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Abstract

Regulating externalities is a major challenge when economic agents face uncertainty
and disagreement. Traditional Pigouvian and Coasean approaches often struggle because
they require either precise knowledge of externality costs or frictionless bargaining.
We propose an “uncertainty-based regulation” (UBR) mechanism that leverages both
uncertainty and firms’ heterogeneous information to achieve socially efficient outcomes
without requiring disclosure of private information. UBR works by creating a fictitious
market where firms’ incentives are aligned with social objectives through a simple, state-
contingent transfer rule. This framework provides a Coasean solution that internalizes
the externality. We show that the equilibrium allocation induced by UBR is team
efficient, dominates traditional regulatory tools, incentivizes information acquisition,
and remains robust even when firms distrust each other’s private information. Moreover,
if brought to a vote, it would receive unanimous support, making it politically viable.
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1 Introduction

A central challenge in economics is the design of effective regulation for activities that generate

externalities. This task is made all the more difficult in the presence of uncertainty and

disagreement among economic agents. Traditional approaches, rooted in the work of Pigou

(1920) and Coase (1960), often falter in such complex environments. Pigouvian taxes or

subsidies, while theoretically appealing, require the regulator to possess precise knowledge

of the externality’s magnitude (such as the social cost of carbon)—knowledge unattainable

under pervasive uncertainty and firm-specific private information (Mirrlees, 1971; Weitzman,

1974; Stiglitz, 1982). Similarly, Coasean bargaining relies on well-defined property rights and

negligible transaction costs—conditions rarely met in practice, especially when dealing with

a large number of agents holding private information (Kwerel, 1977; Farrell, 1987).

The literature has responded to this challenge through two main approaches. The

first approach, mechanism design, consists of developing sophisticated schemes to elicit

private information from firms (e.g., Dasgupta, Hammond, and Maskin, 1979). The need

for truthful revelation makes these mechanisms often complex, difficult to implement, and

vulnerable to collusion or strategic misreporting, particularly when trust among agents is

limited (Laffont and Tirole, 1986; Laffont, 1994). The second approach explores second-best

policies that rely solely on publicly available information, such as uniform standards or

taxes based on aggregate outcomes (e.g., Roberts and Spence, 1976; Weitzman, 1974). For

instance, a Pigouvian framework under uncertainty typically prescribes a tax equal to the

expected marginal social cost, based on public information alone (e.g., Lemoine, 2021). While

conceptually sound, this method still requires the regulator to act as a central calculator,

solving a full model of the economy without access to firms’ private knowledge. The regulation

of externalities is then confronted with a challenging trade-off: either complex mechanisms

with potential fragility or simpler mechanisms with inherent inefficiency.

In this paper, we address this challenge by proposing a novel regulatory approach that

harnesses uncertainty and disagreement to achieve efficiency without requiring the disclosure

of private information. Unlike second-best approaches that rely only on public information,
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our mechanism actively harnesses dispersed private information as the very driver of efficiency.

We label this approach “Uncertainty-Based Regulation” (UBR). We consider a setting where

firms undertake socially beneficial actions (e.g., investing in green technologies, contributing

to public goods, enhancing cybersecurity) whose effectiveness is uncertain and about which

firms possess heterogeneous private information.

Instead of controlling prices (e.g., through taxes) or quantities (e.g., through permits),

UBR operates through a simple transfer rule with two components: (i) a quantity component,

which depends on the gap between a firm’s action and the observable average across all

firms, and (ii) a price component, which is tied to a publicly observable aggregate outcome.

This outcome might include, for example, temperature change or total emissions (in environ-

mental regulation), system stability (in financial or cybersecurity regulation), or aggregate

productivity (in regulation that promotes research and knowledge creation, e.g., Romer

(1986)).

Formally, we consider a setting similar to the canonical quadratic-payoff “beauty contest”

coordination game of Morris and Shin (2002). In this environment, the Coasean resolution of

the externality can be understood as the creation of a synthetic competitive market, the limit

of a large Cournot game (Vives, 1988). In such a market firms would “supply” their socially

beneficial actions, while society’s needs would determine the “demand” and, ultimately, the

price. Firms behave as price takers, guided by an endogenous “shadow price” that reflects

the true underlying outcome. The shadow price internalizes the externality and coordinates

firms’ actions in a way that aggregates private information, capturing the Coasean solution.

Our contribution is to show that UBR implements precisely this synthetic market. From

a policy-design perspective, the transfer rule belongs to the class of outcome- and aggregate-

activity-contingent policies studied by Angeletos and Pavan (2009). By implementing the

synthetic market, UBR achieves the team-efficient allocation—the best outcome attainable by

a benevolent social planner under decentralized private information (Radner, 1962; Angeletos

and Pavan, 2007, 2009). Unlike Pigouvian taxes or cap-and-trade systems, which require

precise ex-ante knowledge and are often suboptimal under uncertainty and disagreement,

UBR reaches efficiency without information revelation or centralized control, and without
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negotiation or pre-defined property rights. The allocation induced by UBR strictly dominates

both the status quo and the allocation based on public information alone. The improvement

arises from two sources: individual flexibility, as firms tailor actions to their signals, and

collective adaptability, as aggregate behavior adjusts to the true state. Paradoxically, greater

uncertainty strengthens incentives under UBR, amplifying the marginal value of information

and thus inducing a stronger collective response. UBR also strengthens incentives under

distrust of others’ signals, as distrust raises perceived noise in aggregates and increases the

marginal value of private information. Finally, UBR is politically viable, since in a simple

vote all agents would ex-ante prefer it.

In sum, UBR bridges the Pigouvian goal of internalizing externalities and the Coasean

principle of decentralized efficiency, achieving both without the precise ex-ante knowledge

demanded by Pigou (1920) or the restrictive conditions required by Coase (1960). Crucially,

the price component in UBR is not a fixed ex-ante Pigouvian rate but an outcome-contingent

schedule, determined ex post from observable outcomes after firms have acted on both private

and public information. This design links our analysis to formal work on information aggre-

gation in strategic environments (e.g., Vives, 1988) and to the classic idea that decentralized

actions can harness dispersed knowledge (Hayek, 1945).

Literature. Our work is closely related to Angeletos and Pavan (2009), who establish

that taxes contingent on realized fundamentals and aggregate activity can restore efficiency

in economies with dispersed information, and to Colombo, Femminis, and Pavan (2025),

who show that Pigouvian-style schedules indexed to fundamentals and aggregate actions

can also correct under-investment in information. While these papers identify the scope for

outcome- and activity-contingent policies, our contribution is threefold. First, we prove a

market-equivalence result: a simple transfer rule—Uncertainty-Based Regulation (UBR)—

recreates the missing competitive market for the externality and thereby achieves the team-

efficient allocation without information disclosure. Second, UBR is directly implementable:

transfers depend only on ex post public observables (the realized outcome and the cross-

sectional aggregate action), require no private reports, and do not rely on the regulator’s
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knowledge of firms’ cost structures or the dispersed information environment, but only

on preference parameters. Third, UBR harnesses uncertainty as a driver of efficiency; it

strengthens incentives under distrust of others’ signals, which raises the marginal value

of private information; and it is politically viable, since in a simple vote all agents would

ex-ante prefer it. UBR thus connects the Pigouvian logic of corrective taxation with the

Coasean principle of decentralized markets, showing how dispersed private information can

be harnessed without central disclosure, in the spirit of Hayek (1945).

Recent work on state-contingent policies to address externalities has advanced along two

distinct lines: creating new market-based assets and designing corrective payment schedules.

The first approach follows the vision of Shiller (1994) by creating new financial securities to

manage societal risks. A recent example is Lemoine (2024), who suggests “carbon shares”

whose market price internalizes the externality. The second, exemplified by Colombo et al.

(2025), shows that a subsidy indexed to aggregate investment and fundamentals can correct

for both real spillovers and under-investment in information. Our framework shows that

these two paradigms are equivalent: a state-contingent Pigouvian schedule can be interpreted

as the creation of a synthetic market for the externality. UBR provides a simple regulatory

mechanism that makes this equivalence operational, implementing the allocation that would

prevail if the missing market actually existed. This trend towards outcome-contingent

regulation is already reflected in major policy innovations. For instance, the European

Union’s Market Stability Reserve adjusts the future supply of emission permits based on

the current market surplus, creating a dynamic cap that automatically responds to realized

outcomes.

Our analysis also connects to the broader “global games” literature on coordination under

heterogeneous private information, as described by Veldkamp (2011, Ch. 4, p. 45). Unlike

models where inefficiency arises solely from information externalities (e.g., Amador and Weill

2010), our framework features a real payoff externality, which regulation directly addresses.

We adopt the canonical public-private signal structure of Morris and Shin (2002) for clarity,

while noting that the literature has since developed along several dimensions. One important

line relaxes the signal environment beyond the public-private dichotomy by allowing multiple,
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partially correlated sources (e.g., Myatt and Wallace, 2008; Hellwig and Veldkamp, 2009),

and, in parallel, by treating the information structure itself as a design object (Bergemann

and Morris, 2016). Another line endogenizes information choice and the publicity of infor-

mation, studying how agents allocate attention and how this shapes coordination (Myatt

and Wallace, 2012; Morris and Yang, 2022). We retain the canonical representation with a

public-private signal structure for simplicity. In linear-quadratic environments, additional

(possibly correlated) signals enter only through posterior expectations and leave best-response

slopes unchanged; hence implementation of the team-efficient allocation via UBR is unaf-

fected. Moreover, because UBR induces strategic substitutability, it increases the marginal

value of private information—consistent with comparative statics that predict less correlated

information use when actions are substitutes (Hellwig and Veldkamp, 2009; Bergemann and

Morris, 2016; Myatt and Wallace, 2012).

The strategic interdependence in our model connects it to the literature on heterogeneous

beliefs and market dynamics (Keynes, 1964; Bikhchandani, Hirshleifer, and Welch, 1992;

Morris and Shin, 2002; Veldkamp, 2011; Myatt and Wallace, 2008). As in the “beauty contest”

framework of Morris and Shin (2002), agents must anticipate the actions of others. We

extend this idea, in the spirit of Banerjee (2011), by allowing agents to distrust one another’s

signals—a mechanism that introduces a risk component analogous to the “sentiment risk”

studied by Dumas, Kurshev, and Uppal (2009). While this literature provides deep insights

into market dynamics, our contribution is to use these insights as a foundation for policy

design. We ask how a regulator can exploit these very strategic interactions as policy tools

to align individual actions with societal goals, even amid agents’ distrust.

Our model’s structure, in which agents treat an aggregate variable as a public input,

shares features with the endogenous growth framework of Romer (1986). We depart from

that perfect-foresight setting by introducing asymmetric information about the state of the

economy and designing a regulatory mechanism to contend with it. This focus on designing

incentive-compatible rules under uncertainty places our work at the intersection of endogenous

growth and a classic literature on regulation. That tradition, exemplified by Roberts and

Spence (1976), Kwerel (1977), and Montero (2008), has long sought to design mechanisms
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that function effectively when the regulator has imperfect information about firms. Our

specific contribution is to show how regulation can create a missing market that leverages

informational frictions as a source of efficiency.

Finally, our work contributes to the broader literature on uncertainty, economic decision-

making, and regulatory design. Since the seminal work of Knight (1921), uncertainty has

often been viewed as a barrier to effective decision-making (e.g., Bernanke, 1983; Rodrik,

1991; Dixit and Pindyck, 1994; Caballero and Pindyck, 1996). We challenge this perspective

by demonstrating that uncertainty can be harnessed to achieve desirable societal goals. This

insight aligns with Wang (2022), who shows that environmental regulatory uncertainty can

incentivize firms to adopt greener practices preemptively, and with Pindyck (2007, 2022),

who explore uncertainty’s role in prompting proactive environmental policies. In the context

of climate policy and regulatory economics (Nordhaus, 2019; Stern, 2007; Heal, 2009), our

approach offers an alternative to traditional regulatory tools. UBR bridges the gap between

Pigouvian taxation and Coasean bargaining by providing a regulatory mechanism that

internalizes externalities without requiring explicit information disclosure or centralized

control. In so doing, our work connects to the literature on market-based mechanisms and

information aggregation in strategic settings (Vives, 1988).

Taken together, our findings contribute to the long-standing debate on optimal regulation

under uncertainty and asymmetric information, with broad potential applications, ranging

from environmental policy and innovation to financial stability, public health, and cybersecu-

rity. By demonstrating that it is possible to achieve efficient allocations without resorting to

complex, potentially fragile revelation mechanisms or sacrificing the benefits of decentralized

decision-making, we offer a practical alternative to existing regulatory tools.

To ground the theory, Section 5 presents a stylized example that applies our framework

to cybersecurity investment. Each firm chooses an investment to protect itself from cyber

attacks, which benefits the rest of the system by reducing breach spillovers. This setting

shows how UBR endogenously induces the optimal “diversity of defense” strategy, eliminating

the coordination failure that leaves an unregulated market exposed to correlated cyber risks.

The paper proceeds as follows. Section 2 introduces the model, derives benchmark
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allocations, and characterizes the UBR equilibrium. Section 3 studies welfare and political

feasibility. Section 4 examines the role of distrust. Section 5 applies the framework to

cybersecurity and systemic risk, drawing out policy lessons. Section 6 concludes.

2 The Model

Consider an economy with two dates, t ∈ {0, 1}, populated by a continuum of households

indexed by i ∈ [0, 1]. Each household, or “agent”, acts as both consumer and producer,

owning and operating a firm. There is a single consumption good, which serves as the

numéraire. At time t = 1, agents derive utility from consumption and from a non-pecuniary

component q. We refer to q as the aggregate outcome. Our analysis applies broadly to settings

where a non-pecuniary q captures either a positive or negative externality.1

Preferences. Each agent’s preferences are represented by a utility function U(ci, q), where

ci is agent i’s consumption. We assume that agents prefer both higher consumption and a

higher outcome (Uci
(ci, q) > 0, Uq(ci, q) > 0), and that the marginal utility of q is decreasing

(Uqq(ci, q) < 0).2

Each household i operates a firm. At t = 0, household i chooses an “action” ai, representing

the firm’s contribution to a socially desirable activity that improves the aggregate outcome q.

Since each household owns and operates a firm, we can equivalently refer to the household’s

decision ai as the firm’s action. The aggregate action, Ã =
∫ 1

0 ai di, is the sum of all actions.

Because choices are made simultaneously and are unobservable to others, the aggregate Ã is

uncertain at t = 0.3

The firm’s profit, π(ai), depends on the household’s action ai. We assume all firms begin

at a status quo level of action, denoted A0. The profit function is quadratic and concave

(i.e., πaa < 0 is a negative constant), and is maximized at ai = A0. This reflects diminishing
1For instance, q may represent “environmental quality,” as in integrated assessment models that incorporate

climate change and emissions into utility (Nordhaus, 1991, 2015). See also Michel and Rotillon (1995), Baker,
Hollifield, and Osambela (2022), and Acemoglu, Aghion, Bursztyn, and Hemous (2012) for related applications.

2Throughout, subscripts denote partial derivatives. For a function f(x, y), we write fx ≡ ∂f/∂x, fy ≡
∂f/∂y, fxx ≡ ∂2f/∂x2, fxy ≡ ∂2f/∂x∂y, etc.

3We use a tilde (e.g., Ã) to denote variables that are uncertain at t = 0, when households make decisions.
Variables without tildes (e.g., q, ci, ai, A0) are either known at t = 0 or realized at t = 1.
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returns and adjustment costs from deviating from the status quo. As a result, household i’s

consumption at time 1 is:

ci = e + π(ai), (1)

where e is an exogenous endowment of the consumption good, common to all agents.4

We assume that the outcome q is given by:

q̃ = θ̃ + (Ã − A0), (2)

where θ̃ is a random variable capturing the underlying uncertain state of q. Equation (2)

implies that higher aggregate action Ã, relative to the status quo A0, raises the outcome q.5

We assume the expected value µθ := E[θ̃] is public information. Although both θ̃ and Ã are

uncertain at t = 0, the realized value of q̃ is publicly observed at t = 1.6

At t = 1, the values of θ̃, Ã, and ci are realized. At t = 0, household i chooses ai to

maximize its expected utility. Ideally, the household would solve maxai
Ei[U(ci, q̃)], where ci

is given in equation (1), q̃ is defined in equation (2), and the expectation Ei[·] reflects the

information available to household i at t = 0. Since this problem cannot be solved in closed

form under general assumptions, we adopt a tractable approximation.

Specifically, we approximate the utility function U(ci, q) using a Taylor expansion around

(c0, q0), where c0 is a baseline level of consumption and q0 = µθ is the expected value of

the aggregate outcome in the status quo (both corresponding to the status quo action level

A0 and the expected state µθ). We define U(ci, θ, A) as the utility obtained by taking a

first-order expansion of U(ci, q) in ci and a second-order expansion in q:

U(ci, θ, A) := U(c0, µθ) + Uc(c0, µθ)(ci − c0) + Uq(c0, µθ)(q − µθ) + 1
2Uqq(c0, µθ)(q − µθ)2. (3)

4We assume e is large enough that the probability of negative realized consumption is negligible in
equilibrium.

