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Abstract

We construct a global implied volatility surface by combining information from the
index options of eighteen countries and regions. The global surface has a convex shape
and the degree of convexity positively predicts equity premia around the world, in- and
out-of-sample. Semi-annually, R2 are 10.7% for S&P500 and 7.9% for eighteen indexes
on average. Out-of-sample R2 are 12% for S&P500 and 6.1% globally. For U.S. fore-
casts, global convexity subsumes other option-based predictors, including global level
and slope, U.S. convexity, VIX, SVIX, variance risk premium, and left-tail volatility.
The predictability of global convexity comes from its ability to forecast the global finan-
cial cycle, which captures the common component of index returns. The information
revealed from the left tail of convexity relates to crash fears, and the right tail relates
to market confidence. Our findings highlight the importance of global options markets
for risk sharing and information aggregation.

Keywords: international return predictability, implied volatility surface, crash risk,
speculation, funding conditions
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1 Introduction

Option prices reflect state-price valuation of underlying risky streams (Cox and Ross, 1976),1

implying that index options may naturally contain information about various contributors

to the market risk premium. Empirical market-return predictors derived from index options

include the variance-risk premium (Bollerslev, Tauchen, and Zhou, 2009; Carr and Wu,

2009), tail-risk premia (Bollerslev and Todorov, 2011; Bollerslev, Todorov, and Xu, 2015),

and equity premium bounds (Martin, 2017; Chabi-Yo and Loudis, 2020). Other equity-

return predictors such as short-interest (Rapach, Ringgenberg, and Zhou, 2016) relate most

naturally to speculative demand, but from the logic of the law-of-one-price can also impact

option prices.

International equity and option markets are further connected by global risks and cross-

country risk sharing and information aggregation. Events such as the 2007-2008 financial

crisis and Covid-19 pandemic have shown global events to be increasingly important. Inte-

gration of international equity markets has long been hypothesized and tested (Solnik, 1983;

Harvey, 1991; Bekaert and Harvey, 1995). Recent literature documents a high degree of fi-

nancial globalization and co-movement in risky asset prices as well as capital flows around the

world (Bekaert and Mehl, 2019; Camanho, Hau, and Rey, 2022). This trend cultivates the

development of the Global Financial Cycle literature, led by Rey (2013); Miranda-Agrippino

and Rey (2020, 2022).

We contribute to these efforts by combining information from the index options of eigh-

teen countries and regions to construct a single global implied volatility surface. Our proce-

dure reveals a powerful and encompassing in- and out-of-sample equity-premium predictor,

global-surface convexity. Implied volatilities of index options display two prominent empiri-

cal features.2 The first, known as volatility smirk, captures that low-strike implied volatilities

typically exceed high-strike implied volatilities. We measure smirk steepness with a slope

factor. Controlling the slope factor, we show the global volatility surface has a convex shape–

1See also Debreu (1959), Arrow (1964), Breeden and Litzenberger (1978), Ross (1978), and Ross (2015).
2See for example Bates (1991; 2000; 2022), Bakshi, Cao, and Chen (1997), Das and Sundaram (1999),

Pan (2002), and Liu, Pan, and Wang (2005).
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implied volatilities of options with low and high strikes typically exceed the implied volatil-

ities of options with medium strikes. We develop a method to measure the convexity of the

volatility surface that is independent from the slope factor. In addition to slope and convex-

ity, we also measure the level and term structure of the global volatility surface. The global

level, slope, convexity, and term structure effectively summarize the time series variations

in the global volatility surface. These factors measured at the individual country level have

strong co-movements with their global counterparts, supporting the idea of global integration

of the options market.

We test the return predictability of global option factors. The global convexity is by far

the most powerful option-based return predictor. It strongly forecasts equity premia around

the world, in- and out-of-sample. When the global surface is more convex, it predicts higher

market returns. In the US, global convexity predicts S&P 500 index returns one-month

ahead with an R2 of 2.8%, and six-months ahead with an R2 of 10.7%, from 1996 to 2023.

Predictability does not deteriorate out-of-sample, and in fact the one- and six-month ahead

out-of-sample R2 in the U.S. are larger, 2.9% and 12% respectively.3 Internationally, global

convexity significantly predicts the semi-annual return in 17 of 18 countries and regions, with

an average R2 of 7.9%. Out-of-sample R2 are almost all positive and average 6.1%.

Global convexity encompasses the predictability of other important option-based pre-

dictors and is highly robust to alternative specifications. For US returns, global convexity

subsumes the predictive power of the global level and slope, the VIX index, SVIX, the

variance risk premium, and left-tail volatility. We measure convexity using strikes of all

maturities, but predictability appears to be stronger for mid-term and long-term maturities.

The measure is also robust when we use OTM options only, take value-weighted averages

across different countries, and directly estimate using option-level data instead of the stan-

dardized surface. Global convexity captures important fundamental information from the

option surface and is not sensitive to variations in measurement.

3We measure OOS R2 according to Welch and Goyal (2008). It can be higher than in-sample R2 because
it compares MSE from our predictor to a historical-mean model. The higher OOS R2 also reflects the fact
that the predictability of our predictor becomes stronger in the later sample.
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Why does global convexity predict market returns so strongly? We investigate the eco-

nomic source of return predictability. First, global convexity aggregates information from

countries around the world. The global economy is increasingly interconnected, and shocks

in one area can spread and affect other countries. A prominent example is the Covid-19 pan-

demic, originating from Asia and quickly spread to the entire world.4 We find that the global

convexity predicts the Global Financial Cycle factor, constructed by Miranda-Agrippino and

Rey (2020). The GFC factor captures the common component of risky asset return around

the world. The ability of the global convexity to forecast the GFC means that any risky

asset that significantly loads on the GFC factor can be predicted by the global convexity.

We verify this result in the data and show that the predictability of global convexity also

extends to high-beta currencies, such as the Australian and Canadian dollar.

Global convexity also effectively combines information from both the right and left tails

of the risk-neutral distribution of returns. The left tail has been widely studied in prior

literature (e.g., Andersen, Fusari, and Todorov, 2015; Bollerslev, Todorov, and Xu, 2015),

and is appropriately associated with fears of negative jumps or market crashes. High prices

in the left tail are commonly interpreted as demand for crash insurance through out-of-the-

money puts and correspondingly large risk premia. This is the conventional discount rate

channel of return predictability. The right-tail contribution to convexity, while smaller, is

also economically important. Controlling for the left tail, high prices in the right tail can be

interpreted as market optimism. Consistent with this interpretation, the right-contribution

to convexity is strongly negatively associated with funding cost measured through the TED

spread and positively associated with past market returns. This market optimism positively

predicts future returns through the cash flow channel by revealing future improvement in

dividend growth and analyst forecast.

These contributions to global convexity from the left- and right-sides of the risk-neutral

distribution have natural interpretations as the presumptive twin driving forces of financial

markets – fear and greed. It is already well-known that low price in the left tail, or lack of

4This provides an interesting counter-example to the typical finding that the US leads the world (e.g.,
Rapach, Strauss, and Zhou, 2013).
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fear, forecasts low future returns. New to the literature and controlling for the left tail, a low

right-tail price signaling lack of speculative interest also forecasts low returns. Thus, fear and

greed from the left and right tails of the risk-neutral density, while negatively correlated, are

not opposites. The global convexity measure which combines both sources of information is

required to optimize equity-premium predictability from the global option surface.

Our paper contributes to three strands of literature. The first is the literature on recov-

ering the equity premium from option data. Various measures constructed based on index

options have been proposed in this literature: for example, variance risk premium (Boller-

slev, Tauchen, and Zhou, 2009; Carr and Wu, 2009), skew risk premium (Kozhan, Neuberger,

and Schneider, 2013), left-tail volatility (Andersen, Fusari, and Todorov, 2015; Bollerslev,

Todorov, and Xu, 2015), and equity premium bounds (Martin, 2017; Chabi-Yo and Loudis,

2020; Bakshi, Crosby, Gao, and Zhou, 2019; Jensen, Lando, and Pedersen, 2019; Liu, Lu,

Xu, and Zhou, 2022; Back, Crotty, and Kazempour, 2022). This literature has shown that,

both in theory and empirics, options data contain information about the short-to-medium-

term equity premium. We contribute to this literature by discovering a new option-based

predictor, namely, global convexity. This measure encompasses the return predictability of

several previously documented indicators due to its strong ability to aggregate information,

especially information from the international market and from the right-tail of risk neu-

tral distribution. Convexity is also more symmetric and has smaller kurtosis than existing

predictors, which contributes to its empirical success.

We contribute to the general debate on whether equity premium is predictable, especially

out-of-sample. Since as early as Shiller (1981), a vast literature documents that the US

equity premium is predictable, particularly at long horizons. Welch and Goyal (2008) cast

doubt on whether the US equity premium is predictable out-of-sample (OOS). They show

that the OOS R2 of many predictors are negative. Campbell and Thompson (2008) show

that imposing weak economic restrictions on predictors improves the OOS performance. We

document a powerful short-term return predictor whose performance is robust out-of-the

sample and in many countries around the world.

Lastly, we contribute to the study on the integration of the international financial market
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and international equity premium prediction. Henkel, Martin, and Nardari (2011) find that in

the G7 countries, short-term return predictability exists only during economic contractions.

Rapach, Strauss, and Zhou (2013) show that US stock return leads the stock return in

other countries. Bollerslev, Marrone, Xu, and Zhou (2014) document that international

variance risk premia predict stock returns in developed economies and Qiao, Xu, Zhang,

and Zhou (2019) provide similar evidence for emerging markets. Miranda-Agrippino and

Rey (2020) provide evidence on the co-movement in risky asset prices around the world,

a phenomenon known as the Global Financial Cycle. Our measure, the global convexity

significantly predicts changes in their Global Financial Cycle factor. This finding reinforces

that the international options and equity market, or even other risky asset markets, are

closely tied. A single measure from international options markets significantly predicts equity

returns in 17 of 18 countries and regions, with similar coefficients, providing strong evidence

of market integration and a common global risk premium.

2 Analysis of the global implied volatility surface

This section describes our data and analyzes the characteristics of the standardized implied

volatility surface, such as its factor structure and global co-movement.

2.1 Data

Our data on index options is from the OptionMetrics Global Indices database, which provides

daily prices and implied volatilities for equity index options. We select 18 index options

from major developed economies around the world.5 These index options are cash-settled

European-style options. Table 1 lists their underlying indexes, primary exchanges, and data

availability. The earliest in our sample is the S&P 500 index option, available since January

4, 1996. Other index options gradually appear in the database, with the latest being the

OMX Stockholm 30 index option, available since May 14, 2007. Our sample period of option

5We select one major index option from each country or region. We require the option to have at least
15 years of available data in the database.

6



data is from January 1996 to December 2023.6 This 28-year period spans several market

cycles and witnesses many crises around the world, such as the Asian financial crisis, the dot-

com bubble, the 9/11 attack, the subprime mortgage crisis, the European debt crisis, and,

recently, the Covid-19 pandemic. During this period, the global financial market integration

reaches an unprecedented level (Bekaert and Mehl, 2019; Camanho, Hau, and Rey, 2022),

making it an important period to study the inter-connectedness of the global options market.

Table 1 shows that for each underlying index, there are hundreds or even thousands of

different options being traded every day. To facilitate comparison across markets, Option-

Metrics constructs an implied volatility surface that specifies the implied volatilities on a

standardized delta-maturity grid for every index. To construct this surface, OptionMetrics

applies a kernel function to compute the weighted average implied volatilities from all options

each day. The kernel function puts greater weights on options that are closer to a particular

grid point. Intuitively, the implied volatility on each grid point is the interpolated implied

volatility of options with deltas and maturities that are close to the grid point. Appendix A

provides details on the construction procedure. The standardized implied volatility surface

has the same dimension in all markets, making it easy to compare across markets and ag-

gregate information from different markets. Since most index options mature and renew on

a monthly basis, our main empirical analysis is based on the monthly standardized implied

volatility surface, which is the average of daily surfaces within a month.7 When testing the

return predictability of the implied volatility surface, we remove the last trading day in each

month from the monthly average to avoid any potential look-ahead bias arising from the

time zone mismatch across different countries.

We obtain equity index returns from FactSet. For 17 out of 18 indexes, we have available

data from 1996 to 2024. The returns of the MIB index in Italy starts from 1998. In most

empirical tests, we convert local-currency returns to US-dollar returns and subtract the US

risk-free rate to compute excess index returns.8 US risk-free rate is from Ken French’s web-

6We have a longer sample period for index returns, which are available until December 2024.
7Most options have fixed maturity days within a month, e.g., the third Friday of each month. Due to

this feature, Gao, He, and Hu (2023) show that option prices can display cyclical patterns within a month.
8We use local currency returns in a robustness test.
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site. We obtain exchange rate data from FactSet. Table A1 provides summary statistics on

excess index returns and returns of currency spot rates. In addition, we obtain factor data

on the Global Financial Cycle constructed by Miranda-Agrippino and Rey (2020) from the

author’s website. To compare the strength of our proposed return predictor with other pre-

dictors from the literature, we also download data from various authors’ websites, the CBOE

website, and the FRED website.9 Details of return predictors can be found in Appendix B.

2.2 Standardized implied volatility surface

This section discusses the characteristics of the standardized implied volatility surface. Be-

fore we proceed, we take several steps to clean the data. First, we drop all grid points with

a maturity of 10 days, because the data at this maturity is missing for most indexes. We

also drop all grid points with a maturity of 730 days, because many indexes do not have

options with a maturity longer than two years. The implied volatility at this maturity point

is largely based on the extrapolated values. The remaining set of maturities on the surface

are 30, 60, 91, 122, 152, 182, 273, 365, and 547 days.

OptionMetrics constructs separate surfaces for put and call options. The available delta

grid points are from 0.1 to 0.9 at 0.05 increment for call options and are from -0.1 to -0.9 at

0.05 increment for put options.10 We re-label these grid points such that they are the same

for calls and puts. Specifically, we multiply the delta of put options by -1. We multiply the

delta of all call options by -1 and then add 1. After applying this one-to-one transformation,

both call option surface and put option surface align with each other on the same set of delta

grid points, and the new deltas also positively align with strike prices. Thus, the re-labeled

deltas can be considered as option strikes, i.e., options with lower adjusted deltas correspond

to options with lower strike prices. Due to put-call parity, the values on the call surface are

9For example, Amit Goyal’s website provides a large number of return predictors published in the prior
literature.

10For indexes in the Asian Pacific region (i.e., Australia, Japan, Taiwan, Hong Kong, and Korea), the
delta grid points are slightly different from the US and European indexes. The available delta grid points
for these Asian Pacific indexes are from 0.2 to 0.8 at 0.05 increment for call options and are from -0.2 to -0.8
at 0.05 increment for put options. Following OptionMetrics’ methodology, we extend the implied volatility
surface of indexes in the Asian Pacific region to be the same as other indexes.
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almost the same as the values on the put surface at the same delta-maturity point. We take

the average between put and call surfaces as a single implied volatility surface for each index.

We take the average surface across all indexes as the global implied volatility surface.

Figure 1 and Table 2 present the unconditional global implied volatility surface. The im-

plied volatilities decrease with deltas (or strikes) at all maturities. This pattern is commonly

known as the volatility smirk or volatility skew. On the other hand, variations in implied

volatilities across maturities are small, displaying an essentially flat term structure.

