
Is 24/7 Trading Better?

March 17, 2025

ABSTRACT

In a dynamic model of large traders who manage inventory risk, we show that a market closure

coordinates liquidity, which can be substantial enough to improve allocative efficiency relative to a

market open 24/7, even though trade cannot occur during the closure. If traders have heterogeneous

information about the asset value, trade is less aggressive on the whole, but closure can still improve

welfare. The improvement in welfare due to closure applies to small markets with infrequent shocks,

whereas large markets would benefit from extending trading hours, which has implications for the

ongoing debates on a 24/7 market design.



I. Introduction

Since the founding of the NYSE in 1792, trading hours have closely mirrored the conventional

workday due to the human involvement that was essential for trading. However, in the 21st century,

electronic execution has become the dominant form of trade for standardized products.1 This

transition has helped facilitate faster and more efficient trade (Litzenberger et al., 2012), with

little to no needed human interaction. Beyond the electronic execution of trades, the majority

of trades are submitted by algorithmic traders.2 Given that electronic trading and execution

have substantially reduced the need for constant human involvement, market participants and

regulators are actively discussing whether all markets should be open 24/7. Further, due to the

increased globalization of firms and the financial sector, there has been a growing demand from

international traders for 24/7 trade.3 This paper studies the implications for liquidity and welfare

due to modifications to the length of daily market closures.4

We study a model of large traders who rationally anticipate how their orders affect prices

while dynamically managing risky inventory positions. Traders experience shocks to their private

valuations of an asset, which randomly liquidates at a future date, motivating trade. Traders

optimally balance the benefits of eliminating undesired inventory against the costs of incurring

price impact. We study welfare, measured by the allocative efficiency of the market, in equilibria of

two market designs: one in which there is a daily closure for a fixed fraction of the day, and another

in which closure is eliminated. A daily closure is costly because it eliminates traders’ ability to

manage their inventory for a fraction of the day, leading traders to arrive at the start of the next

day in positions that may be far from desirable. Is there a benefit to daily market closures?

If there is a closure, traders rationally anticipate being unable to directly manage their inventory

positions overnight, which incentivizes them to be in a good inventory position by the end of the

1For example, out of thirteen registered equity exchanges, the NYSE is the only one that is not 100% electronic.
2In 2003, about 15% of the U.S. equity volume consisted of algorithmic trades, whereas in 2023, estimates suggest

70 − 80% of U.S. equity volume is algorithmic trades (SEC, 2020). Brogaard et al. (2025) show that floor brokers
still play an important role in trading on the NYSE, though most of their benefits are concentrated at the open, the
close, and early in the trading day. Their role could easily still be preserved in an extended trading hour environment
by having the closure, for example, be between 2:00-3:00 PM EST.

324X, backed by Steve Cohen’s Point72 Venture fund, was approved in November 2024 by the SEC to launch the
first 23/7 equity exchange (https://www.federalregister.gov/d/2024-28551). The NYSE polled market partic-
ipants about 24/7 trading in April 2024 and is moving their Arca exchange’s trading hours to 22/5. The Nasdaq
and Cboe EDGX Equities Exchange are also extending their equity trading hours to 24/5 and 23/5, respectively.
Robinhood and Interactive Brokers already allow trade 24/5 for some stocks and ETFs by internalizing the trades.

4While the theory developed in this paper naturally applies to equities, it also covers other asset classes.
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trading day. Therefore, all traders trade more aggressively towards a desirable position at the end

of the day. In turn, this aggressive trade increases liquidity at the end of the day, which lowers the

cost of trade and further incentivizes aggressive trade at the market closure. Therefore, liquidity is

coordinated, and “liquidity begets liquidity.” Aware that liquidity will be coordinated in the final

trading session of the day, agents endogenously postpone trade within the day to the last session

of the day. If the liquidation rate or the number of traders are not too high, this incentive to

postpone trade within the day can be sufficiently large that there is no trade, or an endogenous

“halt” in trade, in the sessions just preceding the final trading session. This result is consistent

with empirical evidence that trade at closing auctions is highly concentrated, potentially at the

expense of preceding sessions (e.g., AMF (2019)).

The mechanisms of the model can be summarized through the behavior intraday volume. Trade

in the model can be decomposed into two components that vary over time: a component that

determines the gap a trader faces between their current and desired inventory and a component

that determines how aggressively a trader trades to eliminate this gap. At the start of the day,

traders face large gaps between their current and desired inventory, as shocks arrive overnight that

traders are not able to respond to. This generates a large volume at the start of the day, despite

relatively low trade aggressiveness. At the end of the day, traders trade very aggressively to close

any gap that remains. So, even though the gap between current and desired might not be very

large, this aggressive trade results in large volume. In the middle of the day, traders’ gaps between

desired and current inventories are not very large, and trade is not particularly aggressive, resulting

in low volume relative to other parts of the day. Thus, as in the data (e.g., Chan et al. (1996), Jain

and Joh (1988)), intraday volume is U-shaped.

When trade is 24/7, there is no equilibrium in which traders coordinate trade. Since traders

rationally anticipate how their demand affects prices and future inventory positions, they break up

their orders over time to minimize execution costs, which creates socially inefficient excess inventory

costs (Du and Zhu, 2017, Rostek and Weretka, 2015, Vayanos, 1999). Liquidity is spread out, and

price impact further increases, which further incentivizes traders to break up their orders. In this

market design, liquidity, a public good, is spread relatively thinly throughout the trading day. A

market closure can potentially benefit traders by concentrating and coordinating liquidity.5

5Even in securities that trade 24/7, such as forex, we empirically observe volume spikes coinciding with the opening
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Next, we study whether the coordination a market closure provides is enough to offset the costs

of strategic delay within the day, along with the cost of arriving at the start of the next day in a worse

position. Contrary to the basic intuition that a constraint on trade is purely a cost, the endogenous

coordination of trade due to market closure can offset this cost. In particular, in smaller markets,

that is, markets where the number of traders and the rate of shocks to private values are small,

a closure can improve the allocative efficiency of the market by coordinating trade. Empirically,

this portion of the paper points to the heterogeneous cross-section of trading-day lengths across

exchanges and security types.6 In markets with a large number of traders, liquidity is already

substantial, minimizing the relative coordinating benefits of trade. In markets in which shocks to

private valuations are frequent, the costs of restricting traders’ ability to respond to these shocks are

high, implying the optimal market structure is one in which the market is always open. Further, if

the volatility of shocks or marginal holding costs per unit of time are lower overnight, even with the

total volatility across the 24-hour period being constant, welfare increases when there is a closure.

To study the magnitude of the benefits that market closure provides, we analyze welfare under

various market designs relative to first-best (efficient) market allocations, which avoid the social

costs of strategic trade. We find that the common market design of trading for 6.5 hours a day for

equities is less efficient than what is optimal. Particularly when the market is large, traders would

benefit from a longer trading day, as liquidity is already fairly concentrated throughout the day,

making the costs of market closure relatively large. Moreover, in markets with frequent shocks to

private values, a long trading day is optimal.

We also show that this paper’s main results are robust to including heterogeneity in beliefs

about fundamental asset values through noisy private signals. An interesting implication of this

extension is that heterogeneity tends to reduce the aggressiveness of trade overall. Yet, closure

still concentrates liquidity, allowing traders to trade very aggressively at the end of the day with

minimal price impact and improving welfare in small markets or markets with infrequent shocks to

private valuations.

and closing of other exchanges, such as the NYSE. These volume spikes suggest market closures are even important
across asset exchanges.

6The NYSE and Nasdaq operate from 9:30 AM - 4:00 PM EST (6.5 hours). The CBOE for index options
operates from 3:00 AM - 6:00 PM EST (15 hours). The CME Globex operates 6:00 PM - 5:00 PM EST (23 hours).
MarketAxess’ SEF operates 2:00 AM - 5:30 PM EST (15.5 hours). GFI operates 7:00 AM - 5:00 PM EST (10 hours).
Finally, most forex and cryptocurrency exchanges operate 24 hours a day, while some US Treasuries and stock index
futures trade 24/5.
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There is an extensive literature empirically documenting intraday and overnight patterns in

financial markets.7 A substantial literature theoretically explains these facts (Hong andWang, 2000,

Slezak, 1994, Foster and Viswanathan, 1993, Brock and Kleidon, 1992, Foster and Viswanathan,

1990, Admati and Pfleiderer, 1989, 1988). However, all of these studies take the existence and

length of a nighttime as fixed. This paper considers variations in the existence and length of a

nighttime.

This paper also contributes to the literature that studies how common financial market struc-

tures interact with strategic trading and their implications for the allocative efficiency of the market.

Chen and Duffie (2021), Malamud and Rostek (2017), and Kawakami (2017) study market frag-

mentation. Fuchs and Skrzypacz (2019), Du and Zhu (2017) and Vayanos (1999) study trading

frequency. Antill and Duffie (2020), Duffie and Zhu (2017), and Blonien (2024) examine the addi-

tion of a trading session at a fixed price. Fuchs and Skrzypacz (2015) study government market

freezes in a dynamic adverse selection model. deHaan and Glover (2024) provide empirical evidence

that retail traders achieve better portfolio performance when trading hours decrease. Apart from

deHaan and Glover (2024), whose focus is on retail trade, none of these papers study the effects of

daily market closures.

The presence of market closures is closely linked to the existence of closing auctions, whose

characteristics have been of recent interest. The percentage of daily volume transacted in these

special sessions has reached an all-time high in recent years (Bogousslavsky and Muravyev, 2023).

Consistent with this, our model generates a substantial fraction of daily volume near the opening

and closing. The Autorité des Marchés Financiers (AMF, 2019) has expressed concerns that this

increase in concentration at the close may lead to price and liquidity deterioration during trading

beforehand. We find that prices during trading are unaffected by the closure. However, liquidity

leading up to the closure does suffer as traders delay for the substantial liquidity offered at the close,

consistent with AMF’s concerns. Despite these concerns, we show that there are instances in which

the social costs of strategic delay to the closing auction can be outweighed by the coordination

benefits of a closure. Bogousslavsky and Muravyev (2023), Jegadeesh and Wu (2022), and Hu

7For example, Bogousslavsky (2021), Hendershott et al. (2020), Lou et al. (2019), Branch and Ma (2012), Kelly
and Clark (2011), Cliff et al. (2008), Branch and Ma (2006), Andersen and Bollerslev (1997), Chan et al. (1996),
Amihud and Mendelson (1991), Stoll and Whaley (1990), Barclay et al. (1990), Harris (1989, 1988), Amihud and
Mendelson (1987), Harris (1986), Fama (1965).
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and Murphy (2025) compare the NYSE and Nasdaq closing auctions to study liquidity and price

efficiency around the closing auction. This paper speaks to liquidity and allocative efficiency as a

function of the length of the trading day.

The paper proceeds as follows. Section II defines the model. Section III defines and solves for

the equilibrium and builds intuition for how the traders optimally trade with and without a market

closure. Section IV quantifies welfare. Section V extends the model to allow for heterogeneous

information. Section VI concludes. The Appendices provide technical details and proofs.

II. The Model

Section IIA introduces a model of strategic trading under imperfect competition with peri-

odic market closures. Section IIIB studies a version of the model without market closure that is

equivalent to special cases of the model studied in Du and Zhu (2017).

A. A Model with a Nighttime

Time is continuous and goes from 0 to ∞. We set a unit of clock time to be 24 hours, or a day.

Each 24 hour period is divided into K evenly spaced subperiods of length h := 1
K . Trade occurs

the first T +1 periods, and no trade is permitted in the last ∆ periods. We refer to the fraction of

the 24 hours where trade occurs as “day” and the remaining fraction is referred to as “night”.

Let us illustrate this setup in the first day, where clock time t is in [0, 1]. Trade occurs at times

0, h, . . . , Th, and the night spans times (Th, 1), which includes times (T+1)h, (T+2)h, . . . , (T+∆)h.

Note, (T +∆)h = 1− h. At time 1, the next day starts, and the timing repeats.

There are N ≥ 3 risk-neutral traders who trade a divisible asset. Traders want to hold the asset

because it pays a liquidating dividend of v per unit of inventory held.8 The time of liquidation

is random and exponentially distributed, denoted T ∼ Exp(r) so that the expected time until

liquidation is 1
r .

9 Define trader i’s inventory of the asset at time t to be zit, and the average

aggregate inventory, Z̄, is a constant.

8In Section V, we extend the model to where this value is unobserved and stochastic and traders receive signals
about it throughout time.

9Allowing the dividend to be paid continuously with the common discount rate r leads to an essentially identical
model and results. Also, the dividend is liquidating for simplicity. One could also allow discrete dividends to be paid
at a rate forever.
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Each trading session is modeled as a uniform-price double auction. Each trader i submits a

demand schedule Di : R −→ R that is a mapping of price to demand, p 7→ Di(p). The market

clearing price, p∗t , is the price that sets net demand to be zero,

N∑
i=1

Di(p∗t ) = 0. (1)

After trade at time t, trader i’s inventory moves to zit +Di(p∗t ). Each trader pays the equilibrium

price, p∗t , times the amount of the asset they were allocated, Di(p∗t ). If Di(p∗t ) < 0, then trader i

receives the equilibrium price times the amount of the asset they were allocated. The modeling of

trade as an auction as opposed to a limit-order book provides tractability while maintaining the

important economic mechanism of price impact from trade.10

Each trader is endowed with some portion of the asset, referred to as the trader’s initial in-

ventory. Traders also have a private value per unit for the asset that is realized upon liquidation,

denoted wi,T . Their value of the asset at liquidation is v + wi,T . The private value, wi,t, is a

jump process which has N(0, σ2
w) distributed jumps that arrive at constant rate λ.11 Exogenous

shocks to private values induce continued gains from trade over time and can be motivated by risk

management considerations or shocks to preferences.

Finally, each trader incurs a holding cost per unit of time of γ× (zit)
2.12 Chen (2022), Chen and

Duffie (2021), Antill and Duffie (2020), Duffie and Zhu (2017), Du and Zhu (2017), Sannikov and

Skrzypacz (2016), Rostek and Weretka (2012), Vives (2011) and Blonien (2024) all use a similar

quadratic holding cost. This cost can be interpreted as representing inventory costs or collateral

requirements.

Since traders can only manage inventory through trade during the day, and private values can

be shocked in the day or overnight, the restrictions that market closures impose have obvious costs.

If a shock to private values arrives overnight, traders will arrive at the start of the next day at

positions that are suboptimal. In the model, traders trade off maintaining suboptimal inventory

positions with price impact costs. Therefore, they trade slowly towards their desired inventory

10A series of papers (Budish et al., 2024, Aquilina et al., 2021, Budish et al., 2015) recommend that the market be
switched from a continuous limit-order book to frequent batch auctions to curtail the socially wasteful arms race for
speed.

11Results for other exogenous information arrival processes, for instance with shocks every nh units of time for an
integer n, are similar.

12We can solve the model for any deterministic and time-varying holding costs, γt. For simplicity, we focus on
constant marginal holding costs throughout time.
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position, heightening the costs of a temporary closure. This paper’s goal is to study the costs and

benefits of daily market closure through the organization of trade it induces and to determine their

relative magnitudes.

