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1 Introduction

Modern economies are interconnected through intricate supply chains. As highlighted in Cohen
and Frazzini (2008), investors are increasingly recognizing supply chains as a critical source of risk,
given their role in capturing inter-firm business linkages and explaining the cross-section of expected
stock returns.! Ding et al. (2021) demonstrate that the cross-section of stock returns varies not
only with firm characteristics but also with their supply chains, using supply chain disruptions
during the COVID-19 pandemic as a source of identification.

Despite evidence emphasizing the importance of understanding the risk premium associated
with supply chain risks alongside other firm-level risks, a systematic asset pricing framework which
integrates firm characteristics proposed in the “factor zoo” literature (Feng et al., 2020a) and
supply chain relationship data remains absent. A key challenge lies in the fact that supply chains
are inherently better represented as graph structures, while most asset pricing models rely on panel
data comprising returns and firm characteristics.

We develop the first framework for systematic asset pricing with supply chains, making both
methodological and empirical contributions. To the best of our knowledge, our framework is the first
to directly incorporate firm-level supply chain data as conditioning information to estimate supply
chain-based asset pricing models. Our approach is a novel machine learning (ML) framework that is
capable of explaining returns using rich firm characteristics and higher-order relationships in supply
chains. Extending state-of-the-art message-passing graph neural networks (GNNs), our approach
estimates a flexible return estimation kernel that adaptively integrates firms’ characteristics as it
traverses supply chain graphs (SCGs). Moreover, as pointed out by Cochrane (2011), the challenge
is to find “which characteristics really provide independent information about average returns ...
(vs) subsumed by others”. Therefore, we subsequently orthogonalize against prominent benchmark
models that are also conditioning on the rich firm characteristics identified by Freyberger et al.
(2020), and independently capture supply chain linkage risks that explain the expected returns.

Methodologically, supply chain data introduces multiple layers of complexity. Supply chain
linkages are often missing from observed data, and their missingness often results from strategic
decisions made by firms.? Moreover, supply chains evolve as firms adjust their partnerships. Such

complications are also often not captured by data, or captured with lags and censoring. Existing

!Supply chain linkages introduce risks and vulnerabilities, such as shortages of essential inputs and surges in
the prices of intermediate goods (Birge et al., 2023; Capponi et al., 2024). These vulnerabilities have been further
amplified by rising geopolitical tensions, including the energy crisis triggered by the war in Ukraine (International
Energy Agency, 2024), as well as the distress in supply chains experienced during the pandemic (Wall Street Journal,
2024). We refer to Babich and Birge (2021) for a comprehensive review, highlighting how operational resilience, risk
management, and financial stability are interwoven in today’s complex supply networks.

2Firms’ disclosure behavior of supply chain data is an active field of research in finance, economics and management
science. In the supply chain transparency literature, for instance, whenever the disclosures may build brand trust
among consumers, firms may choose to disclose supply chain linkages (Mohan et al., 2020). See Sodhi and Tang
(2019) for a detailed review of current discussion on transparency. From the financial economics perspective, firms
may choose supply chain linkages for non-production reasons. For example, firms may strategically form supply chain
relationships for tax avoidance (Cen et al., 2017), accompanied by reduced disclosures. In our research as is in many
other similar work, we rely on supply chain data from government-imposed disclosures that are subject to firms’
strategic disclosure choices.



asset pricing models lack the ability to incorporate these structural nuances and dynamic relation-
ships. Last but not least, we should also take into account the rich literature of return anomalies
(Freyberger et al., 2020; Hou et al., 2020) when modelling supply chain interconnectedness, making
the problem very high-dimensional. Thus, we need to clear a primary hurdle of using supply chain
data: how can we effectively leverage noisy, dynamic, and high-dimensional supply chain data to
extract factors that are explanatory of the cross-section of average returns.

Our ML-based framework can utilize supply chain data for asset pricing, tackling the challenges
articulated above. Firstly, high-dimensionality can be mitigated by our formulation of supply
chains with firm characteristics as graphs with covariates. Each firm is a node, each linkage is
an edge,® and for each month-firm, the node is associated with a return and a vector of firm
characteristics. Modern GNNs are designed for such graphs, and have empirically showed great
performance on much larger datasets such as the social network of Reddit (Hamilton et al., 2017)
and protein molecules (Shi et al., 2021). As for the inherent missingness of supply chain data,
our asset pricing model are pricing signals from observed supply chain linkages, and thus can be
naturally interpreted as conditional information observed by investors. Moreover, due to the nature
of our adaptive procedure, the dynamic nature of supply chain data helps our model to learn how
partially removal or adding linkages impact our asset pricing factors.

Empirically, we show that a moderately complex GNN model with d = 6 (see Figure 3 for
details)* captures higher-order relationships in the supply chain and yields 50% to 65% additional
out-of-sample Sharpe ratios compared to Ridge and LASSO benchmarks that also leverage supply
chain information.® This shows that GNNs are better able to capture the higher-order supply chain
relationships with better asset pricing performance over linear models. Our proposed factors are
tradeable assets that are orthogonalized against principal components (Giglio and Xiu, 2021; Lettau
and Pelger, 2020) that summarize the firm characteristics. Thus, we extract signals from supply
chains that make independent contributions to explaining the cross-section of average returns.
Also, as we increase the model complexity to d = 10, the Sharpe ratio gains rise to 67% and 81%
compared to Ridge and LASSO benchmarks.

We economically interpret the role of firm centrality in our neural network model in Figure 6
and Table 2 as we design a novel Monte Carlo-based experiment to assess how the model adapt to
changes in the supply chain network. We find that the most central firms have on average 117%

higher sensitivity than the most peripheral firms under our recommended GNN model. Addition-

3Full definition of the SCG’s nodes and edges is given in §2.1. It is worth pointing out that we will be working on
undirected and unweighted graphs to simplify the graph formulation, which sufficiently demonstrates how we adapt
graph models for asset pricing. Extensions to more complex graphs such as hypergraphs, or sales-weighted graphs
are interesting areas for future research.

4The parameter d of our GNN is interpretable as the radius of local sub-graph of the supply chain that our model
is scanning. We discuss it in more details in §2.2.2.

5We construct Ridge and LASSO benchmarks to evaluate how these widely used linear models, which also incorpo-
rate supply chain relationship information, compare to our GNN models. Referred to as Neighboring Characteristics
(NC) Ridge and LASSO models in our empirical section, these benchmarks do not have the full flexibility of GNN
and only use nearest neighbor firms characteristics on the supply chain graph. See their definitions in §3.2.2, their
firm-level return estimation performance in Table 1, and Sharpe ratios of their corresponding factors in Figure 3.



ally, the recommended model (d = 6) demonstrates average sensitivity 44% to 73% lower than other
architectures, as the moderate model complexity can capture complex, multi-hop dependencies that
are robust to noises induced by edge deletions, while offering a bias-variance trade-off. Overall, we
find firm centrality and model complexity both play a role in determining the robustness of esti-
mates, highlighting a balance between capturing relational complexity and maintaining stability in
response to structural changes in the supply chain network.

Despite our focus on asset pricing, our proposed framework is broadly applicable to many
economic problems with graph-panel multimodal learning. The term multimodal learning stems
from the ML community (Ngiam et al., 2011), where data sources such as videos, photos and texts
are in different modes and not naturally compatible, so researchers need to propose intelligently
constructed models to jointly learn from different modes of data. In our case, we use financial
economics-informed objective to combines two modes of data of SCG and firm-level returns and
characteristics panel. Our framework generalizes to any problem of graph-panel bimodal data as
long as the economic objective can be written as weighted sum of moment conditions. Economic
problems with graphs are general and common, such as risk aggregation in networks (Acemoglu
et al., 2012) and causal inference with interference graphs (Hudgens and Halloran, 2008), where
the graphs are often also accompanied by rich covariates per node and per period. Since we make
a step towards the conceptual question of graph-panel multimodal learning, the innovation of this
paper is helpful for many other economic problems with graph and panel data.

The rest of the paper is organized as follows. Section 1.1 relates our work to the literature.
Section 2 introduces the model and discusses the procedure to generate the asset pricing factors
based on sorted portfolios. Section 3.1 discusses the data and Section 3.2 investigate the empirical
findings. We dedicate Section 4 to interpret economic insights from the empirically estimated ML
model. Section 5 concludes. Appendix A provides further details on the empirical analysis, while
Appendix B offers an in-depth discussion of the Transformer architecture. To ensure reproducibility,

our code is available on GitHub at https://github.com/agcappo/SupplyChainAssetPricing.

1.1 Related Literature

Our paper contributes to the growing body of literature on utilizing machine learning and big
data to estimate latent factor models for cross-sectional asset pricing. In particular, the prolifera-
tion of predictive firm characteristics, often referred to as the “factor zoo”, has motivated research
focused on unifying these characteristics within cohesive and interpretable frameworks. Feng et al.
(2020b) propose new statistical methods for selecting useful factors conditional on high-dimensional
factors. Gu et al. (2020) compare the performance of various machine learning models to explore
how non-linearities enhance signal extraction from characteristics, thereby improving return es-
timation. Chen et al. (2024) extend the application of machine learning beyond prediction by
leveraging deep learning and moment conditions derived from no-arbitrage principles. Freyberger
et al. (2020) develop nonparametric methods to select sparse models, highlighting the relevance of

bias-variance tradeoff in the low signal-to-noise setting of finance. Farmer et al. (2023) shows that


https://github.com/agcappo/SupplyChainAssetPricing

return predictability is time- and firm-dependent.

Latent factor models by principal component analysis (PCA) are efficient ways to represent rich
characteristics. The foundational work by Connor and Korajczyk (1988) directly links principal
components to arbitrage pricing theory by a large cross-section of stocks. Panel-level explanatory
power can be improved if additional preference on temporal vs cross-sectional explainability is
specified, such as those proposed by Kozak et al. (2020); Lettau and Pelger (2020); Giglio and
Xiu (2021); Bryzgalova et al. (2023). They offer alternative PCA objectives that mixes time-series
and cross-sectional variations beyond the canonical form, and interpret economically motivated
parameters that address the factor zoo’s scope and variability. Kelly et al. (2019) presents a model
that jointly estimates how to map firm characteristics to latent risk factors, and time-varying loading
on the factors conditional on characteristic. Together, these studies underscore ML’s potential in
clarifying the factor structure within asset pricing, addressing both model parsimony and predictive
power.

Herskovic (2018) examines how production networks and supply chain dynamics generate sys-
tematic risks that impact asset returns. Their theoretical model predicts that the graph centrality
and sparsity of supply chain networks are key determinants of return spreads.® Their results rely
on a structural model, and show that disruptions often lead to volatility clusters across firms
within the same supply network. These studies highlight the importance of understanding supply
chains as vehicles for risk propagation and underscores the need for models capable of capturing
these interdependencies in asset pricing. Our approach is fundamentally different as we impose
no structural model between firm returns and supply chain relationships. Instead, we propose a
data-driven method to adaptively pick up the supply chain’s non-linear influence as well as taking
a large amount of firm-level information into account at the same time. Our sensitivity analysis
further examines the impact of degree centrality on expected returns cross-sectionally.