2.3 Factor structure of implied volatility surface

The implied volatility surface has 17×9 data points each period. To reduce its dimensionality

and analyze its dynamics, we use a three-factor model to capture the shape of the surface.

The three factors are the level, slope, and term structure of the surface.11 We measure the

level of the implied volatility surface as the average value on the surface in a given month.

To measure the slope and term structure of a surface in a given month, we regress implied

volatilities on the deltas and the logarithm of days to maturity. We label the coefficient on

the deltas as the slope factor and the coefficient on the log of days to maturity as the term

structure factor.

How effectively can level, slope, and term structure summarize the surface? Table A3

shows the R2 of various linear regression models in summarizing monthly volatility surfaces.

The model that includes delta and maturity (and a constant term to represent the level

factor) produces an average R2 of 80% across all index options (and 90% in the USA).

This means a large fraction of surface variations can be summarized by these three factors.

Table A3 also shows that the delta dimension is the dominant dimension. The majority of

conditional variations on the surface are along the delta dimension. The model that only

includes delta summarizes the surface with an average R2 of 70% (and 81% in the USA).

The term structure dimension only accounts for less than 10% of conditional variations on

11For example, Dumas, Fleming, andWhaley (1998) use a similar approach. Cont, Fonseca, and Durrleman
(2002) use principal component analysis to summarize the surface. These methods are closely related to each
other. For example, the first principal component is approximately the level of the surface.
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the surface.

After controlling the level, slope, and term structure, what is the shape of the residual

implied volatility surface?12 Figure 1 and Table 2 Panel B present the residual implied

volatility surface. The residual surface displays a convex shape: the implied volatilities are

higher at the two tails and lower in the middle. This shape is reminiscent of the volatility

smile commonly observed in individual stock options. As we show in later sections, the

degree of the convexity of the surface has a strong predictability of the Global Financial

Cycle, which drives equity returns around the world.

2.4 Measuring the surface convexity

We develop a simple convexity measure of the implied volatility surface. This convexity

measure is the same for both the volatility surface and the residual volatility surface. Thus,

it is not mechanically linked to the level, slope, or term factor. Specifically, let V (∆, τ)

denote the implied volatility (or the residual implied volatility) with delta ∆ and maturity

τ . For any fixed maturity τ , we define the convexity of the implied volatility curve as

C(τ) = E

[
V (∆1, τ) + V (∆2, τ)

2
− V

(
∆1 +∆2

2
, 2

)]
(1)

In other words, we define the convexity of an implied volatility curve as the expected dif-

ference between the average implied volatility at two different delta points and the implied

volatility at the point in the middle of the two.13

On the standardized implied volatility surface, we have 17 fixed delta points from 0.1

to 0.9 at 0.05 increments, which give us 64 triplets (∆i,∆j,∆k) with ∆i < ∆k and ∆j =

(∆i +∆k)/2. Numerically, the convexity at maturity τ is

C(τ) =
1

64

∑
(i,j,k)

V (∆i, τ) + V (∆k, τ)

2
− V (∆j, τ) (2)

12In each month, we regress implied volatilities on the deltas and the log of days to maturity. We take the
residuals of this regression as the residual implied volatility surface.

13This quantity is mathematically related to the second derivative of the implied volatility with respect to
delta.
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which equals to the following equation:14

C(τ) =
1

64
[4V (0.1, τ) + 2.5V (0.15, τ) + 2V (0.2, τ) + 0.5V (0.25, τ)− 1.5V (0.35, τ)

− 2V (0.4, τ)− 3.5V (0.45, τ)− 4V (0.5, τ)− 3.5V (0.55, τ)− 2V (0.6, τ)

− 1.5V (0.65, τ) + 0.5V (0.75, τ) + 2V (0.8, τ) + 2.5V (0.85, τ) + 4V (0.9, τ)].

(3)

The above equation shows that our proposed convexity measure is the weighted average

implied volatilities at different delta points, where the weights add up to 0. The weights

are positive at the tails and are negative at the center. We compute the convexity at each

maturity on the standardized surface and take the simple average as the convexity of the

surface. This procedure also produces the same convexity measure for the residual surface.15

Empirically, the convexity measure in Equation (3) is highly correlated with the regression

coefficient produced from regressing implied volatilities on the squared delta. Table A3 shows

that the squared-delta term in model 4 explains an additional 6% of variations on the implied

volatility surface. In robustness checks, we also use alternative ways to measure convexity

and find that they are similar and do not affect our main results. Figure 2 plots the level,

slope, term structure, and convexity of the global and the US volatility surface from 1996 to

2023. We observe a strong co-movement between the global surface and the US surface. The

correlation between the global and USA level, slope, term structure, and convexity are 96%,

79%, 93%, and 73%, respectively. This suggests the global options market is integrated.

14See Appendix C for the derivation of Equation (3)
15We can show that this procedure produces the same convexity measure for the residual implied volatility

surface, which means that this convexity measure is not mechanically linked to the level, slope, or term
structure of the surface. The reason that the convexity on the residual surface is the same is that the weights
in Equation (3) add up to zero, and weights times delta also add up to zero. Since residual implied volatilities
equal to

RV (∆, τ) = V (∆, τ)− b0 − b1∆− b2 ln τ,

if we take out the effect of level, slope, and term structure by substituting this into Equation (3), the
convexity measure would not change.
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3 Equity premium predictability

This section documents the return predictability of several option-based variables in the

US and in the international setting. In addition to the variables described in the previous

section, we also collect data on the VIX index, the SVIX index introduced by Martin (2017),

the left-tail volatility (LTV) index constructed by Bollerslev, Todorov, and Xu (2015), and

the US variance risk premium (VRP) proposed by Bollerslev, Tauchen, and Zhou (2009).16

Table 3 presents the summary statistics of these option-based variables. Notably, except

for the convexity indexes, option-based variables all have heavy tails with kurtosis above

4 and strong degrees of asymmetry with absolute skewness above 1. For comparison, the

kurtosis and skewness of the S&P 500 monthly returns are 3.83 and -0.57, respectively. This

suggests that convexity indexes behave somewhat differently from other variables. Table 3

Panel B shows the pairwise correlation among these variables. We observe strong correlations

among some pairs. For example, the global level, slope, and term structure have a correlation

of 93%, -80%, and, -80% with the VIX index, respectively.

3.1 Return predictability: US evidence

We test the ability of option-based measures to predict the S&P 500 index returns during our

sample period of 1996 to 2023. As the theoretical literature suggests, index options contain

information about near-term stock market returns (Martin, 2017). We use these variables to

predict monthly or semi-annual index returns. When performing return predictability tests,

we standardize all predictors by dividing their values by their full sample standard deviation.

Therefore, the standard deviation of all predictors is 1 in predictive regressions. This does

not affect t-statistics or R2 but makes the regression coefficients easy to interpret.

Table 4 regresses the cumulative returns of the S&P 500 index from month t+1 to t+6

16We obtain the monthly average VIX index from FRED. We obtain the monthly average 30-day SVIX
index from Ian Martin’s website, which is available up to 2012. We replicate and extend his data to 2023.
Our replication is over 99% correlated with the original SVIX data before 2012. We download LTV data
from Viktor Todorov’s website. His data is available until 2019. Post 2019, we use CBOE S&P 500 Left Tail
Volatility Index. We download VRP data from Hao Zhou’s website. All variables have a monthly frequency.
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on option-based predictors in month t. Panel A of Table 4 reports the results of univariate

regressions. It shows that four out of the nine predictors significantly predict the semi-

annual S&P 500 returns.17 They are global convexity, USA convexity, global slope, and LTV

index. Global convexity produces the highest R2 at 10.7%, while USA convexity produces

the second highest R2 at 8%. In terms of the economic magnitude, one standard deviation

higher global convexity predicts that the S&P 500 in the next six months will have 3.66%

higher return. Similarly, one standard deviation higher USA convexity predicts a 3.17%

increase in return. Table 4 Panel B performs multivariate regressions to test whether the

global convexity subsumes the predictability of other predictors. The global convexity is

highly significant in all eight columns, whereas none of the other predictors, including the

USA convexity, is significant.

Table 5 regresses S&P 500 index return in month t+ 1 on option predictors in month t.

Predicting monthly market returns is more challenging because monthly returns are more

noisy. Panel A shows that only two predictors, global and USA convexity, are significant. The

R2 of the two predictors are 2.8% and 1.3%, respectively. The magnitude of their coefficients

are high. A one-standard-deviation increase in global convexity predicts the monthly S&P

return to be 0.75% higher next month, which is more than the unconditional average return

of the S&P 500. A one-standard-deviation increase in USA convexity predicts the monthly

S&P 500 return to be 0.5% higher. Table 5 Panel B shows the results of multivariate

regressions. Similar to Table 4, the global convexity is significant in all eight columns and

none of the other predictors is significant.

Table 6 shows how convexity measures predict monthly S&P returns in each month t+k

with k = 1, 2, 3, ..., 12. This test reveals how information from a predictor in month t is

realized in stock returns over time and whether there is any reversal in the future. Panel A

shows that the predictability of global convexity is always significant in the first six months.

The magnitude of the coefficient gradually decreases with the peak occurring in month t+1.

The sign of the coefficients are almost all positive in the first 12 months, which means there is

17We use Newey-West standard errors with 6 lags of autocorrelation to calculate t-statistics when predicting
semi-annual returns and 1 lag of autocorrelation to calculate t-statistics when predicting monthly returns.
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no reversal. Panel B shows the predictability of the USA convexity over time. The patterns

are similar to Panel A, except that the peak of the coefficient occurs in month t+2. Similar

to global convexity, there is no reversal in the return predictability of US convexity.

This section presents strong in-sample evidence that convexity measures extracted from

the global or US volatility surface predict the US equity returns. The global convexity has

the best in-sample performance. It subsumes the predictability of the level, slope, or term

structure factors, and some existing option-based predictors in the literature. Before we

present the out-of-sample analysis, we turn our attention to the international evidence.

3.2 Return predictability: international evidence

This section evaluates the ability of the global convexity in predicting international index

returns. Table 7 regresses the monthly excess return of each index in month t + 1 on the

global convexity index in month t. It shows that the global convexity significantly predicts

17 out of the 18 indexes during the past 28 years. The only insignificant case is Belgium.

The R2 of these regressions are high, all above 1%. The KOSPI 200 index in Korea is the

most predictable. A one-standard-deviation increase in global convexity predicts 2.1% higher

KOSPI 200 return in the next month, and the R2 is 4.4%. The indexes in Taiwan, Australia,

Sweden, and Italy are also highly predictable with the regression coefficients above 1 and

the R2 above 2%. When predicting semi-annual returns, we find similar results as shown in

Table A4. The average R2 of predicting semi-annual returns is around 8% across all indexes.

The returns in this Table 7 are measured in US dollars. The ability of global convexity to

predict exchange rates contributes to part of its return predictability. In the appendix, Table

A6 shows that the global convexity also significantly predicts the local-currency denominated

index returns.

The last column of Table 7 shows that the global convexity also significantly predicts the

monthly change in the Miranda-Agrippino and Rey (2020) Global Financial Cycle (GFC)

factor.18 Miranda-Agrippino and Rey (2020) use a dynamic factor model to estimate a com-

18We use the newest standardized GFC factor obtained from Silvia Miranda-Agrippino’s website. Its level
has a mean of 0 and a standard deviation of 1. Its monthly change has a standard deviation of 0.28 in our
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mon global factor from over 800 price series, covering equities, commodities, and corporate

bonds around the world, and show that it explains an important fraction of the variation of

risky asset prices. The fact that global convexity predicts the GFC factor suggests that it

has the potential to predict a large number of other assets through the global financial cycle

channel. We explore this channel further in Section 4.

3.3 Out-of-sample performance

This section tests the out-of-sample performance of convexity measures. Specifically, we

use 10 years of data from 1996 to 2005 to train predictive models based on global or USA

convexity and compare their performance with the naive historical-mean model from 2006 to

2023. The model parameters are updated on an expanding window basis. Following Welch

and Goyal (2008), we calculated the out-of-sample R2 based on the ratio of the mean squared

errors between the predictive model and the naive model

R2
OOS = 1− MSEA

MSEN

If the mean squared error of the predictive model, MSEA, is smaller than that of the naive

model, MSEN , then R2
OOS is positive. Otherwise, it is negative.

Table 8 shows R2
OOS of the global and USA convexity index in predicting 1-month and

6-month equity returns around the world. Column 1 shows that global convexity has a

positive R2
OOS when predicting monthly returns of all equity indexes in our sample. The

average is 2.1%. The last row of Column 1 shows that global convexity also has a positive

R2
OOS when predicting the monthly change in the GFC factor. Column 2 shows the R2

OOS of

global convexity in predicting semi-annual returns. The results are similar. Global convexity

has positive R2
OOS in all but 2 indexes. The average R2

OOS is high, at 6.1%. The R2
OOS of

predicting the semi-annual change in GFC factor is 10.6%. Table 8 Columns 3 and 4 show

the R2
OOS of USA convexity in predicting equity returns around the world. It has positive

R2
OOS when predicting equity returns in the US, but its R2

OOS are mostly negative when

sample.
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predicting the returns of other indexes.

Overall, this section documents the superiority of global convexity in predicting equity

returns around the world, both in-sample and out-of-sample.

4 Return predictability via the global financial cycle

Our interpretation of the powerful return predictability of global convexity is that it contains

information about the global financial cycle, which drives the returns of all risky assets around

the world.

We present three sets of evidence that support this interpretation. First, we have already

seen in the US that global convexity drives out the predictability of USA convexity. This

finding applies to all the indexes in our sample. Global convexity has a stronger predictive

power than each index’s local convexity measure. Second, we find that global convexity

does not predict the idiosyncratic part of index returns after controlling for the exposure to

the global financial cycle. This means that the predictability of global convexity on each

index must go through the global financial cycle channel. Lastly, we show that the strength

of the predictability of global convexity on each asset depends on the asset’s exposure to

the global financial cycle. Assets that are more exposed to the global financial cycle are

more predictable by the global convexity measure. The last finding applies to not only

equity indexes but also other asset classes, such as currencies, fixed income, derivatives, and

commodities.

4.1 Global convexity vs. local convexity

Table 9 Panel A regresses each index’s monthly returns on the global convexity measure and

the local convexity measure, i.e., the convexity of the index’s own surface. The number of

observations in each column varies depending on the availability of each index option. Similar

to the US evidence, the global convexity measure dominates the local convexity measure in

predicting equity returns. None of the local convexity measures is significant once we include
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the global convexity measure in the regression, while the global convexity is significant in

predicting the returns of all but one index.19

Our interpretation of this finding is that each local convexity measure contains informa-

tion about the index’s future return, but it also contains noise that is orthogonal to stock

returns. Since option prices are noisy as shown by Duarte, Jones, and Wang (2024), when

used in isolation, local convexity measures have a weaker statistical power. When combined

across different markets, noise from each individual market is canceled out. What remains is

the information about future stock returns that is common to all markets, which is related

to the global financial cycle.