Now, let us define the traders’ value functions. In the following sections, we will study equilibria

that are periodic, with a period equal to one day. Therefore, to ease the exposition, we simply

focus on t ∈ [0, 1] and note that results at any other time are analogous. Recall trade in the first

day occurs at times 0, h, . . . , Th. For t = kh in any of these periods apart from the last, denote

any trader’s value function Vk. The value function is a function of current inventory position zi,

current private value wi, and aggregate private value W̄ = 1
N

∑N
i=1w

i, and satisfies the following

Bellman equation:

Vk(z
i, wi, W̄ ) = max

Di

{
− Dip∗t︸ ︷︷ ︸

cost of
trade

+(1− e−rh)(zi +Di)(v + wi)︸ ︷︷ ︸
expected liquidation

value

− (1− e−rh)γ

2r
(zj +Di)2︸ ︷︷ ︸

expected inventory
flow cost

+ e−rhEkhVk+1(z
i +Di, wi

(k+1)h, W̄(k+1)h)︸ ︷︷ ︸
expected

future value

}
. (2)

The maximum is over demand schedules, not simply realized demands. The first term corresponds

to the cost (allocated quantity times market clearing price) of trade incurred in the double auction

at time kh. The next term corresponds to the expected payoff if the asset liquidates before the

next session times the probability it liquidates before the next session. The third term is the

expected holding cost before the next session, which incorporates the probability that the asset

might liquidate, after which there is no more holding cost. The last term is the next period’s

continuation value, assuming the asset does not liquidate before then, times the probability the

asset does not liquidate before the next period. As we will show, prices reveal the average private

value W̄ in equilibrium. Therefore, the value function is a function of W̄ insofar as it affects future

prices and realized demands, and thus, utility. In the last trading period of the day, that is in the
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time T + 1 trading session at clock-time Th, the Bellman equation is modified to the following:

VT (z
i, wi, W̄ ) = max

Di

{
−Dip∗Th︸ ︷︷ ︸

cost of
trade

+(1− e−rh(1+∆))(zi +Di)(v + wi)︸ ︷︷ ︸
expected liquidation

value

− (1− e−rh(1+∆))γ

2r
(zj +Di)2︸ ︷︷ ︸

expected inventory
flow cost

+ e−rh(1+∆)EThV0(z
i +Di, wi

1, W̄1)︸ ︷︷ ︸
expected

future value

}
. (3)

The terms are modified to reflect the increased likelihood that the asset liquidates before the next

trading session, as there are h(1 + ∆) units of clock time between trade instead of h.

III. Equilibrium

A. Model with a Closure

Prior literature (e.g., Antill and Duffie (2020), Du and Zhu (2017), Vayanos (1999)) frequently

studies symmetric, linear, and stationary equilibria. That is, the equilibrium demand schedules of

each trader are the same linear combination of price and other relevant state variables and inputs.

In our model with daily market closures, such an equilibrium will not exist. The trading problem

that faces every trader will not be ex-ante identical at each trading session, as the opportunity set

changes throughout the day, precluding the existence of stationary equilibria. For instance, as the

closure approaches, traders will behave differently as the inability to manage inventory overnight

presents a substantial change in the opportunity set.

Therefore, we focus on symmetric, linear, and daily-periodic demand schedules. For example, in

equilibrium, all demand schedules submitted at 9:30 AM will be the same function every day, but all

traders may use a different demand schedule at 10:00 AM than they did at 9:30 AM. Concretely,

we conjecture that the equilibrium demand schedule at trading session k ∈ {0, . . . , T} is of the

following form:

Di
k(z

i, wi, p) = ak + bkp+ ckz
i + fkw

i, (4)

where bk ≤ 0. By market clearing, trader i faces the residual supply curve of the other N − 1

traders and effectively chooses a price and quantity pair. If trader i chooses demand quantity di,

then by market clearing, the price must solve di +
∑

j ̸=i(ak + bkp + ckz
j + fkw

j) = 0. Therefore,
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the market clearing price is

Φk(d
i, zi,W−i) := p = − 1

bk(N − 1)

(
di + (N − 1)ak + ck(NZ̄ − zi) + fkW

−i
)
, (5)

where W−i =
∑

j ̸=iw
j . Traders are strategic, and thus, they rationally anticipate and internalize

how their demand affects prices due to imperfect competition. As price impact itself is only a

wealth transfer between traders, it is the strategic effects of avoiding price impact that can be

socially costly by reducing allocative efficiency.

A symmetric (Markov perfect) equilibrium of the above stochastic game is defined by the se-

quences (ak)
T
k=0, (bk)

T
k=0, (ck)

T
k=0 and (fk)

T
k=0. Equilibrium requires that if trader i conjectures the

other N − 1 traders use the linear demand schedule (4), trader i’s best response is to use the same

demand schedule, and the market clears. We show in the Appendix that this equilibrium exists

and is characterized by Proposition 1.

PROPOSITION 1: If N > 2 or rh are sufficiently large, there exists a unique symmetric, linear,

and periodic equilibrium with trade in periods 0, . . . , T and which satisfies the following properties:

1. The equilibrium quantity traded takes the form

Di
k(p

∗
k) = ck

(
zik −

( r
γ
(wi

k − W̄k) + Z̄
))

, (6)

where k = 0, . . . , T, for ck characterized in Appendix A, and satisfies −1 ≤ ck ≤ 0.

2. The equilibrium market clearing price is

p∗k = v + W̄k −
γ

r
Z̄. (7)

3. Let c̄ denote the equilibrium value of ck if there is no market closure. In two consecutive

periods of trade, if ck+1 > c̄, then ck < c̄. Similarly, if ck+1 < c̄, then ck > c̄. An analogous

pattern applies to 1/bk, which determines price impact as ck = r
γ bk.

Let us discuss these results. First, let us look at the functional form of the allocation, ck(z
i −

( rγ (w
i − W̄ ) + Z̄)). The allocation is current inventory net of a measure of desired inventory, which

we will define as z̃i := r
γ (w

i − W̄ ) + Z̄, scaled by ck. z̃i is the inventory position a trader would

reach each period after trade if the market was competitive. We refer to r
γ (w

i − W̄ ) + Z̄ as desired

inventory because if zi = r
γ (w

i−W̄ )+Z̄ for every trader, then there is no more trade in equilibrium.

9



Consider the post-trade inventory position,

zik+1 = zik +Di
k(p

∗
k) = (1 + ck)z

i
k − ck

( r
γ
(wi

k − W̄k) + Z̄
)
= (1 + ck)z

i
k − ckz̃

i
k. (8)

Recalling that ck ∈ [−1, 0], then ck is a measure of trade aggressiveness as it tells us what fraction

of our new inventory position is made up of the old inventory position, and the remaining fraction

is the desired inventory position. Subtracting z̃ik from both sides of equation 8, the gap between

next period’s inventory and the desired inventory is

zik+1 − z̃ik = (1 + ck)
(
zik − z̃ik

)
. (9)

As ck approaches −1, which is the value it would have under perfect competition, this gap ap-

proaches zero, and the allocation of the asset becomes more efficient.

The coefficient ck in the equilibrium allocation is largest, in absolute value, and most negative

at the end of the trading day. As the end of the day approaches, traders are aware that they will

soon lose the opportunity to manage random shocks in the desired inventory through trade. They

all, therefore, have the incentive to enter nighttime in a desirable inventory position. As a result,

traders are more willing to incur price impact and temporary trading costs toward the end of the

trading day. The old adage of “liquidity begets liquidity” comes into effect; liquidity improves

due to the fear of suboptimal inventory positions being exacerbated overnight, so it becomes even

cheaper to trade more aggressively now, further encouraging aggressive trade.

This incentive to enter overnight in a good position is strongest in the final period of trade.

In fact, by backwards induction, traders know trade will be cheap in the final period. So, traders

have an incentive to postpone trade until then. This reduces liquidity in the penultimate period.

This explains property 3 of the equilibrium, which formalizes the strategic incentives in the model.

Essentially, if trade is aggressive next period, trade is less aggressive this period, as traders postpone

to the next period when price impact is lower. Similarly, if trade is less aggressive next period, trade

will be more aggressive this period. Thus, trade has some oscillatory properties. In our numerical

examples, this oscillation is by far the strongest in the last two periods and decays relatively quickly.

If the incentives to postpone trade are sufficiently strong, the equilibrium with trade every

period breaks down, and there is a period of no trade leading up to the closing session. These

incentives are strongest when the market is small, i.e. N is small, or liquidation risk before the next
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trading session is large, i.e. rh is small. If N is small, price impact is generally large, implying the

benefits of a liquid final period of trade are substantial. If rh is small, the costs of delaying trade

are low as the asset is unlikely to liquidate in the meantime. Empirically, an analog of these results

is the fact that in markets with closing auctions, liquidity prior to the closing auction is relatively

thin, as trade is delayed due to the coordination in the closing auction.

Below, we provide a result that describes an equilibrium that can arise if the parameters are

such that traders are not willing to trade in the period preceding liquid close. In order to obtain this

modified equilibrium, we relax the assumption that submitted demand schedules must be downward

sloping by allowing traders to not trade for a period.

PROPOSITION 2: Assume that an equilibrium with trade in every period does not exist. Then,

under weaker conditions than the existence of an equilibrium with trade every period, there is a

unique equilibrium in which demand schedules are permitted to be uniformly zero for a single period

during the trading day. This equilibrium has no trade in period T − 1 and satisfies properties 1, 2,

and 3 in the other periods.

This result implies there are equilibria in which there is a “halt” in trade for a period. It can

be generalized to allow for halts in multiple periods. Before moving on to analyzing the model

in more detail, we note there is a continuous time version, in which trade occurs in a continuous

sequence of uniform-price double auctions for the first 1−∆− ϵ units of the day, there is a halt in

trade for the next endogenous length ϵ units of time, and a closing auction occurs at time 1−∆. In

this version of the model, the length of the halt can be determined analytically, with no parameter

restrictions apart from N > 2. Moreover, prior to the halt, demand schedules are stationary and

thus do not depend on time and so do not oscillate. In addition, trade in the final period is more

aggressive than trade in the opening sequence of sessions.

It is worth highlighting some of the expressions in the continuous time version of the model, as

quantities such as ck and bk for the discrete time model, are provided in the Appendix but are not

readily interpretable. In the continuous time model, the length of the halt ϵ is

ϵ = min

{
1−∆,

1

r
log

(
e−∆r + (1− e−∆r)N

e−∆r + (1− e−∆r)(N − 1)

)}
. (10)
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For ϵ > 1−∆, the coefficient cT in the demand function at the close, 1−∆, is

cT = − (N − 2)(1− e−∆r)

e−∆r + (1− e−∆r)(N − 1)
, (11)

and cT = γ
r bT . It’s straightforward to see that ϵ is increasing in ∆ (as long as the minimum above

does not bind) and decreasing in N , while both cT and bT become more negative as N and ∆

increase. These comparative statics are analyzed in the discussion surrounding Figure 2 below.

B. Model of 24/7 Trading

Let us briefly review the solution without market closure and then compare the two models.

The model with no nighttime, ∆ = 0, is a special case of Du and Zhu (2017) in which there is

no adverse selection. We make no other modifications to the model from the previous section

other than setting ∆ = 0. Once again, we differ from most prior literature by conjecturing linear,

symmetric, and periodic equilibria of the same form as Equation 4. Periodicity again requires the

demand functions to be periodic functions of time with period 1.

We characterize the equilibrium in Proposition 3.

PROPOSITION 3: When ∆ = 0 and N > 2, there exists a unique symmetric, linear, and periodic

equilibrium with the following properties:

1. The equilibrium quantity traded takes the form

Di
k(p

∗
k) = c

(
zik −

( r
γ
(wi

k − W̄k) + Z̄
))

, (12)

where k = 0, . . . , T, and c ∈ [−1, 0] and is equal to

c =
−(N − 1)(1− e−rh) +

√
(N − 1)2(1− e−rh)2 + 4e−rh

2e−rh
− 1.

2. The equilibrium market clearing price is

p∗k = v + W̄k −
γ

r
Z̄. (13)

A first point to note is that the equilibrium strategy played is time-invariant. Despite allowing

the demand schedules submitted to be periodic across days, the unique equilibrium is constant

across time, as in Duffie and Zhu (2017). Therefore, conditional on state variables zi, wi, W̄ , prices

and allocations are the same across time. It is worth noting that prices are the same when trade

is 24/7. Although liquidity differs across the two market structures, the net quantity demanded,
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which is a function of the marginal costs and benefits of holding the asset, remains unchanged, as

incentives for holding the asset due to liquidity are symmetric across traders in equilibrium. In the

model with closure, trade is non-stationary throughout the day. Importantly, this non-stationarity

leads to a coordination of liquidity towards the end of the day.

C. Equilibrium Intuition

Next, we compare the equilibrium in Propositions 1 and 2, when there is a market closure, and

Proposition 3, where trading occurs 24/7. The introduction of a long pause in trading, lasting

h(1 + ∆) units of clock time instead of just h, creates non-stationarity in the equilibrium demand

functions. Instead of there being a constant fraction of excess inventory closed at each trading

period, as in the 24/7 model, the intensity with which agents trade in the model with a closure, ck,

typically has three distinct periods of behavior. To see this and compare the two models, we will

look at an example in Figure 1.

Figure 1 quantifies the magnitude of the coordination and concentration of liquidity when there

is a market closure, for various trading frequencies. The y-axis is the expected percentage of excess

inventory left for a given trader relative to the start of the day. Mathematically, the y-axis is∏k
j=0(1 + cj), where k is the (k + 1)th trading session of the day, which occurs at clock time kh.

Recall excess inventory is simply the difference between current inventory, zit, and desired inventory,

z̃it, which is closed by 1 + ck in trading session k. The figure displays how much of the traders’

excess inventory is eliminated assuming there are no shocks to tastes during the day, so that desired

inventory is constant throughout the day.

When trade is 24/7, c is constant and between −1 and 0, and traders close 1+ c percent of the

excess inventory per period. Comparing the orange and blue dashed lines, when trading frequency

is higher, the strategic effects are amplified as liquidity per trading session is lower, which increases

price impact, which further reduces a trader’s willingness to trade. Du and Zhu (2017) study the

tradeoff between this strategic cost and the ability to react to shocks more quickly.

When we add a closure, the strategic behavior of traders changes the equilibrium trading pat-

terns dramatically. This is reflected in the solid blue lines for a slower market and solid orange lines

for a faster market. It is easiest to work backward to understand. Starting at the close, traders

rationally anticipate that they will be stuck in an inventory position overnight, which flow cost
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Figure 1. Trading Intensity Throughout the Day
This figure plots trading intensity for various regimes throughout the day. The y-axis is the expected
percentage of excess inventory left at point t in the day relative to the position at the start of the
day for a given market design. The solid lines are market designs with a closure of 31.25% of the day
from Proposition 1, and the dashed lines are market designs without a closure from Proposition 3.
The colors map to the trading frequency of the market, with blue being K = 16 periods a day and
red being K = 640 periods a day. The vertical dotted line is when the market closes for trading
with respect to Proposition 1. We use N = 100 and r = 1/30.

overnight irrespective of the shocks to their private value for the asset, and there is some chance

the asset will liquidate. Moreover, traders will not be able to react to shocks to taste that occur

overnight, making excess inventory at the end of the day even less desirable. These risks increase

traders’ willingness to incur additional price impact at the end of the day to avoid a worse inventory

position overnight. This is a symmetric incentive across all traders. So, as they all become more

aggressive, liquidity increases, which decreases price impact for a desired quantity. They, therefore,

can become even more aggressive, and this logic repeats. The closure helps traders coordinate their

trade that is otherwise very spread out when trade is 24/7. This can be seen in the plot by the

large downward jump in the amount of excess inventory held right after the last trading session

of the day. It takes almost all of the night for traders to offload as much of their initial excess

inventory when trade is 24/7.
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Yet, because trade is very efficient at the close and traders are rational and strategic, in periods

leading up to the closure, traders know that if they delay trade for a short period, they will be able

to trade very cheaply. This incentive to delay trade is so strong that, in the plotted example, there

is no trade with downward sloping demand in equilibrium in the periods just preceding the close.

