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1 Introduction

Conditional densities of stock market returns under the physical measure, and, in particular, con-

ditional expected market returns, are among the most important yet elusive objects in finance.

Conditional expected returns are central because they form a core component of virtually all asset

pricing models. Yet, these expectations are elusive because they cannot be observed directly.

Traditionally, aggregate market expected returns are inferred from time-series predictability

regressions, while firm-level expected returns are obtained from cross-sectional factor regressions.1

In either case, such derived conditional expected returns cannot be regarded as truly forward-

looking, since they rely on contemporaneous or lagged historical data (e.g., asset pricing factors,

the price-dividend ratio, dividend growth) and are obtained through backward-looking relations

that rest on strong assumptions.

In recent years, one of the most prominent approaches to deriving conditional expected market

returns under the physical measure has been the use of option prices and the option-implied risk-

neutral density (e.g., Martin (2017)). Conditional expected market returns based on risk-neutral

bounds are valuable because they rely on forward-looking option prices rather than traditional

backward-looking regression approaches. Nonetheless, this methodology has faced criticism, as

option-derived bounds for expected returns are constructed from risk-neutral moments and abstract

from the physical measure.

One way to address the limitation of deriving expected returns from risk-neutral moments is

to introduce a pricing kernel that captures investors’ risk–return preferences. For instance, Bliss

and Panigirtzoglou (2004) estimate a standard power-utility discount factor from option prices,

while Linn et al. (2018) employ a nonparametric approach to recover the pricing kernel. Within

this framework, the option-implied risk-neutral density can be adjusted by multiplying it with the

inverse of the estimated discount factor, thereby yielding the option-based distribution of stock mar-

ket returns under the physical measure. Forward-looking expected returns can then be computed

directly from this physical density.

1Predictability tests: Campbell and Shiller (1988), Stambaugh (1999), Lettau and Ludvigson (2001a), Goyal and
Welch (2003), Goyal and Welch (2008), Ang and Bekaert (2007), van Binsgergen and Koijen (2010), Lewellen (2015),
Kostakis et al. (2015). Cross-sectional tests: Fama and French (1993), Fama and French (2015), Hou et al. (2019),
Liu et al. (2009), Lettau and Ludvigson (2001b), Yogo (2006), Delikouras (2017), Delikouras and Kostakis (2019).
These papers represent only a small sample of a vast literature.
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However, even within this framework, several challenges remain regarding the properties of

the true stochastic discount factor. First, discount factors are not directly observable. Second,

the structural parameters of the discount factor (e.g., elasticity of intertemporal substitution, risk

aversion, discount rate) may vary over time. Third, in contrast to the standard monotonicity

assumptions for marginal utility in economics and finance, option-implied pricing kernels can exhibit

non-monotonicities (e.g., Cuesdeanu and Jackwerth (2018)). Finally, because options are defined

at different maturities, Driessen et al. (2022) emphasize the importance of analyzing option-based

pricing kernels across horizons to assess the robustness of their properties.

Motivated by these observations, this paper is among the first to jointly examine how non-

monotonicities, VIX-dependence, and investment horizon of the discount factor affect option-based

physical moments and the validity of risk-neutral bounds for expected returns. I complement this

empirical investigation with theoretical insights on the resulting physical densities that consider

settings where the risk-neutral density is skewed and the pricing kernel is non-monotonic.

Specifically, I estimate four alternative specifications for the discount factor: standard power

utility (fixed-parameter monotonic marginal utility), power utility with VIX-dependent risk aver-

sion (monotonic marginal utility with time-varying parameters), power utility with a quadratic ex-

ponent (fixed-parameter non-monotonic marginal utility), and power utility with a VIX-dependent

quadratic exponent (non-monotonic marginal utility with time-varying parameters). These kernels

extend the standard power-utility specification by allowing for both non-monotonicities and time

variation in risk preferences, providing a versatile framework to capture a rich set of investor be-

haviors. Importantly, I estimate each specification across four maturities (1-, 2-, 3-, and 6-month

options) to construct a term structure of option-based physical densities.

To implement this analysis, I follow the standard methodology in Figlewski (2010), Linn et al.

(2018), and Alexiou et al. (2025), which recovers the risk-neutral density from the second derivative

of option prices with respect to the strike price (Huang and Litzenberger (1989)). I then estimate

the parameters of the four discount factors using a GMM system exploiting the property that any

cumulative distribution function follows a standard uniform distribution as in Linn et al. (2018).

I further include a rational expectations restriction in the GMM, requiring that average option-

based expected returns equal average realized returns over the sample period. Finally, I multiply the

inverse of each of the four discount factors by the common risk-neutral density to derive alternative
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option-based physical distributions across the four maturities.

To assess the role of non-monotonicities and VIX-dependence in the pricing kernel, I begin

by examining, via standard GMM hypothesis testing, the statistical significance of the linear and

quadratic parameters of the kernel, as well as the VIX-dependence parameters. The results pro-

vide little evidence in favor of non-monotonicities, as the quadratic terms are generally statistically

insignificant. A similar pattern emerges for the VIX-dependence parameters, which are also in-

significant in most cases. By contrast, the linear coefficients associated with risk aversion, and thus

with monotonic marginal utility, are consistently statistically significant.

Beyond hypothesis testing, I also examine whether the physical distributions implied by the four

discount factors differ meaningfully from one another. To do so, I employ Kolmogorov–Smirnov

tests for the pairwise equality of distribution functions. The results show that the monotonic

pricing kernels, whether based on fixed or VIX-dependent parameters, generate very similar physical

distributions, which are also close to those generated by the non-monotonic kernel with fixed

parameters. By contrast, the only specification that yields substantially different physical densities

is the non-monotonic pricing kernel with VIX-dependent parameters.

To further identify the sources of differences across physical distributions, I examine the relation,

both in levels and in comovement, among the first four option-based physical moments: expected

value, variance, skewness, and kurtosis, derived from the alternative discount factor specifications

across expirations. With respect to expected returns, all kernels generate values that exceed those

implied by the risk-neutral density. This outcome arises because the GMM estimation incorpo-

rates moment conditions that enforce equality between average option-based expected returns and

average realized returns over the sample period.

Although variances are not target moments in the GMM estimation of the discount factors, their

levels are consistent across kernels and broadly similar to, though lower than, the corresponding

risk-neutral variance. Among the specifications, the non-monotonic kernel with VIX-dependent

parameters generates the lowest forward-looking variance. Similar patterns hold for skewness and

kurtosis: the VIX-dependent non-monotonic kernel yields the smallest values of these higher-order

moments, reflecting the effect of time-varying parameters.

Beyond analyzing the levels of option-based physical moments, I also study their comovement

using coefficients of determination (R2) from pairwise regressions of each moment (mean, variance,
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skewness, kurtosis) across pricing kernels. The results show that variances are highly correlated,

both across discount factors and with the risk-neutral moments. By contrast, the odd physical

moments, expected returns and skewness, are much less correlated across kernels and also display

weaker links to their risk-neutral counterparts. This paper is the first to document that the effects

of non-monotonicities and VIX-dependence differ across moments. Even moments, especially vari-

ances, are strongly correlated across discount factors, whereas odd moments diverge substantially.

To complement these novel empirical findings, I provide theoretical insights that clarify the

differential effects of non-monotonicities and VIX-dependence on option-based physical moments.

Specifically, I draw on tools from actuarial science, namely, the linear and quadratic Esscher trans-

forms (Esscher (1932), Monfort and Pegoraro (2012)), and apply them under normal or skew-normal

assumptions for the risk-neutral density. This framework illustrates how each pricing kernel maps

a common risk-neutral distribution, which need not be normal, into distinct physical moments,

thereby explaining the empirical patterns observed across kernels.

Building on these results, the second major issue addressed in this paper concerns the accuracy

of risk-neutral bounds for expected returns. Having derived option-based distributions under the

physical measure for four alternative pricing kernels across different horizons, I test whether the

risk-neutral bounds proposed in the literature, i.e., bounds based on risk-neutral variances, can

reliably capture expected returns under the physical measure.

Expected returns are inherently unobservable, and deriving them from option prices requires

assumptions about the pricing kernel. To circumvent this challenge, the existing literature (e.g.,

Martin (2017), Schneider and Trojani (2019)) proposes that forward-looking expected returns can

be inferred from option-based risk-neutral moments, such as the risk-neutral variance, through

an approach that is nearly assumption-free.Importantly, Martin (2017) and Chabi-Yo and Loudis

(2020) provide empirical evidence that risk-neutral bounds serve as accurate proxies for expected

returns by regressing realized returns on these bounds. More recently, however, Back et al. (2022),

using a different methodology, cast doubt on whether risk-neutral bounds are sufficiently tight to

capture expected returns.

I further extend these regression tests for the accuracy of risk-neutral bounds along two di-

mensions. First, in addition to regressing realized returns on risk-neutral variances, a methodology

widely used in the existing literature to validate risk-neutral bounds, I also regress option-based

4



expected returns from the alternative pricing kernels on risk-neutral variances. For robustness, I

supplement these tests with backward-looking fitted returns, obtained from predictive regressions of

realized returns on the dividend yield, dividend growth, and the risk-free rate. Finally, unlike most

previous studies, which typically focus on a single maturity (most often 1 month), my empirical

analysis spans multiple maturities, allowing me to evaluate how the investment horizon influences

the accuracy of risk-neutral bounds.

Second, I provide summary statistics and correlations for the risk-neutral bounds to assess

whether these bounds, namely, the risk-neutral variances, are aligned with average realized returns

or with average expected returns derived from the option-based physical densities. Thirdly, since

the literature interprets risk-neutral bounds as lower bounds for expected returns, I specifically

examine whether there are instances in which the risk-neutral bounds exceed realized returns or

option-based expected returns.

The results of this analysis highlight four key findings. First, longer option expirations weaken

the tightness of risk-neutral bounds. Second, realized returns and backward-looking fitted returns

are unsuitable for testing the accuracy of these bounds through regressions. If the bounds were

truly binding, regressions of expected returns on risk-neutral bounds would imply high R2 values

and strong explanatory power. Instead, regressions using realized or fitted returns yield near-zero

fit, extremely large standard errors, and frequent violations of the strictly positive risk-neutral lower

bounds, since realized returns can take negative values.

Third, for the baseline monotonic power utility pricing kernel with constant parameters, regres-

sions of option-based expected returns on risk-neutral variances yield slope estimates close to one

(approximately 1.2–1.3), intercepts near zero (around 0.01%), and very high explanatory power

with R2 values near 99%. These results suggest that, even though the slope coefficients are not

exactly equal to one, risk-neutral variances serve as accurate proxies for expected returns implied

by the standard monotonic power-utility kernel with constant parameters. This evidence stands in

contrast to Back et al. (2022), who argue that risk-neutral bounds are not binding.

Fourth, for discount factors with VIX-dependent coefficients, regressions of option-based ex-

pected returns on risk-neutral bounds generate statistically significant intercepts and slope esti-

mates that differ from one. This indicates that, in these cases, the risk-neutral bounds are not bind-

ing, regardless of whether the discount factor is monotonic or non-monotonic. Interestingly, non-
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monotonicity does not affect the tightness of risk-neutral bounds as strongly as VIX-dependence.

Expected returns derived from the fixed-parameter non-monotonic pricing kernel remain closely

aligned with the risk-neutral variance bounds. The reason is that non-monotonicities occur only in

regions of the return distribution that carry very low probabilities, typically in the extreme left or

right tails, whereas VIX-dependence alters risk aversion across the entire distribution of returns.

Overall, this paper contributes to the growing literature that uses option markets to study

investor preferences and evaluate the validity of competing macroeconomic asset pricing models.

In particular, Ait-Sahalia and Lo (2000) and Rosenberg and Engle (2000) initiated a line of research

on the monotonicity of discount factors implied by option prices, documenting that option-derived

kernels can exhibit increasing regions over certain ranges of moneyness (i.e., U-shaped marginal

utility). More recent studies, such as Linn et al. (2018) and Kim (2021), introduce conditional

estimation of nonparametric discount factors across periods of high and low VIX, and, consistent

with Barone-Adesi et al. (2020), find little evidence supporting non-monotonic marginal utility.

Beason and Schreindorfer (2022) use option prices to decompose risk premia and assess which

macroeconomic asset pricing models, such as long-run risk, habit formation, or disappointment

aversion, are most consistent with the data. Chabi-Yo et al. (2022) extend this framework to con-

ditional risk premia. In closely related work, Heston et al. (2023) estimate option-based pricing

kernels under restrictions such as monotonicity and path-independence (recovery theory), achiev-

ing both accurate option fits and reasonable estimates of equity and variance risk premia, while

addressing long-standing pricing kernel anomalies.

The findings in this paper complement the above work by jointly examining the implied physical

densities derived from four different pricing kernels across multiple option maturities. In particular,

my empirical analysis isolates the distinct effects of non-monotonicity and VIX-dependence on

the physical distributions by analyzing their impact on the first four moments—mean, variance,

skewness, and kurtosis—under the physical measure. Importantly, this is among the first papers to

provide a theoretical explanation for these effects, drawing on results from actuarial science through

Esscher transforms (Esscher (1932), Monfort and Pegoraro (2012)) and incorporating skew-normal

assumptions for the risk-neutral density.

Regarding risk-neutral bounds for expected returns, Martin (2017) establishes the link between

risk-neutral variance and expected returns for the aggregate stock market. Chabi-Yo and Loudis
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(2020) extend this framework by incorporating higher-order risk-neutral moments, while Martin and

Wagner (2019) derive the relation between risk premia and risk-neutral moments at the individual

stock level. More broadly, Schneider (2019) and Schneider and Trojani (2019) generalize the concept

of risk-neutral bounds to encompass higher-order physical moments.

