policy in the model if

and only if shadow activities are a threat. This is because the size of the bailout affects the planner’s

implementation constraints through the moral hazard concern when banks can engage in shadow

activities. Without commitment, the threat of one shadow activity now motivates both regulations

being set below their unconstrained solutions. A bailout instrument without commitment also

weakly lowers welfare compared to the case where the planner does not have this instrument. In

contrast, a planner who can commit to a bailout size will always do at least as well with the bailout

instrument. With or without commitment though, there is again symmetry in the total welfare loss

from changing one shadow activity from prohibitively expensive to free, conditional on the other

shadow activity remaining prohibitively expensive, when both regulations would be used equally

in the absence of shadow activities.

The third ingredient is imperfect information about the cost parameters of the shadow tech-

nologies available to banks. We consider a planner that is uncertain about these costs and chooses

the constrained optimal policy recognizing his uncertainty. We also consider a naive planner that

ignores these costs altogether. The key departure in both cases is that shadow activities may

now occur as part of the regulated equilibrium that the planner implements. We show that emer-

gence of shadow activities in equilibrium increases the size of the bailout when the planner lacks

commitment and that this interaction is more pronounced for state-contingent regulation than for

non-contingent regulation, resulting in asymmetric welfare losses even if the two regulations would

be used equally in the absence of shadow activities.

Without commitment, the bailout is larger when state-contingent regulation is circumvented in

equilibrium because this circumvention cost directly lowers the sale price of projects in the stress

state. The circumvention cost for non-contingent regulation instead directly lowers project output,

which increases the share that banks have to sell in the stress state at a given price but not the price

itself. This difference is immaterial when the planner knows the cost parameters because regulation

is designed to not trigger shadow activities; the welfare losses from the threat of shadow activities

then only stem from the implementation constraints they introduce. With imperfect information,

however, even the constrained optimal regulation can trigger shadow activities, which sets off the
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differential effects on bailouts in the absence of commitment.

With imperfect information and lack of commitment, the constrained optimal planner achieves

lower welfare when he is uncertain about the cost to banks of circumventing state-contingent

regulation than when he is uncertain about the cost to banks of circumventing non-contingent

regulation. The naive planner also generates a larger welfare loss from naively using state-contingent

regulation than naively using non-contingent regulation, as well as an amplification of welfare

losses when both regulations are being circumvented. In particular, when the circumvention of one

regulation elicits a bailout in the stress state, anticipation of this bailout increases the extent to

which the other regulation binds on banks, increasing their incentive to also circumvent the other

regulation. This elicits an even larger bailout, which feeds back into the incentive to circumvent

the first regulation, and so on.

While our paper is primarily theoretical, we close with some empirical evidence that ties our

study of state-contingent regulation and its circumvention to reality. Compared to non-contingent

regulation whose circumvention has been well-documented in the literature that followed the global

financial crisis, much less is known about the circumvention of state-contingent regulation. The set-

ting we explore for this purpose is the issuance of contingent convertible bonds by European banks

and the provision of credit lines as a potential form of insurance to investors against conversion.

We find evidence that banks provide more credit lines when they issue more of these bonds, with

price movements suggesting that the lines decrease the degree of state-contingency in the bonds.

Thus, the threat of shadow activities extends to state-contingent regulation and should be closely

studied in light of our theoretical results.

Related Literature Our paper is related to three strands of literature. First is the literature on

pecuniary externalities. Lorenzoni (2008) shows that because atomistic agents ignore the general

equilibrium price effects of their choices, over-borrowing occurs and justifies regulation. Our paper

contains a pecuniary externality operating through fire sales. See Shleifer and Vishny (1992) and

Kiyotaki and Moore (1997) for early theoretical work on fire sales and Davila and Korinek (2018)

for a more recent treatment. Evidence of fire sales is presented in Pulvino (1998), Aguiar and

Gopinath (2005), and Campbell et al. (2011), among others. Chernenko and Sunderam (2020) also

provide evidence of fire sale externalities that justify policy intervention. A pecuniary externality
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that leads to fire sales motivates regulation in our model. Importantly, however, we are interested

in two types of regulation, as well as bailouts and regulatory circumvention in this environment.

Our paper also relates to the literature on bailouts and bail-ins. A large literature examines

the benefits and costs of bank bailouts when lack of government commitment regarding ex post

bailout provision creates moral hazard by influencing banks’ ex ante risk-taking. Key contributions

include Gorton and Huang (2004), Diamond and Rajan (2012), Farhi and Tirole (2012), Keister

(2016), Chari and Kehoe (2016), Bianchi (2016), and Davila and Walther (2020). While complete

elimination of bailouts is generally found to be inefficient, the moral hazard problem associated

with bailout provision justifies regulatory interventions to limit the extent to which bailouts are

used. One approach to limiting bailouts is the requirement of bail-ins by bank creditors, which can

take various forms such as suspension of convertibility, issuance of contingent convertible bonds, or

imposition of redemption fees. See Bernard et al. (2022), Keister and Mitkov (2023), X. Huang and

Keister (2024), and Walther and White (2020) for recent contributions. Voluntary bail-ins are found

to be inefficiently small, necessitating regulatory measures to force a minimum level of loss absorp-

tion by creditors. This aligns with the state-contingent regulation in our model. We contribute

to the literature here by introducing the possibility of regulatory circumvention through shadow

activities and characterizing the optimal mix of state-contingent and non-contingent regulation as

well as bailout provision in this environment.

Finally, our paper relates to the literature on shadow banking. For detailed overviews of shadow

banking activities in the U.S., Euro Area, and China, see Pozsar et al. (2010), Bakk-Simon et

al. (2012), and Hachem (2018), respectively. Shadow banking is often sponsored by traditional

banks to loosen financial constraints, most prominently regulation. Theoretical work finds that

shadow banking may increase efficiency in good times but also heightens financial fragility and

exposure to aggregate tail risks through interconnections with regulated banks, e.g., Gennaioli et

al. (2013), Moreira and Savov (2017), and Ordonez (2018). Accordingly, it may be optimal to relax

bank regulation when shadow activities are available; see Plantin (2015) and J. Huang (2018) for

contributions in this vein. Our model distinguishes between two types of regulation and hence

two types of shadow activities. While shadow activities that circumvent non-contingent regulation

can increase returns outside of the stress state, both types of shadow activities exacerbate the

stress state and are welfare-deteriorating. Our contribution is the characterization of the optimal
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regulatory response to the threat of shadow activities, differentiating between state-contingent and

non-contingent regulation. Existing work on shadow banking has focused on the latter. We find

that state-contingent regulation is more constrained by the threat of shadow activity, especially

when limited information and limited commitment of the planner coexist.

The rest of the paper proceeds as follows: Section 2 introduces the benchmark model that

motivates a mix of state-contingent and non-contingent regulation; Section 3 studies optimal policy

when banks can take shadow actions to circumvent regulation and the planner has full information

about the cost functions of these actions; Section 4 adds a bailout instrument to the planner’s toolkit

and studies the effect on optimal regulation with and without commitment; Section 5 presents the

results when the planner is imperfectly informed about shadow activities; Section 6 connects our

modeling to features of the data and presents evidence consistent with shadow activities around

state-contingent regulation; Section 7 concludes. All proofs are collected in Appendix A.

2 Benchmark Model

In this section, we present a benchmark model of bank liquidity management that motivates correc-

tive regulation. The model is a parsimonious version of existing models with pecuniary externalities.

The key ingredient in our formulation is that there are two liquidity choices, only one of which is

state-contingent. This leads to a mix of state-contingent and non-contingent regulation that we

build on in the rest of the paper.

2.1 Environment

There are three dates, t ∈ {0, 1, 2}, and a unit mass of identical, price-taking banks. Each bank has

funding normalized to one at t = 0 and allocates its funding between liquid and illiquid assets. The

allocation to liquid assets (cash) is denoted by λ ∈ [0, 1]. We model the illiquid asset as a project

that returns f (1− λ) at t = 2, where f (0) = 0, f ′ (·) ≥ 1, and f ′′ (·) < 0. Projects run from t = 0

to t = 2 and cannot be liquidated in between. However, at t = 1, a bank can sell a claim to share

s ∈ [0, 1] of its project’s future return at a price q per share, which gives the bank cash qsf (1− λ)

at t = 1 and requires a payment of sf (1− λ) at t = 2. In other words, the bank sells a one-period

bond with face value sf (1− λ) and yield 1/q − 1.
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Bank funding at t = 0 takes the form of deposits that can be withdrawn at t = 1 or t = 2. We

focus on aggregate rather than idiosyncratic bank risk. With probability p ∈ (0, 1), an aggregate

stress state occurs at t = 1 in which a fraction θ ∈ (0, 1) of depositors withdraw from each bank;

the remaining fraction 1− θ withdraw at t = 2. With probability 1− p, there are zero withdrawals

at t = 1; everyone withdraws at t = 2.

Banks can impose a haircut h ∈ [0, 1] on deposit withdrawals at t = 1 if the stress state is

realized, reducing the payment to depositors from θ to θ (1− h). The size of the haircut is decided

at t = 0 and repaid to depositors at t = 2. That is, depositors are made whole but with a delay. The

repayment is simply to keep the accounting tidy; it can be dropped with only notational effects.

Whereas λ bolsters the bank’s liquidity position ex ante, h bolsters it ex post. The cost of higher

λ is foregone project returns. The cost of higher h is variability in depositor payoffs, which risk

averse depositors do not like. Formally, the cost to the bank of imposing a haircut on depositors

is denoted by Φ (p, θ, h), where Φ (·) is zero if any of its arguments are zero and increasing in

each argument. This cost can be interpreted as additional compensation, over and above making

the affected depositors whole, that the bank has to provide at t = 2 regardless of whether the

stress state materializes at t = 1 to entice depositors to participate at t = 0; for this reason, the

size of the haircut is decided at t = 0. To simplify the exposition, we use the functional form

Φ (p, θ, h) = pθϕ (h), where ϕ (0) = 0, ϕ′ (·) ≥ 0, and ϕ′′ (·) > 0.

The timeline of events is summarized in Figure 1. The ingredients we have introduced so far

appear in black text; ingredients we will introduce later in the paper—namely, regulation, regulatory

circumvention, and bailouts—are marked in gray.

We now turn to the determination of the price q. Conditional on its choices of λ and h at t = 0,

each bank faces a cash shortfall equal to max {θ (1− h)− λ, 0} at t = 1 if the stress state occurs.

To cover this shortfall, each bank sells share s of future project returns to satisfy

qsf (1− λ) = max {θ (1− h)− λ, 0} (1)

Shares are sold to short-horizon outside investors who have deep pockets and a return technology

g (·) from t = 1 to t = 2. Thus, to give banks cash qsf (1− λ) at t = 1, investors need a return of
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g (qsf (1− λ)) at t = 2. This pins down q as the solution to

g (qsf (1− λ)) = sf (1− λ) (2)

The function g (·) has the properties g (0) = 0, g′ (·) ≥ 1, and g′′ (·) > 0. These properties imply

that the elasticity of g(x) with respect to its argument x satisfies εg (x) ≡ xg′(x)
g(x) ≥ 1 with equality

if and only if x = 0. In other words, the marginal cost g′ (x) of project sales x > 0 exceeds the

average cost g(x)
x and hence it becomes more costly to raise cash via project sales as the cash

shortfall, x = max {θ (1− h)− λ, 0}, increases.

Eqs. (1) and (2) implicitly define the price q as a function of the bank choice variables λ and

h, namely,

q =
θ (1− h)− λ

g (θ (1− h)− λ)
if θ (1− h) > λ (3)

However, with a unit mass of banks, each individual bank takes q as given when making its choices.

Partial differentiation of Eq. (3) yields

∂q

∂λ
=

1

θ

∂q

∂h
=

1

g (θ (1− h)− λ)

(
θ (1− h)− λ

g (θ (1− h)− λ)
g′ (θ (1− h)− λ)− 1

)
> 0 (4)

where the inequality follows from the elasticity of g (·). The effect of λ and h on q is not internalized

by the banks, giving rise to a pecuniary externality which we formalize below.

2.2 Decentralized Equilibrium

Suppose θ (1− h) > λ so that project sales occur at t = 1; we verify this conjecture later. Then

the expected profit of a representative bank is

Π (λ, h; q) ≡ (1− p) [λ+ f (1− λ)− 1] + p [(1− s) f (1− λ)− (1− θ)− θh]− pθϕ (h)

where s is given by Eq. (1). In the non-stress state, which occurs with probability 1− p, the bank

experiences no withdrawals at t = 1 so it carries the full value of its liquid assets λ to t = 2, earns

the full return f (1− λ) from its project, and pays out all depositors. In the stress state, which

occurs with probability p, the bank only earns fraction (1− s) of the return from its project at
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t = 2, having sold share s to outside investors to cover deposit withdrawals at t = 1 in excess

of liquid assets after applying the haircut. The bank has to repay the haircut h to the affected

depositors at t = 2 and also pay out the remaining depositors. The last term in the bank’s expected

profit is the cost of imposing a haircut on risk averse depositors, i.e., Φ (·).

The bank chooses λ and h to maximize Π (λ, h; q) taking as given the price q. The first order

condition for an interior liquidity ratio λ is

p

q︸︷︷︸
MBprivate

λ

= f ′(1− λ)− (1− p)︸ ︷︷ ︸
MCλ

(5)

The left-hand side of Eq. (5) is the private marginal benefit of holding an additional unit of liquid

assets, namely that the bank has to sell a smaller share of its project in the stress state. By avoiding

the marginal sale, the bank avoids giving up a rate of return 1/q to outside investors in a state of

the world that occurs with probability p. The right-hand side of Eq. (5) is the marginal cost of

holding an additional unit of liquid assets, namely the foregone marginal return f ′ (·) from investing

more funding into the project. If the stress state is not realized, which occurs with probability 1−p,

then the foregone return is net of the marginal return of the liquid assets carried into t = 2.

The first order condition for an interior haircut h is

p

q︸︷︷︸
MBprivate

h

= p
(
1 + ϕ′ (h)

)︸ ︷︷ ︸
MCh

(6)

The left-hand side of Eq. (6) is the private marginal benefit of imposing a higher haircut to raise

an additional unit of liquidity in the stress state. It is the same as the private marginal benefit in

Eq. (5), namely that the bank has to sell less of its project in the stress state. The right-hand side

of Eq. (6) is the marginal cost of imposing a higher haircut to raise an additional unit of liquidity

in the stress state, namely the repayment of the haircut to affected depositors at t = 2 and the

additional compensation ϕ′ (·).

Ex ante cash holdings λ and ex post haircuts h have different marginal costs. However, both

serve the same purpose—decreasing the need for project sales in the stress state—so they naturally

have the same marginal benefit. Accordingly, their marginal costs must be equalized in equilibrium.
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Definition 1 The decentralized equilibrium is a triple {λ∗, h∗, q∗} that solves Eqs. (5) and (6) with

q given by Eq. (3).

The lemmas that follow characterize some properties of the decentralized equilibrium. First,

we establish that banks do not cover all of their liquidity needs in the stress state through project

sales if the return required by outside investors makes doing so sufficiently costly:

Lemma 1 If g(θ)
θ > 1 + ϕ′ (0), then there is no decentralized equilibrium where λ∗ = h∗ = 0.

Next, we establish that banks hold liquidity ex ante in addition to imposing haircuts ex post

unless the marginal returns to projects are very high (in which case only haircuts are used) or very

low (only ex ante liquidity holdings are used) relative to the marginal costs of haircuts:

Lemma 2 If f ′ (1) = 1 + pϕ′ (0), then λ∗ > 0 and h∗ > 0. Higher f ′ (1) weakly expands the

parameter space where λ∗ = 0, while lower f ′ (1) weakly expands the parameter space where h∗ = 0.

Finally, we establish that the liquidity choices of banks leave them in need of project sales at

discounted prices in the stress state:

Proposition 1 (Project sales in the decentralized equilibrium). If g′ (0) ≥ 1, then q∗ < 1 in any

equilibrium where θ (1− h∗) > λ∗. If also g′ (0) ≤ 1 + ϕ′ (0), then an equilibrium with h∗ > 0 has

θ (1− h∗) > λ∗.

Consider as an example ϕ′ (0) = 0. Then f ′ (1) = 1 and g′ (0) = 1 imply that the decentralized

equilibrium has λ∗ > 0, h∗ > 0, θ (1− h∗) > λ∗, and q∗ < 1. In other words, both forms of liquidity

are used but project sales still occur in the stress state, verifying the conjecture at the beginning of

this section. We carry these properties throughout the rest of the paper. Without loss of generality,

the reader can simply assume ϕ′ (0) = 0, f ′ (1) = 1, and g′ (0) = 1, bearing in mind that these are

sufficient rather than necessary conditions.
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2.3 Planner’s Solution and Optimal Regulatory Mix

The planner chooses λ and h to maximize Π (λ, h; q) taking into account the effect of these choices

on the price q in Eq. (3).1 The planner’s first order conditions for λ and h are

(
1 +

θ (1− h)− λ

q

∂q

∂λ

)
p

q︸ ︷︷ ︸
MBsocial

λ

= f ′(1− λ)− (1− p)︸ ︷︷ ︸
MCλ

(7)

and (
1 +

θ (1− h)− λ

q

1

θ

∂q

∂h

)
p

q︸ ︷︷ ︸
MBsocial

h

= p
(
1 + ϕ′ (h)

)︸ ︷︷ ︸
MCh

(8)

respectively. Comparing Eqs. (7) and (8) to the first order conditions of the representative bank in

Eqs. (5) and (6), the only difference is that the planner internalizes the effects of λ and h on q, as

indicated by the terms ∂q
∂λ and ∂q

∂h . Accordingly, the social marginal benefit of either holding more

liquid assets at t = 0 or imposing a higher haircut in the stress state at t = 1 exceeds the private

marginal benefit; there is no difference between the private and social marginal costs. The social

marginal benefits of λ and h are the same for the same reason that the private marginal benefits

were the same above, so the planner’s solution will also equalize the marginal costs.

Definition 2 The planner’s benchmark solution is a triple
{
λ̂, ĥ, q̂

}
that solves Eqs. (7) and (8)

with q given by Eq. (3).

The equalization of marginal costs is common for the planner and the decentralized banks, as

is the determination of the price q. The key difference is that the planner takes into account the

marginal cost of project sales when assessing the benefits of liquidity (ex ante and ex post) whereas

the decentralized banks only take into account the average cost by taking q as given. The elasticity

εg (·) thus governs the strength of the pecuniary externality.

The following proposition formalizes the difference between the planner’s solution and the de-

centralized equilibrium. In particular, the planner chooses higher ex ante liquidity holdings as well

1We give the planner the same objective function as the banks to isolate the role of the pecuniary externality.
Recall that this objective function incorporates the utility of depositors through the term Φ (·). Formally including
the payoffs of outside investors does not change the results. Suppose outside investors have an endowment e and an
output function G (·). Deep pockets corresponds to e >> 0. With probability p, these investors only produce G (e− x)
because they fund the cash shortfall x of the banks. They must then receive compensation g (x) ≡ G (e)−G (e− x)
for doing so. Their expected payoff is then (1− p)G (e) + p (G (e− x) + g (x)) which simplifies to G (e), a constant.
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as higher ex post haircuts than the banks, which follows intuitively from the fact that the social

marginal benefit of both choices exceeds the private marginal benefit:

Proposition 2 (Inefficiency of the decentralized equilibrium). The decentralized equilibrium in-

volves inefficiently low choices of liquid assets (λ∗ < λ̂) and haircuts (h∗ < ĥ) by banks.

A corollary of Proposition 2 is that the decentralized equilibrium experiences a higher cash

shortfall than the planner’s solution in the stress state. It then follows from Eqs. (1) and (3) that

the bonds sold by banks to outside investors in the stress state will have a higher yield 1/q− 1 and

a higher face value sf (·) than those sold under the planner’s solution.

The optimal regulation is straightforward; the planner simply introduces regulatory floors on

both choice variables in the bank optimization problem to lift them to the socially optimal level:

Proposition 3 (Optimal regulation absent regulatory circumvention). The planner can implement

{λ∗, h∗, q∗} =
{
λ̂, ĥ, q̂

}
by imposing regulations λ ≥ α and h ≥ β on the decentralized problem,

where α = λ̂ and β = ĥ.

The regulation λ ≥ α applies at t = 0, regardless of the state of the world that is realized at

t = 1. It is therefore a non-contingent regulation. In contrast, the regulation h ≥ β only applies in

the stress state at t = 1, increasing the variability of depositor payoffs across states of the world.

Accordingly, it is a state-contingent regulation.

Lemma 3 A higher probability p of the stress state increases λ̂ and q̂ and decreases ĥ. A higher

withdrawal fraction θ in the stress state increases λ̂ and ĥ and decreases q̂.

All else constant, a higher probability p of the stress state increases the net benefit of using

cash to bolster bank liquidity positions ex ante. Accordingly, the planner’s choice of λ̂ rises, which

increases the price q̂ in the stress state and decreases the need for haircuts ĥ to bolster liquidity

positions ex post. A corollary is that the planner will impose a high haircut in the stress state

rather than keep liquid assets idle with high probability when the stress state is unlikely. In contrast,

higher withdrawals θ in the stress state directly lower the price and increase the net benefit of using

both cash and haircuts to bolster bank liquidity positions. It then follows from Proposition 3 that
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higher θ increases both the non-contingent regulation α and the state-contingent regulation β while

higher p increases α but decreases β.2

While the planner will use both regulations, which one will be used more? The following lemma

provides an intuitive condition:

Lemma 4 Consider f ′′′ (·) = ϕ′′′ (·) = 0. Then ĥ − h∗ > λ̂ − λ∗ if and only if pϕ′′ < −f ′′, and

θ
(
ĥ− h∗

)
> λ̂− λ∗ if and only if pϕ′′ < −θf ′′.

Here we are considering two complementary interpretations of a regulation being used more;

the first is if it leads to a bigger change in the regulated variable relative to the decentralized

solution, and the second is if it contributes more to a decline in the cash shortfall in the stress

state. Non-contingent regulation leads to idle liquid assets if the stress state is not realized. This

is more costly when the return function for investment projects is more concave. State-contingent

regulation only targets liquidity in the stress state and hence avoids the cost of idle resources. If the

stress state is rare and the marginal cost of haircuts does not increase as rapidly as the marginal

cost of not investing in projects, i.e., the first condition in Lemma 4, then the planner prefers to

use state-contingent regulation, pushing ex post haircuts further above h∗ than he pushes ex ante

liquidity ratios above λ∗. A stronger condition in the same direction, i.e., the second condition in

Lemma 4, implies that the planner will also rely more on haircuts than liquidity ratios to reduce

the cash shortfall in the stress state. While Lemma 4 makes some simplifying assumptions on

higher-order derivatives to get a closed-form condition, the intuition behind this condition applies

more generally and underscores that state-contingent and non-contingent regulation are not perfect

substitutes.

3 Model with Regulatory Circumvention

The analysis so far has assumed that banks cannot take any actions to circumvent regulation. We

now relax this assumption and explore how optimal regulation (Proposition 3) changes.