5For expositional clarity, we present the simplest specification where the aggregate outcome depends
linearly on the fundamental state and aggregate action. Our results extend to more general specifications,
such as q̃ = g(θ̃, Ã) + ν̃, where g(·) is an affine function and ν̃ represents additional measurement noise. In
this case, although q is observable ex-post, θ remains unobservable and the regulator cannot simply infer and
use the true state θ for direct Pigouvian taxation.

6The assumption that q̃ is observable is plausible. In an environmental context, for instance, q̃ could
correspond to the measured change in a public index like the Environmental Performance Index (EPI), which
tracks environmental health and ecosystem vitality across countries. See, e.g., https://epi.yale.edu/.
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Substituting ci from equation (1) and q̃ from equation (2) into the Taylor expansion (3), we

obtain an approximated utility function U(ci, θ̃, Ã) that is linear in ci and quadratic in θ̃

and Ã. The function U(ci, θ̃, Ã) thus approximates utility in terms of consumption and the

uncertain variables θ̃ and Ã. The household’s action ai directly affects utility through its

effect on ci, where ci = e + π(ai). This linear-quadratic form, standard in macroeconomic

models with dispersed information (Angeletos and Pavan, 2007, 2009), allows us to derive

closed-form results.7

Therefore, at t = 0, household i chooses ai to maximize:

max
ai

Ei[U(ci, θ̃, Ã)], (4)

subject to equation (1). The Taylor approximation (3) and our assumptions on U yield an

approximated utility function U with properties that we summarize in the following Lemma.

Lemma 1. The approximated utility function U(ci, θ, A) has the following properties:

(a) Uc = Uc(c0, µθ) > 0 is a positive constant;

(b) UA(θ̃, Ã) is linear in its arguments;

(c) UAA = Uqq(c0, µθ) < 0 is a negative constant;

(d) UcA = 0;

(e) UθA = Uqq(c0, µθ) < 0 is a negative constant.

Properties (b) and (d) are particularly informative. Property (b) shows where the

externality lies: utility depends directly on the aggregate action A. Property (d) indicates

that, in the baseline environment, there is no cross-effect between consumption and the

aggregate action; this absence creates room for policy, as it defines the margin along which

regulation can operate.
7Appendix C revisits the model using an exponential-utility specification. We solve for both individual and

aggregate actions—analytically when possible, numerically otherwise—and show that the core equilibrium
relationships in the main text remain valid. The linear-quadratic form simplifies exposition without affecting
the results.
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Information. At time t = 0, all households share a common prior belief about the

unobservable state θ̃, which is assumed to follow a normal distribution: θ̃ ∼ N (µθ, σ2
θ). Each

household i observes a private signal yi and a public signal z about θ̃, both acquired at no

cost. The signals are given by:

yi = θ̃ + ε̃y,i, (5)

z = θ̃ + ε̃z, (6)

where ε̃y,i ∼ N (0, τ−1
y ) and ε̃z ∼ N (0, τ−1

z ) are independent noise terms, also independent of θ̃.

The parameters τy and τz denote the precisions of the private and public signals, respectively.8

We assume households trust the informational content of others’ signals. Section 4 relaxes

this assumption and explores the implications of agents’ distrust in the quality of others’

private signals.9

Let Ei[θ̃] := E[θ̃|yi, z] denote household i’s posterior expectation of θ̃, conditional on its

information set {yi, z}. The posterior precision, τ , is defined as:

τ := (Var[θ̃|yi, z])−1 = σ−2
θ + τy + τz. (7)

By Bayes’ theorem, household i’s posterior expectation is the prior mean plus precision-

weighted deviations of the private and public signals from that mean:

Ei[θ̃] = µθ + τy

τ
(yi − µθ) + τz

τ
(z − µθ). (8)

2.1 Benchmark Allocations

An allocation in this economy is a set of actions {ai}i∈[0,1] undertaken by all households.

Before introducing our regulatory mechanism, we define three benchmark allocations that
8Throughout this paper, the Greek letter σ denotes all forms of prior uncertainty (e.g., σθ), referring to

variables or processes that are inherently uncertain before any information is observed. By contrast, the
Greek letter τ represents the precision (the inverse of variance) of information signals, such as τy and τz.

9We adopt the canonical private-public signal structure of Morris and Shin (2002) for expositional clarity.
Our results are robust to richer information environments with multiple signals, such as those considered in
Myatt and Wallace (2012) and Hellwig and Veldkamp (2009). The linearity of our framework ensures that
additional signals—whether public, private, or with correlated noise—would simply be aggregated into the
agents’ posterior beliefs according to Bayes’ rule. This would not alter the fundamental strategic structure or
the design of the UBR mechanism, which operates on those posterior beliefs irrespective of the number or
correlation of underlying signals.
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serve as points of comparison. These benchmarks highlight the potential efficiency gains from

our proposed approach.

We begin with the status quo allocation, which describes the outcome in the absence of

regulation, when households do not internalize the externality.

Lemma 2 (Status quo allocation). In the absence of regulation or policy intervention,

each firm chooses its action to maximize the household’s utility, ignoring the impact on the

aggregate outcome. This results in all firms choosing the status quo action:

asq
i = A0, ∀i ∈ [0, 1]. (9)

Hence, the aggregate action is also the status quo action:

Ãsq = A0. (10)

Given the assumption that π(ai) is a quadratic concave function maximized at A0, the

status quo (asq
i = A0) is, by construction, privately optimal. It is, however, socially inefficient

because asq
i does not account for the positive externality of individual actions, which contribute

to the aggregate outcome.

We next consider the first-best allocation. In this benchmark a social planner observes, at

time t = 0, the realized value θ of the random variable θ̃ and chooses the entire vector of

firms’ actions. With full knowledge of the state, the planner maximizes social welfare and

fully internalizes the externality that each firm’s action imposes on the aggregate outcome.

Since the planner observes θ directly, and utility is symmetric across agents, the problem

reduces to choosing a common action a for all firms. Formally, the planner solves:

max
a

U(e + π(a), θ, a). (11)

Because π(·) is quadratic and U is linear-quadratic in its arguments by Lemma 1 (a), (b),

and (c), the objective function in (11) is quadratic in a. Hence, the resulting first-best action

rule, a∗(θ), is linear in the state θ. This leads to the following lemma.

Lemma 3 (First-best allocation). The first-best action a∗(θ) is a linear function of the
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realized underlying state:

a∗(θ) = κ∗
0 + κ∗

1(θ − µθ), (12)

where

κ∗
0 := A0 − UA(µθ, A0)

Ucπaa + UAA

and κ∗
1 := − UθA

Ucπaa + UAA

. (13)

This first-best allocation is unattainable in our main setting because θ is unobservable at

t = 0. In the first-best, all firms choose a∗(θ) contingent on the realized value of θ. Since

UθA < 0 by Lemma 1 (e), Uc > 0 by Lemma 1 (a), πaa < 0 by assumption, and UAA < 0 by

Lemma 1 (c), we have κ∗
1 < 0. Therefore, the first-best action a∗(θ) is decreasing in θ: a

more adverse realization of the underlying state (a lower θ) requires a higher action.

We finally consider the team-efficient allocation. Following the seminal team-theory

results of Radner (1962) and Marschak and Radner (1972), and their macro applications in

Angeletos and Pavan (2007, 2009), this benchmark represents the best outcome achievable

when a social planner specifies a decision rule that maps each firm’s private and public

information into a recommended action, but cannot observe individual firms’ private signals.

Firms are assumed to commit to this decision rule. The team-efficient allocation differs from

the first-best because actions are now decentralized.

To formalize this, ex-ante expected social welfare is given by:

E[U ] :=
∫

(θ̃,z)

∫
yi

U(e + π(ai), θ̃, Ã)dP (yi|θ̃, z)dP (θ̃, z), (14)

where dP (yi|θ̃, z) is the conditional probability distribution of the private signal yi given θ̃

and z, and dP (θ̃, z) is the joint probability distribution of θ̃ and the public signal z.

The team-efficient allocation is then defined as the strategy ate
i (yi, z) that solves the

following maximization problem:

max
ate

i (·)

∫
(θ̃,z)

∫
yi

U
(
e + π

(
ate

i (yi, z)
)
, θ̃, Ãte(θ̃, z)

)
dP (yi|θ̃, z)dP (θ̃, z), (15)

subject to Ãte(θ̃, z) =
∫

yi
ate

i (yi, z)dP (yi|θ̃, z).

To provide intuition for the concept of team-efficient allocation, it is critical to clarify
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the nature of the social planner’s problem. Unlike in the first-best case, the planner does

not choose a single action level but instead designs a decision rule, ai(yi, z), for all firms

to follow. Crucially, the planner must choose this rule without observing any firm’s private

signal, yi. With a continuum of firms, the Law of Large Numbers delivers a key simplification:

the empirical distribution of private signals across the economy converges almost surely to

the true conditional distribution P (yi | θ̃, z). This convergence allows the planner to map

any candidate rule to its implied aggregate action and thus choose the one that maximizes

ex-ante welfare.

Lemma 4 (Team-efficient allocation). The team-efficient allocation is characterized by

each firm choosing an action, ate
i , that is a linear function of its conditional expectations of

the first-best action, a∗(θ), and the aggregate action, Ãte:

ate
i = (1 − α)Ei[a∗(θ)] + αEi[Ãte], (16)

where Ei[·] denotes the expectation conditional on household i’s information set {yi, z}, a∗(θ)

is the first-best action defined in Lemma 3, Ãte =
∫ 1

0 ate
i di is the aggregate action, and α is

defined as

α := − UAA

Ucπaa

. (17)

Since UAA < 0, Uc > 0 and πaa < 0, we have α < 0, implying that in the team-efficient

allocation firms’ actions are strategic substitutes.

In the team-efficient allocation, each firm’s action is a weighted average of its expected

first-best action and its expected aggregate action—an affine combination implied by the

model’s linear-quadratic structure. This functional form reflects the planner’s need to balance

two competing objectives: (i) steering the aggregate action as close as possible to the first-

best and (ii) coordinating individual actions. Over-emphasizing the first objective makes

firms’ choices overly sensitive to their idiosyncratic private signals, creating costly dispersion.

Over-emphasizing the second induces firms to ignore private signals in favor of public

information—the standard “beauty contest” distortion—producing inefficient conformity.

The decision rule (16) resolves this trade-off by directing each firm to target a weighted average
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of its estimate of the first-best, Ei[a∗(θ)], and its estimate of the aggregate action, Ei[Ãte].

The weight α captures the socially optimal degree of coordination (Angeletos and Pavan,

2007, 2009). Equivalently, α is the slope of a firm’s best-response function with respect to

its expected aggregate action. Because α < 0 in our setting, actions are strategic substitutes:

in the team-efficient allocation, firms take actions that diverge from the aggregate and place

greater weight on their private information. Strategic substitutability emerges from society’s

aversion to outcome volatility (UAA < 0): excessive coordination creates correlated risk,

making diversification socially valuable. The cybersecurity example in Section 5 further

illustrates this mechanism.

The team-efficient benchmark represents the best society could achieve if agents could

internalize their payoff interdependencies and commit ex ante to a joint strategy for processing

information before any signals are realized. This is a demanding standard: it presumes the

kind of coordination that is infeasible in practice, making it a useful but stringent benchmark

for evaluating equilibria. Importantly, this benchmark differs from standard constrained-

efficiency notions that emphasize incentive compatibility under costless communication (e.g.

Mirrlees, 1971; Holmström and Myerson, 1983). Instead, it is rooted in the team-theoretic

tradition of (Radner, 1962) and Marschak and Radner (1972), and shares with Hayek (1945)

the insight that information is dispersed and cannot be centralized.

We now establish a simple welfare ranking of the three benchmark allocations.

Lemma 5 (Welfare ranking). Let E[U sq], E[U te], and E[U∗] denote the ex-ante expected

social welfare defined in (14) under the status quo, team-efficient, and first-best allocations,

respectively. Then,

E[U sq] ≤ E[U te] ≤ E[U∗]. (18)

The team-efficient allocation improves on the status quo by leveraging firms’ dispersed

private information even though no signal sharing or centralized control takes place. Because

the underlying state remains imperfectly observed, however, this allocation still falls short of

the unattainable first-best benchmark, where the planner has perfect information about the

realized state.
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2.2 Uncertainty-Based Regulation (UBR)

Because the team-efficient allocation sets such an exacting standard, the challenge is to design

a rule that can bring decentralized behavior as close as possible to this benchmark without

requiring the planner’s information or coordination powers. To achieve this goal, in this

section, we propose a regulatory mechanism, which we label “Uncertainty-Based Regulation

(UBR).” The key idea underlying UBR is to implement a transfer scheme that creates private

incentives for the team-efficient outcome to arise as a competitive equilibrium—without

the regulator requiring the disclosure of any private information. Crucially, this is not a

command-and-control approach: firms retain full discretion over their actions. Unlike in the

theoretical team-efficient allocation, the regulator does not impose a decision rule. Instead,

UBR works through incentives, steering firms toward socially optimal actions while leaving

their choices entirely unconstrained. We show that under UBR, the team efficient allocation

is incentive compatible.

Formally, let f(q) be a state-contingent function of the realized aggregate outcome q. This

function, known to all households at t = 0, is part of the regulatory framework, even though

its value depends on the ex-post realization of q. The regulator implements a transfer scheme

at time t = 1 through the following regulatory term:

R(q, A, ai) = (ai − A)f(q). (19)

This regulatory term creates a strategic interdependence among firms. The component

(ai − A) captures a firm’s deviation from the average action, while f(q) serves as a shadow

price for that deviation, determined ex post by the realized aggregate outcome q. As we will

show below, a firm must forecast this shadow price when choosing its optimal action. Because

the price depends on the realized outcome q̃, which in turn depends on the aggregate action

Ã via equation (2), each firm must form beliefs about the collective behavior of others. This

need to anticipate the aggregate action—without being able to influence it—introduces a

beauty contest element into firms’ decisions, echoing the strategic structure studied by Morris

and Shin (2002).
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Accounting for the regulatory term, the household’s time-1 consumption becomes:

c̃i = e + π(ai) + R(q̃, Ã, ai). (20)

At t = 0, firm i chooses the action ai to solve the following maximization problem:

max
ai

Ei[U(c̃i, θ̃, Ã)], (21)

where by equation (20), the consumption at time t = 1 is c̃i = e + π(ai) + R(q̃, Ã, ai). Note

that, from the household’s perspective at t = 0, consumption at t = 1 is now uncertain due

to the regulatory term R(q̃, Ã, ai).

The central design question is how to specify the regulatory function f(q̃) to induce firms

to voluntarily choose the team-efficient actions defined in Lemma 4. This requires aligning

private incentives with the social optimum, even in the presence of an unobservable aggregate

state and dispersed private information. The next proposition identifies the exact form of

f(q̃) that achieves team efficiency.

The regulator’s task is constrained by the fact that firms’ private signals are non-verifiable

and their cost structures are private knowledge. A regulatory mechanism must therefore

operate without this private information, conditioning only on ex-post observable outcomes:

the aggregate outcome q, the aggregate action A, and individual firms’ actions ai. For the

policy to be self-financing, the mechanism must also be neutral, with all transfers summing

to zero across firms. The design problem is thus to identify whether any transfer scheme,

restricted to observables and neutrality, can uniquely align decentralized incentives with the

team-efficient allocation—and if so, to characterize its form.

Proposition 1 (Implementation of team efficiency under UBR). Suppose each firm

is subject to a regulatory transfer R(q̃, Ã, ai) = (ai − Ã)f(q̃), where the function f(q̃) takes

the form:

f(q̃) = MRS − ERA(q̃ − µθ), (22)
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with

MRS := Uq(c0, µθ)
Uc(c0, µθ)

> 0 and ERA := −Uqq(c0, µθ)
Uc(c0, µθ)

> 0 (23)

denoting, respectively, the marginal rate of substitution between the aggregate outcome q and

consumption, and society’s aversion to risk in the aggregate outcome (both measured at the

status quo A0). Then, the unique linear equilibrium of the game induced by this transfer

scheme implements the team-efficient allocation characterized in Lemma 4.

In the remainder of the paper we refer to UBR as a regulatory framework that operates

through the transfer term R(q̃, Ã, ai) = (ai − Ã)f(q̃) with f(q̃) defined in equation (22).