Ding et al. (2021) reports the cross-section of stock returns reaction to COVID-19 cases in fact
depend on characteristics. Specifically, pandemic-related return drops vary as they condition on
firm characteristics such as firm size, firm finances (credit and profit levels) as well as supply chain
placements. These findings underscore the role of supply chains as a systematic source of risk
for asset returns. Our research leverages this finding, but shift the focus from exogenous shocks
to the temporal variations in supply chain linkages, analyzed in conjunction with panels of firm
characteristics.

A few studies have documented the significance of supply chain disruptions as predictors of
financial performance. Wu (2024) proposes a text-based metric for assessing firms’ exposure to
supply chain risk, which captures how disruptions reverberate across firms with shared suppliers or

customers. Agca et al. (2022) examine credit shock propagation within supply chains, showing that

5Some studies have analyzed the spillover effects of supply chain disruption. Carvalho et al. (2021) leverage the
exogenous and regional nature of the East Japan earthquake shock to demonstrate the significant second-order effects
of supply chain disruptions, which impact not only direct suppliers and customers of disaster-hit firms but also their
indirect counterparts. Similarly, Barrot and Sauvagnat (2016) provide evidence of how idiosyncratic shocks propagate
along supply chains, influencing the valuations of firms both directly and indirectly expoosed to the initial shock.



financial constraints in upstream firms can cascade down the supply chain, affecting downstream
firms’ stock returns. This finding supports the argument that understanding supply chain structures
is necessary for asset pricing, as these relationships carry material risk information. Agrawal and
Osadchiy (2024) extend this perspective by analyzing inventory productivity within supply chains,
showing how firm-level operational data can predict stock returns. These contributions highlight the
critical role of incorporating operational dependencies into asset pricing models to account for risk
factors arising from supply chain linkages. Building on this foundation, we provide robust empirical
evidence that supply chain information serves as a leading indicator for asset pricing. Specifically,
we advance this stream of research by introducing a method that enables learning from any subset
of the supply chain relationship network, without being constrained by pre-specified link directions
or neighborhood structures.

The use of ML techniques in asset pricing has opened new avenues for exploring non-linear
relationships and complex data structures that traditional models may overlook (Kelly et al., 2019;
Gu et al., 2020; Chen et al., 2024). Our approach aligns with this trend, as we employ GNN
to model the intricate web of supply chain relationships. By doing so, we contribute to the ML
asset pricing literature by introducing a model that not only captures firm-specific information but
also integrates relational and graph data to uncover latent factors in stock returns. This data-
driven approach allows us to extract predictive signals from high-dimensional supply chain data,
contributing to the “factor zoo” literature in asset pricing (Hou et al., 2020). Specifically, we use
rich firm-level characteristics defined in Freyberger et al. (2020) as conditioning information for
firms on the supply chain, and then compute the factors orthogonal to models computed by such
firm characteristics so that we isolate the independent signals generated by the convolutions of SCG
and firm information.

The studies by Chen et al. (2024) and Farmer et al. (2023) show that deep learning frameworks
provide the necessary flexibility and scalability to model large datasets, which are essential when
dealing with high-dimensional supply chain networks. By incorporating GNNs into our analysis,
we contribute to this literature by adapting a model specifically designed to handle relational data,
allowing for a nuanced understanding of firm interactions within supply chains.

In asset pricing with panel data, Kelly et al. (2022, 2024) find that complex models exhibit
superior theoretical properties—partly due to the double-descent phenomenon in statistical learning
(Hastie et al., 2022)—and deliver better empirical performance, including significant improvements
in market timing Sharpe ratios. In contrast, our framework jointly learns from the graph data
of supply chains and the panel data of returns and firm characteristics within a finite sample
setting. A key feature of our method is a directly interpretable complexity parameter that defines
the size of the local subgraph within the supply chain network. As this size increases, we derive
asset pricing signals through more intricate convolutions on the supply chain network, resulting
in improved performance. However, when the complexity parameter becomes too large, GNN
performance deteriorates due to the well-documented ”over-smoothing” phenomenon (Chen et al.,

2020). Additionally, we observe that models with excessively high complexity parameters exhibit



greater variance. This underscores the importance of balancing complexity in graph-panel joint
learning within a finite sample. While sufficient complexity is necessary to capture higher-order
patterns, one consideration of the bias-variance tradeoff is essential to optimize performance, one

should be mindful of the bias-variance tradeoff.

Notations: Unless otherwise specified, we use lower-case a to denote a scalar, bold lowercase a
to denote a vector and bold uppercase A to denote a matrix. Firms are indexed by subscript ¢ and
time is indexed by subscript ¢t. For an already defined firm-time varying variable a;;, we use a; to
denote the cross-sectional vector of the same variable at time ¢, and a; to denote the time-series

vector of the same variable for firm 7.

2 Methodology

We introduce our approach by describing the detailed end-to-end procedure. First, we estab-
lish graph notation for supply chain networks to efficiently represent complex, high-dimensional
information. Second, we discuss our design of a GNN that leverages the supply chain graph to
non-linearly integrate firm characteristics through graph traversal. GNN embeddings are used for
subsequent steps. Lastly, we discuss the use of PCA to decompose the embedding, projecting out

firm characteristics to extract independent drivers of supply chain risks.

2.1 Supply Chains as Graphs in Asset Pricing

Our goal is to enable asset pricing with any combination of the supply chain relationship and
firm characteristics data, which requires first developing a mathematical framework to jointly ac-
commodate both. We proceed to introduce the necessary notations for firm characteristics data,
and then discuss the methodology for integrating it with supply chain linkages. At time ¢, suppose
that there are N; firms in the universe of firms with observations of firm characteristics.” Let
Y;: denote the excess return of the ith firm at time ¢, and x;; represent the associated vector of
time-varying firm risk characteristics, such as those constructed in Freyberger et al. (2020). Both
the characteristics and excess returns are observed with monthly frequencies, i.e. the subscript ¢
encodes the observation month. We use p to denote the dimension of x;;, and X; € RM*P to denote
the entire cross-section of firm characteristics at time ¢, concatenated row-wise as a matrix. The
principal learning problem in asset pricing is a conditional estimation problem of returns using the
risk characteristics with economics-informed objectives and constraints. Modern empirical asset
pricing researchers expand this learning problem with ML techniques that allow for a non-linear
functional form and a large p, a large NV; or both.

For supply chain asset pricing, we aim to describe the relationships of returns and firm charac-

teristics conditioning on all supply chain information. Supply chain and asset pricing data at any

"We provide more details on the comprehensive universe of U.S. listed firms that we consider in the empirical
section’s §3.1.



time t is a very high-dimensional object if we express it naively in a vector form, even when p is not
too large. We will soon revisit the high-dimensional nature of the data once we introduce the graph
notations by contrasting (1) against (2). Supply chain data in our scope of research is observed on
an annual basis. However, firms may have their observed supply chain relationship data updated
at different months in the year, so the subscript ¢ still encodes the observation month. We will
revisit more details on the data observation frequencies in Section §3.1.

Graphs are the natural mathematical object to efficiently describe linkage data. We describe
the entire supply chain network of all firms at any time t as a single graph.® In graph notation, we
denote firm 7 as node ¢ and the set of nodes available in the supply chain data at time ¢ as V;. Note
that V; represents a subset of the universe of firms, as there may be firms for which we have stock
returns or firm characteristics but that are not included in the supply chain data, i.e., |V;| < Ny.
There is an edge e;j; between nodes 7 and j whenever there is a direct supply chain linkage at time
t between firms ¢ and j. At time ¢, we have a set of edges E; given by Ey = {e;j; : i € V4, j € Vi }.
In addition, we denote the neighbors of node i at time ¢ as N (7).

Supply chain graph (SCG) at time ¢ is thus expressed as SCG; = (V;, Ey). In our asset
pricing problem, we associate the firm characteristics with its corresponding node, and only require

a DtG 1aPh_Jimensional vector to jointly express the asset pricing and relationships data:
Graph
Dy = (p+ 1) x |Vi| + | By (1)

The first additive term in (1) is due to each firm having (p + 1)-dimensional information of
return and firm-level characteristics, multiplied by |V;| firms on the graph. The second additive
term represents the relationships.

To see that the graph is an efficient way to represent the joint supply chain and firm charac-
teristics information, we consider a naive alternative: for each pair of firm (i, j), we have returns
and characteristics (Yi, X, Yji, Xj1) € Rz(f”ﬂ), while there are |E;| pairs. This adds up to a naive

vector representation of all pairwise firm information as a D}®Ve-dimensional vector of data:
DY =2(p + 1) x | By|. (2)

Since each node in our graph has at least one edge by definition, |E;| > |V;|, and DNaive >
DtG raPh and the graph representation is more succinct. In the worst case, |E;| can be as high as
(") = 1|V|(|V4] = 1), so that the dimensional difference between Dy*¥® and DS i on the order
of p x |V;|%.

Our next step is to leverage flexible ML methods to jointly extract information from X; and

SCGy, aiming to explain the cross-section of average returns using our data representations.

8Locally, a pair of firms may appear in different supply chains, but in our graph representation of the entire supply
chain network, we draw an edge between a pair of firms only once to indicate the existence of a direct linkage.



2.2 Pricing Kernel: Cross-Sectional Graph Neural Network

To capture the interactions within the supply chain, we implement a GNN model that propa-
gates information through the graph with an algorithm known as message passing.” This section
serves as a succinct description of the techniques that we use and are important for understanding
how we achieve learning from both SCGs and the firm characteristics. At each layer [, the GNN
updates the “knowledge” of each node ¢ by aggregating information from its neighboring nodes
j € Ni(i) and combining this with its own features. Intuitively speaking, for each firm i the GNN
computes a nonlinear weighted average of characteristics of firms in 4’s local subgraph, which can

best explain firm 7’s return.

2.2.1 Message Passing

GNNs are distinct from feed-forward and recurrent neural networks previously explored in ML-
based empirical asset pricing research (Gu et al., 2020; Chen et al., 2024), as they are specifically
designed to meet the unique requirements of graph-based learning. We consider GNNs that consist
of d layers, with each layer iteratively passing messages between nodes according to the graph’s

structure. Mathematically, at time ¢ we can describe the computation at layer [ as follows:

1. Message Calculation: For each node i, we compute a message m'Y from each neighbor j

ij
in its local neighborhood A (7). The message mY is typically a function of both the feature

ij
) (-1

vector hglil of the neighboring node j and the feature vector h, of node 7 itself from the

previous layer:

-1

m(l) = fmsg(hz(lil)v h; )7Xit)xjt)’ (3)

(
ij J

where fmsg is a differentiable function that may also depend on characteristics (x;,x;¢),

capturing their supply relationship conditioning on the characteristics of both firms.