Therefore, the only equilibrium that exists is that no trade happens, bk = 0.

When traders are far enough away from the close, the undesired flow costs and liquidation risk

throughout the day are sufficiently large that it is worth incurring some price impact to optimize

positions, and there is non-zero trade. When trade limits to occur continuously, trade is the same

during this time whether there is a closure or not, which can be seen by the solid and dotted

orange lines being effectively indistinguishable. When trade is slower, you can see some oscillation

in aggressiveness around the level of aggressiveness in the 24/7 trade model (see Property 3 of

Proposition 1). If liquidity is better next period, agents are less willing to trade now, which lowers

aggressiveness and liquidity this period. If liquidity is poor next period, agents are more willing

to trade now and incur price impact. So, the non-stationarity of the trader’s problem generates

an oscillation that increases in magnitude as the closure approaches. This oscillation can be seen

by the dashed blue line flipping alternating being below or above the solid blue line in subsequent

periods.

In Figure 2, we study how aggressiveness trade is at the close and the length of the endogenous

period of no trade, or “halt”, as a function of the size of the market or the length of overnight

closure. The lines in the plot are the discrete-trading versions of equations 10 and 11. Panel A

studies how these endogenous quantities change as the market grows in size. First, the closer the

dotted blue line is to 100%, the closer the model is to perfect competition and the more efficiently

the asset is traded as the close. The y-axis is the fraction of excess inventory that is sold at the

close. As the market becomes larger, price impact decreases as demand is dispersed across more

traders, and very quickly, the majority of the excess inventories are reallocated. The orange line

plots the length of the halt prior to the closure. For these parameters, and when the market is

small, there actually is no trade except for the closing auction until there are about 75 traders.

Then, as the market size increases, the fraction of the day with endogenously no trade decreases

towards zero. As the market grows, price impact decreases, making it less costly to trade in any

period before close and minimizing the relative benefits of coordinated liquidity at the close. In
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Figure 2. Trading Around the Close
We plot the aggressiveness of traders at the close, |cT | where the closer to 100% being closer to
perfect competition, with a blue dotted line and the percentage of the trading day where no trade
endogenously happens leading up to the close with an orange solid line. In Panel A, we plot these
two quantities as a function of the size of the market, N . In Panel B, we plot these two quantities
as a function of the percentage of the day where the market is closed, ∆/K. The continuous-time
version of the blue-dotted line is equation 11, and the continuous time version of the solid-orange
line is equation 10. We use r = 1/30 and K = 1, 000 for both plots. In Panel A, we set ∆/K = 73%,
and in Panel B, we set N = 100.

Panel B, as the length of closure increases, so does the efficiency of trade at the close. As the costs

of closure increase, so does traders’ willingness to incur price impact at the close. Eventually, the

closure is so long that there is only trade at the close, and the line flattens out. By similar logic,

the length of the halt increases as the efficiency of the closing session increases. Eventually, there

is only trade at the close, which is mechanically moved towards the open, which results in the line

having a slope of −1.

D. Simulating the Models

We simulate a trading day for a market with ten traders. We run a single simulation for two

scenarios: first, when trade only occurs for the first 6.5 hours of the day, followed by nighttime and

no trade for 17.5 hours, and second, when trade can occur 24/7. Each trader receives the same

shocks to their inventory position in the two scenarios. The only difference is how their strategies

endogenously change when there is a closure. For the N = 10 traders, we set the initial excess
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(a) Simulation with ∆ = 17.5 hours of night (b) Simulation with trading 24/7 (∆ = 0)

Figure 3. Simulation With and Without Closure
These figures plot excess inventory paths under the same simulated shocks over a single day for
ten traders, N = 10, but the left plot has a nighttime of 17.5 hours, and the right plot has trading
24/7. The desired excess inventory position (the solid black line) is zero, and the shocks to traders’
private values are the same across plots and occur every period right after trade. The parameters
used are σ = 1, r = 10%, K = 1, 000, and γ = .4.

inventory positions to be equally spaced between −.9 to .9.

The results of these simulations are plotted in Figure 3. Starting with Figure 3(a), while there

is noise in the traders’ inventory positions during the trading day, at the close, there is a large

drop in the amount of excess inventory held across traders. While they slowly trade to eliminate

excess inventory early in the day, and there is an endogenous pause of no trade, they become very

aggressive at the close. After the trading day ends, traders can no longer control the drift of their

inventory positions. Therefore, inventories randomly evolve overnight. Traders dislike that this

may leave them in an undesirable position at the start of the next day. Yet, traders incur a much

lower amount of undesired flow cost early at night due to the ability to trade cheaply toward their

desired inventory positions.

Using the same shocks, we plot how trader’s excess inventory position would have endogenously

evolved in a model with trade that is 24/7 in Figure 3(b). Without market closure, traders strate-

gically break up their orders over time, spreading out liquidity and trading slowly toward their

desired inventory position. Without the coordination of liquidity, traders never substantially close

the gap. They do appear to be in better positions by the end of the day, though. From this

simulation alone, it is not clear which scenario the traders would prefer ex ante. In Section IV, we
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Figure 4. Volume Throughout the Day
This figure is the percentage of the expected daily trading volume in each 30-minute bin when
trading occurs for 6.5 hours a day. This example uses N = 500, r = 10%, σd = σn, K = 1, 000,
and ∆/K = 17.5

24 .

will formally study trader welfare as a function of market structure.

E. Volume

One way to see the implications of the model for intraday trade by looking at volume throughout

the day. A strong empirical pattern is the U-shaped (smirk) pattern of trading volume throughout

the day (Chan et al., 1996, Jain and Joh, 1988). Due to the non-stationarity of the demand schedule,

it is not obvious what volume will look like throughout the day.

Due to the inability to trade overnight, the absolute gap between any trader’s current and

desired inventory position is expected to grow overnight. Therefore, although trade is not very

aggressive in the morning in the sense that traders exchange a small percentage of the gap, due

to the large average gap, they still trade a large quantity of the asset. In the middle of the day,

they still are not very aggressive nor have a large excess inventory position. Finally, at the close,

they become very aggressive and close the gap significantly, resulting in a large increase in trading

volume.

Figure 4 demonstrates the above logic. Figure 4 plots the expected fraction of the total daily

volume in each 30-minute trading bucket by computing average volume in simulations of the model.
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To match the NYSE, we assume the trading day is 6.5 hours. If trade volume was uniformly

distributed throughout the day, you would expect about 7.7% of the daily volume in each bin. Yet,

we see significantly more near the open and close. About 17% of the daily volume happens in the

first 30 minutes, and about 14% happens in the last 30 minutes.

Some markets, such as foreign exchange (FX) markets or cryptocurrencies, already trade 24/7.

Yet, volume patterns in these markets are not flat throughout the day, as the equilibrium of

Proposition 3 would imply. Empirically, we see spikes in volume in FX markets when either

the London or New York stock exchanges first open or close and especially during their overlap in

opening hours. Likewise, for cryptocurrencies, we see volume rise when the London Stock Exchange

opens and a further increase when the NYSE opens. Allowing for the volatility or frequency of

shocks to be a deterministic function of time would likely match these patterns. As volatility

increases, so would volume. Therefore, if volatility or rate of shocks spike during market openings

in other asset classes, you could see generate spikes in trading volume even for assets that trade

24/7. Introducing another set of traders who only trade between certain hours of the day, such as

when another market opens and closes, might also generate similar patterns in volume in markets

that are open 24/7. The daily entry and departure of these traders could potentially coordinate

trade sufficiently to generate the empirical patterns we observe in markets that do trade 24/7.

More generally, modeling the interdependence between exchanges and their hours is well beyond

the scope of this paper; to be fully understood, it would require the study of traders’ dynamic

strategic trade between correlated assets trading on different exchanges.

IV. Welfare

We now formally study if traders are ex-ante better off having a daily closure of some length

or being allowed to trade 24/7. We do this by studying the aggregate ex-ante welfare of traders.

Specifically, we define welfare as traders’ ex-ante expected value of their value functions across all

traders in the market. As each trader’s value function aggregates their expected profits net of

flow costs, the higher the value, the more efficient the market is. In this section, for simplicity, we

assume that the initial inventory position for each trader is zero, zi0 = 0, which implies that Z̄ = 0,

and each initial private benefit is wi iid∼ N(0, σ2).
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As a first benchmark, we define the first-best (efficient) welfare as that which continuously

and perfectly reallocates each trader’s inventory position to the competitive benchmark. This

benchmark is what a benevolent social planner would achieve if both frictions in the model were

eliminated by making markets perfectly competitive and letting trade occur continuously and 24/7.

The efficient welfare is

W e :=
N∑
i=1

E
[
V e(zi = 0, wi, W̄ )

]
=

σ2(N − 1)(r + µ)

2γ
. (14)

Next, we quantify welfare under the market design that never has a market closure where trade

occurs 24/7. This is the welfare from Proposition 3. The 24/7 welfare is

W 24/7 :=
N∑
i=1

E
[
V (zi = 0, wi, W̄ )

]
= Nα0 + σ2

(
Nα5 + α6 + α9

)
, (15)

where the α’s are defined by equations 21, 22, 23, and 24 in Appendix A.3. Finally, we quantify

the welfare achieved from Proposition 1 and extensions of it that allow for halts in trade, where

there is a market closure of ∆ periods. Welfare under a market closure of length ∆ is

W (∆) :=
N∑
i=1

E

[
1

T + 1

T∑
k=0

Vk(z
i = 0, wi, W̄ )

]
=

1

T + 1

T∑
k=0

[
Nαk

0 + σ2

(
Nαk

5 + αk
6 + αk

9

)]
, (16)

where the α’s are defined by equations 17, 18, 19, and 20 in Appendix A. Since welfare with a

closure is a non-stationary function of time, we compute welfare by averaging across time periods

in the trading day. In effect, time is an additional state variable, and, as with wi and W̄ , we also

randomize over time.

A. Welfare Comparative Statics

In Figure 5, we plot the percentage change in welfare from trade with closure for a fraction of

the day relative to welfare in a market structure with 24/7 trade. We look at this relationship as

we vary the length of the closure. Panel A plots the relationship for two different market sizes, and

Panel B plots the relationship for two different shock arrival rates.

In Panel A, we show that as the length of closure increases, traders become relatively worse off.

The welfare loss is larger for the larger market. This is because, in larger markets, the strategic

costs are lower. Despite trade at the close still being more efficient and a smaller endogenous length

of no trade before the close, there isn’t as much price impact at any period throughout the day,

and, therefore, closure is relatively more costly. In small markets, the benefit of the closing session
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Figure 5. Welfare Comparative Statics
Above is the percent change between welfare under a market closure and welfare under 24/7 trade
as we vary the length of the closure. Panel A plots this relationship for two different market sizes.
Panel B plots this relationship for two different rates of shocks. Both plots use K = 100 and
r = 10%. In Panel A, µ = 10. In Panel B, N = 10.

offsets more of the cost through the coordination of liquidity that is otherwise spread out thinly

throughout the day, and in fact, there is an interior optimal length of closure near 5% of the day.

However, as will be noted in the following subsection, the relative welfare differences are small.

In Panel B, welfare differences are displayed for different rates of shocks to private values. If

the shocks are infrequent, closure benefits traders. The higher the frequency of shocks, the lower

the relative welfare with a closure. This is due to the fact that the average gap generated overnight

between current and desired inventory widens as the length of closure increases and as the rate of

shocks increases. If there are not any shocks overnight, then the probability that your inventory

position, which tends to be good at the close, is near the desired position at the following open is

high. But if there are many shocks at night, then the position you start at the beginning of the

next day will be suboptimal, which will be costly to slowly correct in the following trading day.

B. Welfare when Night Characteristics Differ From the Day

To this point, we have assumed that marginal holding costs and the private value shock process

have been the same whether the market is open or closed. However, this is unlikely to be true.

In this subsection, we look at the welfare gain (loss) of a short market closure of an hour versus
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Figure 6. Welfare Change Under Heterogeneity From Day to Night
Above is the percent change between welfare under a market closure of one hour and welfare under
24/7 trade as we vary the marginal holding cost or volatility of the shocks between night to day.
The dotted blue line plots the welfare change as a function of marginal holding cost during the day
to that of the night. The solid red line plots the welfare change as a function of total volatility,
σ2
T = (1−∆)σ2

d +∆σ2
n, relative to volatility at night where σd solves that equation. Both plots use

K = 100, ∆ = 5, r = 3.33%, µ = 10, N = 100, and σ and γ equal 1 unless specified to be different.

24/7 trading when holding costs or shock magnitudes differ from night to day. We choose to focus

on the case of a one hour closure as this is the most common closure length of proposed extended

hours by the NYSE, Nasdaq, CBOE, and 24X.

Figure 6 plots an example. The blue dotted line varies the volatility of shocks to private values

at night while holding the total volatility in a day fixed. Mathematically, σd =

√
σ2
T−∆σ2

n

1−∆ . This

choice ensure potential gains from trade, which are larger when there are more shocks to private

values, are not a function of the length of closure. When volatility at night is less than the total

volatility, there is an increase in welfare due to the hour-long closure, and welfare decreases when

the night is more volatile. The solid red line plots the change in welfare as a function of the

change in the marginal holding cost from day to night. As it becomes cheaper to hold inventory

overnight when γd > γn, there are large welfare gains. When γd < γn, the short closure rapidly

hurts welfare relative to having the market open 24/7. Therefore, any policy recommendation
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Figure 7. Welfare Loss Relative to Efficient Benchmark
We plot the percent welfare loss under different market designs relative to the first best (efficient)
welfare. Panel A plots this loss for a small market, and Panel B plots this loss for a large market.
The solid red line is the welfare loss of a market design that is open 24/7 relative to the efficient
welfare. The dashed blue line is the welfare loss of a market design that is closed for ∆ periods
a day relative to the efficient welfare. The dashed-and-dotted green line is the welfare loss of a
market design that is closed for 17.5 hours a day, such as many equity exchanges, relative to the
efficient welfare. Both plots use K = 100, r = 10%, and µ = 10.

should take seriously variation in these parameters, which are also likely endogenous to the length

of market closure.

C. The Cost of Imperfect Competition for Differing Closure Lengths

So far, we have focused on comparing welfare under a market structure with 24/7 trade and with

a daily closure, ignoring the cost of each relative to the first-best allocation. The first-best allocation

would be achieved if there was perfect competition and if trade occurred continuously throughout

the day. In this setting, no trader ever holds any undesired inventory. Making comparisons relative

to the first-best allocation allows us to better quantify the costs and benefits of market closure.