4.2 Predicting common vs. idiosyncratic index returns

This section shows that the global convexity measure predicts international equity returns

through the global financial cycle channel. Specifically, we regress each index return in

month t + 1 on the global convexity measure in month t and the change in the GFC factor

in month t + 1. Table 9 Panel B shows the results. There are several important results

in this table. First, in all the columns, the coefficient of ∆GFCt+1 is positive and highly

statistically significant, which means that all the equity indexes in our sample load positively

on the GFC factor. Second, the R2 from these regressions are large, ranging from 40% to

80%, which indicates that a large fraction of variation in equity index returns is explained

by the variations in the GFC factor. Lastly, the coefficients on the global convexity measure

become insignificant for most countries. This means that the global convexity does not

predict index returns that are orthogonal to the global financial cycle for most indexes. In

other words, the global convexity predicts a common component of index returns, captured

by the GFC factor.

19In the appendix, A5 shows that each index’s local convexity measure, when used alone, still possesses
predictive power of local stock returns.
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4.3 Return predictability and GFC beta

Given that the global convexity predicts changes in the GFC factor and the GFC factor is the

dominant driver of risky asset returns around the world, we expect the global convexity to

predict the return of any asset that co-moves with the GFC factor. In addition, we conjecture

that the stronger an asset co-moves with the GFC factor, the greater its predicted returns are.

We find supporting evidence of this conjecture and the evidence is not limited to equities.

Formally, this conjecture can be written as

ri,t+1 = ai + βift+1 + ϵi,t+1 (4)

ft+1 = bct + ut+1 (5)

where ri,t+1 is the return of asset i, ft+1 is the change in the GFC factor, and ct is the global

convexity.20 This implies

ri,t+1 = ai + γict + βiut+1 + ϵi,t+1 (6)

where ut+1 ⊥ ct, ϵi,t+1 ⊥ ct, and,

γi = bβi (7)

We test Equation (7) with two-pass regressions as is common in cross-sectional asset pricing

tests. We start with a group of test assets, e.g., equity indexes, currencies, or both. In the

first pass, we estimate each asset’s beta with respect to the GFC factor as in Equation (4).

We also run predictive regressions to estimate each asset’s γi in Equation (6). Note that γi

can be interpreted as the expected increase in asset i’s return after one unit increase in the

global convexity. In the second pass, we regress γi on βi to verify that b is significant and the

constant term is not significantly different from zero. We compute standard errors through

bootstrap.

Table 10 Panel A reports the results of this test. We have three groups of test assets:

18 equity indexes, 10 currencies, and both equities and currencies (i.e., 28 assets). The

results are consistent with our conjecture. The coefficients on the GFC beta are positive and

20We de-mean both ft+1 and ct, eliminating the need of a constant term.

18



statistically significant in all three groups. This means assets with higher betas on the GFC

factor are expected to have a larger increase in return after one unit increase in the global

convexity. The constants in these regressions are insignificant. The R2 in these regressions

are also high, suggesting that the GFC channel explains the return predictability of global

convexity well. Figure 4 shows the relationship between the predicted increase in return and

GFC betas for both equity indexes and currencies. We observe a strong linear relationship,

consistent with the prediction of Equation (7).

As a robustness check, we repeat this two-pass exercise with 127 test assets from the

He, Kelly, and Manela (2017) (HKM) dataset.21 The HKM dataset includes test assets

from several asset classes, such as equities, fixed income, options, CDS, currencies, and

commodities. The results, as shown in Figure A.1 in the appendix, are consistent with

Equation (7) as well. Notably, the HKM dataset contains assets with negative loadings on

the GFC factor, such as US government bonds, and we observe that the global convexity

negatively predicts the returns of those assets.

4.4 Conditional asset pricing model

Equation (4) is similar to the CAPM if we consider the GFC factor as the market factor.

Therefore, it would be interesting to test how well it prices global risky assets in the cross-

section. We use the two-pass regression procedure again to test the asset pricing implication

of the GFC factor.

Table 10 Panel B reports the results. In Columns 1 to 3, we regress each asset’s uncon-

ditional expected return on its GFC beta. We find that the data does not support the GFC

asset pricing model within a single asset class. The coefficients on the GFC beta are insignif-

icant and the R2 are low in Columns 1 and 2. These results are reminiscent of the failure of

the CAPM. Column 3 shows a significant coefficient on the GFC beta if both equities and

currencies are included as test assets.

In Columns 4 to 6, we test the conditional asset pricing model by regressing the condi-

21We download the data from Asaf Manela’s website. The sample period of his data ends in 2012.
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tional expected return of each asset on their GFC betas. We measure each asset’s expected

monthly return conditional on the global convexity in the prior month being above its sample

mean. In this conditional asset pricing test, we find that data supports the GFC pricing

model. The coefficients on the GFC beta are positive and highly statistically significant in all

three cases. The R2’s are high as well. These results show that the GFC factor successfully

prices the cross-section of international assets when the global convexity is high.

5 Dissecting the predictability of global convexity

Having established the strong return predictability of the global convexity measure both

in-sample and out-of-sample, this section investigates the source of its predictability. Our

approach is to decompose the global convexity into two components, convexity left and

convexity right, and analyze each component’s information content separately.

5.1 Decompose global convexity into left and right components

Equation (3) indicates the convexity measure is the difference between the average implied

volatilities at both tails and the average implied volatilities at the center of the volatility

surface. A natural way to understand this measure is to examine the two tails separately.

Specifically, we decompose it into two orthogonal components: the convexity left and the

convexity right index. We take two steps to accomplish this. In the first step, we decompose

the global convexity index into the contribution from the left-tail and the contribution from

the right-tail by splitting Equation (3) into two parts: left-minus-center (LMC) and right-

minus-center (RMC). The equations are the following (note that we omit subscript τ for

brevity):

LMC =
1

64
[4IV (0.1) + 2.5IV (0.15) + 2IV (0.2) + 0.5IV (0.25)− 0.75IV (0.35)− IV (0.4)

− 1.75IV (0.45)− 2IV (0.5)− 1.75IV (0.55)− IV (0.6)− 0.75IV (0.65)]

(8)
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RMC =
1

64
[−0.75IV (0.35)− IV (0.4)− 1.75IV (0.45)− 2IV (0.5)− 1.75IV (0.55)

− IV (0.6)− 0.75IV (0.65) + 0.5IV (0.75) + 2IV (0.8) + 2.5IV (0.85) + 4IV (0.9)]

(9)

The sum of Equation (8) and (9) is exactly Equation (3). Empirically, the correlation

between LMC and RMC is highly negative, at -88%, as shown in Table 11 Panel A. To

facilitate interpretation, in the next step, we orthogonalize RMC with respect to LMC by

regressing RMC on LMC:

RMCt = a0 + a1LMCt + et (10)

We define the convexity right index as

CRt = a0 + et (11)

and the convexity left index as

CLt = LMCt(1 + a1) (12)

These two components are orthogonal to each other, and their sum still equals to the global

convexity index. Note that the convexity left index is just a scaled version of the left-minus-

center.

Table 11 Panel A reports the correlation matrix among these sub-convexity measures.

Convexity left (i.e., left-minus-center) is 82% correlated with the global convexity measure,

while convexity right is 58% correlated with the global convexity measure. This means

approximately two-thirds of variations in the global convexity is driven by variations in

convexity left, while the remaining one-third is driven by variations in convexity right.

Table 11 Panel B regresses convexity left and convexity right indexes on various option-

based variables. Columns 1 to 4 show that the convexity left is highly significantly related

with the global slope, VIX, SVIX, and LTV. In particular, the global slope explains 95% of

variations in the convexity left. This is as expected since the convexity left is essentially the

implied volatilities at the left tail minus the implied volatilities at the center, approximately
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the slope of the surface. The literature commonly refers to this measure as downside risk

or downside jump risk, since it reflects the difference in the implied volatility between deep

OTM puts and ATM options (Cao, Goyal, Wang, Zhan, and Zhang, 2024). Therefore, we

interpret the convexity left as a global downside risk measure. When the left convexity is

high, investors around the world seek downside protection by buying OTM puts and pushing

up implied volatilities at the left tail. Figure 5 plots the time series of the convexity left

index. Consistent with this interpretation, the convexity left index peaks around major

crises, such as the 1998 Russian default, the 2008 sub-prime mortgage crisis, the 2010 Dow

flash crash, the European debt crisis in 2010 and 2011, and the Covid-19 pandemic.22

Columns 5 to 8 of Table 11 Panel B show that the convexity right index is weakly related

to the global slope and other option-based measures as indicated by the low R2’s. The

coefficients on these variables have the opposite sign of those in Columns 1 to 4, suggesting

the right tail contains different information from the left tail.

5.2 Information content in convexity right

Our interpretation of the convexity right is that it reflects short-term investor confidence. For

example, when investors bet on the market to increase in the short run, they could purchase

OTM call options, pushing up the implied volatilities in the right tail relative to the middle.

Another possibility is that when investors want to short the market, they could buy ATM

put options (Jones, Mo, and Wang, 2018; Chordia, Kurov, Muravyev, and Subrahmanyam,

2017; Muravyev, Pearson, and Pollet, 2022), driving up the implied volatilities in the middle

relative to the right tail. Therefore, higher convexity right is associated with positive market

sentiment, whereas lower convexity right reflects investor pessimism.

We present two sets of evidence that support this interpretation. In the first exercise,

we identify extreme realizations of convexity right from Figure 5 and ask ChatGPT what

happened in the financial market during those periods. The headline response from ChatGPT

22We identify seven peaks of the global convexity left visually and ask ChatGPT 4o “What happened in
the financial market” during each peak. Table A7 reports the headline response from ChatGPT 4o, which
is consistent with the view that global convexity left peaks during crisis time.
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4o is listed in Table A7. Consistent with the confidence interpretation, at the peak of the

convexity right, the response typically mentions “rebound” or “optimism.” At the bottom of

the convexity right, the response often contains negative words, such as “bear market” and

“uncertainty.”

To further understand what explains the convexity right, we collect data on many macroe-

conomic variables, including equity premium predictors from the literature and other state

variables relevant to asset pricing. Details of these variables are in Appendix B. We use

LASSO to select the most informative variables for the convexity right.23 By adjusting the

tuning parameter in LASSO, we select k most informative variables with k = 1, 2, ..., 5. Table

12 presents the selected variables in the order of their importance. They are TED spread,

6-month S&P 500 cumulative return, output gap of industrial production, term structure of

the global volatility surface, and aggregate short interest in the US.24

Table 12 Panel A presents the correlation matrix among these variables. The correlation

between convexity right and TED spread is -56%, strongest among all variables. TED spread

measures the funding cost of institutional investors around the world. A higher TED spread

means traders face higher funding costs relative to the T-bill rate, which is a bad sign for

the market. Convexity right is positively correlated with S&P 500 returns and the term

structure of implied volatilities with correlations at 41% and 39%, respectively. These two

variables reflect positive news in the market. Convexity right is also negatively associated

with the output gap and aggregate short interest in the US, both suggest negative economic

conditions. Panel B of Table 12 regresses the convexity right on these variables and shows

that collectively, the five variables explain about half of the variations in the convexity right.

The signs of the regression coefficients are consistent with the view that the convexity right

reflects market confidence.

23LASSO has been used in the recent asset pricing literature to select the most important variables
to explain the anomaly zoo, e.g., Freyberger, Neuhierl, and Weber (2020) and DeMiguel, Martin-Utrera,
Nogales, and Uppal (2020)

24Cooper and Priestley (2009) show that industrial production output gap predicts equity returns in the
US and G7 countries. Rapach, Ringgenberg, and Zhou (2016) show that the aggregate short interest in the
US predicts stock market returns.
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5.3 Predicting cash flow and discount rate news

Given that the convexity left and convexity right reflect different information, we expect

their return predictability to come from different channels. We use a modified Campbell-

Shiller decomposition to decompose the monthly S&P 500 excess returns into discount rate

news and cash flow news. We find that the convexity left significantly predicts the discount

rate news, but not the cash flow news, whereas the convexity right mainly predicts the cash

flow news, but not discount rate news.

To decompose market returns, we first construct a proxy of the discount rate by regressing

market returns on the dividend price ratio, earnings price ratio, T-bill yield, SVIX, and LTV.

The predicted market return from these conditioning variables is our discount rate proxy

Ê[Rt+1]. We then regress the market return on the changes in the discount rate proxy to

extract discount rate news and cash flow news component as in the following equation

Rt+1 = a+ b×∆Ê[Rt+1]︸ ︷︷ ︸
DR news

+ ϵt+1︸︷︷︸
CF news

.

Table 13 presents the results of regressing discount rate and cash flow news on various

convexity measures. Panel A shows that two-thirds of global convexity’s return predictability

comes from predicting the discount rate news (i.e., 0.5% of the 0.75%), and the remaining

one-third comes from predicting the cash flow news (i.e., 0.25% of the 0.75%). Panel B shows

that the convexity left only predicts the discount rate news, while Panel C shows that the

convexity right mainly predicts the cash flow news.

To further verify the cash flow predictability, we regress the dividend growth rate of S&P

500 companies and changes in the analyst forecast of long-term earnings on the lagged con-

vexity left and convexity right. Panel D shows that convexity left does not predict dividend

growth or analyst forecast, while convexity right significantly predicts both measures. This

shows that the convexity right, reflecting market confidence, positively predicts future cash

flow. Overall, this section shows that the global convexity contains information about the

discount rate news through the left-tail and cash flow news through the right-tail. Both the
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convexity left and convexity right contribute to the predictability of the global convexity.

6 Additional analysis and robustness checks

This section conducts additional analysis and robustness checks.

6.1 Alternative methodologies to measure convexity

We consider five different alternative ways to measure global convexity and show that these

alternative convexity measures all significantly predict the monthly and semi-annual S&P

500 returns. The five measures are the following.

OTM Convexity In this specification, we combine the out-of-the-money (OTM) section

of the call and put surface as the global surface. We define the OTM call surface as the

part of the call surface with the adjusted delta greater or equal to 0.5 and the OTM put

surface as the part of the put surface with the adjusted delta less or equal to 0.5. When

delta equals 0.5, we take the average between the calls and puts. With this OTM surface,

we apply Equation (3) to compute the global convexity.

Value weighted In this specification, we take the value-weight average of local convexity

measures from each country or region as the global convexity measure. The value weights

are based on the total size of each country or region’s stock market capitalization, which we

obtain from the World Bank.

Coefficient on delta-squared Instead of calculating convexity using Equation (3), we use

a regression approach by regressing implied volatilities of a given surface on the delta, the

log days to maturity, and the delta-squared terms. We use the estimated coefficient on the

delta-squared term as the convexity measure.

Individual option In this approach, we directly measure convexity from individual option

data without using the volatility surface data. To measure convexity using option-level data,

we first clean the data. We remove options with a maturity shorter than 5 days. We also set

a maximum implied volatility to be 200%. We use only OTM options (i.e., put options with
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adjusted delta less than or equal to 0.5 and call options with adjusted delta greater than

or equal to 0.5). We then classify options into three bins based on their adjusted delta.25

Those with an adjusted delta less than 1/3 (i.e., low-strike options) are grouped in the left-

tail bin. Those with an adjusted delta greater than 2/3 (i.e., high-strike options) are in the

right-tail bin. The remaining are in the middle bin. We then take the simple average of the

implied volatility of options in each bin on each day. We average these implied volatilities

within each month. The convexity measure of each index is then the average of left-tail and

right-tail implied volatility minus the middle implied volatility. We take the average across

all indexes as the global convexity.

Annual change We measure the change of our baseline convexity measure from its value

12 months ago and use this change as the predictor to predict equity returns.