2. Aggregation: In the aggregation step, node i aggregates all incoming messages from its
neighbors to form a single, summarized message. The aggregation function AGG is the widely
used notation in the computer science graph learning literature, and must be a permutation-
invariant function (such as summation, mean, or max) that consolidates messages in a func-

tional form that does not depend on how many firms are in A (i):'°
W =acc({m :j e N 4
m; ({mig 5 € Ni(@)}). (4)

This aggregation captures the influence of all neighboring nodes on node i, distilling their

collective information into a single vector.

9GNNs are a rapidly evolving field, with a remarkable volume of new research emerging daily. For a comprehensive
introduction to the GNN framework, see Hamilton (2020).

10This permutation and size invariant requirement rules out many functions such as linear weighted sums, which
would require the weighting matrix to change depend on cardinality of N, (7).



3. Update: The node feature hgl) at layer [ for [ = 1,2, ...,d is then updated by combining its
O]

aggregated message m, ~ with its current feature vector hl(-l_l). This combination is performed
using a transformation function f,,q, which could be a simple weighted summation followed
by a non-linear activation:

Y = fupa (B0 ml!). (5)

1

Here, fupq serves as a learnable function that adapts to optimize the model’s accuracy. A
typical choice for fu,q is a neural network layer that applies weights and biases to linearly
(I-1) 0]

transform h; and m;’, followed by an activation function.

Lastly, we collect the output of message passing (i.e. the last hidden layer’s neurons) hl(d) as

the embeddings. The output layer is a linear regression of returns Y;; on the embeddings.

The specific choices of (fimsg, AGG, fupa) Will impact empirical performances (Kipf and Welling,
2016; Hamilton et al., 2017; Shi et al., 2021; Brody et al., 2021), and their trade-offs contain many
idiomatic technical motifs. We use the well-known transformer architecture, and defer its details
to Appendix B. In our empirical analysis, as exemplified in Table 1, we explicitly specify the model
as TransformerGNN. However, for brevity, we refer to it as GNN throughout the rest of the paper.
To formalize the GNN’s learning process, we define an optimization objective that minimizes the
error between estimated and actual firm-level returns, enabling the model to effectively optimize its
parameters. Let © denote the set of all model parameters, including weights and biases in the GNN
layers and other parameters such as attention weights in the multi-head Transformer mechanism
that we use (see in Appendix B’s (22) for fp.sg, (23) for AGG and (24) for f,pq). The objective is

to minimize the following empirical risk function over the training dataset:
m@inE(i,t)NDtrain [(Y%t —9i(0; Xy, SCGt))z ’ (6)

where:
e Y} is the return for firm 7 at time ¢,

e 3:(0;X;, SCG,) is the model’s estimation function,'! which is a function of the entire cross-

section of firm characteristics X; and the structure of the supply chain graph SCGy,
® Diiain is the training dataset comprising observations of firms over time.

In our empirical estimation, this minimization is achieved with Adam, which is a gradient-based
stochastic optimization algorithm (Kingma and Ba, 2015) that iteratively adjusts the parameters in

© to reduce the mean squared error (MSE) on the training set. The optimization process adjusts

1We denote the function g; to highlight the networks are heterogeneous across i’s, allowing the model to treat
different firms’ returns differently when given the same cross-sectional (X, SCG:). However, the GNN does not need
to be trained separately for each firm. Instead, the model is trained only once by rolling out the message passing of
SCG, with firm ¢ as the target node, thereby presenting the graph-characteristics joint data differently across firms.
Intuitively, the g;’s differ from each other by their vantage point of the SCG.



the GNN’s parameters to align the non-linear combination of firm characteristics with returns,
effectively capturing the joint impact of supply chain relationships and firm-specific attributes in
explaining average returns.

Finally, we emphasize that in equation (6), our supply chain-based pricing error can be re-
placed with other economic objectives, enabling the utilization of panel data comprising unit-time

responses and covariates, along with a time-varying graph of units.

2.2.2 Layer Depth and Subgraph Size

The depth of the GNN, represented by the number of layers d, determines the size of each
node’s local subgraph that the model incorporates when updating node features. Each additional
layer in the GNN allows information to propagate further across the graph, thereby increasing
the number of nodes whose information influences a given target node. With d layers, each node
receives messages from all nodes within d-hops (number of edges required to traverse) in the graph,
effectively expanding its scope of information aggregation.

Visually, we provide the following diagrams to show how the message passing process works and

highlight the connection between layer depth and subgraph size:

Figure 1: Message passing
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Layer
14 ||%II

GNN
Layer

GNN
Layer

00 o

(a) Example graph (b) d = 2 message passing

In a message-passing GNN, each node’s representation is iteratively updated by aggregating
information from its neighbors. The number of GNN layers determines the number of “hops” each
node’s representation can access, effectively defining the size of the local subgraph that each node
captures. In Figure 1, we focus on updating the features of the orange-colored node 1. Subfigure
(a) illustrates a simple graph where node 1, the target node, is connected—either directly or
indirectly—to nodes 2, 3, 4, and 5, which collectively form the local subgraph influencing node 1’s
representation. Subfigure (b) uses arrows to indicate the directions of message passing within this
subgraph. For this example, we demonstrate the GNN’s message passing process across two layers
(d = 2). In the first layer, node 1 aggregates information from its immediate (one-hop) neighbors,

nodes 2 and 4, updating its representation based on directly connected nodes. In the second layer,

10



node 1 can now receive information from nodes two hops away—mnodes 3 and 5—via nodes 2 and
4. This expanded reach allows node 1’s representation to reflect a broader local subgraph.

We also want to highlight that the message passed to the target node includes not only the
characteristics of its neighbors but also those of the target node itself. Specifically in Figure
1, node 1, as the target node, receives messages from its immediate neighbors (nodes 2 and 4),
which, in turn, embed node 1’s own characteristics during the first layer of message passing. This
recursive structure means that a regression of the target node on its local context—a standard
approach in traditional asset pricing—emerges naturally as a special case of the message-passing
mechanism in GNNs when d > 2 . The ability of the GNN to incorporate the target node’s features
within the context of its broader supply chain relationships highlights the flexibility and generality
of this framework, bridging conventional regression approaches and modern graph-based learning
techniques. This property is central to the GNN’s ability to capture both direct and higher-order
dependencies within the supply chain network.

The GNN’s layer depth controls how far each node can collect information within the graph.
Multiple layers extend this to nodes further away, expanding each node’s receptive field within the
graph. Thus, the number of layers defines the size of the local subgraph influencing each node. More
layers allow deeper neighborhood capture but can introduce noise if the extended neighborhood
becomes less relevant to the target node.

In the context of a SCG, the layer depth d provides an interpretable metric for understanding

how information is aggregated across supplier-customer relationships:

e Small d (Local Subgraphs): A shallow GNN with a small value such as d = 1 captures
only immediate supply chain dependencies, typically limited to a firm’s direct suppliers and
customers. This limited scope may omit broader structural effects, as the model is constrained
to first-order neighbors. From the firm operations perspective, a shallow network with small d
focuses on immediate business linkages, which may capture only local risks and direct impacts

on firm performance.

e Large d (Expanded Subgraphs): As d increases, each node’s receptive field includes a
wider portion of the graph, including information from second-, third-order and even higher-
order suppliers and customers. This allows the model to account for indirect effects, such
as the influence of a supplier’s suppliers or a customer’s customers on the target firm. For
instance, if a supplier’s own upstream partner experiences a disruption, this may eventu-
ally impact the firm in question. Therefore, larger values of d enable the GNN to capture
more comprehensive supply chain effects, potentially revealing how upstream or downstream

disturbances propagate through the network.

e Bias-Variance Trade-off with Layer Depth: While a greater layer depth d can theo-
retically improve model expressiveness by capturing more distant relationships, it introduces
a trade-off between model bias and variance. Large d values can dilute the influence of

closer, more relevant neighbors with noise from distant, less relevant nodes—a phenomenon
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commonly referred to as the “information dilution” effect. This trade-off is particularly pro-
nounced in sparse or dynamic supply chain networks, where distant nodes may introduce
uninformative or even misleading signals. Additionally, excessive depth may lead to the well-
known vanishing gradient and oversmoothing issue (Chen et al., 2020) in GNN, complicating

model training and degrading estimation performance in out-of-sample tests.

Thus, determining the optimal layer depth d is a crucial part of model design. For our asset
pricing task, we empirically identify an intermediate depth that balances capturing meaningful
indirect supply chain relationships while minimizing the introduction of excessive noise. This depth
aligns with the scope of influence that firms typically observe in practical supply chain contexts,
where both local and moderately extended relationships play essential roles in risk transmission
and performance prediction.

In summary, the layer depth d is a crucial hyperparameter that governs the model’s sensitivity
to the supply chain structure, with its interpretability rooted in the extent of indirect relationships

it captures within the network.

2.2.3 Output Embeddings x;;

After the final layer d of the GNN, each node i at time ¢ is represented by an embedding vector
Xt = hl(d) € Rp,, where hl(d) is the output feature vector from the last layer and p’ is its dimension.
Note that technically, the embedding dimension p’ is not necessarily smaller or larger than the
original firm characteristics dimension p, but typically we choose p’ < p to represent a nonlinear
dimension reduction from the original feature space to the embedding space. This embedding X;;
captures the combined information from the firm-specific features of node i and relational features
derived from the message-passing process across the SCG.

The embeddings X;; serve as a compact representation of each firm’s supply chain context,
summarizing both its direct relationships and the broader network structure up to d hops away.
These embeddings will later be used as inputs for our supply chain factors. However, it is important
to emphasize that the GNN model functions more like a cross-sectional non-parametric kernel,
combining firm characteristics based on the geometry of the supply graph. It does not yet directly

capture temporal variations in returns.

2.3 Orthogonal Transformation by Principal Components

We inject temporal information by computing the principal component directions of the em-
beddings within the training set. Our embeddings %; € R capture high-dimensional features
reflecting intricate cross-sectional dependencies within the supply chain. Our goal is to map these
embeddings to directions that effectively explain time-series variations.

We are also interested in the performance of a linear factor model based on our factors, which
constitutes a secondary but still crucial motivation for the PCA step. Note that X;; are by-products

of neural networks, which have no inherent constraint on their statistical properties. In particular,
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the directions of X;; may be correlated. Therefore, to identify independent new risk factors, as
proposed by Cochrane (2011), we map the data to latent principal directions, allowing us to extract
more robust insights and test whether we have uncovered any independent sources of explained
average returns.

