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Abstract

We identify desirable/undesirable inflation outcomes under subjective beliefs by comparing survey-

based and risk-adjusted distributions of inflation. Intuitively, investors dislike inflation at both

extremes, preferring a range in the middle. This “good inflation” region, which investors associate

with lower-than-average marginal utility, varies substantially over time in position and width, re-

vealing time-varying preferences across inflation ranges. Different ranges contribute to the inflation

risk premium with mixed signs, offsetting each other and often masking important insights into

the pricing of inflation risk. We rationalize these empirical patterns using a model where investors

learn and update beliefs about hidden deflationary and inflationary recession states.
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1 Introduction

Inflation risk has long been recognized as an important risk factor in the asset pricing literature,

especially for valuing nominal securities. Unexpected changes in inflation not only erode the

real value of nominal cash flows but also introduce an additional pricing channel – the so-

called inflation risk premium. This premium arises because investors expect future inflation

to be correlated with future growth and, hence, marginal utility. Depending on their outlook,

investors may perceive future inflation as a positive or negative outcome, leading to different

signs and magnitudes of the inflation risk premium. With the drastic shift to the post-pandemic

inflationary environment, understanding this premium and its implications is now at the center

of discussion.

Despite its importance, properly capturing inflation risk in an asset pricing framework is

challenging due to its dual nature. Both high inflation and excessively low inflation/deflation

are typically viewed as bad economic outcomes. Unlike other risk factors, where more exposure

is either unequivocally good (e.g., higher growth) or bad (e.g., higher uncertainty), inflation

risk requires a more nuanced approach. Models treating inflation risk as a monotonic factor,

either good or bad, inevitably miss the full picture. Even assuming that perceptions of inflation

risk alternate between good and bad over time may not be sufficient, if investors have different

preferences for various ranges of inflation outcomes at a given point in time.

To illustrate, consider a scenario where investors fear a deflationary recession, as in the Great

Depression of the 1930s, as well as an inflationary recession, like the stagflation of the 1970s.

Since investors dislike extreme future inflation outcomes and associate them with low growth,

both ends of the inflation spectrum are priced negatively. However, this also implies that as

we move toward the center of the spectrum, there should exist a moderate range of inflation

that investors prefer, seeing it as correlated with higher growth. In this middle range, inflation

risk is priced positively. This example highlights why accounting for investors’ preferences

across different inflation ranges is critical for understanding the inflation risk premium, which

reflects the sum of premiums generated over the entire range of inflation outcomes: (i) the high
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inflation range is disliked by investors and generates a positive premium; (ii) the moderate range

is favored by investors and generates a negative premium; (iii) the deflationary range generates

a negative premium, despite being disliked by investors, because the inflation outcomes in this

range themselves are negative. As such, the premiums across different inflation ranges often

offset one another. Even a small overall premium does not necessarily indicate that inflation

risk is weakly correlated with future growth or that investors assign a low price of risk. By

overlooking investors’ preferences for inflation ranges, we lose much of the underlying dynamics

behind the pricing of inflation risk.

In this paper, we extract investors’ preferences for different inflation ranges and examine

how they vary over time. To this end, we compare the distribution of future inflation under

two different probability measures: the survey-based distribution, reflecting survey respon-

dents’ subjective beliefs, and the risk-adjusted distribution, estimated from inflation caps and

floors. We then show that the ratio between the two distributions, also known as the Radon-

Nikodym derivative, has a direct connection with the pricing kernel (equivalently, marginal

utility). Specifically, if the risk-adjusted probability is higher than the survey-based probabil-

ity for a certain inflation realization, it implies that investors perceive it as a bad economic

outcome associated with higher-than-average future marginal utility. Conversely, if the risk-

adjusted probability is lower, investors regard it as a good economic outcome associated with

lower-than-average future marginal utility.

This approach implicitly assumes that the beliefs of survey respondents are meaningful and

align closely with those of marginal investors in the inflation derivatives market. While this

is a strong assumption, it is not an uncommon one; previous studies using survey forecasts

to gauge investors’ expectations make a similar assumption. In our analysis, we focus on the

density forecasts provided by two key surveys: the Survey of Professional Forecasters (SPF)

and the Survey of Primary Dealers (SPD). The SPF, conducted by the Federal Reserve Bank of

Philadelphia, targets professional forecasters, many of whom work in the financial sector. The

SPD surveys primary dealers, mostly large banks or securities companies, authorized to trade

with the Federal Reserve Bank of New York. We exclude household surveys to ensure that the
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forecasts we rely on better reflect those of market participants.

The density forecasts reported by the SPF and SPD represent the probabilities of the average

annualized inflation rate falling into various ranges. From the SPF, we obtain the distribution

of inflation, based on the GDP price index, for the next calendar year. The data frequency is

quarterly, and we take the time series from the fourth quarter of 2009 when our sample period

starts. From the SPD, we obtain the distribution of longer-term inflation, in terms of the CPI,

over a 5-year horizon. Since the survey is conducted right ahead of each FOMC meeting, we

have eight monthly observations per year, beginning in 2014.

These survey-based distributions of inflation can directly be compared with the risk-adjusted

ones, thanks to inflation caps and floors – essentially call and put options written on future

inflation rates. As demonstrated by Breeden and Litzenberger (1978), option prices at vari-

ous strikes allow us to extract the risk-adjusted probability density, calculated as the second

derivative of the option price with respect to the strike. In our sample period, which begins in

October 2009, inflation options are traded with various maturities over a wide range of strike

inflation rates, from -3% to 7%. This allows us to apply the nonparametric estimation ap-

proach of Aı̈t-Sahalia and Duarte (2003) to obtain the risk-adjusted distribution of inflation on

each trading day. By averaging the estimated distributions within each quarter or month, we

generate measures that align with the timing, frequency, and horizon of the SPF and SPD.

We find that the probability ratio (or the probability distortion) between the risk-adjusted

and subjected probability measures shows a clear U-shaped pattern. This confirms that in-

vestors indeed dislike both high and low inflation environments in the future while favoring

moderate inflation outcomes in between. During our sample period, the probability ratio goes

through significant time series variation, leading to different good and bad inflation regions

over time. For example, in the second quarter of 2018, the good inflation region for the next

calendar year was relatively narrow and tightly centered around the Fed’s 2% target. However,

in the second quarter of 2020, when deflation concerns emerged due to the pandemic, the good

inflation region expanded noticeably to the downside. By the second quarter of 2022, this

pattern was reversed: the good inflation region shifted upward, reflecting heightened fears of
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inflationary pressures. We document qualitatively similar but much less pronounced patterns

for the 5-year horizon, consistent with the view that long-term inflation expectations remain

well anchored, even in light of the disruptions in 2020 and 2022.

We emphasize that this pattern is not just driven by the level of inflation but also shaped

by the economic news inflation conveys. To demonstrate, let us revisit June 2022, when year-

on-year inflation exceeded 9%. At that time, investors perhaps recognized that a low inflation

outcome in the following year could materialize under two different scenarios with mixed eco-

nomic implications. On the one hand, it could indicate a soft landing scenario where we see

a smooth return to a low inflation environment without triggering a recession. On the other

hand, it could indicate a potential hard landing scenario marked by severe economic contrac-

tion. Given the highly persistent nature of inflation, the latter scenario carried more weight

when considering a sharp decline in inflation within a year. As a result, inflation ranges around

1%, and even 2% in some quarters, were perceived to be bad and fell outside the good region.

Interestingly, we find that the 2% inflation rate is always located within the good region for the

5-year horizon; in the long run, good economic outcomes (characterized by lower-than-expected

marginal utility) come with inflation leveling out to a moderate range around 2%, regardless of

whether near-term inflation is high or low.

Investors’ preferences toward inflation can be more effectively analyzed with the premiums

attached to different ranges of inflation. The inflation risk premium, as a whole, is defined as

the difference between the risk-adjusted and survey-based expected inflation rates. Equipped

with the conditional distributions of inflation under the two measures, we not only calculate

the inflation risk premium but also decompose it over different ranges, using the methodology

proposed by Beason and Schreindorfer (2022). Our results show that the inflation risk premium

and its components fluctuate significantly over time. Comparing 2018, 2020, and 2022 again, we

argue that focusing solely on the total inflation risk premium can overlook valuable insights, as

it often masks the underlying dynamics of investors’ preferences and expectations over different

inflation ranges. By breaking down the premium, we uncover which inflation ranges contribute

disproportionately to the overall premium and how these contributions shift over time, providing
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a deeper and more nuanced understanding of inflation risk.

Finally, we show that the empirical patterns we document can be rationalized using a model

with learning. We assume that investors have imperfect information about the true state of

the economy, which switches among three regimes: (i) normal/favorable regime with relatively

high consumption growth and moderate inflation; (ii) deflationary recession regime marked by

low growth and very low inflation, or even deflation; and (iii) inflationary recession regime

characterized by low growth paired with a sharp increase in inflation. Since the true state is

not directly observable, investors form their subjective beliefs based on historical consumption

and inflation realizations. We show that the fear of the two recessionary regimes leads to a U-

shaped pricing kernel, projected on future inflation. In line with empirical evidence, investors’

preferences across different inflation ranges fluctuate over time, as they learn and update their

beliefs.

Literature review

Our paper is built on prior studies that exploit inflation caps and floors to gauge market-

based inflation expectations. Kitsul and Wright (2013) estimate risk-adjusted inflation densities

from inflation options and examine their responses to macroeconomic announcements through

event-study regressions. Their work is closely related to ours in that they also document a

U-shaped pattern in the pricing kernel with respect to future inflation. The key distinction is

that they construct the pricing kernel based on physical inflation densities, which are obtained

from estimating econometric models using historical data. In contrast, we build the pricing

kernel based on survey-based inflation densities, directly aiming to study investors’ inflation

preferences under subjective beliefs. In our approach, the pricing kernel is estimated without

relying on past inflation time series: both risk-adjusted and survey-based distributions are

forward-looking, allowing us to estimate the conditional pricing kernel and characterize its

time series variation without imposing any econometric model. Equipped with this conditional

information, our focus is to identify the good and bad inflation ranges perceived by investors

and explore their implications for the inflation risk premium.
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In addition to Kitsul and Wright (2013), a few more studies highlight the usefulness of the

information embedded in inflation options in addressing macroeconomic questions. Flecken-

stein, Longstaff, and Lustig (2017) document that deflation risk is significantly priced with a

high market price of risk, revealing that the inflation option market places substantial weight

on deflationary scenarios. Using inflation options, Mertens and Williams (2021) tackle the issue

of multiple equilibria in a New Keynesian model with the zero lower bound by finding empirical

support for the target equilibrium where the central bank largely succeeds in stabilizing the

economy. Hilscher, Raviv, and Reis (2022) develop a copula estimator for the option-implied

joint distribution of future inflation rates and study how much public nominal debt might be

inflated away. In ongoing work, Hilscher, Raviv, and Reis (2024) extract physical probabilities

of inflation disasters from inflation option prices, adjusting for the effect of inflation on inflation

option payoffs, horizons, and risk premiums.

Our paper also relates to the literature on survey expectations of inflation. Various surveys

have been extensively studied in both research and policy analysis.1 These surveys have demon-

strated significant value in forecasting future inflation (Ang, Bekaert, and Wei, 2007). While

the point forecasts of expected inflation have received considerable attention so far, relatively

little focus has been placed on the density forecasts provided by some of the surveys. A few

studies utilize these distribution surveys, but their primary emphasis is rather on their adequacy

(Diebold, Tay, and Wallis, 1997) or their potential to provide extra information about the level

and uncertainty of inflation (Rich and Tracy, 2010; Kenny, Kostka, and Masera, 2014; Clements,

2018). Unlike prior work, we explore an understudied aspect of distributional forecasts: the

insights they offer into individuals’ preferences over different inflation outcomes, particularly

when combined with data from inflation derivatives.

Recently, there has been growing interest in understanding the subjective beliefs of various

economic agents, particularly with regard to the role of information rigidity in belief formation.

Mankiw and Reis (2002) propose a model where agents update their beliefs infrequently due

1These include, but are not limited to, the Livingston Survey, the Survey of Professional Forecasters, the
University of Michigan Surveys of Consumers, and the New York Fed Survey of Consumer Expectations.
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to the costs of acquiring information. Analyzing survey data from consumers, firms, central

bankers, and professional forecasters, Coibion and Gorodnichenko (2012) show that the pat-

terns of forecast errors indicate the presence of information rigidity. Follow-up work by Coibion

and Gorodnichenko (2015) further demonstrate that forecast errors can be predicted by fore-

cast revisions and quantify the degree of information rigidity. Intriguingly, Bordalo, Gennaioli,

Ma, and Shleifer (2020) uncover overreaction rather than underreaction when the methodology

of Coibion and Gorodnichenko (2015) is applied to individual forecasts. They reconcile this

overreaction with the underreaction observed in consensus forecasts through a diagnostic ex-

pectations model.2 In line with these empirical and theoretical findings, we allow our model to

depart from the Bayesian benchmark by incorporating information rigidity, which we calibrate

to match the empirical relation between forecast errors and forecast revisions.