Figure 7 plots the percentage of welfare loss of different market designs relative to the first-best

(efficient) allocations. Panel A is for a small market, and Panel B is for a large market. The solid

red line is the welfare loss of a market design with 24/7 trade relative to efficient welfare. The

dashed blue line is the welfare loss of a market design that is closed for ∆ periods a day relative

to efficient welfare. The dashed-and-dotted green line is the welfare loss of a market design that is
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closed for 17.5 hours a day, such as many equity exchanges, relative to efficient welfare.

As before, the 24/7 market is better for traders than a market with a closure. However, in

Panel A, the welfare loss due to closure is very small, less than 1%, relative to the overall welfare

loss of imperfect competition, ≈ 40%. Take, for example, when ∆/K ≈ 50%. The welfare cost

is only an extra 0.18% worse than 24/7 trading, despite only allowing trade for 50% of the day.

The endogenous response by traders and coordination of liquidity at the end of the day offset the

majority of the extra costs incurred due to the inability to trade at night. The current equity

market structure of trading for 6.5 hours a day is associated with about 0.27% extra loss in welfare

relative to the efficient benchmark.

In Panel B, when there is a bigger market, closure becomes relatively more costly. Now, trading

for 6.5 hours a day has doubled the welfare loss relative to the efficient benchmark. In this larger

market, the costs relative to the efficient benchmark are significantly lower, though, due to the

imperfect competition friction being less important. Therefore, long closures are fairly costly in

these larger and more liquid markets whose liquidity wouldn’t endogenously deteriorate too much

if trading hours were extended. It is worth noting that these results assume constant volatility and

holding costs across the day and night.

Overall, 24/7 trading tends better for traders within the assumptions of the model of this paper.

A closure tends to be useful in small markets where shocks are infrequent. Asset classes such as

corporate bonds or index CDSs fit this description well. On the other hand, traders in larger

markets with frequent shocks to desired positions, such as equities, cryptocurrencies, futures, and

foreign exchange markets, are better off in the model with 24/7 trade. However, we caveat that

there are other benefits of closure that are not modeled in our paper. Closing prices are heavily used

reference prices, and it is not obvious what price to use if there is never a closure. Further, most

companies prefer to announce news outside of market hours. Exchanges also need time outside of

market hours for updates and maintenance. Finally, managing, collecting, and settling contracts,

margin accounts, and collateral need time and a reference close price. These benefits may more

than compensate for some small welfare loss in our model from a short closure of an hour.
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V. Heterogeneous Information

In this section, we summarize an extension that allows for heterogeneous information regarding

the level of the dividend. The main results are analogous to those of previous sections, suggesting

our results regarding the effect of a market closure on liquidity and allocative efficiency are robust

to the consideration of information problems. The introduction of an information problem is done

by adding two components to the model: a stochastic liquidating dividend and private signals

regarding its payoff. These components generate a learning problem, discussed below, on top of

the inventory management problem discussed in detail in previous sections.

The liquidating dividend is now assumed to evolve according to a jump process. Jumps in the

dividend vt are assumed to coincide with jumps in the taste shocks and are N(0, σ2
D) distributed.

Each trader receives private signals about these jumps. If a jump in the dividend level occurs at

time t, the signal is given by Ŝi
t = vt − vt− + ϵ, where ϵ ∼ N(0, σ2

ϵ ). If jumps occurred at dates

t1 < t2 < · · · < tk, trader i forms a signal Si ≡
∑k

j=1 Ŝ
i
tj . Assume these normally distributed shocks

are all independent of each other and of all shocks in the model. All other aspects of the model are

the same as before.

We focus on daily-periodic, linear, and symmetric strategies and conjecture equilibrium demand

schedules at time t = kh+ n for any integer n take the following form:

Di
k(z

i, wi, Si, p) = ak + bkp+ ckz
i + fk(w

i +ASi).

Based on these demand schedules, in equilibrium, any investor will be able to observe W̄ + AS̄

directly from the price. Note that there is no time dependence in A. This is a technical point,

but an important one. If there were time dependence, investors’ conditional expectations of the

dividend would no longer be a simple function of a few state variables, namely wi, Si and W̄ +AS̄.

In particular, time dependence in f would effectively force beliefs to be a state variable of the

problem. Any investor i’s beliefs would depend on other investors’ beliefs, which in turn depend

on investor i’s beliefs. This loop iterates, leading to an infinite regress of beliefs problem, which

the literature has yet to understand how to resolve.

Given the above demand schedules, each investor solves a learning problem. Traders observe

wi, Si and W̄ + AS̄, from which they infer the level of the dividend. In particular, conditional
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beliefs at time t = kh of the value of the dividend are

Et[w
i
t + vt] = wi

t +B1S
i
t +B2(W̄t +AS̄t),

for some constants, B1, B2. B1 and B2 unsurprisingly depend on A, as the relative weight of the

signal from the price on Z̄ and S̄ affects the learning problem. Conversely, A depends on B1 and B2,

as optimal demand schedules depend on beliefs. This fixed point problem leads to a straightforward

non-linear equation for A.

We provide the solution of this model in the Appendix B. It is fairly straightforward to show

that if the learning problem goes away, in the sense that B1 = B2 = 0, the equilibrium reduces

to that described in Proposition 1. Defining si = 1
α(w

i + ASi) for a constant α, with a slight

relabelling of the demand function, equilibrium demand is given by

Di
k = ck

(
zit −

(r(Nα− 1)

λ(N − 1)
(sit − s̄t) + Z̄

))
.

sik is simply a weighted sum of trader i’s private taste and their signal. As shown in Figure 8,

the main result of this paper still holds when learning is introduced. As the trading day comes to

an end, traders trade aggressively towards their desired allocations. As they do so, price impact

decreases, further improving liquidity and the incentives to trade aggressively in the final period.

We plot trading intensity and welfare in Figures 8 and 9. We consider the model of this section

alongside a model in which σϵ is set to 0 so that information asymmetry is eliminated and alongside

a model with information asymmetry but without market closure. In Figure 8, we consider trading

intensity by plotting
∏k

j=0(1+ cj) as a function of k. This quantity measures how much of the gap

between a trader’s initial inventory and initial desired inventory has closed in expectation between

the start of the trading day and time t. For both models with closures, trade is most aggressive in

the final period. Perhaps unsurprisingly, trading intensity with information asymmetry is slightly

slower than without. Traders avoid price impact as doing so increases other’s beliefs about the

liquidation value, making them even less willing to sell the asset. It is worth noting that this slower

trading is due primarily to heterogeneity, not simply uncertainty. If one plots the trading intensity

corresponding to a model in which signals are public, it is indistinguishable from the plot in which

there is no uncertainty about the dividend.

In the right-hand panel, we see that market closure continues to have consequences for welfare.
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Figure 8. Trading Intensity with Heterogeneous Information
This figure plots trading intensity for various regimes throughout the day. The y-axis is the expected
percentage of excess inventory left at point t in the day relative to the position at the start of the
day for a given market design. If there is a closure, its length is 31.25% of the day. The parameters
are K = 16, N = 100, and r = 1/30. Moreover, σD = σw = 1, σϵ = 0.1, and µ = 1. If information
is homogeneous, σϵ is set to 0.

Welfare is better with a sufficiently long closure if the rate of information arrival is sufficiently

slow. Moreoever, if the number of traders is sufficiently small, the results of the left panel suggest

a closure of roughly 10% of the day is optimal. Relative to Figure 5, welfare with a market closure

is slightly better relative to welfare under 24/7 trade when agents have heterogeneous information.

This is not particularly surprising since the coordination a closure provides near the end of the

trading day is relatively more important when liquidity is already spread thin due to heterogeneous

information. Overall, the primary mechanisms of this paper are present when there is heterogeneous

information regarding asset values.

Although not the focus of this paper, it is worth discussing any implications the model might

have for price efficiency. One can think of price efficiency as the magnitude of a trader’s conditional

variance of the dividend given their signals and the price, relative to the unconditional variance

of the dividend, that is Vart(vt)
Var(vt)

. This value jumps down whenever trading opens, as traders infer

information from the price, and increases on average whenever the market closes. Thus, market
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Figure 9. Welfare Comparative Statics with Heterogeneous Information
Above is the percent change between welfare under a market closure and welfare under 24/7 trade
as we vary the length of the closure, in the equilibrium with heterogeneous information. Panel A
plots this relationship for two different market sizes. Panel B plots this relationship for two different
rates of shocks. Both plots assume σD = σw = 1, σϵ = 0.1, K = 100 and r = 10%. In Panel A,
µ = 10. In Panel B, N = 10.

closure hinders price efficiency simply because prices are not observed overnight. Although worth

pointing out, this is not a particularly surprising finding, as the information structure we consider

is simple enough to make the model tractable. Extensions in which some traders had higher quality

signals than others might yield interesting results. For instance, our results suggest that market

closure helps coordinate liquidity near the close. If some traders were more informed than others,

they might be more willing to trade, improving price efficiency. Can this mechanism outweigh the

detrimental effect of closure on price efficiency that we document? More generally, the impact

of market closure on the dynamic interaction between allocative efficiency, liquidity, and price

efficiency under heterogeneously informed investors promises to yield very interesting research,

which we leave to future study.

VI. Conclusion

Despite the rise of electronification in trading and execution, rendering many historical reasons

for the existence of market closures obsolete, this paper shows that market closures can still play an

important role in the allocative efficiency of market designs. Despite adding a constraint on when
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trade can occur, we show there exists a market closure length such that trader welfare is higher

than a market design where trade can occur 24/7 in small markets with infrequent shocks. This

can also be true if marginal holding costs or volatility is lower overnight. This result follows from

strategic traders coordinating their aggressive trade at the market closure, which offsets the costs of

the inability to trade during the closure itself. We further show that this result is robust to traders

having heterogeneous information, which slows down trade but strengthens our main channel.

While our model focuses on the effect of a market’s opening hours on allocative efficiency, market

closures may play an important role for many other reasons. Closing auction prices are used in

the settlement of many derivative contracts, for margin requirements, performance of institutional

investors, to price mutual fund shares, and the asset value for ETFs and stock indices. Further,

market closures have been used to make announcements without inducing excess short-run volatility

in a share price. Both the effect of market closure on the efficiency of closing prices and its

interaction with endogenous disclosure decisions are important for policymakers and future research

to consider.

Finally, the intersection of market closures and fragmentation is a potentially fruitful path for

future research. Traders can effectively trade 24/7 by using other international exchanges, such

as the Tokyo or London Stock Exchanges. Yet, as noted in the main text, volume still clusters

around the closes and openings of each exchange. Further, there are extended trading hours where

trade can occur through electronic communication networks (ECNs), yet these networks suffer from

low liquidity and volatile prices. Circumventing closures on one exchange by routing trade through

other means may limit the costs of limited trading hours for some securities. Moreover, if aggressive

trade due to closure on one exchange leads to spillovers of aggressive trade onto other exchanges,

some of the downsides corresponding to markets designed with 24/7 trading may be mitigated.
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Mathematical Appendix

Appendix A. Proofs of Propositions 1-3

This appendix proceeds as follows. First we set up the problem which describes equilibrium.

Then, in Appendix A.1 we construct a solution, and describe some of its properties. Appendix A.2

solves the model with a halt in trade, and Appendix A.3 specializes to the case in which ∆ = 0, so

that there is no overnight period.

Under the assumption of linear demand schedules, and based on the form of the payoffs, the

value function will be linear-quadratic:13

Vk(z
j , wj , W̄ ) = ak0+ak1z

j+ak2w
j+ak3W̄ +ak4(z

j)2+ak5(w
j)2+ak6(W̄ )2+ak7z

jwj+ak8z
jW̄ +ak9w

jW̄ .

First, we characterize its solution. The Bellman equation for every time t = kh, where t < T , is

Vk(z
j , wj , W̄ ) = max

Dj

{
−Djp∗t + (1− e−rh)(zj +Dj)(v + wj)− (1− e−rh)γd

2r
(zj +Dj)2

+e−rh
[
at+1
0 + ak+1

1 (zj +Dj) + ak+1
2 wj + ak+1

3 W̄

ak+1
4 (zj +Dj)2 + ak+1

5 ((wj)2 + σ2) + ak+1
6 (W̄ 2 +

σ2

N
)

+ak+1
7 (zj +Dj)wj + ak+1

8 (zj +Dj)W̄ + ak+1
9 (wjW̄ +

σ2

N
)

]}
,

and for the last period, it is

VT (z
j , wj , W̄ ) = max

Dj

{
−Djp∗T + (1− e−rh(1+∆))(zj +Dj)(v + w)− (1− e−rh(1+∆))γn

2r
(zj +Dj)2

+ e−rh(1+∆)
[
a00 + a01(z

j +Dj) + a02w
j + a03W̄

a04(z
j +Dj)2 + a05((w

j)2 + σ2) + a06(W̄
2 +

σ2

N
)

+a07(z
j +Dj)wj + a08(z

j +Dj)W̄ + a09(w
jW̄ +

σ2

N
)

]}
.

13One can apply a contraction mapping theorem to show uniqueness. First, one can restrict the decision space to a
compact subset of the set of linear demand functions. Value iteration will map the set of bounded continuous functions
into itself, assuming a Feller-type condition regarding continuity of the conditional expectation of the continuation

value, and assuming boundedness is defined using a weighted norm of the form ||f || = sup |f(t, z, w, W̄ )e−||(z,w,W̄ )||22 |.
Then, using Blackwell’s conditions along with the Contraction Mapping Theorem, one gets uniqueness on any compact
subset of linear demand functions.
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The FOC for optimal demand in the first T − 1 periods is then

0 = −p∗t − λkD
j + (1− e−rh)(v + wj)− (1− e−rh)γd

r
(zj +Dj)

+ e−rh[ak+1
1 + 2ak+1

4 (zj +Dj) + ak+1
7 wj + ak+1

8 W̄ ],

and in the last trading session of the day

0 = −p∗T − λTD
j + (1− e−rh(1+∆))(v + wj)− (1− e−rh(1+∆))γn

r
(zj +Dj)

+ e−rh(1+∆)[a01 + 2a04(z
j +Dj) + a07w

j + a08W̄ ].

where λk := ∂Φt

∂dj
= − 1

bk(N−1) . Assume

Dj
k = ak + bkpt + ckz

j + fkw
j .

Market clearing implies the equilibrium price is

pt = −ak + ckZ̄ + fkW̄t

bk
,

and equilibrium demand is

Dj
k = ck(z

j
t − Z̄) + fk(w

j
t − W̄t).

Substituting these expressions into the FOC,

ak + ckZ̄ + fkW̄

bk
+

1

bk(N − 1)
(ck(z

j − Z̄) + fk(w
j − W̄ ))

+ (1− e−rh)(v + wj)− (1− e−rh)γd
r

((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ ))

+ e−rh
[
ak+1
1 + 2ak+1

4 ((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ )) + ak+1
7 wj + ak+1

8 W̄
]
= 0,

and

aT + cT Z̄ + fT W̄

bT
+

1

bT (N − 1)
(cT (z

j − Z̄) + fT (w
j − W̄ ))

+ (1− e−rh(1+∆))(v + wj)− (1− e−rh(1+∆))γn
r

((1 + cT )z
j − cT Z̄ + fT (w

j − W̄ ))

+ e−rh(1+∆)
[
a01 + 2a04((1 + cT )z

j − cT Z̄ + fT (w
j − W̄ )) + a07w

j + a08W̄
]
= 0.