We compute the principal components by solving the following optimization problem:

TgTg T
max Z Tr(V x;x:V) st. V' V=1L, (7)
(ivt)EDtrain

The matrix V € RP*?" is the transformation matrix. The constraint of V being orthonormal
ensures that the problem is uniquely identified. Let the k-th column be denoted as v, representing
the direction of the k-th principal component, sorted by their contributions to the variance of X;;
during the training period. Then, for each principal component k at time ¢ we have a firm-specific
Ditk:

bite = X3 v, k=1,2,....p. (8)

We denote the top K principal components as ¢;; € RE | which represent firm-level independent
characteristics combining supply chain and firm attributes. That is, although up to as many as
p’ (the dimensions of the embedding) principal dimensions are available, we truncate and only use
the most important K dimensions among them. These components are thus constructed from a
two-step process. First, we apply a nonlinear, cross-sectional transformation using the GNN, which
captures relationships between supply chain and firm-specific data. Second, we perform a linear
transformation via PCA to extract the dominant dimensions of variation.

We interpret the leading components of ¢;; as the transformed embedding dimensions that
explain the largest share of variation in the data, which are later used to construct our asset pricing
factors. Our approach follows a logically nested framework, ensuring that the discussion of the
number of factors aligns naturally with their economic and statistical ordering. The construction,
therefore, provides us with a coherent foundation for analyzing the asset pricing significance of the

proposed supply chain-based factors.

2.4 Asset Pricing Factors

We now create asset pricing factors from the proposed principal components ¢;;. Interpret-
ing ¢;; as firm-month supply chain characteristics, we first sort firms into deciles based on these
characteristics following Fama and French (1992), and then create portfolios based on deciles to
represent tradable assets based on ¢;. Specifically, each firm is assigned to one of 10 possible bins
based on its ¢ value along the k-th principal direction. Then, we build a zero-cost long-short

portfolio for each k. Specifically, for each principal component k and time 2

12This sorted portfolio construction approach is the well-established method to connect machine learning firm-level
estimation to the cross-section of expected returns in previous empirical asset pricing literature (Gu et al., 2020; Hou
et al., 2020; Chen et al., 2024).
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1. Sort all firms by their score ¢;.

2. Define the top decile (highest scores) as the “long” portfolio and the bottom decile (lowest

scores) as the “short” portfolio. Within each portfolio, invest equally into each firm.

3. Construct a zero-cost long-short portfolio by taking a long position in the top decile and a

short position in the bottom decile and use the return as the value of Fﬁgs .

Each individual component Ft’;“cs is tradeable, and we can naturally consider the number of
factors as a varying parameter for our comparative analysis, as Ft’;;S is derived from the kth principal
component of X;;.

The only additional step is to guarantee the independent explainability of our supply chain asset
pricing factors. We regress each long-short portfolio Ftis on a set of benchmark factors, such as the
leading principal components estimated from the portfolios of sorted firm characteristics (Giglio
and Xiu, 2021; Lettau and Pelger, 2020). This orthogonalization step removes any overlap with
traditional asset pricing factors, ensuring that the GNN factors represent new sources of return
variation.

The regression model for each factor Fy; can be expressed as:
Fi® =gz + e, (9)

where z; are the excess returns of the benchmark factors at time ¢, which are assumed to also
correspond to the excess returns of zero-cost tradable assets, and &4, are the unexplained returns.

The n; coefficients are estimated using OLS, and the resulting residuals from this regression rep-
resent the orthogonalized factors, which are uncorrelated with traditional asset pricing benchmarks.
These residualized factors are thus novel latent factors derived from the GNN’s analysis of supply
chain networks and can be interpreted as the unique contribution of supply chain relationships to

firm returns. Therefore, we use them as our asset pricing factors: 13

Fy=FES — i) 2. (10)

The orthogonalized factors Fy reflect firm-specific risk and return variations linked to the struc-
ture of supply chain relationships rather than either the FF5 or the leading RP-PC. By regressing
out these factors, we can test whether supply chains combined with firm characteristics contain
unique signals for asset pricing, capturing aspects of firm interdependence that are not represented
in conventional factor models. This novel perspective allows for a more comprehensive under-
standing of the drivers of firm returns, particularly in interconnected industries where supply chain
relationships play a crucial role.

Since our factors F{¥ are zero-cost tradeable assets and z; are also zero-cost tradeable assets,

our residual F; are also zero-cost tradeable assets that represent risk premium of the supply chain

13None of our factors are strongly correlated with the FF3 factors. For the first five of our factors, we find weak
positive or negative correlations with the Book-to-Market, Size, and Market factors. See Figure 5.
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factors.
Under the no-arbitrage condition, a stochastic discount factor (SDF) my,1 exists, ensuring that

the expected value of the discounted excess returns r; of test assets is zero in expectation:'*

Et[mt+1rt+1} = 0. (11)

By the definition of covariances, the SDF is linked to the test assets through the following

moment conditions:
Covi(rigr, mir1) = Elmyqariir] —Ee[my1]Eerigq]. (12)
0

To arrive at the normalized covariance test for asset returns with SDF on one side and the risk

premium on the other, we divide through by the variance of SDF to calculate:

E¢[mq1]
Var;(mys1)

Covi(rigr, mig1)
Vary(my1)

= —E¢[ri] - (13)

Ross (1976) introduced the Arbitrage Pricing Theory (APT), which examines the scenario where
my41 is modeled as a linear function of a set of factors. Under APT, the expected excess returns
are explained by loadings on risk factors times the risk premium of the factors. We linearly expand
the SDF in the special case of our supply chain factors, where the expected value of m;; is linear
in both F; and F, that are also excess returns — the F; are our supply chain asset pricing factors
and F; are other factors that are orthogonal to F;.

Since the factors are constructed as excess returns, we can reorganize equation (13) to isolate

the expected excess returns on the left-hand side:
Et [I‘t+1] = AtE[Ft] + A?E[Ft] (14)

The regression (14) serves as the basis on which we empirically estimate and report the statistical
significance of loadings (A;) for our supply chain asset factors. The empirical results are discussed
in Section §4 and visualized in Figure 4, where we observe many of the loadings are significantly
non-zero.

In practice, the true non-supply chain factor space {F;}; is unobservable, and we must rely on
approximations z; derived from the universe of proposed “factor zoo” models. By regressing out z;
in (10), our constructed factors F; are orthogonal to F; only if F; is fully spanned by z;. However,
if z; does not fully span F;, residual correlations between F; and F; may persist. Importantly,
this limitation pertains to the quality of the benchmark models z; rather than the validity of the

constructed factors F; themselves. As long as {z;}; are improved to cover a larger region of the

'4The standard derivation with prices and returns can be found in Cochrane (2009, Chapter 6), as opposed to our
discussion that focuses on excess returns.

15We are simplifying the algebraic mechanics ude to the scope of our paper. The detailed steps of derivation for
this step is part of the “Factor Models and Discount Factors” in §6.3 of Cochrane (2009).
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column space {F;};, the constructed factors F; enjoy better approximated orthogonality with the
non-supply chain factors F;, thereby yielding an improved estimation of the loading A;. We now
have an empirical test of whether the expected returns have non-zero exposures to our supply asset
pricing factors F; by examining the loadings A; in regressions (14), with the clear caveat that it is

conditional on a given set of benchmark models that we control for.

2.5 Summary of the Procedure

To summarize, our proposed supply chain asset pricing factor estimation procedure consists of
two stages: the first stage is on the firm level, and the second stage is on the factor level. In each

stage, there are two steps respectively, so there are four steps in total:

Supply chain asset pricing model estimation and factor construction

Firm level stage: machine learning on the supply chain and firm characteristics

Step 1. Estimate graph neural network (GNN) model by optimizing (6).
Output: X that cross-sectionally combine firm characteristics and the supply chain relation-

ships to explain firm returns; the estimated GNN model.

Step 2. Apply PCA on x;;’s based on (7).
Output: @i that are orthogonal and ordered by their PC rank, spanning the leading K

eigenvectors of the eigenspace of the second moment matrix of X;;.

Factor level stage: sorting and projections to construct factors

Step 3. Construct long-short portfolios from sorting on each of ¢;+’s K entries.

Output: FF¥ are tradeable zero-cost assets.

Step 4. Compute asset pricing factor by regressing out benchmark model in (10).

Output: F, are asset pricing factors orthogonal from benchmark.

3 Empirical Supply Chain Asset Pricing

We apply our methodology to investigate how supply chain data and firm characteristics explain
expected returns. We present the sources and summary statistics of our data, including firm
characteristics and supply chain relationships. In our empirical analysis, we begin by comparing
the firm-level return estimation performance of the GNN model against benchmark models. Finally,

we analyze the Sharpe ratios of portfolios formed using supply chain asset pricing factors.
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3.1 Data

We combine firm-level financial data with supply chain relationship data. Our dataset captures
both firm-specific and relational information essential for understanding the impact of supply chain

structures on asset pricing.

3.1.1 Firm-Level “Factor Zoo” Data

We compute monthly stock excess returns Y;; and lagged firm characteristics x;; from publicly
listed firms on the NYSE, Nasdaq, and NYSE American (formerly known as the American Stock
Exchange). The time period is from January 1977 to December 2023, providing a longitudinal
view of firm performance across varying market conditions. The firm characteristics x;; include
p = 64 lagged financial indicators defined by Freyberger et al. (2020). The firm characteristics
cover 6 categories of past return, investment, profitability, intangibles, value, and trading frictions,
which overlaps with other well-known studies on “factor zoo” (Kozak et al., 2020; Hou et al., 2020).
16 Following the literature’s practice (Kelly et al., 2019; Freyberger et al., 2020), we normalize X;;
using the cross-sectional rank divided by the total number of firms NV; at time ¢ as our x;; instead of
directly using the values of the financial indicators. This cross-sectional rank normalization ensures
that x;; falls within the bounded range of [0, 1].

The returns Y;; represent the realized monthly excess return for firm ¢ at time ¢, while the char-
acteristics x;; provide a snapshot of the firm’s financial health and performance. The combination
of Y;; and x; allows us to study the role of supply chain relationships in explaining variations
in firm returns, beyond what traditional financial characteristics alone can capture. We use K.
French’s website to retrieve the risk-free rate and subtract it from the return in order to compute
excess return. We source Yj; and x;; data from the Center for Research in Security Prices (CRSP)
and Compustat Fundamentals databases on Wharton Research Data Services (WRDS).

It is worth pointing out especially that many of our x;; are not originally defined at a monthly
frequency, as many accounting characteristics are disclosed on a quarterly or annual basis. There-
fore, we lag them using common practice in the literature (Gu et al., 2020) to ensure there is no
look-ahead bias: we assume that monthly characteristics are delayed by at most 1 month, quarterly
with at least 4 months lag, and annually with at least 6 months lag. Therefore, for the learning
task of explaining excess returns at month ¢, we use the most recent monthly characteristics at the
end of month ¢ — 1, the most recent quarterly data by the end of month ¢ — 5, and the most recent

annual data by the end of month ¢ — 7.