Back et al. (2022) conduct a comprehensive empirical investigation of risk-neutral bounds and

conclude that, although the bounds are correctly signed, i.e., lower bounds, they are not bind-

ing. Gandhi et al. (2023) compare option-based expected returns with survey-based expectations

(UBS/Gallup Investor Optimism Survey, Duke’s CFO survey) and show that the two measures dif-

fer substantially. My analysis focuses on the option-based risk-neutral variance bounds of Martin

(2017) for two reasons. First, subsequent extensions that incorporate higher-order moments (e.g.,

Chabi-Yo and Loudis (2020)) yield results that are nearly identical to Martin (2017). Second, the

bounds in Martin (2017) remain widely used in the literature (e.g., Gandhi et al. (2023)).

In a related paper, Schreindorfer and Sischert (2025) derive physical densities to evaluate the

validity of leading macroeconomic asset pricing models (e.g., habit formation, rare disasters, etc.).

They also present results on the accuracy of risk-neutral bounds. Similar to Schreindorfer and

Sischert (2025), I study the validity of risk-neutral bounds by examining their summary statistics,

comparing them to those of realized and option-based expected returns, and analyzing the frequency

with which expected returns violate the bounds. My contribution relative to Schreindorfer and

Sischert (2025) is twofold. First, I formally regress expected returns on risk-neutral variances to

directly assess the tightness of the lower bound and provide comparative results across alternative

pricing kernel specifications. Second, I consider a cross-section of option expirations, which allows

me to draw conclusions about the role of investment horizon in the accuracy of the bounds, an

aspect absent from Schreindorfer and Sischert (2025), who focus only on a single maturity.

These methodological differences yield a richer set of conclusions regarding the accuracy of risk-

neutral bounds. Specifically, I find that their accuracy depends on option maturity and the time

variation of risk aversion, but not on the monotonicity of the pricing kernel. Although risk-neutral

bounds are not perfect, particularly at longer maturities (e.g., 6-months) or under VIX-dependent

specifications, my results show that they outperform alternative measures of expected returns, such

as averages of realized returns or fitted values from predictive regressions (e.g., price–dividend ratio,

dividend growth). This advantage stems from the forward-looking nature of option-based bounds.
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2 Theoretical Background

To set the stage for the empirical analysis of how alternative stochastic discount factors affect

moments under the physical measure and the accuracy of risk-neutral bounds for expected returns,

I introduce the pricing kernels used to derive option-based moments. These discount factors are

broadly classified into monotonic and non-monotonic specifications. For each class, I consider both

constant-parameter and time-varying versions.

2.1 Monotonic Pricing Kernel

The baseline specification used in my tests is the power utility discount factor defined over stock

market wealth Wt:

U(Wt) =
W 1−γ1

t

1− γ1
.

Based on the above functional form, the intertemporal marginal rate of substitution between dates

t and t+ T is given by

M1,t,t+T (Rt,t+T ) = β
U ′(Wt+T )

U ′(Wt)
= exp{logβ − γ1lnRt,t+T }. (1)

The constant β is the rate of time preference, and Rt,t+T =
Wt+T

Wt
is the return on total equity

wealth. The parameter γ1 > 0 describes (relative) risk aversion since

−
Rt,t+T

M1,t,t+T

∂M1,t,t+T

∂Rt,t+T
= γ1.

A natural extension to the standard power-utility pricing kernel of equation (1) is to assume

that risk aversion is time-varying depending on observable variables that are known at time t.

To this end, Linn et al. (2018) and Kim (2021) introduce conditional estimation of their non-

parametric discount factor during periods of high and low VIX values. Given the importance of

the VIX in option-pricing and the recent results in Schreindorfer and Sischert (2025), I assume

an extension of the monotonic pricing kernel of equation (1) for which γ1 is time-varying with an

explicit dependence on the VIX:
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M2,t,t+T (Rt,t+T ) = β
U ′
2(Wt+T )

U ′
2(Wt)

= exp{logβ − γ1nvix
γ3
t,t+T lnRt,t+T }. (2)

Risk aversion in the above discount factor is given by γ1nvix
γ3
t,t+T , where nvixt,t+T is the VIX

(V IXt,t+T ) normalized by its unconditional average (V IXt,t+T ) and scaled by
√
T , the number of

days in 1-, 2-, 3-, and 6-month intervals (T ≈ 30, 60, 90, 180), over
√
365:

nvixt,t+T =
V IXt,t+T

√
T

V IXt,t+T

√
365

. (3)

The intuition behind this specification is that investing in the stock market entails a natural level

of risk, captured by average VIX. When VIX deviates from its average, risk aversion is affected

according to the coefficients γ1 and γ3. Since VIX is expressed in percentage terms, I use nvixγ3t,t+T

in equation (2) rather than V IXγ3
t,t+T to avoid extreme values of risk aversion when VIX is low (high)

and γ3 is negative (positive). To eliminate look-ahead bias, the average VIX, V IX in equation (3),

is estimated over the 1986–1995 period, prior to the start of the sample.2 Hence, at time t, investors

observe both the VIX and the normalized VIX (nvix).

Given the positivity of the VIX and nvix, a well-defined risk-aversion coefficient requires a

positive γ1. The parameter γ3 captures the procyclicality of risk aversion with respect to nvix.

For γ1 > 0, a positive (negative) γ3 implies that risk aversion is procyclical (countercyclical) with

respect to nvix. Intuitively, γ3 is expected to be positive, implying that risk aversion rises with

nvix. For γ3 = 0, equation (2) reduces to the case of constant risk aversion.

2.2 Non-monotonic Pricing Kernel

One debated feature of the option-implied pricing kernel is its monotonicity. While Linn et al.

(2018) find no evidence supporting non-monotonicities in option-based marginal utility, several

studies advocate for U-shaped discount factors (e.g., Ait-Sahalia and Lo (2000), Rosenberg and

Engle (2000)). Motivated by recent findings in Schreindorfer and Sischert (2025) and Driessen et al.

2The resulting VIX averages are 5.356%, 7.818%, 10.186%, and 13.119% for the 1-, 2-, 3-, and 6-month maturities.
VIX values prior to 1990 are fitted by regressing the VIX on the old-methodology VIX at the daily frequency. The
regression estimates are: intercept = 0.240% (t-stat = 1.04), slope = 0.987 (t-stat = 71.01), R2 = 96%. Standard errors
for these regressions are computed using a 30-lag Newey–West correction for autocorrelation and heteroscedasticity.
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(2022), I also allow for non-monotonicities in the pricing kernel. Specifically, the non-monotonic

kernel is modeled using a power utility function with a quadratic exponent.

Specifically, I assume the following quadratic stochastic discount factor

M3,t,t+T (Rt,t+T ) = exp{logβ − γ1lnRt,t+T − γ2ln
2Rt,t+T }. (4)

The non-monotonicity of the pricing kernel is captured by the squared term ln2Rt,t+T and the

parameter γ2. As shown in Sichert (2023), quadratic functions provide a flexible and accurate way

to capture non-monotonicities in option-based pricing kernels.

According to Bakshi and Madan (2007) and Bakshi et al. (2010), a prominent interpretation of

the quadratic term is that it captures the risk aversion of investors who are shorting the market. In

this setting, the aggregate risk aversion coefficient across investors, those holding the market long

and those shorting it, becomes state-dependent, varying with stock market conditions:

−
Rt,t+T

M3,t,t+T

∂M3,t,t+T

∂Rt,t+T
= γ1 + 2γ2lnRt,t+T . (5)

Based on the above relation, the coefficient γ2 governs the procyclicality of risk aversion with

respect to stock market returns. A positive (negative) γ2 implies that risk aversion is procyclical

(countercyclical) with the stock market.

Similar to the VIX-dependent monotonic model in equation (2), I extend the non-monotonic

specification by allowing the quadratic preference parameters to depend on the normalized VIX

(nvix). This discount factor is defined as

M4,t,t+T (Rt,t+T ) = exp log β − γ1nvix
γ3
t,t+T lnRt,t+T − γ2nvix

γ3
t,t+T ln2Rt,t+T . (6)

The dependence of this kernel on nvix is governed by the constant γ3. In this case, risk aversion

depends jointly on the VIX and the stock market:

−
Rt,t+T

M4,t,t+T

∂M4,t,t+T

∂Rt,t+T
= γ1nvix

γ3
t,t+T + 2γ2nvix

γ3
t,t+T lnRt,t+T . (7)

Because the VIX is positive, the coefficient γ2 in equation (6) determines the procyclicality of
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risk aversion with respect to the stock market. As in the fixed-parameter non-monotonic kernel

of equation (4), a positive (negative) γ2 implies that risk aversion is procyclical (countercyclical).

However, the introduction of the quadratic term complicates the relation between risk aversion and

nvix making it conditional on the state of the stock market.

The baseline monotonic power utility model in equation (1) is among the most widely used

utility functions in macroeconomics and finance. The alternative pricing kernels are motivated by

two empirical regularities observed in options markets. First, the dependence of option-implied

pricing kernels on the VIX has received considerable attention in the literature (e.g., Linn et al.

(2018), Kim (2021)). Second, the role of non-monotonic (quadratic) terms in the pricing kernel

remains debated, with evidence both in support (e.g., Schreindorfer and Sischert (2025), Driessen

et al. (2022)) and against (e.g., Linn et al. (2018), Barone-Adesi et al. (2020)). Consequently,

the quadratic specifications in equations (4) and (6) are not ad hoc. Instead, consistent with the

comprehensive analysis of potential sources of non-monotonicities in Cuesdeanu and Jackwerth

(2018), these specifications are both theoretically justified and empirically micro-founded.

In my analysis, the pricing kernels are estimated at investment horizons of one, two, three, and

six months. The cross-section of maturities serves two purposes. First, to verify the robustness

of results across horizons; and second, to capture the term-structure implications of preference

parameters, as in Driessen et al. (2022). I adopt parametric specifications of the pricing kernel

rather than nonparametric ones (e.g., Linn et al. (2018)) for two main reasons. First, parametric

discount factors facilitate the derivation of risk–return relations in terms of structural parameters,

such as risk aversion. Second, and more importantly, they allow an analysis of how specific features,

such as non-monotonicities or time variation in parameters, shape the option-implied physical

distributions. In general, the parametric specifications employed here are sufficiently flexible to

accommodate a wide range of risk attitudes.

2.3 Estimation of the Pricing Kernel and the Forward-looking Physical Measure

In estimating physical moments across different pricing kernels, I assume that Q(R) denotes the

cumulative distribution function of gross equity returns R under the risk-neutral measure. The

risk-neutral density can be recovered from option prices. Let P (R) denote the forward-looking

continuous cumulative distribution function of equity returns under the physical measure, with
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dP (R)/dQ(R) as the Radon–Nikodym derivative linking the two measures. Since the forward-

looking physical measure is unobservable, I follow Linn et al. (2018), who show that under suitable

conditions the Radon–Nikodym derivative is unique and equals the inverse of the discount factor.

dPt,t+T (R)

dQt,t+T (R)
= Mt,t+T (R)−1. (8)

The forward-looking physical measure can therefore be calculated as the product of the risk-neutral

measure with the inverse of the pricing kernel

dPt,t+T (R) = Mt,t+T (R)−1dQt,t+T (R). (9)

In general, the pricing kernel is unobservable. However, I use equations (1), (2), (4), and (6)

within a GMM system to estimate the unknown parameters of the discount factor. To this end,

I employ two sets of GMM moment conditions. The first, introduced by Linn et al. (2018), relies

on the property that any continuous distribution is a standard uniform random variable, such that

Pt,t+T (R) ∼ U [0, 1]. Accordingly, based on uniform moments, the following holds:

E
[( ∫ R∗

t,t+T

0
Mt,t+T (R)−1dQt,t+T (R)

)n]
=

1

n+ 1
, n = 1, 2, ..., (10)

where the variable R∗
t,t+T above is the realized gross equity return between dates t and t+ T .

The second set of target GMM moments is a rational expectations restriction where the un-

conditional averages of option-based expected returns under the physical measure are equal to the

sample averages of realized returns
(
1
N

∑N
i=1R

∗
it,it+T

)
:

E
[ ∫ +∞

0
R Mt,t+T (R)−1dQt,t+T (R)

]
=

1

N

N∑
i=1

R∗
it,it+T . (11)

By equating average realized returns with average expected returns, we establish a direct link be-

tween realized and option-based expected returns. The rational expectations condition in equation

(11) is a natural extension under the physical measure. The key innovation relative to Linn et al.

(2018) is including equation (11) in the GMM estimation of option-based discount factors.

The physical density should integrate to one (
∫ +∞
0 dPt,t+T (R) = 1) and the inverse of the pricing
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kernel should also satisfy

1 =

∫ +∞

0
Mt,t+T (R)−1dQt,t+T (R), ∀t. (12)

Dividing equations (8) and (12) by parts, we estimate a normalized version of the pricing kernel

dPt,t+T (R) =
Mt,t+T (R)−1∫ +∞

0 Mt,t+T (R)−1dQt,t+T (R)
dQt,t+T (R), (13)

which ensures that the estimated parameters imply well-behaved conditional physical density func-

tions for every date in the sample. Thus, the GMM system from equations (10) and (11) becomes

 E
[(∫R∗

t,t+T
0 Mt,t+T (R)−1dQt,t+T (R)∫+∞

0 Mt,t+T (R)−1dQt,t+T (R)

)n]
− 1

n+1 , n = 1, 2, ...,

E
[∫+∞

0 R Mt,t+T (R)−1dQt,t+T (R)∫+∞
0 Mt,t+T (R)−1dQt,t+T (R)

]
− 1

N

∑N
i=1R

∗
it,it+T

 . (14)

As in Bliss and Panigirtzoglou (2004), due to normalization, the discount rate parameter β in

equations (1), (2), (4), and (6) cannot be identified and will be dropped. The normalization

in equation (14) is equivalent to imposing an additional parameter in the discount factor as in

Schreindorfer and Sischert (2025) that forces the estimated physical densities to integrate to one.