Lastly, our paper contributes to the asset pricing literature on investors’ learning about

inflation risk. David and Veronesi (2013) rationalize the time-varying comovement and volatility

of stock and Treasury bond prices based on investors’ learning about unobservable economic

regimes governing consumption, earnings, and inflation. Their model shows that inflation

news can signal either positive or negative future growth, depending on the prevailing regime,

altering the signs of stock-bond correlations. Bianchi, Lettau, and Ludvigson (2022) discuss

how monetary policy shocks can have long-lasting effects on real variables within a learning

model. In their framework, learning about the duration of monetary policy regimes, coupled

with the fading memory of past regimes, leads to persistent changes in asset valuations and

real interest rates. Andrei and Hasler (2023) examine how investors’ learning about the Fed’s

ability to manage inflation directly affects equity market dynamics; when the Fed’s credibility

wanes, investors begin to view inflation as more persistent, increasing both the risk premium

and volatility in the stock market.

2Attempts to measure the degree of information rigidity and to understand its role in belief formation
have been made across various contexts. These include, but are not limited to, studies on firm expectations
(Coibion, Gorodnichenko, and Kumar, 2018; Coibion, Gorodnichenko, and Ropele, 2020), equity market ex-
pectations (Bordalo, Gennaioli, and Shleifer, 2018; Bordalo, Gennaioli, Porta, and Shleifer, 2019; Bouchaud,
Krueger, Landier, and Thesmar, 2019), the influence of Fed communications on household beliefs (Coibion,
Gorodnichenko, and Weber, 2022), and the role of data-generating processes and forecasters’ information sets
in large-scale randomized experiments (Afrouzi, Kwon, Landier, Ma, and Thesmar, 2023).
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The rest of the paper is organized as follows. Section 2 reviews the survey-based distribution

of inflation and its use in our study. Section 3 introduces inflation options and explains how

the risk-adjusted distribution of inflation can be estimated. Section 4 analyzes what these

distributions jointly reveal about investors’ preferences for inflation ranges. Section 5 presents

an economic model with learning that can explain the data. Section 6 concludes.

2 Survey-based distribution of inflation

This section provides an overview of survey-based density forecasts of price indices and explains

how we leverage them in our study.

2.1 Survey of Professional Forecasters

The Survey of Professional Forecasters (SPF) is a quarterly survey of experts affiliated with

financial and non-financial institutions, covering a wide range of macroeconomic and financial

variables. The survey began in the first quarter of 1968 and was initially conducted by the

American Statistical Association and the National Bureau of Economic Research. Since 1990,

the Federal Reserve Bank of Philadelphia has administered the survey. Each quarter, the SPF

sends survey questionnaires to participants after the release of the Bureau of Economic Anal-

ysis (BEA)’s advance report on the national income and product accounts, ensuring that the

panelists’ information sets include the latest data. Beginning with the 2005 survey, participants

have been required to submit their projections by the second week of the middle month of each

quarter. The results are then released to the public before the BEA’s second report on the

national income and product accounts.

In our analysis, we rely on a special section of the SPF called “Mean Probability Forecasts,”

which provides probability forecasts for various price indices, both at the individual respondent

level and averaged across respondents. One of the longest-standing forecasts in the survey is

the PRPGDP (Probability of Changes in GDP Price Index). This variable reports the average

probabilities that individual panelists assign to the annual-average over annual-average percent

8



change in the chain-weighted GDP price index falling into various ranges. The term “annual-

average over annual-average change” refers to the percent change in the average level of GDP

prices from one year to the next, with the annual average being calculated as the mean of the

quarterly levels across all four quarters of a calendar year. The underlying index for PRPGDP

has changed over time. Before the adoption of the chain-weighted GDP price index, from 1992

to 1995, the survey asked respondents about changes in the implicit deflator for GDP with fixed

weights. Prior to 1992, the implicit deflator for GNP with fixed weights was used.

The probability ranges for PRPGDP have undergone several modifications since the survey’s

inception. Focusing on the subsample relevant to our study, which begins in the last quarter

of 2009, there was only one change.3 From 1992 to 2013, respondents assigned probabilities to

ten buckets of outcomes: below 0%, from 0% to 8% in 1% increments, and above 8%. Starting

in the first quarter of 2014, the upper limit was reduced to 4%, but the buckets were refined to

narrower intervals: below 0%, from 0% to 4% in 0.5% increments, and above 4%. All inflation

buckets are right-open intervals. It is important to note that the probability estimates pertain to

“fixed-event forecasts.” In each quarterly survey of a given calendar year, respondents provide

their probability estimates for changes in the current calendar year (i.e., the year in which the

survey is conducted) and the following calendar year. This means that the forecast horizon

varies across different quarters of the year. For example, the survey conducted in the fourth

quarter of each calendar year includes a nowcast for the current year and a forecast for the

next year. In our analysis, we focus on the survey responses for the subsequent calendar year

to ensure that the reported probabilities represent valid forecasts.

Table 1 presents the time series mean, standard deviation, and the 5th, 50th, and 95th

percentiles of the PRPGDP forecasts.4 Panel A shows the descriptive statistics for the period

3Our sample period of interest begins in October 2009 due to the availability of inflation option data.
4Following Bansal and Shaliastovich (2010), we exclude a small number of outlier responses from the SPF

survey data to ensure the reliability of our analysis. Outliers are identified based on each respondent’s probability
assessments of the tails – specifically, the probability assigned to inflation being below 1% or above 3% in each
survey month. We compute the first quartile (Q1) and the third quartile (Q3) of these tail probabilities across
all respondents and apply a standard interquartile range (IQR) rule: responses are flagged as outliers if their
tail probabilities fall below Q1� 1.5� IQR or above Q3� 1.5� IQR. Any respondent exceeding these bounds
is excluded from that month’s analysis. Our main findings remain robust when these outliers are retained or
identified using alternative criteria.
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Panel A: PRPGDP with narrower buckets (2014Q1 - 2024Q2)

p�8, 0q r0, 0.5q r0.5, 1q r1, 1.5q r1.5, 2q r2, 2.5q r2.5, 3q r3, 3.5q r3.5, 4q r4,8q

Mean 0.21 0.84 3.34 11.06 26.74 29.19 14.66 6.59 4.05 3.33
SD 0.30 1.19 3.39 8.04 13.22 10.45 8.04 7.84 8.08 8.42
5th 0.00 0.00 0.00 0.17 2.74 6.45 4.48 0.16 0.00 0.00
50th 0.09 0.44 2.73 9.79 29.45 30.24 13.74 2.75 0.40 0.10
95th 0.72 2.37 9.75 25.26 43.21 42.56 28.23 21.51 25.07 23.17

Panel B: PRPGDP with wider buckets (2009Q4 - 2024Q2)

p�8, 0q r0, 1q r1, 2q r2, 3q r3, 4q r4,8q

Mean 0.67 6.37 39.48 40.78 9.83 2.88
SD 0.95 5.89 17.39 14.06 12.96 7.13
5th 0.00 0.00 4.69 22.19 0.28 0.00
50th 0.17 5.01 42.39 38.85 5.06 0.35
95th 2.53 18.82 63.06 63.68 43.49 19.60

Table 1: Descriptive statistics for PRPGDP. This table presents the mean, standard deviation, and the
5th, 50th, and 95th percentiles of PRPGDP (Probability of Changes in GDP Price Index) forecasts from the
Survey of Professional Forecasters. We focus on the survey responses for the next calendar year. Panel A covers
2014Q1 to 2024Q2 with narrower probability buckets: p�8, 0q, r0, 0.5q, r0.5, 1q, r1, 1.5q, r1.5, 2q, r2, 2.5q, r2.5, 3q,
r3, 3.5q, r3.5, 4q, and r4,8q. Panel B provides the same statistics for 2009Q4 to 2024Q2 with wider buckets:
p�8, 0q, r0, 1q, r1, 2q, r2, 3q, r3, 4q, and r4,8q. All values are in percentages.

beginning in 2014, during which the survey used narrower buckets with finer intervals. During

this period, inflation was predominantly expected to hover around the Fed’s 2% target, with the

average probabilities concentrated in the r1.5%, 2%q and r2%, 2.5%q buckets. The tail portions
of the distribution show much smaller probabilities. The average probability of the lowest

bucket (below 0%) is 0.21%, reflecting the consensus that deflation was considered an unlikely

outcome. Similarly, the highest bucket (above 4%) retains a modest average probability of

3.33%. However, the standard deviations of these bucket probabilities are quite sizable relative

to their means. Related, we observe substantial differences between the 5th and 95th percentiles,

particularly in the high inflation regions. The probability of over 4% inflation is 23.17% at the

95th percentile, indicating that forecasters did occasionally assign significant probabilities to

these extreme outcomes.

Panel B extends the data to cover the entire sample period of our interest, from the last

quarter of 2009 to the second quarter of 2024. The descriptive statistics shown in this panel are

based on the wider buckets that were in use before 2014. To achieve this, we aggregate the finer

intervals from 2014 onward into broader 1% increments that correspond to the earlier survey
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structure. For instance, the probabilities for the r1%, 2%q bucket in Panel B were computed

by summing the probabilities assigned to the r1%, 1.5%q and r1.5%, 2%q intervals in the case

of the post-2014 data. The results remain similar in the extended sample. Forecasters largely

anticipated that inflation would fall within the r1%, 3%q range, assigning it a total probability

of more than 80% on average. Compared to Panel A, we notice that the distribution in Panel B

is slightly shifted to the left, putting higher probabilities on lower inflation outcomes. This is

because the full sample period in Panel B includes the low-inflation period following the global

financial crisis, unlike the one in Panel A.

2010 2012 2014 2016 2018 2020 2022 2024

0

20

40

60

80

100

Figure 1: Time series of PRPGDP. This figure illustrates the time series of PRPGDP (Probability of
Changes in GDP Price Index) forecasts from the Survey of Professional Forecasters, with each color representing
one of the six probability ranges: p�8, 0q, r0, 1q, r1, 2q, r2, 3q, r3, 4q, and r4,8q. The sample period is from
2009Q4 to 2024Q2. All values are in percentages.

Figure 1 visualizes the variation in the forecasts for PRPGDP over time, with each color

representing one of the six probability buckets in Panel B of Table 1. The figure highlights sig-

nificant shifts in inflation expectations across different periods. We first notice a non-negligible

probability of deflation following the financial crisis around 2008-2009 and again during the

COVID-19 crisis in 2020. During these periods, the probabilities of the GDP price index falling

into lower buckets (below 0% or 1%) were significantly elevated, reflecting concerns about de-

flationary recessions. In contrast, the inflationary environment emerged from mid-2021 to 2023,

with a substantial increase in the probabilities for higher inflation ranges. Accordingly, forecast-

ers assigned a greater likelihood to inflation rates in the r2%, 3%q, r3%, 4%q, and r4%,8q buck-
ets, signaling much higher expected inflation. Overall, the figure encapsulates the significant
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time series variation in inflation expectations, in response to major economic events/conditions.

(A) 2018Q2

(-
,0

)

[0
,0

.5
)

[0
.5

,1
)

[1
,1

.5
)

[1
.5

,2
)

[2
,2

.5
)

[2
.5

,3
)

[3
,3

.5
)

[3
.5

,4
)

[4
,

)
0

10

20

30

40

(B) 2020Q2

(-
,0

)

[0
,0

.5
)

[0
.5

,1
)

[1
,1

.5
)

[1
.5

,2
)

[2
,2

.5
)

[2
.5

,3
)

[3
,3

.5
)

[3
.5

,4
)

[4
,

)
0

10

20

30

40

(C) 2022Q2

(-
,0

)

[0
,0

.5
)

[0
.5

,1
)

[1
,1

.5
)

[1
.5

,2
)

[2
,2

.5
)

[2
.5

,3
)

[3
,3

.5
)

[3
.5

,4
)

[4
,

)
0

10

20

30

40

Figure 2: PRPGDP densities. This figure presents the survey results for PRPGDP (Probability of Changes
in GDP Price Index) forecasts from the Survey of Professional Forecasters for three different quarters: the
second quarter of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C). The x-axis represents the average annual
inflation rate buckets: p�8, 0q, r0, 0.5q, r0.5, 1q, r1, 1.5q, r1.5, 2q, r2, 2.5q, r2.5, 3q, r3, 3.5q, r3.5, 4q, and r4,8q.
All values are in percentages.