This transfer scheme is neutral: because individual deviations from the average sum to zero

(since f(q̃) is common to all firms and
∫ 1

0 (ai − Ã)di = 0 by definition), the mechanism is

self-financing. The key insight in Proposition 1 is that the form of the regulatory function

f(q̃) aligns private and social incentives such that each firm’s optimal action coincides with

the team-efficient benchmark. To choose its action at time t = 0, a firm must forecast the

realization of the shadow price f(q̃), which depends on the realized aggregate outcome at

time t = 1. As we show in the proof of Proposition 1, team efficiency is achieved when the

following condition holds:

A0 − Ei[f(q̃)]
πaa︸ ︷︷ ︸

Privately Optimal Action

= (1 − α)Ei[a∗(θ)] + αEi[Ãte]︸ ︷︷ ︸
Team-Efficient Action

(24)

On the left-hand side is the action that maximizes firm i’s expected payoff under UBR. On the

right-hand side is the team-efficient action, as defined in Lemma 4. The regulatory function

in Proposition 1 is constructed precisely to equate these two expressions. This regulatory

function is not arbitrary; its form is uniquely determined by the requirement of team efficiency.

Thus, by aligning the firm’s private first-order condition with the team-efficient rule, UBR

induces the exact degree of coordination—captured by α—required for team efficiency. The

resulting action is a weighted average of the firm’s forecast of the first-best allocation and its

forecast of the aggregate action, with weights (1 − α) and α, respectively.

The regulatory function f(q̃) embeds two key components that reflect society’s prefer-
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ences. The first is the Marginal Rate of Substitution (MRS), which sets the baseline price

for deviations from the average action. It captures the value society places on marginal

improvements in the aggregate outcome relative to consumption. The second is a state-

contingent adjustment, −ERA(q̃ − µθ), which increases the price when the realized outcome

is worse than expected and lowers it when the outcome is better. Together, these components

generate a pricing structure that varies with the state of the world and thereby creates the

state-contingent incentives detailed in Table 1.

These incentives are the heart of the mechanism. As the table shows, when the aggregate

outcome is low (q < µθ), the shadow price f(q) is high. This rewards above-average actions

(ai > A) and penalizes below-average ones (ai < A), prompting leaders to Advance and

laggards to Catch up. When the outcome is high (q > µθ), the price is low, relaxing this

pressure: leaders are nudged to Slow down and laggards to Linger. Firms, guided by private

signals about the underlying state, are thus steered to act precisely when their contributions

are most valuable.

Table 1: State-Contingent Incentives under UBR

The table shows a firm’s incentive contingent on the realized state of the aggregate outcome (q vs. µθ)
and the firm’s action relative to the average (ai vs. A). The quantity f(q) represents the shadow price
firms face when deviating from the average action, as discussed in equation (19).

Realized Aggregate Outcome
Firm i’s Action q < µθ, high f(q) q > µθ, low f(q)
ai > A (leader) Advance Slow down
ai < A (laggard) Catch up Linger

The structure of the shadow price f(q̃) depends entirely on the parameters MRS and

ERA, which encode society’s preferences over risk and aggregate outcomes. The practical

implementation of UBR therefore hinges on how these parameters are specified. This can

be approached in two main ways. They can be estimated from data, for example, from the

vast literature in environmental and public economics that uses methods such as contingent

valuation (e.g., Arrow, Solow, Portney, Leamer, Radner, and Schuman, 1993; Carson, Flores,

and Meade, 2001) or revealed preferences, which infer values from observed behavior like the
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housing choices in hedonic models (e.g., Rosen, 1974; see Freeman, Herriges, and Kling, 2014

for a comprehensive review). Alternatively, they can be set as explicit policy choices reflecting

societal values, much like how policymakers choose social discount rates for cost-benefit

analysis. While calibrating these preference parameters is necessary, a key advantage of

UBR—a direct consequence of the model’s linear-quadratic structure—is that it achieves the

team-efficient outcome without requiring the regulator to know firms’ private signals, their

heterogeneous cost structures (i.e., πaa), or the variance of the underlying state (σ2
θ). This

is because the coefficients MRS and ERA are determined by the properties of the societal

utility function, U(c, q), which are separate from the parameters governing firm costs or the

information structure. This property can be viewed as a separation result: implementation

depends only on preference parameters (MRS, ERA), while structural details drop out.

The UBR mechanism has several attractive features. Because it requires only the aggregate

outcome q to be observable ex post, it is both transparent and straightforward to implement.

UBR thus adapts to shocks and promotes efficient behavior without requiring the regulator

to collect firm-specific cost data or rely on complex revelation mechanisms.

2.2.1 UBR as a Synthetic Market Implementation

We have so far approached UBR from a “quantity” perspective: designing a rule that aligns

each firm’s private action with a socially optimal target. An alternative way to approach

UBR is from a “price” perspective, relying on the Coasean insight that externalities can be

internalized through well-designed markets (Coase, 1960). For this purpose, we construct a

thought experiment: consider a synthetic competitive market for the social contribution—an

environment that can be understood as the limit of a large Cournot market (Vives, 1988)—in

which the “action” is a tradable good. We show that the equilibrium in this fictitious market

exactly replicates the outcome induced by UBR.

We begin by deriving the market demand curve, which captures a consumer’s marginal

willingness to pay for the aggregate outcome, q. Consider a hypothetical problem where,

at time t = 1 (when the state θ is revealed), a consumer i chooses a desired level of the
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aggregate action, denoted ad
i , at a market price p. Formally, each consumer solves:

max
{ci,ad

i }
U(ci, θ, ad

i ) (25)

subject to the budget constraint

ci + pad
i = e + πi, (26)

where πi represents the profit the consumer receives from its production activities. In this

part of the thought experiment, we focus only on the household’s role as a consumer; the

profit πi is therefore treated as exogenous income, analogous to the endowment e.

Suppose consumers can buy their preferred level of the aggregate outcome, ad
i , at a

market price p. This requires a specific interpretation of the utility function U(ci, θ, ad
i ) in

equation (25): the function U is the same as in the main model, but its third argument—the

aggregate action—is now treated as a choice variable. This setup allows us to use the

first-order condition to trace out a consumer’s marginal willingness to pay for the aggregate

outcome q.

Substituting the budget constraint (26) in the utility function and taking the derivative

with respect to ad
i gives the familiar condition that price must equal the marginal rate of

substitution:

p = UA(θ, ad
i )

Uc

, (27)

where, as in Lemma 1, UA refers to the derivative with respect to the third argument of the

utility function (the aggregate action), but it is evaluated at the level ad
i demanded by the

consumer in this hypothetical problem.

Equation (27), derived from a consumer’s ex-post decision at t = 1, characterizes individual

demand for ad
i . Because consumers are symmetric, individual demand ad

i coincides with

aggregate demand, Ãd ≡
∫ 1

0 ãd
i di. The resulting market price is therefore a state-contingent

function of this aggregate demand, which firms must forecast.

At time t = 0, each firm selects a quantity as
i to produce and sell before the realization

of the price p at time t = 1. Its total payoff in this synthetic market consists of the profit,
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π(as
i ), plus the revenue from selling its action, p̃as

i . The firm treats the future price p̃ and

aggregate demand Ãd as exogenous, both being functions of the unobserved state θ̃. Because

household utility depends on the aggregate action—which in this synthetic market is Ãd—the

firm solves:

max
as

i

Ei

[
U
(
e + π(as

i ) + p̃as
i , θ̃, Ãd

)]
. (28)

Being infinitesimally small, each firm acts as a price-taker, treating both the market price p̃

and the aggregate demand Ãd as exogenous. The synthetic market clears at time t = 1, when

the aggregate action supplied by firms,
∫

as
i di, equals the aggregate quantity demanded by

households, Ad. This pins down the equilibrium price p̃. The following proposition establishes

that the equilibrium allocation in this hypothetical market corresponds to the team efficient

allocation achieved through UBR in Proposition 1.

Proposition 2 (Synthetic Market Equivalence). The UBR mechanism implements an

allocation equivalent to that of a competitive market where firms supply “units of action” to a

market whose inverse demand satisfies the function p̃ = f(q̃) with f(q̃) given by equation (22)

of Proposition 1. In this equilibrium:

1. Each firm’s optimal action is the team-efficient action, as
i = ate

i .

2. The realized aggregate action is the team-efficient aggregate action, Ate.

Proposition 2 reveals the underlying price mechanism of UBR. The regulatory function,

f(q), serves as the inverse demand curve in a synthetic market for action. By setting this

price, the UBR mechanism induces firms to behave exactly as if they were price-taking

competitors in this synthetic market, leading them to collectively choose the team-efficient

quantity. This achieves a Coasean, market-based solution without requiring literal trade or

pre-defined property rights. In so doing, UBR enacts Hayek’s insight by creating the “missing

market” whose quiet hand channels dispersed private information into a coherent collective

outcome (Hayek, 1945).

Figure 1 illustrates the equivalence between UBR and a synthetic market. In the left

panel, UBR modifies a firm’s payoff with the term (ai − A)f(q), while in the right panel,
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a firm in the synthetic market earns revenue pas
i . In both settings, the firm’s optimality

condition is given by the same first-order condition (FOC): “marginal cost = expected price.”

Since the equilibrium price satisfies p = f(q), the identical FOCs determine the optimal

action in both the UBR and the Cournot worlds. The two diagrams thus present alternative

representations of the same underlying incentive problem.

Figure 1: Equivalence between UBR and a Synthetic Market

The figure compares firm i’s optimization under UBR (left panel), where its payoff includes the term
(ai − A)f(q) involving the shadow price f(q), with its optimization in a hypothetical competitive market
(right panel), where the payoff includes revenue pas

i from market price p. If the market price equals
the shadow price in equilibrium (p = f(q)), the FOCs (green boxes) align, leading to the same optimal
action (ate

i = as
i ). (Note: in the figure we suppress tildes; q denotes the realized value of q̃ and A the

realized value of Ã.)

UBR World

Firm i Payoff includes
π(ai) + (ai − A)f(q)

Firm maximizes
Ei[U(. . . )] choosing ai

FOC requires:
−πa = Ei[f(q)]

If f(q) = MRS−ERA(q̃ − µθ)
=⇒ Optimal action ate

i

Synthetic Market World

Firm i sells as
i at price p;

Payoff includes π(as
i ) + pas

i

Firm maximizes
Ei[U(. . . )] choosing as

i

FOC requires:
−πa = Ei[p]

Market clearing p = f(q)
=⇒ Optimal action as

i

2.3 Strategic Behavior and Information Acquisition

Having shown that UBR achieves the team-efficient allocation, we turn next to the equilibrium

behavior it induces. In particular, we characterize how firms respond to their information

and whether they have incentives to acquire more of it. The next proposition describes how

each firm’s action depends on its private and public signals.

Proposition 3 (Firms’ Equilibrium Strategy). Under UBR, with the regulatory function

defined in Proposition 1, a linear equilibrium is for each firm i to choose an action, ai, that
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is a linear function of its private signal, yi, and the public signal, z:

ai = β0 + βy(yi − µθ) + βz(z − µθ), (29)

where

β0 := A0 − UA(µθ, A0)
Ucπaa + UAA

, (30)

βy := − UθAτy

Ucπaaτ + UAAτy

< 0, (31)

βz := − 1
1 − α

UθAτz

Ucπaaτ + UAAτy

< 0, (32)

and where α < 0 is the equilibrium degree of coordination defined in Lemma 4.10

The coefficients βy and βz are negative. That is, firms raise their actions in response to

either private or public signals that point to a worse underlying state. The next corollary

examines how much weight firms place on each type of signal, as captured by the ratio βy/βz.

Corollary 3.1 (Strategic substitutability and information weighting). In the linear

equilibrium of Proposition 3, firms’ actions are strategic substitutes. Moreover, the ratio of

the weights placed on private and public signals is:

βy

βz

= (1 − α)τy

τz

>
τy

τz

, (33)

implying that firms overweight their private information relative to the public signal, compared

to the Bayesian posterior weights in equation (8).

As established in Lemma 4, the parameter α—which captures the nature of strategic

interaction—is negative. Following Angeletos and Pavan (2007), α reflects the slope of a

firm’s best response to its expected aggregate action and represents the optimal degree of

coordination. A negative α implies strategic substitutability: firms raise (lower) their action

when they expect others to lower (raise) theirs. In other words, each firm has an incentive

to move in the opposite direction of the crowd. This incentive to differentiate is what leads
10We restrict attention to linear strategies, consistent with the linear-quadratic framework. See, e.g.,

Angeletos and Pavan (2007, 2009) for similar approaches.

23



firms to place more weight on their private signal, as shown in the corollary. The idea that

strategic motives shape information use is central to the literature on coordination games,

beginning with the seminal work of Morris and Shin (2002), extended by Angeletos and

Pavan (2007), and explored at length in Veldkamp (2011).

While strategic substitutability might suggest a free-rider problem—firms underinvesting

in socially valuable actions because they rely on others to act—it has a key offsetting benefit:

it strengthens the role of private information in firms’ decisions. This happens because each

firm puts more weight on its own signal than it would under standard Bayesian updating,

due to the (1 − α) > 1 term in the ratio βy/βz. As we show next, this makes the aggregate

response more closely tied to the true state, in the spirit of Hayek’s knowledge-aggregation

via prices (Hayek, 1945).

2.3.1 Aggregate Action and its Determinants

We now examine the aggregate implications of firms’ equilibrium actions, focusing on a key

feature of UBR: its ability to transform dispersed information into a collective response that

tracks the underlying state of the economy. Substituting the equilibrium expression for ai

from Proposition 3 into the definition of the aggregate action, Ã =
∫ 1

0 ai di, and noting that

idiosyncratic private noise averages out across firms (
∫ 1

0 (yi − µθ) di = θ̃ − µθ by the Law of

Large Numbers), we obtain the aggregate action:

Ã = β0 + βy(θ̃ − µθ) + βz(z − µθ). (34)

To better understand the components of the aggregate action, we use the definition of the

public signal (z = θ̃ + ε̃z) to rewrite this as:

Ã = β0 + (βy + βz)(θ̃ − µθ) + βz ε̃z. (35)

This decomposition reveals two distinct components: a fundamental part that reflects the true

state, θ̃, and a noise-driven part that reflects errors in the public signal, ε̃z. UBR succeeds in

channeling private information so that the aggregate action adjusts in response to shocks in

the underlying state (since βy + βz < 0). This desirable feature, however, entails a tradeoff:

the aggregate action also responds to public noise.
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We define the information sensitivity of the aggregate action, denoted by B, as the

magnitude of its response to the true underlying state:

B := |βy + βz|. (36)

This measure captures how strongly the aggregate action responds to available information

about the state. A higher B means that UBR translates dispersed private and public signals

into a collective action more closely aligned with the (unobserved) state of the world. This

improved alignment contrasts sharply with the unresponsive status quo. The next corollary

identifies the key determinants of B.

Corollary 3.2 (Information sensitivity). The information sensitivity, B, of the aggregate

action increases with:

(a) the level of uncertainty about θ̃ (σθ).

(b) the precision of private information (τy).

(c) the precision of public information (τz).

Point (a) of Corollary 3.2 highlights a key feature of UBR: it turns uncertainty about the

state—typically a challenge for policy—into a force that sharpens the system’s response to

information. A higher σθ makes the aggregate action more responsive to informative signals,

improving the overall adjustment to the underlying state.

Points (b) and (c) of Corollary 3.2 further clarify how UBR channels information into

aggregate behavior. Increased precision of either private information (τy) or public information

(τz) also raises the information sensitivity, B. While seemingly distinct from the effect of

uncertainty in (a), these results are complementary. Higher τy and τz increase the weights,

βy and βz respectively, placed on the corresponding signals in the equation for the aggregate

action (34). Thus, both greater uncertainty (higher σθ) and greater precision (higher τy or

τz) enhance the information sensitivity of the system, albeit through different channels.
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2.3.2 Incentives for Information Acquisition

We now ask whether individual firms that are subject to UBR have an incentive to acquire

more precise private information about the underlying state, θ̃. To isolate this incentive,

suppose one firm can, unilaterally and at zero cost, improve the precision of its private signal.

This allows us to focus solely on the benefit of information acquisition.

Suppose firm i improves the precision of its private signal yi from τy to τ ′
y = ξτy, with

ξ > 1. We treat this as a unilateral deviation: the firm holds fixed the actions of others and

the parameters of the UBR mechanism. The next corollary characterizes how this affects the

firm’s action and its ex-ante expected utility, evaluated after the public signal z is observed,

but before the private signal is realized. Conditioning on z lets us isolate the incremental

value of improved private information, over and above what is already publicly known.