Further details about the GMM estimation (e.g., weighting matrix, standard errors) are reported

in Section C of the Online Appendix.

After estimating the preference parameters via GMM, I obtain the option-based physical mea-

sure by multiplying the inverse of the estimated pricing kernel with the option-implied risk-neutral

density. From the standard definition of moments, it then follows that the option-based physical

density, the corresponding distribution function, and the associated physical moments are given by

dPt,t+T (R)/dR =
Mt,t+T (R)−1dQt,t+T (R)∫ +∞

0 Mt,t+T (R)−1dQt,t+T (R)
/dR (15)

Pt,t+T (R
∗
t,t+T ) =

∫ R∗
t,t+T

0 Mt,t+T (R)−1dQt,t+T (R)∫ +∞
0 Mt,t+T (R)−1dQt,t+T (R)

Et[Rt,t+T ] =

∫ +∞
0 R Mt,t+T (R)−1dQt,t+T (R)∫ +∞
0 Mt,t+T (R)−1dQt,t+T (R)

vart(Rt,t+T ) =

∫ +∞
0 (R− Et[R])2 Mt,t+T (R)−1dQt,t+T (R)∫ +∞

0 Mt,t+T (R)−1dQt,t+T (R)
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skewt((R)t,t+T ) =

∫ +∞
0 (R− Et[R])3 Mt,t+T (R)−1dQt,t+T (R)

vart(Rt,t+T )3/2
∫ +∞
0 Mt,t+T (R)−1dQt,t+T (R)

kurtt(Rt,t+T ) =

∫ +∞
0 (R− Et[R])4 Mt,t+T (R)−1dQt,t+T (R)

vart(Rt,t+T )4/2
∫ +∞
0 Mt,t+T (R)−1dQt,t+T (R)

.

The same approach, but without the term
Mt,t+T (R)−1∫+∞

0 Mt,t+T (R)−1dQt,t+T (R)
, is used to compute the mo-

ments of the risk-neutral density. Finally, log-return moments are obtained by replacing (R−Et[R])n

with (lnR− Et[lnR])n, for both the physical and risk-neutral measures.

3 Option Data and the Risk-Neutral Density

In this section, I describe the options data employed in the empirical analysis, which investigates

how alternative pricing kernels affect the moments of the physical distribution and the accuracy of

risk-neutral bounds for expected returns.

3.1 Data

The sample of S&P500 option contracts for different expirations (1-, 2-, 3-, and 6-months) is from

OptionMetrics and is summarized in Table OA.1 of the Online Appendix. High-frequency options

(0DTEs) are excluded to ensure that the dataset spans a long time series covering major events

such as the Great Recession and the COVID-19 pandemic. To construct the sample, I impose

the following selection criteria: non-missing implied volatility, positive trading volume, and a bid

price above $3/8. Further, each date is included in the sample only if there are at least six option

contracts outside the ±2% moneyness range, with a minimum of three puts and three calls.

At the beginning of the sample, two non-consecutive 2-month observations and eleven non-

consecutive 3-month observations were dropped because the risk-neutral distributions could not be

estimated given insufficient option contracts satisfying the selection criteria. Further, consecutive

observations are required to compute autocorrelations for Newey–West standard errors in the GMM

estimation, which led to the removal of additional early observations for the 2- and 3-month matu-

rities. The final sample spans January 1996–December 2022 (1-month), May 1998–November 2022

(2-month), January 2002–October 2022 (3-month), and June 1996–June 2022 (6-month) options.
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4 Estimation of the Alternative Pricing Kernels

Using the GMM estimation methodology in Section 2.3 and the RNDs from Section D of the Online

Appendix, I estimate the parameters of the discount factors in equations (1), (2), (4), and (6). The

estimated pricing kernels allow me to analyze how non-monotonicities and VIX dependence affect

physical moments and the accuracy of risk-neutral bounds for expected returns.

4.1 Monotonic Pricing Kernels

Panel A of Table 1 reports estimates for the standard monotonic power utility model from equation

(1). The risk-aversion parameter is positive across all expirations, ranging from 1.266 (2-month) to

1.524 (6-month). These estimates are consistent with Bliss and Panigirtzoglou (2004) and suggest

that risk aversion is stable across maturities.

Panel B of Table 1 reports results for the monotonic pricing kernel with time-varying risk-

aversion coefficients that depend on the normalized VIX (nvix) from equation (2). The γ1 estimates

are positive across all expirations, indicating positive risk aversion. For 1-month options, γ1 is

0.518, while for the 2-, 3-, and 6-month options the estimates range from 1.295 to 1.661. The

discrepancies in γ1 across maturities can be attributed to the parameter governing the dependence

of risk aversion on nvix, γ3. This coefficient is positive for the 1-month horizon (1.936) but negative

(between –0.817 and –0.558) for the longer expirations.

These estimates imply that risk aversion is procyclical with respect to the VIX for the 1-month

expiration but countercyclical for the longer maturities. The increase in risk aversion with VIX at

the 1-month horizon is intuitive, whereas the decline in risk aversion with VIX for 2-, 3- and 6-

months expirations is puzzling. However, this result is consistent with the evidence in Schreindorfer

and Sischert (2025), who document countercyclical risk aversion with respect to the VIX.

4.2 Non-Monotonic Pricing Kernels

Panel A of Table 1 reports GMM estimates for the non-monotonic discount factor in equation

(4) with constant parameters. For the 1-month expiration, the linear coefficient γ1 is positive

(0.814) and the quadratic parameter γ2 is negative (–7.412). This implies that risk aversion is

countercyclical with respect to market returns (equation (5)) and that marginal utility is U-shaped.
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By contrast, for the 2-, 3-, and 6-month expirations, both the linear coefficient γ1 (1.386–1.672)

and the quadratic coefficient γ2 (0.334–0.779) are positive. According to equation (5), this implies

procyclical risk aversion and an inverse U-shaped marginal utility. Although the procyclicality of

risk aversion with respect to the stock market at these maturities may seem counterintuitive, it is

consistent with the countercyclicality of risk aversion with respect to nvix in the VIX-dependent

model of equation (2), as documented in Panel A of Table 1.

Finally, Panel B of Table 1 reports GMM estimates for the non-monotonic pricing kernel with

VIX-dependent parameters from equation (6). Across all expirations, the linear coefficient γ1 is

positive (0.129–1.991) while the quadratic parameter γ2 is negative (–47.470 to –2.143) . These

estimates imply U-shaped marginal utility and countercyclical risk aversion with respect to the stock

market. The parameter γ3, which governs the dependence of the linear and quadratic coefficients on

nvix, is also negative (γ3 = –9.720 to –4.421). However, negative estimates of γ3 do not necessarily

imply that risk aversion decreases with nvix. As shown in equation (7), the cyclicality of risk

aversion with respect to nvix in the VIX-dependent non-monotonic kernel depends jointly on both

volatility and stock market returns.

Based on t-statistics in Table 1, the option-implied pricing kernel is most likely monotonic, as

the quadratic terms are generally insignificant. The t-statistics for the linear coefficient γ1 in the

pricing kernels of equations (1), (2), and (6), range from 4.43 to 6.83 in Panel A, 0.31 to 5.12 in Panel

B, and 0.23 to 4.08 in Panel D. These values are, on average, much larger in absolute magnitude

than those for the quadratic coefficients γ2 (–1.38 to 1.83 in Panels C and D). Regarding VIX

dependence, the evidence generally supports VIX-independence, with the exception of two cases

for the non-monotonic VIX-dependent kernel of equation (6), the 1- and 2-month maturities in

Panel D. In this case, t-statistics for γ3 are –2.21 and –2.29. For all other expirations in Panels B

and D, the estimates of the VIX-dependence parameter γ3 are statistically insignificant.

Figure 1 plots the pricing kernels implied by the GMM estimates in Table 1. For the VIX-

dependent specifications in the graph, nvix is set equal to its sample average for each expiration.

All discount factors are monotonically decreasing over most values of moneyness with the exception

of the 2-, 3-, and 6-month expirations of the fixed-parameter non-monotonic kernel (equation (4)).

In these expirations, the fixed-parameter non-monotonic kernel takes an inverse U-shape because

both the linear coefficient γ1 and the quadratic coefficient γ2 are positive (Table 1, Panel A).
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However, the upward-sloping region corresponds to extremely low returns (–100% to –50%) that

receive negligible probability mass in practice. Across the range of realistic market returns (–50%

to 30%), the non-monotonic kernel of equation (4) is decreasing.

The VIX-dependent non-monotonic specification in equation (6) is decreasing for most values

of moneyness, with a small increasing region corresponding to large positive market returns. The

U-shape of this kernel arises because the quadratic parameter γ2 is negative (Table 1). As shown

in equation (7), when γ2 is negative and market returns are large enough, risk aversion becomes

negative. In this case, the pricing kernel slopes upward, and the risk–return relation turns negative.

Overall, pricing kernel estimates are consistent across option expirations, with the notable

exception of the fixed-parameter quadratic pricing kernel, whose shape shifts from U-shaped at

the 1-month maturity to inverse U-shaped at longer maturities. Regardless of whether the non-

monotonic pricing kernels are U-shaped or inverse U-shaped, these features arise only at extremely

high or low returns, which lie in the far tails of the distribution and receive near-zero probability

mass. This suggests that non-monotonicities may have limited influence on the moments of the

physical density. We examine this conjecture in the empirical analysis below, where we compare

physical densities and corresponding moments implied by the alternative pricing kernels, regardless

of the statistical significance of their coefficients.

5 Physical Densities from Alternative Pricing Kernels

Using the estimated discount factors from the previous section, I derive option-based physical

densities and moments for gross returns according to equation (15). These densities, obtained under

alternative pricing kernels, allow me to assess how different functional forms of the kernel affect

physical moments and the accuracy of risk-neutral bounds for expected returns. For comparison, I

also construct the distribution and density of realized returns by fitting a kernel-density estimator

to the realized return series and interpolating values over the full moneyness range with a piecewise

cubic Hermite polynomial.

Figure 2 plots average option-based physical densities across pricing kernels and expirations

to verify that these densities are well defined. Most of the physical distributions appear broadly

similar, with the main exceptions being the density implied by the non-monotonic VIX-dependent
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kernel of equation (6) and the density of realized returns. To this end, I conduct pairwise Kol-

mogorov–Smirnov test to examine equality of option-based physical distributions across discount

factors.3 I also compare option-based physical distributions with both the risk-neutral distribution

and the distribution of realized returns.

5.1 Kolmogorov-Smirnov Tests

Results for the Kolmogorov–Smirnov are reported in Table 2, where option-based physical densities

are identified by the exponents of the corresponding discount factors: γ1r for equation (1), γ1nvix
γ3r

for equation (2), γ1r + γ2r
2 for equation (4), and γ1nvix

γ3r + γ2nvix
γ4r2 for equation (6). Based

on the percentage of rejections over the sample period, the most similar densities are those from

the two monotonic specifications (equations (1) and (2)), with rejection rates ranging from 3%

(2-month) to 23% (6-month).

The option-based physical distributions from the non-monotonic model with fixed parameters

(equation (4)) are somewhat similar to those from the monotonic specifications with rejections of

the Kolmogorov-Smirnov tests ranging from 2% (2-month) to 77% (1-month). In contrast, the

option-based distributions from the non-monotonic discount factor with VIX-dependent param-

eters (equation (6)) are substantially different from the rest of the distributions with very high

rejection percentages (84% to 96%) across all expirations. In other words, either allowing for non-

monotonicities with constant parameters or introducing VIX dependence in a monotonic kernel

yields distributions close to the benchmark monotonic specification. On the contrary, combining

non-monotonicities with VIX-dependent parameters results in distributions that differ markedly

from all others.

According to the results in Table 2, all specifications yield physical distributions that differ

from the risk-neutral measure, with Kolmogorov–Smirnov rejection rates ranging from 23% to

100%. Further, option-based physical distributions are quite different from the distribution of

realized returns across all discount factors and maturities. To explore which moments drive the

rejections of Kolmogorov–Smirnov test, I next compare the levels and comovement of the first four

moments of the physical distributions across the various pricing kernels.

3In untabulated results, I also implement the Cramér–von Mises test, which yields similar conclusions.
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5.2 Moments of the Physical Distribution

Table 3 reports summary statistics for the first four moments of option-based physical distributions

across expirations and pricing kernels. Table 3 also reports summary statistics for the first four

moments of the risk-neutral distribution, as well as the first four sample moments of the distribution

for realized returns.

Panel A reports results for expected returns across distributions. All discount factors imply

identical average expected returns, ranging from 0.61% (1-month) to 4.25% (6-month). These values

match average realized returns, since this moment enters the GMM objective function (equation

(2.3)). Expected returns under the physical measure are uniformly higher than those under the risk-

neutral measure, which range from –0.06% (1-month) to 0.46% (6-month). While average expected

returns are identical across kernels, volatility of expected returns differs substantially. In particular,

the VIX-dependent non-monotonic model of equation (6) yields systematically lower volatility than

the remaining specifications across maturities, with the exception of the 3-month horizon, where

the lowest volatility of expected returns is generated by the VIX-dependent monotonic kernel.

Panel B of Table 3 reports results for variances from the option-based physical densities across

discount factors and maturities. Although variance is not a target moment in the GMM estimation,

the implied physical variances are broadly consistent across kernels—ranging from 0.34%–0.43% (1-

month) to 1.33%–2.23% (6-month), and are uniformly lower than their risk-neutral counterparts.

The option-based physical densities also imply average variances larger than the sample variance

of realized returns (0.24% for 1-month to 1.13% for 6-month). Among the various discount factor

specifications, the non-monotonic kernel with VIX-dependent parameters (equation (6)) generates

the lowest physical variances.