3.1.2 Supply Chain Relationship Data

To represent supply chain relationships, we use the supply chain graph SCGy, where each node
corresponds to a firm and each edge represents a supply chain linkage between firms. The relation-

ship data is derived from mandatory disclosures under the SEC’s SFAS 131 reporting standard,

16See more details in Freyberger et al. (2020)’s Table 1 and Internet Appendix.
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which requires firms to disclose key customers that account for more than 10% of their sales. This
results in a graph for each year, where the presence of an edge between node ¢ and node j indicates
that firm j and firm ’s business relationship satisfies the SFAS 131 threshold.!” We retrieve SCGY
from the Compustat Segment database on WRDS (Cohen and Frazzini, 2008; Cen et al., 2017),
with data that begins in 1977 and ends in 2023. In total, there are 2521 unique firms present in our
constructed SCG, which have both supply chain relationships and firm characteristics data. Firms
for which there was no supply chain relationship data available were not included in the analysis.

We lag data when incorporating supply chain data. While many firm characteristics data is
available at a monthly or quarterly frequency, supply chain disclosures are annual. We treat this
temporal misalignment by holding each year’s supply chain relationships constant across all months
within that year, thereby allowing us to integrate the supply chain data into the monthly modeling
framework. The lagging rule for supply chain data is the same as other annual financial data in
§3.1.1: to explain returns at month ¢, we use the most recent annually disclosed supply chain data
by the end of month t — 7. This lagging treatment is why we consider the supply chain information
as leading signals for our asset pricing question.

To effectively capture higher-order relationships within the supply chain, we retain firms that
are not listed on the NYSE, NASDAQ, or NYSE American exchanges in our dataset. Including
these unlisted firms allows the model to traverse multi-hop paths, which generates pricing messages
passed between pairs of listed firms through their shared connections with unlisted intermediaries.
This approach ensures that our model fully leverages the relational structure of the supply chain,
capturing indirect dependencies that may impact publicly traded firms.

From the summary statistics of the SCG data, illustrated in Figure 2, we see temporal growth,
sparsity, and cross-sectional differences among industries. Such patterns highlight important struc-
tural features of the supply chain network that influence model design and analysis. We also provide
more granular summary statistics for the two leading industries of Manufacturing and Wholesale
& Retail Trade in Table A.1, where we report the number of firms, supply chain links and average
degree for each year in our observations.

First, the SCGs exhibit a clear upward trend in both the number of nodes (firms) and edges
(supply chain relationships) over time, as shown in Figure 2. This temporal growth reflects the
evolving complexity of the supply chain network, as more firms establish connections with suppliers
and customers. To balance capturing long-term patterns in supply chain relationships with robust
out-of-sample testing, we partition the data into a training period from 1977 to 2006 and a test
period from 2007 to 2023. This break-point, as observed from Figure 2, provides us with a train and
test set that roughly have the same number of supply chain relationships in each. The temporal

growth of the SCG provides the model with progressively richer structural information, mirroring

1"While SFAS 131 disclosure enables the construction of directed relationships (e.g., a directed edge from a sup-
plier to a customer), we simplify the model by focusing on an undirected graph representation derived from the
data. Additionally, although some edges include weights—such as sales percentages—we adopt an unweighted graph
framework for tractability. Extending the model to incorporate directed or weighted graphs is a promising avenue
for future research.
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Figure 2: The number of nodes and edges by year
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This figure depicts the number of firms |V4| in a given industry, and the total number of edges |E:| at time ¢t
connected to firms in a given industry in our observed supply chain graph data. The data is annual frequency. We
identify a firm’s industry by its Standard Industrial Classification (SIC) code.

the broader trend of economic integration over the past several decades. This expanded network
structure offers the GNN more relational data for learning firm interdependencies, which is essential
for accurately modeling returns.

Second, we notice that the SCGs are characterized by significant sparsity, with each firm typ-
ically connected to only a few direct suppliers or customers. The average degree for firms in any
given industry varies between 0.2 and 1.6 across different years,'® reflecting the concentrated na-
ture of supply chain relationships. For example, in 2023, there are approximately 6,300 firms in the
Manufacturing sector and 10,100 total edges that connect to firms in the sector, and an average
degree of 1.6. This sparsity is crucial for model design, as it limits the effective range of influence
any given firm’s supply chain can exert on others.

The sparsity of the SCGs also has important implications for the choice of GNN layer depth
d. A deeper network (higher d) enables the model to capture broader connections, but in a sparse
network, this may lead to noise propagation, as information from more distant nodes may become
less relevant. Thus, the sparse structure of the SCG suggests a careful balance in setting d to
capture relevant dependencies without introducing noise. The sparsity observed in this dataset
also highlights the challenges of maintaining connectivity in a dynamic, expanding network, as
many firms maintain only a handful of key relationships within the larger supply chain network.

Lastly, the SCGs show notable cross-sectional differences across industries, particularly in the

'8We report the detailed data in the two leading industries of Manufacturing and Wholesale & Retail Trade in
Table A.1.

19



concentration and connectivity patterns of firms. As visible in Figure 2, most nodes in our data
belong to the Manufacturing sector, followed by Wholesale & Retail Trade. This distribution
reflects the supply chain’s industrial concentration, where manufacturing firms often play central
roles with numerous connections, while firms in other sectors may act as intermediaries or endpoints
with fewer links. The average degree also varies slightly across sectors, underscoring the need to use
ML to extract more complex cross-sectional differences. As can be seen in Table A.1, for instance,
Manufacturing firms typically exhibit approximately equal or higher average degrees compared to
firms in sectors like Wholesale & Retail Trade (firms in both industries have average degree of 1.6 in
2023), which is driven by the data disclosure rule in SEC SFAS 131 that only relationships > 10%
are disclosed. Therefore, even though Wholesale & Retail Trade in reality may have much higher
number of relationships (Agrawal and Osadchiy, 2024; Agca et al., 2022) our noisy and incomplete
data forces us to retrieve cross-sectional differences from other means such as covariance of firm

characteristics and returns conditioned on the SCG.

3.2 Asset Pricing Model

This section details our model’s estimation procedure, interpretative framework, and perfor-

mance metrics for firm-level return estimates and asset pricing factor performance.

3.2.1 Estimation

In this subsection, we refer to the subset of data from January 1977 to December 2006 as the
training dataset, denoted by Dirain, and the data from January 2007 to December 2023 as the
test dataset, denoted by Diest. The estimation of our model parameters and asset pricing factors
follows the procedure described in §2.5. The training of our model is based on minimizing the mean
squared error (MSE) between estimated and actual returns, which we formally describe in (6). ¥

We intentionally shuffle the data during the training process to expose the model to a mixed
sample of firms and time periods. Our shuffling strategy ensures that each mini-batch contains
data from different periods and firms, allowing the model to learn generalized patterns across the
full range of conditions within Diin- By doing so, the model’s gradient descent algorithm is less
likely to overfit to specific time periods or firm-specific trends and is instead encouraged to capture
the broader structural patterns in the supply chain data.

In the estimation process, we ensure that the model has reached convergence before proceeding
to evaluation. Convergence is verified by monitoring the training loss as a function of the number
of batches processed. Specifically, we plot the training loss on the y-axis against the number of

batches on the x-axis, with each line in the plot representing a different model configuration.

19We conduct a comprehensive grid search to determine the optimal hyperparameters for our neural network model
by minimizing MSE. Grids are constructed as a cartesian product of each parameter’s individual choice set. The
hyperparameters and grids we search are: epochs - [2, 3, 6], dropout rate - [0.2, 0.5, 0.8], attention heads - [1, 2,
3], output layer dimension - [40, 50, 60]. The selected parameters are as follows: 6 epochs, a dropout rate of 0.5 to
control overfitting, an output layer dimension of 40, and 2 attention heads.
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As shown in Figure A.1, each model configuration exhibits a declining training loss over the
initial batches, eventually stabilizing as the model converges. The different colors represent various
model configurations, allowing us to compare their convergence behaviors and select the config-
uration that best balances training efficiency and loss minimization. This plot provides a visual
confirmation that the training process has stabilized, as indicated by the loss values plateauing over
the final epochs. Convergence is observed when the training loss remains relatively constant across
successive batches, suggesting that the model has minimized the objective function sufficiently

given the data and selected hyperparameters.

3.2.2 Benchmarks

But exactly how much performance change is contributable to each part of our proposed return
explanation model? Recall we use both the new data of supply chain graphs, and a new model
of GNN compared to the previous literature on empiricaly asset pricing factor zoo. This can be
decomposed to first asking: are the higher-order relationships in the supply chain graphs helpful for
explaining returns? Secondly, conditional on using supply chain data, how much improvement can
be obtained by using our novel graph neural network model over the widely used linear models?
To showcase each source of improved estimation, we carefully construct benchmark comparisons

by utilizing several well-established factor models in asset pricing:

e Fama-French Five-Factor Model (FF5): Fama and French (2015) propose a widely

accepted model that includes market, size, value, profitability, and investment factors.

e Principal Component Analysis (PCA): A factor model that captures risk premiums

through principal components, as outlined by Giglio and Xiu (2021).

¢ Risk Premium Principal Component Analysis (RP-PCA): A generalized factor model
that introduces additional parameter to mix the first and second-moment objective in esti-
mating PCA, as introduced by Lettau and Pelger (2020).

e Neighboring Characteristics (NC) A model that takes arithmetic average of all firm
characteristics and estimates linear models. That is, for firm i, we take nodes that are in

Ni(i) and compute the average X;:

1
Xit = ————— Z Xt (15)
V@ S
Then we estimate LASSO (Tibshirani, 1996) and Ridge (Hoerl and Kennard, 1970) model

based on the neighboring X;; and the firm’s own characteristics x;;.

) 2

GLASSO — argminaE(i,t)NDtrain |:<Y; —_ [Xit )_(Zt]—re) :| + )\1”9”17
B 2 (16)

gRidge _ argmingE; yp,.... [(Yz — [xa iit]Ta) ] + X2||6]I3,

21



where the penalty hyperparameters A\; and Ay are selected from cross-validation.

We highlight the NC benchmark models as examples where we are using a simpler model than
GNN, while conditioning on the supply chain graph information. If our machine learning approach
produces better empirical performance, it would be evidence that widely used linear model are not
flexible enough to capture the rich higher-order relationships that exist in supply chains to explain
average returns.

These benchmark models serve as baselines for evaluating the accuracy and economic relevance
of our GNN-derived factors. By comparing our model’s performance against these established
frameworks, we demonstrate the unique value of incorporating supply chain network information
into asset pricing.