To highlight the distinct patterns in inflation expectations over time, Figure 2 juxtaposes

the distributions of PRPGDP for three different quarters: the second quarter of 2018 (Panel A),

2020 (Panel B), and 2022 (Panel C). Inflation expectations were centered around the r2%, 2.5%q
bucket in 2008, close to the Fed’s target. However, the distribution became more dispersed and

substantially shifted to the left two years later, due to fears of deflationary contractions at

the peak of the COVID-19 crisis. The pattern saw a dramatic shift to the right in 2022, with

significant probabilities in the r3%, 4%q and above 4% ranges, as forecasters were expecting

much higher inflation coming their way.

While our main variable is PRPGDP, the SPF also reports panelists’ average probabilities

for other price indices. For instance, the PRCCPI (Probability of Core CPI Inflation) and the

PRCPCE (Probability of Core PCE Inflation) represent the probabilities of fourth-quarter over

fourth-quarter changes in the core CPI and the core PCE falling into the same ten post-2014

buckets as PRPGDP. The fourth-quarter level of each index is defined as the average of the

monthly levels over the three months of the fourth quarter. We provide descriptive statistics

for PRCCPI and PRCPCE in the Internet Appendix. The distributional forecasts for these

indices show patterns similar to those of PRPGDP in general. Yet, they exhibit lower time

series volatility, resulting in tighter distributions. This is expected, as these price measures
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exclude food and energy prices, which tend to be more volatile over time.

2.2 Survey of Primary Dealers

Beginning in 2011, the New York Fed’s Open Market Trading Desk has conducted the Survey

of Primary Dealers (SPD) ahead of each FOMC meeting. This survey targets primary dealers

to gather their expectations on key variables such as the federal funds rate, the future size of

the Federal Reserve’s balance sheet, and inflation. The survey results are among the inputs

used by Federal Reserve staff to evaluate market expectations regarding the economic outlook,

monetary policy, and financial markets. Survey questions are published on the Federal Reserve

Bank of New York’s website approximately two weeks before each FOMC meeting. Summaries

of the survey results are released around three weeks after each FOMC meeting, following the

publication of the meeting minutes. Unlike the SPF, which provides individual-level responses,

the SPD only reports average responses aggregated across all respondents.

p�8, 1q p1, 1.5s p1.5, 2s p2, 2.5s p2.5, 3s p3,8q

Mean 3.63 9.87 24.83 33.55 18.13 10.17
SD 1.06 3.72 7.88 5.39 6.86 9.07
5th 2.30 4.30 12.00 23.00 11.30 3.00
50th 3.00 11.00 28.50 35.00 14.00 5.00
95th 6.00 15.70 33.70 40.70 29.70 29.70

Table 2: Descriptive statistics for SPD inflation density forecasts. This table presents the mean,
standard deviation, and the 5th, 50th, and 95th percentiles of the Survey of Primary Dealers inflation density
forecasts. The survey is conducted ahead of eight regularly scheduled FOMC meetings every year and provides
the likelihood that the average annualized CPI inflation rate over the next five years will fall into various ranges:
p�8, 1s, r1, 1.5q, r1.5, 2q, r2, 2.5q, r2.5, 3q, and r3,8q. The sample period is from December 2014 to June 2024.
All values are in percentages.

We use this survey to better understand longer-term inflation expectations – namely over

the 5-year horizon. We focus on a specific survey question that asks respondents to assign

probabilities to the likelihood that the average annualized CPI inflation rate over the next five

years will fall into various ranges. Since its introduction in December 2014, this question has

been consistently included in the survey, with the exception of April 2020. Initially, respondents

assigned probabilities to six ranges: below 1%, from 1% to 3% in 0.5% increments, and above
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3%. Since June 2022, two additional 0.5% ranges have been added at both ends of the spectrum.

The inflation buckets for the SPD are left-open intervals.

Table 2 presents the descriptive statistics across the six ranges included in the survey since

December 2014. Respondents consistently expected the 5-year average inflation to remain very

close to the Fed’s 2% target, with the total average probability of 58% for the p1.5%, 2%s and
p2%, 2.5%s ranges. Compared to the 1-year horizon forecasts reported in Panel A of Table 1, the

standard deviations of these central buckets are lower, consistent with the notion that long-term

inflation expectations are anchored.
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Figure 3: Time series of SPD inflation density forecasts. This figure illustrates the time series of the
5-year density forecasts for the Survey of Primary Dealers, with each color representing one of the six probability
ranges: p�8, 1s, r1, 1.5q, r1.5, 2q, r2, 2.5q, r2.5, 3q, and r3,8q. The sample period is from December 2014 to June
2024. All values are in percentages.

Figure 3 depicts the changes in the SPD inflation density forecasts over time, with each color

corresponding to one of the six probability ranges shown in Table 2. To facilitate comparison

with Figure 1, the original time series is converted to a quarterly frequency. Note that there are

typically eight pre-scheduled FOMC meetings per year, two per quarter. Each bar represents

the average survey results within the quarter. The probability of being in the p1.5%, 2%s range
or below has steadily decreased since the COVID-19 pandemic, while the probability of being

in the p2.5%, 3%s range or above has steadily increased. This trend is also evident in Figure 4,

which presents survey responses collected before the FOMC meeting in June of 2018 (Panel A),

2020 (Panel B), and 2022 (Panel C). From 2018 to 2020, inflation expectations transitioned

from a stable outlook centered around 2% to a more dispersed distribution tilted toward the
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lower range. By 2022, the outlook was reversed, with a substantial shift to the right: the largest

probability mass was allocated to over 3% average inflation, as inflation continued to rise.

(A) June 2018
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Figure 4: SPD inflation densities. This figure presents the distribution of 5-year inflation expectations from
the Survey of Primary Dealers collected before the fourth FOMC meeting for three different years: June 2018
(Panel A), June 2020 (Panel B), and June 2022 (Panel C). The x-axis represents the average annual inflation
rate buckets: p�8, 1s, r1, 1.5q, r1.5, 2q, r2, 2.5q, r2.5, 3q, and r3,8q. All values are in percentages.

Still, what stands out in Figure 3 is that the probability for the p2%, 2.5%s bucket has

remained similar since 2020, even during the high inflation episode in 2022; the lengths of the

purple bars show relatively small variation in the figure. Overall, the bucket probabilities are

much more stable over time compared to Figure 1, suggesting that survey respondents expect

inflation to level out in the long run.

3 Risk-adjusted distribution of inflation

As discussed in the previous section, the survey-based distributions reflect survey respondents’

beliefs about the future evolution of inflation. In this sense, such distributions can be viewed

as the ones under the respondents’ subjective probability measure. This section now examines

the distribution of inflation under a risk-adjusted probability measure, which can be estimated

nonparametrically from the prices of inflation options.
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3.1 Inflation caps and floors

Inflation caps and floors are financial derivatives that are used to hedge or speculate on inflation.

These instruments are essentially options written on future inflation rates. The most commonly

traded are zero-coupon and year-on-year contracts. While both types of contracts critically

depend on future realized inflation, they differ in their payoff structure and the way they are

exercised.

As the name suggests, a zero-coupon inflation option is a single-payment instrument that

can be exercised only once at the contract’s maturity. A zero-coupon inflation cap (floor),

with a strike rate of k maturing in T years, is a call (put) option whose payoff depends on

the difference between realized cumulative inflation over the option’s lifetime and the annually

compounded strike price p1� kqT . Formally, the cap and floor payoffs can be expressed as:

cpayZC

t�T �
�
ΠtÑt�T � p1� kqT

��
and fpayZC

t�T �
�
p1� kqT � ΠtÑt�T

��
, (1)

where ΠtÑt�T � pCPIt�T {CPItq represents the gross inflation rate between time t and time t�T .
Here, CPIt and CPIt�T represent the price levels, in terms of CPI, at inception and maturity,

respectively. In simpler terms, if the average annualized inflation rate over the next T years,

given by T
?
ΠtÑt�T � 1, exceeds the strike inflation rate k, the cap is exercised. Conversely, if

the average annualized inflation rate is below the strike rate k, the floor is exercised.

On the other hand, a year-on-year inflation option, with the same strike and maturity,

consists of T yearly caplets (floorlets) maturing consecutively every year. Each caplet/floorlet

j P t1, 2, � � � , T u can be seen as a 1-year zero-coupon inflation option starting at time t� j � 1

and expiring at t � j. Hence, at the end of each year t � j, the contract pays the difference

between year-on-year gross inflation realized over the year Πt�j�1Ñt�j � pCPIt�j{CPIt�j�1) and

the strike value p1� kq, if exercised. This leads to the following T yearly payoffs, each of which

is expressed by

cpayYoY

t�j �
�
Πt�j�1Ñt�j � p1� kq

��
and fpayYoY

t�j �
�
p1� kq � Πt�j�1Ñt�j

��
, (2)
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where j � 1, 2, � � � , T . For a 1-year maturity (T � 1), there is only one period and one payoff

to consider. Thus, year-on-year options are identical to zero-coupon options for this maturity,

and the two terms can be used interchangeably.

Comparing equations (1) and (2) makes clear the difference between zero-coupon and year-

on-year inflation options. Let πt�j � log Πt�j�1Ñt�j denote the log inflation rate. In the case

of a zero-coupon contract, the exercise decision is based on cumulative inflation ΠtÑt�T �
exp

�°T
j�1 πt�j

	
. In the case of a year-on-year contract, however, the exercise decision is made

for each Πt�j�1Ñt�j � exp pπt�jq separately every year t�j. Put differently, the former contract

can be seen as an option on a portfolio of future log inflation rates (i.e.,
°T
j�1 πt�j), whereas

the latter contract can be seen as a portfolio of options on future log inflation rates (πt�j

individually).5

3.2 Option-implied density

The seminal work by Breeden and Litzenberger (1978) demonstrates that by analyzing Euro-

pean options with different strike prices, one can infer the risk-neutral distribution of future

asset prices. Specifically, the risk-neutral probability density is derived as the second derivative

of the option price with respect to the strike price. Applying a similar method, we extract the

distribution of inflation implied by caps and floors.

First, consider a zero-coupon inflation cap with strike rate k and time to maturity T .6 For

notational convenience, let K � p1 � kqT denote the strike value. The pricing relation implies

that the cap price CZC(T )

t can be expressed as

CZC(T )

t � D(T )

t EQt�T

t

�
cpayZC

t�T

�
� D(T )

t

» 8

K

px�Kq q̃t,tÑt�T pxqdx, (3)

5Exploiting this relation, Hilscher, Raviv, and Reis (2022) estimate the joint distribution of πt�j by intro-
ducing a copula function.

6While we illustrate the method using a cap (i.e., call), the second derivative of a floor (i.e., put) leads to
the same mathematical expression. In our empirical implementation in Section 3.3, we follow the literature and
work with cap prices. We still make use of floor prices by converting them into equivalent cap prices based on
put-call parity.
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where D(T )

t denotes the time-t price of a T -year risk-free nominal zero-coupon bond and q̃t,tÑt�T

represents the time-t probability density of ΠtÑt�T . Unlike Breeden and Litzenberger (1978),

the pricing measure we choose is not the risk-neutral measure Q�, which takes the bank account

as the numéraire: CZC(T )

t � EQ�
t

�
e�

³t�T
t rsds � cpayZC

t�T

�
. As shown in equation (3), Qt�T is the

forward measure where the price of a zero-coupon bond maturing at time t � T is used as

the numéraire (see also Kitsul and Wright, 2013). The distinction between the two martingale

measures carries different importance depending on the context. For instance, when future

interest rates trs|t ¤ s ¤ t� T u are constant or deterministic, e�
³t�T
t rsds simply collapses to the

zero-coupon bond price D(T )

t and can be pulled out of the expectation. More generally, these

two measures become identical if future interest rates and the underlying asset determining the

option payoff are independent. This is why, for practical purposes, the distinction between the

two is often overlooked for short-maturity equity options. In our context, however, it is difficult

to assume such independence, as future interest rates and the option payoff are both affected

by the future inflation path over a long horizon.7

The integral expression in equation (3) reveals that the zero-coupon cap price can be seen

as a function of the strike price: CZC(T )

t � CZC(T )

t pKq. By the second fundamental theorem of

calculus, twice differentiating the equation with respect to K leads to the following relation:

B2CZC(T )

t pKq
BK2

� D(T )

t q̃t,tÑt�T pKq,

which implies that the risk-adjusted probability density of the cumulative inflation rate ΠtÑt�T

can be obtained as the second derivative of the option price, scaled by the zero-coupon bond

price. Note that the surveys discussed in Section 2 provide the distribution of future inflation

in terms of the average annualized inflation rate T
?
ΠtÑt�T � 1, not the cumulative one. For a

direct comparison, we define qt,tÑt�T to be the density of the average annualized inflation rate

7For a similar reason, the forward measure is frequently employed as a risk-adjusted probability measure for
interest rate derivatives. See, for example, Li and Zhao (2009).
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and derive it from q̃t,tÑt�T as follows:

qt,tÑt�T pxq � q̃t,tÑt�T

�
p1� xqT

	
� T p1� xqT�1,

where the term T p1 � xqT�1 comes from the Jacobian determinant of the mapping from

T
?
ΠtÑt�T � 1 to ΠtÑt�T .