Panel C of Table 3 reports results for physical skewness, which is negative across all expirations

and discount factors (–1.45 to –0.59 for 1-month and –0.91 to –0.15 for 6-month). Option-based

physical skewness is uniformly smaller in absolute value than its risk-neutral counterpart. Consis-

tent with the variance results, the non-monotonic VIX-dependent model (equation (6)) generates

the lowest absolute skewness (–0.59 for 1-month to –0.15 for 6-month). By contrast, the remaining

kernels imply physical skewness values that are broadly similar in magnitude, though smaller, to

the risk-neutral skewness. Results for physical kurtosis in Panel D of Table 3 reveal a similar pat-
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tern. The lowest values for physical kurtosis (3.24 for 6-month to 4.37 for 1-month) are generated

by the non-monotonic VIX-dependent discount factor.

In general, risk-neutral densities exhibit negative skewness (–1.51 for 1-month to –0.98 for

6-month) and positive excess kurtosis (7.67 for 1-month to 4.99 for 6-month). These features

carry over to the physical densities. Notably, the non-monotonic specification with VIX-dependent

parameters implies the least negative skewness and the lowest excess kurtosis under the physical

measure. Finally, Table OA.3 in the Online Appendix reports moments for the physical and risk-

neutral distributions of log-returns (lnRt,t+T ). The results are qualitatively similar to those in

Table 3, with the key difference that skewness and kurtosis for log-returns are larger (in absolute

value) than for gross returns.

The different discount factors generate plausible and consistent higher-order moments. In par-

ticular, risk-neutral variance and skewness exceed their physical counterparts in all cases, while

risk-neutral kurtosis is broadly similar to the physical one. The VIX-dependent non-monotonic

kernel of equation (6) stands out by generating the lowest higher-order moments across specifica-

tions and by generating moments with the least time variation.

This arises because combining non-monotonicity with VIX-dependence yields a discount factor

whose time-series variability is substantially greater than that of specifications featuring only non-

monotonicities or only VIX-dependence. The pronounced variation of the non-monotonic VIX-

dependent pricing kernel soaks up most of the time variation of the risk-neutral density, and the

result is a fairly stable physical distribution. This might be an important argument regarding the

plausibility of this kernel.

5.3 Coefficients of Determination for Physical Moments

To complement the analysis on the magnitude of the first four moments of the option-based physical

densities, Table 4 reports adjusted coefficients of determination (R2) from regressions of physical

moments across pricing kernels and the risk-neutral measure:

momentj,t = a+ b ·momentk,t + ηj,k,t. (16)
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Above, momentj,t denotes the physical moment (mean, variance, skewness, kurtosis) of pricing

kernel j at time t, and momentk,t is the corresponding moment from pricing kernel k at time t.

These regressions assess the comovement of option-based physical moments implied by alternative

discount factors.

The most striking result in Table 4 is that physical variance is nearly perfectly correlated across

all four discount factors and the risk-neutral density, with R2s ranging from 82% to 99%. By

contrast, the greatest divergence occurs for expected returns, where average R2 values fall between

33% and 43% across expirations (42%–50% when excluding regressions against risk-neutral expected

returns). Skewness and kurtosis also exhibit considerable divergence across discount factors, but

this divergence is mainly driven by the VIX-dependent non-monotonic kernel.

More specifically, the results from Table 4 suggest that expected returns, skewness, and kurtosis

are strongly correlated (R2 values from 62% to 99%) across the monotonic pricing kernels of equa-

tions (1) and (2), and remain highly correlated (R2 values from 54% to 99%) with the moments of

the fixed-parameter non-monotonic kernel of equation (4). In contrast, the corresponding moments

from the VIX-dependent non-monotonic kernel (equation (6)) are largely orthogonal to those of

the other kernels, with R2 values ranging only from 0% to 23%.

This is one of the first papers to demonstrate that the effects of monotonic and non-monotonic

pricing kernels vary considerably across moments. Option-implied variances are strongly correlated

across discount factors, whereas other moments, particularly odd moments such as expected returns

and skewness, differ markedly. The contrast between odd and even moments is illustrated in Table

5, which reports the coefficients of determination across pricing kernels for the third and fourth

central moments (skewness and kurtosis, excluding variance scaling).

The average R2 for third moments ranges from 46% (1-month) to 86% (3-month), while the

average R2 for fourth moments ranges from 87% (1-month) to 93% (3-month). Across all expi-

rations, comovement in fourth moments is much stronger than in third moments. Thus, Table 4

and Table 5 underscore the differential effects of the various pricing kernels across odd and even

moments. Even moments, especially variances, are highly correlated across specifications, whereas

odd moments exhibit a weaker relationship.4

4Table OA.4 and Table OA.5 report adjusted R2 values from regressions of option-based physical moments for
log-returns across pricing kernels. The results are qualitatively similar to those presented here for gross returns.
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The results in Table 3 and Table 4 suggest that the fixed-parameter monotonic kernel (equation

(1)), the VIX-dependent monotonic kernel (equation (2)), and the fixed-parameter non-monotonic

kernel (equation (4)) generate broadly similar moments, which are strongly correlated. By contrast,

the non-monotonic kernel with VIX-dependent parameters generates physical moments that are

almost orthogonal to those implied by the other specifications. The only exception is physical

variance, which is strongly correlated across all discount factors, including the VIX-dependent

non-monotonic model.

Overall, Table 3 and Table 4 show that non-monotonicity (equation (4)) or VIX-dependence

(equation (2)) alone yields physical moments that are similar to those generated by the standard

fixed-parameter monotonic kernel (equation (1)). It is only when non-monotonicity is combined

with VIX-dependence that the resulting physical distribution becomes distinctly different from

those implied by the other discount factors.

5.4 Pricing Kernels and Moments of the Physical Distribution: Theoretical

Explanation

The empirical findings for the effects of non-monotonicities and VIX-dependence on physical mo-

ments can be interpreted using standard results from the normal distribution. The theoretical

results in this section focus on log-return moments derived from log-normal and skew log-normal

distributions. These results can be extended to gross returns by the approximation lnR ≈ R − 1

or by applying the exact formulas of the log-normal distribution.5

In actuarial science, the monotonic utilities in equations (1) and (2), together with the normal-

ization in equation (13), correspond to the linear Esscher transform (Esscher (1932)). More recently,

Monfort and Pegoraro (2012) introduced the second-order Esscher transform, which relates to the

quadratic pricing kernels of equations (4) and (6). Within this framework, if the risk-neutral density

for log-returns is normal with mean r̃ft,t+T and variance σ2
RND,t,t+T , then the monotonic discount

factors in equations (1) and (2) preserve normality and generate physical densities with mean and

variance given by

5For consistency with the theoretical discussion of log-returns, I replicate the empirical analysis for log-returns
in the Online Appendix.
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Et[lnRt,t+T ] = r̃ft,t+T + γ1,tσ
2
RND,t,t+T , (17)

vart
(
lnRt,t+T

)
= σ2

RND,t,t+T . (18)

Above, γ1,t captures risk aversion, either as a fixed parameter (γ1,t = γ1, equation (1)) or as a

time-varying coefficient (γ1,t = γ1nvix
γ3
t,t+T , equation (2)). Thus, under normality of the risk-

neutral density, linear discount factors, whether constant or VIX-dependent, shift expected returns

by γ1,tσ
2
RND,t,t+T and leave the variance unchanged (Section E.1 of the Online Appendix). This

explains why option-based expected returns and variances are nearly identical, both in levels (Table

3) and in comovement (Table 4), across the two monotonic pricing kernels.

On the other hand, when the risk-neutral density is normal, the quadratic pricing kernels of

equations (4) and (6) preserve normality but modify both the mean and variance of log-returns. As

shown in Section E.1 of the Online Appendix, if the risk-neutral density for log-returns is normal,

then quadratic discount factors, with either constant or time-varying coefficients, yield physical

densities with mean and variance given by

Et[lnRt,t+T ] =
r̃ft,t+T + γ1,tσ

2
RND,t,t+T

1− 2γ2,tσ2
RND,t,t+T

, (19)

vart
(
lnRt,t+T

)
=

σ2
RND,t,t+T

1− 2γ2,tσ2
RND,t,t+T

. (20)

In this setting, the physical variance is lower than the risk-neutral variance only when the quadratic

coefficient γ2,t is negative.

The fixed-parameter non-monotonic kernel in equation (4) for 1-month options and the VIX-

dependent non-monotonic kernel in equation (6) across all maturities are characterized by negative

γ2,t parameters (Table 1). According to equations (5) and (20), these specifications imply risk

aversion that is countercyclical to market returns and generate physical variances below the risk-

neutral counterparts (Table 3). By contrast, the fixed-parameter non-monotonic kernel of equation

(4) with positive γ2,t coefficients at the 2-, 3-, and 6-month maturities (Table 1, Panel A) implies

procyclical risk aversion (equation (5)) and relatively large physical variances (e.g., Table 3 and

Table OA.3 in the Online Appendix).
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Further, the denominator in equation (20), 1− γ2,tσ
2
RND,t,t+T , is close to one for both the fixed

and VIX-dependent specifications because σ2
RND,t,t+T takes relatively small values (Table 3). This

helps explain the results in Table 3 and Table 4 for gross returns (Table OA.3 and Table OA.4 in

the Online Appendix for log-returns), which show that physical variances are very similar across

pricing kernels and highly correlated with each other as well as with the risk-neutral variance.

Average expected returns are identical across pricing kernels (Table 3), since they are imposed

in the GMM estimation (equation (14)). Nevrtheless, conditional expected returns differ across

kernels and from the risk-neutral density (Table 4) because of the γ1,tσ
2
RND,t,t+T term in equation

(17) and in the numerator of equation (19). In particular, for the non-monotonic VIX-dependent

kernel of equation (6), the non-linear structure of equation (19) is amplified by VIX dependence.

As a result, expected returns implied by this specification are almost orthogonal to those of the

other discount factors (Table 4), even though their average levels are identical across pricing kernels

and coincide with realized returns (Table 3).

As shown in Table 3 (and Table OA.3 in the Online Appendix), risk-neutral densities for gross

and log-returns are negatively skewed and exhibit excess kurtosis across all maturities. Thus, while

the assumption of normality is useful for deriving intuition, it is also restrictive. To address this, I

re-examine the results in Table 3 and Table 4 for gross returns under the assumption that the risk-

neutral density follows a skewed log-normal distribution, with location, scale, and shape parameters

ωt, σt, λt, and θt, respectively. Under the log skew-normal specification of Henze (1986), the density

function, up to a normalization constant, is given by

dQt(R) =
1

R
Exp

[ lnR− ωt

2σ2
t

]
Φ
(
λt

lnR− ωt

σt
+ ξt

)
.

The sign of λt determines the sign of skewness, while the parameter ξt(> 0) amplifies skewness and

kurtosis. In this case, the risk-neutral expected log-return is

ERND
t [lnRt,t+T ] = ωt +

λt√
1 + λ2

t

ϕ
(
− ξt√

1+λ2
t

)
1− Φ

(
− ξt√

1+λ2
t

)σt, (21)

where ϕ(x)/(1−Φ(x)) is the inverse Mills ratio. Based on the risk-neutral moments of gross returns

in Table 3 and log-returns in Table OA.3 of the Online Appendix, λt should be negative and ξt

24



should be positive for the option-based RND’s across all expirations.

As shown in Section E.6 of the Online Appendix, applying a linear pricing kernel with positive

risk-aversion parameter γ1,t to the above skew log-normal RND implies that the mean under the

physical density becomes

Et[lnRt,t+T ] = ωt + γ1,tσ
2
t +

λt√
1 + λ2

t

ϕ
(
− ξt+λtγ1,tσ2

t√
1+λ2

t

)
1− Φ

(
− ξt+λtγ1,tσ2

t√
1+λ2

t

)σt. (22)

Hence, under non-normality, the linear pricing kernel increases the risk-neutral expected return by

the term γ1,tσ
2
t , as in the case of a normal RND (equation (17)), and by increasing the negative

skewness term in equation (21)

λt√
1 + λ2

t

ϕ
(
− ξt√

1+λ2
t

)
1− Φ

(
− ξt√

1+λ2
t

)σt < λt√
1 + λ2

t

ϕ
(
− ξt+λtγ1,tσ2

t√
1+λ2

t

)
1− Φ

(
− ξt+λtγ1,tσ2

t√
1+λ2

t

)σt. (23)

Since the parameter λt is negative for a negatively skewed RND, and the inverse Mills ratio is

positive and monotonically increasing (Section E.5 in the Online Appendix), the terms in equation

(23) are negative. A positive risk aversion coefficient γ1,t, combined with a negative λt, reduces

the argument in the inverse Mills ratio from ξt√
1+λ2

t

to
ξt+λtγ1,tσ2

t√
1+λ2

t

. Given the monotonicity of the

inverse Mills ratio, decreasing its argument diminishes the absolute value of the negative term in

equation (23), thereby increasing the expected value under the physical measure (equation (22))

relative to the risk-neutral expected value (equation (21)).

Section E.6 in the Online Appendix (equation (OA.4)) derives the physical variance for skew

log-normal RNDs with linear discount factors. These results confirm that when the RND is non-

normal, the linear pricing kernel affects both the mean and the variance of the RND. This helps

explain why the physical variances of the monotonic pricing kernels differ from those of the risk-

neutral densities (Table 3). In contrast, when the RND is normal, linear pricing kernels alter the

mean of the risk-neutral distribution but leave its variance unchanged (equations (17) and (18)).

With respect to the non-monotonic pricing kernels, the findings in Section E.6 of the Online

Appendix underscore the importance of negative values for the quadratic parameter γ2,t in equations

(4) and (6) to generate plausible physical variances, skewness, and kurtosis that are smaller in
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absolute magnitude than the risk-neutral ones. Negative γ2,t parameters in quadratic pricing kernels

are also crucial for generating option-based physical means that exceed RND means, especially

when the RND is either normal or negatively skewed. These theoretical results cast doubt on

the plausibility of the fixed-parameter non-monotonic pricing kernel with positive quadratic γ2

parameters (as seen in the 2-, 3-, and 6-month expirations in Table 1, Panel A).