2Note that increasing or decreasing regulation is not the same as tightening or loosening regulation. The latter
depends on how much the planner’s solution changes relative to the decentralized one, or equivalently how the
Lagrange multiplier on the regulatory constraint in the bank’s problem changes, which depends on higher order
derivatives of the functional forms. For example, if g′′ (·) is sufficiently large, then increasing α and β in response to
higher θ is equivalent to tightening both regulations. We do not impose such conditions here.
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3.1 Shadow Activities

We allow for two shadow activities that can be used by banks in response to regulation at t = 0.

These activities represent changes in how business operations are structured or reported within the

discretion allowed by accounting standards without changing the economic nature of the operations.

First, the representative bank can take an action ωλ ≥ 0 at a cost κλωλλ to relax its non-

contingent regulatory constraint to (1 + ωλ)λ ≥ α. The cost of this action is increasing in the

amount by which the bank increases its accounting liquidity ratio, (1 + ωλ)λ, relative to its eco-

nomic liquidity ratio, λ, with κλ > 0. An example of the action ωλ is moving funding into an

off-balance-sheet vehicle that is outside the regulatory perimeter. The cost to do so is a monetary

incentive to depositors to make this move. See Hachem and Song (2021) for a model with this form

of regulatory circumvention.

Second, the bank can take a separate action ωh ≥ 0 at a cost θκhωhh to relax its state-contingent

regulatory constraint to (1 + ωh)h ≥ β. The cost of this action is increasing in the amount by which

the bank increases its contracted haircut, (1 + ωh)h, relative to its economic haircut, h, with κh > 0.

An example of the action ωh is the provision of insurance to depositors (or short-term creditors

more generally) against a haircut, for instance, by issuing a credit line that can be taken down in

the stress state and only fully recognized on the bank’s balance sheet when taken down. The cost

to do so is a potential capital charge. See Section 6.1 for a formalization of this example.

While both actions can be taken at t = 0, only the cost of the state-contingent action ωh is

incurred in the stress state. We model the cost κλωλλ as paid at t = 0. It thus detracts from the

amount of funding invested in the bank’s project.3 The cost θκhωhh is instead paid at t = 1 if the

stress state is realized. It thus augments the amount of liquidity that the bank needs to generate

through project sales. Formally, the expected profit of a representative bank becomes

Π̃ (λ, h, ωλ, ωh; q) ≡ (1− p) [λ+ f (1− λ− κλωλλ)− 1]

+p [(1− s) f (1− λ− κλωλλ)− (1− θ)− θh]− pθϕ (h)

3In the exact modeling of Hachem and Song (2021), the monetary incentive to depositors is payable at t = 2.
Moving the payment of κλωλλ from t = 0 to t = 2 would only amplify our later results about the planner being more
constrained by the threat of state-contingent shadow activities.
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where s is now given by

qsf (1− λ− κλωλλ) = θ (1− h+ κhωhh)− λ (9)

and the required return of outside investors pins down the price q as

q =
θ (1− h+ κhωhh)− λ

g (θ (1− h+ κhωhh)− λ)
(10)

Notice from Eqs. (9) and (10) that neither the yield 1/q − 1 nor the face value sf (·) of the bonds

sold by banks to outside investors in the stress state are affected by the cost κλωλλ; an increase in

this cost only increases the share s of projects that banks relinquish to offset the decline in project

output and maintain a constant face value. In contrast, an increase in the cost θκhωhh will increase

both the yield and the face value of the bonds, where the increase in the face value is achieved

through an increase in s.

The bank now chooses λ, h, ωλ, and ωh to maximize Π̃ (λ, h, ωλ, ωh; q) subject to the constraints

(1 + ωλ)λ ≥ α and (1 + ωh)h ≥ β taking as given the price q. The solution to this problem,

together with Eq. (10), is the regulated equilibrium conditional on regulations α and β.

3.2 Constrained Optimal Regulation

The planner chooses the non-contingent regulation α and the state-contingent regulation β to select

the regulated equilibrium that achieves the highest value of Π̃ (·) taking into account the effect of

bank choices on the price q. The resulting α and β constitute the constrained optimal regulation.

Proposition 4 (Planner never triggers shadow activities). There is no shadow activity at the

constrained optimal regulation.

The intuition for Proposition 4 comes from the fact that shadow activities are socially wasteful;

they use up resources that could otherwise be invested or used to increase the sale price of projects.

Accordingly, the planner never finds it optimal to set regulation that triggers shadow activities.

The planner’s choices of α and β are therefore subject to implementation constraints that ensure

shadow activities are not profitable for banks. These constraints require that the private marginal

benefits of shadow activities do not exceed their marginal costs.
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Formally, the implementation constraint that ensures banks find it optimal to choose ωλ = 0,

i.e., non-contingent regulation is not circumvented, is

MCλ︷ ︸︸ ︷[
f ′(1− λ)− (1− p)

]
−

MBprivate
λ︷︸︸︷
p

q︸ ︷︷ ︸
MBωλ

≤ κλf
′(1− λ)︸ ︷︷ ︸
MCωλ

evaluated at {λ, h} = {α, β}

If the left-hand side of this constraint is positive, then a bank would like to choose λ < α, incen-

tivizing the action ωλ > 0. The right-hand side of the constraint must be sufficiently large that

this action is too costly, in terms of foregone project returns, to be profitable.

The implementation constraint that ensures banks find it optimal to choose ωh = 0, i.e., state-

contingent regulation is not circumvented, is

MCh︷ ︸︸ ︷
p
(
1 + ϕ′ (h)

)
−

MBprivate
h︷︸︸︷
p

q︸ ︷︷ ︸
MBωh

≤ pκh
q︸︷︷︸

MCωh

evaluated at {λ, h} = {α, β}

If the left-hand side of this constraint is positive, then a bank would like to choose h < β, incen-

tivizing the action ωh > 0. The right-hand side of the constraint must be sufficiently large that

this action is too costly, in terms of required project sales in the stress state, to be profitable.

In the limiting case of κλ → ∞ and κh → ∞, the implementation constraints are always slack

so the planner can implement the optimal regulation because shadow activities are prohibitively

expensive for banks to use. The logic extends to sufficiently high costs, as shown next:

Proposition 5 (Cost thresholds for binding implementation constraints). There are finite positive

thresholds κλ ∈ (0,∞) and κh ∈ (0,∞) such that the planner can implement {λ̂, ĥ, q̂} if and only

if κλ ≥ κλ and κh ≥ κh. Moreover, κh > κλ.

The cost threshold κλ makes the implementation constraint for non-contingent regulation hold

with equality at {α, β} = {λ̂, ĥ}; it would be violated for lower κλ and slack otherwise. Similarly,

the cost threshold κh makes the implementation constraint for state-contingent regulation hold

with equality at {α, β} = {λ̂, ĥ}; it would be violated for lower κh and slack otherwise.

Importantly, Proposition 5 establishes κh > κλ. This indicates that the optimal regulation
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{λ̂, ĥ} from Proposition 3 is more likely to violate the implementation constraint for state-contingent

regulation than the one for non-contingent regulation at equal cost parameters. To understand this

result, recall from Eqs. (7) and (8) that {λ̂, ĥ} equates the marginal costs of λ and h to their social

marginal benefits. Substituting these social marginal benefits into the implementation constraints

for {α, β} = {λ̂, ĥ}, it follows that each cost threshold equalizes the private marginal cost of the

relevant shadow action with the wedge between the social and private marginal benefits of the

regulation being circumvented. Recalling that λ and h have the same marginal benefits and thus

the same wedges, it also follows that the thresholds κλ and κh equate the private marginal costs

of the two shadow actions, i.e., κλf
′(1 − λ̂) = pκh

q̂ . The cost of ωh is only paid in the stress

state while the cost of ωλ is paid regardless of the state of the world. Moreover, the resources to

pay the cost of ωh are raised at the price q which neglects the externality associated with project

sales. Accordingly, it will take a higher κh to make banks indifferent towards circumventing state-

contingent regulation as compared to the κλ that makes them indifferent towards circumventing

non-contingent regulation, i.e., κh > κλ.

The exact magnitude of κh is pinned down by the strength of the pecuniary externality, as

captured by the elasticity εg (·) evaluated at the cash shortfall under the optimal regulation. Math-

ematically, κh = εg

(
θ
(
1− ĥ

)
− λ̂

)
−1. If the elasticity is very close to 1, then the marginal cost of

project sales in the stress state only slightly exceeds the average cost. Accordingly, the externality is

small and the optimal regulation minimally binding on the decentralized equilibrium. The marginal

benefit to banks of circumventing minimal regulation is negligible and hence κh is very close to

zero, meaning the planner can implement the optimal regulation at almost all circumvention cost

parameters κh. A larger elasticity implies a larger externality and thus more aggressive regulation

in the absence of shadow activities. The circumvention benefits to banks are then higher, as is

κh. The magnitude of κh moves one-for-one with the elasticity because the cost of circumventing

state-contingent regulation is paid in the stress state at the price affected by the externality. The

magnitude of κλ depends on the same elasticity but does not move one-for-one with it.

In the rest of this section, we consider circumvention costs κλ and κh such that at least one of

the planner’s implementation constraints binds. The planner must therefore move away from the

optimal regulation {λ̂, ĥ} to ensure that inefficient shadow activity is not triggered.
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Proposition 6 (Regulatory complementarity when only one shadow activity is a threat). Suppose

ε′g (·) > 0. If κλ > κλ, then the planner chooses α > λ̂ and β < ĥ as κh is perturbed below κh. If

κh > κh, then the planner chooses α < λ̂ and β > ĥ as κλ is perturbed below κλ.

Intuitively, a tighter implementation constraint on one regulation decreases the extent to which

that regulation can be used. This decreases the project sale price q which in turn increases the

marginal benefit of the other regulation. If this other regulation is costly for banks to circumvent,

the planner will then set it above the level he would have chosen in the absence of shadow activities

to compensate for the inability to set the constrained regulation at the level he would like; see also

Davila and Walther (2024) when perfectly and imperfectly regulated decisions are complements

and the imperfectly regulated decision is associated with a negative externality. The condition

ε′g (·) > 0 on the elasticity of the return function of outside investors in Proposition 6 connects

to their taxonomy by delivering the relevant degree of complementarity between bank decisions,

namely that the strength of the externality is increasing in the cash shortfall to which both decisions

contribute.

Naturally though, the resulting complementarity between regulatory instruments, where one

regulation is used more aggressively in response to a weakening of the other, disappears if both

instruments are weakened by the threat of shadow actions, as established next:

Proposition 7 (Limits to regulatory complementarity when both shadow activities are a threat). If

both κλ and κh are low, then the planner sets α < λ̂ and β < ĥ. In the limiting case of κλ = κh = 0,

he cannot do better than the decentralized equilibrium, i.e., α = λ∗ and β = h∗.

Both implementation constraints bind when both shadow activities are sufficiently inexpensive

for banks to use. In the limiting case of costless shadow activities, the entire effect of any regulation

α > λ∗ and/or β > h∗ is absorbed by the shadow activities ωλ > 0 and/or ωh > 0. Thus, the

planner cannot do better than the decentralized equilibrium.

Figure 2 illustrates the constrained optimal levels of α and β as functions of κλ and κh over

an entire grid of these cost parameters. As a benchmark, we set all other parameters so that the

planner would use non-contingent and state-contingent regulation to the same extent in the absence

of shadow activities, i.e., λ̂− λ∗ = θ
(
ĥ− h∗

)
, which corresponds to pϕ′′ = −θf ′′ in Lemma 4.
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There are four regions defined by whether or not each implementation constraint is binding

on the planner. These regions are demarcated in panel (a), with the planner’s choices of α and

β plotted in panels (c) and (d) respectively. Panel (b) plots the social welfare achieved under

the constrained optimal regulation as compared to the optimal regulation studied in Section 2.3

(denoted Π̂) and the decentralized equilibrium studied in Section 2.2 (denoted Π∗).

When κλ and κh are both high, neither implementation constraint is binding, so the planner

sets α = λ̂ and β = ĥ as per Proposition 5. When κλ is high but κh is low, only the second

implementation constraint (on β to ensure ωh = 0) is binding, so the planner sets α > λ̂ and β < ĥ,

consistent with Proposition 6. Notice that for very low κh, the planner sets β < h∗, meaning he

accepts lower haircuts than would prevail in the decentralized equilibrium. While this speaks to

the weakness of the β instrument when κh is very low, the β chosen by the planner as part of the

constrained optimal policy still constrains the banks; absent it, the privately optimal choice of h

would fall even further below h∗ as the tighter regulation on λ increases the price q and decreases

the private marginal benefit of imposing haircuts in the stress state. When κλ is low but κh is high,

only the first implementation constraint (on α to ensure ωλ = 0) is binding, so the planner sets

α < λ̂ and β > ĥ, again consistent with Proposition 6. For very low κλ, the planner sets α < λ∗,

which has the same intuition as β < h∗ in the previous case. Finally, when both κλ and κh are

low, both implementation constraints are binding, so the planner sets α < λ̂ and β < ĥ as per

Proposition 7. Within this region, the planner may set either α < λ∗ or β < h∗ but never both.

For any combination of κλ ∈ (0, κλ) and κh ∈ (0, κh), the constrained optimal regulation

achieves welfare strictly higher than the decentralized equilibrium and strictly lower than the op-

timal regulation. The welfare surface plotted in panel (b) also exhibits the same overall decline

as κh falls towards zero and as κλ falls towards zero when keeping the cost of the other shadow

activity prohibitively high. This property reflects the assumption of pϕ′′ = −θf ′′ in the figure, as

formalized next:

Lemma 5 Suppose ε′g (·) > 0 and f ′′′ (·) = ϕ′′′ (·) = g′′′ (·) = 0. Welfare is the same under the

constrained optimal regulation for κλ = 0 and κh → ∞ as for κλ → ∞ and κh = 0 if pϕ′′ = −θf ′′.

If instead pϕ′′ < −θf ′′, then the marginal cost of haircuts increases less rapidly than the marginal

cost of holding liquid assets. Accordingly, the planner would prefer to use state-contingent regu-
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lation in the absence of shadow activities to not leave resources idle in the non-stress state; recall

Lemma 4. The inability to use such regulation as κh declines and triggers the relevant implemen-

tation constraint would then be costlier, especially when the stress state is rare, as tightening the

non-contingent regulation to fully compensate would leave resources idle with high probability. As

a result, the welfare surface in panel (b) would exhibit an overall larger decline as κh falls towards

zero than it would as κλ falls towards zero. The opposite would occur if pϕ′′ > −θf ′′.

The thresholds κλ and κh help anchor the four regions in Figure 2. The following lemma

explores how these thresholds depend on key parameters in the model:

Lemma 6 If ε′g (·) > 0, then dκh
dp < 0, d(κh/κλ)

dp < 0, dκh
dθ > 0, and dκλ

dθ > 0.

As the probability p of the stress state falls, the threshold κh increases both in absolute terms

and relative to the threshold κλ. Together with κh > κλ from Proposition 5, this suggests that

the implementation constraint on the planner’s choice of state-contingent regulation will bind for

an even larger area of the parameter space than the implementation constraint for non-contingent

regulation. The threat of the shadow activity ωh is therefore especially constraining relative to

the threat of the shadow activity ωλ when the stress state is rare. This reflects that the planner

would like to rely more heavily on state-contingent regulation when the stress state is rare (to avoid

idle liquidity in the non-stress state) but cannot do so without triggering actions that will require

additional liquidity should the stress state materialize.

As the severity θ of the stress state rises, both κh and κλ increase. Recall from Lemma 3 that

the planner would like to increase both ex ante liquidity ratios and ex post haircuts if the stress

state will be more severe. The comparative statics in Lemma 6 indicate that both increases are

larger than what banks would choose themselves in response to higher θ, hence the private marginal

benefit to a bank of both shadow activities increases. The cost parameter at which the bank no

longer finds it profitable to undertake the shadow action then also increases.

4 Regulation and Bailouts

We now extend the set of instruments available to the planner. In addition to setting regulations α

and β, the planner can provide a bailout b ≥ 0 in the stress state. The size of the bailout is chosen
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with regulation at t = 0 if the planner can commit to the choice of b; otherwise, the size of the

bailout is chosen at t = 1, after the realization of the stress state. This section explores how, if at

all, the addition of a bailout instrument affects the planner’s choice of regulation with and without

the possibility of regulatory circumvention, i.e., conditional on the cost parameters κλ and κh.

4.1 Bailout Instrument

A bailout b > 0 will decrease the amount of liquidity that banks need to raise through project sales

in the stress state. In particular, the share s of future project returns sold by banks to outside

investors now only needs to satisfy

qsf (1− λ− κλωλλ) = θ (1− h+ κhωhh)− λ− b

which implies a sale price of

q =
θ (1− h+ κhωhh)− λ− b

g (θ (1− h+ κhωhh)− λ− b)
(11)

instead of Eq. (10). The optimization problem of the representative bank is otherwise unchanged

and takes as given the size of the bailout b.

All else constant, a bailout increases the price q which in turn decreases the incentives of banks

to hold liquidity at t = 0 and apply haircuts in the stress state at t = 1, as formalized next:

Lemma 7 Introducing a bailout b > 0 into the decentralized equilibrium would decrease λ∗ and h∗.

The social cost of the bailout is that it diverts funds from the production of a public good which

is valued at ν > 0 per unit of the good. Accordingly, the planner now chooses the non-contingent

regulation α, the state-contingent regulation β, and the bailout b to select the regulated equilibrium

that achieves the highest value of Π̃ (·)− pνb taking into account the effect of bank choices on q.

We first establish how the existence of a bailout instrument affects the optimal regulation in

the benchmark model of Section 2:

Proposition 8 (Optimal regulation with bailout instrument). In the absence of shadow activities

(κλ → ∞ and κh → ∞), the planner’s ability to commit to a bailout size at t = 0 is irrelevant for
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the optimal policy. The planner always chooses α = λ̂, β = ĥ, and b = 0 if ν ≥ ν0 and α < λ̂,

β < ĥ, and b > 0 if ν < ν0, where ν0 ∈ (0,∞).

A bailout lowers the marginal benefits of regulation, so when providing a bailout is not too

costly in terms of foregone production of the public good, the planner prefers to provide it and

loosen both regulations. Loosening the non-contingent regulation frees up resources for investment

in projects, while loosening the state-contingent regulation reduces the cost imposed on depositors

in the stress state. Furthermore, the optimal policy does not depend on commitment when κλ → ∞

and κh → ∞; the planner faces the same trade-off between raising the sale price q and producing

less of the public good whether he chooses b at t = 0 or t = 1.

4.2 Constrained Optimal Policy

We now return to the environment with κλ <∞ and κh <∞, where banks may engage in shadow

activities and the planner’s choices are therefore subject to implementation constraints. The fol-

lowing proposition establishes several results about the effect of introducing the bailout instrument

into this environment, including that the constrained optimal policy depends on commitment:

Proposition 9 (Constrained optimal regulation with bailout instrument). The planner chooses

{α, β, b} =
{
λ̂, ĥ, 0

}
if κλ ≥ κλ, κh ≥ κh, and ν ≥ ν0. Suppose ε′g (·) > 0 and ν = ν0. With

commitment,

• If κλ > κλ, then the planner chooses α = λ̂, β < ĥ, and b > 0 as κh is perturbed below κh.

• If κh > κh, then the planner chooses α < λ̂, β = ĥ, and b > 0 as κλ is perturbed below κλ.

Without commitment, the planner chooses α < λ̂, β < ĥ, and b > 0 in either perturbation.

There are three takeaways from Proposition 9. First, the planner may use the bailout instrument

instead of tightening one regulation to compensate for weakening of the other due to shadow

activities. Recall the regulatory complementarity established in Proposition 6 and notice that it is

optimally replaced by a bailout for the same perturbations in Proposition 9. Second, the threat of

shadow activities leads the planner to use the bailout instrument at some cost parameters ν where

he would not otherwise. Recall the absence of a bailout for ν = ν0 in Proposition 8 and notice
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the provision of a bailout for ν = ν0 in Proposition 9. Third, the planner’s ability to commit to

a bailout size at t = 0 affects optimal policy if and only if shadow activities are a threat; the “if”

statement follows from Proposition 9 and the “only if” from Proposition 8 where commitment was

irrelevant in the absence of shadow activities. If the planner cannot commit when shadow activities

are a threat, then a perturbation of either κλ or κh below their thresholds will lead the planner to

choose both α < λ̂ and β < ĥ alongside b > 0. That is, without commitment, the possibility of one

shadow activity can motivate the curtailment of both regulations.

The relevance of commitment in Proposition 9 stems from the fact that the bailout size affects

the implementation constraints that arise when banks may engage in shadow activities. With

commitment, all of the planner’s choices are made at t = 0 subject to these constraints. The

planner internalizes that a larger bailout will decrease the incentives of banks to hold liquidity and

apply haircuts and thereby increase their incentives to circumvent regulation, all else the same.

Without commitment, the bailout is chosen at t = 1 where there are no implementation constraints

because regulation has already been set. The planner anticipates that he will provide a larger

bailout at t = 1 in the absence of commitment, which decreases the marginal benefit of regulation

at t = 0 and leads him to curtail both regulations even if only one shadow activity is a threat.

Figure 3 provides a graphical illustration of the effect of the bailout instrument on the con-

strained optimal policy. We use the same parametrization as in Figure 2 and set the parameter

for the bailout cost ν equal to ν0 as in Proposition 9. The top row visualizes the effect of vary-

ing κh while keeping κλ > κλ; the bottom row visualizes the effect of varying κλ while keeping

κh > κh. Without the bailout instrument, the results of Proposition 6 apply, namely the compen-

satory tightening of α for κh < κh in the top row and the compensatory tightening of β for κλ < κλ

in the bottom row. With the bailout instrument, the results of Proposition 9 apply, namely the

use of bailouts rather than compensatory tightening, with larger bailouts and curtailment of both

regulations in the absence of commitment.

Figure 4 plots the constrained optimal policy as a function of both κλ and κh. We set ν

somewhat higher than ν0 to generalize the cross-sections in Figure 3. With ν > ν0, the planner

does not start using the bailout instrument as κh is perturbed below κh when κλ is high. Thus,

the results of Proposition 6 apply even as κh falls below κh, with the planner increasing α above
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λ̂ as he decreases β below ĥ.4 Once κh falls sufficiently below κh, it becomes optimal to use the

bailout instrument, at which point the results reflect Proposition 9, namely that α flattens out

under commitment (left column) and falls when the planner cannot commit to the size of the

bailout (right column). Similar patterns arise for β as κλ falls below κλ when κh is high. Figure

4 also plots the effect of the bailout instrument on welfare. With commitment, the planner will

always do at least as well with a bailout instrument as without, and with ν > ν0, the welfare gains

are limited to within the region where at least one implementation constraint binds. In contrast,

bailouts without commitment weakly lower welfare compared to the case where the planner does

not have a bailout instrument, i.e., Figure 2. With or without commitment though, the welfare

effects of reducing the cost of one shadow activity from prohibitively high to zero (while keeping the

cost of the other shadow activity prohibitively high) are again the same for both shadow activities,

reflecting the assumption of pϕ′′ = −θf ′′ in the figure.