Corollary 3.3 (Incentives for Information Acquisition). Under the UBR mechanism of

Proposition 1, consider a unilateral increase in the precision of firm i’s private signal about θ̃

from τy to τ ′
y = ξτy, where ξ > 1. The firm’s action, a′

i, is then given by:

a′
i = β0 + βy

[
1 + (ξ − 1)(1 + σ2

θτz)
1 + σ2

θ(ξτy + τz)

]
(yi − µθ) + βz

[
1 − (ξ − 1)(1 − α)σ2

θτy

1 + σ2
θ(ξτy + τz)

]
(z − µθ), (37)

where the coefficients β0, βy, and βz are defined in Proposition 3. The resulting change in

ex-ante expected utility, conditional on the public signal z, is:

∆E[U |z] = − Uc

2πaa

(Var [E′
i[f(q̃)]|z] − Var [Ei[f(q̃)]|z]) > 0, (38)

where E′
i[f(q̃)] denotes the expectation of f(q̃) under the more precise private signal. Conse-

quently, the firm’s ex-ante expected utility rises with signal precision.

This corollary highlights a central feature of UBR: it gives firms a clear incentive to

improve their private information. Because the payoff depends on the realized aggregate

outcome, q̃, through the shadow price f(q̃), more accurate forecasting leads to actions that

yield higher expected utility. Since the gain is strictly positive for any realization of z, the

incentive to acquire better information holds unconditionally.
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This marks a departure from the status quo. Under the status quo, firms lack any reason

to improve their information, because their payoffs do not depend on the realized state. UBR

changes this by linking payoffs to outcomes. It not only supports the team-efficient allocation

but also motivates firms to acquire better information. It aligns private incentives with public

goals and gives firms a reason to know more.

This finding connects our work to a key insight from the literature on endogenous

information acquisition: the nature of strategic interaction determines whether agents want

to “know what others know” (Hellwig and Veldkamp, 2009; Myatt and Wallace, 2012). When

actions are strategic complements, agents prefer common information to better coordinate

their actions. When actions are strategic substitutes, they instead prefer private information

to better differentiate themselves. Because UBR endogenously creates an environment of

strategic substitutability (Corollary 3.1), the incentive it provides for acquiring private signals

(Corollary 3.3) is a direct consequence of this principle. Our mechanism is thus not only robust

to endogenous information choice but also naturally promotes the decentralized knowledge

acquisition essential for an efficient aggregate response.

3 Welfare Analysis and Political Viability of UBR

We now evaluate UBR’s welfare effects. We first compare it to the outcome chosen by a

social planner with limited information, then examine its political feasibility.

3.1 The Social Planner’s Allocation

Consider a benevolent social planner whose information set consists solely of publicly available

information—the prior distribution of the state θ̃ and the public signal z. Because the planner

cannot observe firms’ private signals, the only feasible policy is to set a uniform action, asp,

for all firms. Setting policy based on expectations formed from public information is the

standard approach for a regulator facing uncertainty (Lemoine, 2021). This allocation serves

as a natural benchmark for evaluating UBR.

The planner’s problem is to choose the action asp that maximizes ex-ante expected social
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welfare:

max
asp

Esp

[
U(c(asp), θ̃, asp)

]
, (39)

where c(asp) = e + π(asp) and the expectation is over the planner’s information set.

Proposition 4 (Social Planner’s solution). Let a∗(θ) be the first-best action from Lemma 3.

The solution to the social planner’s problem is the expected first-best action, conditional on

public information:

asp = Esp[a∗(θ)] = A0 − Esp[UA(θ̃, A0)]
Ucπaa + UAA

. (40)

The social planner’s optimal action, asp, reflects the best achievable outcome given the

absence of firms’ private information. This allocation improves upon the status quo (ai = A0),

since at A0, the marginal social benefit of action, UA(µθ, A0), is generally non-zero. By

adjusting away from A0, the planner moves the economy closer to a point where this marginal

benefit is internalized. For the remainder of this section, without loss of generality, we focus

on the case of a positive externality. We therefore assume that the marginal social benefit at

the status quo is positive (UA(µθ, A0) > 0), which by equation (40) implies that asp > A0.

3.1.1 Application: Implementation via Standard Instruments

To illustrate how the social planner’s allocation maps into real-world instruments, we show

that asp can be implemented through either a Pigouvian tax or a cap-and-trade system,

as in the classic “prices-versus-quantities” framework of Weitzman (1974). We consider an

environmental application in which a firm’s action, ai, represents its level of “greenness”

or abatement effort. Let E(ai) denote the emissions produced by a firm choosing ai, with

E(ai) > 0, E ′(ai) < 0, and E ′′(ai) > 0. That is, greater abatement reduces emissions, but at a

diminishing rate. The next corollary shows how the planner’s allocation in Proposition 4 can

be implemented using a standard Pigouvian tax on emissions.

Corollary 4.1 (Pigouvian tax on emissions). The social planner’s optimal uniform
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action, asp, can be implemented by imposing a Pigouvian tax, T , per unit of emissions:

T = (asp − A0)πaa

E ′(asp) > 0. (41)

When the action generates a positive externality, asp > A0, the emissions tax is strictly

positive.

Intuitively, the tax internalizes the expected externality as perceived by the social planner.

When a firm considers deviating its action from asp, it must now account for the tax on

the resulting emissions. Because T depends solely on public information, all firms respond

uniformly by choosing asp, and the aggregate emissions coincide with those in the planner’s

constrained optimum, as derived in Proposition 4. This is consistent with the classic insight

that the regulator should set the tax equal to the expected marginal social cost of emissions

under uncertainty (see Lemoine, 2021).

An alternative approach to implementing the social planner’s solution is through a system

of tradable permits, or “cap-and-trade.” As before, let each firm’s emissions be given by E(ai),

and suppose the regulator issues a total quantity of permits, Q, where each permit allows

one unit of emissions. Firms must acquire permits equal to the emissions they produce, and

the equilibrium permit price is denoted by ppermit.11

Corollary 4.2 (Cap-and-Trade implementation). The social planner’s optimal uniform

action, asp, can be implemented by issuing a quantity of tradable permits, Q, equal to the

aggregate emissions associated with asp, i.e., Q = E(asp). The resulting equilibrium permit

price, ppermit, will be identical to the Pigouvian tax, T , derived in Corollary 4.1, and will

induce all firms to choose ai = asp.

By setting Q = E(asp), the regulator ensures that the equilibrium permit price—identical to

the Pigouvian tax T from Corollary 4.1—induces all firms to choose the social planner’s action

asp. This equivalence arises because the profit function π(·) and the emissions technology
11We note that the term R in equation (19) admits a cap-and-trade interpretation: each firm’s net position

ai − A plays the role of tradable permits, and f(q) the state-contingent permit price. Crucially, however,
both the aggregate “cap” A and the price schedule f(q) are determined ex post by the realized aggregate
outcome q, rather than fixed ex ante by the regulator.
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E(·) are common knowledge and deterministic, so there is no firm-specific cost uncertainty.

Consequently, the classic “price vs. quantity” wedge identified by Weitzman (1974) does not

apply. Since uncertainty arises solely on the benefit side—through the state θ̃—it does not

affect the choice or level of the instrument needed to implement asp.

Critically, however, neither Q nor ppermit can depend on firms’ private information.

Both instruments are based solely on public information, which precludes the firm-specific,

information-contingent responses required for team efficiency. Unlike these standard in-

struments, UBR harnesses uncertainty and dispersed private signals, thereby generating

social value from private information and improving welfare outcomes (see, e.g., Angeletos

and Pavan, 2007; Vives, 1988; Hayek, 1945). Given these theoretical advantages, a natural

question arises concerning the political viability of UBR, which we analyze next.

3.2 Is UBR Politically Viable?

Suppose households, after observing their private signals yi and the public signal z, must

vote on whether to adopt UBR or implement the social planner’s allocation. The following

proposition establishes the political viability of UBR.

Proposition 5 (Political viability of UBR). Consider two regulatory platforms: UBR,

from Proposition 1 and the social planner solution, from Proposition 4. Let Ei[∆Ui] denote

agent i’s expected utility gain from implementing UBR instead of the social planner’s solution,

conditional on the information set {yi, z}. Then the expected utility of every agent i is higher

under UBR than under the social planner’s solution, that is,

Ei[∆Ui] = −1
2Ucπaa(ate

i − asp)2︸ ︷︷ ︸
Gain from Individual Flexibility

+
(

−1
2UAA

)
Ei[(Ãte − asp)2]︸ ︷︷ ︸

Gain from Aggregate Adaptiveness

> 0. (42)

Hence, if asked to vote between the two platforms, agents would unanimously support UBR.

Crucially, the utility gain in Proposition 5 is evaluated from each household’s perspective,

that is, after observing their own private signal. This is a stronger criterion than the ex-ante

welfare gain considered in the social planner’s problem (Proposition 4), as it requires each
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individual to prefer UBR based on their own information. This stronger condition underpins

UBR’s ability to garner unanimous political support.

The expected utility gain in equation (42) arises from two distinct sources of value that

UBR creates, both of which are inaccessible under a standard policy. The first, Gain from

Individual Flexibility, reflects the benefit of allowing each firm to use its private signal to

choose an action tailored to its own information, rather than conforming to the planner’s

one-size-fits-all decision. The second, Gain from Aggregate Adaptiveness, captures the value

of letting the collective action respond to the true underlying state of the world, thereby

providing a form of social insurance against aggregate risk that a fixed policy cannot offer.

Since both sources of utility gain in equation (42) are non-negative, and their sum is

strictly positive, regardless of the specific values of yi and z, all households strictly prefer

UBR over the social planner’s allocation. This unanimous preference holds despite dispersed

private information and heterogeneous beliefs. It suggests that UBR is politically viable.

4 Distrust and UBR

Thus far, our analysis has assumed that households have rational expectations and fully trust

the informational content of others’ signals. We now relax this assumption by introducing

the possibility of distrust—that is, agents may question the reliability of information held

by others. This builds on the literature examining how agents may differ in their beliefs

about others’ information (Banerjee, 2011), and is conceptually related to the “sentiment risk”

channel in Dumas et al. (2009). Our goal is to explore the robustness of UBR when agents

hold divergent, and potentially biased, views about the informational environment. This

issue is especially relevant in domains like climate policy, where public opinion is polarized

and trust in scientific data varies significantly.12

To model heterogeneous beliefs about others’ information, we build on Morris (1995) and

Banerjee (2011) by introducing the notion of trust in others’ private signals. Each agent
12Research documents significant political polarization in public views on climate change, highlighting

differing beliefs about environmental data across groups (McCright and Dunlap, 2011). For further evidence
on polarized beliefs and skepticism about environmental data, see Dunlap and McCright (2008) and Douglas,
Uscinski, Sutton, Cichocka, Nefes, Ang, and Deravi (2019).
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i observes its own private signal yi, but forms beliefs about the structure of other agents’

signals yj (j ≠ i), which it does not observe. Specifically, agent i believes that the signal of

any other agent j ̸= i is given by

yi
j = µθ + φ(θ̃ − µθ) +

√
1 − φ2ϕ̃i + εy,j, (43)

where ϕ̃i ∼ N (0, σ2
θ) represents noise or distortion in others’ signals. For j = i we write

yi
i ≡ yi and set φ = 1, so each agent fully trusts its own signal. The trust parameter φ ∈ [0, 1]

for others’ signals (j ̸= i) captures the degree of trust, with φ = 1 meaning full trust and

φ = 0 meaning complete distrust (pure noise). Agent i does not observe ϕ̃i, but believes it

exists and shapes others’ information. Importantly, the distribution of ϕ̃i is constructed so

that the unconditional moments of yi
j , from agent i’s perspective, are independent of φ: that

is, Ei[yi
j] = µθ and Vari[yi

j] = σ2
θ + τ−1

y . This ensures that changes in φ reflect beliefs about

correlation with the state, not signal precision.13

By varying the parameter φ, the model nests both the standard rational expectations

benchmark (φ = 1) and settings with limited trust (φ < 1). This allows us to examine

the robustness of UBR when agents hold different views about the reliability of others’

information. We now characterize equilibrium under this modified belief structure.

Impact on strategy and information. Distrust alters the information environment,

with implications for equilibrium actions, the information sensitivity B, and firms’ incentives

to acquire private information. While several results from Section 2 continue to hold,

distrust introduces novel effects. Crucially, the definitions of ex-ante expected social welfare

(equation (14)) and the team-efficient allocation (equation (15) and its constraint) remain

unchanged, as they are grounded in the true distribution of signals rather than agents’

subjective beliefs. The main results are summarized in Proposition 6. Appendix B provides a

detailed discussion of how each result from Section 2 is affected by distrust.

13Our main analysis focuses on the case where agents believe others’ signals are noisy but unbiased (i.e.,
Ei[ϕ̃i] = 0). Two valuable extensions are left for future work. First, one could allow distrust in the public
signal z. We conjecture that UBR would remain effective in such a setting, as it continues to aggregate
dispersed private beliefs. Second, one could model systematic bias in private signals, where an agent believes
others are, on average, overly optimistic or pessimistic (Ei[ϕ̃i] ̸= 0).
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Proposition 6. Suppose that agents distrust the information of others, i.e., i believes that

the signal yi
j of any other agent j ̸= i is given by equation (43). Then:

(a) UBR implemented through the function f(q̃) defined in Proposition 1 achieves a team-

efficient allocation.

(b) Each firm i chooses an action ai that is a linear function of its private signal yi and

the public signal z:

ai = β̂0 + β̂y(yi − µθ) + β̂z(z − µθ), (44)

where

β̂0 := A0 − UA(µθ, A0)
Ucπaa + UAA

, (45)

β̂y := − UθAτy

Ucπaaτ + UAAτyφ
< 0, (46)

β̂z := − 1
1 − α

UθAτz

Ucπaaτ + UAAτyφ
< 0, (47)

(c) The information sensitivity B increases with the precision of public information τz if

φ > 1 − 1
(−α)σ2

θ
τy

.

(d) The information sensitivity B increases with distrust, meaning it decreases with φ:

∂B
∂φ

= − ακ∗
1σ

4
θτy(τy − ατy + τz)

(1 + σ2
θ(τy + τz − ατyφ))2 < 0. (48)

(e) Incentives for information acquisition increase with the degree of distrust.

Point (a) highlights the robustness of UBR’s design. Although distrust alters equilibrium

behavior, the functional form of the payment function f(q̃) remains optimal for achieving

team efficiency. Equation (44) shows that, in equilibrium, each firm’s action ai is a linear

function of its private signal yi and the public signal z. Setting φ = 1 (full trust) recovers

the coefficients from Proposition 3.

Point (b) shows that lower trust (smaller φ) has several effects. It increases the magnitudes

of β̂y and β̂z, making firms more responsive to their private and public signals, respectively.
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This seemingly counterintuitive result arises because lower trust leads each firm to believe

that competitors’ private signals—and thus their actions—are less correlated with the true

state θ̃ and more influenced by noise. Given strategic substitutability (α < 0), a firm that

expects others to act less in line with fundamentals relies more heavily on the signals it trusts:

its own private signal and the public signal. As a result, the absolute values of β̂y and β̂z rise.

Points (c) through (e) show how distrust reinforces the role of private information in

three distinct ways. First, the impact of public information precision (τz) on information

sensitivity (B) becomes conditional on trust: τz increases B only when φ exceeds a critical

threshold. Second, distrust directly raises information sensitivity, as firms place more weight

on their own signals. Third, it strengthens incentives for information acquisition, since the

strategic value of private signals increases. Ultimately, distrust amplifies the importance of

private signals across all dimensions of firm behavior.

Impact on Welfare and Political Viability. We now examine how distrust affects

welfare and the political viability of UBR. Since UBR achieves team efficiency for any level

of trust (Proposition 6), it continues to dominate the social planner’s allocation in terms

of ex-ante welfare. The next proposition confirms that these welfare gains translate into

unanimous support.

Proposition 7. Under UBR, and for any trust parameter φ ∈ [0, 1], all households strictly

prefer UBR to the social planner’s allocation.

In summary, while distrust introduces complexities into the equilibrium, it does not

undermine the fundamental advantages of UBR. The mechanism’s design—in particular, the

functional form of f(q̃)—remains optimal for achieving team efficiency regardless of the level

of trust. Moreover, UBR continues to dominate the social planner’s allocation, preserving

its political viability. Distrust does, however, affect firm behavior: it increases information

sensitivity by inducing greater reliance on private signals, and it strengthens incentives for

information acquisition. Thus, UBR remains a robust and effective regulatory tool even in

the presence of significant disagreement among agents.
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5 Illustrative Example: Cybersecurity

We apply our framework to a stylized model of cybersecurity investment. Firms’ defensive

efforts generate a positive externality by improving network security and lowering systemic

risk. This setting illustrates how UBR can create incentives for coordination in a context

where firms would otherwise act in isolation.

An Economy with Cybersecurity Externalities. Consider a continuum of firms, each

choosing a cybersecurity investment ai. A firm’s profit is π(ai) = θ̃ai − 1
2a2

i , where the

common shock θ̃ measures the baseline intensity of cyber threats. For simplicity, we set the

endowment e = 0, so the household’s consumption ci is equal to the firm’s profit.