6 Option-based Expected Returns and Risk-Neutral Lower Bounds

Expected returns under the physical measure are unobservable. Extracting them from option prices

requires assumptions about the pricing kernel. However, recent works (Martin (2017), Schneider

(2019), Schneider and Trojani (2019), Chabi-Yo and Loudis (2020)) argue that forward-looking

expected returns can be approximated by risk-neutral moments through an assumption-free ap-

proach. The accuracy of these risk-neutral bounds for expected returns can be evaluated using

the option-based expected returns under the physical measure derived from the alternative pricing

kernels in the previous section.

Martin (2017) derives lower bounds for risk premia based on risk-neutral variances

Et[Rt,t+T ]−Rf
t,t+T ≥ varRND(Rt,t+T )/R

f
t,t+T . (24)

Chabi-Yo and Loudis (2020) derive a similar lower bound for expected returns that also depends on

high-order risk-neutral moments. Schneider and Trojani (2019) propose a risk-neutral lower bound

for expected returns which is given by

Et[Rt,t+T ] ≥
ERND
t [Rp+1

t,t+T ]

ERND
t [Rp

t,t+T ]
, (25)

where p ∈ [0, 1]. With the exception of Schneider and Trojani (2019), the above risk-neutral bounds

are not completely assumption-free. Martin (2017) assumes that covt(Mt,t+TRt,t+T , Rt,t+T ) is non-

positive, while Chabi-Yo and Loudis (2020) impose restrictions on preferences.

The lower bound in equation (24) introduced by Martin (2017) becomes a strict equality for

log-preferences, i.e., for γ1 = 1 in equation (1). However, this is only a sufficient condition, and

there can be alternative specifications under which the bound is binding. To empirically assess
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whether risk-neutral bounds are binding in a general setting, the existing literature, e.g., Martin

(2017), Chabi-Yo and Loudis (2020), regresses realized excess returns on these bounds:

Rt,t+T −Rf
t,t+T = a+ b · varRND(Rt,t+T )/R

f
t,t+T + ϵt. (26)

If a is statistically insignificant and b is statistically equal to one, inequality (24) holds as an

equality, and the lower bound is binding. I expand these tests along the following dimensions.

First, in addition to the regression results, I provide summary statistics and correlations for

the risk-neutral variances to verify whether these bounds are aligned with average realized returns

or average expected returns from the option-based physical densities. Secondly, although Martin

(2017) derives the lower-bound condition in terms of the risk-neutral variance (equation (24)), in

his empirical tests he uses the SVIX, which is defined as varRND(
Rt,t+T

Rf
t,t+T

).6 For consistency with the

rest of my tests, I measure the risk-neutral lower bound for expected returns using the risk-neutral

variance from equation (15), which is consistent with Martin’s original framework ( equation (4) in

his paper and equation (24) here).

Thirdly, in addition to using realized returns as the dependent variable in equation (26), I

test whether the risk-neutral bounds are binding by regressing option-based risk premia from the

different pricing kernels on these variance-based bounds, i.e.,

Et[Rt,t+T ]−Rf
t,t+T = a+ b · varRND(Rt,t+T )/R

f
t,t+T + ϵt. (27)

I also consider a specification where the dependent variable in equation (27) is fitted returns from

predictive regressions of realized returns on the dividend yield, dividend growth, and the risk-

free rate. Additionally, I test whether the realized returns and option-based risk premia from

the different pricing kernels violate the risk-neutral lower bounds. Specifically, I examine whether

there are instances where the inequality in equation (24) is reversed. Finally, unlike the existing

literature, which typically focuses on a single option expiration (usually 1-month), my empirical

analysis spans multiple maturities to examine whether investment horizons affect the accuracy of

risk-neutral bounds.

6The SVIX is equal to 2Rf t,t+T
T ·Ft,t+T

( ∫ Ft,t+T

0
Putt,t+T dK +

∫∞
Ft,t+T

Callt,t+T dK
)
, where Ft,t+T is the forward price

of the underlying asset, with Ft,t+T = Et[St+T ].
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I only report results for the risk-neutral variance bound of Martin (2017) in equation (24) for the

following reasons. First, my analysis shows that the risk-neutral bounds in Chabi-Yo and Loudis

(2020) are mainlyinfluenced by the second moment term and are nearly identical to those in Martin

(2017). Second, Schneider and Trojani (2019) demonstrates that when p = 1 in equation (25), the

tightest lower bound for expected returns is obtained, which aligns with the risk-neutral variance

bound in Martin (2017).

6.1 Summary Statistics for Risk-Neutral Lower Bounds

Table 6 reports summary statistics and correlations for the risk-neutral bound in Martin (2017),

as defined by equation (24). The risk-free rate, Rf
t,t+T , is measured by the mean of the risk-

neutral distribution. These statistics should be compared with the statistics in Panel A of Table 3

for expected returns across different pricing kernels and expirations, as well as with statistics for

realized returns in Panel B of Table OA.2 in the Online Appendix. According to these statistics,

the levels of the risk-neutral bounds from equation (24) (0.45% for 1-month, 1.05% for 2-month,

1.37% for 3-month, and 3.23% for 6-month) diverge from average expected and realized returns

(0.63% for 1-month, 1.28% for 2-months, 1.66% for 3-month, and 4.25% for 6-month) reported in

Table 3. Importantly, as option expiration increases, this divergence becomes more pronounced.

Nevertheless, the correlations between the risk-neutral variance bounds and expected returns

are notably high across all pricing kernels and expirations, with values ranging from 0.8 to 1. The

key exception is the VIX-dependent non-monotonic pricing kernel, where expected returns exhibit

a negative correlation with the risk-neutral variance bounds. These findings suggest that, for short

maturities, risk-neutral variance bounds serve as a valid proxy for expected returns across all pricing

kernels, except for the VIX-dependent non-monotonic specification. Importantly, regardless of the

stochastic discount factor, as the expiration period increases, risk-neutral bounds tend to diverge

from expected returns.

This paper is among the first to highlight that the validity of risk-neutral bounds as a measure

of expected returns under the physical measure is contingent on both option expiration and the

VIX-dependence of preference parameters. These findings are significant because they provide a

nuanced perspective that complements the existing literature, which either unconditionally accepts

the tightness of these bounds (e.g., Martin (2017)) or unconditionally rejects them (e.g., Back et al.
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(2022)). Schreindorfer and Sischert (2025) also document the effects of conditional volatility on the

accuracy of risk-neutal bounds. However, their analysis is limited to a single option maturity (1-

month) and does not include formal regression tests across different maturities and pricing kernels

to disentangle the effects of monotonicity, VIX-dependence, and investment horizon on the tightness

of risk-neutral bounds.

6.2 Regressions of Expected Returns on Risk-Neutral Lower Bounds

Table 7 reports results from regressions of realized and option-based expected returns on the risk-

neutral bound of equation (24). Consistent with the findings in Martin (2017) and Chabi-Yo and

Loudis (2020), when regressing realized returns on the risk-neutral bound (Panel A in Table 7), I

cannot reject the hypothesis that the intercept in equation (27) is zero (t-stats: -0.47 to 1.06) or

that the slope is one (t-stats: -0.66 to 0.89).

However, the results of these regressions, which assess the accuracy of risk-neutral bounds using

realized returns, should be interpreted with caution for several reasons. First, as indicated by the

low R2 values, ranging from 0.13% to 4.63%, the fit of these regressions is poor, suggesting that

realized returns are significantly more volatile than risk-neutral bounds. This empirical finding

contradicts the strict theoretical lower-bound relationship from equation (24), which suggests that

the coefficients of determination between returns and risk-neutral variances should be large. Second,

the slope estimates for these regressions are only marginally statistically significant (t-stats: 0.25

to 2.06), indicating that these parameters provide limited insight into the relationship between

realized returns and risk-neutral bounds.

Results become more reliable in Panel B of Table 7, where realized returns are replaced by

fitted returns from regressions of realized returns on the dividend yield, dividend growth, and the

risk-free rate. Estimation of fitted returns is outlined in Table OA.2 of the Online Appendix.

Compared to realized returns, fitted returns yield more accurate slope estimates (t-stats: 2.87 to

4.73) in regressions with risk-neutral bounds. In this case, the null hypothesis that risk-neutral

bounds for expected returns are binding (i.e., slope equals one and intercept equals zero) is rejected

for short expirations (1- and 2-month options), with t-statistics of -4.15 and -4.16 for slopes, and

2.65 and 2.83 for intercepts. In contrast, the null hypothesis cannot be rejected for 3- and 6-month

expirations (t-stats: -1.90 and 0.03 for slopes, 1.40 and 0.57 for intercepts). Consistent with these
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statistics, the slope estimates for short expirations are 0.532 and 0.409, while the slope estimates

for long expirations are closer to one, with values of 0.602 and 1.011.

The precision of the fitted return regressions in Panel B of Table 7 is considerably better than

that of the realized return regressions in panel A, with values of R2 ranging from 8. 76% to 14.

68%. However, the relatively low coefficient of determination still raises concerns about the overall

explanatory power of these regressions. A tight risk-neutral bound, as specified in equation (24),

should be able to explain a substantial portion of the variation in physical expected returns.

The accuracy of regressions with risk-neutral bounds increases substantially when option-based

expected returns from the different pricing kernels are used as dependent variables. In particular,

the R2 values rise sharply for all expirations and pricing kernels, ranging from 70% to 99%. The

only exception is the VIX-dependent non-monotonic discount factor, for which the explanatory

power remains limited, with R2 values between 1% and 25%.

As shown in Panel C of Table 7, regressing physical expected returns on risk-neutral variances

achieves the best fit under the baseline power utility model with constant coefficients frpm equation

(1). For this discount factor, the intercepts in equation (27) remain economically negligible across

all expirations (0.01% to 0.15%), despite their strong statistical significance (t-statistics between

4.78 and 7.23). Moreover, although the null hypothesis that the slope equals one is strongly rejected

(t-statistics between 23.19 and 67.13), the estimated slopes are economically close to unity, ranging

from 1.195 to 1.371. Panel E of Table 7 presents similar results for the non-monotonic pricing

kernel with constant coefficients from equation (4). In this case, however, the intercepts (0.1% to

0.5%) are economically more meaningful than those obtained for the monotonic model in Panel C

(0.01% to 0.15%).

For both the monotonic and non-monotonic VIX-dependent pricing kernels from equations

(2) and (6), the null hypothesis in equation (27) that the risk-neutral bounds are binding is re-

jected (Panels D and F). This rejection is driven by regression intercepts that are both statistically

significant (t-statistics ranging from 4.80 to 13.44) and economically meaningful (0.51% to 4%).

Additionally, slope estimates deviate markedly from unity. They range from 0.623 to 4 for the

VIX-dependent monotonic kernel of equation (2), and from -0.276 to -0.081 for the VIX-dependent

non-monotonic kernel of equation (6).

For most regressions in Table 7, the economic magnitude and statistical significance of the
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intercept in equation (27) increase with option expiration, though not always monotonically. This

pattern indicates that longer expirations affect the accuracy of risk-neutral bounds in capturing

expected returns, and is consistent with the summary statistics of risk-neutral bounds in Table 6

6.3 Violations of Risk-Neutral Lower Bounds

The unsuitability of realized or fitted returns for testing risk-neutral lower bounds is further con-

firmed in Table 8, which reports the percentage of cases in which realized and expected returns

violate the risk-neutral lower bound of equation (24).

The percentage of violations of the risk-neutral lower bound by realized and fitted returns is

roughly 40% and remains stable across expirations. By contrast, expected returns from the fixed-

parameter monotonic (equation (1)) and non-monotonic (equation (4)) discount factors almost

never violate the lower bound in equation (24), regardless of maturity. Although the frequency of

violations remains constant for the fixed-parameter pricing kernels across expiration, the magnitude

of these violations increases with maturity, underscoring the effect of option expiration on the

tightness of risk-neutral bounds.

Contrary to the fixed-parameter discount factors, expected returns from the VIX-dependent

pricing kernels (equations (2) and (6)) violate risk-neutral bounds, with the effect being particularly

pronounced for the VIX-dependent quadratic kernel of equation (6). In this case, violations occur

about 40% of the time across expirations, while the magnitude of these violations increases with

option expiration. Overall, the evidence in Table 8 indicates that realized and fitted returns are

unreliable for testing risk-neutral lower bounds, as they exhibit violations in 40% of cases. Option-

based expected returns, by comparison, rarely violate the bounds, except in the case of the VIX-

dependent non-monotonic kernel of equation (6).

The results in this section underscore four key findings. First, longer option maturities weaken

the tightness of risk-neutral bounds. Second, realized (or fitted) returns are unsuitable for evaluat-

ing the accuracy of risk-neutral bounds through the OLS regression of equation (27). Regressions

using realized returns exhibit near-zero explanatory power, large standard errors, and frequent vi-

olations of the strictly positive risk-neutral lower bounds due to negative realized returns. Third,

for pricing kernels with constant parameters (equations (1) and (4)), regressions of expected re-

turns on risk-neutral bounds yield slope estimates close to one, intercepts near zero, and high R2
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values. Contrary to Back et al. (2022), who argue that risk-neutral bounds are not binding, the

results indicate that risk-neutral variances provide an accurate proxy for expected returns implied

by fixed-parameter pricing kernels.