While we obtain qt,tÑt�T from zero-coupon contracts, year-on-year contracts allow us to

extract qt,t�j�1Ñt�j, the density of inflation over a yearly period starting j�1 years and ending

j years from today. Recall that each caplet constituting the year-on-year cap can be seen as a

forward-starting 1-year zero-coupon cap. The price of caplet j, say Cj,t, should equal the price

difference between the two year-on-year caps with adjacent maturities, one with j years and

the other with j � 1 years:

Cj,t � CYoY(j)

t � CYoY(j � 1)

t ,

because buying the former and selling the latter exactly replicates the caplet. By applying the

same method to the caplet price, we can show that

B2Cj,tpKq
BK2

� D(j)

t q̃t,t�j�1Ñt�jpKq,

where q̃t,t�j�1Ñt�j is the risk-adjusted probability density of future 1-year gross inflation Πt�j�1Ñt�j

between year t� j � 1 and year t� j. The density of net inflation Πt�j�1Ñt�j � 1 is then given

by qt,t�j�1Ñt�jpxq � q̃t,t�j�1Ñt�jp1� xq.

3.3 Estimation

We download the historical prices of zero-coupon and year-on-year inflation options from

Bloomberg. The pricing data, collected at the daily frequency, span approximately 15 years

from October 5, 2009 to August 30, 2024. Bloomberg offers various data sources/contributors.

For the majority of our sample period (nearly 12 years starting in January 2013), we rely on
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“BVOL,” which provides option prices derived from smooth, arbitrage-free volatility surfaces

constructed by Bloomberg. For the period prior to 2013 – when BVOL data are unavailable

– we use the “CMP,” Bloomberg’s composite prices aggregated from multiple sources. There

are three versions of CMP, corresponding to different time zones: CMPN (New York), CMPL

(London), and CMPT (Tokyo). We use CMPN, although the prices are very similar across the

three.8 All prices are quoted in cents per $100 of notional value.

Inflation options are typically traded for a wide range of fixed maturities ranging from

1 to 30 years. Among them, we select contracts with the following three maturities: (i) 1-

year zero-coupon options, (ii) forward-starting 1-year options maturing in two years (i.e., 2-

year caplets/floorlets, which are replicated by buying 2-year and selling 1-year year-on-year

contracts), and (iii) 5-year zero-coupon options. As described below, these contracts are chosen

so as to construct the risk-adjusted distributions that are directly comparable to the survey-

based distributions introduced in Section 2.

The strike rates observed in the data range from -3% to 7%, with a central value of 2%. At

the lower and higher ends, the strike rates are spaced in 1% increments, specifically from -3%

to -1% and from 5% to 7%. The middle range, between -1% and 5%, uses finer increments of

0.5%. Not surprisingly, not all of these strikes are actively traded. Options with the two most

extreme strikes (-3% and 7%) are rarely observed, and their prices are virtually nonexistent.

Additionally, prices for extremely deep-in-the-money options are generally unavailable for both

caps and floors. Consequently, caps are typically observed with higher strike rates and floors

with lower strike rates. For instance, BVOL consistently provides prices for 10 floors with

strikes ranging from -2% to 3% and 10 caps with strikes ranging from 1% to 6%. The number

of options available per day is similar but slightly higher for CMPN, with an average of around

26 (median of about 23) until 2013. Based on put-call parity, we convert floor prices into

equivalent cap prices so we acquire the prices of caps for all available strikes, not just in the

8Unlike BVOL prices, Bloomberg composite prices occasionally become stale and remain unchanged for
extended periods. To exclude these stale prices from our analysis, we drop observations if the price has not
been updated over the past five trading days.
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out-of-the-money or near-the-money region, but also in the in-the-money region.9

Equipped with a rich cross-section across the strike dimension, we estimate the implied

density of inflation using the methodology developed by Aı̈t-Sahalia and Duarte (2003). This

process involves two main steps. First, we apply the algorithm of Dykstra (1983) to the observed

prices, retaining arbitrage-free prices that satisfy the shape restrictions related to the slope

and convexity of the option price curve. This filtering ensures, in particular, that butterfly

spread strategies, whose payoffs mimic state prices, do not yield negative values. Second, we

estimate the second derivative of the option price with respect to the strike price using locally

polynomial kernel smoothing. Specifically, we employ the locally linear estimator (order of 1),

which, according to Aı̈t-Sahalia and Duarte (2003), produces a better fit than the traditional

Nadaraya-Watson kernel estimator (order of 0).

To illustrate, Figure 5 presents the estimation results for three dates: June 13, 2018

(Panel A), June 10, 2020 (Panel B), and June 15, 2022 (Panel C), all of which were the fourth

scheduled FOMC announcement days that year. For each date, we extract the risk-adjusted

distribution of 1-year inflation qt,tÑt�1 from CZC(1)

t (blue dashed line, left graph) and that of

1-year forward-starting 1-year inflation qt,t�1Ñt�2 from C2,t � CYoY(2)

t � CYoY(1)

t (yellow dotted

line, left graph). To directly compare with the survey-based distribution from the SPF, we need

the risk-adjusted distribution of inflation over the next calendar year, denoted by qncyt (black

solid line, left graph). Intuitively, qncyt should lie somewhere between qt,tÑt�1 and qt,t�1Ñt�2,

considering that

qncyt �

$'&
'%

qt,t�1Ñt�2 if t is the beginning of the current calendar year,

qt,tÑt�1 if t is the end of the current calendar year.

For an arbitrary t, we approximate qncyt by the weighted average of qt,tÑt�1 and qt,t�1Ñt�2, with

weights depending on the number of days included in each yearly period. Lastly, we calculate

9In the Internet Appendix, we compare inflation swap rates observed in the market with those implied by
inflation option prices. The option-implied rates are derived from the strike at which the put and call price
curves intersect; put-call parity implies that the inflation swap rate corresponds to the strike where the two prices
are equal. We find that the option-implied rates closely match the market rates, demonstrating consistency in
both levels and time series variation.
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Figure 5: Risk-adjusted densities. This figure presents the risk-adjusted distributions of inflation for three
dates: June 13, 2018 (Panel A), June 10, 2020 (Panel B), and June 15, 2022 (Panel C), all corresponding
to the 4th scheduled FOMC announcement days of those years. For each date, the left graph shows the 1-
year inflation distribution qt,tÑt�1 (blue dashed line), the 1-year forward-starting 1-year inflation distribution
qt,t�1Ñt�2 (yellow dotted line), and the inflation distribution over the next calendar year qncyt (black solid line).
The right graph shows the 5-year average inflation distribution qt,tÑt�5 (black solid line).

the risk-adjusted distribution of 5-year average inflation qt,tÑt�5 (black solid line, right graph),

which serves as the counterpart to the survey-based distribution from the SPD.

The figure shows drastically different patterns across the different dates, reflecting the evolv-

ing economic landscape and inflation expectations over time. In June 2018 (Panel A), the 1-year

inflation distribution qt,tÑt�1 and the forward-starting 1-year inflation distribution qt,t�1Ñt�2,

both of which are under the risk-adjusted measure, are closely aligned. This indicates a stable

short-term outlook for inflation as perceived by investors. Naturally, the risk-adjusted distri-
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bution of inflation over the next calendar year qncyt is also positioned very close to these two

distributions. Notably, both the 1-year inflation distributions and the 5-year average inflation

distribution qt,tÑt�5 remain symmetric with little skew.

As we move to June 2020 (Panel B), the inflation distributions shift substantially to the

left, reflecting deflationary expectations in the wake of the COVID-19 pandemic. As investors

grappled with an unpredictable economic environment, the divergence between qt,tÑt�1 and

qt,t�1Ñt�2 becomes pronounced. Reflecting heightened uncertainty and fears of deflation during

this period, qncyt also displays a wider spread and a larger probability mass in the deflationary

region below 0%, relative to June 2018. Despite this, the 5-year average inflation distribution

qt,tÑt�5 remains fairly symmetric, albeit slightly shifting to the left, suggesting that long-term

inflation expectations were still anchored.

However, we observe the completely opposite pattern in June 2022 (Panel C). The inflation

distributions have shifted to the right, reflecting the steady rise in inflation as economic con-

ditions changed dramatically post-2020; the year-on-year inflation rate peaked in June 2022 at

about 9%. The 1-year inflation distribution qt,tÑt�1 is now located further to the right than

the forward-starting 1-year inflation distribution qt,t�1Ñt�2, as short-term inflation expectations

surged alongside realized inflation. Similar to June 2020, qncyt has a large spread but now assigns

the majority of its probability mass to regions with high inflation. While investors’ expectations

about short-term inflation had significantly increased, the 5-year average inflation distribution

qt,tÑt�5 shows a moderate shift and remains relatively symmetric. This is consistent with the

belief that, despite the immediate inflationary pressures, inflation would eventually stabilize

over a longer horizon.

4 Preferences for different inflation ranges

In this section, we combine the survey-based probability distribution from Section 2 with the

risk-adjusted probability distribution from Section 3 to explore what they reveal about investors’

preferences for different ranges of inflation.
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To this end, we assume that marginal investors in the inflation option market hold beliefs

similar to those of survey respondents. While strong, this assumption is not uncommon in

the literature. Prior studies that use survey forecasts as proxies for physical expectations

and incorporate them into model estimation implicitly make a similar assumption (see, e.g.,

Haubrich, Pennacchi, and Ritchken, 2012). To minimize potential frictions, we intentionally

exclude household surveys and focus on surveys of professional forecasters and primary dealers.

Respondents to the SPF are professional economists, analysts, and forecasters, many of whom

work at major banks and investment firms. The SPD also targets primary dealers – mostly

large banks and their affiliates. Hence, it is not unreasonable to assume that the beliefs of

these survey respondents are closely aligned with those of marginal investors trading inflation

options. In fact, we show in the Internet Appendix that the average survey-based distribution

from the SPD is fairly similar to the historical distribution constructed from realized inflation

outcomes over the same sample period. The assumption can always be revisited if estimation

results appear unreasonable, but, as we demonstrate later, that is not the case.

Building on this premise, we can establish a direct connection between the two measures

P and Qt�T through investors’ marginal utility. Since Qt�T uses a zero-coupon bond D(T )

t �
Et
�
M$

tÑt�T � 1
�
as the numéraire, the Radon-Nikodym derivative of Qt�T with respect to P is

expressed by

dQt�T

dP

����
Ft

� M$
tÑt�T

D(T )

t

� M$
tÑt�T

Et
�
M$

tÑt�T

� , (4)

where M$
tÑt�T denotes the (nominal) pricing kernel, or equivalently, marginal utility. The key

intuition from equation (4) is that Qt�T is obtained by re-weighting P based on future marginal

utility values. Let ω represent an arbitrary event realized at time t � T , i.e., ω P Ft�T . If the

event constitutes a “good” economic state, in terms of lower-than-expected marginal utility

(M$
tÑt�T pωq   Et

�
M$

tÑt�T

�
), the Radon-Nikodym derivative in equation (4) assigns a lower

probability to this event under Qt�T than P. In contrast, if this event is perceived as a “bad”

economic state with higher-than-expected marginal utility (M$
tÑt�T pωq ¡ Et

�
M$

tÑt�T

�
), the
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event probability under Qt�T is determined to be higher than that under P. In other words,

a measure change from P to Qt�T tilts the probabilities such that good events are under-

weighted and bad events are over-weighted. This implies that the probability ratio between

the two measures contains crucial information about how investors perceive a certain event,

whether it be good or bad.

This interpretation still holds when we project both sides of equation (4) on future realized

inflation. If the risk-adjusted probability is lower (higher) than the subjective probability for

a certain realization of inflation, it indicates that investors regard it as a good (bad) economic

outcome that is associated with lower (higher) marginal utility on average. As such, we can

define and determine good inflation versus bad inflation, as perceived by investors, based on

the probability ratio between the two measures.