The next lemma establishes that lower bailout costs can eliminate the threat of moderately

costly shadow activities that would otherwise constrain the planner:

Lemma 8 For ν ≤ ν0, a decrease in ν shrinks the ranges of κλ and κh for which the planner’s

implementation constraints bind.

The intuition is that the planner relies less on regulation and more on bailouts when the bailout

cost is low, reducing the marginal benefit to banks of taking costly shadow actions to circumvent

regulation. Accordingly, the range of circumvention cost parameters κλ and κh over which the

planner is constrained by the threat of shadow activities falls. As bailouts become more costly, the

planner would like to rely more on regulation and hence the threat of shadow activities constrains

the optimal policy over more of the parameter space. For any ν though, it remains the case that

κh > κλ and thus that the threat of shadow activities is more likely to constrain state-contingent

regulation than non-contingent regulation for equal circumvention cost parameters.

4This increase in α is visible in the second row of Figure 4 with commitment and would be more visible without
commitment for larger ν. We notice from the bottom row of Figure 4 that a bailout arises sooner without commitment,
at which point the results of Proposition 6 no longer apply.
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5 Imperfectly Informed Planner

The analysis so far has assumed that the planner knows the values of the parameters κλ and κh that

govern the costs of the shadow activities to banks. We now relax this assumption. We first consider

a planner that ignores (or greatly overestimates) these costs. We then consider a planner that is

uncertain about the costs and chooses the constrained optimal policy recognizing this uncertainty.

The key departure in both cases is that shadow activities may now occur as part of the regulated

equilibrium that the planner implements.

5.1 Welfare Costs of Naive Regulation

A “naive” planner is unaware of the shadow actions available to banks and therefore sets α and

β as if κλ and κh are prohibitively high. As an example, if ν ≥ ν0, a naive planner will set a

non-contingent regulation of α = λ̂, a state-contingent regulation of β = ĥ, and intend a bailout of

b = 0 if the stress state is realized; see Proposition 8. However, these regulations will trigger shadow

activities if at least one of κλ or κh is actually low; see Proposition 5. If the stress state is then

realized, the planner will discover that banks’ cash shortfall exceeds θ
(
1− ĥ

)
− λ̂, in which case

b = 0 may no longer be appropriate. Anticipating that the planner may re-optimize and choose

b > 0 in the absence of commitment, banks may engage in more shadow activity than implied by

Proposition 5 since a bailout in the stress state decreases private incentives to hold more liquid

assets or apply higher haircuts; see Lemma 7.

The next lemma explores the marginal welfare loss from triggering a shadow action through

naive regulation. We compare specifically the partial derivatives of the social welfare function with

respect to ωλ and ωh to assess which shadow action is more costly to trigger on the margin. The

idea is to isolate the effect on welfare of the same changes in ωλ and ωh, not to shock parameters

to trigger these activities since the effect on welfare would then also depend on the sensitivity of

each shadow action to the parameters being shocked.

Lemma 9 Suppose ϕ′ (0) = 0. When the stress state is rare, the marginal effect on social welfare

of triggering ωh > 0 is more negative than the marginal effect of triggering ωλ > 0.

The shadow action ωh > 0 incurs a direct cost θκhωhh only in the stress state, which is the state

of the world where cash is most valuable. This cost exacerbates the cash shortfall that must be
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covered by project sales to outside investors, decreasing the price q as well as the share of projects

retained by banks. In contrast, the direct cost κλωλλ associated with the shadow action ωλ > 0 is

incurred upfront at t = 0; it decreases project output and hence the share of projects retained by

banks in the stress state for a given price but not the price itself. When the stress state is rare,

state-contingent regulation is actively used in the absence of shadow activities; recall Lemma 3.

Triggering ωh > 0 is then unambiguously costlier than triggering ωλ > 0 because the direct cost of

each shadow action increases with the notion of liquidity being circumvented.

Proposition 10 (Welfare loss from naive regulation without commitment). When κλ and κh are

low, any planner that cannot commit to a bailout size at t = 0 achieves weakly lower welfare than

the decentralized equilibrium with no regulation and no bailout instrument. The welfare loss relative

to the decentralized equilibrium is highest if α and β are also set naively.

The first part of Proposition 10 reflects the welfare costs of no commitment. When κλ and

κh are low, regulation is too weak to overcome the negative incentive effects of bailouts on bank

liquidity choices. The second part of the proposition highlights that the combination of naive

regulation and no commitment can do materially worse than a purely laissez-faire economy.

Figure 5 explores whether the welfare losses from setting α and β naively are symmetric. Panel

(a) plots the welfare surface achieved by naive regulation with no bailout instrument under the same

parameters as Figure 2. Similar to panel (b) in Figure 2, which plotted welfare under the constrained

optimal regulation for each combination of κλ and κh with no bailout instrument, the welfare surface

in panel (a) of Figure 5 exhibits the same overall decline when κh falls towards zero as when κλ falls

towards zero, reflecting the assumption of pϕ′′ = −θf ′′ in the parametrization. The welfare losses

from setting α and β naively are therefore symmetric in the absence of a bailout instrument when

the parametrization delivers symmetric usage of the two regulations, i.e., λ̂− λ∗ = θ
(
ĥ− h∗

)
.

The same does not hold when the planner has a bailout instrument without commitment. Panel

(b) in Figure 5 plots the difference between the welfare surface achieved by naive regulation with

and without a bailout instrument, assuming no commitment and the same bailout cost parameter

ν as Figure 4. The welfare losses from setting α and β naively become asymmetric once the

bailout instrument is introduced, even under symmetric usage. This can be seen by comparing the

light green and dark green troughs in panel (b) of Figure 5. The entirety of panel (b) is weakly
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negative, reflecting that a bailout instrument without commitment weakly lowers welfare. The

light green trough captures the largest welfare loss when setting the non-contingent regulation α

naively if κh is large enough that banks will not find it profitable to circumvent the state-contingent

regulation. The dark green trough captures the largest welfare loss when setting the state-contingent

regulation β naively if κλ is large enough that banks will not find it profitable to circumvent the

non-contingent regulation. Notice that the dark green trough is deeper than the light green one,

indicating asymmetry. Adding the asymmetric differences in panel (b) to the symmetric surface in

panel (a) will not deliver a symmetric surface. Instead, the combination of naive regulation with a

bailout instrument when the planner cannot commit will lead to bigger welfare losses from naively

using state-contingent regulation than naively using non-contingent regulation.

Panel (b) in Figure 5 also exhibits an amplification when banks find it profitable to circumvent

both regulations. This can be seen from the blue trough, which captures the largest welfare loss

when both regulations are set naively. Notice that the blue trough does not occur at the origin

where shadow activities are free; even though the most shadow activity occurs here, no additional

resources are consumed. Instead, the blue trough occurs away from the origin but still in the area

where both κλ and κh are low enough that banks engage in both shadow activities. The blue trough

is deeper than the sum of the light green and dark green troughs, indicating amplification between

regulatory circumvention and bailouts when there are multiple regulations being circumvented.

The combination of naive regulation and lack of commitment on the bailout is key to both the

asymmetry and amplification in panel (b). With commitment, the naive planner would announce

a bailout of b = 0 at t = 0 since ν ≥ ν0. Panel (b) would then be flat at zero, i.e., not using the

bailout instrument achieves the same welfare as not having the bailout instrument. Consider next

the constrained optimal planner without commitment. Panel (c) in Figure 5 plots the difference

between the welfare surface achieved by the constrained optimal regulation for each combination of

κλ and κh with and without the same bailout instrument considered in panel (b) when the planner

cannot commit. A bailout instrument without commitment again weakly lowers welfare, but the

effects in panel (c) are symmetric, unlike those in panel (b).

This discussion highlights an interaction between shadow activities and bailouts that is more

pronounced for state-contingent regulation than for non-contingent regulation, even at parameters

where the benchmark model delivers symmetric usage. Naive regulation, whether state-contingent
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or non-contingent, triggers regulatory circumvention via shadow activities, and regulatory circum-

vention elicits a bailout in the stress state when the planner discovers that the cash shortfall exceeds

θ
(
1− ĥ

)
− λ̂ by enough to justify the marginal bailout cost ν. However, the bailout is larger for

circumvention of state-contingent regulation because the circumvention cost κh directly lowers the

price q in the stress state. The circumvention cost κλ instead directly lowers project output, which

increases the share that banks have to sell in the stress state at a given price.

Panel (d) in Figure 5 isolates the negative effect of naive regulation due to the bailout instrument

when the planner cannot commit, plotting panel (b) net of panel (c). In light of the symmetric effects

in panel (c), panel (d) inherits the properties of panel (b), namely asymmetry and amplification in

the direction of larger welfare losses from the misuse of state-contingent regulation.5 Recall that

these properties emerge despite the symmetric parametrization; the welfare losses from misusing

state-contingent regulation in the absence of commitment would be even larger in an environment

with pϕ′′ < −θf ′′, e.g., a very rare but very severe stress state.

5.2 Constrained Optimality Under Uncertainty and No Commitment

We now consider a planner who is aware that banks may engage in shadow activities but uncertain

about the cost parameters of these activities. To fix ideas, we consider uncertainty about either κλ

or κh, setting the other high enough that its shadow activity can be non-naively ignored.

Consider first κλ → ∞ so that only the use of state-contingent regulation is potentially con-

strained. The problem now arises from the fact that the planner does not know the exact value of

κh. Instead, he only knows that κh is between zero and some upper bound κmax
h ∈ (κh,∞) and

forms beliefs defined by a probability density function over κh ∈ [0, κmax
h ]. For simplicity, suppose

the planner has uniformly distributed beliefs. We compare this to the opposite case of κh → ∞ with

uncertainty about κλ so that only the use of non-contingent regulation is potentially constrained.

Here, the planner has uniformly distributed beliefs over κλ ∈ [0, κmax
λ ].

The following proposition establishes some basic properties of the constrained optimal regulation

5Notice that panel (d) is positive when only one of κλ and κh is high. This reflects that a bailout instrument
without commitment has a more negative effect on the constrained optimal level of welfare than on the naive level of
welfare at these corners. This positive effect would disappear with commitment. With commitment, the surface in
panel (c) would be weakly increasing, instead of weakly decreasing, as κλ and κh fall but would still be symmetric.
Panel (b) would be flat at zero, as noted above. Panel (d) would then be the inverse of panel (c) and hence symmetric
and never positive.
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under uncertainty before we illustrate the effects on welfare and the expected size of the bailout

when the planner cannot commit. Setting κmax
λ = 1 delivers a closed-form solution when the use of

non-contingent regulation is potentially constrained, so we make that assumption in the proposition

and relax it in the numerical results that follow.

Proposition 11 (Constrained optimal regulation under uncertainty without commitment). Con-

sider no commitment and ν = ν0 so that the bailout instrument is always weakly used. If κλ → ∞

and κh ∼ U (0, κmax
h ), then the constrained optimal regulation under uncertainty is α = λ̂ and

βu (κ
max
h ) < ĥ, where β′u (κ

max
h ) > 0. If κh → ∞ and κλ ∼ U (0, 1), then the planner again uses

both regulations, but now setting αu < λ̂ and β = ĥ.

Compare to the results in Proposition 9, where the planner knew the circumvention costs.

There, when the planner could not commit to the size of the bailout, the threat of shadow activity

led to both non-contingent and state-contingent regulation being weakened in favor of a bailout.

Recall that the larger bailout provided by the planner in the absence of commitment decreased the

marginal benefit of regulation (by decreasing the cash shortfall in the stress state) all else the same.

Here, all else is not the same; larger bailouts now also incentivize more shadow activity at low

circumvention costs, and more shadow activity increases the cash shortfall and hence the marginal

benefit of regulation. Accordingly, the planner sets the unaffected regulation (non-contingent if

κλ → ∞ and state-contingent if κh → ∞) at its optimal level from Section 2.3 and only weakens

the affected regulation, in addition to providing a bailout. The affected regulation is still used in

Proposition 11, despite the fact that it leads to shadow activities with positive probability.

Figure 6 compares the constrained optimal solution under uncertainty about κh versus κλ. The

case where the planner is uncertain about κh is depicted in solid black and the solution plotted

as a function of κmax
h . The case where the planner is uncertain about κλ is depicted in dashed

red and plotted as a function of κmax
λ . The figure is drawn for ν = ν0 and the same parameters

as Figure 2. Recall that these parameters delivered symmetric usage of state-contingent and non-

contingent regulation in the absence of shadow activities and hence symmetric welfare losses from

the implementation constraints introduced by these activities. Figure 6 demonstrates asymmetric

usage and asymmetric welfare losses in the presence of uncertainty.

Panels (a) and (b) in Figure 6 illustrate the constrained optimal regulation under uncertainty.
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The results are as derived in Proposition 11, with the dashed red lines relaxing the assumption of

κmax
λ = 1. Panel (c) then plots the lowest circumvention costs, defined as thresholds κ̃λ and κ̃h,

where the relevant shadow activity is not used under the regulations in panels (a) and (b) and the

constrained optimal bailout policy, which is illustrated in expectation in panel (d). Notice that

κ̃h > κ̃λ for any κmax
λ = κmax

h > κh, similar to κh > κλ in Proposition 5 without uncertainty. Also

notice that both thresholds are below the thresholds that prevail in the absence of uncertainty,

converging only asymptotically towards κλ and κh as κmax
λ and κmax

h go to infinity. This reflects

that the uncertain planner imposes less regulation, as illustrated in panels (a) and (b).

Panel (e) demonstrates asymmetric welfare losses in the presence of uncertainty. In particular,

the constrained optimal planner achieves lower welfare when he is uncertain about κh (the cost to

banks of circumventing state-contingent regulation) than when he is uncertain about κλ (the cost to

banks of circumventing non-contingent regulation), unless κmax
h is substantially higher than κmax

λ ,

i.e., unless the implementation constraint on state-contingent regulation is much less likely to bind

than the implementation constraint on non-contingent regulation. This implies that the threat of

shadow activities endogenously constrains state-contingent regulation more than non-contingent

regulation under uncertainty. This is also visible in panel (f) which illustrates that the constrained

optimal planner operating under uncertainty (and without commitment on the bailout instrument)

will use state-contingent regulation less than non-contingent regulation relative to their optimal

levels, i.e., θ
(
βu (κ

max
h )− ĥ

)
< αu (κ

max
λ )− λ̂ < 0 for any κmax

λ = κmax
h > κh.

As was the case in Section 5.1 with naive regulation, the state-contingent shadow activity ωh

elicits a larger bailout in the stress state because it consumes additional resources precisely when

liquidity is most valued, making its emergence more costly in terms of welfare than the emergence

of the non-contingent shadow activity ωλ. This difference was not a concern when the planner

knew κh and κλ because the constrained optimal regulation was designed to not trigger shadow

activities; see Proposition 4. The welfare losses from the threat of shadow activities then only

stemmed from the implementation constraints they introduced. With uncertainty about the cost

parameters, however, the constrained optimal regulation can trigger shadow activities. Triggering

circumvention of the state-contingent regulation then leads to a larger expected bailout if the stress

state is realized, as shown in panel (d) of Figure 6.
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6 Discussion

As noted in the introduction, the academic literature on the circumvention of state-contingent

regulation lags behind the implementation of such regulation by policy-makers. A lesson from the

more voluminous literature on non-contingent regulation is that private interests will find ways to

relax regulatory constraints that bind too tightly. In this section, we discuss some features of the

data that our modeling of state-contingent regulation and its circumvention connect to.

We interpret the shadow action ωh as insurance extended by a bank to its creditors against

the state-contingent regulation that imposes a minimum haircut in the stress state. An example

of a state-contingent regulation that imposes losses to bolster an intermediary’s liquidity is the re-

quirement by the U.S. Securities and Exchange Commission that institutional prime money market

funds impose fees on redeeming investors when net redemptions surpass a pre-specified threshold.

An example of a state-contingent regulation that imposes losses to bolster a bank’s capital is the

favorable treatment of contingent convertible bonds by European regulators provided the bonds

are structured to automatically absorb losses if a pre-specified negative event occurs.

The current fee structure for U.S. money market funds was only introduced in 2023, so we

use contingent convertible bonds (“CoCos”) as an empirical setting to explore the broader model

ingredients. To this end, it is straightforward to recast our model in terms of capital. For example,

rather than choosing an asset mix between cash and investment, the bank chooses a funding mix

between deposits and CoCos for each unit of investment. The benefit of deposits is that they are

cheaper; the cost is that they contribute more to a cash shortfall in the stress state. And rather

than choosing a haircut on deposits, the bank chooses a write-down on the CoCos. The benefit

of the write-down is that it forces holders of these bonds to absorb some of the cash shortfall in

the stress state; the cost is that it makes the bonds more expensive to issue. The same economic

mechanisms will arise: banks will choose excessive deposit funding and insufficient write-downs

due to the pecuniary externality, the planner will impose non-contingent regulation on the funding

mix and state-contingent regulation on the write-downs, and shadow activities and bailouts will

interact in the ways discussed above.

A concrete example of a financial product that can provide insurance properties is a credit line.

We first illustrate that our modeling of ωh is without loss of generality relative to a more explicit
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modeling of credit lines. We then document an empirical association between the issuance of CoCos

by banks and the extension of credit lines, with price movements favoring an interpretation where

the credit lines decrease the degree of state-contingency in the bonds. In other words, the credit

lines appear to function as insurance against a regulatory haircut (bail-in), undermining the social

benefits of these bonds intended by regulators.

6.1 Insurance Against State-Contingent Payoffs

Consider the benchmark model in Section 2 but with an extra decision: the provision of credit lines

by banks. Specifically, the representative bank can extend a credit line in the amount of ℓ ∈ [0, h]

at t = 0 that can be used at t = 1 by the recipient and then repaid at gross interest rate r at t = 2.

The bank earns a fee ξ for each unit of credit line extended and incurs a per-unit capital charge τ

when the credit line is used. This charge need not be regulatory; the bank’s own risk management

models may require provisioning once the credit line becomes a loan on the balance sheet.6

By taking out a credit line, a creditor that is subject to a haircut obtains insurance against this

haircut. In particular, the θ depositors (henceforth creditors) that experience haircuts if the stress

state materializes at t = 1 can use their credit lines to recoup liquidity and then repay those lines

at t = 2 when the haircut is repaid to them. The effective haircut experienced by these creditors

is thus h− ℓ, which is the haircut that enters the bank’s cost function ϕ (·).7 The creditors do not

use the credit lines if the stress state does not materialize because they do not need the additional

liquidity. The expected profit of the bank is then

ξℓ+ (1− p) [λ+ f (1− λ)− 1] + p [(1− s) f (1− λ)− (1− θ)− θh+ rθℓ]− pθϕ (h− ℓ)

where s is given by

qsf (1− λ) = θ (1− h+ (1 + τ) ℓ)− λ

6If raising additional capital in the stress state is not possible, the bank will have to sell an even bigger share of
its project to keep its risk-weighted assets (or value-at-risk calculation) flat, i.e., replace the project with the credit
line, exacerbating the fire sale externality.

7Under Diamond-Dybvig-type preferences, the relevant payoffs to creditors are 1 − h + ℓ at t = 1 or 1 at t = 2;
those that cash out early do not value consumption at t = 2 and hence do not care about having to repay the line.
Thus, ℓ > 0 delivers less variability in their payoffs, which is attractive with risk aversion.
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and the price q is

q =
θ (1− h+ (1 + τ) ℓ)− λ

g (θ (1− h+ (1 + τ) ℓ)− λ)

Focusing on the state-contingent ingredients of the model, the bank chooses the haircut h and the

size of the credit line ℓ to maximize its expected profit subject to the regulatory constraint h ≥ β.

Letting µh ≥ 0 denote the Lagrange multiplier on this regulatory constraint, the first order

condition for h is

pθ

(
1 + ϕ′ (h− ℓ)− 1

q

)
= µh (12)

and the derivative of the bank’s expected profit with respect to ℓ is

∂

∂ℓ
= ξ + pθ

(
r − 1 + τ

q
+ ϕ′ (h− ℓ)

)

Suppose ξ + pθ (r − 1− τ) ≤ 0. Then the bank will optimally choose ℓ = 0 when µh = 0. That

is, there will be no incentive to issue credit lines here without state-contingent regulation. The

decentralized equilibrium is then the same as in Definition 1. With the regulation, however, the

bank will choose ℓ > 0 if β is sufficiently high, i.e., if state-contingent regulation is sufficiently

strict, in which case µh > 0. Notice from Eq. (12) that ∂µh
∂ℓ = −pθϕ′′ (h− ℓ) < 0, so extending

more credit lines relaxes the constraint h ≥ β. In other words, the bank takes the action ℓ to relax

its state-contingent regulatory constraint despite incurring a cost (1 + τ) ℓ in the stress state to do

so. The provision of credit lines therefore represents a specific example of the more general shadow

activity ωh studied earlier.

6.2 Empirical Application: Contingent Convertible Bonds

Under many European implementations of Basel III, contingent convertible bonds with a mechanical

trigger (“CoCos”) qualify as additional Tier 1 capital for regulatory purposes. CoCos are a fixed-

income instrument that absorb losses either by converting into equity or taking a write-down

when a pre-specified event occurs. The payoffs to CoCo buyers are thus state-contingent. The

shadow activities that banks may use to circumvent these state-contingent requirements have not

been studied in existing work on CoCos (see Avdjiev et al. (2020) and Fiordelisi et al. (2020) for

prominent examples) so we explore this question empirically here.
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We collect data from Bloomberg and Thomson Reuters Eikon on CoCos issued by European

banks. We also collect financial statement information from Bloomberg and S&P Capital IQ to

construct a proxy for shadow activities that can provide insurance against a CoCo trigger. The

proxy loosely follows Boyd and Gertler (1995) by using the non-interest income of banks to make

inferences about their off-balance-sheet activities. We specifically collect income statement data

to construct the ratio of fee and commission income to total income; a higher share of fee and

commission income is consistent with the sale of more insurance-like products, e.g., credit lines.

We also construct the ratio of trading income to total income and use it as a placebo; a higher share

of trading income also indicates more off-balance-sheet activity but these activities are unlikely to

provide the type of insurance we are interested in. The resulting sample is a quarterly panel of 203

European banks from 2009Q1 to 2023Q2.

To explore the potential use of state-contingent shadow activities by banks, we run regressions

of the form

Shadowi,t = γ1CoCoi,t + γ2CoCoi,t × CapRatioi,t−1

+γ3CapRatioi,t−1 + γ4Shadowi,t−1 + ζi + ϵi,t

where Shadowi,t is the proxy of shadow activity for bank i in quarter t, CoCoi,t is CoCo issuance

by bank i in quarter t measured as either a dummy variable for whether at least one CoCo was

issued (extensive margin) or a count of the number of CoCos issued or the dollar value of issuance

relative to bank assets (intensive margin), CapRatioi,t−1 is the bank’s capital ratio in the prior

quarter, and ζi are fixed effects that control for unobserved heterogeneity in bank business models.