F%\IC-LASSO

We also use the NC benchmark model to generate NC asset pricing factors and

F?C'Ridge, in order to contrast against our supply chain asset pricing factors F;. Therefore we need
to transform NC into forms similar to (10) by running through our asset pricing factor construction
procedure in Section 2.5. To align NC with GNN’s embedding, we use the linear transformed

concatenated firm-characteristics from either the estimated LASSO or Ridge as the embedding:

- NC. A _ ~NC-Rid ARi <
gCLASSO — QLASSO o %, %] T, Xpp o= 0N O [xi Rt (17)

NC-LASSO

20 With igc‘LASSO and X;; , We can

where @ is the element-wise multiplication operator
now treat them similarly as X;; and follow the steps in Section 2.5 to compute asset pricing factors
FNC-LASSO and F?C'Ridge. If the portfolios formed from these NC factors generate lower Sharpe
ratios than our GNN-based factors, we have further evidence that the flexible model forms of GNN
are better suited for capturing the rich relationships in the supply chain data for the purpose of

asset pricing.

3.2.3 Model Performance on Firm-Level Return Estimates

We now turn to show the better performance of Transformer GNN taking advantage of SCG and
firm characteristics data jointly, as reported in Table 1. For firm-level monthly excess returns, we
evaluate GNN models by comparing root mean squared error (RMSE) and mean absolute pricing
error (MAPE) defined as:

1 N 1 1 N
RMSE = |— > (Yi—Yi)?, MAPE=——> [ (Vi — Yy (18)
Dl . |Vp| &= "T; +
(i,t)~D i~D i~D
where D refers to either the in-sample period of Dipain Or Diest, |D| refers to the cardinality of
month-firm pairs in D, T; refers to the number of months for firm ¢, and |Vp| refers the number

of firms in that period. The RMSE and MAPE capture different aspects of model performance as

20For xNC-LASSO e would have many zero entries due to LASSO’s sparsity. When running the PCA in Step 2 of

Section 2.5, we will drop those dimensions with zero entries induced by LASSO.
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they focus on different moment conditions with distinct interpretation: the RMSE reflects variation
across the panel of returns, while the MAPE captures the unexplained average returns across the
cross-section of firms.

We compare our model against established benchmark models, including the Fama-French Five-
Factor model (FF5), Principal Component Analysis (PCA), Risk Premium Principal Component
Analysis (RP-PCA), and two Neighboring Characteristics (NC) models that consider only 1-hop
neighborhood in SCG and estimated with LASSO and Ridge. We report both in-sample and
out-of-sample?! performance metrics, as shown in Table 1. The reported models use the optimal
hyperparameters that are selected from grid search as described in §3.2.1. All models have reached
convergence in our training, as reported in Figure A.1.

First, we find direct empirical evidence learning high-order relationships can help firm-level
return estimation, as we see in Table 1 that the size of local subgraph (parameter d) impacts
model performance. For example, as we increase d from d = 1 to d = 6, the in-sample MAPE
improves by 17% while the out-of-sample MAPE also improves by 17%. At the same time, both
in- and out-of-sample RMSE is improved as we increase from d = 1 to d = 6. Recall that the
parameter d also plays a central role in the GNN architecture: d corresponds to the number of
message-passing layers within the network, thus controlling the neighborhood radius over which
each node aggregates information. When d = 1, each node aggregates information solely from its
immediate neighbors, limiting the model to a localized view of the network. While this approach
aligns with conventional methods that often use hand-crafted features implicitly restricted to first-
order neighborhoods, it does not fully leverage the GNN’s capacity to capture more complex supply
chain dependencies. The results show that a d = 1 configuration produces higher out-of-sample
RMSE and MAE compared to configurations with larger d values, suggesting that a single-layer
neighborhood is inadequate for capturing the complex relational patterns within the supply chain.

Second, performance may decline if d is increased excessively. For instance, as we increase d from
d = 6 tod = 10 in Table 1, the in-sample MAPE worsens by 14%, the out-of-sample MAPE worsens
by 3%, while their RMSE performances remain close. This pattern highlights a fundamental bias-
variance trade-off in GNN architectures, as is the case for many statistical learning problems. As
d grows, the model leverages information from increasingly distant firms to produce embeddings
for the firm at hand, introducing noise and potentially masking the influence of more relevant local
connections. This phenomenon, known as‘“gradient vanishing” and “oversmoothing” (Chen et al.,
2020) occurs when the relevance of close neighbors is diluted by signals from less pertinent distant
nodes. As a result, higher values of d can force the GNN to unsuccessfully learn the harder-to-fit
high-order patterns in the supply chain graph, capturing noise instead of meaningful structural

patterns, and thus lead to reduced generalization in out-of-sample estimates. As such, we should

21For FF5, PCA and RP-PCA, we use in-sample period data to fit time series regressions for each firm, and hold
those models as fixed for out-of-sample model evaluation. For firms that do not exist in Dirqin but exist in Diest, we
use a pooled panel regression estimated in-sample for the out-of-sample evalutions of those new firms. For GNN, the
model is invariant to the firm index as long as the firm’s position in the SCG is available, so we do not need special
treatment firms that exist only in Diest.
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Table 1: Firm-level performance of GNN and benchmarks.

In-sample Out-of-sample
Model Name RMSE AIA)APE RMSE MApPE
TransformerGNN (¢ =1) 0.1344 0.0166 0.1606 0.0233
TransformerGNN (d =2)  0.1327 0.0140 0.1593 0.0198
TransformerGNN (¢ =3)  0.1325 0.0137 0.1591 0.0198
TransformerGNN (d =6) 0.1325 0.0137 0.1590 0.0193
TransformerGNN (d =10) 0.1327 0.0156 0.1589 0.0199
FF5 0.1251 0.0142 0.1689 0.0221
PCA (k=5) 0.1151 0.0100 0.1605 0.0206
RP-PCA (y =10,k =5) 0.1152 0.0095 0.1651 0.0207
NC (LASSO) 0.1228 0.0141 0.1570 0.0220
NC (Ridge) 0.1229 0.0142 0.1570 0.0221

This table reports the performance of our GNN models with different d, and benchmark models of FF5, PCA,
RP-PCA and NC with LASSO and Ridge (defined in (16)). The NC parameters are the best LASSO and Ridge
regressions. The k parameter for both PCA and RP-PCA refers to the number of latent factors. The RP-PCA
parameters 7y indicates the weights in a modified PCA objective.

opt for using a moderately sized model with d between 2 and 10 to balance the bias-variance
trade-off.

Lastly, the GNN models such as the TransformerGNN (d = 6) model surpass the performance
of FF5, PCA, and RP-PCA benchmarks (in the lower half of Table 1) in the out-of-sample period,
while in-sample they are overfitting to the data. For instance, on the out-of-sample set, our recom-
mended model produces 13% and 6% lower MAPE compared to FF5 and PCA models, respectively,
as well as lower RMSE. When compared to NC models, it is noteworthy that our recommended
model has better MAPE but worse RMSE. One explanation is that the GNN is learning from a
much more expressive model class, so its second-moment error as measured by RMSE would be
higher. At the same time, asset pricing is not just about the second moment; therefore, we need to
further investigate the asset pricing performance in §3.2.4 when we form tradeable portfolios using
our firm-level estimation models.

Our analysis on the firm-level estimation results underscores the advantages of the GNN ar-
chitecture in expanding traditional asset pricing models. Based on the above analysis, we can
conclude that a too simple GNN architecture (d = 1) is not sufficient to capture the nontrivial
higher-order relational information from the supply chain network. Nevertheless, which GNN ar-
chitecture (d > 1) achieves the optimal bias-variance tradeoff requires further analysis. In the
following discussions, we shed light on the benefits of model complexity in capturing these complex
relationships, and recommend a model that achieves balances in bias-variance tradeoff and has low

sensitivity to noises in SCG.

24



3.2.4 Asset Pricing Factor Performance by Sharpe Ratio

We propose procedures that compute supply chain asset pricing factors that can form tradeable
portfolios. To dissect these factors’ risk-return trade-off, we examine their Sharpe ratio (SR),
varying both the choice of supply chain sub-graph size (d) and the number of factors (K). For the
out-of-sample (OOS) period Dyest, we compute our supply chain factors out-of-sample Fpog, which
are excess returns, and then follow classical literature to compute out-of-sample max Sharpe ratio
of:

SRF,00s = EE}INS,UF,OOSa (19)

where both in-sample (INS) period out-of-sample period are used, X ns is the covariance
matrix estimated strictly using Fing from the in-sample period, and ug oos is the out-of-sample
estimated mean of Fgos.

We report in Figure 3 the SR values for each choice of d and K. Since our factors have
projected out the PCA factors, a positive SR would indicate that we have successfully captured
risks unexplained by the firm-characteristics summarized by a PCA model. In other words, the
out-of-sample SR reflects the unique estimation power and economic relevance of the supply chain
asset pricing factors, with higher SR values indicating stronger performance.

We find comprehensive and compelling evidence in Figure 3 that our supply chain-based asset
pricing factors provide unique explanatory power for returns, capturing independent sources of
risk beyond those explained by traditional firm characteristics. Each row in the subfigure (a)
corresponds to a choice of supply chain sub-graph size (d), and each column in the subfigure (b)
corresponds to a choice of number of factors K. Notably, any positive Sharpe ratio in subfigure
(a) indicates that our supply chain factors identify distinct, uncorrelated risks. By construction,
these factors are orthogonal due to the principal components that summarize firm characteristics,
suggesting that positive Sharpe ratios reflect unique information extracted through the convolution
of supply chain relationships with firm-specific attributes. This process, enabled by the GNN
architecture, reveals patterns of risk and return variation that are not captured by models relying
exclusively on firm characteristics.

Firstly, we find that the estimation power of the supply chain factors improves as we learn
higher-order relationships with increasing d. Recall that when d = 1, the GNN only picks up 1-hop
neighboring firms in the supply chain; when d = 6, the model can traverse by 6 hops and learn much
more sophisticated patterns in the firms adjacent to the target firm. The Sharpe ratio performance
in Figure 3 validates the virtue of complex models with higher d: relative to factors from the model
with d = 1, we see the d = 6 model yields asset pricing factors that achieve 38% higher Sharpe
ratio and the d = 10 model 54% higher Sharpe ratio, given fixed K = 5. This suggests that we can
form portfolios with better mean-variance efficiencies when we use a GNN model that takes more
complex supply chain graph relationships into account.

Secondly, we observe that most of the estimation gains are concentrated in the top 5 factors.
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Figure 3: Sharpe Ratio Heatmaps (Out-of-sample).
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We report the out-of-sample Sharpe ratio of our asset pricing factors with varying number of layers (d) and increasing
number of factors (K) in sub-figure (a), conditioned on PCA. We also draw comparisons against sub-figure (b) with
Neighboring Characteristics (NC) factors from 1-hop neighboring firms’ characteristics, constructed using (15), (16)

and (17), conditioned on PCA.