4.1 Implied conditional pricing kernel

We begin by examining the implied pricing kernel, projected on inflation over the next calendar

year. To take the ratio between the risk-adjusted and physical probability distributions, we first

need to ensure they are directly comparable. In the case of the risk-adjusted distribution, infla-

tion options allow us to nonparametrically estimate the entire probability density function over

a continuous domain, as outlined in Section 3. Using this density, we calculate the probabilities

of inflation falling into 20 distinct inflation ranges, from -3% to 7%, with 0.5% intervals. By

averaging these risk-adjusted probabilities within each quarter, we obtain a quarterly measure

that aligns with the timing and frequency of the SPF survey. Panel A of Figure 6 presents the

unconditional average of the resulting quarterly risk-adjusted inflation distributions over our

sample period.

The survey-based distribution also requires additional processing. For each quarter, we

convert the bucket probabilities provided by the survey into a cumulative distribution function

and interpolate these values using a smooth spline function. For both ends of the tail, we

adopt a decaying tail function, fitting it to match the probability of the last unbounded bucket.

The resulting inter/extrapolated distribution function is defined over a continuous domain and
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Figure 6: Unconditional inflation densities (next calendar year). This figure presents the unconditional
inflation densities. Panel A provides the risk-adjusted distribution Q, which is derived from options prices.
Panel B shows the survey-based distribution P of inflation derived from the Survey of Professional Forecasters
(SPF). Panel C displays the log of the probability ratio between the risk-adjusted and survey-based distributions
logpQ{Pq, with yellow bars indicating good inflation and the blue bars indicating bad inflation. The distributions
illustrate the probabilities of different inflation outcomes over the next calendar year. The sample period is from
2009Q4 to 2024Q2. All values are in percentages.

reproduces the same bucket probabilities as the survey data. This fitting exercise serves two

key purposes. First, it allows us to study the survey-based distribution over finer intervals,

which is particularly useful in the earlier part of the sample where inflation buckets are wider.

Second, it transforms the two extreme unbounded buckets into a series of bounded buckets

with 0.5% intervals, making them directly comparable to the risk-adjusted distribution.10 The

unconditional average of the survey-based distributions is displayed in Panel B of Figure 6.

Panel C depicts the log ratio of risk-adjusted to survey-based probabilities, which corre-

sponds to the log of the probability distortion factor in equation (4). Thus, a given inflation

range can be interpreted as “bad” if the log probability ratio is positive (blue bars), or “good”

if the log probability ratio is negative (yellow bars). As shown in Panel C, the log probability

ratio exhibits an unconditional U-shaped pattern, with positive values (indicating bad inflation)

in the tails and negative values (indicating good inflation) in the middle ranges. This pattern

suggests that investors tend to exhibit aversion to both high and low inflation environments,

consistent with the findings of Kitsul and Wright (2013). In fact, our analysis suggests that

10Another potential source of discrepancy is that the SPF survey is based on the GDP price index, whereas
inflation options reference the CPI. Although the two inflation measures are not identical, they are highly
correlated over the sample. As shown in the Internet Appendix, a scatter plot of the two series reveals that
most observations lie on or near the 45-degree line, suggesting that the two measures move closely together
throughout the period.
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investors favor inflation outcomes around 2% and that the good inflation region falls between

1% and 3%, unconditionally over our sample period.

(A) 2018Q2

-2 0 2 4 6

0

10

20

30

40

-2 0 2 4 6

0

10

20

30

40

-2 0 2 4 6

-2

0

2

4

(B) 2020Q2
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(C) 2022Q2
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Figure 7: Conditional inflation densities (next calendar year). This figure presents the conditional
inflation densities for the second quarter of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C). Each panel
contains three graphs: the risk-adjusted distribution Q (left), the survey-based distribution P (center), and the
log probability ratio logpQ{Pq (right). In Panel C, the yellow bars indicate good inflation, while the blue bars
indicate bad inflation. The distributions illustrate the probabilities of different inflation outcomes over the next
calendar year. The sample period is from 2009Q4 to 2024Q2. All values are in percentages.

As discussed in Sections 2 and 3, there is significant time variation in both the survey-based

and risk-adjusted probabilities. This time variation also affects the probability ratio, reflecting

shifts in investors’ preferences toward inflation over time. To illustrate, Figure 7 presents the

risk-adjusted probabilities (left graphs), survey-based probabilities (center graphs), and the
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log ratio between them (right graphs) for three different quarters: the second quarter of 2018

(Panel A), 2020 (Panel B), and 2022 (Panel C). Focusing on the log probability ratio (right

graphs), during relatively normal times like the second quarter of 2018, the good inflation

region is relatively small and tightly centered around 2%. In the second quarter of 2020,

when deflation risk became a greater concern, the good inflation region substantially expands,

especially toward the lower end of the spectrum; at such times, even inflation rates of 0.5-1%

are considered good economic outcomes. In contrast, during the inflationary period of 2022,

the good inflation region shifts more to the right, extending to the 4-4.5% interval. Despite

these variations across the three periods, it is noteworthy that the U-shaped pattern in the

probability ratios persists consistently.

The time variation in the log probability ratio provides further insight into how investors’

preferences for inflation outcomes evolve. Figure 8 illustrates the time-varying nature of the

good inflation range over the sample period. For each quarter, the yellow region represents

future inflation values at which the risk-adjusted probabilities fall below their survey-based

counterparts, indicating favorable economic outcomes perceived by investors (i.e., good inflation

region). Conversely, the blue region highlights inflation values where risk-adjusted probabilities

exceed survey-based probabilities, signaling outcomes that investors view negatively (i.e., bad

inflation region).

This figure clearly shows that the good inflation range is not fixed throughout the sample

period. During periods of low inflation, such as the aftermath of the 2008 financial crisis

or the onset of the COVID-19 crisis, the good inflation range tends to shift downward. In

contrast, during the inflation surge of 2022, it shifts significantly upward, to the point where

the 2% inflation rate – historically viewed as an ideal target by central banks – falls outside

this range. As inflation begins to decline toward the end of the sample period in 2023, the good

inflation range shifts downward once again, demonstrating how investors’ perceptions adapt to

the economic environment.

How can we interpret these patterns? One way to rationalize the observed dynamics is by

considering what future inflation realizations signal about future economic growth. For instance,
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Figure 8: Good and bad inflation regions (next calendar year). This figure illustrates the time series
of the good (yellow bars) and bad inflation (blue bars) regions. The distributions illustrate the probabilities
of different inflation outcomes over the next calendar year. The sample period is from 2009Q4 to 2024Q2. All
values are in percentages.

in the inflationary environment of 2022, high inflation over the next year is clearly perceived as

bad news, suggesting a significant risk of stagflation. However, low inflation projections during

this period could have mixed interpretations. On the one hand, they might indicate a return to

the normalcy seen in 2018; on the other hand, they could reflect a potential scenario with hard

landing, where the Fed’s policies drive the economy into recession, resulting in low inflation

rates. Simply put, a sharp decline from the high inflation rates of summer 2022 to lower levels

(e.g., 1%) is unlikely to be interpreted as positive news, as it is more likely associated with a

hard-landing scenario. This reasoning helps explain why investors’ preferred range of inflation

varies over time. It is not simply the level of inflation that matters, but the changes and the

economic signals they convey, which play a significant role in shaping investors’ preferences for

good and bad inflation ranges.

4.2 Inflation risk premium and its decomposition

Another way to gauge the variation in investors’ preferences toward inflation is by analyzing

the inflation risk premium. This premium is defined as the difference between the risk-adjusted

and survey-based expected inflation rates:

ipt,tÑt�T � EQt�T

t

�
T
a
ΠtÑt�T

�
� Et

�
T
a
ΠtÑt�T

�
. (5)
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Using the conditional distributions of inflation under the risk-adjusted and survey-based

probability measures, we can calculate the inflation risk premium for the next calendar year.11

Figure 9 displays the variation in the December-to-December inflation risk premium over the

sample period. Note that a positive premium suggests that investors demand compensation

for holding nominal securities bearing inflation risk, as they view high inflation as unfavorable,

perceiving it to be correlated with low growth. In contrast, a negative premium indicates that

investors view high inflation favorably, associating it with high growth on average.
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Figure 9: Time series of the inflation risk premium (next calendar year). This figure presents the
time series of the inflation risk premium, calculated as the difference between risk-adjusted and survey-based
expected inflation. The distributions illustrate the probabilities of different inflation outcomes over the next
calendar year. The sample period is from 2009Q4 to 2024Q2. All values are in percentages.

While the inflation risk premium fluctuates significantly over time, Figure 9 illustrates that

its level is generally negative until 2021. The most significant negative spike (-2.67%) occurs

in the second quarter of 2020 during the COVID-19 pandemic, when heightened uncertainty

and a substantial drop in consumer spending led to lower growth expectations alongside lower

inflation expectations. Beginning in 2021, the inflation risk premium abruptly turns positive,

marking a significant shift in investor sentiment. During this post-pandemic period, the U.S.

experienced its highest inflation rates in over 40 years, prompting fears of stagflation reminiscent

11As a sanity check, we regress breakeven inflation at various maturities on survey-based expected inflation
and our estimated inflation risk premium. The breakeven inflation rate for a given maturity is defined as the
yield difference between nominal Treasury securities and TIPS of the same maturity, reflecting the risk-adjusted
expectation of future inflation over that horizon. Hence, it can be understood as the sum of expected inflation
and the inflation risk premium. We find statistically significant slope coefficients and very high R2 values from
the regressions, especially when the breakeven inflation rate and the two explanatory variables are all measured
over the same 5-year horizon. The results remain robust when the variables are first-differenced to account for
the potential presence of unit roots.
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of the 1970s. The largest inflation risk premium in the sample, 2.29%, is recorded in the first

quarter of 2022, as the Fed began to implement aggressive rate hikes and tightening policies

aimed at combating inflation.

These patterns reflect the changing cyclicality of inflation risk perceived by investors. The

negative inflation risk premium prior to 2021 indicates that inflation risk was largely seen as

procyclical (high inflation, high growth) during this period, implying that nominal securities

like Treasury bonds served as hedging assets. The positive inflation risk premium observed

post-2021, on the other hand, suggests that inflation risk was regarded as countercyclical (high

inflation, low growth), making nominal securities risky like stocks. This shift in the sign of the

inflation risk premium aligns closely with the time-varying patterns of the stock-bond correla-

tion documented in the literature (e.g., Campbell, Sunderam, and Viceira, 2017). In particular,

Campbell, Pflueger, and Viceira (2020) find a persistently negative correlation between Trea-

sury bond returns and stock returns in the first two decades of the 21st century, which is

indicative of procyclical inflation: during economic downturns, lower stock returns come with

lower inflation, which raises real bond prices, resulting in the negative stock-bond correlation.

More recently, Lombardi and Sushko (2023) document that this correlation turned positive in

mid-2021, almost exactly when the inflation risk premium becomes positive in Figure 9; both

quantities clearly point to changing investor perceptions toward countercyclical inflation risk

in the new post-pandemic era.

As the next exercise, we decompose the inflation risk premium into compensation for differ-

ent inflation outcomes. For this analysis, we adopt the methodology of Beason and Schreindorfer

(2022), which uses options and returns data to decompose the equity risk premium over differ-

ent parts of the return state space. Applying this to our context, the inflation risk premium

associated with a range rπL, πU s can be defined as:

ip
rπL,πU s
t,tÑt�T �

» πU
πL

x
�
Qt�T

�
T
a
ΠtÑt�T � 1 � x

	
� P

�
T
a
ΠtÑt�T � 1 � x

	�
dx. (6)

Comparing equations (5) and (6) makes it clear that ip
r�8,8s
t,tÑt�T � ipt,tÑt�T . Unlike Beason
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and Schreindorfer (2022), who focus on the unconditional equity premium due to the difficulty of

accurately estimating conditional distributions for stock returns under the physical measure, we

can analyze both the conditional and unconditional inflation risk premiums using survey-based

inflation densities.

-8 -4 0 4 8 12

-0.5

-0.25

0

0.25

0.5

Figure 10: Decomposition of the unconditional inflation risk premium (next calendar year). This
figure presents the unconditional decomposition of the inflation risk premium. The yellow dashed line represents
the average inflation risk premium, and the blue bars represent the contribution of different inflation ranges to
the overall premium. The distributions illustrate the probabilities of different inflation outcomes over the next
calendar year. All values are in percentages.

Figure 10 presents the decomposition results for the unconditional inflation risk premium.