Table 14 Panel A shows the correlation of these alternative measures of convexity with our

baseline measure. In general, the correlations are high. For example, using the regression

approach to compute convexity produces a near-identical measure. Panel B tests these

alternative measures’ predictability on semi-annual S&P 500 returns. These measures are

all highly significant with similar R2 at around 10%. Panel C tests the monthly return

predictability of alternative convexity measures. Similarly, all measures are statistically

significant at the 5% or 1% level and the predictive R2 are high, ranging from 1.4% to 3.4%.

6.2 Top ten equity premium predictors

This section ranks the predictability of 70 equity premium predictors. The details of these

variables are in Appendix B. We start the process from the dataset compiled by Welch and

Goyal (2008) and Goyal, Welch, and Zafirov (2024), which collectively contain 45 predictors.

We then add 14 option-related variables, mainly the ones constructed from our dataset. In

addition, we add 13 important macroeconomic state variables, such as past market returns,

proxies of funding cost and liquidity, intermediary leverage, sentiment, etc.

In total, we have 70 variables with a complete history from January 1996 or earlier to

25See Section 2.2 for delta adjustment.
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December 2023. Table 15 Panel A lists the top 10 predictors in terms of their in-sample and

out-of-sample R2 when predicting monthly S&P 500 returns.26 Notably, the global convexity

ranks at the top both in-sample and out-of-sample. Moreover, other sub-convexity indexes,

such as the convexity left and USA convexity, also rank among the top 10 list. Table 15

Panel B shows which variables have strong predictive power of the global financial cycle. The

global convexity also ranks at the top, both in-sample and out-of-the-sample. The global

convexity is the only variable in the in-sample top 10 list of both panels.

Table 15 Panel B suggests that predicting the GFC is more difficult than predicting the

S&P 500. The average in-sample R2 of the top 10 GFC predictors is 1.29%, compared to

the 1.95% average R2 from the top 10 S&P 500 predictors. The average OOS R2 when

predicting the GFC is 0.81% and for the US is 1.21%. Given the importance of the GFC

factor in driving the returns of risky assets around the world, understanding the drivers of

the GFC factor is an interesting area of future research.

6.3 Predicting local-currency equity premium and exchange rates

In our main specifications, we find that the global convexity predicts equity index returns

denominated in the US dollar. This section tests whether the global convexity measure can

predict each index’s local currency return. We find that when we measure index returns in

the local currency, the global convexity continue to significantly predict the returns of almost

all the indexes in our sample.

The difference between the US dollar return and the local currency return is the currency

surprise, so we also test the global convexity’s ability to predict exchange rates. Table A6

in the appendix reports the results. Panel A shows that global convexity positively and

significantly predicts the returns of the Australian dollar, Canadian dollar, and New Taiwan

dollar at monthly frequency.27 Panel B shows that at semi-annual frequency, the global

26We use all available data as far back as possible to conduct the out-of-sample test for each variable. The
S&P 500 return data in this test is from CRSP, available since 1926. In Panel B, the GFC factor data is
available since 1980.

27We measure exchange return as the percentage change in a currency’s value against the dollar. A positive
coefficient indicates the currency is appreciating against the US dollar.
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convexity also positively and significantly predicts the return of Korean Won. The global

convexity significantly and negatively predicts the return of the Hong Kong dollar.

6.4 Term structure of convexity measures

In our baseline measure, we take the average convexity value across different maturities.

Table A8 Panel A shows the summary statistics of the convexity measure at each maturity. In

general, the global convexity is positive at all maturities. Convexity declines with maturity.

The 30-day implied volatility curve has the highest convexity on average. The standard

deviation, skewness, and kurtosis all tend to decline with maturity, suggesting that the

convexity of short-term options are more volatility and more likely to take extremely large

values over time.

Does the predictability of the convexity change with maturity? We classify maturity into

three groups and take the average convexity measure within each group. We classify 30-,

60, and 91-day options as short-term, 122-, 152-, and 182-day options as mid-term, and the

remaining as long-term. As shown in Panel B, short-term convexity tends to have worse

predictability than mid-term and long-term convexity measures. For example, the R2 of

short-term convexity in predicting the 1-month and 6-month S&P 500 return is only 0.5% and

7.5%, respectively. The mid-term convexity performs the best in predicting monthly returns,

and the long-term convexity performs the best in predicting semi-annual returns. The result

is similar if we only focus on the USA convexity, short-term US convexity measure performs

worse than mid-term and long-term US convexity measures. One potential explanation is

that the short-term convexity is more noisy, making its predictability less reliable. Averaging

convexity across maturities generates better return predictability by reducing noise.

7 Conclusion

We document that the convexity measured from the global implied volatility surface robustly

predicts the stock market index return in the US and many other countries around the world.
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Our convexity index measures the degree of curvature of the implied-volatility curve. The

convexity index is higher if the implied volatilities of options with both high and low strike

prices are greater than the implied volatilities of options with medium strike prices. When

this happens, the expected stock market return is higher. Empirically, the global convexity

predicts the monthly S&P 500 returns with an in-sample and OOS R2 of 2.8% and 2.9%,

respectively. The average R2 of using this index to predict all 18 index returns in our sample

is 2.2% in-sample and 2.1% out-of-sample. The global convexity subsumes the predictability

of several existing option-based predictors, including the VIX index, SVIX index, variance

risk premium, and left-tail volatility. Through various alternative specifications, we find the

predictability of global convexity to be extremely robust.

The global convexity index’s predictability is not limited to equities. Because the global

convexity index predicts the global financial cycle (GFC), it can also predict any asset that

co-moves with the GFC factor. For example, the global convexity index can predict the

return of currencies, such as the Australian dollar, Canadian dollar, Korean won, and New

Taiwan dollar. The strength of the global convexity’s predictability on an asset increases

when the asset co-moves more strongly with the GFC.

The predictive power of the global convexity index comes from its ability to aggregate

information from across the globe and combine information from both the left and right

tail of the risk-neutral return distribution. Information contained in the left tail reveals

investors’ fear of a market crash, while information contained in the right tail reveals investor

confidence.

Lastly, the fact that the global level, slope, and convexity index co-move strongly with

their country-level counterparts indicates that the global options markets are closely con-

nected. It is plausible that the same group of marginal investors operate in all these markets.

The fact that the information extracted from the global options market predicts stock re-

turns around world also indicates that the marginal investors in the options market play a

significant role in the pricing of the equity around the world. Understanding how information

or preference is revealed and transmitted across different markets through these marginal

investors is an interesting future research question.
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Appendix A Construction of volatility surface

This section details how OptionMetrics constructs the standardized implied volatility surface.

OptionMetrics first computes Black-Scholes implied volatility for options with available data.

For European-style options, the Black-Scholes model:

C = Se−qTN(d1)−Ke−rTN(d2)

P = Ke−rTN(−d2)− Se−qTN(−d1)

where

d1 =
1

σ
√
T

(
ln

(
S

K

)
+

(
r − q +

1

2
σ2

)
T

)
d2 = d1 − σ

√
T

C or P is the midpoint of the best closing bid price and best closing offer price for the call

(put) option, S is the current underlying security price, K is the strike price, T is the time

in years remaining to option maturity, r is the continuously compounded interest rate, q is

the continuously compounded dividend yield, and σ is the implied volatility.

Then, OptionMetrics organizes the data by the log of days to maturity and by “call-

equivalend delta” (i.e., delta for a call option, one plus delta for a put option). Then, at

each grid point j on the volatility surface, the standardized implied volatility σ̂j is calculated

as a weighted sum of option implied volatilities:

σ̂j =

∑
i ViσiΦ(xij, yij, zij)∑
i ViΦ(xij, yij, zij)

where i is indexed over all available options on each day, Vi is the vega of the option, σi is

the implied volatility, and Φ(·) is the kernel function:

Φ(x, y, z) =
1√
2π

e
−
(

x2

2h1
+ y2

2h2
+ z2

2h3

)
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The inputs to the kernel function measures the “distance” between an actual option i and

the grid point j:

xij = ln(Ti/Tj)

yij = ∆i −∆j

zij = I{CPi=CPj}

where Ti and Tj are measured in days; ∆i and ∆j are call-equivalent deltas; and zij is an

indicator function, which equals one if both the option and the surface have the same call or

put type. The kernel bandwidth parameters are set at h1 = 0.05, h2 = 0.005, and h3 = 0.001.

Appendix B Definition of variables

B.1 Variables from implied volatility surface

Variable name Short name Availability Definition

Global level level 1996m1-2023m12 Average implied volatilities on the global volatility surface

Global slope slope 1996m1-2023m12 Coefficient on delta when regressing implied volatilities of the global volatility

surface on delta and log. days to maturity

Global term structure term 1996m1-2023m12 Coefficient on log days to maturity when regressing implied volatilities of the

global volatility surface on delta and log. days to maturity

Global convexity convex 1996m1-2023m12 Convexity measure of the global volatility surface according to Equation (3),

averaged across all maturities

Convexity left convex left 1996m1-2023m12 Convexity left of the global volatility surface according to Equation (8), aver-

aged across all maturities

Convexity right convex right 1996m1-2023m12 Convexity left of the global volatility surface according to Equation (9), aver-

aged across all maturities

USA level usa level 1996m1-2023m12 Average implied volatilities on the USA volatility surface

USA slope usa slope 1996m1-2023m12 Coefficient on delta when regressing implied volatilities of the USA volatility

surface on delta and log. days to maturity

USA term structure usa term 1996m1-2023m12 Coefficient on log days to maturity when regressing implied volatilities of the

USA volatility surface on delta and log. days to maturity

USA convexity usa convex 1996m1-2023m12 Convexity measure of the USA volatility surface according to Equation (3),

averaged across all maturities
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B.2 Equity premium predictors from the literature

Variable name Short name Availability Definition

SVIX index svix 1996m1-2023m12 Monthly equity premium lower bound proposed by Martin (2017)

Variance risk premium vrp 1990m1-2023m12 Model free implied variance minus the variance of the market from Bollerslev,

Tauchen, and Zhou (2009)

Left tail volatility ltv 1996m1-2023m12 Left tail volatility estimated from short-term put options from Bollerslev,

Todorov, and Xu (2015)

Dividend price ratio div prc 1871m1-2023m12 Dividend to price ratio of S&P 500 firms

Dividend yield div yield 1872m1-2023m12 Dividend yield of S&P 500 firms

Earnings price ratio earn prc 1871m1-2023m12 Earnings to price ratio of S&P 500 firms

Dividend payout ratio div pay 1871m1-2023m12 Dividend to earnings ratio

S&P 500 Var svar 1885m2-2023m12 Sum of squared daily returns on the S&P 500

DJIA Book-to-market bm 1921m3-2023m12 Book-to-market of Dow Jones Industrial Average stocks

Equity issuance ntis 1926m12-2023m12 Ratio of 12-month moving sums of net issues by NYSE listed stocks divided by

the total end-of-year market capitalization

T-bill yield tbill 1986m1-2023m12 Treasury bill yield

Long-term gov. yield lty 1919m1-2023m12 Yield of long-term government bond

Long-term bond return ltr 1926m1-2023m12 Return of long-term government bond

Treasury term spread tms 1920m1-2023m12 Difference in yield between long-term and short-term government bond

AAA bond yield AAA 1919m1-2023m12 Yield of AAA corporate bond

BAA bond yield BAA 1919m1-2023m12 Yield of BAA corporate bond

BAA-AAA yield dfy 1919m1-2023m12 Difference in yield between BAA and AAA corporate bond

BAA-AAA return dfr 1926m1-2023m12 Difference in return between BAA and AAA corporate bond

Corporate bond return corpr 1926m1-2023m12 Return of corporate bond

Inflation infl 1913m2-2023m12 CPI Inflation rate

Average correlation avgcor 1926m3-2023m12 Average correlation of daily stock returns proposed by Pollet and Wilson (2010)

Disagreement disag 1981m12-2023m12 Analyst forecast disagreements from Yu (2011)

Dow 52-week high dtoy 1926m1-2023m12 Nearness to Dow 52-week high from Li and Yu (2012)

Dow historical high dtoat 1926m1-2023m12 Nearness to the Dow historical high from Li and Yu (2012)

B/M factor fbm 1926m6-2023m12 Kelly and Pruitt (2013) extracts a factor from the cross-section of B/M ratios

Illiquidity lzrt 1926m1-2023m12 An illiquidity factor from Chen, Eaton, and Paye (2018)

Durable goods ndrbl 1958m2-2023m12 New orders to shipments of durable goods from Jones and Tuzel (2013)

Output gap output gap 1926m1-2023m12 Estimated industrial production output gap from Cooper and Priestley (2009)

Return dispersion rdsp 1926m7-2023m12 Cross-sectional dispersion of stock returns from Maio (2016)

Stock skewness skvw 1926m7-2023m12 Average stock skewness proposed by Jondeau, Zhang, and Zhu (2019)

Optimal sentiment hjtz sentiment 1965m7-2023m12 Investor sentiment index optimized for return prediction by Huang, Jiang, Tu,

and Zhou (2015)

Optimal sentiment hjtz sent orth 1965m7-2023m12 Huang, Jiang, Tu, and Zhou (2015) sentiment orthogonalized to macro variables

Short-interest short int is 1973m1-2023m12 In-sample detrended aggregate short interest from Rapach, Ringgenberg, and

Zhou (2016)

Short-interest short int oos 1978m1-2023m12 Out-of-sample detrended aggregate short interest from Rapach, Ringgenberg,

and Zhou (2016)

Cross-section tail risk tail 1926m7-2023m12 Tail risk estimated from the cross-section of firm-level price crashes by Kelly

and Jiang (2014)

Technical indicators tchi 1951m1-2023m12 A combination of technical indicators from Neely, Rapach, Tu, and Zhou (2014)

Oil price changes wtexas 1926m1-2023m12 Changes in oil price from Driesprong, Jacobsen, and Maat (2008)

Stock-bond yield gap ygap 1953m4-2023m12 Stock-bond yield gap from Maio (2013)

Public investment govik 1947m4-2023m12 Public sector investment proposed by Belo and Yu (2013)

Consumption consumption 1954m1-2023m12 Cyclical component of aggregate consumption proposed by Atanasov, Møller,

and Priestley (2020)

Credit standards crdstd 1990m7-2023m12 Loan officer credit standards from Chava, Gallmeyer, and Park (2015)

Housing consumption house 1930m1-2023m12 Share of housing in consumption from Piazzesi, Schneider, and Tuzel (2007)

Year-end growth PCE gpce 1948m1-2023m12 Personal consumption growth near year-end from Møller and Rangvid (2015)

Year-end growth IP gip 1927m1-2023m12 Industrial production growth near year-end from Møller and Rangvid (2015)

Aggregate accruals accrul 1966m1-2023m12 Aggregate accruals from Hirshleifer, Hou, and Teoh (2009)

Aggregate cash flow cfacc 1966m1-2023m12 Aggregate cash flows from Hirshleifer, Hou, and Teoh (2009)

Past return 1 month usa 1mon ret 1927m6:2023m12 1-month S&P 500 return from Rapach, Strauss, and Zhou (2013)
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B.3 Additional macroeconomic state variables

Variable name Short name Availability Definition

S&P500 Vol sp500 sd 1990m1:2023m12 Volatility of daily returns of S&P 500 index

VIX index vix 1990m1:2023m12 CBOE VIX index

TED spread tedrate 1986m1:2023m12 TED spread: 3 month Libor minus T-bill rate

Libor libor 1986m1:2023m12 3 month LIBOR rate

Past return 6 month usa 6mon ret 1926m12:2023m12 6-month S&P 500 return

Past return 12 month usa 12mon ret 1927m6:2023m12 12-month S&P 500 return

Treasury noise noise 1987m1:2023m12 Residual errors from fitted Treasury yield curve, proposed by Hu, Pan, and

Wang (2013)

Sentiment bw sentiment 1965m7:2023m12 Baker and Wurgler (2006) sentiment index

Orthogonal sentiment bw sentiment orth 1965m7:2023m12 Baker and Wurgler (2006) sentiment index orthogonalized to macro variables

Capital ratio capital ratio 1970m1:2023m12 Capital ratio of financial intermediaries constructed by He, Kelly, and Manela

(2017)

Capital factor capital factor 1970m1:2023m12 Capital ratio factor of financial intermediaries constructed by He, Kelly, and

Manela (2017)

CBOE Skew cboe skew 1990m1:2023m12 CBOE SKEW Index, estimates the skewness of S&P 500 returns

Financial stress sl fin stress 1993m12:2023m12 St. Louis Fed Financial Stress Index

Appendix C Derivation of the convexity equation

This section derives Equation (3).