The coefficients of interest are γ1 and γ2. If γ1 > 0, then shadow activities increase alongside

CoCo issuance. If γ2 < 0, then this association is driven by banks with low capital ratios, i.e.,

banks that are most likely to be issuing CoCos to satisfy regulatory requirements. Table 1 presents

the results. The coefficient γ1 is indeed positive and statistically significant when CoCoi,t is con-

structed as either a dummy variable or a count, capturing the extensive margin and one notion of

the intensive margin. The coefficient γ2 is negative and statistically significant for the same specifi-

cations.8 Using the trading income placebo as the dependent variable instead produces statistically

8In unreported results available on request, we find γ1 > 0 and γ2 < 0 with statistical significance at standard
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insignificant results in all specifications. Thus, more CoCo issuance by banks more constrained

by regulation tends to be associated with more shadow activity, specifically activity that could be

undermining the state-contingency in CoCos by providing insurance.

Are the shadow activities captured by our proxy in fact providing insurance against variability in

CoCo payoffs, or are banks just issuing CoCos to raise capital against these activities? Disentangling

the two hypotheses amounts to disentangling demand and supply. If the shadow activities provide

insurance, then they make CoCos more attractive to buyers, which increases the demand for the

CoCos being supplied. Otherwise, only the supply of the CoCos increases. We can therefore

disentangle the hypotheses by looking at CoCo pricing. To this end, we focus on bank-quarter

pairs that have at least one CoCo issuance and run regressions of the form

WgtAvgCouponi,t = δ1%∆Shadowi,t + δ2%∆Shadowi,t × CapRatioi,t−1 + δ3CapRatioi,t−1

+δ4CoCoAmounti,t + δ5BankSizei,t−1 + δ6SovY ieldi,t + δ7USTt + ζi + ϵi,t

where WgtAvgCouponi,t is the weighted average coupon rate for new CoCos issued by bank i

in quarter t, %∆Shadowi,t is the percentage change in the proxy of shadow activity for bank i

from the prior quarter, CoCoAmounti,t is the dollar value of CoCos issued by bank i in quarter

t, BankSizei,t−1 is the total assets of the bank in the prior quarter, SovY ieldi,t is the 10-year

sovereign bond yield in bank i’s country of headquarter during quarter t, and USTt is the 10-year

U.S. Treasury yield.9 We use the coupon rate as a proxy for CoCo pricing because it is the most

consistently populated pricing field in the data. An increase in the demand for CoCos would allow

the bank to issue the CoCos at lower coupons.

The coefficients of interest are δ1 and δ2. If δ1 < 0, then coupons decrease as shadow activities

increase. If δ2 > 0, then this association is again driven by banks that are most likely to be issuing

CoCos to satisfy regulatory requirements. Table 2 presents the results. We indeed find δ1 < 0

and δ2 > 0, with both statistically significant. Using the trading income placebo instead of the

relevant proxy again produces statistically insignificant results. Thus, more shadow activity by

levels when CoCoi,t is constructed as a dollar value measure if the proxy for shadow activities is also a dollar value
measure, namely credit and liquidity facilities relative to bank assets as reported in banks’ Pillar 3 disclosures under
Basel III. We leave further exploration for future work.

9Sovereign debt and U.S. Treasury yield data are quarterly averages from Haver Analytics.
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CoCo-issuing banks more constrained by regulation is associated with lower CoCo coupons—that

is, less costly issuance. Taken together, Tables 1 and 2 provide strong suggestive evidence that the

threat of shadow activities extends to state-contingent regulation.

7 Conclusion

This paper has developed a theoretical framework to study the optimal mix of corrective regulation

when banks make socially inefficient choices but may find it profitable to engage in shadow activities

that circumvent the aim of regulation. We distinguished between regulations that introduce state-

contingency into the returns of short-term creditors (e.g., dynamic liquidity fees or bail-ins of debt

instruments) and regulations that do not (e.g., minimum liquidity or capital requirements). We

demonstrated an endogenous asymmetry in favor of non-contingent regulation when the planner

has imperfect information about the cost parameters of the shadow activities available to banks

and limited commitment to a bailout policy, even for cost parameters where both regulations would

otherwise be equally important corrective tools.

The need for corrective regulation in our model stems from a classic pecuniary externality.

If an aggregate stress state occurs, banks experience significant early withdrawals and raise cash

from outside investors by selling assets at an endogenously-determined market price. Banks take

this price as given when choosing both their ex ante liquidity ratios and the haircut they impose

on investors in the stress state, not internalizing that fewer sales help other banks. Accordingly,

the planner introduces a floor on the liquidity ratio (non-contingent regulation) and a floor on

the haircut that must be applied (state-contingent regulation). Without the threat of shadow

activities, we show that it is optimal for the planner to rely more on state-contingent regulation

than non-contingent regulation when the stress state is severe but unlikely, underscoring that the

two instruments are not perfect substitutes.

The threat of shadow activities introduces constraints on the design of regulation. Shadow

activities are privately beneficial to banks in the presence of binding regulation but socially wasteful,

so the planner never finds it optimal to trigger them. He therefore chooses each regulation subject

to the constraint that the marginal benefit of shadow activity is lower than the marginal cost.

We show that state-contingent regulation is more likely to be constrained by the threat of shadow
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activities. Specifically, the range of circumvention cost parameters over which the planner cannot

implement the unconstrained optimum is larger than for non-contingent regulation. This reflects

that the marginal cost of the state-contingent shadow activity is only incurred by banks in the stress

state and at a price that neglects the externality. However, since no shadow activity is triggered

by the planner, the total welfare loss from introducing one shadow activity at a time is the same

for both regulations if they would be used equally without the threat of shadow activities.

When the planner has imperfect information about the circumvention costs, shadow activities

may occur as part of the regulated equilibrium that the planner implements. The emergence of

shadow activities in equilibrium increases the size of the bailout when the planner lacks commit-

ment, and this interaction is more pronounced for state-contingent regulation because the asso-

ciated circumvention cost directly lowers the sale price of assets in the stress state. The planner

thus achieves lower welfare when he is uncertain about the cost to banks of circumventing state-

contingent regulation than when he is uncertain about the cost to banks of circumventing non-

contingent regulation. A planner who ignores these costs altogether also generates a larger welfare

loss from naively using state-contingent regulation than naively using non-contingent regulation,

as well as an amplification of welfare losses when both regulations are being circumvented because

the bailout triggered by the circumvention of one regulation increases the incentive of banks to

circumvent the other.

Financial regulators in the U.S. and Europe have already implemented state-contingent regu-

lation in the form of either dynamic liquidity fees or bail-ins of debt instruments. Whether these

regulations will have the intended effect depends on whether banks will engage in shadow activi-

ties to circumvent them, and we have shown that a planner with imperfect information about the

shadow technologies available to banks will elicit such activities with positive probability as part

of the constrained efficient policy. The data support the presence of these activities; we find evi-

dence that the threat of shadow activities extends to state-contingent regulation, complementing

a growing literature on the circumvention of non-contingent regulation. Further empirical work on

this question is an important avenue for research in light of our theoretical results.
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Figure 2: Constrained optimal solution as a function of κλ and κh (no bailout instrument, ε′g (·) > 0,

pϕ′′ = −θf ′′). Cost thresholds {κλ, κh} are as defined in Proposition 5. {λ∗, h∗,Π∗} and {λ̂, ĥ, Π̂}
refer to liquidity ratio, haircut, and welfare in the decentralized equilibrium and in the planner’s
unconstrained solution, respectively.
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Figure 3: Constrained optimal solution as a function of either κh or κλ for various bailout conditions
(ε′g (·) > 0, pϕ′′ = −θf ′′; ν = ν0 when the bailout instrument is available). The top row is drawn
for κλ > κλ; the bottom row is drawn for κh > κh.
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Figure 4: Constrained optimal solution as a function of κλ, κh, and ability to commit to bailout
size (ε′g (·) > 0, pϕ′′ = −θf ′′, ν > ν0).

45



Figure 5: Welfare under constrained optimal versus naive regulation (ε′g (·) > 0, pϕ′′ = −θf ′′;
no commitment and ν > ν0 when the bailout instrument is available). Panel (a) plots the welfare
surface assuming naive regulation with no bailout instrument. Panel (b) plots the difference between
the welfare surface assuming naive regulation with the bailout instrument and panel (a). Panel
(c) plots the difference between the welfare surface assuming constrained optimal regulation with
the bailout instrument (Fig. 4(e)) and the welfare surface assuming constrained optimal regulation
with no bailout instrument (Fig. 2(b)). Panel (d) plots the difference between panels (b) and (c).
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Figure 6: Constrained optimal solution with uncertainty (ε′g (·) > 0, pϕ′′ = −θf ′′, no commitment,
ν = ν0). Solid black lines are drawn as functions of κmax

h and denote the constrained optimal
solution when the planner is uncertain about κh with κλ → ∞. Dashed red lines are drawn as
functions of κmax

λ and denote the constrained optimal solution when the planner is uncertain about
κλ with κh → ∞. In both cases, the horizontal axis is drawn up to 10κh. The notation κ̃h refers
to the lowest κh for which banks do not take the state-contingent shadow action at the relevant
constrained optimal solution; the analogous object for the non-contingent shadow action is κ̃λ.
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Table 1: Shadow Activity Regression

Fee+Commission Income

Total Income

Trading Income

Total Income

(1) (2) (3) (4) (5) (6)

Bank Issued CoCo 0.030∗∗ −0.007
(0.013) (0.013)

Capital Ratio (Lag-1) x Bank Issued CoCo −0.337∗∗ 0.039
(0.151) (0.130)

Number CoCos Issued 0.018∗∗ −0.007
(0.008) (0.008)

Capital Ratio (Lag-1) x Number CoCos Issued −0.218∗ 0.025
(0.111) (0.092)

Value CoCos Over Assets −0.442 1.258
(1.627) (1.497)

Capital Ratio (Lag-1) x Value CoCos Over Assets 0.834 −14.52
(18.22) (14.12)

Capital Ratio (Lag-1) 0.202 0.202 0.201 0.008 0.008 0.009
(0.143) (0.143) (0.142) (0.146) (0.146) (0.146)

Dependent Variable (Lag-1) −0.009 −0.009 −0.009 −0.051∗∗∗ −0.051∗∗∗ −0.051∗∗∗

(0.024) (0.024) (0.024) (0.006) (0.006) (0.006)

Bank Fixed Effects Y Y Y Y Y Y
Number of Banks 203 203 203 203 203 203
Observations 5,611 5,611 5,611 5,611 5,611 5,611
R2 0.244 0.244 0.244 0.041 0.041 0.041

Notes: The table presents panel regression results of the relationship between CoCo issuance and a proxy for shadow activity at the quarterly frequency within a
panel of European banks from 2009Q1 to 2023Q2. Columns (1) to (3) use the proxy as the dependent variable; columns (4) to (6) use a placebo. CoCo issuance
is measured as an indicator variable (columns (1) and (4)), a count of issued instruments (columns (2) and (5)), or the value of issued instruments as a fraction
of the bank’s total assets (columns (3) and (6)). CoCos include all contingent convertible AT1 instruments issued by the depository institution. Standard errors
are clustered by bank and reported in parentheses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01
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Table 2: Coupon Rate Regression

Weighted Average Coupon Rate on New CoCo Issues

Proxy: Placebo:

Fee+Commission Income

Total Income

Trading Income

Total Income

(1) (2) (3) (4)

%∆ Shadow ∈ {Proxy, Placebo} −6.69∗∗∗ −7.99∗∗∗ 0.05 −0.05
(2.38) (2.13) (0.05) (0.11)

Capital Ratio (Lag-1) x %∆ Shadow 58.04∗∗ 96.20∗∗∗ −0.33 0.80
(24.92) (22.73) (0.54) (1.23)

Capital Ratio (Lag-1) 30.46∗∗∗ 20.85∗∗∗ 30.38∗∗∗ 22.60∗∗∗

(4.51) (5.10) (4.49) (6.18)
CoCo Amount ($M) −0.00 −0.00 −0.00 −0.00

(0.00) (0.00) (0.00) (0.00)
Bank Assets ($M, Lag-1) 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗ 0.00∗∗∗

(0.00) (0.00) (0.00) (0.00)
10Y Sovereign Debt Yield 0.32∗∗∗ 0.13 0.34∗∗∗ 0.18

(0.10) (0.16) (0.10) (0.16)
10Y U.S. Treasury Yield 0.30∗∗ 0.50∗∗ 0.40∗∗∗ 0.56∗∗∗

(0.14) (0.20) (0.13) (0.19)

Bank Fixed Effects N Y N Y
Number of Banks 115 71 115 71
Observations 315 271 315 271
R2 0.49 0.70 0.47 0.68

Note: The table presents regression results of the relationship between coupon rates of newly issued CoCo instruments and a proxy for shadow activity at the
quarterly frequency among European banks from 2009Q1 to 2023Q2. Coupon rates are expressed as a value-weighted average of all CoCo instruments issued by
a bank in a given quarter. Columns (1) and (2) calculate %∆Shadow using the indicated proxy; columns (3) and (4) use the indicated placebo. Standard errors
are clustered by bank and reported in parentheses. ∗p < 0.1;∗∗ p < 0.05;∗∗∗ p < 0.01
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Appendix A – Proofs

Proof of Lemma 1

Consider the bank’s problem subject to the constraint θ (1− h)− λ ≥ 0. Letting ψ ≥ 0 denote the

Lagrange multiplier on this constraint, the partial derivatives of the Lagrangian are

∂L
∂λ

=
∂Π

∂λ
− ψ = (1− p)− f ′ (1− λ) + p

q − ψ

∂L
∂h

=
∂Π

∂h
− ψθ = pθ

(
1
q − 1− ϕ′ (h)

)
− ψθ

If λ = h = 0 is a solution, then ψ = 0 and q = θ
g(θ) and

∂L
∂λ

= (1− p)− f ′ (1) + pg(θ)θ ≤ 0

∂L
∂h

= pθ
(
g(θ)
θ − 1− ϕ′ (0)

)
≤ 0

so either f ′ (1)− 1 < p
(
g(θ)
θ − 1

)
or g(θ)

θ > 1 + ϕ′ (0) rules out λ = h = 0. ■

Proof of Lemma 2

If λ > 0 and h = 0 is a solution, then

∂L
∂λ

= 0 −→ ψh=0 = (1− p)− f ′ (1− λ) + p
qh=0

∂L
∂h

= θ
[
f ′ (1− λ)− 1− pϕ′ (0)

]
≤ 0 (A.1)

If λ = 0 and h > 0 is a solution, then

∂L
∂h

= 0 −→ ψλ=0 = p
(

1
qλ=0

− 1− ϕ′ (h)
)

∂L
∂λ

= 1 + pϕ′ (h)− f ′ (1) ≤ 0 (A.2)

Suppose f ′ (1) = 1 + pϕ′ (0). Then condition (A.1) is contradicted by λ > 0 and f ′′ (·) < 0 while

condition (A.2) is contradicted by h > 0 and ϕ′′ (·) > 0. Thus, λ > 0 and h > 0.

If f ′ (1) > 1 + pϕ′ (0), then condition (A.1) still cannot hold, i.e., λ > 0 and h = 0 is not a

solution, but condition (A.2) may hold, i.e., λ = 0 and h > 0 may be a solution.

If f ′ (1) < 1 + pϕ′ (0), then condition (A.2) still cannot hold, i.e., λ = 0 and h > 0 is not a

solution, but condition (A.1) may hold, i.e., λ > 0 and h = 0 may be a solution. ■
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Proof of Proposition 1

At λ = θ (1− h), the price in Eq. (3) is

q0 ≡ lim
x→0

x

g (x)
=

1

g′ (0)

by l’Hopital’s rule, so

∂Π

∂h

∣∣∣∣
q=q0

sign
= g′ (0)− 1− ϕ′ (h) < g′ (0)− 1− ϕ′ (0)

where the inequality follows from h > 0 and ϕ′′ (·) > 0.

Therefore, g′ (0) ≤ 1+ϕ′ (0) implies ∂Π
∂h

∣∣
q=q0

< 0, which means any bank at λ = θ (1− h) wants

to lower its choice of h. This establishes that the decentralized equilibrium has λ < θ (1− h).

If also g′ (0) ≥ 1, then g′ (x) > 1 for all x > 0 from g′′ (·) > 0. Accordingly, q < q0 ≤ 1. ■

Proof of Proposition 2

Recall ∂q
∂λ = 1

θ
∂q
∂h from Section 2.1, so Eqs. (7) and (8) imply

f ′ (1− λ) = 1 + pϕ′ (h) (A.3)

which is also implied by Eqs. (5) and (6). That is, both the decentralized equilibrium and the

planner’s solution satisfy Eq. (A.3), which equalizes the marginal costs of using λ and h. From

f ′′ (·) < 0 and ϕ′′ (·) > 0, it follows that Eq. (A.3) defines a positive relationship between λ and h.

The decentralized equilibrium is the intersection between Eqs. (6) and (A.3), where Eq. (6),

with q as per Eq. (3), defines a negative relationship between λ and h.

If the planner’s solution satisfies θ (1− h) > λ, then the planner’s solution is the intersection

between Eqs. (8) and (A.3), where Eq. (8) implies a higher λ than Eq. (6) for any h. Therefore, on

a two-dimensional graph with h on the horizontal axis and λ on the vertical axis, the decentralized

equilibrium (h∗, λ∗) is an intersection between an upward-sloping curve and a downward-sloping

curve, whereas the planner’s solution
(
ĥ, λ̂

)
is an intersection between the same upward-sloping

curve and another curve that lies to the right of the downward-sloping curve. It follows immediately

that λ∗ < λ̂ and h∗ < ĥ.

If the planner’s solution satisfies θ (1− h) = λ, then the planner’s solution is the intersection

between Eq. (A.3) and θ (1− h) = λ, where the latter defines a negative relationship between λ

and h. Since the decentralized equilibrium has θ (1− h∗) > λ∗, at least one of λ∗ < λ̂ and h∗ < ĥ

must be true, but since (h∗, λ∗) and
(
ĥ, λ̂

)
lie on the same upward-sloping curve, one cannot be

true without the other. ■
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Proof of Proposition 3

Let µλ ≥ 0 and µh ≥ 0 denote the Lagrange multipliers on the regulatory constraints λ ≥ α and

h ≥ β respectively. Then the first order conditions of the bank’s problem are

0 =
∂L
∂λ

=
∂Π

∂λ
+ µλ =

p

q
+ µλ︸ ︷︷ ︸

MBprivate,reg
λ

−
[
f ′ (1− λ)− (1− p)

]︸ ︷︷ ︸
MCλ

0 =
∂L
∂h

=
∂Π

∂h
+ µh = θ

 p

q
+
µh
θ︸ ︷︷ ︸

MBprivate,reg
h

− p
(
1 + ϕ′ (h)

)︸ ︷︷ ︸
MCh


alongside Eq. (3) for the price q.

To implement the planner’s solution, the shadow prices µλ and µh must satisfy

µλ =
µh
θ

=
θ (1− h)− λ

q

∂q

∂λ

p

q
(A.4)

when evaluated at
{
λ̂, ĥ, q̂

}
. Notice that Eq. (A.4) implies µλ > 0 and µh > 0 at

{
λ̂, ĥ, q̂

}
, so the

planner simply needs to set α = λ̂ and β = ĥ. ■

Proof of Lemma 3

Use q as in Eq. (3) and 1
θ
∂q
∂h as in Eq. (4) to rewrite Eq. (8) as

g′ (θ (1− h)− λ) = 1 + ϕ′ (h) (A.5)

Notice that
(
λ̂, ĥ

)
solves Eqs. (A.3) and (A.5). Totally differentiate Eqs. (A.3) and (A.5) with

respect to p to get

f ′′
(
1− λ̂

) dλ̂
dp

+ ϕ′
(
ĥ
)
+ pϕ′′

(
ĥ
) dĥ
dp

= 0

and

dλ̂

dp
= −

θ + ϕ′′
(
ĥ
)

g′′
(
θ
(
1− ĥ

)
− λ̂

)
 dĥ

dp

respectively. It then follows from ϕ′′ (·) > 0 and g′′ (·) > 0 that dλ̂
dp and dĥ

dp have opposite signs.

Combining the differentiated equations givesθ + ϕ′′
(
ĥ
)

g′′
(
θ
(
1− ĥ

)
− λ̂

)
 f ′′

(
1− λ̂

)
− pϕ′′

(
ĥ
) dĥ

dp
= ϕ′

(
ĥ
)
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Recalling f ′′ (·) < 0 and ϕ′ (·) > 0 leads to dĥ
dp < 0 and therefore dλ̂

dp > 0.

Next, totally differentiate Eqs. (A.3) and (A.5) with respect to θ to get

−f ′′
(
1− λ̂

) dλ̂
dθ

= pϕ′′
(
ĥ
) dĥ
dθ

and

1− ĥ− dλ̂

dθ
=

θ + ϕ′′
(
ĥ
)

g′′
(
θ
(
1− ĥ

)
− λ̂

)
 dĥ

dθ

respectively. It then follows that dλ̂
dθ and dĥ

dθ have the same sign. Combining the differentiated

equations gives θ + ϕ′′
(
ĥ
)

g′′
(
θ
(
1− ĥ

)
− λ̂

) −
pϕ′′

(
ĥ
)

f ′′
(
1− λ̂

)
 dĥ

dθ
= 1− ĥ

Therefore, dĥ
dθ > 0 and dλ̂

dθ > 0.

To get the total derivative of q̂ with respect to the parameter a ∈ {p, θ}, totally differentiate

Eq. (A.5) as

g′′
(
θ
(
1− ĥ

)
− λ̂

) d(θ (1− ĥ
)
− λ̂

)
da

= ϕ′′
(
ĥ
) dĥ
da

which implies that
d(θ(1−ĥ)−λ̂)

da has the same sign as dĥ
da , then totally differentiate Eq. (3) as

dq̂

da
=

1

g
(
θ
(
1− ĥ

)
− λ̂

)
1−

θ
(
1− ĥ

)
− λ̂

g
(
θ
(
1− ĥ

)
− λ̂

)g′ (θ (1− ĥ
)
− λ̂

)
︸ ︷︷ ︸

negative by the elasticity of g(·)

d
(
θ
(
1− ĥ

)
− λ̂

)
da

Therefore, dq̂
dp > 0 and dq̂

dθ < 0. ■

Proof of Lemma 4

Recall that both {λ∗, h∗} and
{
λ̂, ĥ

}
satisfy Eq. (A.3). First order Taylor approximations of

f ′ (1− λ) and ϕ′ (h) around
(
1− λ̂

)
and ĥ respectively yield

f ′ (1− λ) ≈ f ′
(
1− λ̂

)
+ f ′′

(
1− λ̂

)(
(1− λ)−

(
1− λ̂

))
ϕ′ (h) ≈ ϕ′

(
ĥ
)
+ ϕ′′

(
ĥ
)(

h− ĥ
)

and therefore

f ′ (1− λ∗) ≈ f ′
(
1− λ̂

)
+ f ′′

(
1− λ̂

)(
λ̂− λ∗

)
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ϕ′ (h∗) ≈ ϕ′
(
ĥ
)
+ ϕ′′

(
ĥ
)(

h∗ − ĥ
)

Substituting these approximations into Eq. (A.3) evaluated at {λ∗, h∗} then yields

f ′
(
1− λ̂

)
+ f ′′

(
1− λ̂

)(
λ̂− λ∗

)
≈ 1 + pϕ′

(
ĥ
)
+ pϕ′′

(
ĥ
)(

h∗ − ĥ
)

which simplifies to

f ′′
(
1− λ̂

)(
λ̂− λ∗

)
≈ pϕ′′

(
ĥ
)(

h∗ − ĥ
)

after invoking Eq. (A.3) evaluated at
{
λ̂, ĥ

}
. Thus,

(
ĥ− h∗

)
≈ −

f ′′
(
1− λ̂

)
pϕ′′

(
ĥ
) (

λ̂− λ∗
)

The approximation is exact if f ′′′ (·) = ϕ′′′ (·) = 0, in which case f ′′ (·) and ϕ′′ (·) are constants as

in the statement of the lemma. ■

Proof of Proposition 4

We establish by contradiction that the planner does not want to trigger shadow activities.