According to equation (6), the inflation risk premium for a given range depends on the likelihood

of the inflation outcomes within that range (i.e., the quantity of risk) as well as the relative

difference between risk-adjusted and survey-based probabilities (i.e., the price of risk). This

becomes clear when we rearrange the right-hand side of equation (6) as follows:

ip
rπL,πU s
t,tÑt�T �

» πU
πL

xloomoon
Inflation outcome

�P
�

T
a
ΠtÑt�T � 1 � x

	
looooooooooooomooooooooooooon

Quantity of of inflation risk

�
�
Qt�T

P

�
T
a
ΠtÑt�T � 1 � x

	
� 1

�
looooooooooooooooooooomooooooooooooooooooooon

Price of inflation risk

dx.

Therefore, as we move toward the less likely tail ranges (with a smaller quantity of inflation

risk), the premium contribution diminishes as shown in Figure 10. This equation also reveals

that the sign of each range’s contribution is governed by two factors: (i) the sign of the inflation

outcomes x P rπL, πU s and (ii) the sign of the price of inflation risk, which is determined by

whether the range falls within the good or bad inflation region. Recall that, by definition,
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rQt�T {P� 1s is negative in the good inflation region and positive in the bad inflation region.

As a result, the contributions to the total inflation risk premium can vary substantially not

only in magnitude but also in sign across different ranges. In Figure 10, the contributions are

positive in the unfavorably high inflation range (both (i) and (ii) positive) but turn negative in

the favorable range around 2% where (i) is positive and (ii) is negative. In the lower inflation

range beyond the good region, the contributions are again positive (both (i) and (ii) positive),

but they become negative in the deflation region because inflation outcomes themselves are now

negative; that is, (i) is negative and (ii) is positive. This implies that despite the significance of

premiums associated with certain ranges, the total inflation risk premium can remain small due

to the offsetting of positive and negative contributions. In fact, the figure shows that different

inflation ranges are associated with premiums ranging from -33 bp for r2%, 2.5%q to 13 bp for

r4.5%, 5%q, but the total inflation risk premium is only -9 bp. Given the U-shaped pattern

observed in the projection of the pricing kernel, the inflation risk premium – integrated over

the entire inflation range – can mask important insights into the pricing of inflation risk.
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Figure 11: Decomposition of the conditional inflation risk premium (next calendar year). This
figure presents the conditional decomposition of the inflation risk premium for the second quarter of 2018
(Panel A), 2020 (Panel B), and 2022 (Panel C). The yellow dashed line represents the average inflation risk
premium, and the blue bars represent the contribution of different inflation ranges to the overall premium. The
distributions illustrate the probabilities of different inflation outcomes over the next calendar year. All values
are in percentages.

Figure 11 shows the decomposition of the conditional inflation risk premium for three dif-

ferent quarters: the second quarter of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C). In

2018, the pattern of contributions across inflation ranges closely resembles the unconditional
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results, with the deflation region contributing virtually nothing to the overall premium. By

2020, however, this region with negative inflation outcomes generates a substantially negative

premium, reflecting heightened deflation concerns in the aftermath of the COVID-19 outbreak.

High inflation outcomes contribute little due to their low probabilities. In 2022, the decompo-

sition shifts again in response to investors’ growing concerns about rising inflation: substantial

premiums are associated with inflation outcomes above 4%, while contributions from low infla-

tion outcomes below 1% are essentially nonexistent.

4.3 Pricing of long-term inflation risk

Next, we turn to the implied pricing kernel, projected on inflation over a longer term. Figure 12

presents the unconditional inflation densities over the next five years. Panel A shows the risk-

adjusted distribution implied by 5-year inflation options, Panel B displays the survey-based

distribution of inflation derived from the SPD, and Panel C illustrates the log probability ratio

between the two distributions. Compared to Figure 6, which shows the results for the next

calendar year, Panel C presents a qualitatively similar but a narrower good inflation region

(below zero; yellow bars).
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Figure 12: Unconditional inflation densities (5-year horizon). This figure presents the unconditional
inflation densities. Panel A provides the risk-adjusted distribution Q, which is derived from options prices.
Panel B shows the survey-based distribution P of expected inflation derived from the Survey of Primary Dealers
(SPD). Panel C displays the log of the probability ratio between the risk-adjusted and survey-based distributions
logpQ{Pq, with yellow bars indicating good inflation and the blue bars indicating bad inflation. The distributions
illustrate the probabilities of different inflation outcomes over the next five years. The sample period is from
December 2014 to June 2024. All values are in percentages.
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(A) June 2018
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(B) June 2020
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(C) June 2022
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Figure 13: Conditional inflation densities (5-year horizon). This figure presents the conditional inflation
densities collected before the fourth FOMC meeting for three different years: June 2018 (Panel A), June 2020
(Panel B), and June 2022 (Panel C). Each panel contains three graphs: the risk-adjusted distributionQ (left), the
survey-based distribution P (center), and the log probability ratio logpQ{Pq (right). In Panel C, the yellow bars
indicate good inflation, while the blue bars indicate bad inflation. The distributions illustrate the probabilities
of different inflation outcomes over the next five years. The sample period is from December 2014 to June 2024.
All values are in percentages.

To understand shifts in investors’ preferences at different points in time, Figure 13 illustrates

the conditional inflation densities collected before the fourth FOMC meeting in June of 2018

(Panel A), 2020 (Panel B), and 2022 (Panel C). Each panel contains three graphs: the risk-

adjusted probabilities (left), survey-based probabilities (center), and the log probability ratio

(right). In 2018, the good inflation region (yellow bars) is within a narrow range with little
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deviation from 2%. This range begins to deviate more and becomes wider in 2020, followed by

a slight rightward shift in 2022. Overall, the good inflation regions for the 5-year horizon are

much tighter and stable, compared to those for the next calendar year. This makes sense: when

long-term inflation expectations are anchored, investors’ preferred range of inflation should vary

less in the long run.
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Figure 14: Good and bad inflation regions (5-year horizon). This figure illustrates the time series of
the good (yellow bars) and bad inflation (blue bars) regions. The distributions illustrate the probabilities of
different inflation outcomes over the next five years. The sample period is from December 2014 to June 2024.
All values are in percentages.

This point is further highlighted in Figure 14, which depicts the time-varying ranges of

good and bad inflation over the next five years, with each bar representing a quarter. The

yellow-shaded portions of the bars indicate the good inflation region, whereas the blue-shaded

portions indicate the bad inflation region. As can be seen in the figure, the good inflation region

remains relatively stable throughout the sample period, though it shifts upward and slightly

widens around 2022. Unlike in Figure 8, the Fed’s 2% inflation target is always within the good

region when the 5-year horizon is considered.

Figure 15 turns to the time series of the 5-year inflation risk premium. The inflation risk

premium fluctuates between positive and negative values throughout our sample period, which

begins in December 2014. Negative inflation risk premiums dominate from December 2014

through 2020, especially during crisis periods such as the COVID-19 pandemic, when the pre-

mium drops sharply. The inflation risk premium turns positive in 2021 and remains so through

2022. When juxtaposed with the time series in Figure 9, we see that while the overall patterns
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Figure 15: Time series of the inflation risk premium (5-year horizon). This figure presents the time
series of the inflation risk premium, calculated as the difference between risk-adjusted and survey-based expected
inflation. The distributions illustrate the probabilities of different inflation outcomes over the next five years.
The sample period is from December 2014 to June 2024. All values are in percentages.

are similar, the time series for the 5-year horizon is smoother, exhibiting smaller magnitude

and less variation. The response to major events is less pronounced, as the longer forecast

horizon tempers the immediate reactions observed in the shorter horizon. For example, while

the inflation risk premium for the 1-year horizon sharply spikes to its highest level in 2022, the

one for the 5-year horizon shows a more sustained and less dramatic increase. Toward the end

of the sample period in 2024, the 5-year inflation risk premium returns to negative territory.
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Figure 16: Decomposition of the unconditional inflation risk premium (5-year horizon). This figure
presents the unconditional decomposition of the inflation risk premium. The yellow dashed line represents the
average inflation risk premium, and the blue bars represent the contribution of different inflation ranges to the
overall premium. The distributions illustrate the probabilities of different inflation outcomes over the next five
years. All values are in percentages.

Figure 16 depicts the decomposition of the 5-year unconditional inflation risk premium.

The unconditional inflation risk premium is small at -11 bp. Moderate inflation ranges near
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2% result in the largest negative contributions to the risk premium, which overpower positive

contributions from higher inflation ranges. Note that the contributions from low inflation ranges

are very small: although investors dislike future deflation (as shown in Panel C of Figure 12),

the likelihood of such an outcome is too small to generate a meaningful premium. Finally,

Figure 17 provides the decomposition of the conditional inflation risk premium for the next

five years, illustrating how different inflation ranges contribute to the overall premium during

the second quarter of 2018 (Panel A), 2020 (Panel B), and 2022 (Panel C). The patterns are

similar to those observed for the next calendar year (Figure 11). Nevertheless, the patterns are

much smoother for the 5-year horizon and tails contribute little, reflecting more stable inflation

expectations in the long run.
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(C) June 2022
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Figure 17: Decomposition of the conditional inflation risk premium (5-year horizon). This figure
presents the conditional decomposition of the inflation risk premium for the second quarter of 2018 (Panel A),
2020 (Panel B), and 2022 (Panel C). The yellow dashed line represents the average inflation risk premium, and
the blue bars represent the contribution of different inflation ranges to the overall premium. The distributions
illustrate the probabilities of different inflation outcomes over the next five years. All values are in percentages.

5 Economic model with learning

We rationalize the empirical patterns we document using a model in which investors cannot

precisely observe the true state of the economy. Due to this information friction, investors

form their beliefs about two bad economic states: an inflationary recession and a deflationary

recession. The fear of these states generates a conditional pricing kernel that is U-shaped when

projected on future inflation. Investors’ preferences for different inflation ranges vary over time
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as they learn and update their beliefs, which aligns with our empirical observations.

5.1 Model setup and solution

We consider an endowment economy with complete markets, where investors have recursive

preferences as described by Epstein and Zin (1989) and Weil (1989). Time is discrete, and a

unit period between time t and time t � 1 now represents a month. The stochastic discount

factor or the real pricing kernel Mt�1 is given by

Mt�1 � exp

�
θ log δ � θ

ψ
∆ct�1 � pθ � 1qrc,t�1



, (7)

where ∆ct�1 � log
�
Ct�1

Ct

	
denotes log aggregate consumption growth and rc,t�1 represents the

log return on a security that delivers aggregate consumption as dividends (commonly referred

to as the consumption claim). The parameters δ and ψ correspond to the rate of time preference

and the elasticity of intertemporal substitution, respectively. The coefficient θ � 1�γ
1�1{ψ

reflects

investors’ preferences for the timing of uncertainty resolution, where γ represents relative risk

aversion. Since the Euler equation must hold for real prices of nominal assets (see, e.g., Piazzesi

and Schneider, 2006; Wachter, 2006; Bansal and Shaliastovich, 2013), the nominal pricing kernel

is specified by

M$
t�1 � e�πt�1Mt�1, (8)

where πt�1 � log
�
CPIt�1

CPIt

	
denotes the log inflation rate.

5.1.1 Consumption and inflation dynamics and investors’ learning

We assume that the true state of the economy follows a Markov-switching process with three

potential regimes: st�1 P tn, d, iu. State n represents normal or favorable economic conditions,

characterized by relatively high consumption growth and moderate inflation. In contrast, the

other two regimes capture bad economic conditions with low consumption growth. State d
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reflects a deflationary recession where low growth comes with very low and potentially negative

inflation, exemplified by the Great Depression in the 1930s. State i corresponds to an inflation-

ary recession where low growth coincides with a sharp increase in inflation, as seen during the

stagflation of the 1970s. The transition matrix P governs the dynamics of the regime-switching

process:

P �

�
�����
pnn pnd pni

pdn pdd pdi

pin pid pii

�
����� ,

where pss1 � P pst�1 � s1|st � sq represents the transition probability from state s to state s1.

We model the different consumption and inflation dynamics across the three states by as-

suming their conditional means are state-dependent:

∆ct�1 � µcst�1
� σcϵct�1, (9)

πt�1 � p1� φπqµπst�1
� φππt � σπϵπt�1, (10)

where ϵct�1 and ϵπt�1 are iid standard normal shocks. Specifically, given st�1 P tn, d, iu, log

consumption growth follows a normal distribution with mean µcst�1
and standard deviation σc,

where µcd   0   µcn and µci   0   µcn. Log inflation follows a mean-reverting Gaussian process

with persistence φπ, mean µπst�1
, and volatility σπ. By definition, the deflationary recession

regime has the lowest mean log inflation, whereas the inflationary recession regime has the

highest: µπd   µπn   µπi .