Grouping common terms,

ak + ckZ̄

bk
− ckZ̄

bk(N − 1)
+ (1− e−rh)v +

(1− e−rh)γdckZ̄

r
+ e−rhak+1

1 − 2e−rhak+1
4 ckZ̄ = 0,
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ck
bk(N − 1)

− (1− e−rh)γd(1 + ck)

r
+ 2e−rhak+1

4 (1 + ck) = 0,

fk
bk(N − 1)

+ (1− e−rh)− (1− e−rh)γdfk
r

+ 2e−rhak+1
4 fk + e−rhak+1

7 = 0,

fk
bk

− fk
bk(N − 1)

+
(1− e−rh)γdfk

r
− 2e−rhak+1

4 fk + e−rhak+1
8 = 0,

and similarly at time T . Note the SOC is equivalent to ca3 being positive. We show below that

αk
7 + αk

8 = 1 and hence fk = −bk by the 3rd and 4th FOCs. Then

bk =
r
(
N − 2− (N − 1)e−rh(1− ak+1

7 )
)

(N − 1)(γd(e−rh − 1) + 2re−rhak+1
4 )

,

ck =
2 + (ak+1

7 − 1)e−rh −N(1 + e−rh(ak+1
7 − 1))

(N − 1)(1 + e−rh(ak+1
7 − 1))

,

fk =
r(1 + e−rh(ak+1

7 − 1))ck

γd(e−rh − 1) + 2re−rhak+1
4

,

ak = −ck(N − 2)Z̄

N − 1
+ bk

(
v(e−rh − 1)− e−rhak+1

1 +
ckγd(e

−rh − 1)Z̄

r
+ 2e−rhckZ̄ak+1

4

)
.

The expression for ck simplifies to

ck =
1

(N − 1)(1 + e−rh(ak+1
7 − 1))

− 1.

Thus, given the coefficients describing the value function, the demand functions are known. Let us

now characterize the value function. Returning to the Bellman equation, we have

Vk = (ck(z
j − Z̄) + fk(w

j − W̄ ))(
ak
bk

+
ck
bk

Z̄ +
fk
bk

W̄ )

+ (1− e−rh)((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ ))(v + wj)

− (1− e−rh)γd
2r

(((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ )))2

+ e−rh
[
at+1
0 + ak+1

1 ((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ )) + ak+1
2 wj + ak+1

3 W̄

ak+1
4 ((1 + ck)z

j − ckZ̄ + fk(w
j − W̄ ))2 + ak+1

5 ((wj)2 + σ2) + ak+1
6 (W̄ 2 +

σ2

N
)

+ak+1
7 ((1 + ck)z

j − ckZ̄ + fk(w
j − W̄ ))wj + ak+1

8 ((1 + ck)z
j − ckZ̄ + fk(w

j − W̄ ))W̄ + ak+1
9 (wjW̄ +

σ2

N
)

]
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Ok, now matching coefficients:

ak0 = −Z̄
ckak + c2kZ̄

bk
− ck(1− e−rh)vZ̄ − (1− e−rh)γd

2r
c2kZ̄

2

+ e−rhat+1
0 − e−rhak+1

1 ckZ̄ + e−rhak+1
4 c2kZ̄

2 + e−rhak+1
5 σ2 + e−rhak+1

6

σ2

N
+ e−rhak+1

9

σ2

N

ak1 =
ckak + c2kZ̄

bk
+ (1− e−rh)(1 + ck)v +

(1− e−rh)γd
r

(1 + ck)ckZ̄ + e−rh(1 + ck)a
k+1
1 − 2e−rh(1 + ck)ckZ̄ak+1

4

ak2 =
fkak
bk

+
fkck
bk

Z̄ + (1− e−rh)(fkv − ckZ̄) +
(1− e−rh)γd

r
ckfkZ̄ + e−rhfka

k+1
1 + e−rhak+1

2

− e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

7 ckZ̄

ak3 = −fkak
bk

− 2
fkck
bk

Z̄ − (1− e−rh)fkv −
(1− e−rh)γd

r
ckfkZ̄ − e−rhfka

k+1
1 + e−rhak+1

3

+ e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

8 ckZ̄

ak4 = −(1− e−rh)γd
2r

(1 + ck)
2 + e−rhak+1

4 (1 + ck)
2

ak5 = (1− e−rh)fk −
(1− e−rh)γd

2r
f2
k + e−rhak+1

4 f2
k + e−rhak+1

5 + e−rhak+1
7 fk

ak6 = −
f2
k

bk
− (1− e−rh)γd

2r
f2
k + e−rhak+1

4 f2
k + e−rhak+1

6 − e−rhak+1
8 fk

ak7 = (1− e−rh)(1 + ck)−
(1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
7 (1 + ck)

at8 =
ckfk
bk

+
(1− e−rh)γd

r
(1 + ck)fk − 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
8 (1 + ck)

at9 =
f2
k

bk
− (1− e−rh)fk +

(1− e−rh)γd
r

f2
k − 2e−rhak+1

4 f2
k − e−rhak+1

7 fk + e−rhak+1
8 fk + e−rhak+1

9

Simplifications:

Let’s simplify some of these recursions by using the FOCs:

ak0 = Z̄ck

(
− ak + ckZ̄

bk
− (1− e−rh)v − (1− e−rh)γd

2r
ckZ̄ − e−rhak+1

1 + e−rhak+1
4 ckZ̄

)

+ e−rhat+1
0 + e−rhak+1

5 σ2 + e−rhak+1
6

σ2

N
+ e−rhak+1

9

σ2

N

= −Z̄2c2k

(
1

bk(N − 1)
+ e−rhak+1

4

)
+ e−rhat+1

0 + e−rhak+1
5 σ2 + e−rhak+1

6

σ2

N
+ e−rhak+1

9

σ2

N
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and

ak1 =
ckak + c2kZ̄

bk
+ (1− e−rh)(1 + ck)v

+
(1− e−rh)γd

r
(1 + ck)ckZ̄ + e−rh(1 + ck)a

k+1
1 − 2e−rh(1 + ck)ckZ̄ak+1

4

= ck

(
ckZ̄

bk(N − 1)
− (1− e−rh)v − (1− e−rh)γdckZ̄

r
− e−rhak+1

1 + 2e−rhak+1
4 ckZ̄

)
+ (1− e−rh)(1 + ck)v +

(1− e−rh)γd
r

(1 + ck)ckZ̄ + e−rh(1 + ck)a
k+1
1 − 2e−rh(1 + ck)ckZ̄ak+1

4

=
c2kZ̄

bk(N − 1)
+ (1− e−rh)v +

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − 2e−rhckZ̄ak+1

4

=
ck(ck + 1)Z̄

bk(N − 1)
− ak + ckZ̄

bk

and

ak2 =
fkak
bk

+
fkck
bk

Z̄ + (1− e−rh)(fkv − ckZ̄) +
(1− e−rh)γd

r
ckfkZ̄ + e−rhfka

k+1
1 + e−rhak+1

2

− e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

7 ckZ̄

= fk

(
ak
bk

+
ck
bk

Z̄ + (1− e−rh)v +
(1− e−rh)γd

r
ckZ̄ + e−rhak+1

1 − e−rh2ak+1
4 ckZ̄

)
− (1− e−rh)ckZ̄ + e−rhak+1

2 − e−rhak+1
7 ckZ̄

= fk
ckZ̄

bk(N − 1)
− (1− e−rh)ckZ̄ + e−rhak+1

2 − e−rhak+1
7 ckZ̄

ak3 = −fkak
bk

− 2
fkck
bk

Z̄ − (1− e−rh)fkv −
(1− e−rh)γd

r
ckfkZ̄ − e−rhfka

k+1
1 + e−rhak+1

3

+ e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

8 ckZ̄

= −fk

(
ak
bk

+
ckZ̄

bk
+ (1− e−rh)v +

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − e−rh2ak+1

4 ckZ̄

)
− fkck

bk
Z̄ + e−rhak+1

3 − e−rhak+1
8 ckZ̄

= − ckfkZ̄

bk(N − 1)
− fkck

bk
Z̄ + e−rhak+1

3 − e−rhak+1
8 ckZ̄

and adding these last two, and using the solution to f/b by adding the last two optimality of
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demand, ak2 + ak3 = e−rh(ak+1
2 + ak+1

3 ) which implies a2 = −a3.

at5 = (1− e−rh)fk −
(1− e−rh)γd

2r
f2
k + e−rhak+1

4 f2
k + e−rhak+1

5 + e−rhak+1
7 fk

= (1− e−rh)
fk
2

−
f2
k

2bk(N − 1)
+ e−rhak+1

7

fk
2

+ e−rhak+1
5

ak6 = −
f2
k

bk
− (1− e−rh)γd

2r
f2
k + e−rhak+1

4 f2
k + e−rhak+1

6 − e−rhak+1
8 fk

= −
f2
kN

2bk(N − 1)
− e−rhak+1

8

fk
2

+ e−rhak+1
6

These two imply ak5 − ak6 = −fk
2 + e−rh(ak+1

5 − ak+1
6 ).

ak7 = (1− e−rh)(1 + ck)−
(1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
7 (1 + ck)

= − fk
bk(N − 1)

(1 + ck)

and

ak8 =
fk(1 + ck)

bk(N − 1)
− fk

bk

Adding the equations for a7, a8,

ak7 + ak8 = −fk
bk

= (1− e−rh) + e−rh(ak+1
7 + ak+1

8 ).

ak9 =
f2
k

bk
− (1− e−rh)fk +

(1− e−rh)γd
r

f2
k − 2e−rhak+1

4 f2
k − e−rhak+1

7 fk + e−rhak+1
8 fk + e−rhak+1

9

=
f2
k

bk
+

f2
k

bk(N − 1)
+ e−rhak+1

8 fk + e−rhak+1
9

=
2f2

k

bk(N − 1)
−

(1− e−rh)γdf
2
k

r
+ 2e−rhak+1

4 f2
k + e−rhak+1

9

=
f2
k (2 + ck)

bk(1 + ck)(N − 1)
+ e−rhak+1

9
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Therefore, we have

ak0 = −Z̄2c2k

(
1

bk(N − 1)
+ e−rhak+1

4

)
+ e−rhat+1

0 + e−rhak+1
5 σ2 + e−rhak+1

6

σ2

N
+ e−rhak+1

9

σ2

N

(17)

ak1 =
ck(ck + 1)Z̄

bk(N − 1)
− ak + ckZ̄

bk

ak2 = fk
ckZ̄

bk(N − 1)
− (1− e−rh)ckZ̄ + e−rhak+1

2 − e−rhak+1
7 ckZ̄

ak3 = − ckfkNZ̄

bk(N − 1)
+ e−rhak+1

3 − e−rhak+1
8 ckZ̄

ak4 = −(1− e−rh)γd
2r

(1 + ck)
2 + e−rhak+1

4 (1 + ck)
2

ak5 = (1− e−rh)
fk
2

−
f2
k

2bk(N − 1)
+ e−rhak+1

7

fk
2

+ e−rhak+1
5 (18)

ak6 = −
f2
kN

2bk(N − 1)
− e−rhak+1

8

fk
2

+ e−rhak+1
6 (19)

ak7 = − fk
bk(N − 1)

(1 + ck)

ak8 =
ckfk
bk

− fk(N − 2)

bk(N − 1)
(1 + ck)

ak9 =
f2
k (2 + ck)

bk(1 + ck)(N − 1)
+ e−rhak+1

9 (20)

for t < T. There is an analogous recursion at time T .

Appendix A.1. Construction of solution

In this subsection we describe the solution for a7. If we have a solution for a7, that yields

solutions for c. This then allows for a solution for a4, since the recursion is linear. Solutions of

a7, c, a4 yield solutions for b, f , and the remaining coefficients, which solve linear recursions. We

have

ak7 =
1

(N − 1)2(1 + e−rh(ak+1
7 − 1))

for k = 0, . . . , T − 1. Then, at time T ,

aT7 =
1

(N − 1)2(1 + e−r(1+∆)h(a07 − 1))
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Setting a07 = d for some constant d. We can write the solution in terms of a quadratic equation in

d. Write δ = e−rh. The constant term in the quadratic equation is

− 2
(
(−1 + δ)(N − 1)2 −

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1

+ 2
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1

+ δT+1+∆

[(
(−1 + δ)δ−(T+1) − (−1 + δ)δ−(T+1+∆)

)
(N − 1)2

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

−
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)

+
(
δ−(T+1) − δ−(T+1+∆)

)√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

+
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)]

.

The coefficient on the first order term is

δT+1+∆

[(
− 2δ−T + (1− δ)δ−(T+1) + δ−(T+1+∆)(1 + δ)

)
(N − 1)2

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

−
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)

−
(
δ−(T+1) − δ−(T+1+∆)

)√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

×
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

+
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)]

,

and the coefficient on the second order term is

2δ1+∆(N − 1)2
((

(−1 + δ)(N − 1)2 −
√

(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)
)T+1

−
(
(−1 + δ)(N − 1)2 +

√
(N − 1)2 (4δ + (−1 + δ)2(N − 1)2)

)T+1
)
.

One can show the discriminant is positive implying one root is positive and one is negative. Note

based on the recursions if ak7 > 0 for some k the recursion for a7 imply all other ak
′

7 are also

positive. Similarly if one of the ak7 < 0 for some k, all the other ak
′

7 must be negative too. If one
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were positive, all the subsequent ak
′

7 would be positive, prohibiting a solution. We show next that

only the positive solution can occur in equilibrium.

Characterizing the solution and its existence:

The SOC for demand optimization is given by

1

b(N − 1)
− (1− e−rh)γd

r
+ 2e−rhak+1

4 < 0

First, note since f/b = −1, we must have f > 0 in equilibrium. By the third FOC above, this fact

combined with the SOC implies

(1− e−rh) + e−rhak+1
7 > 0.

Then, by the expression for f , both c and γd(e
−rh − 1) + 2re−rhak+1

4 must have the same sign.

Now, the second FOC implies

ck
bk(N − 1)

=
(1− e−rh)γd(1 + ck)

r
− 2e−rhak+1

4 (1 + ck).

If c ≤ −1, the LHS is positive while the RHS is negative. So c ≥ −1. This fact implies, as hinted

at in discussions above, that a7 > 0.

Now since c and γd(e
−rh − 1) + 2re−rhak+1

4 have the same sign, we can analyze γd(e
−rh − 1) +

2re−rhak+1
4 to determine the sign of c. Let’s consider the case t = 0. Other cases are similar.

a04 = −(1− e−rh)γd
2r

(1 + c0)
2 + e−rha14(1 + c0)

2

= −(1− e−rh)γd
2r

(1 + c0)
2 − (1− e−rh)γd

2r
e−rh(1 + c0)

2(1 + c1)
2 + e−2rha24(1 + c0)

2(1 + c1)
2

= · · ·

= −(1− e−rh)γd
2r

k∑
t=0

e−trh
t∏

i=0

(1 + ci)
2 + e−(k+1)rhak+1

4

k+1∏
i=0

(1 + ci)
2

for k ≤ T − 1. k ≥ T is similar. In order for positions to be non-explosive functions of past

positions, based on the expression for equilibrium demand, we only consider equilibria which imply∏k
i=0(1 + ci) → 0 as k → ∞. Note this also implies, taking the limit in the expansion above, that

a04 < 0. One can show ak4 < 0 similarly.