The key externality is that total investment, Ã =
∫ 1

0 ai di, creates the public good of

“network security,” modeled as q̃ = Ã. For pedagogical clarity, this specification isolates

the coordination effects that emerge from dispersed private information about the threat

environment θ̃, in contrast to our general model where the aggregate outcome also depends

directly on the fundamental shock. Society values this good through the utility function:

U(ci, q) = ci + βq − δ

2(q − µq)2, (49)

where β > 0 is the baseline social value of security, δ > 0 captures aversion to risk in outcomes,

and µq ≡ E[q̃] = E[Ã]. This setup maps to our general model with: Uc = 1, πaa = −1,

MRS = β, and ERA = δ.

Diagnosing the Inefficiency. In the unregulated market, each firm chooses its security

investment ai to maximize expected profit. The first-order condition yields:

ai = Ei[θ̃]. (50)

This choice is independent of total investment Ã, so there is no strategic interaction—the

status quo equilibrium coordination parameter is αsq = 0.

We compare the unregulated market to the efficient benchmark by computing the team-

35



efficient degree of coordination, αte, from Lemma 4. A direct calculation yields:14

αte = −δ. (51)

Strategic substitutability (α < 0) is optimal because society is averse to volatility in outcomes

(δ > 0). While the externality term βq makes investment valuable, risk aversion penalizes

variability in the aggregate outcome q̃. This variability stems from correlated individual

actions.15 Strategic substitutability gives firms a reason to lean on their private signals rather

than mimic others, thereby reducing correlation. The unregulated market provides no such

incentive (αsq = 0), while the optimum requires it (αte = −δ).

The UBR Solution and Policy Implications. UBR restores the missing strategic link

by adding a transfer (ai − Ã)f(q̃) to each firm’s payoff, with pricing rule f(q̃) = β − δ(q̃ − µq).

Here, β and δ correspond to the marginal rate of substitution (MRS) and exposure risk

aversion (ERA), respectively, as in Proposition 1. The first-order condition for a firm that

maximizes expected payoff is Ei[θ̃ − ai + f(q̃)] = 0, which yields:

ai = Ei[θ̃] + β − δ(Ei[Ã] − µq). (52)

The coordination parameter is therefore αUBR = −δ, which matches the team-efficient value

αte = −δ and restores efficiency.

This result is a direct application of the team-efficient condition in Lemma 4. In this

example, the first-best action is a∗(θ) = (θ+β +δµq)/(1+δ). Substituting this expression and

the optimal coordination parameter α = −δ into the general formula ate
i = (1 − α)Ei[a∗(θ)] +

αEi[Ãte] recovers precisely the firm’s equilibrium action under UBR. This confirms the

mechanism’s efficiency and clarifies its strategic channel—each firm’s action adjusts based on

how its forecast of the aggregate action, Ei[Ã], deviates from the public mean, µq = E[Ã].

This application offers direct policy insights. If society is risk-neutral (δ = 0), optimal

coordination is zero (αte = 0), and UBR acts as a Pigouvian subsidy (β) that raises investment
14As defined in Lemma 4, α := −UAA/(Ucπaa). In this example, where q = A, we have UAA = −δ, Uc = 1,

and πaa = −1, which gives α = −(−δ)/(1 · −1) = −δ.
15For a finite number of firms N , the variance of the average action AN = 1

N

∑
ai is Var(AN ) =

1
N Var(ai) +

(
1 − 1

N

)
Cov(ai, aj) under symmetry. As N → ∞, the first term vanishes, so aggregate volatility

equals Cov(ai, aj).
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without altering strategic behavior. If society is risk-averse (δ > 0), UBR then induces strategic

substitutability to reduce aggregate volatility. This distinction echoes real-world debates—for

instance, between imposing uniform cybersecurity standards, which can heighten correlated

risks (Kunreuther and Heal, 2003), and fostering a diversity of defense to build resilience

(Jajodia, Ghosh, Swarup, Wang, and Wang, 2011). Finally, as in our general model (Corollary

3.2), the information-sensitivity index B rises with the prior standard deviation σθ.16

6 Conclusion

How can societies effectively regulate complex externalities amidst pervasive uncertainty

and disagreement? We argue the solution lies not in waiting for consensus, but in designing

policies that leverage these forces directly. We develop a regulatory mechanism that aligns

decentralized decisions with the team-efficient outcome by creating a synthetic competitive

market for the externality. This approach harnesses the power of dispersed private information

to turn uncertainty and disagreement from barriers into catalysts for efficient coordination,

all without requiring direct disclosure.

Although our framework is broadly applicable, it is particularly relevant in domains

where externalities interact with dispersed and privately held information. Examples include

climate policy, cybersecurity, public health, financial stability and artificial intelligence—

settings where uncertainty and disagreement are pervasive and where centralized control is

often impractical. In each case, linking individual payoffs to deviations from an aggregate

benchmark channels disagreement and uncertainty into productive coordination, allowing

firms to respond to implicit prices that emerge from others’ actions.

For simplicity, we assume that each household owns a single firm, isolating the core

incentives behind our regulatory mechanism. A natural next step is to incorporate financial

markets, which aggregate dispersed information across investors and generate price signals that

can complement or reinforce the mechanism’s effects. These signals may amplify incentives for
16This follows from Corollary 3.2. In this cybersecurity example, α = −δ and κ∗

1 = −δ/(1+δ). Substituting
into the general formula B = κ∗

1

(
1

1+σ2
θ

(τy(1−α)+τz) − 1
)

yields B = − δ
1+δ

(
1

1+σ2
θ

(τy(1+δ)+τz) − 1
)

. Since
∂B
∂σθ

= 2σθδ(τy(1+δ)+τz)
(1+δ)(1+σ2

θ
(τy(1+δ)+τz))2 > 0, information sensitivity increases with prior uncertainty.
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firms to pursue socially beneficial investments, such as green innovation or robustness against

systemic risk. Portfolio mandates—an increasingly discussed policy tool—could further shape

how these financial signals influence firms’ behavior. Studying the interaction between our

mechanism and asset prices offers a promising direction for future research.

By showing how uncertainty and disagreement can be managed productively, our work

contributes to the broader discussion on governance in complex environments. Rather than

treating imperfect information as a barrier, we show it can support market-based regulatory

solutions. Outcome-responsive mechanisms that coordinate agents through endogenous

incentives can achieve decentralized efficiency, even when central authorities lack detailed

knowledge and agents disagree. The future of regulation, therefore, may lie not in overcoming

uncertainty and disagreement, but in harnessing them to elicit and aggregate dispersed

information.
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A Proofs
A.1 Proof of Lemma 1
The properties listed in the lemma follow directly from the Taylor expansion of the utility function

U(ci, q) around the point (c0, µθ), as given in equation (3), and the definition of the aggregate

outcome q in equation (2).

The approximated utility function is provided in (3). We prove each property in turn.

(a) Uc = Uc(c0, µθ) > 0 is a positive constant. The approximation of U is first-order (linear) in

consumption ci. Taking the partial derivative of U with respect to ci yields Uc = Uc(c0, µθ),

which is a constant evaluated at the expansion point. By assumption, utility is increasing in
consumption, so this constant is positive.

(b) UA(θ̃, Ã) is linear in its arguments. The aggregate action Ã affects utility through the

aggregate outcome q̃. By the chain rule and equation (2),

UA = ∂U

∂q
= Uq(c0, µθ) + Uqq(c0, µθ)(θ̃ + Ã − A0 − µθ).

Since Uq(c0, µθ) and Uqq(c0, µθ) are constants, this expression is linear in θ̃ and Ã.

(c) UAA = Uqq(c0, µθ) < 0 is a negative constant. Taking the partial derivative of UA from the

previous point with respect to Ã yields UAA = Uqq(c0, µθ). By assumption, the marginal

utility of the aggregate outcome is declining, so UAA < 0.

(d) UcA = 0. The Taylor expansion in equation (3) contains no cross-terms between consumption

and the aggregate outcome, so the cross-partial derivative UcA is zero.

(e) UθA = Uqq(c0, µθ) < 0 is a negative constant. Taking the partial derivative of UA from

point (b) with respect to θ̃ yields UθA = Uqq(c0, µθ), which is negative as established in

point (c).

A.2 Proof of Lemma 2
In the status quo, household i maximizes its expected utility:

max
ai

Ei[U(ci, θ̃, Ã)], (A1)
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subject to ci = e + π(ai). Because household i is infinitesimal, its choice of ai does not affect

the aggregate action Ã =
∫ 1

0 aidi. Therefore, Ã can be treated as a constant with respect to the

maximization over ai.
Substituting the constraint into the objective and taking the first-order condition with respect to ai

leads to:

Ei

[
Uc(e + π(ai), θ̃, Ã) · πa(ai)

]
= 0. (A2)

By Lemma 1 (a), Uc is a positive constant. Therefore, the first-order condition simplifies to:

πa(ai) = 0. (A3)

By assumption, the profit function π(ai) is maximized at ai = A0. Therefore, asq
i = A0. Since all

households are identical ex-ante and face the same optimization problem, they all choose the same
action. Aggregate action is then:

Ãsq =
∫ 1

0
asq

i di =
∫ 1

0
A0di = A0. (A4)

A.3 Proof of Lemma 3
The perfectly informed social planner maximizes social welfare, while internalizing the externality.

Due to household homogeneity, ai = a for all i, and thus Ã = a. The planner’s problem is then:

max
a

U(c(a), θ, A(a)), (A5)

subject to c(a) = e + π(a) and A(a) = a. Substituting the constraints, we have:

max
a

U(e + π(a), θ, a). (A6)

The first-order condition with respect to a is:

dU

da
= Ucπa(a) + UA(θ, a) = 0. (A7)

By Lemma 1 (a), Uc is a constant. The quadratic profit function, maximized at A0, implies

πa(a) = πaa(a − A0). Applying a first-order Taylor expansion to UA(θ, a) around (µθ, A0), which is

justified by Lemma 1 (b), yields:

UA(θ, a) = UA(µθ, A0) + UθA(θ − µθ) + UAA(a − A0). (A8)
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Substituting into the first-order condition:

Ucπaa(a − A0) + UA(µθ, A0) + UθA(θ − µθ) + UAA(a − A0) = 0. (A9)

Solving for a, which we denote as a∗(θ) in the first-best:

a∗(θ) = A0 − UA(µθ, A0)
Ucπaa + UAA

− UθA

Ucπaa + UAA
(θ − µθ). (A10)

A.4 Proof of Lemma 4

An efficient allocation is a strategy ate
i (yi, z) that maximizes

E[U ] =
∫

(θ̃,z)

∫
yi

U
(
e + π

(
ate

i (yi, z)
)
, θ̃, Ãte(θ̃, z)

)
dP (yi|θ̃, z)dP (θ̃, z), (A11)

subject to Ãte(θ̃, z) =
∫

yi
ate

i (yi, z)dP (yi|θ̃, z). Note that given the continuum of firms, the empirical

distribution of private signals converges to the conditional distribution P (yi|θ̃, z) by the Law of

Large Numbers. Consequently, the aggregate action, Ã(θ̃, z), can be represented both as an integral

over the signal distribution and as an integral over the firm index:
∫

yi
ai(yi, z)dP (yi|θ̃, z) =

∫
i aidi.

Write the Lagrangian:

Λ =
∫

(θ̃,z)

∫
yi

U
(
e + π(ate

i (yi, z)), θ̃, Ãte(θ̃, z)
)
dP (yi|θ̃, z)dP (θ̃, z)

+
∫

(θ̃,z)
λ(θ̃, z)

[
Ãte(θ̃, z) −

∫
yi

ate
i (yi, z)dP (yi|θ̃, z)

]
dP (θ̃, z). (A12)

The first order condition for Ãte(θ̃, z),∫
yi

UA

(
θ̃, Ãte(θ̃, z)

)
dP (yi|θ̃, z) + λ(θ̃, z) = 0, (A13)

must hold for almost all (θ̃, z). Thus:

UA

(
θ̃, Ãte(θ̃, z)

)
+ λ(θ̃, z) = 0. (A14)

The chain rule of probability states that:

dP (yi, θ̃, z) = dP (yi|θ̃, z)dP (θ̃, z) = dP (θ̃|yi, z)dP (yi, z). (A15)
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By the chain rule and Fubini’s theorem (to change the order of integration), the Lagrangian becomes:

Λ =
∫

(yi,z)

∫
θ̃

U
(
e + π(ate

i (yi, z)), θ̃, Ãte(θ̃, z)
)
dP (θ̃|yi, z)dP (yi, z)

+
∫

(yi,z)

∫
θ̃

λ(θ̃, z)
[
Ãte(θ̃, z) −

∫
yi

ate
i (yi, z)dP (yi|θ̃, z)

]
dP (θ̃|yi, z)dP (yi, z). (A16)

The first order condition for ate
i (yi, z) is then:∫

θ̃

[
Ucπa(ate

i (yi, z)) − λ(θ̃, z)
]
dP
(
θ̃|yi, z

)
= 0, (A17)

which must hold for almost all (yi, z). Replacing the first-order condition for Ãte, we obtain:

Ei

[
Ucπa(ate

i (yi, z))
]

+ Ei

[
UA

(
θ̃, Ãte(θ̃, z)

)]
= 0. (A18)

Since πa and UA are linear in their arguments, we can write:

πa(ate
i (yi, z)) = πa(a∗(θ)) + πaa(ate

i (yi, z) − a∗(θ)), (A19)

UA

(
θ̃, Ãte(θ̃, z)

)
= UA(θ̃, a∗(θ)) + UAA(Ãte(θ̃, z) − a∗(θ)). (A20)

By definition of the first-best allocation (see equation (A7)):

Ucπa(a∗(θ)) + UA(θ̃, a∗(θ)) = 0, (A21)

and thus one can rewrite equation (A18) as

UcπaaEi[ate
i (yi, z) − a∗(θ)] + UAAEi[Ãte(θ̃, z) − a∗(θ)] = 0. (A22)

Solving for ate
i (yi, z) yields:

ate
i (yi, z) = (1 − α)Ei[a∗(θ)] + αEi[Ãte(θ̃, z)], (A23)

where α is defined as in Lemma 4, equation (17).

A.5 Proof of Lemma 5

The ranking E[U sq] ≤ E[U te] follows from the definition of the team-efficient allocation as the

solution to the welfare maximization problem. The team-efficient allocation, ate
i (yi, z), is chosen

to maximize E[U ] subject to the constraint that actions depend only on the available information

(private and public signals). The status quo allocation, asq
i = A0, is not the solution to this

maximization problem, and thus cannot yield a higher level of ex-ante expected welfare.
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We now prove the statement that welfare is highest in the first-best. The ex-ante expected social

welfare in this economy is given by equation (14). Recall that Ã =
∫ 1

0 aidi and that U is linear in

ci = e + π(ai) and π(ai) is quadratic in ai. Thus, U can be written as:

U(e + π(ai), θ̃, Ã) = U(e + π(Ã), θ̃, Ã) + Ucπa(Ã) · (ai − Ã) + 1
2Ucπaa · (ai − Ã)2. (A24)

This is a Taylor series expansion around the point ai = Ã. The transformation is exact, since U is

quadratic in ai. We omit the dependence of πaa on Ã since π(·) is a quadratic function.

The linear term, Ucπa(Ã) · (ai − Ã), vanishes when integrated over the conditional distribution

of private signals in equation (14),
∫

yi
Ucπa(Ã) · (ai − Ã)dP (yi|θ̃, z), because

∫
yi

aidP (yi|θ̃, z) =

Ã. The quadratic term, when integrated over the conditional distribution of private signals, is

the variance of ai conditional on θ̃ and z:
∫

yi
(ai − Ã)2dP (yi|θ̃, z) = σ2

a, with σ2
a :=

∫
yi

(ai −∫
yj

ajdP (yj |θ̃, z))2dP (yi|θ̃, z). Thus, defining W (θ̃, Ã, σa) := U(e + π(Ã), θ̃, Ã) + 1
2Ucπaaσ2

a, ex-ante

welfare can be rewritten as:

E[U ] =
∫

(θ̃,z)
W (θ̃, Ã, σa)dP (θ̃, z). (A25)

We notice that the first-best a∗(θ) is the unique solution to WA(θ̃, a∗(θ), 0) = 0. A second-order

Taylor expansion of W (θ̃, Ã, σa) around Ã = a∗(θ) and σa = 0 gives:

W (θ̃, Ã, σa) = W (θ̃, a∗(θ), 0) + WA(θ̃, a∗(θ), 0) · (Ã − a∗(θ)) + Wσa(θ̃, a∗(θ), 0) · σa

+ 1
2WAA(θ̃, a∗(θ), 0) · (Ã − a∗(θ))2 + 1

2Wσaσa(θ̃, a∗(θ), 0) · σ2
a. (A26)

Replacing WA(θ̃, a∗(θ), 0) = 0 and Wσa(θ̃, a∗(θ), 0) = 0 and recognizing that
∫

(θ̃,z)(Ã−a∗(θ))2dP (θ̃, z) =

E[(Ã − a∗(θ))2] and
∫

(θ̃,z) σ2
adP (θ̃, z) = E[(ai − Ã)2], we obtain

E[U ] = E[W (θ̃, a∗(θ), 0)] + 1
2(Ucπaa + UAA) · E[(Ã − a∗(θ))2] + 1

2Ucπaa · E[(ai − Ã)2]. (A27)

Since Ucπaa + UAA < 0 and Ucπaa < 0, it implies that welfare is highest in the first-best:

E[U ] ≤ E[W (θ̃, a∗(θ), 0)]. (A28)

The additional terms, 1
2(Ucπaa + UAA) · E[(Ã − a∗(θ))2] and 1

2Ucπaa · E[(ai − Ã)2], measure welfare

losses due to volatility and dispersion, as −(Ucπaa + UAA) can be interpreted as “social aversion

to volatility” and −Ucπaa can be interpreted as “social aversion to dispersion”. See Angeletos and
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Pavan (2007) for similar interpretations.