Finally, non-monotonicity of the pricing kernel does not materially affect the tightness of the

risk-neutral bounds. Both the monotonic and non-monotonic discount factors with fixed parameters

(equations (1) and (4)) generate expected returns that remain well aligned with the risk-neutral

variance bounds, as shown in Panels C and E of Table 7. In contrast, VIX-dependent risk aversion

disrupts this alignment, regardless of the monotonicity of the discount factor. The distinction arises

because non-monotonicities occur only in states with very low probabilities, typically in the far left

or right tails of the distribution (Figure 1), whereas VIX dependence alters risk aversion across the

entire distribution of returns.

Despite the limitations of risk-neutral lower bounds, the evidence from Table 6 and Panels C

and E of Table 7 shows that if preference parameters are assumed to be constant over time, risk-

neutral bounds are closely align with expected returns, regardless of monotonicity. In this setting,

risk-neutral variances outperform fitted returns from backward-looking predictive regressions (e.g.,

Table OA.2 in the Online Appendix) in capturing expected returns.

6.4 Risk-neutral Bounds and Pricing Kernels: Theoretical Explanation

The close alignment between risk-neutral bounds and expected returns for the fixed-parameter lin-

ear pricing kernel of equation (1), documented in Table 7, can be traced back to the fundamental

result in Martin (2017) underlying the derivation of the risk-neutral bound in equation (24). Specif-

ically, Martin (2017) show that expected returns equal risk-neutral moments minus a covariance

term, which is assumed to be negative.

Et[Rt,t+T ]−Rf
t,t+T = varRND(Rt,t+T )/R

f
t,t+T − covt

(
Mt,t+TRt,t+T , Rt,t+T

)
. (28)

According to the estimates in Table 1, Panel A, for the linear pricing kernel, γ1 values across

expirations are close to one, which corresponds to log utility. Under this specification, the covariance

term in equation (28) is zero, implying that expected returns align tightly with risk-neutral bounds,

even when the regression coefficients are statistically different from one.
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Similarly, as shown by the interepts in Table 7 or the frequency of risk-neutral bound violations

in Table 8, the covariance term in equation (28) is nontrivial for longer option maturities (e.g., 3 or

6 months) or for pricing kernels with VIX-dependent parameters. For kernels where the covariance

in equation (28) is non-zero, or potentially positive, the evidence in Table 8 indicates that the

risk-neutral bound is not binding and may even be reversed. This explains why the regressions

in Table 7 for longer maturities or for VIX-dependent pricing kernels (equations (2) and (6))

imply economically and statistically significant intercepts, along with slope coefficients that differ

substantially from one.

7 Conclusion

The goal of this paper is twofold. The first part of the analysis examines how different pricing

kernels interact with the option-implied risk-neutral density across maturities (1-, 2-, 3-, and 6-

month options) to generate distinct forward-looking distributions of stock market returns under

the physical measure. The theoretical framework builds on four power-utility pricing kernels, char-

acterized by either linear (monotonic) or quadratic (non-monotonic) exponents, with risk aversion

parameters that are either fixed or VIX-dependent. The second part of the analysis uses the option-

based physical distributions derived from these kernels to evaluate the accuracy of the risk-neutral

variance bounds for expected market returns proposed in the literature.—

Results from Kolmogorov–Smirnov tests show that option-based physical distributions de-

rived from the fixed-parameter monotonic, VIX-dependent monotonic, and fixed-parameter non-

monotonic discount factors are broadly similar. By contrast, the distribution generated by the

non-monotonic pricing kernel with VIX-dependent parameters differs significantly from the others.

These findings suggest that non-monotonicities must be combined with time-varying parameters in

order to generate physical densities that deviate meaningfully from the standard fixed-parameter

monotonic (power-utility) specification. Additional tests of the first four physical moments across

pricing kernels reveal that the variances of the option-based distributions are highly correlated,

whereas odd moment, expected returns and skewness, are least correlated. This analysis provides

one of the first systematic attempts to illustrate how alternative discount factors shape the moments

of the option-based physical distribution.
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With respect to risk-neutral bounds for expected returns, I find that alignment between option-

based expected returns and risk-neutral variances holds only for fixed-parameter pricing kernels,

regardless of whether they are monotonic or non-monotonic. By contrast, for discount factors with

VIX-dependent parameters, the evidence does not support the hypothesis that risk-neutral bounds

are binding or consistent with option-based expected returns. Importantly, my results also show

that risk-neutral bounds diverge from option-based expected returns across all kernels as option

maturity increases.

These results highlight that the accuracy of risk-neutral bounds for forward-looking expected

returns is primarily affected by VIX-dependence of the pricing kernel and option maturity. By

contrast, non-monotonicities appear to have little effect on the tightness of these bounds. Despite

the shortcomings of risk-neutral bounds, my evidence suggests that they far outperform alternative

measures of expected returns, such as rolling averages of realized returns or fitted values from

predictive regressions, because the forward-looking nature of option-based moments.
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Figures

Figure 1 Pricing Kernels

This figure depicts the monotonic and non-monotonic pricing kernels implied by equations (1), (2), (4), and (6) for
option maturities of 1 month (Panel A), 2 months (Panel B), 3 months (Panel C), and 6 months (Panel D). The
corresponding parameter estimates are reported in Table 1. For pricing kernels with VIX-dependent parameters
(Panels B and D), the normalized VIX (nvix) is fixed at its sample average. Estimation samples cover January
1996–December 2022 for 1-month options, May 1998–November 2022 for 2-month options, January 2002–October
2022 for 3-month options, and June 1996–June 2022 for 6-month options.
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Panel C: Three-month expiration
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Figure 2 Option-based Physical Distribution and Density Functions

This figure presents the average distribution and density functions under the physical measure implied by the mono-
tonic and non-monotonic pricing kernels of equations (1), (2), (4), and (6) for option maturities of 1 month (Panel A),
2 months (Panel B), 3 months (Panel C), and 6 months (Panel D). Each graph is labeled by the exponent of the corre-
sponding pricing kernel: γ1r (equation 1), γ1nvix

γ3r (equation 2), γ1r+γ2r
2 (equation 4), and γ1nvix

γ3r+γ2nvix
γ3r2

(equation 6). Here, r denotes log returns and nvix the normalized VIX, defined as the VIX divided by its 1986–1995
average (to avoid look-ahead bias) and scaled by option maturity. risk-neutral is the risk-neutral density. Parameter
estimates for the pricing kernels are reported in Table 1, while the physical distributions and densities are estimated
following equation (15). For each maturity, the graphs display time-averaged distribution and density functions. The
realized distribution (realized) is obtained from kernel-density estimates of historical returns, interpolated over the
full moneyness range using a piecewise cubic Hermite polynomial. The sample periods are January 1996–December
2022 (1 month), May 1998–November 2022 (2 months), January 2002–October 2022 (3 months), and June 1996–June
2022 (6 months).

Panel A: One-month expiration

0.7 0.8 0.9 1 1.1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF

0.6 0.7 0.8 0.9 1 1.1 1.2
0

2

4

6

8

10

12
PDF

Panel B: Two-month expiration

0.6 0.7 0.8 0.9 1 1.1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
CDF

0.4 0.6 0.8 1 1.2 1.4
0

1

2

3

4

5

6

7

8
PDF

41



Panel C: Three-month expiration
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Tables

Table 1 GMM Estimation of the Option-based Non-monotonic Pricing Kernel

This table reports GMM estimates for the option-based pricing kernels. Panels A and B present results for the
monotonic kernels of equations (1) and (2), while Panels C and D report results for the non-monotonic kernels of
equations (4) and (6). γ1 denotes the the coefficient on the linear term, γ2 is the coefficient on the quadratic term
(Panels C and D), and γ3 is the VIX-dependence coefficient. VIX-dependence is modeled using the normalized VIX
(nvix), defined as the VIX divided by its 1986–1995 average (to avoid look-ahead bias) and scaled to each option
maturity. The GMM moment conditions follow equation (14). Reported t-statistics (in parentheses) are corrected for
heteroscedasticity and autocorrelation using Newey–West standard errors with 12, 6, 4, and 2 lags for the 1-, 2-, 3-,
and 6-month maturities, respectively. χ2, dof , and p denote the χ2 test, degrees of freedom, and p-value for the joint
null that all target moments equal zero. GMM is the minimized value of the GMM objective function. The sample
covers January 1996–December 2022 (1-month), May 1998–November 2022 (2-month), January 2002–October 2022
(3-month), and June 1996–June 2022 (6-month) expirations.

Panel A: Fixed-parameter monotonic discount factor

1-month 2-month 3-month 6-month

γ1 1.349 1.266 1.284 1.524
(4.77) (4.65) (4.43) (6.83)

χ2 0.21 0.01 0.01 0.01
dof 1 1 1 1
p 0.64 0.90 0.91 0.89
GMM 3.99e−05 6.01e−06 9.08e−06 2.49e−05

Panel B: VIX-dependent monotonic discount factor

1-month 2-month 3-month 6-month

γ1 0.518 1.439 1.295 1.661
(0.31) (1.03) (5.12) (2.13)

γ3 1.936 -0.558 -0.817 -0.813
(0.47) (-0.12) (-0.11) (-0.15)

χ2 - - - -
dof 0 0 0 0
p - - - -
GMM 1.45e−13 2.64e−13 3.42e−17 1.73e−15

Panel C: Fixed-parameter non-monotonic discount factor

1-month 2-month 3-month 6-month

γ1 0.814 1.386 1.439 1.672
(0.57) (1.27) (0.92) (1.35)

γ2 -7.412 0.334 0.732 0.779
(-0.32) (1.83) (0.16) (0.29)

χ2 - - - -
dof 0 0 0 0
p - - - -
GMM 9.70e−14 1.11e−15 1.86e−14 5.32e−17
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Panel D: VIX-dependent non-monotonic discount factor

1-month 2-month 3-month 6-month

γ1 0.700 0.660 0.129 1.991
(2.78) (2.61) (0.23) (4.08)

γ2 -47.470 -19.068 -2.143 -17.422
(-1.26) (-1.06) (-0.30) (-1.38)

γ3 -8.153 -7.415 -9.720 -4.421
(-2.21) (-2.29) (-0.43) (-1.09)

χ2 - - - -
dof 0 0 0 0
p - - - -
GMM 6.85e−13 4.68e−14 1.73e−14 7.81e−14

44



Table 2 Kolmogorov-Smirnov Tests for the Option-based Physical Distribution
Functions Across Pricing Kernels

This table reports the frequency of rejections of the null hypothesis that any two option-based physical distribution
functions are equal, using the two-sample Kolmogorov–Smirnov test at the 5% significance level. Panel A reports
results for the 1-month expiration, Panel B for the 2-month expiration, Panel C for the 3-month expiration, and
Panel D for the 6-month expiration. The option-based physical distributions are derived from alternative pricing
kernels, labeled by the exponents of the corresponding discount factors: γ1r (equation (1)), γ1nvix

γ3r (equation
(2)), γ1r + γ2r

2 (equation (4)), and γ1nvix
γ3r + γ2nvix

γ3r2 (equation (6)). Here, r denotes log-returns and nvix
the normalized VIX, defined as the VIX divided by its 1986–1995 average (to avoid look-ahead bias) and scaled by
option maturity. Parameter estimates for the pricing kernels are obtained from the GMM system of equation (14),
with results reported in Table and Table 1. risk-neutral denotes the risk-neutral distribution, while realized refers
to the empirical distribution of returns. Option-based physical and risk-neutral distributions are constructed using
equation (15), while the realized distribution is obtained by fitting a kernel-density estimator to historical returns
and interpolating values across moneyness with a piecewise cubic Hermite polynomial. For realized distributions, the
Kolmogorov–Smirnov tests compare the density of realized returns to the averages of the option-implied densities.
Reported numbers in brackets are the average values of the Kolmogorov–Smirnov statistic. N is the number of
observations. The sample covers January 1996–December 2022 (1-month), May 1998–November 2022 (2-month),
January 2002–October 2022 (3-month), and June 1996–June 2022 (6-month) expirations.

Panel A: Rejections of the Kolmogorov-Smirnov tests, 1-month expiration (N=323)

N=323 γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral

γ1nvix
γ3r 22% [4%]

γ1r + γ2r
2 50% [7%] 77% [9%]

γ1nvix
γ3r + γ2nvix

γ3r2 84% [26%] 87% [27%] 85% [25%]
risk-neutral 65% [7%] 23% [4%] 88% [12%] 86% [27%]
realized (N=1) 100% [14%] 100% [16%] 100% [10%] 100% [6%] 100% [19%]

Panel B: Rejections of the Kolmogorov-Smirnov tests, 2-month expiration (N=147)

N=147 γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral

γ1nvix
γ3r 3% [2%]

γ1r + γ2r
2 2% [1%] 5% [2%]

γ1nvix
γ3r + γ2nvix

γ3r2 87% [26%] 85% [26%] 89% [27%]
risk-neutral 87% [9%] 95% [10%] 90% [9%] 84% [29%]
realized (N=1) 100% [11%] 100% [11%] 100% [12%] 100% [7%] 100% [18%]

Panel C: Rejections of the Kolmogorov-Smirnov tests, 3-month expiration (N=83)

N=83 γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral

γ1nvix
γ3r 15% [3%]

γ1r + γ2r
2 20% [3%] 33% [5%]

γ1nvix
γ3r + γ2nvix

γ3r2 87% [26%] 84% [25%] 88% [27%]
risk-neutral 86% [10%] 92% [11%] 87% [8%] 78% [27%]
realized (N=1) 100% [23%] 100% [23%] 100% [24%] 100% [23%] 100% [25%]

Panel D: Rejections of the Kolmogorov-Smirnov tests, 6-month expiration (N=52)

N=52 γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral

γ1nvix
γ3r 23% [3%]

γ1r + γ2r
2 40% [6%] 52% [7%]

γ1nvix
γ3r + γ2nvix

γ3r2 94% [27%] 90% [27%] 96% [30%]
risk-neutral 100% [14%] 100% [15%] 100% [11%] 100% [32%]
realized (N=1) 100% [18%] 100% [18%] 100% [19%] 100% [17%] 100% [21%]
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Table 3 Summary Statistics of Option-based Moments under the Physical Mea-
sure Across Pricing Kernels

This table reports summary statistics for the option-based moments of returns under the physical measure, computed
from the pricing kernels in equations (1), (2), (4), and (6). Panel A presents option-based expected returns, Panel
B variances, Panel C skewness, and Panel D kurtosis. The pricing kernels are labeled by the exponents of their
discount factors: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r+γ2r
2 (equation (4)), and γ1nvix

γ3r+γ2nvix
γ3r2

(equation (6)). Here, r denotes log-returns and nvix the normalized VIX, defined as the VIX divided by its 1986–1995
average (to avoid look-ahead bias) and scaled by option maturity. Estimation of the pricing kernels is based on the
GMM system in equation (14), with results reported in Table 1. risk-neutral denotes moments of the risk-neutral
density, while realized refers to unconditional sample moments of realized returns. Both option-based physical and
risk-neutral moments are derived using equation (15). The sample covers January 1996–December 2022 (1-month),
May 1998–November 2022 (2-month), January 2002–October 2022 (3-month), and June 1996–June 2022 (6-month)
expirations.