When both shadow activities are potentially used by banks, the bank’s objective function is

given by Π̃ (·) as in Section 3.1, i.e.,

Π̃ (λ, h, ωλ, ωh; q) ≡ (1− p) [λ+ f (1− λ− κλωλλ)− 1]

+p

[
f (1− λ− κλωλλ)−

θ (1− h+ κhωhh)− λ

q
− (1− θ)− θh

]
− pθϕ (h)

and the Lagrangian of the bank problem is

L = Π̃ (λ, h, ωλ, ωh; q) + µλ [(1 + ωλ)λ− α] + µh [(1 + ωh)h− β] + ηωλ
ωλ + ηωh

ωh

where µλ, µh ≥ 0 are Lagrange multipliers on the regulatory constraints and ηωλ
, ηωh

≥ 0 are

Lagrange multipliers on the non-negativity constraints for the shadow activities. If the planner’s

regulation triggers shadow activities, then ηωλ
= 0 and/or ηωh

= 0.

The bank’s problem yields

∂L
∂λ

=
p

q
+ µλ (1 + ωλ)− (1 + κλωλ) f

′ (1− λ− κλωλλ) + (1− p)

∂L
∂h

= pθ

(
1− κhωh

q
− 1− ϕ′ (h)

)
+ µh (1 + ωh)

∂L
∂ωλ

= µλλ+ ηωλ
− κλλf

′ (1− λ− κλωλλ)
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∂L
∂ωh

= µhh+ ηωh
− pθκhh

q

Setting ∂L
∂λ = ∂L

∂h = ∂L
∂ωλ

= ∂L
∂ωh

= 0 and using complementary slackness on the non-negativity

constraints (ηωλ
ωλ = 0 and ηωh

ωh = 0), the bank’s first order conditions simplify to

p

q
+ µλ = f ′ (1− λ− κλωλλ)− (1− p) (A.6)

p

q
+
µh
θ

= p
(
1 + ϕ′ (h)

)
(A.7)

ηωλ
=
[
κλf

′ (1− λ− κλωλλ)− µλ
]
λ (A.8)

ηωh
= θ

(
pκh
q

− µh
θ

)
h (A.9)

For parameters where both shadow activities are used, i.e., ωλ > 0 and ωh > 0, complementary

slackness implies ηωλ
= 0 and ηωh

= 0 and hence

µλ = κλf
′ (1− λ− κλωλλ) > 0

µh =
pθκh
q

> 0

from Eqs. (A.8) and (A.9). Thus, conditional on α and β, the bank’s choices of λ, h, ωλ, and ωh

solve
p

q
= (1− κλ) f

′ (1− λ− κλ (α− λ))− (1− p) (A.10)

p

q
=
p (1 + ϕ′ (h))

1 + κh
(A.11)

(1 + ωλ)λ = α (A.12)

(1 + ωh)h = β (A.13)

where q is given by Eq. (10). Notice that κλ = κh = 0 returns the decentralized equilibrium

{λ∗, h∗, q∗} with the entire effect of regulation absorbed by the shadow activities ωλ and ωh.

Using Eqs. (A.12) and (A.13) to substitute ωλ and ωh out of Π̃ (·) defines

Π̂ (λ, h, q;α, β) ≡ (1− p) [λ+ f (1− λ− κλ (α− λ))− 1]

+p

[
f (1− λ− κλ (α− λ))− θ (1− h+ κh (β − h))− λ

q
− (1− θ)− θh

]
− pθϕ (h)

The planner therefore chooses α and β to maximize Π̂ (λ, h, q;α, β) subject to Eqs. (A.10), (A.11),

and

q =
θ (1− h+ κh (β − h))− λ

g (θ (1− h+ κh (β − h))− λ)
(A.14)
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For α:
dΠ̂

dα
=
∂Π̂

∂α
+
∂Π̂

∂λ

dλ

dα
+
∂Π̂

∂h

dh

dα
+
∂Π̂

∂q

dq

dα

where total differentiation of Eqs. (A.10), (A.11), and (A.14) determines dλ
dα ,

dh
dα , and

dq
dα . The

envelope condition implies that ∂Π̂
∂λ = ∂Π̂

∂h = 0 at the solution to these equations, hence we only

need to sign

dΠ̂

dα
=
∂Π̂

∂α
+
∂Π̂

∂q

dq

dα

The relevant derivatives are

∂Π̂

∂α
= −κλf ′ (1− λ− κλ (α− λ)) < 0

∂Π̂

∂q
= p

θ (1− h+ κh (β − h))− λ

q2
> 0

dq

dα
= −

κλ
1−κλ

g(θ(1−h+κh(β−h))−λ)

g′(θ(1−h+κh(β−h))−λ)
θ(1−h+κh(β−h))−λ

g(θ(1−h+κh(β−h))−λ)
−1

+ θ(1+κh)
2

ϕ′′(h)
1
q2

− 1
(1−κλ)

2f ′′(1−λ−κλ(α−λ))

p
q2

< 0

Therefore, dΠ̂
dα < 0. This means that α is welfare-reducing and hence not used, contradicting that

it triggers shadow activities.

The proof proceeds similarly for β. Specifically, the envelope condition implies that we only

need to sign

dΠ̂

dβ
=
∂Π̂

∂β
+
∂Π̂

∂q

dq

dβ

where total differentiation of Eqs. (A.10), (A.11), and (A.14) determines dq
dβ . The relevant deriva-

tives are
∂Π̂

∂β
= −pθκh

q
< 0

dq

dβ
= − θκh

g(θ(1−h+κh(β−h))−λ)

g′(θ(1−h+κh(β−h))−λ)
θ(1−h+κh(β−h))−λ

g(θ(1−h+κh(β−h))−λ)
−1

+ θ(1+κh)
2

ϕ′′(h)
1
q2

− 1
(1−κλ)

2f ′′(1−λ−κλ(α−λ))

p
q2

< 0

which, together with ∂Π̂
∂q > 0, imply dΠ̂

dβ < 0. That is, β is welfare-reducing and hence not used,

contradicting that it triggers shadow activities.

The proof for parameters where only one shadow activity is used, i.e., either ωλ > 0 or ωh > 0,

proceeds in the same way, as outlined next.

If only the non-contingent shadow activity is used, i.e., ωλ > 0 and ωh = 0, then Eqs. (A.10)

and (A.12) stay the same while the bank’s first order condition for h is

µh (h− β) = 0, µh = pθ

(
1 + ϕ′ (h)− 1

q

)
≥ 0, h ≥ β (A.15)
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with complementary slackness. The price q is given by Eq. (3). The relevant Π̂ (·) still has the

properties ∂Π̂
∂α < 0 and ∂Π̂

∂q > 0 so it will be sufficient to show dq
dα < 0 from total differentiation of

Eqs. (3), (A.10), and the first order condition for h. There are two cases to consider: (i) β low

enough that h > β with 1
q = 1 + ϕ′ (h) and (ii) β high enough that h = β. Going through the

algebra confirms dq
dα < 0 for each case. Therefore, dΠ̂

dα < 0, so α is welfare-reducing and hence not

used, contradicting that it triggers the non-contingent shadow activity.

If only the state-contingent shadow activity is used, i.e., ωλ = 0 and ωh > 0, then Eqs. (A.11)

and (A.13) stay the same while the bank’s first order condition for λ is

µλ (λ− α) = 0, µλ = f ′ (1− λ)− (1− p)− p

q
≥ 0, λ ≥ α (A.16)

with complementary slackness. The price q is given by Eq. (A.14). The relevant Π̂ (·) still has the
properties ∂Π̂

∂β < 0 and ∂Π̂
∂q > 0 so it will be sufficient to show dq

dβ < 0 from total differentiation of

Eqs. (A.11), (A.14), and the first order condition for λ. There are again two cases to consider: (i)

α low enough that λ > α with p
q = f ′ (1− λ)− (1− p) and (ii) α high enough that λ = α. Going

through the algebra confirms dq
dβ < 0 for each case. Therefore, dΠ̂

dβ < 0, so β is welfare-reducing and

hence not used, contradicting that it triggers the state-contingent shadow activity. ■

Proof of Proposition 5

Recall the bank’s first order conditions in Eqs. (A.6) to (A.9) from the proof of Proposition 4. Use

(A.6) to substitute µλ out of (A.8) and get

ηωλ
=

[
p

q
− (1− κλ) f

′ (1− λ− κλωλλ) + (1− p)

]
λ

then use (A.7) to substitute µh out of (A.9) and get

ηωh
= θ

(
p (1 + κh)

q
− p

(
1 + ϕ′ (h)

))
h

Proposition 4 established that the planner never finds it optimal to trigger shadow activities, which

means his choices of α and β implement ηωλ
≥ 0 and ηωh

≥ 0 with ωλ = ωh = 0. Thus,

p

q (λ, h)
≥ (1− κλ) f

′ (1− λ)− (1− p) (A.17)

1 + κh
q (λ, h)

≥ 1 + ϕ′ (h) (A.18)

with q given by Eq. (3) and written as q (λ, h) to make explicit the dependencies. Evaluated

at λ = α and h = β, these inequalities constitute implementation constraints on the planner’s

problem.
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Note that the implementation constraints can be rearranged to get

κλ ≥ 1− 1

f ′ (1− λ)

(
p

q (λ, h)
+ (1− p)

)
κh ≥ q (λ, h)

(
1 + ϕ′ (h)

)
− 1

which, when evaluated at λ̂ and ĥ, yields

κλ ≥ 1− 1

f ′
(
1− λ̂

) (p
q̂
+ (1− p)

)
≡ κλ

κh ≥ q̂
(
1 + ϕ′

(
ĥ
))

− 1 ≡ κh

Therefore, if κλ ≥ κλ and κh ≥ κh, then α = λ̂ and β = ĥ satisfy the implementation constraints,

meaning that the planner can achieve
{
λ̂, ĥ, q̂

}
without triggering shadow activities.

Finally, κh > κλ if and only if

q̂
(
1 + ϕ′

(
ĥ
))

− 1 > 1− 1

f ′
(
1− λ̂

) (p
q̂
+ (1− p)

)

Using Eqs. (A.3) and (A.5), this inequality becomes

q̂g′
(
θ
(
1− ĥ

)
− λ̂

)
− 1 > 1− 1

pg′
(
θ
(
1− ĥ

)
− λ̂

)
+ 1− p

(
p

q̂
+ (1− p)

)

and thus

θ
(
1− ĥ

)
− λ̂

g
(
θ
(
1− ĥ

)
− λ̂

)g′ (θ (1− ĥ
)
− λ̂

)
− 1 >

p

(
g′
(
θ
(
1− ĥ

)
− λ̂

)
− g(θ(1−ĥ)−λ̂)

θ(1−ĥ)−λ̂

)
pg′
(
θ
(
1− ĥ

)
− λ̂

)
+ 1− p

after using Eq. (3) to substitute out q̂ and simplifying. The last inequality further simplifies tog′ (θ (1− ĥ
)
− λ̂

)
−
g
(
θ
(
1− ĥ

)
− λ̂

)
θ
(
1− ĥ

)
− λ̂

+
1− p

p

g′ (θ (1− ĥ
)
− λ̂

)
−
g
(
θ
(
1− ĥ

)
− λ̂

)
θ
(
1− ĥ

)
− λ̂

 > 0

which is true, proving κh > κλ. ■

Proof of Proposition 6

The planner seeks to maximize Π̃ (λ, h, 0, 0; q), taking into account q as per Eq. (3), subject to

the implementation constraints (A.17) and (A.18). Without loss of generality, we can consider the

case where the regulatory constraints hold with equality, i.e., λ = α and h = β. The nature of the
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externality is that the representative bank always undervalues liquidity relative to the planner who

internalizes the effect on the sale price of projects, so for a given λ, the planner will want the bank

to choose a higher h, and for a given h, he will want it to choose a higher λ. In other words, the

planner will never want the bank to choose lower λ or h than would prevail without intervention.

To make the algebra more compact, define x ≡ θ (1− β)−α to be the cash shortfall that must

be covered by project sales. Then Eq. (3) is simply

1

q
=
g (x)

x

and the implementation constraints (A.17) and (A.18) can be expressed as

p
g (x)

x
≥ (1− κλ) f

′ (1− α)− (1− p)

and

(1 + κh)
g (x)

x
≥ 1 + ϕ′

(
1− α+ x

θ

)
respectively. Also rewrite the planner’s objective function

Π̃ (α, β, 0, 0; q)

= (1− p) [α+ f (1− α)− 1] + p

[
f (1− α)− θ (1− β)− α

q
− (1− θ)− θβ

]
− pθϕ (β)

= (1− p) [α+ f (1− α)− 1] + p [f (1− α)− g (θ (1− β)− α)− (1− θ)− θβ]− pθϕ (β)

= (1− p) [α+ f (1− α)− 1] + p

[
f (1− α)− g (x)− (1− θ)− θ

(
1− α+ x

θ

)]
− pθϕ

(
1− α+ x

θ

)
= α+ f (1− α)− pg (x) + px− pθϕ

(
1− α+ x

θ

)
− 1

where the first equality follows from the expression for Π̃ (·) in the proof of Proposition 4, the

second uses Eq. (3) to substitute out q, the third uses x ≡ θ (1− β) − α to substitute out for β,

and the last line simplifies.

Consider first the case where only (A.18) binds; this corresponds to κλ sufficiently high that

(A.17) is slack. Then the planner’s problem is

max
x

{
α (x) + f (1− α (x))− pg (x) + px− pθϕ

(
1− α (x) + x

θ

)}
(A.19)

where the binding implementation constraint

(1 + κh)
g (x)

x
= 1 + ϕ′

(
1− α+ x

θ

)
(A.20)
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implicitly defines α (x), with

α′ (x) = −1−
θ (1 + κh)

(
g′ (x)− g(x)

x

)
xϕ′′

(
1− α+x

θ

)
The first order condition for the problem in (A.19) is

g′ (x) = 1 + ϕ′
(
1− α+ x

θ

)
+

1

p

(
1 + pϕ′

(
1− α+ x

θ

)
− f ′ (1− α)

)
α′ (x)

which reduces to

g′ (x) = 1+ϕ′
(
1− α+ x

θ

)
+
1

p

(
f ′ (1− α)− 1− pϕ′

(
1− α+ x

θ

))1 +
θ (1 + κh)

(
g′ (x)− g(x)

x

)
xϕ′′

(
1− α+x

θ

)


(A.21)

after substituting in the expression for α′ (x). The planner’s solution is a pair {α, x} solving Eqs.

(A.20) and (A.21). Define x̂ ≡ θ
(
1− ĥ

)
− λ̂ and note from Eqs. (A.3) and (A.5) that

{
λ̂, x̂

}
solves

f ′
(
1− λ̂

)
= 1 + pϕ′

(
1− λ̂+ x̂

θ

)

g′ (x̂) = 1 + ϕ′
(
1− α̂+ x̂

θ

)
Therefore,

{
λ̂, x̂

}
satisfies Eqs. (A.20) and (A.21) if κh = κh. To see what happens to {α, x} as

κh is perturbed below κh, differentiate Eqs. (A.20) and (A.21) to get dα
dκh

and dx
dκh

evaluated at

κh = κh where we know the planner chooses
{
λ̂, x̂

}
. If κλ > κλ, then (A.17) is slack with strict

inequality when κh = κh and thus remains so with a slight perturbation. This gives

g (x̂)

x̂
dκh +

1 + κh
x̂

(
g′ (x̂)− g (x̂)

x̂

)
dx = −

ϕ′′
(
ĥ
)

θ
(dα+ dx)

g′′ (x̂) dx = −
ϕ′′
(
ĥ
)

θ
(dα+ dx)+

1

p

−f ′′
(
1− λ̂

)
dα+

pϕ′′
(
ĥ
)

θ
(dα+ dx)

1 +
θ (1 + κh)

(
g′ (x̂)− g(x̂)

x̂

)
x̂ϕ′′

(
ĥ
)


︸ ︷︷ ︸

≡1+K

=⇒
dα = − θg (x̂)

x̂ϕ′′
(
ĥ
)dκh − (1 +K) dx

g′′ (x̂) dx =
ϕ′′
(
ĥ
)
K

θ
(dα+ dx) +

−f ′′
(
1− λ̂

)
(1 +K)

p
dα
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=⇒

g′′ (x̂) dx = −
ϕ′′
(
ĥ
)
K

θ

 θg (x̂)

x̂ϕ′′
(
ĥ
)dκh +Kdx

−
−f ′′

(
1− λ̂

)
(1 +K)

p

 θg (x̂)

x̂ϕ′′
(
ĥ
)dκh + (1 +K) dx


=⇒

dx

dκh

∣∣∣∣
κh=κh

= −

g(x̂)
x̂

(
K +

−f ′′(1−λ̂)θ(1+K)

pϕ′′(ĥ)

)
g′′ (x̂) +

ϕ′′(ĥ)K2

θ +
−f ′′(1−λ̂)(1+K)2

p

< 0

=⇒

dα

dκh

∣∣∣∣
κh=κh

= − θg (x̂)

x̂ϕ′′
(
ĥ
) − (1 +K)

dx

dκh

∣∣∣∣
κh=κh

= −

θg(x̂)

x̂ϕ′′(ĥ)

(
g′′ (x̂)− 1+κh

x̂

(
g′ (x̂)− g(x̂)

x̂

))
g′′ (x̂) +

ϕ′′(ĥ)K2

θ +
−f ′′(1−λ̂)(1+K)2

p

So g′′ (·) >> 0 implies dα
dκh

∣∣∣
κh=κh

< 0 and hence

dβ

dκh

∣∣∣∣
κh=κh

= −1

θ

(
dα

dκh

∣∣∣∣
κh=κh

+
dx

dκh

∣∣∣∣
κh=κh

)
> 0

Therefore, a perturbation of κh below κh leads to α > λ̂ and β < ĥ.

Next consider the case where only (A.17) binds; this corresponds to κh sufficiently high that

(A.18) is slack. The planner’s problem is still given by (A.19) but now the binding implementation

constraint that implicitly defines α (x) is

p
g (x)

x
= (1− κλ) f

′ (1− α)− (1− p) (A.22)

with

α′ (x) =

p
x

(
g′ (x)− g(x)

x

)
− (1− κλ) f ′′ (1− α)

Accordingly, the planner’s first order condition for x is

g′ (x) = 1 + ϕ′
(
1− α+ x

θ

)
+

(
1 + pϕ′

(
1− α+ x

θ

)
− f ′ (1− α)

) 1
x

(
g′ (x)− g(x)

x

)
− (1− κλ) f ′′ (1− α)

(A.23)

The planner’s solution is a pair {α, x} solving Eqs. (A.22) and (A.23). Similar to the previous

case,
{
λ̂, x̂

}
satisfies Eqs. (A.22) and (A.23) if κλ = κλ. To see what happens to {α, x} as κλ is

perturbed below κλ, differentiate Eqs. (A.20) and (A.21) to get dα
dκλ

and dx
dκλ

evaluated at κλ = κλ

where we know the planner chooses
{
λ̂, x̂

}
. If κh > κh, then (A.18) is slack with strict inequality
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when κλ = κλ and thus remains so with a slight perturbation. This gives

p

x̂

(
g′ (x̂)− g (x̂)

x̂

)
dx = −f ′

(
1− λ̂

)
dκλ − (1− κλ) f

′′
(
1− λ̂

)
dα

g′′ (x̂) dx = −
ϕ′′
(
ĥ
)

θ
(dα+ dx)−

pϕ′′
(
ĥ
)

θ
(dα+ dx)− f ′′

(
1− λ̂

)
dα

 1
x̂

(
g′ (x̂)− g(x̂)

x̂

)
− (1− κλ) f ′′

(
1− λ̂

)
︸ ︷︷ ︸

≡K̃

=⇒

dα =
f ′
(
1− λ̂

)
− (1− κλ) f ′′

(
1− λ̂

)dκλ + pK̃dx

g′′ (x̂) dx = −
ϕ′′
(
ĥ
)(

1 + pK̃
)

θ
(dα+ dx) + f ′′

(
1− λ̂

)
K̃dα

=⇒

g′′ (x̂) dx = −
ϕ′′
(
ĥ
)

θ

 f ′
(
1− λ̂

)(
1 + pK̃

)
− (1− κλ) f ′′

(
1− λ̂

)dκλ +
(
1 + pK̃

)2
dx

−
f ′
(
1− λ̂

)
K̃

1− κλ
dκλ+f

′′
(
1− λ̂

)
pK̃2dx

=⇒

dx

dκλ

∣∣∣∣
κλ=κλ

= −

f ′(1−λ̂)
1−κλ

(
K̃ +

ϕ′′(ĥ)(1+pK̃)
−θf ′′(1−λ̂)

)
g′′ (x̂) +

ϕ′′(ĥ)(1+pK̃)
2

θ − f ′′
(
1− λ̂

)
pK̃2

< 0

=⇒

dα

dκλ

∣∣∣∣
κλ=κλ

=
f ′
(
1− λ̂

)
− (1− κλ) f ′′

(
1− λ̂

)+pK̃ dx

dκλ

∣∣∣∣
κλ=κλ

=

f ′(1−λ̂)
−(1−κλ)f ′′(1−λ̂)

(
g′′ (x̂) +

ϕ′′(ĥ)(1+pK̃)
θ

)
g′′ (x̂) +

ϕ′′(ĥ)(1+pK̃)
2

θ − f ′′
(
1− λ̂

)
pK̃2

> 0

=⇒

dβ

dκλ

∣∣∣∣
κλ=κλ

= −1

θ

(
dα

dκλ

∣∣∣∣
κλ=κλ

+
dx

dκλ

∣∣∣∣
κλ=κλ

)
= −

f ′(1−λ̂)
−θ(1−κλ)f ′′(1−λ̂)

(
g′′ (x̂)− g′(x̂)− g(x̂)

x̂
(1−κλ)x̂

)
g′′ (x̂) +

ϕ′′(ĥ)(1+pK̃)
2

θ − f ′′
(
1− λ̂

)
pK̃2

So g′′ (·) >> 0 implies dβ
dκλ

∣∣∣
κλ=κλ

< 0 and hence a perturbation of κλ below κλ leads to α < λ̂ and

β > ĥ.