Despite these distinct consumption and inflation dynamics, investors cannot precisely iden-

tify which economic state they are in, as st�1 is not observable. The information friction

arises from the fact the conditional means (µcst�1
and µπst�1

) are not separately observable from

the transitory shocks (ϵct�1 and ϵπt�1) although realized consumption and inflation (∆ct�1 and

πt�1) themselves are observable. Under this imperfect information, investors form their beliefs

based on the historical time series of consumption ∆c�8:t�1 � t∆ck|k ¤ t � 1u and inflation
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π�8:t�1 � tπk|k ¤ t� 1u.
Let ξs,t denote investors’ time-t belief that the economy is in state s P tn, d, iu at time t:

ξs,t � ξs,t|t � P pst � s|Ftq,

where investors’ time-t information set Ft consists of the past consumption and inflation realiza-

tions: Ft � t∆c�8:t, π�8:tu. This belief is updated to ξs,t�1 � P pst�1 � s|Ft�1q when investors

observe new realizations of consumption growth ∆ct�1 and inflation πt�1 at time t� 1. Recent

empirical evidence suggests that this belief updating process may not be perfectly Bayesian.

Based on SPF inflation forecasts, Coibion and Gorodnichenko (2015) document that ex-post

forecast errors are predicted by ex-ante forecast revisions with a positive coefficient, which can

be directly linked to the degree of information rigidity. Consistent with this, our model allows

for a potential departure from the Bayesian benchmark:

ξs,t�1 � p1� λq � ξBayes

s,t,t�1 � λ� ξs,t,

where ξBayes

s,t,t�1 represents investors’ new belief if they were perfectly rational and updated their

previous beliefs pξn,t, ξd,t, ξi,tq in a Bayesian fashion based on the new information (∆ct�1, πt�1).

According to Bayes’ rule,

ξBayes

s,t,t�1 �
P pst�1 � s|FtqP p∆ct�1, πt�1|st�1 � s,Ftq°

s1Ptn,d,iu P pst�1 � s1|FtqP p∆ct�1, πt�1|st�1 � s1,Ftq , (11)

where the denominator equals P p∆ct�1, πt�1|Ftq but can be expressed as above due to the law

of total probability. With a positive degree of information rigidity (λ ¡ 0), investors’ belief

updating is sticky and puts λ as a weight on the past belief ξs,t. This leads to a positive slope

coefficient when forecast errors are regressed on forecast revisions. As highlighted by Coibion

and Gorodnichenko (2015), this regression coefficient enables us to pin down the parameter

value of λ. In the absence of information rigidity (λ � 0), investors’ learning dynamics return

to the Bayesian case where forecast errors and forecast revisions are uncorrelated.
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With the probability of observing the new consumption and inflation realizations (∆ct�1

and πt�1) in the denominator, the numerator of equation (11) considers the likelihood that the

observed realizations were generated under state s. This is a product of two probabilities. The

first one is P pst�1 � s|Ftq, the probability that the true state of the economy is s at time t� 1,

which purely depends on the transition dynamics of the state between time t and time t � 1,

given the time-t information set. Denoting this as ξs,t�1|t � P pst�1 � s|Ftq, we have

rξn,t�1|t ξd,t�1|t ξi,t�1|ts � rξn,t ξd,t ξi,ts � P .

The second one is P p∆ct�1, πt�1|st�1 � s,Ftq, the probability of observing the new consumption

and inflation realizations if the true state is indeed st�1 � s. This term is crucial for investors’

learning, as it determines how the new information is incorporated into their beliefs. It follows

from the consumption and inflation dynamics in equations (9) and (10) that this probability is

given by

P p∆ct�1, πt�1|st�1 � s,Ftq 9 exp

"
�1

2

��
ϵ̃cs,t�1

�2 � �ϵ̃πs,t�1

�2�*
,

where ϵ̃cs,t�1 � ∆ct�1�µcs
σc and ϵ̃πs,t�1 � πt�1�p1�φπqµπs�φ

ππt
σπ .

5.1.2 Equilibrium price-consumption and price-dividend ratios

We solve the model by finding the log price-consumption ratio pct � log pP c
t {Ctq where P c

t

denotes the price of the consumption claim. In equilibrium, the log return on the consumption

claim rc,t�1 � log p1� epct�1q � pct �∆ct�1 must satisfy the Euler equation:

Et rexp plogMt�1 � rc,t�1qs � 1, (12)

where Et represents investors’ time-t expectation under their subjective probability measure.

By plugging the expression for the pricing kernel (equation (7)) and that for log consumption

growth (equation (9)) into the Euler equation, we recursively define the price-consumption ratio
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as follows:

pct � log δ � 1

θ
logEt

�
ep1�γq∆ct�1 p1� epct�1qθ

�
.

The Markov property dictates that pct is a function of ξs,t for s P tn, d, iu. Since the three

beliefs always sum to 1 at any given time, we can specify the solution in terms of just the two

beliefs associated with the deflationary and inflationary recession regimes: pct � pcpξd,t, ξi,tq.
We numerically solve for pc over a two-dimensional grid of ξd,t and ξi,t by searching for the fixed

point of equation (13); the nonlinearity introduced by investors’ learning dynamics does not

permit a closed-form solution. See Ghaderi, Kilic, and Seo (2022) and Ghaderi, Kilic, and Seo

(2024) for details on the numerical procedure.

As the model counterpart of the aggregate stock market, we consider a security that pays

aggregate dividends, which are proxied by levered consumption Dt � eµ
d�σdϵdt�1Cϕ

t . The log

return on this dividend claim is expressed as rd,t�1 � log
�
1� epdt�1

��pdt�ϕ∆ct�1�µd�σdϵdt�1

and should satisfy the following Euler equation in equilibrium:

Et rexp plogMt�1 � rd,t�1qs � 1, (13)

where pdt � log
�
P d
t {Dt

�
denotes the log price-dividend ratio. Equation (13) leads to the

following recursive relation between pdt and pdt�1:

pdt � θ log δ � pθ � 1qpct � µd � 1

2
pσdq2 � logEt

�
epϕ�γq∆ct�1 p1� epct�1qθ�1

�
1� epdt�1

��
,

which is also solved numerically. Consequently, we can characterize the price-dividend ratio as

a function of the two beliefs: pdt � pdpξd,t, ξi,tq.

5.1.3 Term structures of model quantities

In this section, we describe a recursive method to compute the term structures of various model

quantities based on our model. We start with the price of a risk-free nominal zero-coupon bond,

43



which is a function of three key state variables: the current inflation rate πt and investors’ two

beliefs ξd,t and ξi,t. Thus, we denote the bond price as Dpπt, ξd,t, ξi,t;Kq, where K represents

the number of periods until maturity. The pricing relation implies:

Dpπt, ξd,t, ξi,t;Kq � Et
�
M$

tÑt�K

� � Et

�
K¹
k�1

M$
t�k

�
� Et

�
M$

t�1Et�1

�
K¹
k�2

M$
t�k

��
,

where the last equality holds due to the law of iterative expectations. This expression provides

us with a recursive formula for the term structure of zero-coupon bond prices:

Dpπt, ξd,t, ξi,t;Kq � Et
�
M$

t�1Dpπt�1, ξd,t�1, ξi,t�1;K � 1q� .
Similarly, we obtain the term structure of inflation expectations using a recursive formula.

For instance, let πepπt�1, ξd,t, ξi,t;Kq � Et
�°K

k�1 πt�k

�
denote the expected log cumulative

inflation rate over the next K periods. This quantity can be written as

πepπt, ξd,t, ξi,t;Kq � Et

�
πt�1 � Et�1

�
Ķ

k�2

πt�k

��
� Et rπt�1 � πepπt�1, ξd,t�1, ξi,t�1;K � 1qs ,

which enables us to find its value recursively. Similarly, the term structure for gross or annual-

ized inflation can be calculated in a recursive fashion.

Next, we turn to the term structure of the inflation density P
�°K

k�1 πt�k � x
��� Ft

	
. By the

law of total probability,

P

�
Ķ

k�1

πt�k � x
��� Ft

�
�

»
P

�
Ķ

k�1

πt�k � x
��� Ft�1

�
dG

�
∆ct�1, πt�1

��� Ft

	
,

�
»
P

�
� Ķ

k�2

πt�k � x� πt�1looomooon
� x1

��� Ft�1

�

dG�∆ct�1, πt�1

��� Ft

	
,

where G represents the joint distribution of ∆ct�1 and πt�1 conditional on Ft. Denoting the
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density by ρ px, πt, ξd,t, ξi,t;Kq, the equation leads to the following recursion:12

ρ px, πt, ξd,t, ξi,t;Kq �
»
ρ px1, πt�1, ξd,t�1, ξi,t�1;K � 1q dG

�
∆ct�1, πt�1

��� Ft

	
.

Once we obtain the conditional density of the average log inflation rate, we can easily transform

it into the density of the average annualized inflation rate (which can be compared to the data)

using a change of variable technique.

Finally, note that our recursive method also directly applies to inflation expectations and

densities under the risk-adjusted probability measure. The only adjustment is to re-weight

the probability distribution under P with the Radon-Nikodym derivative or the probability

distortion factor MtÑt�K

EtrMtÑt�K s
� MtÑt�K

Dpπt,ξd,t,ξi,t;Kq
.

5.2 Calibration and asset pricing moments

Our model is calibrated at a monthly frequency, with the parameter values listed in Table 3.

Panel A shows three preference parameters that describe investors’ risk preferences. The coeffi-

cient of relative risk aversion γ is chosen to be 5, and the elasticity of intertemporal substitution

ψ is set to 1.5. The subjective monthly discount rate is 0.9990, which corresponds to an annual

discounting of 1.2%. These choices are standard and within reasonable ranges in the literature.

Panel B of Table 3 outlines the characteristics of the three regimes in our model: normal

(n), deflationary recession (d), and inflationary recession (i). In the normal state, consumption

grows at an average annual rate of 3%, while inflation averages 2%. For the recessionary states

(d and i), we aim to capture severe economic downturns, akin to the Great Depression or the

stagflation of the 1970s. Therefore, we set the average annual consumption growth at -5%

and -3% for these two regimes, respectively. Despite similarities in consumption growth, these

12Under our inflation dynamics in equation (10), the following identify holds:

ρ px, πt�1, ξd,t�1, ξi,t�1;Kq � ρ

�
x� φ

1� φK

1� φ
pπt�1 � πtq, πt, ξd,t�1, ξi,t�1;K



,

for any pair of πt and πt�1. This allows us to reduce the dimensionality of our numerical procedure, as it suffices
to find the density ρ only for one value of πt.
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regimes differ markedly in inflation behavior: deflationary recessions exhibit an average annual

deflation rate of -3%, whereas inflationary recessions are characterized by a high inflation rate of

12%. We calibrate endowment volatility to an annual rate of 1.5% across all regimes, reflecting

the relatively stable consumption growth volatility observed in the post-war period. The log

inflation volatility in the absence of a regime switch is set at 0.25% annually. In our model,

inflation acts as an informative signal influencing learning dynamics. While headline inflation

is often swayed by transient fluctuations in food and energy prices, investors are expected to

focus on the more stable, persistent components of the price index to form their beliefs. Lastly,

we set the persistence of monthly inflation at 0.5, in line with historical data.

Panel A: Preferences

Relative risk aversion, γ 5 —
Elasticity of intertemporal substitution, ψ 1.5 —
Time discount factor, δ 0.9990 Annual discounting of 1.2%

Panel B: Consumption and inflation

Mean consumption growth in state n, µc
n 0.0025 Annual growth rate of 3%

Mean consumption growth in state d, µc
d -0.0042 Annual growth rate of -5%

Mean consumption growth in state i, µc
i -0.0025 Annual growth rate of -3%

Volatility of consumption growth, σc 0.0043 Annual volatility of 1.5%
Mean log inflation in state n, µπ

n 0.0017 Annual rate of 2%
Mean log inflation in state d, µπ

d -0.0025 Annual rate of -3%
Mean log inflation in state i, µπ

i 0.0100 Annual rate of 12%
Volatility of log inflation, σπ 0.0009 Annual volatility of 0.25%
Persistence of log inflation, φπ 0.5000 —

Panel C: Regime switch and learning

Transition probability from state n to d, pnd 0.0004 Annual probability of 0.5%
Transition probability from state d to n, pdn 0.0208 Average duration of 4 years
Transition probability from state n to i, pni 0.0042 Annual probability of 5.0%
Transition probability from state i to n, pin 0.0104 Average duration of 8 years
Degree of information rigidity, λ 0.85 0.55 on a quarterly basis

Panel D: Dividends

Leverage parameter, ϕ 3 —
Independent dividend growth, µd -0.0017 Annual growth rate of -2%
Independent dividend volatility σd 0.0144 Annual growth volatility of 5%

Table 3: Model calibration parameters. This table presents the parameter values from the model calibra-
tion. The model is calibrated at a monthly frequency. For ease of interpretation, equivalent annualized values
are also provided where applicable.