The delta grid points on the surface are from 0.1 to 0.9 at 0.05 increments. This means

there are 64 triplets of (∆i,∆j,∆k) with ∆i < ∆k and ∆j = (∆i + ∆k)/2. The 64 triplets

are:
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∆i = .10, (∆j,∆k) = (.15, .2), (.2, .3), (.25, .4), (.3, .5), (.35, .6), (.4, .7), (.45, .8), (.5, .9)

∆i = .15, (∆j,∆k) = (.2, .25), (.25, .35), (.3, .45), (.35, .55), (.4, .65), (.45, .75), (.5, .85)

∆i = .20, (∆j,∆k) = (.25, .3), (.3, .4), (.35, .5), (.4, .6), (.45, .7), (.5, .8), (.55, .9)

∆i = .25, (∆j,∆k) = (.3, .35), (.35, .45), (.4, .55), (.45, .65), (.5, .75), (.55, .85)

∆i = .30, (∆j,∆k) = (.35, .4), (.4, .5), (.45, .6), (.5, .7), (.55, .8), (.6, .9)

∆i = .35, (∆j,∆k) = (.4, .45), (.45, .55), (.5, .65), (.55, .75), (.6, .85)

∆i = .40, (∆j,∆k) = (.45, .5), (.5, .6), (.55, .7), (.6, .8), (.65, .9)

∆i = .45, (∆j,∆k) = (.5, .55), (.55, .65), (.6, .75), (.65, .85)

∆i = .50, (∆j,∆k) = (.55, .6), (.6, .7), (.65, .8), (.7, .9)

∆i = .55, (∆j,∆k) = (.6, .65), (.65, .75), (.7, .85)

∆i = .60, (∆j,∆k) = (.65, .7), (.7, .8), (.75, .9)

∆i = .65, (∆j,∆k) = (.7, .75), (.75, .85)

∆i = .70, (∆j,∆k) = (.75, .8), (.8, .9)

∆i = .75, (∆j,∆k) = (.8, .85)

∆i = .80, (∆j,∆k) = (.85, .9)

We count how many times each delta point appears as ∆i, ∆j, or ∆k from the above equation.

0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9

∆i 8 7 7 6 6 5 5 4 4 3 3 2 2 1 1 0 0

∆j 0 1 2 3 4 5 6 7 8 7 6 5 4 3 2 1 0

∆k 0 0 1 1 2 2 3 3 4 4 5 5 6 6 7 7 8
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Since our definition of convexity is

C(τ) =
1

64

∑
(i,j,k)

V (∆i, τ) + V (∆k, τ)

2
− V (∆j, τ)

For every (∆i,∆j,∆k), the coefficient of ∆i and ∆k is 1/2 divided by 64 and the coefficient

of ∆j is 1 divided by 64. Adding up these coefficients, we have

C(τ) =
1

64
[4V (0.1, τ) + 2.5V (0.15, τ) + 2V (0.2, τ) + 0.5V (0.25, τ)− 1.5V (0.35, τ)

− 2V (0.4, τ)− 3.5V (0.45, τ)− 4V (0.5, τ)− 3.5V (0.55, τ)− 2V (0.6, τ)

− 1.5V (0.65, τ) + 0.5V (0.75, τ) + 2V (0.8, τ) + 2.5V (0.85, τ) + 4V (0.9, τ)].
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Figure 1: Global implied volatility surface

The figure plots the unconditional global implied volatility surface and residual global
implied volatility surface. The residual surface plots the residuals from regressing implied
volatilities on the deltas and the log. of days to maturity.

Panel A: Global implied volatility surface

Panel B: Residual global implied volatility surface
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Figure 2: Level, slope, term and convexity of the implied volatility surface

The figure plots the level, slope, term structure, and convexity of global and US implied volatility surface.

Panel A: Level Panel B: Slope

Panel C: Term structure Panel D: Convexity
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Figure 3: Predicting USA equity return

The figure plots the forward-looking semi-annual S&P 500 returns from month t+ 1 to
t+ 6 against their predicted values based on the global convexity in month t.
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Figure 4: Predicted increase in return and Global Financial Cycle beta

The figure plots the percentage increase in each asset’s return in month t+1 for 1 standard
deviation increase in global convexity in month t. The x-axis is the beta of the asset with
respect to the Miranda-Agrippino and Rey (2020) Global Financial Cycle factor. The sample
period is from 1996 to 2023. The triangles indicate the 18 equity indexes. The diamonds
indicate the spot rate returns of 10 currencies (against the US dollar). The line fitted through
all test assets has a slope of 5.67 (t-statistic: 3.10), a constant of -0.03 (t-statistic: -0.33),
and an R2 of 76%.
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Figure 5: Global convexity left and global convexity right indexes

This figure plots global convexity left index and global convexity right index. The
convexity right index is orthogonalized to the convexity left index. The sum of the two
indexes is the global convexity index.
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Table 1: list of index options in our sample

This table lists the availability of index options from each country or region in our sample. This table also lists the
underlying market index in each region and the major exchanges from which option prices are obtained. The last column
shows the average number of available options in each region per day.

Country / Region Short Name Market Index Main Exchange Start Finish Num. Obs./Day

Australia AUS S&P/ASX 200 Australia Futures and Options 1/2/2004 12/29/2023 1110
Belgium BEL BEL 20 Euronext Brussels 1/2/2002 12/29/2023 177
Canada CAN S&P/TSX 60 Montreal Exchange 3/26/2007 12/29/2023 343

Switzerland CHE SMI EUREX Frankfurt 1/2/2002 12/29/2023 1178
Germany DEU DAX EUREX Frankfurt 1/2/2002 12/29/2023 1716
Spain ESP IBEX 35 Mercado Espanol de Futuros 10/11/2006 12/29/2023 1575
Europe EUR STOXX 50 EUREX Frankfurt 1/2/2002 12/29/2023 2501
Finland FIN HELSINKI 25 EUREX Frankfurt 1/2/2002 12/29/2023 303
France FRA CAC 40 Euronext Paris 4/14/2003 12/29/2023 812

United Kingdom GBR FTSE 100 Euronext London 1/2/2002 12/29/2023 1754
Hong Kong HKG HANG SENG Hong Kong Futures Exchange 1/3/2006 12/29/2023 1346

Italy ITA MIB Mercato Derivati Milano 10/10/2006 12/29/2023 770
Japan JPN NIKKEI 225 Osaka Day Session 5/6/2004 12/29/2023 1808
Korea KOR KOSPI 200 Korea Futures Market 5/3/2004 12/28/2023 475

Netherlands NLD AEX Euronext Amsterdam 1/2/2002 12/29/2023 582
Sweden SWE OMXS30 Stockholmborsen Options Market 5/14/2007 12/29/2023 647
Taiwan TWN TAIEX Taiwan Futures Exchange 1/2/2004 12/29/2023 310

United States USA S&P 500 National Best BidOffer 1/4/1996 12/29/2023 4858
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Table 2: Global implied volatility surface

This table reports the average implied volatility in Panel A and the average residual implied volatility in Panel B at each
delta-maturity grid point on the global implied volatility surface. In Panel A, we first take the average implied volatility at
each grid point across all available countries and regions in a given month and then take the average across time. In Panel
B, we first estimate the residuals of a linear regression model by regressing the implied volatilities on the adjusted delta
and the logarithm of days until maturity within a country or region in each month. We then take the average residual
implied volatilities across available countries and regions at each grid point in a given month. Lastly, we take the average
across time. The sample period is from 1996m1 to 2023m12.

Panel A: Unconditional surface Panel B: Residual surface

Maturity (days) Maturity (days)
Delta 30 60 91 122 152 182 273 365 547 Avg. Delta 30 60 91 122 152 182 273 365 547 Avg.

0.10 27.8 27.3 27.4 27.5 27.4 27.3 27.1 27.0 26.8 27.3 0.10 2.4 1.9 2.0 2.1 2.0 1.8 1.6 1.5 1.3 1.8
0.15 25.9 25.7 25.9 26.0 26.0 25.9 25.8 25.8 25.7 25.8 0.15 1.1 0.9 1.0 1.1 1.1 1.0 0.9 0.9 0.7 1.0
0.20 24.3 24.4 24.5 24.7 24.7 24.7 24.6 24.6 24.6 24.6 0.20 0.1 0.1 0.3 0.4 0.4 0.4 0.3 0.3 0.2 0.3
0.25 23.1 23.3 23.4 23.6 23.6 23.6 23.6 23.6 23.6 23.5 0.25 -0.5 -0.4 -0.3 -0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.2
0.30 22.2 22.4 22.6 22.7 22.7 22.7 22.7 22.8 22.8 22.6 0.30 -0.9 -0.7 -0.6 -0.5 -0.5 -0.4 -0.5 -0.5 -0.4 -0.5
0.35 21.5 21.7 21.8 21.9 22.0 22.0 22.0 22.0 22.1 21.9 0.35 -1.0 -0.9 -0.8 -0.7 -0.7 -0.6 -0.7 -0.6 -0.6 -0.7
0.40 20.9 21.1 21.2 21.2 21.3 21.3 21.3 21.4 21.4 21.2 0.40 -1.0 -0.9 -0.9 -0.8 -0.8 -0.8 -0.8 -0.7 -0.7 -0.8
0.45 20.4 20.5 20.6 20.7 20.7 20.7 20.7 20.8 20.8 20.7 0.45 -1.0 -0.9 -0.9 -0.8 -0.8 -0.8 -0.8 -0.8 -0.7 -0.8
0.50 20.0 20.0 20.1 20.1 20.1 20.2 20.2 20.2 20.3 20.1 0.50 -0.9 -0.8 -0.8 -0.8 -0.8 -0.8 -0.8 -0.7 -0.7 -0.8
0.55 19.5 19.6 19.6 19.6 19.6 19.7 19.7 19.7 19.8 19.7 0.55 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.7 -0.6 -0.7
0.60 19.2 19.2 19.2 19.2 19.2 19.2 19.3 19.3 19.4 19.2 0.60 -0.5 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.5 -0.4 -0.5
0.65 18.8 18.8 18.8 18.8 18.8 18.8 18.8 18.9 19.0 18.8 0.65 -0.3 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.4 -0.2 -0.4
0.70 18.5 18.5 18.4 18.4 18.4 18.4 18.5 18.6 18.7 18.5 0.70 0.0 -0.1 -0.2 -0.2 -0.2 -0.2 -0.2 -0.1 0.0 -0.2
0.75 18.3 18.1 18.1 18.1 18.1 18.1 18.2 18.2 18.4 18.2 0.75 0.3 0.1 0.1 0.0 0.0 0.0 0.0 0.1 0.3 0.1
0.80 18.1 17.9 17.8 17.8 17.8 17.8 17.9 18.0 18.2 17.9 0.80 0.7 0.4 0.3 0.3 0.3 0.3 0.3 0.4 0.6 0.4
0.85 18.1 17.7 17.7 17.6 17.6 17.6 17.7 17.8 18.0 17.7 0.85 1.2 0.8 0.7 0.7 0.6 0.6 0.7 0.8 0.9 0.8
0.90 18.2 17.7 17.6 17.5 17.5 17.5 17.5 17.6 17.8 17.7 0.90 1.9 1.4 1.2 1.1 1.1 1.1 1.1 1.2 1.4 1.3

Avg. 20.9 20.8 20.9 20.9 20.9 20.9 20.9 21.0 21.0 Avg. 0.1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

49



Table 3: Summary statistics of option based predictors

This table shows the summary statistics of various option-based measures in Panel A and their pairwise correlation in
Panel B. The sample period is from 1996m1 to 2023m12. Appendix and the main text contain detailed description of each
variable.
Panel A: summary statistics

count mean median sd min max skewness kurtosis

Global convexity 336 0.48 0.46 0.13 0.21 0.83 0.41 2.45
US convexity 336 0.54 0.53 0.15 0.20 0.99 0.42 3.13
Global level 336 20.91 20.07 5.74 12.29 49.89 1.57 6.89
Global slope 336 -0.11 -0.11 0.04 -0.27 -0.05 -1.07 4.43

Global term structure 336 0.05 0.34 1.24 -7.30 2.04 -2.33 11.60
VIX index 336 20.36 19.14 7.86 10.13 62.67 1.91 9.11
SVIX index 336 4.23 3.31 3.90 0.92 32.65 3.92 24.52

Variance risk premium (VRP) 336 14.61 12.77 31.60 -403.40 115.85 -7.78 101.49
Left-tail volatility (LTV) 336 8.08 7.37 3.20 2.39 25.65 1.69 7.21

Panel B: correlation matrix

G. convex US convex Level Slope Term VIX SVIX VRP LTV

Global convexity 100% 73% 43% -67% -9% 42% 34% 16% 63%
US convexity 73% 100% 23% -46% 0% 23% 19% 11% 65%
Global level 43% 23% 100% -82% -71% 93% 88% -2% 62%
Global slope -67% -46% -82% 100% 50% -80% -72% -5% -70%

Global term structure -9% 0% -71% 50% 100% -80% -81% 29% -49%
VIX index 42% 23% 93% -80% -80% 100% 96% -12% 73%
SVIX index 34% 19% 88% -72% -81% 96% 100% -27% 72%

Variance risk premium (VRP) 16% 11% -2% -5% 29% -12% -27% 100% -13%
Left-tail volatility (LTV) 63% 65% 62% -70% -49% 73% 72% -13% 100%
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Table 4: Predicting semi-annual USA equity premium

This table shows predictive regressions. The y-variables are 6-month cumulative excess
returns of the S&P500 index in percentage points from month t+1 to t+6. The x-variables
are standardized option-based predictors in month t. The sample period of predictors is from
1996m1 to 2023m12. To save space, we only report the coefficients of predictors. Standard
errors are Newey-West standard errors with 6 lags of autocorrelations. The t-statistics are
reported in parentheses. Superscripts ***, **, * correspond to statistical significance at the
1, 5, and 10 percent levels, respectively.