Panel A: Option-based expected returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month

mean 0.61% 1.29% 1.67% 4.26%
st. deviation 0.77% 1.46% 1.41% 2.20%
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 0.63% 1.28% 1.66% 4.25%
st. deviation 2.56% 1.04% 0.94% 1.46%
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 0.63% 1.28% 1.66% 4.25%
st. deviation 0.69% 1.29% 1.42% 2.18%
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month

mean 0.63% 1.28% 1.66% 4.25%
st. deviation 0.40% 0.74% 1.12% 1.16%
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month

mean -0.06% 0.01% 0.11% 0.46%
st. deviation 0.44% 0.87% 0.97% 1.39%
N 323 147 83 52

vi) realized mean 1-month 2-month 3-month 6-month

0.63% 1.28% 1.66% 4.25%
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Panel B: Option-based physical variances across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month

mean 0.42% 0.82% 0.97% 1.98%
st. deviation 0.44% 0.76% 0.70% 1.02%
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 0.43% 0.82% 0.98% 2.00%
st. deviation 0.36% 0.88% 0.81% 1.19%
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 0.34% 0.89% 1.05% 2.23%
st. deviation 0.28% 1.37% 0.83% 1.39%
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month

mean 0.36% 0.70% 0.87% 1.33%
st. deviation 0.62% 1.17% 1.10% 1.31%
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month

mean 0.51% 1.04% 1.26% 2.67%
st. deviation 0.60% 1.12% 0.99% 1.52%
N 323 147 83 52

vi) realized variance 1-month 2-month 3-month 6-month

0.24% 0.49% 0.54% 1.13%

Panel C: Option-based physical skewness across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month

mean -1.43 -1.34 -1.26 -0.72
st. deviation 0.77 0.71 0.62 0.29
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean -1.45 -1.32 -1.23 -0.68
st. deviation 0.79 0.68 0.57 0.21
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean -1.17 -1.37 -1.39 -0.91
st. deviation 0.64 0.72 0.71 0.38
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month

mean -0.59 -0.50 -0.56 -0.15
st. deviation 0.45 0.37 0.47 0.18
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month

mean -1.51 -1.47 -1.41 -0.98
st. deviation 0.76 0.75 0.71 0.42
N 323 147 83 52

vi) realized skewness 1-month 2-month 3-month 6-month

-1.24 -1.67 -1.15 -0.87
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Panel D: Option-based physical kurtosis across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month

mean 7.96 7.55 6.97 4.75
st. deviation 4.43 3.91 3.49 1.33
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 7.78 7.54 6.92 4.61
st. deviation 4.16 3.91 3.37 1.06
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 6.84 7.73 7.58 5.45
st. deviation 3.36 4.10 4.16 2.00
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month

mean 4.37 4.01 4.12 3.24
st. deviation 1.51 1.14 1.55 0.23
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month

mean 7.67 7.39 6.92 4.99
st. deviation 3.94 3.69 3.44 1.75
N 323 147 83 52

vi) realized kurtosis 1-month 2-month 3-month 6-month

9.10 9.36 4.71 4.55
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Table 4 Coefficient of Determination for Option-based Moments under the
Physical Measure across Pricing Kernels

This table reports coefficients of determination (R2) from regressions of option-based moments of market returns
(mean, variance, skewness, kurtosis) across pricing kernels from equations (1), (2), (4), and (6). Panel A presents
R2 values for the 1-month expiration, Panel B for the 2-month expiration, Panel C for the 3-month expiration,
and Panel D for the 6-month expiration. Option-based physical moments are derived using equation (15). The
pricing kernels are labeled by the exponents of their discount factors: γ1r (equation (1)), γ1nvix

γ3r (equation (2)),
γ1r + γ2r

2 (equation (4)), and γ1nvix
γ3r + γ2nvix

γ3r2 (equation (6)). Here, r denotes log-returns and nvix the
normalized VIX, defined as the VIX divided by its 1986–1995 average (to avoid look-ahead bias) and scaled by option
maturity. Estimation of the pricing kernels is based on the GMM system in equation (14), with results reported in
Table 1. risk-neutral denotes the moments of the risk-neutral density. N is the number of observations. The sample
covers January 1996–December 2022 (1-month), May 1998–November 2022 (2-month), January 2002–October 2022
(3-month), and June 1996–June 2022 (6-month) expirations.

Panel A: Coefficients of determination for 1-month expiration

R2’s of option-based expected returns regressions (average R2 = 33.72%; excl. risk-neutral: 49.51%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 74.28%

γ1r + γ2r
2 95.80% 63.66%

γ1nvix
γ3r + γ2nvix

γ3r2 18.84% 21.39% 23.07%
risk-neutral 8.43% 0.19% 4.97% 26.58%

R2’s of option-based variances regressions (average R2 = 95.39%; excl. risk-neutral: 95.46%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 96.21%

γ1r + γ2r
2 96.94% 94.82%

γ1nvix
γ3r + γ2nvix

γ3r2 98.14% 90.57% 96.06%
risk-neutral 98.24% 92.60% 92.88% 97.43%

R2’s of option-based skewness regressions (average R2 = 55.47%; excl. risk-neutral: 46.18%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 98.80%

γ1r + γ2r
2 86.09% 86.23%

γ1nvix
γ3r + γ2nvix

γ3r2 0.66% 0.39% 4.93%
risk-neutral 98.78% 97.17% 79.33% 2.34%

R2’s of option-based kurtosis regressions (average R2 =55.87%; excl. risk-neutral: 45.63%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.66%

γ1r + γ2r
2 84.24% 82.54%

γ1nvix
γ3r + γ2nvix

γ3r2 1.66% 2.27% 3.44%
risk-neutral 99.44% 99.55% 83.64% 2.30%
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Panel B: Coefficients of determination for 2-month expiration

R2’s of option-based expected returns regressions (average R2 = 38.60%; excl. risk-neutral: 42.98%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 91.44%

γ1r + γ2r
2 74.54% 84.39%

γ1nvix
γ3r + γ2nvix

γ3r2 6.33% 0.25% 0.93%
risk-neutral 16.64% 39.46% 33.79% 38.24%

R2’s of option-based variances regressions (average R2 = 93.30%; excl. risk-neutral: 92.26%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.61%

γ1r + γ2r
2 82.47% 86.20%

γ1nvix
γ3r + γ2nvix

γ3r2 98.57% 99.41% 87.28%
risk-neutral 97.33% 98.01% 87.49% 96.62%

R2’s of option-based skewness regressions (average R2 = 59.14%; excl. risk-neutral: 49.73%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.84%

γ1r + γ2r
2 98.79% 99.13%

γ1nvix
γ3r + γ2nvix

γ3r2 0.02% 0.21% 0.39%
risk-neutral 96.52% 97.20% 97.77% 1.49%

R2’s of option-based kurtosis regressions (average R2 = 60.41%; excl. risk-neutral: 50.73%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.95%

γ1r + γ2r
2 99.33% 99.23%

γ1nvix
γ3r + γ2nvix

γ3r2 1.44% 1.45% 2.94%
risk-neutral 98.36% 98.26% 99.34% 3.79%

Panel C: Coefficients of determination for 3-month expiration

R2’s of option-based expected returns regressions (average R2 = 43.15%; excl. risk-neutral: 48.45%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 87.50%

γ1r + γ2r
2 98.81% 89.70%

γ1nvix
γ3r + γ2nvix

γ3r2 8.30% 0.35% 6.06%
risk-neutral 29.45% 59.03% 35.83% 16.53%

R2’s of option-based variances regressions (average R2 = 97.33%; excl. risk-neutral: 97.95%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.65%

γ1r + γ2r
2 98.40% 98.55%

γ1nvix
γ3r + γ2nvix

γ3r2 96.85% 97.72% 96.51%
risk-neutral 96.25% 96.22% 99.08% 94.08%

R2’s of option-based skewness regressions (average R2 = 58.31%; excl. risk-neutral: 48.50%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.09%

γ1r + γ2r
2 93.10% 95.12%

γ1nvix
γ3r + γ2nvix

γ3r2 0.00% 0.73% 2.97%
risk-neutral 94.59% 96.44% 98.51% 2.56%

R2’s of option-based kurtosis regressions (average R2 = 54.91%; excl. risk-neutral: 55.11%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 62.33%

γ1r + γ2r
2 54.35% 55.55%

γ1nvix
γ3r + γ2nvix

γ3r2 1.55% 0.90% 0.12%
risk-neutral 62.03% 63.14% 79.68% 34.70%
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Panel D: Coefficients of determination for 6-month expiration

R2’s of option-based expected returns regressions (average R2 = 39.67%; excl. risk-neutral: 46.68%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 82.06%

γ1r + γ2r
2 98.07% 86.74%

γ1nvix
γ3r + γ2nvix

γ3r2 0.17% 0.12% 0.05%
risk-neutral 13.86% 41.75% 21.63% 39.36%

R2’s of option-based variances regressions (average R2 = 95.89%; excl. risk-neutral: 96.37%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.66%

γ1r + γ2r
2 96.77% 97.32%

γ1nvix
γ3r + γ2nvix

γ3r2 94.60% 96.64% 93.20%
risk-neutral 96.20% 96.18% 98.42% 89.91%

R2’s of option-based skewness regressions (average R2 = 44.37%; excl. risk-neutral: 35.91%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 86.59%

γ1r + γ2r
2 62.86% 62.75%

γ1nvix
γ3r + γ2nvix

γ3r2 1.11% 2.04% 0.14%
risk-neutral 71.35% 61.75% 90.33% 4.75%

R2’s of option-based kurtosis regressions (average R2 = 56.49%; excl. risk-neutral: 46.63%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 95.20%

γ1r + γ2r
2 79.27% 83.71%

γ1nvix
γ3r + γ2nvix

γ3r2 2.85% 9.34% 9.42%
risk-neutral 93.70% 92.96% 92.91% 5.50%
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Table 5 Coefficient of Determination for Third and Fourth Central Moments
under the Physical Measure across Pricing Kernels

This table reports coefficients of determination (R2) from regressions of option-based third and fourth central moments
across pricing kernels from equations (1), (2), (4), and (6). Panel A presents R2 values for the 1-month expiration,
Panel B for the 2-month expiration, Panel C for the 3-month expiration, and Panel D for the 6-month expiration. N is
the number of observations. Option-based physical moments are computed using equation (15). The pricing kernels
are labeled by the exponents of their discount factors: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r + γ2r
2

(equation (4)), and γ1nvix
γ3r + γ2nvix

γ3r2 (equation (6)). Here, r denotes log-returns and nvix the normalized
VIX, defined as the VIX divided by its 1986–1995 average (to avoid look-ahead bias) and scaled by option maturity.
Estimation of the pricing kernels is based on the GMM system in equation (14), with results reported in Table 1.
risk-neutral refers to the moments of the risk-neutral density. The sample spans January 1996–December 2022
(1-month), May 1998–November 2022 (2-month), January 2002–October 2022 (3-month), and June 1996–June 2022
(6-month) expirations.