The last step is to show that ε′g (x) > 0 implies g′′ (·) >> 0. Note that the exact level of

g′′ (·) >> 0 needed is

g′′ (x̂) >
max

{
1 + κh,

1
1−κλ

}
x̂

(
g′ (x̂)− g (x̂)

x̂

)
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Using the expressions for κλ and κh from the proof of Proposition 5,

max

{
1 + κh,

1

1− κλ

}
= max

q̂ (1 + ϕ′
(
ĥ
))

,
f ′
(
1− λ̂

)
p
q̂ + (1− p)


Using Eqs. (3), (A.3), and (A.5) to substitute out

{
λ̂, ĥ, q̂

}
,

max

{
1 + κh,

1

1− κλ

}
= max

{
x̂g′ (x̂)

g (x̂)
,
pg′ (x̂) + 1− p

pg(x̂)x̂ + 1− p

}
=
x̂g′ (x̂)

g (x̂)

Therefore, the level of g′′ (·) >> 0 needed is

g′′ (x̂) >
g′ (x̂)

g (x̂)

(
g′ (x̂)− g (x̂)

x̂

)

which is implied by ε′g (x) ≡ x
g(x)

(
g′′ (x)− g′(x)

g(x)

(
g′ (x)− g(x)

x

))
> 0. ■

Proof of Proposition 7

The planner chooses α and x (recall x ≡ θ (1− β) − α) to solve the problem associated with the

following Lagrangian:

L = α+ f (1− α)− pg (x) + px− pθϕ

(
1− α+ x

θ

)
+ψα

[
p
g (x)

x
− (1− κλ) f

′ (1− α) + (1− p)

]
+ ψβ

[
(1 + κh)

g (x)

x
− 1− ϕ′

(
1− α+ x

θ

)]
where ψβ, ψα ≥ 0 are Lagrange multipliers on the implementation constraints (A.20) and (A.22).

The planner’s first order conditions are

f ′ (1− α) = 1 + pϕ′
(
1− α+ x

θ

)
+ ψα (1− κλ) f

′′ (1− α) + ψβϕ
′′
(
1− α+ x

θ

)
1

θ

g′ (x) = 1 + ϕ′
(
1− α+ x

θ

)
+

(
ψα + ψβ

1 + κh
p

)
1

x

(
g′ (x)− g (x)

x

)
+ ψβϕ

′′
(
1− α+ x

θ

)
1

pθ

If ψα > 0 and ψβ > 0, i.e., if both implementation constraints are binding, then the planner’s

solution is simply the pair {α, x} solving Eqs. (A.20) and (A.22). If κλ = κh = 0, then those

equations collapse to Eqs. (6) and (A.3), which returns the decentralized equilibrium, i.e., α0 = λ∗

and x0 = θ (1− h∗)− λ∗, where we recall λ∗ < λ̂ and h∗ < ĥ.

The next step is to confirm that both implementation constraints are binding at κλ = κh = 0.

Evaluating the planner’s first order conditions at α0 and x0 yields

0 = ψα (1− κλ) f
′′ (1− λ∗) + ψβϕ

′′ (h∗)
1

θ

63



g′ (x0) =
g (x0)

x0
+

(
ψα + ψβ

1 + κh
p

)
1

x

(
g′ (x0)−

g (x0)

x0

)
+ ψβϕ

′′ (h∗)
1

pθ

which pins down ψα and ψβ as

ψα =
ϕ′′ (h∗) 1

θ

− (1− κλ) f ′′ (1− λ∗)
ψβ > 0

ψβ =
g′ (x0)− g(x0)

x0(
ϕ′′(h∗) 1

θ
−(1−κλ)f ′′(1−λ∗) +

1+κh
p

)
1
x

(
g′ (x0)− g(x0)

x0

)
+ ϕ′′ (h∗) 1

pθ

> 0

thereby confirming that both implementation constraints are indeed binding at κλ = κh = 0.

By continuity, it follows that (i) ψα > 0 and ψβ > 0 and (ii) α < λ̂ and β < ĥ for sufficiently

low but positive κλ and κh. ■

Proof of Lemma 5

Define the welfare function

W (α, β) ≡ α+ f (1− α)− pg (θ (1− β)− α) + p (θ (1− β)− α)− pθϕ (β)

A second order Taylor expansion around the unconstrained solution
(
λ̂, ĥ

)
delivers

W (α, β) ≈ W
(
λ̂, ĥ

)
+W ′

α

(
λ̂, ĥ

)(
α− λ̂

)
+W ′

β

(
λ̂, ĥ

)(
β − ĥ

)
+
1

2

[
W ′′

αα

(
λ̂, ĥ

)(
α− λ̂

)2
+ 2W ′′

αβ

(
λ̂, ĥ

)(
α− λ̂

)(
β − ĥ

)
+W ′′

ββ

(
λ̂, ĥ

)(
β − ĥ

)2]
where we recall that the planner’s first order conditions from the unconstrained problem deliver

W ′
α

(
λ̂, ĥ

)
=W ′

β

(
λ̂, ĥ

)
= 0. Therefore,

W (α, β) ≈W
(
λ̂, ĥ

)
+
1

2

[
W ′′

αα

(
λ̂, ĥ

)(
α− λ̂

)2
+ 2W ′′

αβ

(
λ̂, ĥ

)(
α− λ̂

)(
β − ĥ

)
+W ′′

ββ

(
λ̂, ĥ

)(
β − ĥ

)2]
where

W ′′
αα (α, β) = f ′′ (1− α)− pg′′ (θ (1− β)− α)

W ′′
αβ (α, β) = −pθg′′ (θ (1− β)− α)

W ′′
ββ (α, β) = −pθ2g′′ (θ (1− β)− α)− pθϕ′′ (β)

With f ′′′ (·) = ϕ′′′ (·) = g′′′ (·) = 0, the second derivatives of the welfare function are constants and

hence the second order Taylor expansion is exact, i.e.,

W (α, β) =W
(
λ̂, ĥ

)
−1

2

[(
α− λ̂

)2 (
pg′′ − f ′′

)
+ 2

(
α− λ̂

)(
β − ĥ

)
pθg′′ +

(
β − ĥ

)2 (
pθ2g′′ + pθϕ′′

)]
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where f ′′ < 0, ϕ′′ > 0, and g′′ > 0 are scalars.

Denote by (αλ, βλ) the constrained optimal regulation when κλ = 0 and κh → ∞, and denote

by (αh, βh) the constrained optimal regulation when κλ → ∞ and κh = 0. We then need to show

W (αλ, βλ) =W (αh, βh). With −f ′′ = pϕ′′

θ , this amounts to showing

(
αλ − λ̂

)2(
pg′′ +

pϕ′′

θ

)
+ 2

(
αλ − λ̂

)(
βλ − ĥ

)
pθg′′ +

(
βλ − ĥ

)2 (
pθ2g′′ + pθϕ′′

)
=

(
αh − λ̂

)2(
pg′′ +

pϕ′′

θ

)
+ 2

(
αh − λ̂

)(
βh − ĥ

)
pθg′′ +

(
βh − ĥ

)2 (
pθ2g′′ + pθϕ′′

)
or equivalently

(αh + θβh − θβλ − αλ)
(
αλ + θβλ + αh + θβh − 2λ̂− 2θĥ

) θg′′
ϕ′′

= (αλ − αh)
(
αλ + αh − 2λ̂

)
+ θ2 (βλ − βh)

(
βλ + βh − 2ĥ

)
⇐⇒

(xh − xλ) (2x̂− xλ − xh)
θg′′

ϕ′′
+ (αλ − αh)

(
αλ + αh − 2λ̂

)
+ θ2 (βλ − βh)

(
βλ + βh − 2ĥ

)
= 0

⇐⇒

(xh − xλ)

(
(2x̂− xλ − xh)

θg′′

ϕ′′
+ αλ + αh − 2λ̂

)
+θ (βλ − βh)

(
θβλ + θβh − 2θĥ− αλ − αh + 2λ̂

)
= 0

⇐⇒

(xh − xλ)

(
(2x̂− xλ − xh)

θg′′

ϕ′′
+ αλ + αh − 2λ̂− θ (βλ − βh)

)
+2θ (βλ − βh)

(
λ̂− αh − θ

(
ĥ− βλ

))
= 0

where xh ≡ θ (1− βh) − αh, xλ ≡ θ (1− βλ) − αλ, and x̂ ≡ θ
(
1− ĥ

)
− λ̂. Therefore, to show

W (αλ, βλ) =W (αh, βh), it will suffice to show xh = xλ and λ̂− αh = θ
(
ĥ− βλ

)
.

We recall from the proof of Proposition 7 that the planner’s first order conditions (expressed

here in terms of α and β rather than α and x) are

f ′ (1− α) = 1 + pϕ′ (β) + ψα (1− κλ) f
′′ + ψβ

ϕ′′

θ
(A.24)

g′ (θ (1− β)− α) = 1+ϕ′ (β)+

(
ψα + ψβ

1 + κh
p

) g′ (θ (1− β)− α)− g(θ(1−β)−α)
θ(1−β)−α

θ (1− β)− α
+ψβ

ϕ′′

pθ
(A.25)

If κλ = 0 and κh → ∞, then ψα > 0 and ψβ = 0. Use Eq. (A.24) to substitute ψα out of

Eq. (A.25) and get one equation in terms of only αλ and βλ. The other equation comes from the

complementary slackness condition on ψα > 0, i.e., the binding implementation constraint (A.22)
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with κλ = 0. Thus, (αλ, βλ) solves

g′ (θ (1− βλ)− αλ) = 1+ϕ′ (βλ)+
f ′ (1− αλ)− 1− pϕ′ (βλ)

f ′′

g′ (θ (1− βλ)− αλ)− g(θ(1−βλ)−αλ)
θ(1−βλ)−αλ

θ (1− βλ)− αλ


p
g (θ (1− βλ)− αλ)

θ (1− βλ)− αλ
= f ′ (1− αλ)− (1− p)

These equations can be written more compactly. Define

G (x) ≡
g′ (x)− g(x)

x

1 + 1
x

(
g′ (x)− g(x)

x

)
θ
ϕ′′

where G′ (x) > 0 follows from ε′g (x) > 0. Then −f ′′ = pϕ′′

θ implies that (αλ, βλ) solves

g (xλ)

xλ
+G (xλ) = 1 + ϕ′ (βλ) (A.26)

g (xλ)

xλ
=
f ′ (1− αλ)− (1− p)

p
(A.27)

If κλ → ∞ and κh = 0, then ψα = 0 and ψβ > 0. Use Eq. (A.24) to substitute ψβ out of

Eq. (A.25) and get one equation in terms of only αh and βh. The other equation comes from the

complementary slackness condition on ψβ > 0, i.e., the binding implementation constraint (A.20)

with κh = 0. Thus, (αh, βh) solves

g′ (θ (1− βh)− αh) = 1+ϕ′ (βh)+
f ′ (1− αh)− 1− pϕ′ (βh)

pϕ′′

θ

g′ (θ (1− βh)− αh)− g(θ(1−βh)−αh)
θ(1−βh)−αh

θ (1− βh)− αh
+
ϕ′′

θ


g (θ (1− βh)− αh)

θ (1− βh)− αh
= 1 + ϕ′ (βh)

or equivalently
g (xh)

xh
= 1 + ϕ′ (βh) (A.28)

g (xh)

xh
+G (xh) =

f ′ (1− αh)− (1− p)

p
(A.29)

Recall that
(
λ̂, ĥ

)
solves Eqs. (A.3) and (A.5), which can be written as

g′ (x̂) = 1 + ϕ′
(
ĥ
)

(A.30)

g′ (x̂) =
f ′
(
1− λ̂

)
− (1− p)

p
(A.31)
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Subtract Eq. (A.30) from Eqs. (A.28) and (A.26) then apply ϕ′′′ (·) = 0 to get

g′ (x̂)− g (xh)

xh
=
(
ĥ− βh

)
ϕ′′ (A.32)

g′ (x̂)− g (xλ)

xλ
−G (xλ) =

(
ĥ− βλ

)
ϕ′′ (A.33)

Next, subtract Eq. (A.31) from Eqs. (A.29) and (A.27) then apply f ′′′ (·) = 0 and −f ′′ = pϕ′′

θ to

get

g′ (x̂)− g (xh)

xh
−G (xh) =

(
λ̂− αh

) ϕ′′
θ

(A.34)

g′ (x̂)− g (xλ)

xλ
=
(
λ̂− αλ

) ϕ′′
θ

(A.35)

Subtracting Eq. (A.32) from Eq. (A.35) gives

g (xh)

xh
− g (xλ)

xλ
=
(
λ̂− αλ − θ

(
ĥ− βh

)) ϕ′′
θ

(A.36)

while subtracting Eq. (A.33) from Eq. (A.34) gives

g (xλ)

xλ
+G (xλ)−

(
g (xh)

xh
+G (xh)

)
=
(
λ̂− αh − θ

(
ĥ− βλ

)) ϕ′′
θ

(A.37)

We now show that xh = xλ. The proof proceeds by contradiction. Suppose xh > xλ. Then

λ̂ − αλ > θ
(
ĥ− βh

)
from Eq. (A.36) and λ̂ − αh < θ

(
ĥ− βλ

)
from Eq. (A.37). Accordingly,(

λ̂− αλ

)
−
(
λ̂− αh

)
> θ

(
ĥ− βh

)
− θ

(
ĥ− βλ

)
or equivalently αh − αλ > θ (βλ − βh). But then

θ (1− βλ)− αλ > θ (1− βh)− αh, which means xλ > xh. This is a contradiction. Suppose instead

xλ > xh. Then λ̂ − αλ < θ
(
ĥ− βh

)
from Eq. (A.36) and λ̂ − αh > θ

(
ĥ− βλ

)
from Eq. (A.37).

Accordingly,
(
λ̂− αh

)
−
(
λ̂− αλ

)
> θ

(
ĥ− βλ

)
−θ
(
ĥ− βh

)
or equivalently αλ−αh > θ (βh − βλ).

But then θ (1− βh) − αh > θ (1− βλ) − αλ, which means xh > xλ. This is also a contradiction.

Therefore, xh = xλ and hence λ̂− αh = θ
(
ĥ− βλ

)
from Eq. (A.37). ■

Proof of Lemma 6

Recall from the proof of Proposition 6 that we can rewrite κh as

1 + κh =
x̂g′ (x̂)

g (x̂)

where the right-hand side is equivalent to the elasticity εg (x̂). Therefore,

dκh = ε′g (x̂) dx̂
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which implies
dκh
dp

sign
=

dx̂

dp
and

dκh
dθ

sign
=

dx̂

dθ

Next, recall that
{
λ̂, ĥ, x̂

}
solves the system

f ′
(
1− λ̂

)
= 1 + pϕ′

(
ĥ
)

g′ (x̂) = 1 + ϕ′
(
ĥ
)

x̂ = θ
(
1− ĥ

)
− λ̂

Differentiating yields

−f ′′
(
1− λ̂

)
dλ̂ = ϕ′

(
ĥ
)
dp+ pϕ′′

(
ĥ
)
dĥ

g′′ (x̂) dx̂ = ϕ′′
(
ĥ
)
dĥ

dx̂ =
(
1− ĥ

)
dθ − θdĥ− dλ̂

which combines to give1 +

 θ

ϕ′′
(
ĥ
) +

p

−f ′′
(
1− λ̂

)
 g′′ (x̂)

 dx̂ =
(
1− ĥ

)
dθ −

ϕ′
(
ĥ
)

−f ′′
(
1− λ̂

)dp
Therefore, dx̂

dp < 0 and dx̂
dθ > 0.

Turning next to κλ, recall again from the proof of Proposition 6 that

1

1− κλ
=
pg′ (x̂) + 1− p

pg(x̂)x̂ + 1− p

which rearranges to

κλ =
εg (x̂)− 1

εg (x̂)
(
1 + 1−p

pg′(x̂)

)
Therefore,

dκλ
dθ

=
ε′g (x̂)

(
1 + 1−p

p
x̂

g(x̂)

)
+ (εg (x̂)− 1)2 1−p

p
1

g(x̂)(
εg (x̂) +

1−p
p

x̂
g(x̂)

)2 dx̂

dθ

which implies dκλ
dθ

sign
= dx̂

dθ and hence dκλ
dθ > 0. Moreover,

κh
κλ

= εg (x̂)

(
1 +

1− p

pg′ (x̂)

)
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and thus
d
(
κh
κλ

)
dp

= ε′g (x̂)

(
1 +

1− p

pg′ (x̂)

)
dx̂

dp
− εg (x̂)

pg′ (x̂)

(
1 +

1− p

pg′ (x̂)

d (pg′ (x̂))

dp

)
The first term on the right-hand side is negative by dx̂

dp < 0. A sufficient condition for the second

term to also be negative is d(pg′(x̂))
dp > 0. From (A.3) and (A.5), we can write

pg′ (x̂) = f ′
(
1− λ̂

)
− (1− p)

and hence
d (pg′ (x̂))

dp
= −f ′′

(
1− λ̂

) dλ̂
dp

+ 1 > 0

where the inequality follows from dλ̂
dp > 0 as established in Lemma 3. Therefore,

d
(

κh
κλ

)
dp < 0. ■

Proof of Lemma 7

Bank first order conditions are still given by Eqs. (5) and (6) but with

q =
θ (1− h)− λ− b

g (θ (1− h)− λ− b)

Therefore, the decentralized equilibrium is now characterized by Eq. (A.3) and

g (θ (1− h)− λ− b)

θ (1− h)− λ− b
= 1 + ϕ′ (h)

Differentiating these equations gives

dλ

db
=

pϕ′′ (h)

−f ′′ (1− λ)

dh

db

−
g′ (θ (1− h)− λ− b)− g(θ(1−h)−λ−b)

θ(1−h)−λ−b

θ (1− h)− λ− b

(
θ
dh

db
+
dλ

db
+ 1

)
= ϕ′′ (h)

dh

db

which rearranges to give dh
db < 0 and hence dλ

db < 0. ■

Proof of Proposition 8

Assume the planner can commit to a level of b at t = 0, at the same time that he is choosing the

regulations α and β (or equivalently α and x). The planner’s objective function, Π̃ (·) − pνb, can

be expressed as

α+ f (1− α)− pg (x− b) + px− pθϕ

(
1− α+ x

θ

)
− pνb− 1
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following similar steps to the proof of Proposition 6. Absent implementation constraints, the

Lagrangian is

L = α+ f (1− α)− pg (x− b) + px− pθϕ

(
1− α+ x

θ

)
− pνb+ ηbb

where ηb ≥ 0 is the Lagrange multiplier on the non-negativity constraint b ≥ 0.

The first order conditions with respect to α, x, and b are respectively

f ′ (1− α) = 1 + pϕ′ (β)

g′ (θ (1− β)− α− b) = 1 + ϕ′ (β)

ηb = p
(
ν − g′ (θ (1− β)− α− b)

)
where we have substituted out x ≡ θ (1− β)−α. If b = 0, then (i) {α, β} =

{
λ̂, ĥ

}
and (ii) ηb ≥ 0,

so confirming b = 0 requires

ν ≥ g′
(
θ
(
1− ĥ

)
− λ̂

)
≡ ν0

If instead ν < ν0, then it must be the case that b > 0 with ηb = 0, i.e.,

g′ (θ (1− β)− α− b) = ν

and therefore

1 + ϕ′ (β) = ν < ν0 = 1 + ϕ′
(
ĥ
)

Thus, ν < ν0 implies β < ĥ which further implies α < λ̂ from f ′ (1− α) = 1 + pϕ′ (β).

Now assume the planner cannot commit to a level of b at t = 0. Then b is chosen at t = 1

to maximize −g (x− b) − νb + ηbb if the stress state is realized while α and x are still chosen at

t = 0 anticipating the choice of b. The resulting first order conditions are exactly as above, so the

optimal policy is the same. ■

Proof of Proposition 9

The planner’s implementation constraints are

p

q
≥ (1− κλ) f

′ (1− λ)− (1− p) −→ p
g (x− b)

x− b
≥ (1− κλ) f

′ (1− α)− (1− p) (A.38)

1 + κh
q

≥ 1 + ϕ′ (h) −→ (1 + κh)
g (x− b)

x− b
≥ 1 + ϕ′

(
1− α+ x

θ

)
(A.39)

If both implementation constraints are slack, then the planner solves the same problem as in

the proof of Proposition 8. Accordingly, {α, β, b} =
{
λ̂, ĥ, 0

}
if ν ≥ ν0 and it follows that both

implementation constraints are slack if κλ ≥ κλ and κh ≥ κh.

Consider next (A.38) slack and (A.39) binding, assuming commitment. Then the planner’s
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problem is

max
x,b

{
α (x, b) + f (1− α (x, b))− pg (x− b) + px− pθϕ

(
1− α (x, b) + x

θ

)
− pνb+ ηbb

}
where the binding implementation constraint implicitly defines α (x, b). The first order conditions

for x and b are respectively

g′ (x− b) = 1 + ϕ′
(
1− α+ x

θ

)
+

1

p

(
f ′ (1− α)− 1− pϕ′

(
1− α+ x

θ

))
(1 +Kb (α, x, b;κh))

(A.40)

ηb = p
(
ν − g′ (x− b)

)
−
(
1 + pϕ′

(
1− α+ x

θ

)
− f ′ (1− α)

)
Kb (α, x, b;κh) (A.41)

where

Kb (α, x, b;κh) ≡
θ (1 + κh)

(
g′ (x− b)− g(x−b)

x−b

)
(x− b)ϕ′′

(
1− α+x

θ

)
The planner’s solution is a triple {α, x, b} solving Eqs. (A.40), (A.41), and (A.39) with equality.