A.6 Proof of Proposition 1

Under UBR, firm i’s maximization problem leads to the first-order condition:

Ei[Uc (πa(ai) + f(q̃))] = 0. (A29)

Substituting πa(ai) = πaa(ai − A0), then solving for ai:

ai = A0 − Ei[f(q̃)]
πaa

. (A30)

Consider the team-efficient allocation from Lemma 4:

ate
i =

(
1 + UAA

Ucπaa

)
Ei[a∗(θ)] − UAA

Ucπaa
Ei[Ãte]. (A31)

where a∗(θ) is the first-best action (obtained in Lemma 3):

a∗(θ) = A0 − UA(µθ, A0)
Ucπaa + UAA

− UθA

Ucπaa + UAA
(θ̃ − µθ). (A32)

We want to find a regulatory function f(q̃) such that the firm’s optimal choice under UBR given by

equation (A30) equals the team-efficient action, ate
i (given by the general form of equation (A31)

without the ‘te’ superscript on the last term). That is, we seek to satisfy:

A0 − Ei[f(q̃)]
πaa

=
(

1 + UAA

Ucπaa

)
Ei[a∗(θ)] − UAA

Ucπaa
Ei[Ã]. (A33)

Substituting in the expression for a∗(θ) from equation (A32) and taking expectations:

A0 − Ei[f(q̃)]
πaa

=
(

1 + UAA

Ucπaa

)(
A0 − UA(µθ, A0)

Ucπaa + UAA
− UθA

Ucπaa + UAA
Ei[θ̃ − µθ]

)
− UAA

Ucπaa
Ei[Ã].

(A34)

Multiplying through and simplifying, we want (A33) to hold, meaning we need:

Ei[f(q̃)] = UA(µθ, A0)
Uc

+ UθA

Uc
Ei[θ̃ − µθ] + UAA

Uc
Ei[Ã − A0]. (A35)

From the Taylor expansion of the utility function U provided in equation (3) and the properties in
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Lemma 1, we obtain

UθA

Uc
= Uqq(c0, µθ)

Uc(c0, µθ) , (A36)

UAA

Uc
= Uqq(c0, µθ)

Uc(c0, µθ) , (A37)

UA(µθ, A0)
Uc

= Uq(c0, µθ)
Uc(c0, µθ) . (A38)

We then recover society’s two key parameters as

ERA := −UAA

Uc
= −UθA

Uc
, (A39)

MRS := UA(µθ, A0)
Uc

. (A40)

Consider now the following candidate function:

f(q̃) = UA(θ̃, Ã)
Uc

= UA(µθ, A0)
Uc

+ UθA

Uc
(θ̃ − µθ) + UAA

Uc
(Ã − A0). (A41)

Using equations (A36), (A37), and (A38), and recalling the definition of q̃ from (2), leads to:

f(q̃) = MRS − ERA(q̃ − µθ). (A42)

Take the expectation of this candidate function, conditional on household i’s information:

Ei[f(q̃)] = UA(µθ, A0)
Uc

+ UθA

Uc
Ei[θ̃ − µθ] + UAA

Uc
Ei[Ã − A0]. (A43)

Equation (A43) is identical to equation (A35), which is the required condition for the firm’s optimal

choice under UBR to coincide with the general form of the team-efficient action. Because the

candidate f(q̃) given by equation (A41) (or equivalently, (A42)) satisfies the necessary condition

(A35), it follows that under UBR, each firm’s optimal choice of action, ai, will be given by:

ai =
(

1 + UAA

Ucπaa

)
Ei[a∗(θ)] − UAA

Ucπaa
Ei[Ã]. (A44)

This is the defining characteristic of the team-efficient equilibrium. Since each firm i is acting

according to this rule, the aggregate outcome Ã will be the team-efficient aggregate outcome, Ãte.

Therefore, the regulatory function defined by (A41) (or (A42)) ensures that each firm chooses the

team-efficient level of action, ate
i , in the unique linear equilibrium.
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A.7 Proof of Proposition 2

The consumer’s problem in the synthetic market yields an inverse demand for the aggregate action.

Ex post, the consumer’s FOC yields the inverse demand p = UA(θ, A)/Uc. Expanding UA(θ, A)

around the status quo (µθ, A0) using a first-order Taylor expansion (which is exact by Lemma 1 (b)),

we have:

p = UA(µθ, A0)
Uc

+ UθA

Uc
(θ − µθ) + UAA

Uc
(A − A0). (A45)

We note that the expression for the market price p in equation (A45) is identical in form to the

candidate function for f(q̃) derived in the proof of Proposition 1 (equation (A41)).

Consider now the firms’ problem in this hypothetical Cournot market. Firm i chooses its action,
denoted by as

i , to maximize household i’s expected utility:

max
as

i

Ei

[
U
(
e + π(as

i ) + p̃as
i , θ̃, Ãd

)]
, (A46)

where π(as
i ) is the firm’s profit, to which we add the revenue from selling the action, p̃as

i . The

aggregate action supplied,
∫

i as
i di, must equal aggregate demand Ãd in equilibrium. Note that the

firm takes p̃ and Ãd as given. The first-order condition leads to (π(·) is quadratic):

0 = Ei[Uc(p̃ + πa(as
i ))] = Ei[Uc (p̃ + πaa(as

i − A0))], (A47)

and thus (Uc is constant and cancels out):

as
i = A0 − Ei[p̃]

πaa
. (A48)

Substituting the expression for the price p from the inverse demand function (A45) into (A48), and

imposing the market clearing condition Ãd =
∫

i as
i di, we have:

as
i = A0 − 1

πaa
Ei

[
UA(µθ, A0)

Uc
+ UθA

Uc
(θ̃ − µθ) + UAA

Uc

(∫
i
as

i di − A0

)]
. (A49)

Using the definitions of MRS and ERA from equations (A38) and (A37), this becomes:

as
i = A0 − 1

πaa

(
MRS − ERAEi[θ̃ − µθ] − ERAEi

[∫
i
as

i di − A0

])
. (A50)

The first-order condition for a firm in the synthetic market, given by equation (A50), is identical

to the first-order condition for a firm under UBR (derived by substituting (A35) into (A30) in the

proof of Proposition 1). Since the firms’ optimization problems are identical, their chosen actions
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must also be identical, which implies as
i = ate

i . Thus, the UBR mechanism effectively creates a

synthetic Cournot market that achieves the team-efficient outcome.

A.8 Proof of Proposition 3

The firm’s problem is to maximize (21), where consumption is given by:

c̃i = e + π(ai) + (ai − Ã)f(q̃). (A51)

Substituting (A51) into the objective function (21) and taking the first-order condition with respect

to ai gives ai = A0 − Ei[f(q̃)]
πaa

. Substituting f(q̃) from equation (A41) leads to:

ai = A0 − 1
πaaUc

[
UA(µθ, A0) + UAA(Ei[Ã] − A0) + UθA(Ei[θ̃] − µθ)

]
. (A52)

To solve this equation, we use the conjectured linear form of the equilibrium strategy from equa-

tion (29). Aggregating these individual actions across all firms and applying the Law of Large

Numbers (such that
∫ 1

0 (yi − µθ)di = θ̃ − µθ) gives the aggregate action:

Ã = β0 + βy(θ̃ − µθ) + βz(z − µθ). (A53)

Firm i’s expectation of Ã is therefore a function of its own expectation of θ̃. From the model setup,
we have:

Ei[θ̃] − µθ = τy

τ
(yi − µθ) + τz

τ
(z − µθ), (A54)

Ei[Ã] = β0 + βyEi[θ̃ − µθ] + βz(z − µθ). (A55)

Substituting (A54) and (A55) into (A52), and using our conjecture (29) for the LHS, yields:

β0 + βy(yi − µθ) + βz(z − µθ) = A0 − 1
πaaUc

[
UA(µθ, A0)

+ UAA

(
β0 + βy

τy

τ
(yi − µθ) +

(
βy

τz

τ
+ βz

)
(z − µθ) − A0

)

+ UθA

(
τy

τ
(yi − µθ) + τz

τ
(z − µθ)

) ]
. (A56)

We equate coefficients for the constant term, the coefficients for (yi − µθ), and the coefficients for

(z − µθ). First, solving for β0:

β0 = A0 − 1
πaaUc

[UA(µθ, A0) + UAA(β0 − A0)] , (A57)
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and thus:

β0 = A0 − UA(µθ, A0)
Ucπaa + UAA

. (A58)

Second, solving for βy:

βy = − 1
Ucπaa

[
UAAβy

τy

τ
+ UθA

τy

τ

]
, (A59)

yields:

βy = − UθAτy

Ucπaaτ + UAAτy
< 0. (A60)

Third and finally, solving for βz:

βz = − 1
Ucπaa

[
UAA

(
βy

τz

τ
+ βz

)
+ UθA

τz

τ

]
. (A61)

which, after substituting the solution for βy from (A60), leads to

βz = − Ucπaa

Ucπaa + UAA

UθAτz

Ucπaaτ + UAAτy
. (A62)

and thus, recognizing that Ucπaa
Ucπaa+UAA

= 1
1−α (Lemma 4, equation (17)):

βz = − 1
1 − α

UθAτz

Ucπaaτ + UAAτy
< 0. (A63)

Equations (A58), (A60), and (A63) characterize the coefficients β0, βy, and βz in terms of the model

parameters, and confirm equations (30) through (32) in Proposition 3.

A.9 Proof of Corollary 3.1

From Lemma 4, we know that α = − UAA
Ucπaa

. We also know that UAA < 0, Uc > 0, and πaa < 0.

Therefore, α < 0. Consequently, as shown in equation (16) of Lemma 4, a firm’s expectation of the

aggregate action, Ei[Ãte], enters its best-response function with a negative coefficient, implying that

firms’ actions are strategic substitutes.

From Proposition 3, using the expressions for βy and βz, we can directly calculate the ratio βy

βz
:

βy

βz
= τy

τz
1−α

= (1 − α)τy

τz
. (A64)
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Since α < 0, we have (1 − α) > 1. Therefore:

βy

βz
= (1 − α)τy

τz
>

τy

τz
. (A65)

This confirms that firms overweight their private information relative to the public signal.

A.10 Proof of Corollary 3.2

We start first by writing the coefficients β0, βy, and βz as functions of κ∗
0, κ∗

1, and α, noting that

these latter three coefficients do not depend on σθ, τy, and τz:

β0 = κ∗
0, (A66)

βy = (1 − α)κ∗
1σ2

θτy

1 + σ2
θ(τy − ατy + τz)

, (A67)

βz = κ∗
1σ2

θτz

1 + σ2
θ(τy − ατy + τz)

. (A68)

We aim to show that ∂B
∂σθ

> 0, where B = |βy +βz|. Since βy < 0 and βz < 0, we have B = −(βy +βz):

B = κ∗
1

(
1

1 + σ2
θ(τy(1 − α) + τz)

− 1
)

. (A69)

Noting that κ∗
1 < 0 and α < 0, points (a), (b), and (c) of Corollary 3.2 result immediately.

A.11 Proof of Corollary 3.3

Consider a firm i that unilaterally increases its private signal precision to τ ′
y = ξτy, where ξ > 1. Let

E′
i[·] denote expectations conditional on this more precise signal. The first-order condition implies

the firm’s optimal action, denoted a′
i:

a′
i = A0 − E′

i[f(q̃)]
πaa

. (A70)

We know from Proposition 1 that f(q̃) = UA(µθ,A0)
Uc

+ UθA
Uc

(θ̃ − µθ) + UAA
Uc

(Ã − A0), which remains

the same as in the main model. Replacing this in (A70) yields:

a′
i = A0 − UA(µθ, A0)

Ucπaa
− UθA

Ucπaa
(E′

i[θ̃] − µθ) − UAA

Ucπaa
(E′

i[Ã] − A0). (A71)
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Make the following substitutions:

E′
i[θ̃] = σ−2

θ

σ−2
θ + ξτy + τz

µθ + ξτy

σ−2
θ + ξτy + τz

yi + τz

σ−2
θ + ξτy + τz

z, (A72)

E′
i[Ã] = β0 + βy(E′

i[θ̃] − µθ) + βz(z − µθ), (A73)

and replace the solutions for β0, βy, and βz given in equations (30)–(32) of Proposition 3. Straight-

forward but tedious algebra (details omitted) then leads to equation (37) of Corollary 3.3:

a′
i = β0 + βy

[
1 + (ξ − 1)(1 + σ2

θτz)
1 + σ2

θ(ξτy + τz)

]
(yi − µθ) + βz

[
1 − (ξ − 1)(1 − α)σ2

θτy

1 + σ2
θ(ξτy + τz)

]
(z − µθ). (A74)

We now demonstrate that firm i’s ex-ante expected utility (conditional on z, but before observing yi)

is strictly increasing in the precision of its private signal. From Proposition 1 and equation (A41),

we note that the regulatory function can also be written as:

f(q̃) = UA(θ̃, Ã)
Uc

= UA(θ̃, A0) + UAA(Ã − A0)
Uc

. (A75)

Here we have used a first-order Taylor expansion of UA(θ̃, ·) around A0, holding θ̃ fixed:

UA(θ̃, Ã) = UA(θ̃, A0) + UAA (Ã − A0),

and in our linear-quadratic setup the higher-order terms drop out. Dividing by Uc then yields the
stated form.
Consider a second-order Taylor expansion of the utility function U(e + π(ai) + (ai − Ã)f(q̃), θ̃, Ã)

around the status quo point (ai, Ã) = (A0, A0):

U

(
e + π(ai) + (ai − Ã)UA(θ̃, A0) + UAA(Ã − A0)

Uc
, θ̃, Ã

)
= U

(
e + π(A0), θ̃, A0

)
+ 0 · (Ã − A0) + UA(θ̃, A0) · (ai − A0)

− 1
2UAA · (Ã − A0)2 + 1

2Ucπaa · (ai − A0)2 + UAA · (Ã − A0)(ai − A0).

(A76)

This expansion is exact, given the linear-quadratic structure of the model. The expected utility

(conditional on both yi and z) is then

Ei[U ] = U
(
e + π(A0), θ̃, A0

)
+ Ei[UA(θ̃, A0)](ai − A0)

− 1
2UAAEi[(Ã − A0)2] + 1

2Ucπaa(ai − A0)2 + UAAEi[Ã − A0](ai − A0).
(A77)
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Recall from Lemma 3 that the first-best action is given by a∗(θ) = κ∗
0 + κ∗

1(θ̃ − µθ), and that

κ∗
0 = A0 − UA(µθ,A0)

Ucπaa+UAA
and κ∗

1 = − UθA
Ucπaa+UAA

. We can therefore rewrite the expression for a∗(θ) as

a∗(θ) = A0 + −UA(µθ, A0) − UθA(θ̃ − µθ)
Ucπaa + UAA

= A0 − UA(θ̃, A0)
Ucπaa + UAA

. (A78)

Thus, we can write Ei[UA(θ̃, A0)] = −(Ucπaa + UAA)Ei[a∗(θ) − A0], which leads to:

Ei[U ] = U
(
e + π(A0), θ̃, A0

)
− 1

2UAAEi[(Ã − A0)2] + 1
2Ucπaa(ai − A0)2

−
(
(Ucπaa + UAA)Ei[a∗(θ) − A0] − UAAEi[Ã − A0]

)
(ai − A0),

(A79)

or, using the fact that, from equation (17), α = − UAA
Ucπaa

,

Ei[U ] = U
(
e + π(A0), θ̃, A0

)
− 1

2UAAEi[(Ã − A0)2] + 1
2Ucπaa(ai − A0)2

− Ucπaa

(
(1 − α)Ei[a∗(θ) − A0] + αEi[Ã − A0]

)
(ai − A0).