This in turn implies c ≤ 0. It’s worth noting that c ≤ 0 will imply
∏k

i=0(1 + ci) → 0.

Thus, we’ve shown that in equilibrium, a7 must be positive and c must be between −1 and 0.

Thus, the positive solution for a7 found above is the only candidate. Since

ck =
1

(N − 1)(1 + e−rh(ak+1
7 − 1))

− 1,
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the candidate a7 will imply c ≥ −1. However, c < 0 only if a7 is not too large, or if (N − 1)(1 −
e−rh) > 1. If this condition holds, we’ll have ck < 0 for all k. Hence, by the expressions for a4 given

above, the solution for a4 will be negative. Thus, f will be positive and b will be negative, given

by the solutions to the first order conditions above. Thus, (N − 1)(1 − e−rh) > 1 is a sufficient

condition for trade to occur in every period.

Properties of the solution:

We show four properties of the solution. (1) The first is that if one a7 is larger than the long-run

solution (i.e., the solution in which the market is always open), the “next” one must be smaller.

To see this, define

f(x) =
1

(N − 1)2(1− e−rh + e−rhx)
.

The long run solution solves the quadratic equation given by f(x0) = x0. Since for x > 0, f is

decreasing in x, if x > x0, y ≡ f(x) < f(x0) = x0. So the next iteration y is less than x0. The

opposite happens if x < x0. So solutions oscillate around the long-run solution when the market is

open.

(2) Second, we show the size of the oscillations decrease as one gets further away from the end

of trade. To do this, note if ak7 = x, where k ̸= 0, 1,

ak−2
7 = f(f(x)).

Note the long run solution x0 solves the quadratic equation x0 = f(f(x0)). After simplifying, we

can write this equation as

0 = 1− (1− e−rh)(N − 1)2x0 − e−rh(N − 1)2x20.

Note the long-run solution x0 that we care about is the positive root - it’s straightforward to show,

like our solution for a7 above, one root is positive and one is negative, and the quadratic function

defined by the right-hand side above is decreasing in positive reals. In particular, if 0 < x < x0,

1− (1− e−rh)(N − 1)2x− e−rh(N − 1)2x2 > 0,

which by reversing the same operations that led us from f(f(x0)) = x0 to the quadratic equation,

implies f(f(x)) > x, so that ak−2
7 > ak7. Similarly, if x > x0, then ak−2

7 < ak7. So the oscillations

decrease in magnitude as one moves further from the end of trade.

We illustrated these first two properties for a7. The correspondence between a7 and c imply

analogous results for c.

(3) The third property is that ck/fk = −γ/r. First, recall

ak7 = (1− e−rh)(1 + ck)−
(1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
7 (1 + ck).
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Plugging in the expression for fk derived above, this implies

ak7 = (1− e−rh)(1 + ck)
2 + e−rhak+1

7 (1 + ck)
2.

Thus, defining κk = 2r
γd
ak4+ak7, we have κk = e−rhκk+1(1+ck)

2. for t < T, and similarly when t = T.

This periodic recursion has unique solution κk = 0. Then, the expression for fk implies fk = − r
γ ck.

(4) The last property is that ak/bk = −v. Recall the first FOC for optimal demand is

ak + ckZ̄

bk
− ckZ̄

bk(N − 1)
+ (1− e−rh)v +

(1− e−rh)γdckZ̄

r
+ e−rhak+1

1 − 2e−rhak+1
4 ckZ̄ = 0,

By the third FOC above, this can be rewritten as

0 =
ak
bk

+
ck
bk

Z̄ +
ckZ̄

fk
e−hrak+1

7 + (1− e−rh)(v +
ckZ̄

fk
) + e−rhak+1

1 .

Then, the recursions for a1, a7 imply

− r

γZ̄
ak1 + ak7 =

r

γZ̄

(
ak
bk

+
ckZ̄

bk

)
.

Combined, these last two expressions imply

− r

γZ̄
ak1 + ak7 = − r

γZ̄
(1− e−rh)

(
v − γ

r
Z̄
)
+ e−rh(ak+1

7 − r

γZ̄
ak+1
1 ).

It’s straightforward to show this relation also holds when there is no trade, implying − r
γZ̄

ak1 +ak7 =

− r
γZ̄

(v − γ
r Z̄). Plugging this back into the simplified FOC above, we arrive at ak

bk
= −v.

Appendix A.2. Solution when there’s a halt in trade for a period

In this subsection, we illustrate how the solution is constructed when there is a halt in trade

for a period. If there’s a halt in trade of one period before in the penultimate period, then we have

ak7 =
1

(N − 1)2(1 + e−rh(ak+1
7 − 1))

for k = 0, . . . , T − 2. Then, at time T ,

aT7 =
1

(N − 1)2(1 + e−r(1+∆)h(a07 − 1))
,
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and aT−1
7 = (1− e−rh) + e−rhaT7 . Setting a07 = d for some constant d. We can write the solution in

terms of a quadratic equation in d. The constant term in this quadratic equation is

2
(
1− δ1+∆

)
(N − 1)2

[(
(−1 + δ) (N − 1)2 −

√
(N − 1)2

√
4δ + (−1 + δ)2 (N − 1)2

)T−1

−
(
(−1 + δ) (N − 1)2 +

√
(N − 1)2

√
4δ + (−1 + δ)2 (N − 1)2

)T−1
]

+ (N − 1)2
(
− δ(1− δ)− (N − 1)2(1− δ)2(1− δ1+∆)

)
[(

(−1 + δ) (N − 1)2 −
√

(N − 1)2
√

4δ + (−1 + δ)2 (N − 1)2
)T−1

−
(
(−1 + δ) (N − 1)2 +

√
(N − 1)2

√
4δ + (−1 + δ)2 (N − 1)2

)T−1
]

−
√

(N − 1)2
√
4δ + (−1 + δ)2 (N − 1)2

(
− δ − (N − 1)2(1− δ)(1− δ∆+1)

)
×

[(
(−1 + δ) (N − 1)2 −

√
(N − 1)2

√
4δ + (−1 + δ)2 (N − 1)2

)T−1

+

(
(−1 + δ) (N − 1)2 +

√
(N − 1)2

√
4δ + (−1 + δ)2 (N − 1)2

)T−1
]
.

The coefficient on the second order term is

(−1 + δ) δ1+∆ (1 + 2δ) (N − 1)4

[(
(−1 + δ) (N − 1)2 −

√
(N − 1)2

√
4δ + (−1 + δ)2 (N − 1)2

)T−1

−
(
(−1 + δ) (N − 1)2 +

√
(N − 1)2

√
4δ + (−1 + δ)2 (N − 1)2

)T−1
]

− δ1+∆(N − 1)3
√

4δ + (−1 + δ)2 (N − 1)2

[(
(−1 + δ) (N − 1)2 −

√
(N − 1)2

√
4δ + (−1 + δ)2 (N − 1)2

)T−1

+

(
(−1 + δ) (N − 1)2 +

√
(N − 1)2

√
4δ + (−1 + δ)2 (N − 1)2

)T−1
]
.

It should be straightforward to see that the product of these two terms is negative, so that there is

one positive and one negative root, just as before. For the same reasons as before the positive root

will characterize the solution. Moreover, all ak7 must be positive in equilibrium.

Existence of the solution:

By the arguments above, if the solution doesn’t allow for trade in period T − 1, it must be

because the optimal c would be positive. If c were negative, the arguments above imply b would

be negative as well, so there would be a solution. We will provide a condition under which the

solution with a halt in trade must exist if the solution with trade in every period does not.
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We first show aT−1
7 and aT−2

7 are large enough for trade to occur in periods T − 2 and T − 3.

Since there’s no trade in period T − 1,

aT−1
7 = (1− e−rh) + e−rhaT7 > 1− e−rh

For trade to exist in period T − 2, we need cT−2 < 0. It is sufficient that

1 < (N − 1)
(
1− e−rh + e−rh(1− e−rh)

)
= (N − 1)(1− e−2rh).

This is weaker than the sufficient condition we postulated for trade to occur in every period. It is

straightforward to show via numerical examples that this condition is not meaningless, i.e., there

are parameters for which 1− e−2rh > 1
N−1 > 1− e−rh and only a halt for exactly one period exists.

Confirming aT−2
7 is sufficiently large is slightly less straightforward. First note cT−1 > 0 if

(N − 1)(1 + e−rh(aT7 − 1)) < 1,

which simplifies to

aT7 <
1− (N − 1)(1− e−rh)

e−rh(N − 1)
.

Then,

aT−1
7 = (1− e−rh) + e−rhaT7 <

1

N − 1
.

Using this, cT−3 to be negative, it suffices to have

1 < (N − 1)

(
1− e−rh + e−rh

(
1

(N − 1)2(1− e−rh + e−rh

N−1)

))

= (N − 1)(1− e−rh) + e−rh 1

(N − 1)(1− e−rh) + e−rh

=
(N − 1)2(1− e−rh)2 + e−rh(N − 1)(1− e−rh) + e−rh

(N − 1)(1− e−rh) + e−rh
.

This should rearrange to (N − 1)(N − 2)(1− e−rh)2 > 0, which holds.

Now, arguments based on the oscillation properties discussed above imply ck < 0 for all periods

earlier in the day. Additionally cT < 0 will follow based on the condition (N − 1)(1− e−2rh) > 1.

Thus ck < 0 is negative in all trade periods, and a repetition of the arguments in the previous

section implies the equilibrium exists.

Note, there’s can’t be an equilibrium with a single halt in an earlier period (period T − 2 or

earlier), unless such an equilibrium involved forgoing trade in periods in which there is a trade

equilibrium. In other words, in such an equilibrium, a07, a
T
7 would be sufficiently large for trade to

occur in periods T, T − 1. The oscillation properties would imply they would be sufficiently large

in any prior period, up to the period in which no trade was allowed. Thus, this equilibrium would

enforce no trade even when a trade equilibrium is attainable.
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Appendix A.3. 24/7 Trade

It is straightforward to see that when ∆ = 0, solutions to the recursions must be constant. The

recursions describing the value function reduce to

a0 = −Z̄2c2
(

1

b(N − 1)
+ e−rha4

)
+ e−rha0 + e−rha5σ

2 + e−rha6
σ2

N
+ e−rha9

σ2

N
(21)

a1 =
c(c+ 1)Z̄

b(N − 1)
− a+ cZ̄

b

a2 = − cZ̄

N − 1
− (1− e−rh)cZ̄ + e−rha2 − e−rha7cZ̄

a3 =
cNZ̄

N − 1
+ e−rha3 − e−rha8cZ̄

a4 = −(1− e−rh)γd
2r

(1 + c)2 + e−rha4(1 + c)2

a5 = (1− e−rh)
f

2
+

f

2(N − 1)
+ e−rh f(1 + c)

2(N − 1)
+ e−rha5 (22)

a6 = − fN

2(N − 1)
− e−rh f

2

(
N − 2

N − 1
− c

N − 1

)
+ e−rha6 (23)

a7 =
1 + c

N − 1

a8 = −c+
N − 2

N − 1
(1 + c)

a9 =
cf

(1 + c)(N − 1)
+ e−rha9 (24)

and the equations describing the trade equilibrium reduce to.

b =
r
(
N − 2− (N − 1)e−rh(1− a7)

)
(N − 1)(γd(e−rh − 1) + 2re−rha4)

,

c =
1

(N − 1)(1 + e−rh(a7 − 1))
− 1,

f =
r(1 + e−rh(a7 − 1))c

γd(e−rh − 1) + 2re−rha4
,

a = −c(N − 2)Z̄

N − 1
+ b

(
v(e−rh − 1)− e−rha1 +

cγd(e
−rh − 1)Z̄

r
+ 2e−rhcZ̄a4

)
.

Therefore,

c =
−(N − 1)(1− e−rh) +

√
(1− e−rh)2(N − 1)2 + 4e−rh

2e−rh
− 1.

Given c, we can solve for a7 and a4. This yields solutions for b, f, a, and the remaining recursions.
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Appendix B. Information problem

This appendix characterizes the solution of the model when agents have heterogeneous asset

values. Recall Sj is each trader’s total signal (sum of past signals). sj is each trader’s modified

signal. Write their expectation of the dividend as

wj +B1S
j +B2

∑
i ̸=j

(
wi +ASi

)
,

for some constants B1, B2, A. Consistency of the learning problem requires B1 = A. See Du and

Zhu (2017) for details. Recall the variance of taste shocks is σ2
w, of dividend shocks is σ2

D, and of

signal shocks is σ2
ϵ . Then, Du and Zhu (2017) Lemma 1 gives the conditional expectation of v given

wj , Sj , and
∑

i ̸=j

(
wi +ASi

)
is

wj +
1/(A2σ2

ϵ )

1/(A2σ2
D) + 1/(A2σ2

ϵ ) + (n− 1)/(A2σ2
ϵ + σ2

w)
Sj+

1/(A2σ2
ϵ + σ2

w)

1/(A2σ2
D) + 1/(A2σ2

ϵ ) + (n− 1)/(A2σ2
ϵ + σ2

w)

1

A

∑
i ̸=j

(
wi +ASi

)
.

B1 is defined in terms of A by the above. A solves the equation A = B1, and B2 is then given as a

function of A.

Ok, so define

sj =
1

α
(wj +B1S

j),

where

α =
A2σ2

ϵ + σ2
w

NA2σ2
ϵ + σ2

w

.

Then, the conditional expectation of v is given by

αsj +
1− α

N − 1
s−j =

Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄.

Guess that the value function is linear-quadratic:

Vk(z
j , Z̄, sj , s̄) = ak0 + ak1z

j + ak2s
j + ak3 s̄+ ak4(z

j)2 + ak5(s
j)2 + ak6(s̄)

2 + ak7z
jsj + ak8z

j s̄+ ak9s
j s̄.

σ2 = 1
α2 (σ

2
w +A2(σ2

D + σ2
ϵ )) is variance of the shock to sj , and σ2

N = 1
α2 (σ

2
w/N +A2(σ2

D + σ2
ϵ /N))
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is the variance of the shocks to s̄. The Bellman equation for every period, except the last, is

Vk(z
j , sj , s̄) = max

Dj

{
−Djp∗t + (1− e−rh)(zj +Dj)

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

2r
(zj +Dj)2

+e−rh
[
at+1
0 + ak+1

1 (zj +Dj) + ak+1
2 sj + ak+1

3 s̄

ak+1
4 (zj +Dj)2 + ak+1

5 ((sj)2 + σ2) + ak+1
6 (s̄2 + σ2

N )

+ak+1
7 (zj +Dj)sj + ak+1

8 (zj +Dj)s̄+ ak+1
9 (sj s̄t + σ2

N )
]}

,

and is similar in the last period. The FOC for optimal demand in the first T periods is then

0 = −p∗t − λkD
j + (1− e−rh)

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

r
(zj +Dj) + e−rh[ak+1

1 + 2ak+1
4 (zj +Dj) + ak+1

7 sj + ak+1
8 s̄],

where λk := ∂pt
∂Dj

k

. Assume

Dj
k = ak + bkpt + ckz

j + fks
j .