Notice that
{
λ̂, x̂, 0

}
satisfies these equations if κh = κh and ν = ν0. Differentiate to get dα

dκh
, dx
dκh

,

and db
dκh

then evaluate at κh = κh to get

g′′ (x̂) (dx− db) = −
ϕ′′
(
ĥ
)

θ
(dα+ dx)+

1

p

pϕ′′
(
ĥ
)

θ
(dα+ dx)− f ′′

(
1− λ̂

)
dα

(1 +Kb

(
λ̂, x̂, 0;κh

))

dηb = −pg′′ (x̂) (dx− db) +

pϕ′′
(
ĥ
)

θ
(dα+ dx)− f ′′

(
1− λ̂

)
dα

Kb

(
λ̂, x̂, 0;κh

)

g (x̂)

x̂
dκh +

1 + κh
x̂

(
g′ (x̂)− g (x̂)

x̂

)
(dx− db) = −

ϕ′′
(
ĥ
)

θ
(dα+ dx)

=⇒

g′′ (x̂) (dx− db) =
ϕ′′
(
ĥ
)

θ
Kb

(
λ̂, x̂, 0;κh

)
(dα+ dx)−

f ′′
(
1− λ̂

)
p

(
1 +Kb

(
λ̂, x̂, 0;κh

))
dα

dηb = f ′′
(
1− λ̂

)
dα

θ

ϕ′′
(
ĥ
) g (x̂)

x̂
dκh +

(
1 +Kb

(
λ̂, x̂, 0;κh

))
dx−Kb

(
λ̂, x̂, 0;κh

)
db = −dα

If dηb = 0, then
dα

dκh

∣∣∣∣
κh=κh

= 0
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dx

dκh

∣∣∣∣
κh=κh

= −
g′′ (x̂) θ

ϕ′′(ĥ)
g(x̂)
x̂

g′′ (x̂) +
ϕ′′(ĥ)

θ

(
Kb

(
λ̂, x̂, 0;κh

))2 < 0

db

dκh

∣∣∣∣
κh=κh

=

g(x̂)
x̂

(
Kb

(
λ̂, x̂, 0;κh

)
− θg′′(x̂)

ϕ′′(ĥ)

)
g′′ (x̂) +

ϕ′′(ĥ)
θ

(
Kb

(
λ̂, x̂, 0;κh

))2 = −
θ

ϕ′′(ĥ)

(
g(x̂)
x̂

)2
ε′g (x̂)

g′′ (x̂) +
ϕ′′(ĥ)

θ

(
Kb

(
λ̂, x̂, 0;κh

))2 < 0

Therefore, a perturbation of κh below κh leads to b > 0, which requires ηb = 0, confirming dηb = 0

when ν = ν0. Moreover, α = λ̂ and x > x̂, which together imply β < ĥ. The case of dηb ̸= 0 can

be ruled out as follows. If dηb
dκh

∣∣∣
κh=κh

̸= 0, then db
dκh

∣∣∣
κh=κh

= 0 and hence

dα

dκh

∣∣∣∣
κh=κh

= −
θ

ϕ′′(ĥ)

(
g(x̂)
x̂

)2
ε′g (x̂)

g′′ (x̂) +
ϕ′′(ĥ)

θ

(
Kb

(
λ̂, x̂, 0;κh

))2
+

−f ′′(1−λ̂)
p

(
1 +Kb

(
λ̂, x̂, 0;κh

))2 < 0

dηb
dκh

∣∣∣∣
κh=κh

= f ′′
(
1− λ̂

) dα

dκh

∣∣∣∣
κh=κh

> 0

But then a perturbation of κh below κh leads to ηb < 0 which is impossible since ηb ≥ 0 is a

Lagrange multiplier.

Now consider (A.39) slack and (A.38) binding, again assuming commitment. The planner’s

problem is the same but with α (x, b) implicitly defined by (A.38) binding. The first order conditions

for x and b are respectively

g′ (x− b) = 1 + ϕ′
(
1− α+ x

θ

)
+

1

p

(
1 + pϕ′

(
1− α+ x

θ

)
− f ′ (1− α)

)
K̃b (α, x, b;κλ) (A.42)

ηb = p
(
ν − g′ (x− b)

)
+

(
1 + pϕ′

(
1− α+ x

θ

)
− f ′ (1− α)

)
K̃b (α, x, b;κλ) (A.43)

where

K̃b (α, x, b;κλ) ≡
p
(
g′ (x− b)− g(x−b)

x−b

)
− (1− κλ) f ′′ (1− α) (x− b)

The planner’s solution is a triple {α, x, b} solving Eqs. (A.42), (A.43), and (A.38) with equality.

Notice that
{
λ̂, x̂, 0

}
satisfies these equations if κλ = κλ and ν = ν0. Differentiate to get dα

dκλ
, dx
dκλ

,

and db
dκλ

then evaluate at κλ = κλ to get

g′′ (x̂) (dx− db) = −
ϕ′′
(
ĥ
)

θ
(dα+ dx)− 1

p

pϕ′′
(
ĥ
)

θ
(dα+ dx)− f ′′

(
1− λ̂

)
dα

 K̃b

(
λ̂, x̂, 0;κλ

)

dηb = −pg′′ (x̂) (dx− db)−

pϕ′′
(
ĥ
)

θ
(dα+ dx)− f ′′

(
1− λ̂

)
dα

 K̃b

(
λ̂, x̂, 0;κλ

)
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p

x̂

(
g′ (x̂)− g (x̂)

x̂

)
(dx− db) = −f ′

(
1− λ̂

)
dκλ − (1− κλ) f

′′
(
1− λ̂

)
dα

=⇒

g′′ (x̂) (dx− db) = −
ϕ′′
(
ĥ
)

θ

(
1 + K̃b

(
λ̂, x̂, 0;κλ

))
(dα+ dx) +

f ′′
(
1− λ̂

)
p

K̃b

(
λ̂, x̂, 0;κλ

)
dα

dηb =
pϕ′′

(
ĥ
)

θ
(dα+ dx)

K̃b

(
λ̂, x̂, 0;κλ

)
(dx− db) +

f ′
(
1− λ̂

)
− (1− κλ) f ′′

(
1− λ̂

)dκλ = dα

If dηb = 0, then
dα

dκλ

∣∣∣∣
κλ=κλ

= − dx

dκλ

∣∣∣∣
κλ=κλ

> 0

dx

dκλ

∣∣∣∣
κλ=κλ

= −

f ′(1−λ̂)g′′(x̂)
−(1−κλ)f ′′(1−λ̂)

g′′ (x̂) +
−f ′′(1−λ̂)

p

(
K̃b

(
λ̂, x̂, 0;κλ

))2 < 0

db

dκλ

∣∣∣∣
κλ=κλ

= −

f ′(1−λ̂)
−(1−κλ)f ′′(1−λ̂)

(
g′′ (x̂)− −f ′′(1−λ̂)

p K̃b

(
λ̂, x̂, 0;κλ

))
g′′ (x̂) +

−f ′′(1−λ̂)
p

(
K̃b

(
λ̂, x̂, 0;κλ

))2

= −

f ′(1−λ̂)
−(1−κλ)f ′′(1−λ̂)

(
g(x̂)
x̂ ε′g (x̂) +

(1−p)
(
g′(x̂)− g(x̂)

x̂

)2

g(x̂)
(
p
g(x̂)
x̂

+1−p
)
)

g′′ (x̂) +
−f ′′(1−λ̂)

p

(
K̃b

(
λ̂, x̂, 0;κλ

))2 < 0

Therefore, a perturbation of κλ below κλ leads to b > 0, which requires ηb = 0, confirming dηb = 0

when ν = ν0. Moreover, α < λ̂ and α + x = λ̂+ x̂, which implies β = ĥ. The case of dηb ̸= 0 can

be ruled out as follows. If dηb
dκλ

∣∣∣
κλ=κλ

̸= 0, then db
dκλ

∣∣∣
κλ=κλ

= 0 and hence

dηb
dκλ

∣∣∣∣
κλ=κλ

=

f ′(1−λ̂)
−(1−κλ)f ′′(1−λ̂)

pϕ′′(ĥ)
θ

(
g(x̂)
x̂ ε′g (x̂) +

(1−p)
(
g′(x̂)− g(x̂)

x̂

)2

g(x̂)
(
p
g(x̂)
x̂

+1−p
)
)

g′′ (x̂) +
ϕ′′(ĥ)

θ

(
1 + K̃b

(
λ̂, x̂, 0;κλ

))2
+

−f ′′(1−λ̂)
p

(
K̃b

(
λ̂, x̂, 0;κλ

))2 > 0

But then a perturbation of κλ below κλ leads to ηb < 0 which is impossible since ηb ≥ 0 is a

Lagrange multiplier.
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Now assume the planner cannot commit. Without commitment, the choice of b is governed by

ηb
p

= ν − g′ (x− b) (A.44)

while the choices of α and x are still governed by the same equations as with commitment.

In the first case where (A.38) is slack and (A.39) is binding, the planner’s solution is a triple

{α, x, b} solving Eqs. (A.40), (A.44), and (A.39) with equality. Once again,
{
λ̂, x̂, 0

}
satisfies these

equations if κh = κh and ν = ν0. Differentiate to get dα
dκh

, dx
dκh

, and db
dκh

then evaluate at κh = κh

to get

g′′ (x̂) (dx− db) =
ϕ′′
(
ĥ
)

θ
Kb

(
λ̂, x̂, 0;κh

)
(dα+ dx)−

f ′′
(
1− λ̂

)
p

(
1 +Kb

(
λ̂, x̂, 0;κh

))
dα

g (x̂)

x̂
dκh +

1 + κh
x̂

(
g′ (x̂)− g (x̂)

x̂

)
(dx− db) = −

ϕ′′
(
ĥ
)

θ
(dα+ dx)

dηb = −pg′′ (x̂) (dx− db)

If dηb ̸= 0, then db = 0 and hence

dx

dκh

∣∣∣∣
κh=κh

= −
g(x̂)
x̂

1+κh
x̂

(
g′ (x̂)− g(x̂)

x̂

)
+

g′′(x̂)− f ′′(1−λ̂)
p (1+Kb(λ̂,x̂,0;κh))

Kb(λ̂,x̂,0;κh)−
f ′′(1−λ̂)

p (1+Kb(λ̂,x̂,0;κh)) θ

ϕ′′(ĥ)

< 0

dηb
dκh

∣∣∣∣
κh=κh

= −pg′′ (x̂) dx

dκh

∣∣∣∣
κh=κh

> 0

But then a perturbation of κh below κh leads to ηb < 0 which is impossible since ηb ≥ 0 is a

Lagrange multiplier. Therefore, dηb = 0, which implies

dα

dκh

∣∣∣∣
κh=κh

= − p

f ′′
(
1− λ̂

) g (x̂)
x̂

Kb

(
λ̂, x̂, 0;κh

)
1 +Kb

(
λ̂, x̂, 0;κh

) > 0

dx

dκh

∣∣∣∣
κh=κh

= −

1−
f ′′
(
1− λ̂

)
p

θ

ϕ′′
(
ĥ
) 1 +Kb

(
λ̂, x̂, 0;κh

)
Kb

(
λ̂, x̂, 0;κh

)
 dα

dκh

∣∣∣∣
κh=κh

< 0

db

dκh

∣∣∣∣
κh=κh

=
dx

dκh

∣∣∣∣
κh=κh

< 0

dβ

dκh

∣∣∣∣
κh=κh

= −1

θ

(
dα

dκh

∣∣∣∣
κh=κh

+
dx

dκh

∣∣∣∣
κh=κh

)
=

1

ϕ′′
(
ĥ
) g (x̂)

x̂
> 0

A perturbation of κh below κh still leads to b > 0, which requires ηb = 0, confirming dηb = 0 when
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ν = ν0. However, now α < λ̂ and β < ĥ.

In the second case where (A.39) is slack and (A.38) is binding, the planner’s solution is a triple

{α, x, b} solving Eqs. (A.42), (A.44), and (A.38) with equality. Once again,
{
λ̂, x̂, 0

}
satisfies these

equations if κλ = κλ and ν = ν0. Differentiate to get dα
dκλ

, dx
dκλ

, and db
dκλ

then evaluate at κλ = κλ

to get

g′′ (x̂) (dx− db) = −
ϕ′′
(
ĥ
)

θ
(dα+ dx)− 1

p

pϕ′′
(
ĥ
)

θ
(dα+ dx)− f ′′

(
1− λ̂

)
dα

 K̃b

(
λ̂, x̂, 0;κλ

)

p

x̂

(
g′ (x̂)− g (x̂)

x̂

)
(dx− db) = −f ′

(
1− λ̂

)
dκλ − (1− κλ) f

′′
(
1− λ̂

)
dα

dηb = −pg′′ (x̂) (dx− db)

If dηb ̸= 0, then db = 0 and hence

dx

dκλ

∣∣∣∣
κλ=κλ

= −
f ′
(
1− λ̂

)
p
x̂

(
g′ (x̂)− g(x̂)

x̂

)
−

(1−κλ)f ′′(1−λ̂)
(
g′′(x̂)+

ϕ′′(ĥ)
θ (1+K̃b(λ̂,x̂,0;κλ))

)
ϕ′′(ĥ)

θ (1+K̃b(λ̂,x̂,0;κλ))−
f ′′(1−λ̂)

p
K̃b(λ̂,x̂,0;κλ)

< 0

dηb
dκλ

∣∣∣∣
κλ=κλ

= −pg′′ (x̂) dx

dκλ

∣∣∣∣
κλ=κλ

> 0

But then a perturbation of κλ below κλ leads to ηb < 0 which is impossible since ηb ≥ 0 is a

Lagrange multiplier. Therefore, dηb = 0, which implies

dα

dκλ

∣∣∣∣
κλ=κλ

=
f ′
(
1− λ̂

)
− (1− κλ) f ′′

(
1− λ̂

) > 0

db

dκλ

∣∣∣∣
κλ=κλ

=
dx

dκλ

∣∣∣∣
κλ=κλ

= −

1−
f ′′
(
1− λ̂

)
p

θ

ϕ′′
(
ĥ
) K̃b

(
λ̂, x̂, 0;κλ

)
1 + K̃b

(
λ̂, x̂, 0;κλ

)
 dα

dκλ

∣∣∣∣
κλ=κλ

< 0

dβ

dκλ

∣∣∣∣
κλ=κλ

= −1

θ

(
dα

dκλ

∣∣∣∣
κλ=κλ

+
dx

dκλ

∣∣∣∣
κλ=κλ

)
= −

f ′′
(
1− λ̂

)
p

1

ϕ′′
(
ĥ
) K̃b

(
λ̂, x̂, 0;κλ

)
1 + K̃b

(
λ̂, x̂, 0;κλ

) dα

dκλ

∣∣∣∣
κλ=κλ

> 0

A perturbation of κλ below κλ still leads to b > 0, which requires ηb = 0, confirming dηb = 0 when

ν = ν0. However, now α < λ̂ and β < ĥ. ■
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Proof of Lemma 8

The planner implements ηωλ
≥ 0 and ηωh

≥ 0 in Eqs. (A.6) to (A.9) with ωλ = ωh = 0. The only

change to the expressions for κλ and κh in the proof of Proposition 5 is that q is now given by

q =
θ (1− h)− λ− b

g (θ (1− h)− λ− b)

Therefore,

κ̃λ ≡ 1−
pg(x̃)x̃ + 1− p

pg′ (x̃) + 1− p

and

κ̃h ≡ εg (x̃)− 1

where x̃ ≡ θ (1− β)−α− b with {α, β, b} as characterized in the proof of Proposition 8. If ν ≤ ν0,

then x̃ solves g′ (x̃) = ν, which implies dx̃
dν > 0. Combined with

dκ̃λ
dx̃

=

p
x̃

(
ε′g (x̃) g (x̃)

(
pg(x̃)x̃ + 1− p

)
+ (1− p) (εg (x̃)− 1)

(
g′ (x̃)− g(x̃)

x̃

))
(pg′ (x̃) + 1− p)2

> 0

and
dκ̃h
dx̃

= ε′g (x̃) > 0

this means that dκ̃λ
dν > 0 and dκ̃h

dν > 0. ■

Proof of Lemma 9

Away from the optimal regulation, shadow activities may be triggered. In the presence of bailouts,

the bank’s objective function is a slightly modified version of Π̃ (·) in Section 3.1, namely

Π̃b (·) = (1− p) [λ+ f (1− λ− κλωλλ)− 1]

+p

[
f (1− λ− κλωλλ)−

θ (1− h+ κhωhh)− λ− b

q
− (1− θ)− θh

]
− pθϕ (h)

which takes into account the effect of the bailout b on the cash shortfall that must be covered via

project sales. The bank’s first order conditions are as in the proof of Proposition 4, namely Eqs.

(A.6) to (A.9), but with the price q given by

q =
θ (1− h+ κhωhh)− λ− b

g (θ (1− h+ κhωhh)− λ− b)

instead of Eq. (10).

Social welfare is Π̃b (·)− pνb, the endogenous component of which can be expressed as

W ≡ (1− p)λ+ f (1− λ− κλωλλ)− pg (θ (1− h+ κhωhh)− λ− b)− pθ (h+ ϕ (h))− pνb
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after subbing in for q, simplifying, and dropping constant terms.

Recall from the proof of Proposition 8 that a planner operating in the absence of shadow

activities chooses {α, β, b} solving

f ′ (1− α) = 1 + pϕ′ (β) (A.45)

g′ (θ (1− β)− α− b) = 1 + ϕ′ (β) (A.46)

1 + ϕ′ (β) = ν (A.47)

if ν < ν0. If instead ν ≥ ν0, then the planner chooses {α, β, b} solving Eqs. (A.45) and (A.46) with

b = 0, which returns {α, β, b} =
{
λ̂, ĥ, 0

}
.

The first case to consider is ωλ > 0 and ωh = 0. Eqs. (A.10) and (A.12) apply along with the

complementary slackness condition in (A.15). If h > β, then (A.15) implies 1 + ϕ′ (h) = 1
q , which

when combined with (A.10), gives

(1− κλ) f
′ (1− λ− κλ (α− λ)) = 1 + pϕ′ (h) > 1 + pϕ′ (β) = f ′ (1− α)

but this requires 1 − λ − κλ (α− λ) < 1 − α, or equivalently (1− κλ) (α− λ) < 0, which is false.

Therefore, h = β. Welfare is then

W1 = (1− p)
α

1 + ωλ
+ f

(
1− 1 + κλωλ

1 + ωλ
α

)
− pg

(
θ (1− β)− α

1 + ωλ
− b

)
− pθ (β + ϕ (β))− pνb

where ωλ solves

p
g
(
θ (1− β)− α

1+ωλ
− b
)

θ (1− β)− α
1+ωλ

− b
= (1− κλ) f

′
(
1− 1 + κλωλ

1 + ωλ
α

)
− (1− p)

The partial derivative is

∂W1

∂ωλ
=

[
(1− κλ) f

′
(
1− 1 + κλωλ

1 + ωλ
α

)
− (1− p)− pg′

(
θ (1− β)− α

1 + ωλ
− b

)]
α

(1 + ωλ)
2

= −p

g′(θ (1− β)− α

1 + ωλ
− b

)
−
g
(
θ (1− β)− α

1+ωλ
− b
)

θ (1− β)− α
1+ωλ

− b

 α

(1 + ωλ)
2

where the second line follows from the solution for ωλ. Evaluating at κλ = κλ where ωλ = 0,

∂W1

∂ωλ

∣∣∣∣
κλ=κλ

= −p
(
g′ (θ (1− β)− α− b)− g (θ (1− β)− α− b)

θ (1− β)− α− b

)
α < 0

The second case to consider is ωλ = 0 and ωh > 0. Eqs. (A.11) and (A.13) apply along with the

complementary slackness condition in (A.16). If λ > α, then (A.16) implies f ′ (1− λ)−(1− p) = p
q ,
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which when combined with (A.11), gives

1 + pϕ′ (h) = f ′ (1− λ) +
κh

1 + κh
p
(
1 + ϕ′ (h)

)
> f ′ (1− λ) > f ′ (1− α) = 1 + pϕ′ (β)

but this requires h > β, which is false. Therefore, λ = α. Welfare is then

W2 = (1− p)α+f (1− α)−pg
(
θ

(
1− 1− κhωh

1 + ωh
β

)
− α− b

)
−pθ

(
β

1 + ωh
+ ϕ

(
β

1 + ωh

))
−pνb

where ωh solves

(1 + κh)
g
(
θ
(
1− 1−κhωh

1+ωh
β
)
− α− b

)
θ
(
1− 1−κhωh

1+ωh
β
)
− α− b

= 1 + ϕ′
(

β

1 + ωh

)
The partial derivative is

∂W2

∂ωh
= −pθ

[
(1 + κh) g

′
(
θ

(
1− 1− κhωh

1 + ωh
β

)
− α− b

)
−
(
1 + ϕ′

(
β

1 + ωh

))]
β

(1 + ωh)
2

= −pθ (1 + κh)

g′(θ(1− 1− κhωh

1 + ωh
β

)
− α− b

)
−
g
(
θ
(
1− 1−κhωh

1+ωh
β
)
− α− b

)
θ
(
1− 1−κhωh

1+ωh
β
)
− α− b

 β

(1 + ωh)
2

where the second line follows from the solution for ωh. Evaluating at κh = κh where ωh = 0,

∂W2

∂ωh

∣∣∣∣
κh=κh

= −pθ (1 + κh)

(
g′ (θ (1− β)− α− b)− g (θ (1− β)− α− b)

θ (1− β)− α− b

)
β < 0

Therefore,
∂W2

∂ωh

∣∣∣∣
κh=κh

= (1 + κh)
θβ

α

∂W1

∂ωλ

∣∣∣∣
κλ=κλ

Since both partial derivatives are negative, ∂W2
∂ωh

∣∣∣
κh=κh

< ∂W1
∂ωλ

∣∣∣
κλ=κλ

if and only if (1 + κh)
θβ
α > 1.

Recall from Lemma 3 that d
dp

(
ĥ

λ̂

)
< 0, which applies for ν ≥ ν0. If instead ν < ν0, then differentiate

Eqs. (A.45), (A.46), and (A.47) to also find d
dp

(
β
α

)
< 0. As p → 0, Eq. (A.45) implies α → 0.

If ν ≥ ν0 so that b = 0, then β > 0 is implied from Eq. (A.46) by g′ (θ) > 1 and the assumption

of ϕ′ (0) = 0. If ν < ν0 so that b > 0, then β > 0 is implied from Eq. (A.47) by ν > 1 and the

assumption of ϕ′ (0) = 0. Accordingly, (1 + κh)
θβ
α > 1 is satisfied for low p. ■

Proof of Proposition 10

The Lagrangian of a planner who takes into account the threat of both shadow activities (informed

planner) is
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L = α+ f (1− α)− pg (x− b) + px− pθϕ

(
1− α+ x

θ

)
− pνb+ ηbb

+ψα

[
p
g (x− b)

x− b
− (1− κλ) f

′ (1− α) + (1− p)

]
+ ψβ

[
(1 + κh)

g (x− b)

x− b
− 1− ϕ′

(
1− α+ x

θ

)]
If the planner can commit to a bailout level at t = 0, then the first order condition for b is given by

ηb
p

= ν − g′ (x− b) +

(
ψα + ψβ

1 + κh
p

)
g′ (x− b)− g(x−b)

x−b

x− b
(A.48)

Otherwise, it is given by Eq. (A.44).

Consider κλ = κh = 0, in which case regulation is ineffective, i.e., λ = λ∗ and h = h∗ for

any α and β. Without commitment, Eq. (A.44) implies that the planner chooses b > 0 as ν is

perturbed below g′ (x∗). With commitment, Eq. (A.48) implies that the planner chooses b = 0

as ν is perturbed below g′ (x∗). The case with commitment therefore recovers the decentralized

equilibrium with no regulation and no bailout in Section 2.2. Since the planner cannot do worse

with commitment than without, it follows that the decentralized equilibrium achieves higher welfare

than the case without commitment.

To prove the second part of the proposition, it will suffice to show that an informed planner

achieves strictly higher welfare than a naive planner as κλ or κh increases from zero. That an

informed planner cannot achieve strictly lower welfare than a naive planner follows immediately

from the fact that any policy chosen by the naive planner is available to the informed planner, so

we only need to rule out that these two planners achieve the same welfare as κλ or κh is perturbed

above zero. This is straightforward, but the formal proof follows.