Panel A: univariate regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
VARIABLES Global convex US convex G. Level G. Slope G. Term VIX SVIX VRP LTV

Predictor Coef. 3.66*** 3.17** 1.36 -2.06** -0.66 1.56 1.73 0.97 2.69**
(2.96) (2.25) (1.18) (-2.30) (-0.63) (1.39) (1.50) (0.58) (2.28)

Obs. 336 336 336 336 336 336 336 336 336
R2 0.107 0.080 0.015 0.034 0.003 0.019 0.024 0.007 0.057

Panel B: multivariate regressions

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

Global convex 2.88*** 3.78** 4.13** 3.63*** 3.65** 3.47** 3.59*** 3.26**
(2.70) (2.44) (2.25) (2.87) (2.43) (2.44) (2.86) (2.43)

US convex 1.06
(0.76)

Global Level -0.28
(-0.20)

Global Slope 0.70
(0.48)

Global Term -0.33
(-0.35)

VIX 0.02
(0.02)

SVIX 0.55
(0.47)

VRP 0.40
(0.32)

LTV 0.62
(0.50)

Obs. 336 336 336 336 336 336 336 336
R2 0.111 0.107 0.109 0.107 0.107 0.109 0.108 0.108
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Table 5: Predicting monthly USA equity premium

This table shows predictive regressions. The y-variables are 1-month excess returns of the
S&P500 index in percentage points in month t+1. The x-variables are standardized option-
based predictors in month t. The sample period of predictors is from 1996m1 to 2023m12.
To save space, we only report the coefficients of predictors. Standard errors are Newey-West
standard errors with 1 lag of autocorrelations. The t-statistics are reported in parentheses.
Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10 percent levels,
respectively.

Panel A: univariate regressions

(1) (2) (3) (4) (5) (6) (7) (8) (9)
VARIABLES Global convex US convex Level Slope Term VIX SVIX VRP LTV

Predictor Coef. 0.75*** 0.50** 0.20 -0.43 -0.24 0.31 0.28 0.14 0.30
(2.88) (2.08) (0.53) (-1.46) (-0.63) (0.79) (0.61) (0.22) (0.84)

Obs. 336 336 336 336 336 336 336 336 336
R2 0.028 0.013 0.002 0.009 0.003 0.005 0.004 0.001 0.005

Panel B: multivariate regressions

VARIABLES (1) (2) (3) (4) (5) (6) (7) (8)

Global convex 0.82** 0.82** 0.84** 0.73*** 0.75** 0.74** 0.74*** 0.93**
(2.38) (2.51) (2.13) (2.77) (2.32) (2.44) (2.64) (2.54)

US convex -0.09
(-0.30)

Global Level -0.16
(-0.37)

Global Slope 0.13
(0.30)

Global Term -0.17
(-0.46)

VIX -0.00
(-0.01)

SVIX 0.03
(0.06)

VRP 0.02
(0.04)

LTV -0.28
(-0.63)

Obs. 336 336 336 336 336 336 336 336
R2 0.028 0.029 0.028 0.029 0.028 0.028 0.028 0.030
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Table 6: Predicting k-period ahead monthly US equity premium

This table shows predictive regressions. The y-variables are 1-month excess returns of the S&P500 index in percentage
points in month t+ k with k = 1, 2, 3, ..., 12. The x-variables are standardized global and USA convexity in month t. The
sample period of predictors is from 1996m1 to 2023m12. Standard errors are Newey-West standard errors with 1 lag of
autocorrelations. The t-statistics are reported in parentheses. Superscripts ***, **, * correspond to statistical significance
at the 1, 5, and 10 percent levels, respectively.
Panel A: global convexity

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
monthly S&P 500 excess return in month t+k

VARIABLES t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12

Global convext 0.75*** 0.67*** 0.61** 0.67*** 0.50** 0.45* 0.40 0.14 -0.05 0.31 0.31 0.15
(2.88) (2.63) (2.46) (2.82) (2.11) (1.89) (1.53) (0.51) (-0.17) (1.19) (1.26) (0.64)

Obs. 336 336 336 336 336 336 336 336 336 336 336 336
R2 0.028 0.022 0.019 0.022 0.012 0.010 0.008 0.001 0.000 0.005 0.005 0.001

Panel B: USA convexity

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)
monthly S&P 500 excess return in month t+k

VARIABLES t+1 t+2 t+3 t+4 t+5 t+6 t+7 t+8 t+9 t+10 t+11 t+12

USA convext 0.50** 0.61** 0.52** 0.53** 0.58** 0.51* 0.38 0.10 0.06 0.31 0.19 0.05
(2.08) (2.33) (2.05) (2.25) (2.21) (1.87) (1.45) (0.36) (0.20) (1.05) (0.70) (0.19)

Obs. 336 336 336 336 336 336 336 336 336 336 336 336
R2 0.013 0.019 0.013 0.014 0.017 0.013 0.007 0.000 0.000 0.005 0.002 0.000
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Table 7: Predicting monthly equity premium around the world

This table shows predictive regressions. The y-variables in columns 1 to 17 are 1-month
excess returns of various indexes in percentage points in month t + 1. The y-variable in
column 18 is the monthly change in the level of Miranda-Agrippino and Rey (2020) Global
Financial Cycle factor in month t+ 1. The x-variables are standardized global convexity in
month t. The sample period of predictors is from 1996m1 to 2023m12. Standard errors are
Newey-West standard errors with 1 lag of autocorrelations. The t-statistics are reported in
parentheses. Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10
percent levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
VARIABLES AUS BEL CAN CHE DEU ESP EUR FIN FRA

Global convext 1.15*** 0.62 0.92*** 0.48* 0.87** 0.78** 0.91** 0.87** 0.91***
(3.20) (1.62) (2.77) (1.77) (2.19) (2.00) (2.49) (2.14) (2.59)

Obs. 336 336 336 336 336 336 336 336 336
R2 0.035 0.011 0.025 0.010 0.017 0.013 0.021 0.016 0.022

(10) (11) (12) (13) (14) (15) (16) (17) (18)
Global Fin.

VARIABLES GBR HKG ITA JPN KOR NLD SWE TWN Cycle

Global convext 0.73** 0.69* 1.06** 0.97*** 2.11*** 0.74* 1.13*** 1.21*** 0.05***
(2.56) (1.70) (2.59) (3.08) (3.68) (1.91) (2.88) (2.81) (2.73)

Obs. 336 336 312 336 336 336 336 336 336
R2 0.024 0.010 0.021 0.032 0.044 0.015 0.028 0.028 0.028
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Table 8: Out-of-sample predictive R2

This table reports the OOS R2 of predicting monthly and semi-annual stock returns in
different countris and regions. The last row reports the OOS R2 of predicting the monthly
and semi-annual change in Miranda-Agrippino and Rey (2020) Global Financial Cycle factor.
The predictor is the global convexity index in columns 1 and 2 and USA convexity index in
columns 3 and 4. The OOS R2 is computed as

R2
OOS = 1− MSEA

MSEN

where MSEA is the mean squared error of the predictive model based on a given predictor
and MSEN is the mean squared error of the historical mean model. The testing period is
from 2006m1 to 2023m12. Predictions in the first month of the testing period are based on
the training data from 1996m1 to 2005m12. Predictions in each subsequent month are based
on the training data from 1996m1 to the month prior to testing (i.e., the training data is
updated on an expanding window basis).

(1) (2) (3) (4)
Global Convexity USA Convexity

Country 1-month return 6-month return 1-month return 6-month return

USA 2.9% 12.0% 1.0% 6.8%
AUS 3.6% 7.6% -0.1% -2.8%
BEL 0.9% 2.8% -2.4% -9.9%
CAN 2.5% 8.2% -0.7% -0.6%
CHE 1.2% 4.2% -1.2% -6.0%
DEU 1.9% 3.8% -1.0% -7.2%
ESP 1.1% -0.1% -0.8% -7.9%
EUR 2.2% 6.5% -0.5% -4.6%
FIN 1.3% 3.3% -0.8% -5.6%
FRA 2.3% 9.4% -0.4% -2.6%
GBR 2.6% 9.4% -0.3% -3.1%
HKG 0.4% -3.4% -0.8% -10.1%
ITA 10.6% 6.7% 8.8% -2.8%
JPN 2.8% 9.5% 1.0% -0.9%
KOR 2.8% 6.3% -5.3% -23.1%
NLD 1.7% 4.7% -1.1% -7.2%
SWE 3.3% 9.6% 0.2% -3.3%
TWN 2.7% 9.1% 1.0% 1.4%

Average 2.1% 6.1% -0.7% -5.0%
Global Financial Cycle 2.8% 10.6% -0.2% -0.8%
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Table 9: Global convexity vs. local convexity and global financial cycle

This table shows predictive regressions. The y-variables are 1-month excess returns of various indexes in percentage points
in month t + 1. In Panel A, the x-variables standardized global convexity index and own-country convexity index in
month t. In Panel B, the x-variables standardized global convexity index in month t and change in the Miranda-Agrippino
and Rey (2020) Global Financial Cycle factor in month t + 1. The sample period varies depending on the index option
availability with the longest sample period being 1996m1 to 2023m12. To save space, we only report the coefficients of
predictors. Standard errors are Newey-West standard errors with 1 lag of autocorrelations. The t-statistics are reported
in parentheses. Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10 percent levels, respectively.

Panel A: controlling own country convexity

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)
VARIABLES USA AUS BEL CAN CHE DEU ESP EU FIN FRA GBR HKG ITA JPN KOR NLD SWE TWN

Global convext 0.82** 1.12*** 0.64 1.15* 1.07*** 1.86** 1.43** 1.52** 0.73 0.88* 0.81* 0.73 1.45 0.64 1.88*** 1.31* 2.23*** 0.85*
(2.38) (2.77) (1.15) (1.75) (2.65) (2.31) (2.26) (2.46) (1.52) (1.70) (1.88) (1.43) (1.11) (1.37) (2.81) (1.84) (3.15) (1.81)

Local convext -0.09 0.26 0.42 0.81 -0.60 -1.07 -0.39 -0.75 0.11 0.19 0.13 -0.28 -0.06 0.08 -1.00 -0.21 -0.80 0.21
(-0.30) (0.44) (0.93) (1.56) (-1.28) (-1.35) (-0.64) (-1.13) (0.27) (0.52) (0.34) (-0.42) (-0.05) (0.21) (-1.58) (-0.30) (-1.31) (0.44)

Obs. 336 240 254 191 264 264 207 264 264 249 264 216 207 236 236 246 200 240
R2 0.028 0.036 0.023 0.045 0.030 0.032 0.033 0.031 0.015 0.030 0.034 0.012 0.033 0.021 0.037 0.034 0.074 0.024

Panel B: controlling for global financial cycle

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)
VARIABLES USA AUS BEL CAN CHE DEU ESP EU FIN FRA GBR HKG ITA JPN KOR NLD SWE TWN

Global convext 0.07 0.31* -0.14 0.09 -0.07 -0.07 -0.08 0.05 -0.05 0.07 0.06 -0.07 -0.06 0.39* 1.10** -0.09 0.21 0.45
(0.66) (1.72) (-0.69) (0.59) (-0.40) (-0.31) (-0.34) (0.26) (-0.25) (0.42) (0.42) (-0.25) (-0.30) (1.72) (2.40) (-0.51) (1.08) (1.35)

∆GFCt+1 0.15*** 0.18*** 0.16*** 0.18*** 0.12*** 0.20*** 0.18*** 0.19*** 0.20*** 0.18*** 0.14*** 0.16*** 0.19*** 0.12*** 0.22*** 0.18*** 0.20*** 0.16***
(26.88) (26.81) (17.66) (28.90) (13.68) (20.35) (20.24) (22.05) (20.13) (21.41) (24.88) (12.11) (20.90) (15.79) (13.86) (17.30) (18.58) (15.70)

Obs. 336 336 336 336 336 336 336 336 336 336 336 336 312 336 336 336 336 336
R2 0.695 0.585 0.744 0.488 0.683 0.552 0.688 0.637 0.672 0.733 0.432 0.579 0.428 0.392 0.663 0.664 0.411 0.820
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Table 10: Cross-sectional asset pricing test with global financial cycle

This table performs several cross-sectional asset pricing tests. In Panel A, we regress the
predicted increase in an asset’s return on its GFC beta. The predicted increase and GFC beta
are both estimated for each individual asset in the first-pass regression. The three groups of
tests assets are the 18 equity indexes (column 1), 10 currencies (column 2), and both equities
and currencies (column 3). In Panel B, we regress each asset’s expected return on its GFC
beta. The y-variable in Columns 1 to 3 is the full sample expected return. The y-variables
in Columns 4 to 6 is the expected return when the global convexity in the prior month is
above its full sample mean. The sample period is from 1996m1 to 2023m12. Standard errors
are bootstrapped standard errors from 1,000 random samples of the data with replacement.
The t-statistics are reported in parentheses. Superscripts ***, **, * correspond to statistical
significance at the 1, 5, and 10 percent levels, respectively.
Panel A: Predicted change in return vs. GFC beta

(1) (2) (3)
VARIABLES Equity Currency Both

GFC beta 8.22*** 5.73** 5.67***
(2.86) (2.13) (3.10)

Constant -0.49 -0.01 -0.03
(-1.15) (-0.11) (-0.33)

Observations 18 10 28
R2 0.391 0.839 0.764

Panel B: Expected return vs. the global financial cycle beta

(1) (2) (3) (4) (5) (6)
Full sample E[R] High global convexity period

VARIABLES Equity Currency Both Equity Currency Both

GFC beta 2.53 -0.31 3.90** 14.57*** 7.96** 11.06***
(0.98) (-0.15) (2.36) (3.23) (2.30) (4.42)

Constant 0.14 0.01 -0.11 -0.84 -0.10 -0.23
(0.42) (0.09) (-1.27) (-1.31) (-0.75) (-1.63)

Observations 18 10 28 18 10 28
R2 0.176 0.016 0.796 0.625 0.740 0.901
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Table 11: Decompose global convexity into left and right components

We decompose the global convexity index into the left and right components. The details of
the decomposition are in the text. We regress the right component on the left component and
extract the residuals as the orthogonalized right convexity. Panel A reports the correlation
of these measures. Panel B regresses the standardized left convexity and orthogonalized
right convexity on standardized global slope, VIX, SVIX, and LTV. Standard errors are
Newey-West standard errors with 1 lag of autocorrelations. The t-statistics are reported in
parentheses. Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10
percent levels, respectively.
Panel A: Correlation matrix

Global convexity LMM RMM Convex Right

Global convexity 100% 82% -45% 58%
Left-minus-center 82% 100% -88% 0%
Right-minus-center -45% -88% 100% 47%
Convexity right 58% 0% 47% 100%

Panel B: Explain the left and right components

(1) (2) (3) (4) (5) (6) (7) (8)
VARIABLES Convexity left Convexity Right

Global slope -0.97*** 0.22***
(-55.90) (3.13)

VIX 0.73*** -0.30***
(10.94) (-4.37)

SVIX 0.64*** -0.32***
(6.02) (-5.55)

LTV 0.71*** 0.10
(15.22) (1.01)

Constant 0.55*** 1.50*** 2.72*** 1.50*** 2.37*** 2.51*** 2.07*** 1.47***
(11.53) (9.48) (25.08) (12.03) (12.19) (14.79) (25.59) (5.66)

Obs. 336 336 336 336 336 336 336 336
R2 0.950 0.533 0.407 0.507 0.047 0.091 0.105 0.010
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Table 12: Dissecting the information in convexity right index