The equilibrium price is

pt = −ak + ckZ̄ + fks̄t
bk

.

The FOC implies

ak + ckZ̄ + fks̄

bk
+

1

bk(N − 1)
(ck(z

j − Z̄) + fk(s
j − s̄))

+ (1− e−rh)

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

r
((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))

+ e−rh
[
ak+1
1 + 2ak+1

4 ((1 + ck)z
j − ckZ̄ + fk(s

j − s̄)) + ak+1
7 sj + ak+1

8 s̄
]
= 0.

Then

b = −
ehr
(
−a8 + a7(−2 +N) + (−1 + ehr)(−2 + αN)

)
r

((−1 + a7 + a8 + ehr)(−1 +N) ((−1 + ehr)γ − 2a4r))

c =
a8 − a7(−2 +N)− (−1 + ehr)(−2 + αN)

a7(−1 +N) + (−1 + ehr)(−1 + αN)

f = −
(
−a8 + a7(−2 +N) + (−1 + ehr)(−2 + αN)

)
r

(−1 +N) (γ − ehrγ + 2a4r)
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Returning to the Bellman equation, we have

Vk = (ck(z
j − Z̄) + fk(s

j − s̄))(
ak
bk

+
ck
bk

Z̄ +
fk
bk

s̄)

+ (1− e−rh)((1 + ck)z
j − ckZ̄ + fk(s

j − s̄))

(
Nα− 1

N − 1
sj +

N(1− α)

N − 1
s̄

)
− (1− e−rh)γd

2r
(((1 + ck)z

j − ckZ̄ + fk(s
j − s̄)))2

+ e−rh
[
at+1
0 + ak+1

1 ((1 + ck)z
j − ckZ̄ + fk(s

j − s̄)) + ak+1
2 sj + ak+1

3 s̄

ak+1
4 ((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))2 + ak+1

5 ((sj)2 + σ2) + ak+1
6 (s̄2 + σ2

N )

+ak+1
7 ((1 + ck)z

j − ckZ̄ + fk(s
j − s̄))sj + ak+1

8 ((1 + ck)z
j − ckZ̄ + fk(s

j − s̄))s̄+ ak+1
9 (sj s̄+ σ2

N )
]

Ok, now matching coefficients:

ak0 = −Z̄
ckak + c2kZ̄

bk
− (1− e−rh)γd

2r
c2kZ̄

2

+ e−rhat+1
0 − e−rhak+1

1 ckZ̄ + e−rhak+1
4 c2kZ̄

2 + e−rhak+1
5 σ2 + e−rhak+1

6 σ2
N + e−rhak+1

9 σ2
N

ak1 =
ckak + c2kZ̄

bk
+

(1− e−rh)γd
r

(1 + ck)ckZ̄ + e−rh(1 + ck)a
k+1
1 − 2e−rh(1 + ck)ckZ̄ak+1

4

ak2 =
fkak
bk

+
fkck
bk

Z̄ − (1− e−rh)ckZ̄
Nα− 1

N − 1
+

(1− e−rh)γd
r

ckfkZ̄ + e−rhfka
k+1
1 + e−rhak+1

2

− e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

7 ckZ̄

ak3 = −fkak
bk

− 2
fkck
bk

Z̄ − (1− e−rh)ckZ̄
N(1− α)

N − 1
− (1− e−rh)γd

r
ckfkZ̄ − e−rhfka

k+1
1 + e−rhak+1

3

+ e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

8 ckZ̄

ak4 = −(1− e−rh)γd
2r

(1 + ck)
2 + e−rhak+1

4 (1 + ck)
2

ak5 = (1− e−rh)fk
Nα− 1

N − 1
− (1− e−rh)γd

2r
f2
k + e−rhak+1

4 f2
k + e−rhak+1

5 + e−rhak+1
7 fk

ak6 = −
f2
k

bk
− (1− e−rh)fk

N(1− α)

N − 1
− (1− e−rh)γd

2r
f2
k + e−rhak+1

4 f2
k + e−rhak+1

6 − e−rhak+1
8 fk

ak7 = (1− e−rh)(1 + ck)
Nα− 1

N − 1
− (1− e−rh)γd

r
(1 + ck)fk + 2e−rhak+1

4 (1 + ck)fk + e−rhak+1
7 (1 + ck)

at8 =
ckfk
bk

+ (1− e−rh)(1 + ck)
N(1− α)

N − 1
+

(1− e−rh)γd
r

(1 + ck)fk − 2e−rhak+1
4 (1 + ck)fk + e−rhak+1

8 (1 + ck)

at9 =
f2
k

bk
− (1− e−rh)fk

Nα− 1

N − 1
+ (1− e−rh)fk

N(1− α)

N − 1
+

(1− e−rh)γd
r

f2
k − 2e−rhak+1

4 f2
k

− e−rhak+1
7 fk + e−rhak+1

8 fk + e−rhak+1
9

Simplifications:
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Let’s simplify some of these recursions by using the FOCs:

ak0 = Z̄ck

(
− ak + ckZ̄

bk
− (1− e−rh)γd

2r
ckZ̄ − e−rhak+1

1 + e−rhak+1
4 ckZ̄

)

+ e−rhat+1
0 + e−rhak+1

5 σ2 + e−rhak+1
6 σ2

N + e−rhak+1
9 σ2

N

= −Z̄2c2k

(
1

bk(N − 1)
+ e−rhak+1

4

)
+ e−rhat+1

0 + e−rhak+1
5 σ2 + e−rhak+1

6 σ2
N + e−rhak+1

9 σ2
N

and

ak1 =
ckak + c2kZ̄

bk

+
(1− e−rh)γd

r
(1 + ck)ckZ̄ + e−rh(1 + ck)a

k+1
1 − 2e−rh(1 + ck)ckZ̄ak+1

4

= ck

(
ckZ̄

bk(N − 1)
− (1− e−rh)γdckZ̄

r
− e−rhak+1

1 + 2e−rhak+1
4 ckZ̄

)
+

(1− e−rh)γd
r

(1 + ck)ckZ̄ + e−rh(1 + ck)a
k+1
1 − 2e−rh(1 + ck)ckZ̄ak+1

4

=
c2kZ̄

bk(N − 1)
+

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − 2e−rhckZ̄ak+1

4

=
ck(ck + 1)Z̄

bk(N − 1)
− ak + ckZ̄

bk

and

ak2 =
fkak
bk

+
fkck
bk

Z̄ − (1− e−rh)ckZ̄
Nα− 1

N − 1

+
(1− e−rh)γd

r
ckfkZ̄ + e−rhfka

k+1
1 + e−rhak+1

2 − e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

7 ckZ̄

= fk

(
ak
bk

+
ck
bk

Z̄ +
(1− e−rh)γd

r
ckZ̄ + e−rhak+1

1 − e−rh2ak+1
4 ckZ̄

)
− (1− e−rh)ckZ̄

Nα− 1

N − 1
+ e−rhak+1

2 − e−rhak+1
7 ckZ̄

= fk
ckZ̄

bk(N − 1)
− (1− e−rh)ckZ̄

Nα− 1

N − 1
+ e−rhak+1

2 − e−rhak+1
7 ckZ̄
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ak3 = −fkak
bk

− 2
fkck
bk

Z̄ − (1− e−rh)ckZ̄
N(1− α)

N − 1
− (1− e−rh)γd

r
ckfkZ̄

− e−rhfka
k+1
1 + e−rhak+1

3 + e−rh2ak+1
4 ckfkZ̄ − e−rhak+1

8 ckZ̄

= −fk

(
ak
bk

+
ckZ̄

bk
+

(1− e−rh)γd
r

ckZ̄ + e−rhak+1
1 − e−rh2ak+1

4 ckZ̄

)
− fkck

bk
Z̄ − (1− e−rh)ckZ̄

1− α

N − 1
+ e−rhak+1

3 − e−rhak+1
8 ckZ̄

= − ckfkZ̄

bk(N − 1)
− fkck

bk
Z̄ − (1− e−rh)ckZ̄

N(1− α)

N − 1
+ e−rhak+1

3 − e−rhak+1
8 ckZ̄

Then,

ak7 = (1−e−rh)(1+ ck)
Nα− 1

N − 1
− (1− e−rh)γd

r
(1+ ck)fk+2e−rhak+1

4 (1+ ck)fk+e−rhak+1
7 (1+ ck)

= − fk
bk(N − 1)

(1 + ck)

and

ak8 =
ckfk
bk

+

(
fk

bk(N − 1)
− f

b

)
(1 + ck)

Adding the equations for a7, a8,

ak7 + ak8 = −fk
bk

= (1− e−rh) + e−rh(ak+1
7 + ak+1

8 ).

Then,

ak9 =
f2
k

bk
− (1− e−rh)fk

Nα− 1

N − 1
+ (1− e−rh)fk

N(1− α)

N − 1
+

(1− e−rh)γd
r

f2
k

− 2e−rhak+1
4 f2

k − e−rhak+1
7 fk + e−rhak+1

8 fk + e−rhak+1
9

=
f2
k

bk
+

f2
k

bk(N − 1)
+ (1− e−rh)fk

N(1− α)

N − 1
+ e−rhak+1

8 fk + e−rhak+1
9

= −
(1− e−rh)γdf

2
k

r
+

2f2
k

bk(N − 1)
+ 2e−rhak+1

4 f2
k + e−rhak+1

9

=
2f2

k

bk(N − 1)
−

ckf
2
k

bk(1 + ck)(N − 1)
+ e−rhak+1

9

=
(2 + ck)f

2
k

bk(1 + ck)(N − 1)
+ e−rhak+1

9
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Therefore, we have

ak0 = −Z̄2c2k

(
1

bk(N − 1)
+ e−rhak+1

4

)
+ e−rhat+1

0 + e−rhak+1
5 σ2 + e−rhak+1

6 σ2
N + e−rhak+1

9 σ2
N

ak1 =
ck(ck + 1)Z̄

bk(N − 1)
− ak + ckZ̄

bk

ak2 = fk
ckZ̄

bk(N − 1)
− (1− e−rh)ckZ̄

Nα− 1

N − 1
+ e−rhak+1

2 − e−rhak+1
7 ckZ̄

ak3 = − ckfkNZ̄

bk(N − 1)
− (1− e−rh)ckZ̄

N(1− α)

N − 1
+ e−rhak+1

3 − e−rhak+1
8 ckZ̄

ak4 = −(1− e−rh)γd
2r

(1 + ck)
2 + e−rhak+1

4 (1 + ck)
2

ak5 = (1− e−rh)fk
Nα− 1

N − 1
− (1− e−rh)γd

2r
f2
k + e−rhak+1

4 f2
k + e−rhak+1

5 + e−rhak+1
7 fk

ak6 = −
f2
k

bk
− (1− e−rh)fk

N(1− α)

N − 1
− (1− e−rh)γd

2r
f2
k + e−rhak+1

4 f2
k + e−rhak+1

6 − e−rhak+1
8 fk

ak7 = − fk
bk(N − 1)

(1 + ck)

ak8 =
ckfk
bk

− fk(N − 2)

bk(N − 1)
(1 + ck)

ak9 =
(2 + ck)f

2
k

bk(1 + ck)(N − 1)
+ e−rhak+1

9

Appendix C. Continuous Time Model

We conjecture that the other N − 1 traders submit demand schedules given by Equation 4.

Trade is modeled by a uniform price double auction where the price is the solution to Equation 1.

Therefore, the equilibrium price is

p∗t = −a(t) + c(t)Z̄ + f(t)W̄t

b(t)
.

Note that a, b, and c do not have to be continuous in t at the boundary 1−∆. Given the equilibrium

price, the demand schedule evaluated at the equilibrium price, rate allocated in equilibrium, is

Di
t = c(t)

(
zit − Z̄

)
+ f(t)(wi

t − W̄t).

Finally, conjecture the day value function takes the following linear-quadratic form

Jd(t, zi, wi, W̄ ) = α0(t) + α1(t)z
i + α2(t)w

i + α3(t)W̄ + α4(t)(z
i)2 + α5(t)(w

i)2 + α6(t)(W̄ )2

+ α7(t)z
iwi + α8(t)z

iW̄ + α9(t)w
iW̄ .

Recall that traders rationally anticipate how their demand affects their trade price. Therefore, when

trader i chooses demand di, they face the residual demand curve that, by market clearing, implies
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they face the price Φ(t, di, zi,W−i), defined in equation 5. Therefore, the Hamilton-Jacobi-Bellman

equation is

rJd = max
di

{
Jd
t + rzi(v + wi)− Φ(t, di, zi,W−i)di − γd

2
(zi)

2
+ Jd

zid
i

+ λdEt

[
Jd(t, zi, wi + ξi, W̄ + ξ̄)− Jd(t, zi, wi, W̄ )

]}
,

where ξi
iid∼ N(0, σ2

d). Recall r = − log(1−P), where P is the probability of a dividend payment in

a given 24 hour period. First, we will solve for the equations that define the α functions and then

will add in the optimality of demand constraints. Plugging the conjectured day value function into

the HJB equation as well as the equilibrium price and demand schedule, we get

r(α0(t)+α1(t)z
i+α2(t)w

i+α3(t)W̄+α4(t)(z
i)2+α5(t)(w

i)2+α6(t)W̄
2+α7(t)z

iwi+α8(t)z
iW̄+α9(t)w

iW̄ )

= α′
0(t)+α′

1(t)z
i+α′

2(t)w
i+α′

3(t)W̄+α′
4(t)(z

i)2+α′
5(t)(w

i)2+α′
6(t)W̄

2+α′
7(t)z

iwi+α′
8(t)z

iW̄+α′
9(t)w

iW̄

+ zir(v + wi)− 1

b(t)(N − 1)
(c(t)(zi − Z̄) + f(t)(wi − W̄ ))2 − γd

2
(zi)2

+ λd(α5(t)σ
2
d + α6(t)

σ2
d

N
+ α9(t)

σ2
d

n
).

By matching coefficients, we get that

rα0(t) = α′
0(t)−

c(t)2Z̄2

b(t)(N − 1)
+ λd(α5(t)σ

2
d + α6(t)

σ2
d

N
+ α9(t)

σ2
d

N
)

rα1(t) = α′
1(t) + rv +

2

b(t)(N − 1)
c(t)Z̄

rα2(t) = α′
2(t) +

2

b(t)(N − 1)
f(t)Z̄

rα3(t) = α′
3(t)−

2

b(t)(N − 1)
f(t)Z̄

rα4(t) = α′
4(t)−

γd
2

− c(t)2

b(t)(N − 1)

rα5(t) = α′
5(t)−

f(t)2

b(t)(N − 1)

rα6(t) = α′
6(t)−

f(t)2

b(t)(N − 1)

rα7(t) = α′
7(t) + r − 2f(t)c(t)

b(t)(N − 1)

rα8(t) = α′
8(t) +

2f(t)c(t)

b(t)(N − 1)

rα9(t) = α′
9(t) +

2f(t)2

b(t)(N − 1)
.
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To get the optimality of demand equations, we take the first-order condition of the right side of

the HJB equation with respect to di. This yields the equation

−Φ− Φdid
i + Jd

zi = 0.