(A80)

Finally, recognizing from Lemma 4 that (1 − α)Ei[a∗(θ) − A0] + αEi[Ã − A0] = ai − A0:

Ei[U ] = U
(
e + π(A0), θ̃, A0

)
− 1

2UAAEi[(Ã − A0)2] + 1
2Ucπaa(ai − A0)2 − Ucπaa(ai − A0)2 (A81)

= U
(
e + π(A0), θ̃, A0

)
− 1

2UAAEi[(Ã − A0)2] − 1
2Ucπaa(ai − A0)2. (A82)

Taking the ex-ante expectation (conditional on z), for both ai and a′
i, yields:

E[Ei[U ]|z] = E[U(e + π(A0), θ̃, A0)|z] − 1
2UcπaaE[(ai − A0)2|z] − 1

2UAAE[(Ã − A0)2|z], (A83)

E[E′
i[U ]|z] = E[U(e + π(A0), θ̃, A0)|z] − 1

2UcπaaE[(a′
i − A0)2|z] − 1

2UAAE[(Ã − A0)2|z]. (A84)

The difference in ex-ante expected utilities is therefore:

∆E[U |z] := E[E′
i[U ]|z] − E[Ei[U ]|z] = −1

2Ucπaa

(
E[(a′

i − A0)2|z] − E[(ai − A0)2|z]
)

. (A85)

From Propositions 2 and 3, we have ai − A0 = −Ei[f(q̃)]
πaa

and a′
i − A0 = −E′

i[f(q̃)]
πaa

. Substituting these

into the expression for ∆E[U |z], we obtain:

∆E[U |z] = −Uc

2πaa

(
E[E′

i[f(q̃)]2|z] − E[Ei[f(q̃)]2|z]
)

. (A86)
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Applying the definition of variance, Var[X] = E[X2] − E[X]2, and the Law of Iterated Expectations:

E[E′
i[f(q̃)]2|z] = Var[E′

i[f(q̃)]|z] + E[f(q̃)|z]2, (A87)

E[Ei[f(q̃)]2|z] = Var[Ei[f(q̃)]|z] + E[f(q̃)|z]2. (A88)

Substituting these into the expression for the difference in expected utilities, we get

∆E[U |z] = −Uc

2πaa

(
Var[E′

i[f(q̃)]|z] − Var[Ei[f(q̃)]|z]
)

. (A89)

The term −Uc
2πaa

is positive (πaa < 0 and Uc > 0). The gain in utility therefore depends on the sign

of the difference in the variances of the conditional expectations. Let this difference be denoted

by ∆V(ξ) ≡ Var[E′
i[f(q̃)]|z] − Var[Ei[f(q̃)]|z]. We can show that ∆V(ξ) > 0 by the Law of Total

Variance (LTV).

Denoting Vari[f(q̃)] as shorthand for Var[f(q̃)|yi, z], the LTV states that:

Var[f(q̃)|z] = E[Vari[f(q̃)]|z] + Var[Ei[f(q̃)]|z]. (A90)

The conditional variance, Vari[f(q̃)], is independent of the signal realizations yi and z. This is

a standard feature of linear-Gaussian models, where the variance of a linear function of normal
random variables, conditional on a set of signals, depends only on the known precisions of the
model’s shocks and signals. Thus, we can write:

Var[f(q̃)|z] = Var[f(q̃)|y′
i, z] + Var[E′

i[f(q̃)]|z], (A91)

Var[f(q̃)|z] = Var[f(q̃)|yi, z] + Var[Ei[f(q̃)]|z]. (A92)

Var[f(q̃)|z] is the same in both LTV equations as it depends on the distribution of f(q̃) given the

public signal, z, which is unchanged by firm i’s private signal precision. Since the precision of

the private signal is increased, we have Var[f(q̃)|y′
i, z] < Var[f(q̃)|yi, z]. Therefore, it must be that

∆V(ξ) > 0.

Plugging this result into equation (A89), we conclude that ∆E[U |z] > 0. Thus, the firm has a strict

incentive to increase its private information precision, τy.

A.12 Proof of Proposition 4

The social planner’s problem is:

max
asp

Esp

[
U(e + π(asp), θ̃, asp)

]
. (A93)
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The first-order condition (FOC) with respect to asp is:

0 = Esp

[
Ucπa(asp) + UA(θ̃, asp)

]
. (A94)

Rewrite UA(θ̃, asp) = UA(θ̃, A0) + UAA(asp − A0) and Ucπa(asp) = Ucπaa(asp − A0), and substitute:

0 = Esp

[
Ucπaa(asp − A0) + UA(θ̃, A0) + UAA(asp − A0)

]
. (A95)

Solving for asp, we obtain:

asp = A0 − Esp[UA(θ̃, A0)]
Ucπaa + UAA

. (A96)

Taking expectation of equation (A78) conditional only on public information gives:

Esp[a∗(θ)] = A0 − Esp[UA(θ̃, A0)]
Ucπaa + UAA

. (A97)

Comparing this with equation (A96), we see that:

asp = Esp[a∗(θ)]. (A98)

We now compare the ex-ante expected social welfare under the social planner’s allocation to the
status quo. Define the difference in expected utility for household i, conditional on yi and z as:

∆Ui := Ei[U(e + π(asp), θ̃, asp)] − Ei[U(e + π(A0), θ̃, A0)]. (A99)

Write a second-order Taylor expansion of U around the status quo point (Ã, ai) = (A0, A0):

U(e + π(ai), θ̃, Ã) = U(θ̃, A0, e + π(A0)) + UA(θ̃, A0)(Ã − A0) + Ucπa(A0)(ai − A0)

+ 1
2UAA(Ã − A0)2 + 1

2Ucπaa(ai − A0)2.
(A100)

Since πa(A0) = 0, and evaluating the expression at ai = Ã = asp, the expansion becomes:

U(e+π(asp), θ̃, asp) = U(θ̃, A0, e+π(A0))+UA(θ̃, A0)(asp −A0)+ Ucπaa + UAA

2 (asp −A0)2. (A101)

Thus, the difference ∆Ui simplifies to:

∆Ui = Ei[UA(θ̃, A0)](asp − A0) + Ucπaa + UAA

2 (asp − A0)2. (A102)

From equation (A96), we know that asp − A0 = −Esp[UA(θ̃,A0)]
Ucπaa+UAA

= −E[UA(θ̃,A0)|z]
Ucπaa+UAA

, where the second
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equality holds because the social planner’s information set consists only of the prior and z. Thus:

∆Ui = Ei[UA(θ̃, A0)]−E[UA(θ̃, A0)|z]
Ucπaa + UAA

+ UAA + Ucπaa

2

(
−E[UA(θ̃, A0)|z]

Ucπaa + UAA

)2

(A103)

= −1
Ucπaa + UAA

(
Ei[UA(θ̃, A0)]E[UA(θ̃, A0)|z] − 1

2E[UA(θ̃, A0)|z]2
)

. (A104)

The welfare difference is the the ex-ante expectation E[∆Ui] = ∆Wsp, which averages over yi and z:

∆Wsp = −1
Ucπaa + UAA

E
[
Ei[UA(θ̃, A0)]E[UA(θ̃, A0)|z] − 1

2E[UA(θ̃, A0)|z]2
]

. (A105)

Recall that UA(θ̃, A0) = UA(µθ, A0) + UθA(θ̃ − µθ). Also, Ei[θ̃ − µθ] = τy

τ (yi − µθ) + τz
τ (z − µθ) and

E[θ̃ − µθ|z] = τz
τsp

(z − µθ), where τ = σ−2
θ + τy + τz and τsp = σ−2

θ + τz. Therefore:

Ei[UA(θ̃, A0)] = UA(µθ, A0) + UθA

(
τy

τ
(yi − µθ) + τz

τ
(z − µθ)

)
, (A106)

E[UA(θ̃, A0)|z] = UA(µθ, A0) + UθA
τz

τsp
(z − µθ). (A107)

Substituting into the expression for ∆Wsp:

∆Wsp = −1
Ucπaa + UAA

E
{[

UA(µθ, A0) + UθA

(
τy

τ
(yi − µθ) + τz

τ
(z − µθ)

)]

×
[
UA(µθ, A0) + UθA

τz

τsp
(z − µθ)

]
− 1

2

[
UA(µθ, A0) + UθA

τz

τsp
(z − µθ)

]2}
.

(A108)

Now, we expand the terms inside the expectation and apply the following rules:

E[yi − µθ] = E[z − µθ] = 0, (A109)

E[(yi − µθ)(z − µθ)] = E[(θ̃ − µθ + ε̃y,i)(θ̃ − µθ + ε̃z)] = σ2
θ , (A110)

E[(z − µθ)2] = Var(z) = σ2
θ + 1/τz. (A111)

Expanding the product and taking expectations, then replacing τsp = σ−2
θ +τz and τ = σ−2

θ +τz +τy:

∆Wsp = −1
2(Ucπaa + UAA)

[
UA(µθ, A0)2 + U2

θA

σ2
θτz

σ−2
θ + τz

]
> 0. (A112)
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A.13 Proof of Corollary 4.1

Consider a firm facing a tax T per unit of emissions, E(ai). The firm’s objective function is:

max
ai

Ei

[
U(e + π(ai) − TE(ai), θ̃, Ã)

]
. (A113)

Taking the first-order condition with respect to ai (and noting that firm i takes Ã as given) implies:

Ei[πa(ai)] = TEi[E ′(ai)]. (A114)

Since both πa(ai) and E ′(ai) are deterministic and all firms are ex-ante identical, we may drop the

expectations by evaluating at ai = asp, giving

πa(asp) = T E ′(asp). (A115)

To implement the social planner’s solution, asp, we need all firms to choose ai = asp. Since the tax

is uniform and all firms are identical ex ante, we need to impose:

πa(asp) = TE ′(asp), (A116)

and noting that πa(asp) = πaa(asp − A0), we must have

T = (asp − A0)πaa

E ′(asp) . (A117)

Because πaa < 0 and E ′(asp) < 0, the sign of T is dictated by the difference asp − A0. Since we

have assumed that the action generates a positive externality, we have asp > A0 and thus T > 0.

Consequently, the per-unit-emissions tax is strictly positive and ensures that all firms choose the
social planner’s action level asp.

A.14 Proof of Corollary 4.2

When firm i purchases Qi permits, its profit function is:

πi = π(ai) − ppermitQi. (A118)

Firms must hold enough permits to cover their emissions. Therefore, the quantity of permits
purchased, Qi, must equal the firm’s emissions:

Qi = E(ai). (A119)

60



The firm maximizes its expected utility. Substituting (A119) into the profit function:

max
ai

Ei[U(e + π(ai) − ppermitE(ai), θ̃, Ã)]. (A120)

Taking the first-order condition with respect to ai (the firm takes ppermit and Ã as given) implies:

Ei[Uc(πa(ai) − ppermitE ′(ai))] = 0, (A121)

and since both πa(ai) and E ′(ai) are deterministic functions of ai (and common across firms), and

Uc is a constant, we may drop the expectation to obtain

πa(ai) − ppermit E ′(ai) = 0. (A122)

or

πaa(ai − A0) − ppermitE ′(ai) = 0. (A123)

Since E ′(ai) < 0 and E ′′(ai) > 0, the left-hand side of (A123) is strictly decreasing in ai. It is also

strictly positive at ai = A0. Thus, for a given ppermit, there’s a unique ai > A0 that solves the FOC.

Because ppermit is uniform across firms, and π(·) and E(·) are identical for all firms, all firms will

choose the same action level.
The social planner aims to implement asp. In equilibrium, aggregate emissions must equal the total

permits issued, Q. Since all firms choose asp, aggregate emissions are:∫ 1

0
E(asp)di = E(asp). (A124)

Therefore, to implement the social planner’s solution Q must solve:

Q = E(asp). (A125)

Substituting asp into the firm’s FOC:

πaa(asp − A0) − ppermitE ′(asp) = 0. (A126)

Solving for the equilibrium permit price, ppermit, and using the result of Proposition 4:

ppermit = πaa(asp − A0)
E ′(asp) . (A127)

Thus, the equilibrium permit price, ppermit, is identical to the Pigouvian tax, T .
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A.15 Proof of Proposition 5

A household with signal yi compares its expected utility under the two regimes:

1. UBR: Ei[U(cte
i , θ̃, Ãte)], where cte

i = e + π(ai) + (ai − Ã)f(q̃). As shown in Proposition 1, ai

is the team-efficient action under UBR. Furthermore, from Proposition 1, we notice that the
regulatory function can also be written as:

f(q̃) = UA(θ̃, Ã)
Uc

= UA(θ̃, asp) + UAA(Ã − asp)
Uc

. (A128)

2. Social Planner: Ei[U(csp
i , θ̃, asp)], where csp

i = e + π(asp).

The household votes for the social planner if the second expression is greater than the first; otherwise,
it votes for UBR. Define the difference in utility for household i as:

∆Ui := U(cte
i , θ̃, Ãte) − U(csp

i , θ̃, asp). (A129)

Take a second-order Taylor expansion of U(cte
i , θ̃, Ãte) around the social planner’s solution:

U(cte
i , θ̃, Ãte) = U(csp

i , θ̃, asp) + [UA(θ̃, asp) + Ucπa(asp)](ai − asp)

− 1
2UAA(Ã − asp)2 + 1

2Ucπaa(ai − asp)2 + UAA(Ã − asp)(ai − asp).
(A130)

Substituting this expansion into ∆Ui, and using the fact that πa(asp) = πaa · (asp − A0), we get:

∆Ui = [UA(θ̃, asp) + Ucπaa(asp − A0)](ai − asp)

− 1
2UAA(Ã − asp)2 + 1

2Ucπaa(ai − asp)2 + UAA(Ã − asp)(ai − asp).
(A131)

The household’s voting decision is based on Ei[∆Ui]. Given household i’s information set {yi, z},

asp is known, and so is ai. The only random variables are θ̃ and Ã. Taking the expectation:

Ei[∆Ui] = Ei[UA(θ̃, asp) + Ucπaa(asp − A0)](ai − asp)

− 1
2UAAEi[(Ã − asp)2] + 1

2Ucπaa(ai − asp)2 + UAAEi[(Ã − asp)](ai − asp).
(A132)

Make the following substitutions:

UA(θ̃, asp) = UA(µθ, asp) + UθA(θ̃ − µθ), (A133)

Ei[Ã − asp] = 1
α

(ai − asp) − 1 − α

α
Ei[a∗(θ) − asp], (A134)
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where the the latter comes from Lemma 4: ai = (1 − α)Ei[a∗(θ)] + αEi[Ã]. Thus:

Ei[∆Ui] = [UA(µθ, asp) + UθAEi[θ̃ − µθ] + Ucπaa(asp − A0)](ai − asp) − 1
2UAAEi[(Ã − asp)2]

+ 1
2Ucπaa(ai − asp)2 + UAA

[ 1
α

(ai − asp) − 1 − α

α
Ei[a∗(θ) − asp]

]
(ai − asp).

(A135)

Using the definition of α = − UAA
Ucπaa

and simplifying:

Ei[∆Ui] =
{

UA(µθ, asp) + UθAEi[θ̃ − µθ] + Ucπaa(asp − A0) + (UAA + Ucπaa)Ei[a∗(θ) − asp]
}

(ai − asp)

− 1
2Ucπaa(ai − asp)2 − 1

2UAAEi[(Ã − asp)2]. (A136)

From the first-best solution (Lemma 3) and equation (A78), we can write:

Ei[a∗(θ) − asp] = Ei[a∗(θ) − A0] − (asp − A0) = −UA(µθ, A0) − UθAEi[θ̃ − µθ]
Ucπaa + UAA

− (asp − A0).

(A137)

Substituting and simplifying leads to:

Ei[∆Ui] = {UA(µθ, asp) − UA(µθ, A0) − UAA(asp − A0)} (ai − asp)

− 1
2Ucπaa(ai − asp)2 − 1

2UAAEi[(Ã − asp)2]. (A138)

Because UA(µθ, asp) = UA(µθ, A0) + UAA(asp − A0) the first term in the above equation cancels out

and we obtain

Ei[∆Ui] = −1
2Ucπaa(ai − asp)2 − 1

2UAAEi[(Ã − asp)2]. (A139)

Since Uc > 0, πaa < 0, and UAA < 0, we have Ei[∆Ui] > 0.

B Derivations for the Model with Distrust (Section 4)

We examine how distrust affects the equilibrium. Individual learning about θ̃ remains unchanged,

but learning about the aggregate, Ã, is altered. Under the conjecture (29), where hats denote
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potentially modified coefficients, household i perceives the aggregate action as:

Ãi = β̂0 + β̂y

(∫
j

yi
jdj − µθ

)
+ β̂z(z − µθ) (B1)

= β̂0 + β̂y(φ(θ̃ − µθ) +
√

1 − φ2ϕ̃i) + β̂z(z − µθ). (B2)

Consequently, household i’s expectation of the aggregate action is:

Ei[Ãi] = β̂0 + β̂yφ(Ei[θ̃] − µθ) + β̂z(z − µθ). (B3)

We proceed by revisiting the relevant results.