For instance, when d = 6, the top 5 factors yield a Sharpe ratio of 0.18, while the full set of

40 factors achieves a Sharpe ratio of 0.34. This result implies that the top 5 factors account

for approximately 53% of the total Sharpe ratio, illustrating a long-tailed distribution where a

limited number of dominant factors explain a substantial portion of returns, while additional factors

provide incremental gains. This long-tailed behavior suggests that the primary estimation power

is concentrated in a select set of supply chain relationships, with the remaining factors capturing

finer, less impactful variations in the data.
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Finally, our supply chain factors exhibit a notable advantage over the Neighboring Charac-
teristics (NC) baseline models as evidenced by their higher out-of-sample Sharpe ratios, which
demonstrates the benefit of learning nonlinear higher-order relationships. Recall that NC admits a
linear combination of characteristics of firms that are in the 1-hop neighborhood of a target firm, as
estimated in (16). The improvements of our model over NC are strong. For example, when d = 6,
the top 5 factors derived from the GNN-based supply chain model produce a Sharpe ratio of 0.18,
which is 50% higher than the Sharpe ratio of 0.12 achieved by the NC Ridge model and 64% higher
than the 0.11 Sharpe ratio of the NC Lasso model. This superior performance of the GNN-based ap-
proach underscores the benefit of integrating detailed relational data from the supply chain network.
By leveraging the convolution of supply chain structure with firm attributes, the GNN captures
nuanced, multi-layered dependencies that simpler neighborhood-averaging approaches cannot ac-
count for, demonstrating the unique value of the GNN architecture in constructing robust asset
pricing factors.

In summary, we have shown that our supply chain factors contribute uniquely to asset pric-
ing and risk management, as the out-of-sample Sharpe ratios of their portfolios exhibit superior
performance. Moreover, higher-order relationships learned by higher d contribute positively to the
mean-variance efficiency. The supply chain factors also have the stylized concentrated pattern in
empirical finance that the leading 5 factors capture more than half of the gain in Sharpe ratio,

while the remaining factors have long-tailed contributions.

4 Understanding the Supply Chain Factors and GNN

In this section, we discuss the economic interpretability of our proposed GNN model and supply
chain asset pricing factors. First, we perform asset pricing regression on test assets and report t-
statistics. Second, we design a Monte Carlo experiment to assess GNN estimation sensitivity to
small changes in the SCG by removing edges stratified by degree centrality. In Figure 5, we report

correlations between our asset pricing factors and the Fama-French factors.

4.1 Regression Analysis with Test Portfolios

We examine the significance of our asset pricing factors by regressing them on the Fama-French
25 double-sorted Size and Book-to-Market portfolios, available from the Kenneth French’s website.

Specifically, for our supply chain factors F;, we estimate the following regression model:
rpr = By Fo 4+ m) 21 + Ept, (20)

where r,; denotes the return of portfolio p at time ¢, 8, captures the exposure of the portfolio to
our supply chain factors F, 7, captures the exposure of the portfolio to control factors z;, and
Ept are zero-mean idiosyncratic noises. We report the absolute values of t-statistics for each Bp to

evaluate the statistical significance of our factors, assessing their ability to explain return variations
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across portfolios. 22 We run these regressions both in-sample and out-of-sample to see whether the

factors’ significances persist.

Figure 4: Distribution of ¢-statistics across time-series regressions on test assets.
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The different histograms refer to different supply chain factors. The x-axis shows the absolute values t-statistics of
time-series regressions in (20). The y-axis corresponds to different supply chain asset pricing factors. The factors
are constructed with TransformerGNN(d = 6) model. The boxplot body’s left, middle and right bars correspond to
25-, 50-, and 75-th percentiles.

We report the time-series regression results by taking absolute values of the t-statistics associ-
ated with the leading 5 factors in F; in Figure 4 with boxplots, with FF5 as z; control variables.
As is evident in Figure 4, over 83% (104 out of 125) of the t-statistics are significant and above the
recommended || = 3 line of Chen and Zimmermann (2022) across the test portfolios. Therefore, we
find significant statistical evidence of our supply chain factors in explaining the test assets’ returns.

Understanding the influence of firm characteristics on our results is essential for interpreting
the economic significance of our GNN-derived factors. Our goal is to identify which characteristics
contribute most to the embeddings and to quantify the sensitivity of our asset pricing factors
to specific characteristics. We approach this analysis using two two complementary methods. To
examine how traditional firm characteristics relate to the GNN-derived embeddings ¢;:, we compute
the Pearson correlation coefficient between our factors F; and well-known Fama-French three factors
(FF3); see Fama and French (1993).

Correlation analysis helps to interpret each of the supply chain asset pricing factors in economic
terms, revealing whether the GNN-derived features are composed of common asset pricing factors,
or beyond simple combinations of them. Since our supply chain factors are residualized portfolio
returns of principal directions of the GNN’s embeddings covariance, the correlation serve as a

more interpretable stopgap to understanding how our supply chain factors are unique. We report

22Using t-statistics is a common approach to ensure reproducibility when repeatedly conducting asset pricing,
which falls under the topic of multiple testing for asset pricing as discussed in Barillas and Shanken (2018); Chen
and Zimmermann (2022); Pelger and Zou (2024).
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our findings in Figure 5. The first observation is that none of our factors are strongly correlated
with Fama-French factors, as the highest correlation in magnitude is 0.11. At the factor-by-factor
level, we find that the first supply chain factor is weakly positively correlated with the Book-to-
Market factor, while having small negative correlation with Market and Size. The second factor has
moderate correlation with all FF3 factors, with different signs on Book-to-Market vs Market and
Size. The third factor has across the board positive correlation with FF3 factors. The fourth factor
has the strongest correlation with Market in the negative sign, and weak positive correlations with
Size and Book-to-Market. The fifth factor again shows positive correlations with both Market and

Size, and different signed correlation with Book-to-Market.

Figure 5: Correlation with Fama-French 3 factors.
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The y-axis shows the three Fama-French factors (Fama and French, 1993) of Market, Size and Value. The x-axis
shows the leading 5 supply chain asset pricing factors. Factors are estimated with d = 6 TransformerGNN with
PCA as control z;.

4.2 Asset Pricing Sensitivity to the Supply Chain Graph

To better understand how sensitive our asset pricing factors are to small perturbations in the
supply chain network, we conduct a “derivative-like” analysis by examining the effects of infinitesi-
mal changes in the graph structure. This approach enables us to assess how local structural changes
within the network influence the factors and, consequently, the estimated returns.

Our method proceeds as follows. We first partition the nodes (firms) in the graph into four
different groups based on their degrees (i.e., the number of direct connections each node has),
namely: {1},{2,3},{4,5},{> 6}. These groups are defined so that we can directly interpret their
economic meaning of the firm’s centrality in the SCG. However, the firms are not evenly distributed
among them. There are a greater number of low-degree nodes, and the groups’ firm counts vary
over time as firms enter and leave the market or adjust their supply chain relationships. 2* To
avoid biasing the sensitivity analysis results by simply perturbing more nodes in the low-degree
group with the larger number of nodes, we perturb a fixed number of 100 nodes per group in each
Monte Carlo simulation, ensuring that the sensitivity measure remains comparable across degree

groups.

23More details on these dynamics are reported in Figure A.2, where we plot a time series of the number of firms
within each degree group, providing context for how degree distributions evolve.
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Table 2: Mean and standard deviation of Monte Carlo experiments on SCG.

Model ‘ Degree: 1 Degree: 2-3 Degree: 4-5 Degree: >6
TransformerGNN (d=1) | 0.91 (0.67) 1.56 (1.07) 1.70 (1.23)  2.30 (1.81)
TransformerGNN (d =2) | 0.88 (0.48) 1.24 (0.72) 1.31 (0.83) 1.81 (1.35)
TransformerGNN (d = 3) | 0.66 (0.37) 0.71 (0.36)  0.77 (0.47)  1.09 (0.82)
TransformerGNN (d=6) | 0.29 (0.15) 0.36 (0.19) 0.41 (0.27)  0.63 (0.51)
TransformerGNN (d = 10) | 0.61 (0.36) 0.66 (0.30)  0.75 (0.48)  1.10 (0.85)

The reported values are average sensitivity and in parenthesis the standard deviation of the sensitivity, in units of
107°. Sensitivity is defined in (21). The results are taken over B = 100 simulations. The columns show different
groups of nodes with increasing degree centrality from left to right. The left-most column corresponds to firms with
only 1 degree in SCG, whereas the right-most column corresponds to firms with > 6 degrees in SCG.

We perform a Monte Carlo simulation where, in each iteration, we uniformly and randomly
delete one edge connected to a randomly chosen node within each group. This process allows us to
measure the change in the asset pricing resulting from the removal of a single, incidental connection
in the network.

Supply chain graph sensitivity measure S for firm i at time ¢ is computed as the absolute

difference between the original estimate and the perturbed estimate after an edge deletion:
SO = 15:(Xy, SCGY) — §i(Xs, SCGY)| (21)

where SCng) is the bth perturbation of the SCG; graph and b = 1,2,..., B as we run our
Monte Carlo experiment. The Sj metric provides a straightforward way to quantify how much
each estimate changes in response to edge deletions. By observing this metric over multiple Monte
Carlo simulations, we obtain an intuitive estimate of the sensitivity for each degree group and
model configuration.

The Monte Carlo simulation is repeated B times for each group, providing a distributional
estimate of the effect of edge deletions. We introduce the randomness in order to marginalize
over variations due to specific edge or node choices within each group, and to compute the overall
sensitivity of the factors to small changes in connectivity for firms of varying degrees.

Empirically, we report our results in Figure 6 as boxplots that show not only the median impact
but also the variability of sensitivity within each degree group, providing insight into how structural
changes at different levels of the supply chain network affect model robustness. We also report the
mean and standard deviation of the simulation results in Table 2.

We derive two key economic insights about the stability of model estimates in response to SCG
perturbations: one concerning the role of a firm’s degree centrality, and the other addressing the
effect of model complexity (d) on GNN.

First, regarding firm centrality: as the degree of perturbed nodes increases, the model’s es-
timates demonstrate greater variability in ¢, reflected both in higher average sensitivity S and

increased variance. Visually, we see the boxes of Figure 6 move higher from left to right as the
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Figure 6: Sensitivity analysis of Monte Carlo experiments on SCG.
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This figure shows the distributional results of sensitivity in model performance across degree groups and models
when we randomly remove edges from SCG’s specific group of firms. Sensitivity is defined in (21). The x-axis shows
four degree groups, while the y-axis displays the distribution of S as a result of random edge deletions. Each box
plot represents the distributional variation of the edge deletion Monte Carlo simulations. The results are taken over
B = 100 simulations and use all the data from 1977 to 2023.

degree of the firm being perturbed increases. More specifically from Table 2, with our recommended
TransformerGNN of d = 6 model, we see the average and standard deviation of sensitivity of firms
with > 6 degrees is still 41% and 240% higher than that of firms with 1 degree. In models such as
TransformerGNN with d = 2, we observe that the average sensitivity and standard deviation for
firms with > 6 degrees is 152% and 181% higher than that of firms with a degree of 1.