Given the extreme properties of consumption growth and inflation under the two recession-

ary regimes, these states naturally occur infrequently. In Panel C, the probability of transition-
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ing from the normal regime to a deflationary recession (pnd) is set at 0.5% annually, implying

that such events are exceedingly rare, with an expected occurrence roughly once every two

centuries. In contrast, the transition probability from the normal regime to an inflationary re-

cession (pni) is set at 5.0%, reflecting the fact that the U.S. economy has experienced multiple

inflationary recessions in the post-war period. This probability is ten times higher than that

of a deflationary recession. The probabilities of returning to the normal state from the reces-

sionary regimes reflect the typical duration of such downturns. For the deflationary regime,

we set pdn at 25% annually, suggesting an average recession length of four years, consistent

with historical episodes such as the Great Depression and the Long Depression of the 1870s.

Inflationary recessions, however, are modeled to be twice as persistent, with pin set at 12.5%,

consistent with the extended inflationary periods seen during the late 1960s and 1970s. For

simplicity, we do not allow for direct transitions between the two recessionary regimes in our

calibration.

Lastly, we set the parameter governing the stickiness of beliefs λ to 0.85. This choice is in-

formed by the findings of Coibion and Gorodnichenko (2015), who, using quarterly regressions

of forecast errors on forecast revisions, estimate that in updating inflation expectations, fore-

casters put approximately 54% weight on their prior beliefs, leaving 46% for new information.

At the monthly frequency of our calibration, the weight assigned to the new Bayesian update

is 1 � λ � 0.15. This aligns well with the evidence of Coibion and Gorodnichenko (2015) as,

ignoring the non-linearities of the updating procedure, the weight assigned to new information

in a quarter would be around 3� 0.15 � 0.45.

Finally, to model the equity market dynamics, we set the leverage parameter ϕ to 3, which

is consistent with the standard range commonly used in the literature (see, e.g., Bansal and

Yaron, 2004; Bansal, Kiku, and Yaron, 2012; Wachter, 2013). We calibrate µd, the mean

dividend growth rate that is independent of consumption growth, to -2%, ensuring that the

average growth rate of dividends does not deviate significantly from consumption growth, as

observed in the data. Additionally, we assign an independent annual volatility of 5% for σd.

To demonstrate the quantitative validity of our calibration, we analyze the population char-
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acteristics of the model by simulating a long sample spanning 100,000 years. As shown in

Table 4, the model preserves low consumption volatility over this long sample, with a value

of 1.70%, closely aligned with post-war data (1.52%). Importantly, the model successfully ad-

dresses key asset pricing puzzles, generating a high equity premium (6.73% versus 6.57% in

the data) and high market volatility (13.21% versus 16.46% in the data), while maintaining

a low risk-free rate (0.59% versus 0.39% in the data). Additionally, the model produces an

upward-sloping nominal term structure with a term premium of 0.57%, consistent with em-

pirical evidence (0.88% in the data). While the mean and volatility of the inflation rate are

slightly higher in the simulated sample (4.67% and 4.43%, respectively) than in post-war data

(3.54% and 2.81%, respectively), this discrepancy is expected given the rare nature of the two

recessionary states.

Lastly, to verify the model’s ability to capture realistic belief dynamics, we regress inflation

forecast errors on quarterly forecast revisions, following the method of Coibion and Gorod-

nichenko (2015), and find results consistent with theirs (1.32 versus 1.19). Overall, our model

effectively captures standard asset pricing moments alongside inflation dynamics and its expec-

tations.

σp∆ct�1q σp∆dt�1q Erπt�1s σpπt�1q βCG Errf,ts Errd,t�1 � rf,ts σprd,t�1q Ery10y � y2ys

Data 1.52 7.04 3.54 2.81 1.19 0.36 6.57 16.46 0.88

Model 1.70 7.15 4.67 4.43 1.32 0.59 6.73 13.21 0.57

Table 4: Standard asset pricing moments. This table reports the moments of consumption growth,
inflation, and asset returns in the data and in the model. σp∆ct�1q represents the standard deviation of log
consumption growth. Erπt�1s and σpπt�1q represent the average and standard deviation of the annual inflation
rate, respectively. βCG corresponds to the slope coefficient in the regression of inflation forecast errors on
forecast revisions as in Coibion and Gorodnichenko (2015). Errf,ts is the average log real risk-free rate, while
Errd,t�1 � rf,ts denotes the average excess log return on the market. σprd,t�1q is the standard deviation of the
log market return. The term premium, defined as the difference between 10-year and 2-year Treasury yields, is
represented by Ery10y � y2ys. With the exception of the term premium, which is based on data from 1976 to
2023, all other data moments reflect the post-war sample period from 1947 to 2023. The model moments are
calculated from a long simulation spanning 100,000 years. All values are in percentages.
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5.3 Model implications

As discussed in Section 4 with equation (4), the change of measure from P to Qt�T skews

the probabilities, underweighting favorable events and overweighting unfavorable ones. As a

result, a positive (negative) log probability ratio signals bad (good) inflation outcomes from

the investor’s perspective. Figure 18 evaluates the implications of our model by examining

the value of this ratio for different inflation outcomes over the next year. The figure aims to

illustrate how preferences for various inflation ranges change over time within the model. Blue

bars in the figure represent positive log probability ratios, while yellow bars indicate negative

ratios.
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Figure 18: Model-implied inflation densities. This figure presents the model-implied conditional inflation
probability ratios across three scenarios: normal times with moderate inflation (Panel A), heightened risk of
deflationary depression with low inflation (Panel B), and heightened risk of inflationary depression with high
inflation (Panel C). Each panel shows the log probability ratio between the risk-adjusted distribution and the
physical distribution logpQ{Pq. The distributions capture the probabilities of different inflation outcomes over
the next year. All values are in percentages.

The figure highlights three distinct economic scenarios. In Panel A, investors are assumed

to assign a 100% probability to the “normal” regime. In contrast, Panels B and C depict

situations where the representative investor assigns a 5% probability to the occurrence of either

a deflationary (Panel B) or inflationary (Panel C) recession. Additionally, we assume that

the monthly inflation rate (π0) takes the average value associated with each respective regime.

These scenarios are chosen to establish a mapping between the model and historical episodes

from the second quarter of 2018, 2020, and 2022, as illustrated in Figure 7, allowing us to

analyze time variation in inflation preferences.
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In Panel A, we observe that the good inflation region is relatively narrow, centered around

2%. The model can accommodate a substantial increase in the probability ratio, and thus

the marginal utility, as inflation moves toward both low and high extremes. The stickiness of

investor beliefs results in a high level of persistence in beliefs and a substantially low perceived

chance of extreme inflation outcomes. However, if such extreme inflation outcomes were to

occur, the model implies that investors would need to experience a series of “bad” shocks,

which would persistently increase the probabilities of recessionary states (ξd or ξi). This would,

in turn, lead to a significant rise in marginal utility. Note that while the U-shape persists under

the Bayesian benchmark, achieving such high levels of marginal utility as observed in the data

would be more difficult with reasonable parameters.

Panel B illustrates a scenario with a heightened risk of a deflationary recession, similar

to the economic environment of summer 2020 when concerns about a deflationary depression

intensified. Consistent with the data, this leads to an expansion of the good inflation range,

along with a leftward shift in the U-shape. The widening of the good range can be attributed

to increased overall uncertainty regarding inflation outcomes, which causes a relatively larger

increase in physical probabilities.

In contrast, Panel C depicts a scenario with a heightened risk of an inflationary recession,

reminiscent of the environment from mid-2021 to late 2022. While there is a similar expansion

of the good inflation range, this range is now shifted rightward. In the model, this shift occurs

due to changes in the conditional probability of inflation over the next year. Practically, a higher

belief in the likelihood of an inflationary state corresponds to higher levels of the inflation state

variable and expectations of future inflation. Given the persistent nature of inflation shocks

in both the model and the data, this shifts the entire conditional distributions under both the

risk-neutral and physical measures. Despite these differences across the three scenarios, the

U-shaped pattern in the probability ratios remains consistent, as also observed in the data.

How does the inflation risk premium change under these three scenarios, and which ranges of

inflation outcomes contribute most to it in the model? We address these questions in Figure 19.

Following the approach of Beason and Schreindorfer (2022), we decompose the conditional
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inflation risk premium in the model for each scenario. The goal, once again, is to establish a

mapping between these model scenarios and key historical episodes shown in Figure 11.
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Figure 19: Model-implied decomposition of the inflation risk premium . This figure presents the
model-implied conditional decomposition of the inflation risk premium across three scenarios: normal times
with moderate inflation (Panel A), heightened risk of deflationary depression with low inflation (Panel B), and
heightened risk of inflationary depression with high inflation (Panel C). Each panel shows the inflation risk
premium over the next year, together with its decomposition into compensation for different inflation outcomes.
All values are in percentages.

In the normal environment depicted in Panel A, the inflation risk premium is relatively

small, with a modest overall positive premium of 0.27%. The decomposition shows that the

model provides minimal compensation for extreme inflation outcomes. Due to the persistent

nature of beliefs, investors in this scenario assign low probabilities to such extreme outcomes.

This scenario mirrors the relatively calm environment observed during the summer of 2018,

when inflation expectations were well-anchored around 2%.

In the deflationary environment (Panel B), the inflation risk premium turns negative (-

1.01%). This situation corresponds to periods such as the summer of 2020, when fears of a

deflationary recession rose sharply due to the COVID-19 pandemic. While the good region

around 2% negatively contributes to the premium, the figure also highlights a significant neg-

ative contribution from inflation rates below 0%. This reflects investors’ heightened concerns

about deflation. As previously explained, because the inflation outcomes are negative, the

overall premium turns negative, despite investors’ anxieties about these potential outcomes.

Lastly, in Panel C, the model produces a substantial positive inflation risk premium of 1.28%

under the heightened inflationary risk scenario. This positive contribution to the risk premium
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is concentrated in the higher inflation ranges, particularly those exceeding 4%. The good range

between 2% and 4% negatively contributes to the inflation risk premium. These patterns are

largely consistent with what we observed in Figure 11.

It is worth highlighting that a traditional model treating inflation risk as a monotonic factor

cannot capture the U-shaped pattern of the projected pricing kernel. In the Internet Appendix,

we demonstrate this limitation using a special case of our model with only two regimes – the

normal regime n and one recession regime (either d or i). For instance, consider the case

where higher inflation is unanimously bad, as it correlates with lower growth (i.e., n vs i). In

this setting, the projected pricing kernel becomes an increasing function of future inflation.

Conversely, if higher inflation is unanimously good, we obtain a decreasing function. Neither

case is consistent with the empirical U-shaped pattern documented in Section 4.

This misspecification of the pricing kernel has critical implications for how the inflation risk

premium is generated and decomposed across different inflation ranges. Under an increasing

(decreasing) pricing kernel, both high and low inflation outcomes contribute positively (neg-

atively) to the total inflation risk premium. Not only are these results inconsistent with the

decomposition patterns observed in the data, but they also impose tight restrictions on how

the inflation risk premium emerges from the quantity and price of inflation risk. In particular,

because the premiums from high and low inflation outcomes have the same sign and do not

offset one another, a small overall inflation risk premium can arise only from a small quantity

or a small price of inflation risk – unlike the case with a U-shaped pricing kernel. To better

capture the origins of the inflation risk premium, it is important to realistically model both

ends of the inflation distribution and their relationship with future growth.

6 Conclusion

This paper provides novel insights into the complex nature of inflation risk and its pricing in

financial markets. By comparing survey-based and risk-adjusted probability distributions of fu-

ture inflation, we extract investors’ time-varying preferences for different inflation ranges. Our
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findings reveal a U-shaped pattern in the probability ratio between these distributions, con-

firming that investors generally dislike both high and low inflation environments while favoring

outcomes around the Fed’s 2% target. Importantly, we demonstrate that these preferences

are not static but evolve significantly over time, reflecting changing economic conditions and

investor perceptions. These empirical findings are further supported by our economic model,

which incorporates learning about unobservable economic regimes.

Our exercise on the decomposition of the inflation risk premium offers a more nuanced un-

derstanding of how different inflation ranges contribute to the overall premium. This approach

allows us to identify which inflation scenarios investors find particularly concerning at different

points in time, providing valuable insights that are often masked when focusing solely on the

aggregate premium. The analysis of specific periods, such as the deflationary concerns in 2020

and the inflationary pressures in 2022, illustrates how our methodology can capture shifts in

investor sentiment and economic outlook.
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