This table reports the contemporaneous relationship between the orthogonalized right con-
vexity and other state variables, which include the TED spread, short-interest, past 6-month
S&P 500 return, global term structure, and output gap. These state variables are selected
from LASSO regressions. Details of this procedure are in the text. We winsorize and stan-
dardize these state variables. Panel A reports the correlation matrix. Panel B reports the
results of regression analysis. To save space, we omit the reporting of constants. Standard
errors are Newey-West standard errors with 1 lag of autocorrelations. The t-statistics are
reported in parentheses. Superscripts ***, **, * correspond to statistical significance at the
1, 5, and 10 percent levels, respectively.
Panel A: Correlation matrix

Convex right TED Past Ret O-gap Term Short

Convex right 100% -56% 41% -41% 39% -40%
TED spread -56% 100% -33% 37% -29% 35%

Past 6 month return 41% -33% 100% -11% 58% -16%
Output gap -41% 37% -11% 100% -8% 60%
Global term 39% -29% 58% -8% 100% -15%
Short interest -40% 35% -16% 60% -15% 100%

Panel B: Explain the orthogonalized right convexity

(1) (2) (3) (4) (5)
VARIABLES Convexity right

TED spread -0.56*** -0.47*** -0.38*** -0.36*** -0.35***
(-10.72) (-8.11) (-6.03) (-5.64) (-5.25)

Past 6 month return 0.25*** 0.25*** 0.16** 0.15**
(3.11) (3.52) (2.44) (2.37)

Output gap -0.24*** -0.25*** -0.19***
(-4.10) (-4.16) (-3.00)

Global term 0.18** 0.17**
(2.29) (2.23)

Short interest -0.11**
(-1.97)

Obs. 336 336 336 336 336
R2 0.308 0.365 0.417 0.437 0.445
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Table 13: Predicting cash flow and discount rate news

We decompose the monthly S&P 500 returns into various components and test their pre-
dictability. We first estimate a proxy of the discount rate, Ê[R], by regressing monthly
returns in month t + 1 on a set of conditioning variables in month t, which include divi-
dend price ratio, earnings price ratio, T-bill yield, SVIX, and LTV. We use the fitted values
from this regression as a proxy of discount rate Ê[R]. We then regress monthly returns on
changes in Ê[R] to extract the discount rate (DR) news and cash flow (CF) news component
of returns. The decomposition is specified in the following equation:

Rt+1 = a+ b×∆Ê[Rt+1]︸ ︷︷ ︸
DR news

+ ϵt+1︸︷︷︸
CF news

Panels A, B, and C regress the monthly return in month t + 1, the discount rate in month
t, the discount rate news and cash flow news in month t + 1 on the standardized month t
global convexity, left convexity, and orthogonalized right convexity, respectively. Panel D
regresses quarterly S&P 500 dividend growth rate in quarter t+1 and the quarterly changes
in the average analyst forecast of long-term earnings growth rate on left and orthogonalized
right convexity in quarter t. Dividend data is from Robert Shiller’s website. We mea-
sure the average analyst forecast of US companies and non-US companies in the I/B/E/S
dataset, separately. To save space, we omit the reporting of constants. Standard errors are
Newey-West standard errors with 1 lag of autocorrelations. The t-statistics are reported in
parentheses. Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10
percent levels, respectively.

Panel A: Global convexity

(1) (2) (3)
VARIABLES Rt+1 DR News CF News

Global convex 0.75*** 0.50*** 0.25
(2.88) (3.44) (1.22)

Obs. 336 335 335
R2 0.028 0.034 0.005
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Panel B: Global convexity left

(1) (2) (3)
VARIABLES Rt+1 DR News CF News

Convex left 0.55** 0.57*** -0.02
(1.99) (4.31) (-0.09)

Obs. 336 335 335
R2 0.015 0.045 0.000

Panel C: Global convexity right

(1) (2) (3)
VARIABLES Rt+1 DR News CF News

Convex right 0.52* 0.05 0.47**
(1.69) (0.35) (2.12)

Obs. 336 335 335
R2 0.013 0.000 0.017

Panel D: Predicting dividend and analysis forecast

(1) (2) (3)

S&P 500 Analyst forecast
VARIABLES Dividend growth USA stocks Non-USA stocks

Convex left -0.13 0.03 -0.01
(-1.36) (0.37) (-0.08)

Convex right 0.24*** 0.14** 0.26***
(2.64) (2.09) (2.75)

Lag. value 0.88*** 0.72*** 0.61***
(10.01) (6.43) (6.02)

Obs. 112 112 112
R2 0.831 0.575 0.487
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Table 14: Robustness to alternative methodologies

This table reports the correlation of alternative measures of global convexity with the base-
line measure and the return predictability of alternative measures of global convexity. We
construct five different measures of global convexity. “OTM surface” means we measure
convexity from OTM option surface. “Value weighted” means we take the value-weighted
average of convexity measures from each country. “∆2 Coef.” means that we regress implied
volatilities on the squared delta term and use the regression coefficient as the convexity
measure. “Individual option” means we measure convexity directly from individual options
data without constructing the volatility surface. “∆Convex” measures the annual change in
the baseline convexity measure. The details of these alternative measures are in the text.
To save space, we only report the coefficient of predictors. All predictors are standardized.
Standard errors are Newey-West standard errors with 1 lag of autocorrelation in Panel B
and 6 lags in Panel C. The t-statistics are reported in parentheses. Superscripts ***, **, *
correspond to statistical significance at the 1, 5, and 10 percent levels, respectively.

Panel A: correlation with baseline global convexity

(1) (2) (3) (4) (5)

OTM surface Value weighted Regression Individual option ∆Convex
Baseline 91.18% 87.39% 99.95% 74.23% 58.80%

Panel B: Predict semi-annual S&P 500 excess return

(1) (2) (3) (4) (5)
VARIABLES OTM surface Value weighted Regression Individual option ∆Convex

Predictor Coef. 3.78*** 3.56*** 3.69*** 3.26** 3.51***
(2.85) (2.76) (2.96) (2.35) (3.68)

Obs. 336 336 336 336 324
R2 0.114 0.101 0.109 0.085 0.097

Panel C: Predict monthly S&P 500 excess return

(1) (2) (3) (4) (5)
VARIABLES OTM surface Value weighted Regression Individual option ∆Convex

Predictor Coef. 0.83*** 0.62** 0.76*** 0.80*** 0.54**
(3.03) (2.41) (2.93) (3.27) (1.98)

Obs. 336 336 336 336 324
R2 0.034 0.019 0.029 0.032 0.014
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Table 15: Top ten predictors

This table reports top 10 US equity premium and GFC predictors based on in-sample R2 or
out-of-sample R2 from a list of 70 predictors. The complete list of predictors is in Appendix
B. We compute in-sample R2 based on the data from Jan 1996 to Dec 2023. We compute
out-of-sample R2 according to the formula

R2
OOS = 1−MSEA/MSEN

where MSEA is the mean squared error of the predictive model based on a predictor and
MSEN is the mean squared error of the historical mean model. The testing period for OOS
R2 is from Jan 2006 to Dec 2023. We use all available data from as early as 1926 until the
testing month to train both the historical mean and the predictive models (e.g., the training
data is updated on an expanding window basis). The data for all predictors are available
from 1996m1 or earlier to 2023m12. Panels A predicts monthly S&P 500 excess returns, and
Panel B predicts monthly changes in the Miranda-Agrippino and Rey (2020) GFC factor.

Panel A: top 10 predictors of monthly S&P 500 return

Rank In-sample R2: 1996-2023 Rank Out-of-sample R2: 2006-2023

1 convex 2.79% 1 convex 2.80%
2 div yield 2.35% 2 short int oos 1.99%
3 hjtz sent orth 2.35% 3 consumption 1.79%
4 short int oos 1.86% 4 convex right 1.48%
5 div prc 1.82% 5 output gap 0.92%
6 output gap 1.81% 6 usa convex 0.85%
7 consumption 1.69% 7 lty 0.72%
8 hjtz sentiment 1.63% 8 corpr 0.51%
9 usa slope 1.57% 9 AAA 0.51%
10 accrul 1.56% 10 convex left 0.51%

Panel B: top 10 predictors of monthly Global Financial Cycle

Rank In-sample R2: 1996-2023 Rank Out-of-sample R2: 2006-2023

1 convex 2.80% 1 convex 2.66%
2 tedrate 2.19% 2 convex right 2.00%
3 convex right 2.14% 3 output gap 0.97%
4 cfacc 1.12% 4 corpr 0.71%
5 convex left 1.02% 5 convex left 0.58%
6 dtoat 0.97% 6 cfacc 0.42%
7 usa 1mon ret 0.72% 7 div prc 0.25%
8 bm 0.70% 8 gip 0.21%
9 ntis 0.65% 9 tedrate 0.16%
10 corpr 0.62% 10 bm 0.13%
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Table A1: Summary statistics of index returns and currency spot returns

This table lists the data coverage and summary statistics of monthly index excess returns
and currency spot rate returns for our in-sample tests. Index returns, reported in percentage
points per month, include dividends and are calculated on a USD basis. Currency returns
are reported in percentage points per month against the USD, with positive value meaning
appreciation against the USD.

Panel A: index excess returns (percentage per month)

Country / Region Market Index Start Finish Mean SD Skewness Kurtosis

AUS S&P/ASX 200 1996m1 2024m12 0.68 6.07 -0.59 5.01
BEL BEL 20 1996m1 2024m12 0.53 5.88 -0.55 5.54
CAN S&P/TSX 60 1996m1 2024m12 0.70 5.74 -0.67 5.49
CHE SMI 1996m1 2024m12 0.59 4.72 -0.35 3.62
DEU DAX 1996m1 2024m12 0.63 6.65 -0.35 4.26
ESP IBEX 35 1996m1 2024m12 0.67 6.85 -0.10 4.49
EUR STOXX 50 1996m1 2024m12 0.55 6.17 -0.29 3.80
FIN HELSINKI 25 1996m1 2024m12 0.81 6.81 0.09 4.99
FRA CAC 40 1996m1 2024m12 0.62 6.07 -0.28 3.83
GBR FTSE 100 1996m1 2024m12 0.39 4.66 -0.36 4.37
HKG HANG SENG 1996m1 2024m12 0.54 6.92 0.12 5.36
ITA MIB 1998m1 2024m12 0.44 7.10 -0.10 3.98
JPN NIKKEI 225 1996m1 2024m12 0.15 5.36 -0.21 3.39
KOR KOSPI 200 1996m1 2024m12 0.47 9.98 0.99 9.92
NLD AEX 1996m1 2024m12 0.62 6.05 -0.62 4.97
SWE OMXS30 1996m1 2024m12 0.68 6.66 -0.15 4.23
TWN TAIEX 1996m1 2024m12 0.68 7.19 0.09 4.09
USA S&P 500 1996m1 2024m12 0.72 4.45 -0.57 3.83

Panel B: currency spot rate returns against USD (percentage per month)

Symbol Name start finish mean sd skewness kurtosis

AUD Australian dollar 1996m1 2024m12 0.01 3.40 -0.27 4.40
CAD Canadian dollar 1996m1 2024m12 0.01 2.34 -0.36 5.79
CHF Swiss franc 1996m1 2024m12 0.11 2.85 0.33 4.77
EUR Euro 1996m1 2024m12 0.00 2.54 0.00 4.51
GBP British pound 1996m1 2024m12 -0.03 2.43 -0.25 3.95
HKD Hong Kong dollar 1996m1 2024m12 0.00 0.14 0.78 8.38
JPY Japanese yen 1996m1 2024m12 -0.08 2.98 0.63 5.87
KRW Korean won 1996m1 2024m12 -0.11 3.79 -1.34 18.97
SEK Swedish krona 1996m1 2024m12 -0.10 3.07 0.12 3.34
TWD New Taiwan dollar 1996m1 2024m12 -0.04 1.53 0.02 5.97
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Table A2: USA implied volatility surface

This table reports the average implied volatility in Panel A and the average residual implied volatility in Panel B at each
delta-maturity grid point on the USA implied volatility surface, averaged across time. The sample period is from 1996m1
to 2023m12.

Panel A: Unconditional surface Panel B: Residual surface

Maturity (days) Maturity (days)
Adj. delta 30 60 91 122 152 182 273 365 547 Avg. Adj. delta 30 60 91 122 152 182 273 365 547 Avg.

0.10 26.7 27.0 27.3 27.5 27.6 27.6 27.7 27.6 27.5 27.4 0.10 2.2 2.2 2.3 2.3 2.3 2.3 2.2 2.0 1.6 2.1
0.15 24.5 25.1 25.5 25.7 25.8 25.9 26.1 26.1 26.1 25.6 0.15 0.7 1.0 1.1 1.2 1.2 1.3 1.3 1.2 0.9 1.1
0.20 22.7 23.5 23.8 24.1 24.3 24.4 24.7 24.7 24.8 24.1 0.20 -0.4 0.0 0.2 0.3 0.4 0.5 0.5 0.5 0.3 0.3
0.25 21.5 22.2 22.5 22.8 23.0 23.1 23.4 23.5 23.6 22.8 0.25 -1.0 -0.6 -0.4 -0.3 -0.2 -0.1 0.0 -0.1 -0.1 -0.3
0.30 20.5 21.1 21.5 21.7 21.9 22.1 22.3 22.4 22.6 21.8 0.30 -1.2 -0.9 -0.8 -0.6 -0.5 -0.5 -0.4 -0.4 -0.5 -0.6
0.35 19.7 20.3 20.6 20.8 21.0 21.1 21.4 21.5 21.7 20.9 0.35 -1.3 -1.1 -0.9 -0.8 -0.7 -0.7 -0.6 -0.6 -0.7 -0.8
0.40 19.0 19.5 19.8 20.0 20.2 20.3 20.6 20.7 20.8 20.1 0.40 -1.3 -1.1 -1.0 -0.9 -0.9 -0.8 -0.7 -0.8 -0.8 -0.9
0.45 18.5 18.9 19.1 19.3 19.5 19.6 19.8 19.9 20.1 19.4 0.45 -1.1 -1.0 -1.0 -0.9 -0.9 -0.8 -0.8 -0.8 -0.8 -0.9
0.50 17.9 18.3 18.5 18.7 18.8 18.9 19.1 19.2 19.4 18.8 0.50 -1.0 -0.9 -0.9 -0.9 -0.8 -0.8 -0.8 -0.8 -0.8 -0.9
0.55 17.4 17.7 17.9 18.1 18.2 18.3 18.5 18.6 18.8 18.2 0.55 -0.8 -0.8 -0.8 -0.8 -0.7 -0.7 -0.7 -0.8 -0.7 -0.7
0.60 17.0 17.2 17.4 17.5 17.6 17.7 17.9 18.0 18.2 17.6 0.60 -0.5 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6
0.65 16.6 16.8 16.9 17.0 17.1 17.2 17.3 17.4 17.7 17.1 0.65 -0.2 -0.3 -0.4 -0.4 -0.4 -0.4 -0.5 -0.5 -0.4 -0.4
0.70 16.2 16.3 16.4 16.5 16.6 16.7 16.8 16.9 17.2 16.6 0.70 0.1 -0.1 -0.1 -0.2 -0.2 -0.2 -0.3 -0.3 -0.2 -0.2
0.75 15.9 15.9 16.0 16.1 16.2 16.2 16.3 16.4 16.7 16.2 0.75 0.5 0.2 0.1 0.1 0.0 0.0 0.0 -0.1 0.0 0.1
0.80 15.6 15.6 15.6 15.7 15.8 15.8 15.9 16.0 16.3 15.8 0.80 1.0 0.6 0.5 0.4 0.3 0.3 0.2 0.2 0.3 0.4
0.85 15.6 15.4 15.4 15.4 15.5 15.5 15.6 15.7 16.0 15.6 0.85 1.6 1.1 0.9 0.8 0.8 0.7 0.6 0.6 0.7 0.9
0.90 15.8 15.4 15.3 15.3 15.3 15.3 15.3 15.4 15.7 15.4 0.90 2.6 1.8 1.6 1.4 1.3 1.2 1.1 1.0 1.2 1.5

Avg. 18.9 19.2 19.4 19.5 19.7 19.8 19.9 20.0 20.2 Avg. 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
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Table A3: Summarizing implied volatility surface with linear models

This table reports the average R2 of various linear models used to summarize the implied
volatility surface in each country or region. Specifically, we estimate linear models in each
country-month by regressing implied volatilities on a combination of deltas and maturities
and report the average R2 of these monthly regressions over time. The models are

Model 1: IV OLij = b0 + b1∆i + ϵij

Model 2: IV OLij = b0 + b2τj + ϵij

Model 3: IV OLij = b0 + b1∆i + b2τj + ϵij

Model 4: IV OLij = b0 + b1∆i + b2τj + b3∆
2
i + ϵij

Model 5: IV OLij = b0 + b1∆i + b2τj + b3∆
2
i + b4τ

2
j + ϵij

Model 6: IV OLij = b0 + b1∆i + b2τj + b3∆
2
i + b4τ

2
j + b5∆iτj + ϵij

where b’s are coefficients to be estimated in each time period, ∆i is the adjusted delta, and
τj is the log of days to maturity.