This empirical evidence aligns with the underlying economic mechanism in supply chain: we
expect high-degree nodes, which represent central firms with more supply chain connections, play a
critical role in the network structure. When edges of these nodes are perturbed, even small changes
can ripple through the network, significantly impacting model estimates. By contrast, low-degree
nodes are less central and have fewer connections, leading to minimal changes in estimates with
smaller variations. This suggests that the GNN embeddings of low-degree nodes are more stable,
as these peripheral nodes contribute less to the overall supply chain structure and thus have limited
influence on the relational dynamics captured by the model.

Secondly, regarding the role of d, our sensitivity analysis reveals that the recommended model,
with carefully selected layers, exhibits the lowest sensitivity to edge perturbations. From Table 2,

we see that our recommended TransformerGNN with d = 6 model has 65% lower average sensitivity
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and 62% lower standard deviation in sensitivity than the d = 2 model, for the most central firms
(degree > 6) in the supply chain.

From an economic perspective, as d increases from small to moderate, the receptive field of each
firm’s supply chain model expands, allowing us to capture more complex, multi-hop dependencies
within the supply chain network. However, when d increases to an even larger number such as
d = 10, the GNN becomes excessively deep, leading to instability in the model estimation and
resulting in higher variance in the estimates.

This result aligns with theoretical expectations: for each layer in the neural network, a random
dropout function already introduces inherent robustness to make sure the model focuses on learning
core patterns, and thus the case of GNN with d = 6 is indeed capturing fundamental economic
nature in SCG despite noisy observations of the relationship graph. However, as we further increase
the depth of GNN, we expect the classical bias-variance trade-off in statistical learning problems.
This claim is supported by the evidence in Table 2 — as we increase d = 10, we extract more complex
patterns from SCG but at the cost of larger variance: compared to d = 6’s model, we have 178%
larger variance for the most central firms, and 476% larger variance for the firms with only one
connection.

In summary, our sensitivity analysis highlights the interplay between node centrality, model
complexity, and estimate stability in GNN-based models. High-degree nodes play a crucial role
in maintaining the structural integrity of the supply chain network, making the model’s estimates
more sensitive to changes involving these nodes. In contrast, low-degree nodes demonstrate greater
stability, indicating that peripheral firms have a limited impact on the dynamics captured by the
GNN.

Additionally, increasing d enhances the model’s ability to learn complex relationships. However,
excessively large values of d result in high variance, reflecting the bias-variance trade-off discussed
in Table 1.

5 Conclusion

We have developed a novel empirical framework that highlights the value of supply chain infor-
mation in asset pricing. Our proposed machine learning framework, which integrates supply chain
and firm characteristics nonlinearly, produces new asset pricing models with superior out-of-sample
performance compared to the FF5 model and PCA-based approaches. The supply chain asset pric-
ing factors derived from regression on test assets are statistically significant and deliver positive
Sharpe ratios out-of-sample.

We highlight that the size of the supply chain local neighborhood (d) is a critical and inter-
pretable parameter that requires careful selection. Our empirical analysis demonstrates that d = 6
achieves an effective balance between the bias introduced by omitting higher-order supply chain
structures and the variance of the estimator. This moderate level of model complexity also exhibits

reduced sensitivity to noise in the graph compared to more complex configurations.
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Our findings reveal that the model’s estimates are more sensitive to perturbations in the supply
chain graph for firms with higher degree centrality, aligning with existing literature that associates
supply chain centrality with variations in firm returns.

To extract meaningful signals from supply chain data amidst numerous firm characteristics, we
employ flexible graph models that dynamically aggregate information from local subgraphs. Our
proposed GNN methodology is specifically designed for this purpose.

While our primary focus has been on asset pricing, our framework extends to a wide range of
economic problems involving large graphs and panel data. This includes applications such as causal
inference with interference graphs and rich covariates, provided the objective can be expressed as
a weighted sum of moment conditions. The parameter d serves as a data-driven mechanism for

aggregating covariates from units within d-hops of a target node in a given graph.
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Appendix

A Appendix: Empirical Asset Pricing

A.1 Table and Figures

Figure A.1: Training loss over batches for different model configurations.
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The x-axis represents the number of batches, while the y-axis shows the training loss. Each line corresponds to a
different model variant. From this figure, we can observe that trainings have converged for all the models.

Figure A.2: Number of firms in each group of degrees across time.
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The x-axis represents the time, while the y-axis shows the number of firms. Each line corresponds to a different
group. This figure reveals the complex temporal dynamics in the number of firms within each group. To address
this, we sample an equal number of nodes from each group for our Monte Carlo experiments, ensuring that our
analysis is not biased toward the group with the largest node count.
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Table A.1: Summary statistics for firms in top two leading industries

v, ‘ Manufacturing ‘ Wholesale & Retail Trade
ear
‘ Num. links Num. firms Average degree ‘ Num. links Num. firms Average degree

1977 35 148 0.24 5 19 0.26
1978 80 182 0.44 13 28 0.46
1979 104 204 0.51 15 30 0.50
1980 137 237 0.58 19 35 0.54
1981 179 291 0.62 21 42 0.50
1982 231 358 0.65 25 47 0.53
1983 298 415 0.72 33 58 0.57
1984 363 469 0.77 40 66 0.61
1985 448 538 0.83 56 86 0.65
1986 525 610 0.86 73 102 0.72
1987 616 686 0.90 97 129 0.75
1988 694 741 0.94 113 146 0.77
1989 789 819 0.96 143 175 0.82
1990 877 887 0.99 176 205 0.86
1991 996 994 1.00 208 239 0.87
1992 1115 1103 1.01 272 305 0.89
1993 1247 1217 1.02 316 353 0.90
1994 1377 1324 1.04 377 415 0.91
1995 1599 1495 1.07 439 476 0.92
1996 1806 1657 1.09 502 543 0.92
1997 1977 1792 1.10 569 610 0.93
1998 2147 1903 1.13 654 693 0.94
1999 2481 2117 1.17 788 784 1.01
2000 3085 2512 1.23 972 876 1.11
2001 3366 2689 1.25 1070 936 1.14
2002 3650 2841 1.28 1200 1020 1.18
2003 3929 2976 1.32 1302 1072 1.21
2004 4107 3066 1.34 1391 1127 1.23
2005 4420 3206 1.38 1559 1223 1.27
2006 4635 3313 1.40 1645 1267 1.30
2007 4830 3398 1.42 1799 1344 1.34
2008 4950 3442 1.44 1893 1385 1.37
2009 5216 3547 1.47 1993 1438 1.39
2010 5712 3728 1.53 2105 1484 1.42
2011 6162 3889 1.58 2204 1536 1.43
2012 6432 4008 1.60 2305 1583 1.46
2013 6756 4142 1.63 2435 1646 1.48
2014 6950 4223 1.65 2637 1730 1.52
2015 7398 4446 1.66 2722 1772 1.54
2016 7844 4683 1.67 2843 1826 1.56
2017 8136 4821 1.69 2938 1868 1.57
2018 8498 5007 1.70 3019 1898 1.59
2019 8940 5268 1.70 3102 1941 1.60
2020 9299 5528 1.68 3239 2007 1.61
2021 9607 5805 1.65 3345 2066 1.62
2022 10077 6055 1.66 3405 2094 1.63
2023 10147 6298 1.61 3414 2130 1.60

We report the number of edges of all nodes and the number of nodes in the corresponding industry, as well as
average degree. The number of nodes reflect the number of firms and the number of edges reflect the number of
observed supply chain links in our data.
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B Appendix: Neural Network Layers

B.1 Transformer Architecture

In our model, we enhance the GNN learning by incorporating a Transformer architecture pro-
posed in Shi et al. (2021), which allows the GNN to more effectively capture complex relationships
within the supply chain network. A multi-head Transformer-based approach introduces cross-
attention mechanisms that assign different weights to each node’s neighboring messages, dynami-
cally learning the importance of various connections.

For each node i at layer [ with [ = 1,2, ..., d, the H-multi-head Transformer mechanism computes
a set of attention weights that determine the importance of each neighbor j € N (i) in the update

process. The Transformer-based computation for node ¢ can be represented as follows:

e Message with Multi-Head Attention (f,,s,): For a node i, the message from a neighbor-
ing node j is computed using multiple attention heads. Each head h independently computes

attention weights and corresponding messages:

(LR (ONT L), ()
(Wo'h") (W 7h)”) WO, (22)

(Lh) _ softmax ¥

Y Vi

m

where Wg’h),Wy{’h),Wg’h) are the learnable weight matrices for the query, key, and value

transformations for head h in layer [, hl(-l) and hg-l) are the feature vectors of nodes i and j,
and dj, is the dimension of the key vectors. The softmax function normalizes the attention

scores across all neighbors.

e Aggregation Across Attention Heads (AGG): The aggregated message for node i is
computed by concatenating the outputs of all attention heads and applying a learnable linear
transformation:

m!) = Wg) - concat (m(-l’l), mgl’z), e mgl’H)> , (23)

K3 K3

where H is the number of attention heads, mgl’h) = Zje/\/(i) mg’h)

is the aggregated message
for head h, and Wg) is a learnable matrix that combines the outputs of all heads for Ith

layer.

e Update (fy,,q): The node state is updated using a feedforward neural network (FFN) with

residual connections and normalization, as is typical in transformers:
hz(.lH) = LayerNorm (hz(-l) + FFN (LayerNorm(hZ(-l) + mgl)))> , (24)

where the first residual connection combines the previous node state hz(-l)

@

message m, ', and the second residual connection refines the updated state through a position-

with the aggregated

wise feedforward network. He et al. (2016) proposed the residual connection (adding h(l)) to

7
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help mitigate gradient vanishing issues, facilitating the learning of deeper networks, and it is

well-recognized as a popular technique in ML.

Our choice of FFN leverages ELU activation function and the LayerNorm regularization (Ba
et al.,, 2016) to compute the aggregated information at each node by applying a series of

transformations. The FFN for node ¢ at layer [ can be written as:

FFN(z\") = W{ . ELUwW 2" 4+ by + b,

i
where:

- zz(»l): Input to the FFN for node i, typically zl(l) = LayerNorm(hZ(»l) + mgl)), combining
) (1)

the previous node state hgl and the aggregated message m;”.

— ng),Wél): Learnable weight matrices in the FFN layers; bgl),bgl): Learnable bias vec-

tors.

— ELU(z): “Exponential linear unit” is a nonlinear entry-wise activation function defined
in Clevert (2015) of

ELU(x) = r=0 (25)

exp(z) — 1 xSO.
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