Plugging in the equilibrium expressions for Φ and di, we are left with the equations

a(t) + c(t)Z̄ + f(t)W̄

b(t)
+

1

b(t)(N − 1)
(c(t)(zi−Z̄)+f(t)(wi−W̄ ))+α1(t)+2α4(t)z

i+α7(t)w
i+α8(t)W̄ = 0.

Matching coefficients in the above equation gives us three equations that must be satisfied for

demand to be optimal,

a(t) + c(t)Z̄

b(t)
− 1

b(t)(N − 1)
c(t)Z̄ + α1(t) = 0,

c(t)

b(t)(N − 1)
+ 2α4(t) = 0,

f(t)

b(t)(N − 1)
+ α7(t) = 0,

f(t)

b(t)
− f(t)

b(t)(N − 1)
+ α8(t) = 0.

From optimality of demand, α8(t) = − (N−2)f(t)
(N−1)b(t) = (N − 2)α7(t). Summing the equations for α7(t),

and α8(t) we have

α7(t) = A7e
rt +

1

N − 1
.

Plugging this back into the equation for α7(t),

rA7e
λt +

λ

N − 1
= rA7e

rt + r + 2cα7(t),

so c(t) = −r(N−2)
2(A7(N−1)ert+1) .

Assume A4 through A9 are 0, so α4 through α9 are constant too. Then c = − r(N−2)
2 , and

α7 =
1

N−1 . The equation for α4 becomes

rα4 = −γd
2

− α4r(N − 2),

so α4 = − 2γd
r(N−1) . This implies

b(t) = − c(t)

2α4(N − 1)
= −r2(N − 2)

2γd
, and f(t) = −α7(N − 1)b(t) =

r2(N − 2)

2γd
.

So, b(t), c(t), and f(t) are all constant between time 0 and 1 − ∆ − ϵ. Solving the differential
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equations for the α’s, we get

α0(t) =
γd(N − 2)Z̄2

2r(N − 1)
− ert

∫ t

0
e−rsλd

(
α5(s)σ

2
d + α6(s)

σ2
d

N
+ α9(s)

σ2
d

N

)
ds+A0e

rt

α1(t) = A1e
rt + v +

4γdZ̄

r2(N − 1)

α2(t) = A2e
rt − 2Z̄

r(N − 1)

α3(t) = A3e
rt +

2Z̄

r(N − 1)

α4 = − γd
2r(N − 1)

α5 =
r(N − 2)

2γd(N − 1)

α6 =
r(N − 2)

2γd(N − 1)

α7 =
1

N − 1

α8 =
N − 2

N − 1

α9 = − r(N − 2)

γd(N − 1)

Plugging in α5, α6, and α9 into α0 and simplifying gives

α0(t) =
γd(N − 2)Z̄2

2r(N − 1)
− λdσ

2
d

(N − 2)

2γdN

(
ert − 1

)
+A0e

rt.

Let’s add a halt of length ϵ where no trade happens, and then there is a closing auction at time

1−∆. Therefore, the value function right before the halt is

Jd(t = 1−∆− ϵ, zi, wi, W̄ ) =(1− e−rϵ)

(
zi(v + wi)− γd

2r

(
zi
)2)

+ e−rϵE1−∆−ϵ

[
Jd(t = 1−∆−, zi, wi

t−∆, W̄t−∆)
]
.

Now, we move on to the discrete auction at the close, t = 1−∆. Recall that traders rationally

anticipate how their demand affects their trade price. Therefore, when trader i chooses demand

di, they face the residual demand curve that, by market clearing, implies they face the price

Φ(t, di, zi,W−i), defined in equation 5. Therefore, the Hamilton-Jacobi-Bellman equation is

Jd(t = 1−∆−, zi, wi, W̄ ) = max
di

{Jn(t = 1−∆+, zi + di, wi, W̄ )− Φ(1−∆, di, zi,W−i)di}.

We still have the optimality of demand equations that need to be satisfied. To get the optimality

of demand equations, we take the first-order condition of the right side of the HJB equation with
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respect to di. This yields the equation

−Φ− Φdid
i + Jn

di = 0.

Plugging in the equilibrium expressions for Φ and di, we are left with the equations

a(1−∆) + c(1−∆)Z̄ + f(1−∆)W̄

b(1−∆)
+

1

b(1−∆)(N − 1)
di+

β1(1−∆) + 2β4(1−∆)(zi + di) + β7(1−∆)wi + β8(1−∆)W̄ = 0.

First, plug in the equilibrium demand for di, which gives

a(1−∆) + c(1−∆)Z̄ + f(1−∆)W̄

b(1−∆)
+

1

b(1−∆)(N − 1)
(c(1−∆)(zi − Z̄) + f(1−∆)(wi − W̄ ))

+ β1(1−∆) + 2β4(1−∆)((1 + c(1−∆))zi − Z̄c(1−∆) + f(1−∆)(wi − W̄ ))

+ β7(1−∆)wi + β8(1−∆)W̄ = 0.

Matching coefficients in the above equation gives us three equations that must be satisfied for

demand to be optimal,

a(1−∆) + c(1−∆)Z̄

b(1−∆)
− 1

b(1−∆)(N − 1)
c(1−∆)Z̄ + β1(1−∆)− 2β4(1−∆)c(1−∆)Z̄ = 0,

c(1−∆)

b(1−∆)(N − 1)
+ 2β4(1−∆)(1 + c(1−∆)) = 0,

f(1−∆)

b(1−∆)(N − 1)
+ 2β4(1−∆)f(1−∆) + β7(1−∆) = 0,

f(1−∆)

b(1−∆)
− f(1−∆)

b(1−∆)(N − 1)
− 2β4(1−∆)f(1−∆) + β8(1−∆) = 0.

Now, we move on to the value function at night.

r
(
β0(t)+β1(t)z

i+β2(t)w
j+β3(t)W̄+β4(t)(z

i
t)

2+β5(t)(z
j)2+β6(t)W̄

2+β7(t)z
jwj+β8(t)z

jW̄+β9(t)w
jW̄
)

= β′
0(t)+β′

1(t)z
i+β′

2(t)w
j+β′

3(t)W̄+β′
4(t)(z

i)2+β′
5(t)(w

i)2+β′
6(t)W̄

2+β′
7(t)z

jwj+β′
8(t)z

jW̄+β′
9(t)w

jW̄

+ rzit(v + wj)− γn
2
(zit)

2 + λn(β5(t)σ
2
n + β6(t)

σ2
n

N
+ β9(t)

σ2
n

N
).
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By matching coefficients, we get

rβ0(t) = β′
0(t) + λn(β5(t)σ

2
n + β6(t)

σ2
n

N
+ β9(t)

σ2
n

N
)

rβ1(t) = β′
1(t) + rv

rβ2(t) = β′
2(t)

rβ3(t) = β′
3(t)

rβ4(t) = β′
4(t)−

γn
2

rβ5(t) = β′
5(t)

rβ6(t) = β′
6(t)

rβ7(t) = β′
7(t) + r

rβ8(t) = β′
8(t)

rβ9(t) = β′
9(t)

Solving the above ODEs yields the following equations

β0(t) = −ert
∫ t

1−∆
λne

−rs

(
β5(s)σ

2
n + β6(s)

σ2
n

N
+ β9(s)

σ2
n

N

)
ds+B0e

rt

β1(t) = B1e
rt + v

β2(t) = B2e
rt

β3(t) = B3e
rt

β4(t) = −γn
2r

+B4e
rt

β5(t) = B5e
rt

β6(t) = B6e
rt

β7(t) = 1 +B7e
rt

β8(t) = B8e
rt

β9(t) = B9e
rt

Note that β0(t) can be simplified down to

β0(t) = ert
(
B0 − λnσ

2
n

(
B5 +

B6 +B9

N

)(
t− (1−∆)

))
.

All that is left now is to use the boundary conditions to solve for the constants in the solutions

for the α’s and β’s. Recall that the two boundary equations are Jd(t = 1−∆, zi, wi, W̄ ) = Jn(t =

1−∆, zi + c(1−∆)(zi − Z̄)+ f(1−∆)(wi − W̄ ), wi, W̄ ) and lim
t→1−

Jn(t, zi, wi, W̄ ) = lim
t→1−

E
[
Jd(t =
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0, zi, wi, W̄ )
∣∣It]. Therefore, after the closing auction, the night value function is actually

Jn(1−∆, zi + c(1−∆)
(
zi − Z

)
+ f(1−∆)(wi − W̄ ), wi, W̄ )

= β0(1−∆) + β1(1−∆)

(
zit + c(1−∆)

(
zit − Zt

)
+ f(1−∆)(wi − W̄ )

)
+

β2(1−∆)wi + β3(1−∆)W̄

+ β4(1−∆)

(
zi + c(1−∆)

(
zi − Z

)
+ f(1−∆)(wi − W̄ )

)2

+ β5(1−∆)(wi)2 + β6(1−∆)W̄ 2

+

(
zit + c(1−∆)

(
zit −Zt

)
+ f(1−∆)(wi − W̄ )

)(
β7(1−∆)wi + β8(1−∆)W̄

)
+ β9(1−∆)wiW̄ .

Combining like terms gives and subtracting off the costs of the trade gives the value at the start of

night of

Jn(1−∆, zi + c(1−∆)
(
zi − Z

)
+ f(1−∆)(wi − W̄ ), wi, W̄ )− Φ(1−∆, di, zi,W−i)di

= β0(1−∆)− β1(1−∆)c(1−∆)Z̄ + β4(1−∆)c(1−∆)2Z̄2 − c(1−∆)Z̄
a(1−∆) + c(1−∆)Z̄

b(1−∆)

+

(
β1(1−∆)(1 + c(1−∆))− 2β4(1−∆)Z̄(1 + c(1−∆)) + c(1−∆)

a(1−∆) + c(1−∆)Z̄

b(1−∆)

)
zi

+

(
β1(1−∆)f(1−∆) + β2(1−∆)− 2β4(1−∆)f(1−∆)c(1−∆)Z̄ − β7(1−∆)Z̄c(1−∆)

+ f(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)

)
wi

+

(
− β1(1−∆)f(1−∆) + β3(1−∆) + 2β4(1−∆)f(1−∆)c(1−∆)Z̄ − β8(1−∆)Z̄c(1−∆)

− f(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)
− f(1−∆)c(1−∆)

b(1−∆)
Z̄

)
W̄

+ β4(1−∆)(1 + c(1−∆))2(zj)2

+

(
β4(1−∆)f(1−∆)2 + β5(1−∆) + f(1−∆)β7(1−∆)

)
(wj)2

+

(
β4(1−∆)f(1−∆)2 − β8(1−∆)f(1−∆) + β6(1−∆)− f(1−∆)2

b(1−∆)

)
W̄ 2

+

(
2β4(1−∆)(1 + c(1−∆))f(1−∆) + (1 + c(1−∆))β7(1−∆)

)
zjwj

+

(
− 2β4(1−∆)(1 + c(1−∆))f(1−∆) + (1 + c(1−∆))β8(1−∆) +

f(1−∆)c(1−∆)

b(1−∆)

)
zjW̄

+

(
−2β4(1−∆)f(1−∆)2−f(1−∆)β7(1−∆)+f(1−∆)β8(1−∆)+β9(1−∆)+

f(1−∆)2

b(1−∆)

)
wjW̄
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Finally, the value function before the halt satisfies

erϵJd(t = 1−∆− ϵ, zi, wi, W̄ )− (erϵ − 1)

(
zi(v + wi)− γd

2r

(
zi
)2)

= Jn(t = 1−∆−, zi, wi, W̄ ) + erϵλdσ
2
dϵ
r(N − 2)

2γdN

Let’s write out the boundary conditions in more detail. The boundary conditions at t = 1−∆ are

erϵα0(1−∆− ϵ)− erϵλdσ
2
dϵ
r(N − 2)

2γdN

= β0(1−∆)− β1(1−∆)c(1−∆)Z̄ + β4(1−∆)c(1−∆)2Z̄2 − c(1−∆)Z̄
a(1−∆) + c(1−∆)Z̄

b(1−∆)
,

erϵα1(1−∆− ϵ)− (erϵ − 1)v

= β1(1−∆)(1 + c(1−∆))− 2β4(1−∆)Z̄(1 + c(1−∆)) + c(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)
,

erϵα2(1−∆− ϵ)

= β1(1−∆)f(1−∆) + β2(1−∆)− 2β4(1−∆)f(1−∆)c(1−∆)Z̄ − β7(1−∆)Z̄c(1−∆)

+ f(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)
,

erϵα3(1−∆− ϵ)

= −β1(1−∆)f(1−∆) + β3(1−∆) + 2β4(1−∆)f(1−∆)c(1−∆)Z̄ − β8(1−∆)Z̄c(1−∆)

− f(1−∆)
a(1−∆) + c(1−∆)Z̄

b(1−∆)
− f(1−∆)c(1−∆)

b(1−∆)
Z̄,

erϵα4(1−∆− ϵ) + (erϵ − 1)
γd
2r

= β4(1−∆)(1 + c(1−∆))2,

erϵα5(1−∆− ϵ) = β4(1−∆)f(1−∆)2 + β5(1−∆) + f(1−∆)β7(1−∆),

erϵα6(1−∆− ϵ) = β4(1−∆)f(1−∆)2 − β8(1−∆)f(1−∆) + β6(1−∆)− f(1−∆)2

b(1−∆)
,

erϵα7(1−∆− ϵ)− (erϵ − 1) = 2β4(1−∆)(1 + c(1−∆))f(1−∆) + (1 + c(1−∆))β7(1−∆),

erϵα8(1−∆− ϵ)

= −2β4(1−∆)(1 + c(1−∆))f(1−∆) + (1 + c(1−∆))β8(1−∆) +
f(1−∆)c(1−∆)

b(1−∆)
,

erϵα9(1−∆− ϵ)

= −2β4(1−∆)f(1−∆)2 − f(1−∆)β7(1−∆) + f(1−∆)β8(1−∆) + β9(1−∆) +
f(1−∆)2

b(1−∆)
.

and the boundary conditions at t = 1 are

αi(0) = βi(1),

for i = 0, 1 . . . , 9.
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Solving these, with the four optimality of demand equations from the closing auction, gives that

c(1−∆) =− (N − 2)(1− e−∆r)

e−∆r + (1− e−∆r)(N − 1)
,

ϵ =max

{
0,min

{
1−∆,

1

r
ln

[
(N − 1)

(
γd − γn(1 + c(1−∆))2

)
− e−r∆(1 + c(1−∆))2(γd − γn(N − 1))

γd(N − 2)

]}}
.

Assume that Z̄ = 0 and v = 0, then A0 is simply

A0 =
(N − 2)

(
erλdσ

2
d + er(∆+ϵ)λdσ

2
d(ϵr − 1) + ∆rλnσ

2
n

)
2γd(er − 1)N

.

The value function during that halt is

Jd(t, zi, wi, W̄ ) = (1− e−r(1−∆−t))

(
r(v + wi)zi − γd

2r

(
zi
)2)

+ e−r(1−∆−t)Jn(t = 1−∆−, zi, wi, W̄ ) + e−r(1−∆−t)λdσ
2
d(1−∆− t)erϵ

r(N − 2)

2γdN

The average welfare, before the close, is

W̄ (∆) :=
1

1−∆

∫ 1−∆

0
E
[
Jd(t, 0, wi, W̄ )

]
dt.
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