Lemma 2 (Status quo allocation): Unchanged.

Lemma 3 (First-Best allocation): Unchanged.

Lemma 4 (Team-efficient allocation): Equation (A18), reproduced here, remains valid:

Ei

[
Ucπa(ate

i (yi, z))
]

+ Ei

[
UA

(
e + π(Ãte(θ̃, z)), θ̃, Ãte(θ̃, z)

)]
= 0. (B4)

Taking the derivative and rearranging, we obtain

UcπaaEi[ate
i − a∗(θ)] + UAAEi[Ãte − a∗(θ)] = 0, (B5)

which, as in Lemma 4, implies

ate
i =

(
1 + UAA

Ucπaa

)
Ei[a∗(θ)] − UAA

Ucπaa
Ei[Ãte]. (B6)

Recall from Lemma 3 that a∗(θ) = κ∗
0 + κ∗

1(θ − µθ). Thus, Ei[a∗(θ)] is unaffected by distrust.

However, Ei[Ãte] depends on the trust parameter, φ. In the limiting case of complete distrust

(φ = 0), Ei[Ãte] becomes independent of θ̃, as seen from equation (B3). Still, the key result from

Lemma 4, given in equation (16), holds, and firms’ actions remain strategic substitutes.

Lemma 5 (Welfare Ranking): Unchanged.

Proposition 1 (Team efficiency of UBR): The function f(q̃) must still satisfy (A43):

Ei[f(q̃)] = UA(µθ, A0)
Uc

+ UθA

Uc
(Ei[θ̃] − µθ) + UAA

Uc
(Ei[Ãte] − A0). (B7)
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This yields the same functional form as in Proposition 1:

f(q̃) = MRS − ERA(q̃ − µθ). (B8)

Therefore, UBR is robust to distrust among economic agents.

Proposition 2 (Cournot equivalence): Unchanged.

Proposition 3 (Equilibrium action): Under distrust, the coefficients of the conjectured

equilibrium action, given by equation (29), are modified. To further highlight the impact of distrust

(see also equations (44)–(47)), we express these coefficients in terms of κ∗
0, κ∗

1, and α, which remain

unchanged from the no-distrust case. The modified coefficients β̂0, β̂y, and β̂z are:

β̂0 = κ∗
0, (B9)

β̂y = (1 − α)κ∗
1σ2

θτy

1 + σ2
θ(τy + τz − ατyφ)

, (B10)

β̂z = κ∗
1σ2

θτz

1 + σ2
θ(τy + τz − ατyφ)

. (B11)

When φ = 1, we fall back on the original coefficients of Proposition 3 (see equations (A66)-(A68)).

Corollary 3.1 (Strategic substitutability and information weighting): Unchanged.

Corollary 3.2 (Information sensitivity): Points (a) and (b) of the corollary are unchanged.

For point (c), the sign of dependence of the information sensitivity on the precision of public

information depends on the trust parameter φ. To see this, write

∂B
∂τz

= κ∗
1σ2

θ(−1 + ασ2
θτy(−1 + φ))

(1 + σ2
θ(τy + τz − ατyφ))2 . (B12)

The sign of this derivative depends on the sign of (−1 + ασ2
θτy(−1 + φ)). Since κ∗

1 < 0, it follows

that ∂B/∂τz > 0 if and only if

(−1 + ασ2
θτy(−1 + φ)) < 0, (B13)

or, equivalently, if and only if

φ > 1 − 1
(−α)σ2

θτy
. (B14)
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Finally, we check the dependence of B on the trust parameter φ:

∂B
∂φ

= − ακ∗
1σ4

θτy(τy − ατy + τz)
(1 + σ2

θ(τy + τz − ατyφ))2 < 0. (B15)

Corollary 3.3 (Incentives for Information Acquisition): Equation (A89) remains valid

under distrust:

∆E[U |z] = −Uc

2πaa

(
Var[E′

i[f(q̃)]|z] − Var[Ei[f(q̃)]|z]
)

> 0. (B16)

Thus, firms have a strict incentive to increase the precision of their private information.
The incentive for information acquisition is driven by the difference in the variance of conditional

expectations, which we denote by ∆V. In the presence of distrust, this term becomes a function
of both the improved precision, ξ, and the degree of trust, φ. We now analyze how this incentive,

∆V(ξ, φ), changes with the trust parameter φ. Recall that E′
i denotes the expectation after the firm

increases the precision of its private signal yi by a factor of ξ > 1, and Ei is the expectation with
the original precision.

First, we substitute Ãi = β̂0 + β̂y(φ(θ̃ − µθ) +
√

1 − φ2ϕ̃i) + β̂z(z − µθ) into the expression for f(q̃):

f(q̃) = UA(µθ, A0)
Uc

+ UθA

Uc
(θ̃ − µθ) + UAA

Uc
(Ã − A0) (B17)

= UA(µθ, A0)
Uc

+ UθA

Uc
(θ̃ − µθ)

+ UAA

Uc

(
β̂0 + β̂z(z − µθ) + β̂y(φ(θ̃ − µθ) +

√
1 − φ2ϕ̃i) − A0

)
. (B18)

Next, we compute the conditional expectations E′
i[f(q̃)|z] and Ei[f(q̃)|z]. Given that z is observed,

the only remaining random variables in (B18) are θ̃ and ϕ̃i. We have E[ϕ̃i|z] = 0. The conditional

expectation of θ̃ given z and yi (with precision τy) is given in equation (8):

E[θ̃|z, yi] = µθ + τy

σ−2
θ + τy + τz

(yi − µθ) + τz

σ−2
θ + τy + τz

(z − µθ). (B19)

When the precision of yi increases by a factor of ξ, we replace yi with y′
i and τy with ξτy. Thus:

E′[θ̃|z, y′
i] = µθ + ξτy

σ−2
θ + ξτy + τz

(yi − µθ) + τz

σ−2
θ + ξτy + τz

(z − µθ). (B20)

Substituting these into the expression (B18) for f(q̃), we are interested in the coefficients of yi

in the resulting expression, as the variance with respect to yi is what determines the difference
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∆V(ξ, φ) = Var[E′
i[f(q̃)]|z] − Var[Ei[f(q̃)]|z]. Let c′

i and ci be the coefficients of yi in E′
i[f(q̃)|z] and

Ei[f(q̃)|z], respectively. These coefficients are

c′
i = ξσ2

θτy(UθA + UAAβ̂yφ)
Uc(1 + σ2

θ(ξτy + τz))
and ci = σ2

θτy(UθA + UAAβ̂yφ)
Uc(1 + σ2

θ(τy + τz))
. (B21)

We also need the conditional variances of yi and y′
i given z. Using standard results for conditional

distributions of jointly normal variables:

Var[y′
i|z] = 1

ξτy
+ σ2

θ

1 + σ2
θτz

and Var[yi|z] = 1
τy

+ σ2
θ

1 + σ2
θτz

. (B22)

The difference in variances of the expectations is then:

∆V(ξ, φ) = (c′
i)2Var[y′

i|z] − c2
i Var[yi|z] (B23)

= (ξ − 1)τy(UθA + UAAβ̂yφ)2

U2
c (σ−2

θ + τy + τz)(σ−2
θ + ξτy + τz)

. (B24)

This expression is positive since ξ > 1. Substitute the solution for β̂y from equation (46):

βy = − UθAτy

Ucπaa(σ−2
θ + τy + τz) + UAAτyφ

, (B25)

simplifying, then taking the derivative of this expression with respect to φ leads to:

∂

∂φ
∆V(ξ, φ) = −

2UAAU2
θA(ξ − 1)π2

aaτ2
y (σ−2

θ + τy + τz)
(σ−2

θ + ξτy + τz)(Ucπaa(σ−2
θ + τy + τz) + UAAτyφ)3 . (B26)

Under the assumptions UθA < 0, πaa < 0, σθ > 0, τy > 0, τz > 0, Uc > 0, 0 < φ < 1, UAA < 0, and

ξ > 1, this derivative is negative. Therefore, the incentive for information acquisition increases as

trust (φ) decreases.

B.1 Proof of Proposition 7

We examine how distrust affects the results from Section 3.

Proposition 4 (Social Planner’s solution): Unchanged.

Corollary 4.1 (Pigouvian tax on emissions): Unchanged.

Corollary 4.2 (Cap-and-Trade implementation): Unchanged.
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Proposition 5 (Political viability of UBR): Unchanged.

C Alternative Model with Exponential Utility

This appendix outlines an alternative model specification based on exponential utility to illustrate
the robustness of the regulatory mechanism harnessing uncertainty and disagreement, similar in
spirit to the main analysis. The detailed derivations and analysis for this model specification can be
found in a previous version of this paper, available from the authors upon request.

Model Setup Consider a two-date economy (t = 0, 1) with a continuum of household-firm pairs

indexed by i ∈ [0, 1]. Households have CARA utility over consumption (c0i, c̃1i) and the aggregate

outcome (q̃):

max
ki

−e−ρcc0i − βEi

[
e−ρcc̃1i−ρq q̃

]
(C1)

subject to budget constraints c0i = w0 − ki and c̃1i = (1 + ri)ki + π̃i, where ri is the firm-specific

equilibrium cost of capital and π̃i is the firm’s profit. The aggregate outcome evolves as (derived

from an assumed GBM for the underlying state):

q̃ = µ0 + µ̃a − 1
2σ2 + ε̃, with ε̃ ∼ N (0, σ2). (C2)

The underlying trend µ̃a depends on the aggregate firm action Γ̃ ≡
∫ 1

0 γi di:

µ̃a ≡ µ̃ + (Γ̃ − Γ0). (C3)

The intrinsic trend µ̃ ∼ N (0, σ2
µ) is unknown. Similar to the main model, agents observe a private

signal yi = µ̃ + ε̃y,i and a public signal z = µ̃ + ε̃z, where ε̃y,i ∼ N (0, τ−1
y ) and ε̃z ∼ N (0, τ−1

z ). The

posterior precision and posterior mean are:

τ = σ−2
µ + τy + τz and Ei[µ̃ | yi, z] = τy

τ
yi + τz

τ
z. (C4)

Agents may distrust others’ signals (φ ∈ [0, 1]), believing yi
j = φµ̃ +

√
1 − φ2ϕ̃i + ε̃y,j . This

specification mirrors the distrust mechanism introduced in Section 4 (cf. eq. (43)).

Firms choose capital ki and an action γi. Their realized profits include a regulatory term:

π̃i = Akα
i − (1 + ri)ki − g

2(γi − Γ0)2 + ζ(Γ̃ − γi)q̃, with A, g, ζ > 0. (C5)
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The regulatory term ζ(Γ̃ − γi)q̃ is analogous to the UBR mechanism (eq. (19)), with ζ modulating

the regulatory intensity.
Firms maximize expected profits:

Ei[π̃i] = Akα
i − (1 + ri)ki − g

2(γi − Γ0)2 + ζEi[Γ̃q̃] − ζγiEi[q̃]. (C6)

Equilibrium Firm Action The firm’s choice of action γ∗
i is determined independently of

capital investment. Taking the first-order condition of (C6) with respect to γi yields:

γ∗
i − Γ0 = −ζ

g
Ei[q̃], (C7)

where the expected aggregate outcome is

Ei[q̃] = µ0 + Ei[µ̃] + (Ei[Γ̃] − Γ0) − σ2

2 . (C8)

We conjecture a linear solution for γ∗
i :

γ∗
i = θ0 + θµµ0 + θyyi + θzz. (C9)

Proposition C.1. Firm i’s optimal action γ∗
i and aggregate action Γ̃ =

∫ 1
0 γ∗

i di are:

γ∗
i = θ0 + θµµ0 + θyyi + θzz (C10)

Γ̃ = θ0 + θµµ0 + θyµ̃ + θzz, (C11)

where

θ0 = Γ0 + ζσ2

2(ζ + g) > 0, θµ = − ζ

ζ + g
< 0, (C12)

θy = − ζτy

φζτy + gτ
< 0, and θz = − ζgτz

(φζτy + gτ)(ζ + g) < 0, (C13)

and where, by the definition of private signals yi in equation (5), µ̃ =
∫ 1

0 yidi.

Proposition C.1 shows that, as in the main model (Proposition 3), the optimal individual action

strategy (γ∗
i ) is linear in private (yi) and public (z) signals. Aggregating these choices leads to an

aggregate action level (Γ̃) also depending linearly on the underlying trend (µ̃) and public signal

(z), mirroring the structure for Ã in the main text (eq. (34)). The coefficients governing these

relationships (θ’s vs β’s) reflect sensitivities to information and the impact of the regulatory design

in each framework.
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Information Sensitivity and Strategic Interactions The equilibrium aggregate action Γ̃

responds to the underlying trend µ̃. We define the information sensitivity δ as the magnitude of

this response (analogous to B := |βy + βz| used in the main model, eq. (36)):

δ := |θy + θz| = ζ[ζτy + g(τy + τz)]
(ζ + g)[φζτy + g(σ−2

µ + τy + τz)]
. (C14)

The sensitivity δ increases with greater prior uncertainty about the trend (σµ), higher precision

of private information (τy), stronger regulation (ζ), and greater distrust among agents (lower φ).

The effect of public information precision (τz) is positive, provided private information precision or

distrust are not excessively high (specifically, if τy < g/[ζσ2
µ(1 − φ)]). These findings parallel the

results in the main model (Corollary 3.2 and Proposition 6), where sensitivity B also increases with

prior uncertainty (σθ), information precision (τy, τz under conditions), and distrust.

Similar to the main model, firms’ actions in this specification are strategic substitutes. This leads
firms to overweight their private information relative to the public signal when making decisions
about their action, compared to a simple Bayesian benchmark:

θy

θz
= g + ζ

g

τy

τz
>

τy

τz
. (C15)

This mirrors the result in Corollary 3.1 of the main model, where the ratio βy/βz = (1 − α)(τy/τz)

also showed overweighting due to strategic substitutability (since α < 0). The factor (g + ζ)/g here

is analogous to (1 − α) in the main model.

In summary, this alternative CARA model yields equilibrium dynamics for the firm’s action,
information sensitivity, and strategic interactions structurally consistent with the findings from

the main paper’s linear-quadratic (LQ) approximation. This supports the paper’s central theme:

regulatory mechanisms can effectively harness uncertainty and disagreement.

Capital Investment, Welfare, and Information Acquisition Further analysis of this

alternative CARA model, particularly for equilibrium capital investment (k∗
i ), welfare comparisons,

and information acquisition incentives, generally requires numerical methods due to complex
expectations under exponential utility. This contrasts with the main paper’s LQ framework, which
often permits analytical solutions. Despite this difference in tractability, numerical investigation of
the CARA model confirms the robustness of the main paper’s core findings:

(a) Equilibrium Capital Investment: The equilibrium capital k∗
i is determined implicitly and

varies with agents’ private information yi. Numerical results suggest regulation (ζ > 0) tends to
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crowd out capital investment in favour of investment in the action, an effect not explicitly captured

in the main model’s framework which focuses solely on the cost of the action π(γi).

(b) Welfare Analysis: Numerical welfare comparisons with an information-constrained social

planner show the decentralized regulated outcome can yield higher welfare, especially with adverse

underlying trends (µ̃ < 0) or high distrust (φ = 0). There typically exists an optimal level of

regulatory stringency (ζ∗) maximizing welfare. This echoes the main model’s result where UBR

achieves team efficiency, dominating a planner restricted to public information (Lemma 5, Proposition

4).

(c) Political Economy: Numerical simulations suggest a majority of households may prefer this

uncertainty-driven regulation over the planner’s uniform policy, particularly under high distrust.
This aligns qualitatively with the analytical result of unanimous support for UBR in the main model

(Proposition 5), indicating the potential political viability of such mechanisms.

(d) Information Acquisition: The CARA model confirms that regulation provides incentives

for firms to acquire more precise private information. The gain in expected profit from increasing

precision from τy to τ ′
y = ξτy is:

Et<0[π̃′∗
i ] − Et<0[π̃∗

i ] = (ξ − 1)
gζ2τy(σ−2

µ + τy + τz)
2[g(σ−2

µ + τy + τz) + ζτyφ]2(σ−2
µ + τz + ξτy)

. (C16)

This gain is positive if ξ > 1 and ζ > 0, and it increases as trust decreases (lower φ). This directly

parallels the findings in the main model (Corollary 3.3 and Proposition 6), where UBR incentivizes

information acquisition, and this incentive is strengthened by distrust.

In conclusion, while the CARA model introduces complexities requiring numerical analysis for some
aspects, its core results regarding the strategic effects of uncertainty-driven regulation on firms’
actions, information aggregation, welfare, and information acquisition incentives align well with the
analytical findings of the main paper’s LQ framework. This supports the general validity of using
regulatory mechanisms to harness uncertainty and disagreement.
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