Assume no commitment and ν ≤ g′ (x∗). Welfare achieved by a naive planner who triggers both

shadow activities is

Wn ≡ (1− p)
α

1 + ωλ
+ f

(
1− (1 + κλωλ)α

1 + ωλ

)
− pg

(
θ

(
1− (1− κhωh)β

1 + ωh

)
− α

1 + ωλ
− b

)
−pθ

(
β

1 + ωh
+ ϕ

(
β

1 + ωh

))
− pνb

where

dWn

dκλ
=

 (1− κλ) f
′
(
1− (1+κλωλ)α

1+ωλ

)
− (1− p)

−pg′
(
θ
(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
− b
)  α

(1 + ωλ)
2

dωλ

dκλ

+pθ

 1 + ϕ′
(

β
1+ωh

)
− (1 + κh) g

′
(
θ
(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
− b
)  β

(1 + ωh)
2

dωh

dκλ

+p

(
g′
(
θ

(
1− (1− κhωh)β

1 + ωh

)
− α

1 + ωλ
− b

)
− ν

)
db

dκλ
− f ′

(
1− (1 + κλωλ)α

1 + ωλ

)
αωλ

1 + ωλ
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and

dWn

dκh
=

 (1− κλ) f
′
(
1− (1+κλωλ)α

1+ωλ

)
− (1− p)

−pg′
(
θ
(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
− b
)  α

(1 + ωλ)
2

dωλ

dκh

+pθ

 1 + ϕ′
(

β
1+ωh

)
− (1 + κh) g

′
(
θ
(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
− b
)  β

(1 + ωh)
2

dωh

dκh

+p

(
g′
(
θ

(
1− (1− κhωh)β

1 + ωh

)
− α

1 + ωλ
− b

)
− ν

)
db

dκh

−pθg′
(
θ

(
1− (1− κhωh)β

1 + ωh

)
− α

1 + ωλ
− b

)
βωh

1 + ωh

Use the bank first order conditions in Eqs. (A.10) to (A.13) and the relevant expression for q in

the proof of Lemma 9 to reduce these derivatives to

dWn

dκλ
= p


g

(
θ

(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
−b

)
θ

(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
−b

−g′
(
θ
(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
− b
)

(

α

(1 + ωλ)
2

dωλ

dκλ
+
θ (1 + κh)β

(1 + ωh)
2

dωh

dκλ

)

+p

(
g′
(
θ

(
1− (1− κhωh)β

1 + ωh

)
− α

1 + ωλ
− b

)
− ν

)
db

dκλ

−f ′
(
1− (1 + κλωλ)α

1 + ωλ

)
αωλ

1 + ωλ

and

dWn

dκh
= p


g

(
θ

(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
−b

)
θ

(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
−b

−g′
(
θ
(
1− (1−κhωh)β

1+ωh

)
− α

1+ωλ
− b
)

(

α

(1 + ωλ)
2

dωλ

dκh
+
θ (1 + κh)β

(1 + ωh)
2

dωh

dκh

)

+p

(
g′
(
θ

(
1− (1− κhωh)β

1 + ωh

)
− α

1 + ωλ
− b

)
− ν

)
db

dκh

−pθg′
(
θ

(
1− (1− κhωh)β

1 + ωh

)
− α

1 + ωλ
− b

)
βωh

1 + ωh

For κλ = κh = 0,

dWn

dκλ

∣∣∣∣
κλ=κh=0

= −p
(
g′ (x∗ − b)− g (x∗ − b)

x∗ − b

)(
(λ∗)2

λ̂

dωλ

dκλ

∣∣∣∣
κλ=κh=0

+ θ
(h∗)2

ĥ

dωh

dκλ

∣∣∣∣
κλ=κh=0

)
−f ′ (1− λ∗)

(
λ̂− λ∗

)
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and

dWn

dκh

∣∣∣∣
κλ=κh=0

= −p
(
g′ (x∗ − b)− g (x∗ − b)

x∗ − b

)(
(λ∗)2

λ̂

dωλ

dκh

∣∣∣∣
κλ=κh=0

+ θ
(h∗)2

ĥ

dωh

dκh

∣∣∣∣
κλ=κh=0

)
−pθg′ (x∗ − b)

(
ĥ− h∗

)
where we have used the fact that the naive planner sets {α, β} =

{
λ̂, ĥ

}
, banks choose {λ, h} =

{λ∗, h∗}, and b is then pinned down by g′ (x∗ − b) = ν. As κλ or κh is perturbed above zero, b is

pinned down by

g′ (θ (1− h+ κhωhh)− λ− b) = ν

so
d (θ (1− h+ κhωhh)− λ− b)

dκλ
=
d (θ (1− h+ κhωhh)− λ− b)

dκh
= 0

and therefore
dq

dκλ
=

dq

dκh
= 0

Differentiating Eqs. (A.10) to (A.13) and evaluating at κλ = κh = 0 then yields

f ′ (1− λ∗) = −f ′′ (1− λ∗)

(
λ̂− λ∗ − (λ∗)2

λ̂

dωλ

dκλ

∣∣∣∣
κλ=κh=0

)

dωh

dκλ

∣∣∣∣
κλ=κh=0

= 0

and
dωλ

dκh

∣∣∣∣
κλ=κh=0

= 0

g (x∗ − b)

x∗ − b
= −ϕ′′ (h∗) (h

∗)2

ĥ

dωh

dκh

∣∣∣∣
κλ=κh=0

Accordingly,

dWn

dκλ

∣∣∣∣
κλ=κh=0

= −p
(
g′ (x∗ − b)− g (x∗ − b)

x∗ − b

)(
λ̂− λ∗ +

f ′ (1− λ∗)

f ′′ (1− λ∗)

)
− f ′ (1− λ∗)

(
λ̂− λ∗

)
and

dWn

dκh

∣∣∣∣
κλ=κh=0

= pθ

(
g′ (x∗ − b)− g (x∗ − b)

x∗ − b

)
g (x∗ − b)

x∗ − b

1

ϕ′′ (h∗)
− pθg′ (x∗ − b)

(
ĥ− h∗

)
Now consider the welfare achieved by an informed planner around κλ = κh = 0,

Wi ≡ α+ f (1− α)− pg (x− b) + px− pθϕ

(
1− α+ x

θ

)
− pνb
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where α and x solve the implementation constraints (A.38) and (A.39) with equality and b is pinned

down by g′ (x− b) = ν. Notice that changes in x must be exactly offset by changes in b so that

g′ (x− b) = ν continues to hold. We can then see from (A.38) binding that α cannot change with

κh and from (A.39) binding that α+ x cannot change with κλ, hence

dWi

dκλ
=
(
1− p− f ′ (1− α) + pν

) f ′ (1− α)

− (1− κλ) f ′′ (1− α)

and
dWi

dκh
= −pθ

(
1 + ϕ′

(
1− α+ x

θ

)
− ν

)
g (x− b)

x− b

1

ϕ′′
(
1− α+x

θ

)
Evaluating at κλ = κh = 0 and using g′ (x∗ − b) = ν to substitute out for ν gives

dWi

dκλ

∣∣∣∣
κλ=κh=0

=
(
1− p− f ′ (1− λ∗) + pg′ (x∗ − b)

) f ′ (1− λ∗)

−f ′′ (1− λ∗)

and
dWi

dκh

∣∣∣∣
κλ=κh=0

= −pθ
(
1 + ϕ′ (h∗)− g′ (x∗ − b)

) g (x∗ − b)

x∗ − b

1

ϕ′′ (h∗)

Finally, use Eqs. (5) and (6) to conclude

dWi

dκλ

∣∣∣∣
κλ=κh=0

= p

(
g′ (x∗ − b)− g (x∗ − b)

x∗ − b

)
f ′ (1− λ∗)

−f ′′ (1− λ∗)
>
dWn

dκλ

∣∣∣∣
κλ=κh=0

and
dWi

dκh

∣∣∣∣
κλ=κh=0

= pθ

(
g′ (x∗ − b)− g (x∗ − b)

x∗ − b

)
g (x∗ − b)

x∗ − b

1

ϕ′′ (h∗)
>
dWn

dκh

∣∣∣∣
κλ=κh=0

which completes the proof. ■

Proof of Proposition 11

We derive expressions for any ν ∈ [g′ (0) , ν0] before evaluating the solution at ν = ν0.

Start with κλ → ∞ and κh ∼ U (0, κmax
h ). For a given κh, recall from W2 in the proof of Lemma

9 that welfare when ωλ = 0 and ωh ≥ 0 is

(1− p)α+ f (1− α)− pg

(
θ

(
1− 1− κhωh

1 + ωh
β

)
− α− b

)
− pθ

(
β

1 + ωh
+ ϕ

(
β

1 + ωh

))
− pνb

Define the threshold

κh (α, β, b) ≡
θ (1− β)− α− b

g (θ (1− β)− α− b)

(
1 + ϕ′ (β)

)
− 1 (A.49)
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If κh < κh (α, β, b), then ωh (κh) > 0 solves

(1 + κh)
g
(
θ
(
1− 1−κhωh

1+ωh
β
)
− α− b

)
θ
(
1− 1−κhωh

1+ωh
β
)
− α− b

= 1 + ϕ′
(

β

1 + ωh

)
(A.50)

If instead κh ≥ κh (α, β, b), then ωh = 0.

Without commitment, the planner chooses b at t = 1 after discovering the value of κh. If

g′
(
θ

(
1− 1− κhωh

1 + ωh
β

)
− α

)
≥ ν (A.51)

then b (κh) ≥ 0 solves

g′
(
θ

(
1− 1− κhωh

1 + ωh
β

)
− α− b

)
= ν (A.52)

That condition (A.51) is true for all κh ∈ [0, κmax
h ] follows from ν ≤ ν0, i.e.,

g′
(
θ

(
1− 1− κhωh

1 + ωh
β

)
− α

)
≥ g′ (θ (1− β)− α) ≥ g′

(
θ
(
1− ĥ

)
− λ̂

)
≡ ν0

That Eq. (A.52) holds with strict equality for all κh ∈ [0, κmax
h ] follows from ν ≥ g′ (0).

The planner chooses α and β at t = 0 to maximize expected welfare, which is given by

1

κmax
h

∫ κmax
h

0

 (1− p)α+ f (1− α)− pg
(
θ
(
1− 1−κhωh(κh)

1+ωh(κh)
β
)
− α− b (κh)

)
−pθ

(
β

1+ωh(κh)
+ ϕ

(
β

1+ωh(κh)

))
− pνb (κh)

 dκh

or equivalently

(1− p)α+ f (1− α)− p [g (θ (1− β)− α− b) + θ (β + ϕ (β)) + νb]

(
1− κh (α, β, b)

κmax
h

)

− p

κmax
h

∫ κh(α,β,b)

0

 g
(
θ
(
1− 1−κhωh(κh)

1+ωh(κh)
β
)
− α− b (κh)

)
+θ
(

β
1+ωh(κh)

+ ϕ
(

β
1+ωh(κh)

))
+ νb (κh)

 dκh

where b denotes the bailout if κh ≥ κh (α, β, b), i.e., for any κh such that ωh = 0.

By the envelope condition, the effect of α and β through b and b (κh) can be ignored. Also note

from Eq. (A.52) that g′ (·) = ν for every κh. The first order condition for α is then

∂

∂α
= 1− p+ pν − f ′ (1− α)

− pθ

κmax
h

∫ κh(α,β,b)

0

(
ν (1 + κh)− 1− ϕ′

(
β

1 + ωh (κh)

))
β

(1 + ωh (κh))
2

dωh (κh)

dα
dκh

Eqs. (A.50) and (A.52) imply dωh(κh)
dα = 0, i.e., the planner understands that a change in α will

change ωh in Eq. (A.50) for a given b and that any net change will then change b in Eq. (A.52),
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etc., but in the end θ
(
1− 1−κhωh

1+ωh
β
)
− α − b will not change in Eq. (A.52). Accordingly, β

1+ωh

cannot change in Eq. (A.50), which means dωh(κh)
dα = 0. Therefore,

∂

∂α
= 1− p+ pν − f ′ (1− α)

which means that the choice of α is unaffected by uncertainty in κh relative to the case where

there are no shadow activities and the planner uses the bailout instrument. If ν = ν0, then
∂
∂α = 0

delivers α = λ̂.

Using again the envelope condition and g′ (·) = ν, the first order condition for β is

∂

∂β
= pθ

(
ν − 1− ϕ′ (β)

)(
1− κh (α, β, b)

κmax
h

)

− pθ

κmax
h

∫ κh(α,β,b)

0


(
ν (1 + κh)− 1− ϕ′

(
β

1+ωh(κh)

))
β

(1+ωh(κh))
2
dωh(κh)

dβ

+
1+ϕ′

(
β

1+ωh(κh)

)
−ν(1−κhωh(κh))

1+ωh(κh)

 dκh

Again, any change in β cannot lead to a change in θ
(
1− 1−κhωh

1+ωh
β
)
− α− b after all the feedback

between ωh and b is taken into account. Accordingly, β
1+ωh

cannot change, which means dωh(κh)
dβ =

1+ωh(κh)
β . Therefore,

∂

∂β
= pθ

(
ν − 1− ϕ′ (β)

)(
1− κh (α, β, b)

κmax
h

)
− pθν

κmax
h

∫ κh(α,β,b)

0
κhdκh

or equivalently

∂

∂β
= pθ

(
ν

(
1− κh (α, β, b)

κmax
h

− (κh (α, β, b))
2

2κmax
h

)
−
(
1 + ϕ′ (β)

)(
1− κh (α, β, b)

κmax
h

))

Using Eq. (A.49) to substitute out (1 + ϕ′ (β)) further simplifies the expression to

∂

∂β
= pθ

g (xν)

xν

(
εg (xν)

(
1− κh (α, β, b)

κmax
h

− (κh (α, β, b))
2

2κmax
h

)
− (1 + κh (α, β, b))

(
1− κh (α, β, b)

κmax
h

))

where xν is a constant defined by g′ (xν) ≡ ν.

Setting ∂
∂β = 0 gives the quadratic(

εg (xν)

2
− 1

)
(κh (α, β, b))

2 + (εg (xν)− 1 + κmax
h )κh (α, β, b)− (εg (xν)− 1)κmax

h = 0
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which has a unique solution κh (α, β, b) ∈ (0, κmax
h ) given by the smaller root, i.e.,

κh (α, β, b) =
εg (xν)− 1 + κmax

h −
√(

1 + 2κmax
h

)
(εg (xν)− 1)2 +

(
κmax
h

)2
2− εg (xν)

(A.53)

Evaluating the second order condition to confirm a global maximum, we get

∂2

∂β2
= −pθg (xν)

xν

(
1− κh (α, β, b)

κmax
h

+ (εg (xν)− 1)
1 + κh (α, β, b)

κmax
h

)
dκh (α, β, b)

dβ
< 0

where the inequality follows from the fact that Eqs. (A.49) and (A.52) imply

dκh (α, β, b)

dβ
≡ xν
g (xν)

ϕ′′ (β) > 0

Substituting Eq. (A.53) into (A.49) then gives β as the solution to

1 + ϕ′ (β) =
1 + κmax

h −
√(

1 + 2κmax
h

)
(εg (xν)− 1)2 +

(
κmax
h

)2
2− εg (xν)

g (xν)

xν
(A.54)

The next step here is to show that Eq. (A.54) delivers β < ĥ. This requires showing that the

right-hand side of (A.54) is less than g′ (xν), or equivalently that

1 + κmax
h −

√(
1 + 2κmax

h

)
(εg (xν)− 1)2 +

(
κmax
h

)2
2− εg (xν)

< εg (xν)

If εg (xν) ̸= 2, then this condition simplifies to εg (xν) > 1, which is true. If εg (xν) = 2, then use

l’Hopital’s rule to evaluate the left-hand side of the condition and get
1+2κmax

h
1+κmax

h
< 2, which is also

true. Thus, β < ĥ.

Finally, we show that the right-hand side of Eq. (A.54) is increasing in κmax
h . Taking the

derivative,

d

dκmax
h

1 + κmax
h −

√(
1 + 2κmax

h

)
(εg (xν)− 1)2 +

(
κmax
h

)2
2− εg (xν)

 =

1− (εg(xν)−1)2+κmax
h√

(1+2κmax
h )(εg(xν)−1)2+(κmax

h )
2

2− εg (xν)

If εg (xν) ̸= 2, then this derivative will be positive. If εg (xν) = 2, then l’Hopital’s rule gives that

the derivative equals 1

(1+κmax
h )

2 , which is also positive. Thus, Eq. (A.54) defines β as an increasing

function of κmax
h .

Now consider κh → ∞ and κλ ∼ U (0, κmax
λ ). For a given κλ, recall from W1 in the proof of

Lemma 9 that welfare when ωh = 0 and ωλ ≥ 0 is

(1− p)
α

1 + ωλ
+ f

(
1− 1 + κλωλ

1 + ωλ
α

)
− pg

(
θ (1− β)− α

1 + ωλ
− b

)
− pθ (β + ϕ (β))− pνb
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Define the threshold

κλ (α, β, b) ≡ 1− 1

f ′ (1− α)

(
1− p+ p

g (θ (1− β)− α− b)

θ (1− β)− α− b

)
(A.55)

If κλ < κλ (α, β, b), then ωλ (κλ) > 0 solves

p
g
(
θ (1− β)− α

1+ωλ
− b
)

θ (1− β)− α
1+ωλ

− b
= (1− κλ) f

′
(
1− 1 + κλωλ

1 + ωλ
α

)
− (1− p) (A.56)

If instead κλ ≥ κλ (α, β, b), then ωλ = 0.

Without commitment, the planner chooses b at t = 1 after discovering the value of κλ. If

g′
(
θ (1− β)− α

1 + ωλ

)
≥ ν (A.57)

then b (κλ) ≥ 0 solves

g′
(
θ (1− β)− α

1 + ωλ
− b

)
= ν (A.58)

That condition (A.57) is true for all κλ ∈ [0, κmax
λ ] follows from ν ≤ ν0, i.e.,

g′
(
θ (1− β)− α

1 + ωλ

)
≥ g′ (θ (1− β)− α) ≥ g′

(
θ
(
1− ĥ

)
− λ̂

)
≡ ν0

That Eq. (A.58) holds with strict equality for all κλ ∈ [0, κmax
λ ] follows from ν ≥ g′ (0).

The planner chooses α and β at t = 0 to maximize expected welfare, which is given by

1

κmax
λ

∫ κmax
λ

0

 (1− p) α
1+ωλ(κλ)

+ f
(
1− 1+κλωλ(κλ)

1+ωλ(κλ)
α
)

−pg
(
θ (1− β)− α

1+ωλ(κλ)
− b (κλ)

)
− pθ (β + ϕ (β))− pνb (κλ)

 dκλ

or equivalently

1

κmax
λ

∫ κλ(α,β,b)

0

 (1− p) α
1+ωλ(κλ)

+ f
(
1− 1+κλωλ(κλ)

1+ωλ(κλ)
α
)

−pg
(
θ (1− β)− α

1+ωλ(κλ)
− b (κλ)

)
− pνb (κλ)

 dκλ

+ [(1− p)α+ f (1− α)− pg (θ (1− β)− α− b)− pνb]

(
1− κλ (α, β, b)

κmax
λ

)
− pθ (β + ϕ (β))

where b now denotes the bailout if κλ ≥ κλ (α, β, b), i.e., for any κλ such that ωλ = 0.

Once again, the effect of α and β through b and b (κλ) can be ignored by the envelope condition.

Also note from Eq. (A.58) that g′ (·) = ν for every κλ, and from Eqs. (A.56) and (A.58), that
dωλ(κλ)

dβ = 0 and dωλ(κλ)
dα = (1+κλωλ(κλ))(1+ωλ(κλ))

(1−κλ)α
.
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The first order condition for β is then

∂

∂β
= pθ

(
ν − 1− ϕ′ (β)

)
which means that the choice of β is unaffected by uncertainty in κλ relative to the case where

there are no shadow activities and the planner uses the bailout instrument. If ν = ν0, then
∂
∂β = 0

delivers β = ĥ.

The first order condition for α is

∂

∂α
=
(
1− p+ pν − f ′ (1− α)

)(
1− κλ (α, β, b)

κmax
λ

)
− 1− p+ pν

κmax
λ

∫ κλ(α,β,b)

0

κλ
1− κλ

dκλ

or equivalently

∂

∂α
= (1− p+ pν)

(
1 +

ln (1− κλ (α, β, b))

κmax
λ

)
− f ′ (1− α)

(
1− κλ (α, β, b)

κmax
λ

)
Using Eq. (A.55) to substitute out f ′ (1− α) further simplifies the expression to

∂

∂α
= (1− p+ pν)

(
1 +

ln (1− κλ (α, β, b))

κmax
λ

)
−

1− p+ pg(xν)
xν

1− κλ (α, β, b)

(
1− κλ (α, β, b)

κmax
λ

)
where xν is still the constant defined by g′ (xν) ≡ ν.

Setting ∂
∂α = 0 gives

κmax
λ − κλ (α, β, b)

(1− κλ (α, β, b))
(
κmax
λ + ln (1− κλ (α, β, b))

) = 1 +
εg (xν)− 1

1 + 1−p
p

xν
g(xν)

(A.59)

Evaluating the second order condition to confirm a global maximum, we get

∂2

∂α2
= −

p
(
g′ (xν)− g(xν)

xν

)
1− κλ (α, β, b)

1

κmax
λ

+
1− p+ pg(xν)

xν

(1− κλ (α, β, b))
2

(
1− κλ (α, β, b)

κmax
λ

) dκλ (α, β, b)

dα
< 0

where the inequality follows from the fact that Eqs. (A.55) and (A.58) imply

dκλ (α, β, b)

dα
= −

1− p+ pg(xν)
xν

(f ′ (1− α))2
f ′′ (1− α) > 0

Substituting Eq. (A.59) into (A.55) then gives α as the solution to

1 + (κmax
λ − 1) f ′(1−α)

1−p+p
g(xν )
xν

κmax
λ − ln

(
f ′(1−α)

1−p+p
g(xν )
xν

) = 1 +
εg (xν)− 1

1 + 1−p
p

xν
g(xν)
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and normalizing κmax
λ = 1 delivers a closed-form solution for f ′ (1− α), namely

f ′ (1− α) =

(
1− p+ p

g (xν)

xν

)
exp

 1

1 +
1+ 1−p

p
xν

g(xν )

εg(xν)−1

 (A.60)

The last step is to show that Eq. (A.60) delivers α < λ̂. This requires showing that the right-hand

side of (A.60) is less than 1− p+ pg′ (xν), or equivalently that

1− p+ pg(xν)
xν

1− p+ pg′ (xν)
exp

p
(
g′ (xν)− g(xν)

xν

)
1− p+ pg′ (xν)

 < 1

Defining z ≡
1−p+p

g(xν )
xν

1−p+pg′(xν)
∈ (0, 1), this condition reduces to z exp (1− z) < 1, which is true within

the unit interval. Thus, α < λ̂. ■
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