Country / Region Model 1 Model 2 Model 3 Model 4 Model 5 Model 6

USA 81% 9% 90% 96% 96% 96%
AUS 60% 9% 69% 77% 79% 81%
BEL 65% 13% 78% 83% 85% 87%
CAN 57% 13% 70% 73% 76% 78%
CHE 78% 10% 88% 95% 95% 95%
DEU 78% 9% 87% 93% 94% 94%
ESP 82% 8% 89% 93% 94% 95%
EUR 77% 9% 86% 94% 95% 95%
FIN 69% 9% 78% 86% 87% 88%
FRA 78% 9% 87% 94% 94% 95%
GBR 77% 12% 88% 95% 95% 96%
HKG 55% 13% 69% 80% 82% 83%
ITA 81% 8% 89% 95% 96% 97%
JPN 58% 10% 67% 82% 83% 85%
KOR 63% 5% 68% 75% 77% 79%
NLD 74% 10% 84% 92% 93% 94%
SWE 81% 9% 90% 93% 94% 94%
TWN 47% 6% 53% 58% 59% 60%

Average 70% 9% 80% 86% 87% 89%
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Table A4: Predicting semi-annual equity premium around the world

This table shows predictive regressions. The y-variables in columns 1 to 17 are 6-month
excess returns of various indexes in percentage points in month t + 1. The y-variable in
column 18 is the semi-annual change in the level of Miranda-Agrippino and Rey (2020) Global
Financial Cycle factor in month t+ 1. The x-variables are standardized global convexity in
month t. The sample period of predictors is from 1996m1 to 2023m12. Standard errors are
Newey-West standard errors with 6 lag of autocorrelations. The t-statistics are reported in
parentheses. Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10
percent levels, respectively.

(1) (2) (3) (4) (5) (6) (7) (8) (9)
VARIABLES AUS BEL CAN CHE DEU ESP EU FIN FRA

Global convex 5.09*** 3.49* 4.25** 2.64* 3.65* 2.92 4.31** 4.28** 4.78***
(2.73) (1.75) (2.53) (1.95) (1.97) (1.47) (2.52) (2.08) (2.94)

Obs. 336 336 336 336 336 336 336 336 336
R2 0.108 0.047 0.080 0.048 0.045 0.026 0.074 0.050 0.095

(10) (11) (12) (13) (14) (15) (16) (17) (18)
Global Fin.

VARIABLES GBR HKG ITA JPN KOR NLD SWE TWN Cycle

Global convex 3.98*** 3.48* 5.41*** 5.35*** 9.32*** 3.83** 5.98*** 5.53*** 0.26***
(2.65) (1.75) (2.76) (3.57) (3.01) (2.03) (2.91) (2.75) (2.76)

Obs. 336 336 312 336 336 336 336 336 336
R2 0.098 0.043 0.091 0.133 0.122 0.058 0.105 0.084 0.119

67



Table A5: Predictability of local convexity measures

This table presents the result of predicting each index’s monthly and semi-annual returns with the index’s own convexity
measure. We omit the reporting of the constant for brevity. The sample period is based on the availability of each index
option. Standard errors are Newey-West standard errors with 1 lag in Panel A and 6 lags in Panel B. The t-statistics are
reported in parentheses. Superscripts ***, **, * correspond to statistical significance at the 1, 5, and 10 percent levels,
respectively.

Panel A: predicting monthly returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)
VARIABLES USA AUS BEL CAN CHE DEU ESP EU FIN FRA GBR HKG ITA JPN KOR NLD SWE TWN

Local convex 0.50** 0.59 0.77* 0.78 0.16 0.44 0.03 0.33 0.43 0.75*** 0.69** -0.02 1.14** 0.43 0.22 0.73 0.42 0.52
(2.08) (0.91) (1.96) (1.45) (0.48) (0.98) (0.05) (0.71) (1.04) (2.60) (2.23) (-0.03) (2.09) (1.57) (0.43) (1.45) (0.79) (1.12)

Obs. 336 240 254 191 264 264 207 264 264 249 264 216 207 236 236 246 200 240
R2 0.013 0.009 0.016 0.018 0.001 0.004 0.000 0.003 0.005 0.016 0.020 0.000 0.023 0.009 0.001 0.014 0.004 0.007

Panel B: predicting semi-annual returns

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14) (15) (16) (17) (18)
VARIABLES USA AUS BEL CAN CHE DEU ESP EU FIN FRA GBR HKG ITA JPN KOR NLD SWE TWN

Local convex 3.17*** 2.33 3.92*** 1.99 2.00** 3.48** 0.30 2.73* 2.50** 4.03*** 4.47*** -0.43 5.56*** 1.73* 0.12 4.85*** 1.14 0.13
(3.43) (1.46) (2.84) (1.55) (1.98) (2.54) (0.15) (1.90) (2.15) (3.93) (4.11) (-0.35) (2.91) (1.76) (0.07) (3.81) (0.42) (0.09)

Obs. 336 240 254 191 264 264 207 264 264 249 264 216 207 236 236 246 200 240
R2 0.080 0.019 0.057 0.018 0.029 0.042 0.000 0.029 0.021 0.069 0.116 0.001 0.081 0.021 0.000 0.087 0.004 0.000
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Table A6: Predicting currency return and local-currency equity premium

This table shows predictive regressions of various currency returns and local-currency equity
premium. In Panel A, the y-variables are currency returns in month t+ 1, measured as the
rate of return (in percentage points) of the USD value of a currency. A positive currency
return means that the currency is appreciating against the USD. In Panel B, the y-variables
are semi-annual cumulative currency returns from month t + 1 to t + 6. In Panel C, the
y-variables are the excess returns of equity indexes in local currencies in month t + 1. We
remove local risk-free rate when measuring the excess return. All x-variables are standardized
global convexity in month t. To save space, we only report the coefficient on the predictor.
The sample period is from 1996m12 to 2023m12. Standard errors are Newey-West standard
errors with 1 lag of autocorrelations in Panels A and C and 6 lags in Panel B. The t-statistics
are reported in parentheses. Superscripts ***, **, * correspond to statistical significance at
the 1, 5, and 10 percent levels, respectively.

Panel A: Predict monthly currency return

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES AUD CAD CHF EUR GBP HKD JPY KRW SEK TWD

Global convex 0.54** 0.22* 0.11 0.08 0.14 -0.01 0.06 0.38 0.25 0.16*
(2.56) (1.75) (0.71) (0.52) (0.98) (-0.72) (0.32) (1.59) (1.31) (1.78)

Obs. 336 336 336 336 336 336 336 336 336 336
R2 0.025 0.009 0.002 0.001 0.003 0.002 0.000 0.010 0.007 0.011

Panel B: Predict semi-annual currency return

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
VARIABLES AUD CAD CHF EUR GBP HKD JPY KRW SEK TWD

Global convex 2.06** 1.29** 0.42 0.01 0.97 -0.06** -0.13 2.52*** 1.28 0.95**
(2.06) (2.04) (0.64) (0.01) (1.19) (-2.19) (-0.19) (2.81) (1.38) (2.26)

Obs. 336 336 336 336 336 336 336 336 336 336
R2 0.058 0.053 0.004 0.000 0.024 0.046 0.000 0.085 0.026 0.054

Panel C: Predict local-currency monthly equity return

(1) (2) (3) (4) (5) (6) (7) (8) (9)
VARIABLES AUS BEL CAN CHE DEU ESP EU FIN FRA

Global convex 0.62*** 0.53* 0.69*** 0.33 0.76** 0.68** 0.81*** 0.78** 0.81***
(2.91) (1.72) (2.76) (1.36) (2.32) (2.08) (2.67) (2.27) (2.78)

Obs. 336 336 336 336 336 336 336 336 336
R2 0.026 0.011 0.026 0.006 0.016 0.013 0.022 0.016 0.023

(10) (11) (12) (13) (14) (15) (16) (17) (18)
VARIABLES GBR HKG ITA JPN KOR NLD SWE TWN USA

Global convex 0.59*** 0.70* 0.96*** 0.85*** 1.68*** 0.66** 0.86*** 1.01** 0.75***
(2.67) (1.72) (2.85) (2.67) (3.72) (1.98) (2.82) (2.58) (2.88)

Obs. 336 336 312 336 336 336 336 336 336
R2 0.022 0.010 0.023 0.024 0.046 0.015 0.024 0.025 0.028
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Table A7: Description of events during extreme period of convexity left and right measures

We identify extreme realizations of the convexity left and convexity right indexes visually. We then ask ChatGPT 4o
“what happened in the financial market during” a specific period surrounding an extreme realization. The table reports
the headline responses.

Panel A: Peaks of global convexity left index

Date Headline response from ChatGPT 4o

1997m11-1997m12 November & December 1997: Escalation of the Asian Financial Crisis and Market Volatility
1998m9-1998m10 September & October 1998: The LTCM Crisis & Market Turmoil
2008m10-2008m11 October & November 2008: The Heart of the Global Financial Crisis
2010m5-2010m6 May & June 2010: Flash Crash & Eurozone Debt Crisis Intensify
2011m9-2011m11 September to November 2011: Market Volatility Amidst Eurozone Debt Crisis and U.S. Recession Fears
2020m3-2020m4 March & April 2020: COVID-19 Market Crash & Initial Recovery

2022m3 March 2022: Market Turmoil Amidst War, Inflation, and Fed Rate Hikes

Panel B: Peaks of global convexity right index

Date Headline response from ChatGPT 4o

2001m4 April 2001: Market Rebound Amidst the Dot-Com Crash & Fed Rate Cuts
2001m10 October 2001: Market Recovery After the 9/11 Selloff

2004m1-2004m2 January & February 2004: Market Optimism Amid Economic Recovery
2009m5 May 2009: Stock Market Rebound Amid Economic Recovery Hopes
2012m2 February 2012: Market Optimism Amid Eurozone Stabilization & Economic Growth

2020m11-2021m2 November 2020 – February 2021: Vaccine Rally, Stimulus, and Market Mania

Panel C: Troughs of global convexity right index

Date Headline response from ChatGPT 4o

1998m9-1998m10 September & October 1998: The LTCM Crisis & Market Turmoil
2002m9-2002m10 September & October 2002: Bear Market Lows Amid Economic Uncertainty

2008m1 January 2008: Markets Enter Bear Territory Amid Recession Fears
2008m10 October 2008: The Height of the Global Financial Crisis
2011m8 August 2011: Market Chaos Amid U.S. Credit Downgrade & Eurozone Crisis
2015m9 September 2015: Market Volatility Amid China Fears & Fed Uncertainty
2019m9 September 2019: Market Volatility Amid Repo Market Crisis & Trade War Uncertainty
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Figure A.1: Predicted increase in return and Global Financial Cycle beta

The figure plots the percentage increase in each asset’s return in month t+1 for 1 standard
deviation increase in global convexity in month t. Each point represents a single asset. The
x-axis is the beta of the asset against the monthly change in the Miranda-Agrippino and
Rey (2020) Global Financial Cycle factor. The data spans several asset classes, and the
sample period is from 1996 to 2012. The line fitted through all test assets has a slope of 6.21
(t-statistic: 2.73), a constant of -0.05 (t-statistic: -0.83), and an R2 of 65%.
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Table A8: Convexity from different maturity horizons

This table reports the summary statistics (Panel A) and predictability (Panel B and C)
of convexity indexes measured from options with different maturity horizons. Short-term
convexity is constructed from 30-, 60-, and 91-day implied volatilities. Mid-term convexity
is constructed from 122-, 152-, and 182-day implied volatilities. Long-term convexity is
constructed from 273-, 365-, and 547-day implied volatilities. Standard errors are Newey-
West standard errors with 1 lag of autocorrelations in Panel B and 6 lags in Panel C. The
t-statistics are reported in parentheses. Superscripts ***, **, * correspond to statistical
significance at the 1, 5, and 10 percent levels, respectively.
Panel A: summary statistics of global convexity from different horizons

horizon (days) mean p50 sd min max skewness kurtosis

30 0.61 0.58 0.17 0.17 1.26 0.93 4.41
60 0.50 0.48 0.15 -0.01 1.09 0.68 4.19
91 0.49 0.46 0.15 0.18 0.92 0.54 2.85
122 0.49 0.45 0.15 0.20 0.90 0.54 2.51
152 0.48 0.45 0.15 0.20 0.87 0.52 2.41
182 0.46 0.43 0.14 0.18 0.83 0.47 2.36
273 0.45 0.43 0.14 0.17 0.76 0.29 2.12
365 0.44 0.43 0.14 0.17 0.76 0.11 1.94
547 0.42 0.41 0.14 0.11 0.79 0.10 2.33

Panel B: Predict monthly S&P 500 return

(1) (2) (3) (4) (5) (6) (7) (8)
Global convexity USA convexity

VARIABLES Baseline Short-term Mid-term Long-term Baseline Short-term Mid-term Long-term

Global convex 0.75*** 0.65** 0.72*** 0.71*** 0.50** 0.34 0.51** 0.54**
(2.88) (2.38) (2.85) (2.84) (2.08) (1.36) (2.05) (2.25)

Obs. 336 336 335 335 336 336 336 336
R2 0.028 0.005 0.034 0.005 0.013 0.006 0.013 0.015

Panel C: Predict semi-annual S&P 500 return

(1) (2) (3) (4) (5) (6) (7) (8)
Global convexity USA convexity

VARIABLES Baseline Short-term Mid-term Long-term Baseline Short-term Mid-term Long-term

Global convex 3.66*** 3.08** 3.43*** 3.65*** 3.17** 2.34* 3.10** 3.28**
(2.96) (2.38) (2.87) (2.95) (2.25) (1.67) (2.16) (2.54)

Observations 336 336 336 336 336 336 336 336
R-squared 0.107 0.075 0.094 0.106 0.080 0.044 0.077 0.086
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