Panel A: Coefficients of determination for 1-month expiration

R2’s of option-based third central moment regressions (average R2 = 46.87%; excl. risk-neutral: 38.79%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 31.36%

γ1r + γ2r
2 49.08% 45.05%

γ1nvix
γ3r + γ2nvix

γ3r2 81.39% 3.19% 22.70%
risk-neutral 95.89% 20.85% 31.96% 87.29%

R2’s of option-based fourth central moment regressions (average R2 =87.47%; excl. risk-neutral: 86.02%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 85.44%

γ1r + γ2r
2 96.26% 82.88%

γ1nvix
γ3r + γ2nvix

γ3r2 93.86% 67.92% 89.78%
risk-neutral 95.22% 77.93% 88.31% 97.07%

Panel B: Coefficients of determination for 2-month expiration

R2’s of option-based third central moment regressions (average R2 = 79.58%; excl. risk-neutral: 78.70%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 96.59%

γ1r + γ2r
2 60.71% 69.90%

γ1nvix
γ3r + γ2nvix

γ3r2 81.39% 92.75% 70.85%
risk-neutral 95.77% 93.19% 57.81% 76.83%

R2’s of option-based fourth central moment regressions (average R2 = 88.55%; excl. risk-neutral: 86.75%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.44%

γ1r + γ2r
2 70.50% 75.67%

γ1nvix
γ3r + γ2nvix

γ3r2 96.69% 98.69% 79.53%
risk-neutral 97.61% 97.47% 75.94% 93.93%
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Panel C: Coefficients of determination for 3-month expiration

R2’s of option-based third central moment regressions (average R2 = 86.45%; excl. risk-neutral: 86.57%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 93.89%

γ1r + γ2r
2 89.38% 90.26%

γ1nvix
γ3r + γ2nvix

γ3r2 75.14% 90.17% 80.60%
risk-neutral 89.23% 85.32% 97.07% 73.50%

R2’s of option-based fourth central moment regressions (average R2 = 92.92%; excl. risk-neutral: 93.51%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 98.82%

γ1r + γ2r
2 91.23% 91.47%

γ1nvix
γ3r + γ2nvix

γ3r2 92.58% 96.09% 90.85%
risk-neutral 91.79% 90.15% 98.62% 87.57%

Panel D: Coefficients of determination for 6-month expiration

R2’s of option-based third central moment regressions (average R2 = 65.66%; excl. risk-neutral: 66.73%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 87.39%

γ1r + γ2r
2 58.46% 76.48%

γ1nvix
γ3r + γ2nvix

γ3r2 44.83% 72.75% 60.47%
risk-neutral 68.28% 69.88% 82.89% 35.09%

R2’s of option-based fourth central moment regressions (average R2 = 91.74%; excl. risk-neutral: 92.26%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.40%

γ1r + γ2r
2 91.09% 91.75%

γ1nvix
γ3r + γ2nvix

γ3r2 91.76% 94.98% 84.58%
risk-neutral 93.70% 92.64% 96.15% 81.38%
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Table 6 Summary Statistics of the Risk-neutral Variance Bounds for Expected
Returns

Panel A of this table reports summary statistics for the Martin (2017) bound of expected returns, which is based
on the risk-neutral variance according to equation (24), bound=Rf

t,t+T + varRND(Rt,t+T )/R
f
t,t+T . The risk-free rate

is the expected return to the stock market according to the risk-neutral density, Rf
t,t+T = ERND

t [Rt,t+T ]. Panel
B reports correlations between the risk-neutral variance bound for expected returns and the option-based expected
returns from the different pricing kernels. The pricing kernels are labeled according to their exponents: γ1r (equation
(1)), γ1nvix

γ3r (equation (2)), γ1r + γ2r
2 (equation (4)), and γ1nvix

γ3r + γ2nvix
γ3r2 (equation (6)). r denotes

log-returns, and nvix is the normalized VIX, which is the VIX divided by its 1986-1995 average (to avoid look-ahead
bias) and appropriately scaled for each expiration. The estimation of the various pricing kernels is based on the
GMM system of equation (14), and the results are reported in Table 1. risk-neutral denotes the moments of the
risk-neutral density. Option-based physical and risk-neutral moments are derived according to equation (15). The
sample is from January 1996 to December 2022 for 1-month expiration options, May 1998 to November 2022 for
2-month expiration, January 2002 to October 2022 for 3-month expiration, and June 1996 to June 2022 for 6-month
expiration options.

Panel A: Risk-neutral bound for expected returns

Rf
t,t+T +

varRND(Rt,t+T )

R
f
t,t+T

− 1 1-month 2-month 3-month 6-month

mean 0.45% 1.05% 1.37% 3.12%
st. deviation 0.64% 1.28% 1.26% 1.77%
N 323 147 83 52

Panel B: Correlations of risk-neutral bound for expected returns with option-based expected returns

1-month expiration

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral

Rf
t,t+T +

varRND(Rt,t+T )

R
f
t,t+T

0.99 0.81 0.96 -0.33 0.42

2-month expiration

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral

Rf
t,t+T +

varRND(Rt,t+T )

R
f
t,t+T

0.99 0.97 0.87 -0.17 0.49

3-month expiration

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral

Rf
t,t+T +

varRND(Rt,t+T )

R
f
t,t+T

0.99 0.96 0.99 -0.20 0.63

6-month expiration

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral

Rf
t,t+T +

varRND(Rt,t+T )

R
f
t,t+T

0.98 0.95 0.99 0.09 0.53
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Table 7 Regressions of Risk-Neutral Variances as a Binding Lower Bound for
Option-based Expected Returns Across Pricing Kernels

This table reports regression results for equation (27), which tests whether the variance-based risk-neutral lower
bound for risk premia from equation (24) is binding across the different pricing kernels. varRND

t (Rt,t+T ) denotes the
risk-neutral variance and Rf

t,t+T the risk-free rate, measured as the mean stock market return under the risk-neutral

distribution, Rf
t,t+T = ERND

t [Rt,t+T ]. Panel A reports regressions with realized excess returns, Re
t,t+T = Rt,t+T −

Rf
t,t+T , as the dependent variable. Panel B uses backward-looking fitted excess returns, R̂e

t,t+T = R̂t,t+T − Rf
t,t+T ,

where R̂t,t+T are fitted values from regressions of realized returns on the price–dividend ratio, dividend growth, and
the risk-free rate (see Table OA.2 in the Online Appendix). Panels C and D examine the risk-neutral bounds with
the forward-looking option-based risk premium, Et[R

e
t,t+T ] = Et[Rt,t+T ]− Rf

t,t+T , implied by the monotonic pricing
kernels in equations (1) and (2). Panels E and F report analogous results for the non-monotonic kernels in equations
(4) and (6). Option-based expected returns, Et[Rt,t+T ], are computed using equation (15). The pricing kernels are
labeled by the exponents of their discount factors: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r+γ2r
2 (equation

(4)), and γ1nvix
γ3r + γ2nvix

γ3r2 (equation (6)). Here, r denotes log-returns and nvix the normalized VIX, defined
as the VIX divided by its 1986–1995 average (to avoid look-ahead bias) and scaled to each option maturity. risk-
neutral refers to the moments of the risk-neutral density. Estimation of the pricing kernels is based on the GMM
system in equation (14), with results reported in Table 1. All variables are contemporaneous, and regressions are
estimated over non-overlapping intervals. Reported t-statistics (in parentheses) are corrected for heteroscedasticity
and autocorrelation using Newey–West standard errors with 12, 6, 4, and 2 lags for the 1-, 2-, 3-, and 6-month
expirations, respectively. N denotes the number of observations. The sample spans January 1996–December 2022
(1-month), May 1998–November 2022 (2-month), January 2002–October 2022 (3-month), and June 1996–June 2022
(6-month) expirations.

Panel A: Realized returns

Re
t,t+T 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )/R

f
t,t+T 1.763 1.106 0.280 1.196

(2.06) (1.39) (0.25) (1.82)
{0.89} {0.13} {-0.66} {0.30}

constant -0.207% 0.120% 1.202% 0.604%
(-0.47) (0.14) (1.06) (0.28)

R2 4.63% 3.18% 0.13% 2.88%
N 323 147 83 52

Panel B: Backward-looking fitted returns

R̂e
t,t+T 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )/R

f
t,t+T 0.532 0.409 0.602 1.011

(4.73) (2.89) (2.89) (2.87)
{-4.15} {-4.16} {-1.90} {0.03}

constant 0.410% 0.823% 0.821% 0.653%
(2.65) (2.83) (1.40) (0.57)

R2 12.38% 10.33% 8.76% 14.68%
N 321 146 82 50
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Panel C: Option-based risk premia from pricing kernel in equation (1) (γ1r)

Et[R
e
t,t+T ] 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )/R

f
t,t+T 1.282 1.195 1.219 1.371

(172.37) (141.76) (204.61) (247.90)
{37.98} {23.19} {36.83} {67.13}

constant 0.014% 0.033% 0.026% 0.148%
(4.96) (4.78) (5.36) (7.23)

R2 99.96% 99.96% 99.94% 99.85%
N 323 147 83 52

Panel D: Option-based risk premia from pricing kernel in equation (2) (γ1nvix
γ3r)

Et[R
e
t,t+T ] 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )/R

f
t,t+T 3.993 0.725 0.623 0.735

(7.34) (23.09) (10.94) (16.41)
{5.50} {-8.75} {-6.61} {-5.91}

constant -1.348% 0.517% 0.769% 1.834%
(-4.80) (12.33) (10.59) (13.44)

R2 84.26% 96.84% 89.61% 89.11%
N 323 147 83 52

Panel E: Option-based risk premia from pricing kernel in equation (4) (γ1r + γ2r
2)

Et[R
e
t,t+T ] 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )/R

f
t,t+T 1.192 0.773 1.146 1.257

(16.20) (2.66) (26.41) (43.10)
{2.61} {-0.78} {3.38} {8.81}

constant 0.084% 0.467% 0.110% 0.442%
(2.30) (1.83) (3.04) (6.62)

R2 95.41% 69.95% 97.93% 97.26%
N 323 147 83 52

Panel F: Option-based risk premia from pricing kernel in equation (6) (γ1nvix
γ3r + γ2nvix

γ3r2)

Et[R
e
t,t+T ] 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )/R

f
t,t+T -0.276 -0.271 -0.582 -0.081

(-4.53) (-3.66) (-4.17) (-1.08)
{-20.92} {-17.16} {-11.34} {-14.45}

constant 0.835% 1.557% 2.289% 4.009%
(11.47) (11.23) (7.39) (11.15)

R2 16.20% 18.76% 25.08% 1.25%
N 323 147 83 52
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Table 8 Violations of Risk-Neutral Lower Bounds for Option-based Expected
Returns Across Pricing Kernels

This table reports the frequency with which realized returns and option-based risk premia fall below the variance-
based risk-neutral lower bound from equation (24). Panel A reports violations for the 1-month expiration, Panel B
for the 2-month expiration, Panel C for the 3-month expiration, and Panel D for the 6-month expiration. Violations
are calculated for alternative measures of realized and expected excess returns. Realized excess returns are Re

t,t+T =

Rt,t+T −Rf
t,t+T . Backward-looking fitted excess returns are R̂e

t,t+T = R̂t,t+T −Rf
t,t+T , where R̂t,t+T are fitted values

from regressions of realized returns on the price–dividend ratio, dividend growth, and the risk-free rate (see Table
OA.2 in the Online Appendix). Option-based risk premia, Et[R

e
t,t+T ] = Et[Rt,t+T ]−Rf

t,t+T , are computed from the
pricing kernels in equations (1), (2), (4), and (6). The pricing kernels are labeled by the exponents of their discount
factors: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r+γ2r
2 (equation (4)), and γ1nvix

γ3r+γ2nvix
γ3r2 (equation

(6)). Here, r denotes log-returns and nvix the normalized VIX, defined as the VIX divided by its 1986–1995 average
(to avoid look-ahead bias) and scaled by maturity. Estimation of the pricing kernels is based on the GMM system in
equation (14), with results reported in Table 1. Option-based expected returns are computed from equation (15). N
denotes the number of observations. In all tests, the risk-free rate is measured as the expected return under the risk-
neutral distribution, Rf

t,t+T = ERND
t [Rt,t+T ]. Numbers in brackets report the average absolute differences between

the excess return measures and the variance-based risk-neutral bound. The sample covers January 1996–December
2022 (1-month), May 1998–November 2022 (2-month), January 2002–October 2022 (3-month), and June 1996–June
2022 (6-month) expirations.

Panel A: Violations of risk-neutral lower bounds for expected returns, 1-month expiration

Re
t,T+T R̂e

t,T+T Et[R
e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ]

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 N

41% [3.41%] 36% [0.76%] 0% [0.15%] 83% [0.41%] 5% [0.18%] 45% [0.54%] 323

Panel B: Violations of risk-neutral lower bounds for expected returns, 2-month expiration

Re
t,T+T R̂e

t,T+T Et[R
e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ]

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 N

40% [4.93%] 36% [1.26%] 0% [0.23%] 5% [0.31%] 1% [0.32%] 41% [0.96%] 147

Panel C: Violations of risk-neutral lower bounds for expected returns, 3-month expiration

Re
t,T+T R̂e

t,T+T Et[R
e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ]

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 N

40% [5.83%] 40% [1.64%] 0% [0.30%] 8% [0.43%] 1% [0.29%] 53% [1.44%] 83

Panel D: Violations of risk-neutral lower bounds for expected returns, 6-month expiration

Re
t,T+T R̂e

t,T+T Et[R
e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ]

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 N

36% [8.42%] 36% [3.15%] 0% [1.13%] 4% [1.19%] 0% [1.13%] 42% [2.10%] 52
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Online Appendix: Non-Monotonic Pricing Kernels, Conditional

Physical Densities, and Risk-Neutral Bounds for Expected Returns

Online Appendix A Supplemental Figures

Figure OA.1 Risk-neutral Density Functions

This figure shows the average risk-neutral density functions across expirations, with and without tail adjustment.
The tail adjustment is implemented by appending a type-I (two-parameter) Pareto distribution to the tails of the
risk-neutral density (equation (OA.1)). The parameters of the left-tail (right-tail) Pareto distribution are identified
by matching the fitted Pareto distribution to the empirical risk-neutral densities at the 2% (98%) and 5% (95%)
quantiles. Details on the construction of the risk-neutral distribution are provided in Section Online Appendix D.
For each expiration, the figure plots time-averaged risk-neutral density functions, both adjusted and unadjusted. The
sample spans January 1996–December 2022 (1-month), May 1998–November 2022 (2-month), January 2002–October
2022 (3-month), and June 1996–June 2022 (6-month) expirations.
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Panel C: Three-month expiration
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Online Appendix B Supplemental Tables

Table OA.1 Sample of Option Contracts

This table summarizes the S&P 500 option contracts from OptionMetrics used to construct option-implied densities
under the physical measure. The following selection criteria are imposed: non-missing implied volatility, positive
trading volume, and a bid price above $3/8. In addition, each date must contain at least six eligible contracts,
with a minimum of three puts and three calls outside the ±2% moneyness band. At the beginning of the sample,
two non-consecutive 2-month observations and eleven non-consecutive 3-month observations were excluded because
the risk-neutral density could not be estimated given insufficient contracts. Moreover, since a consecutive series
of observations is required to compute autocorrelations for Newey–West standard errors in the GMM estimation,
additional early observations for the 2- and 3-month maturities were dropped. The final sample spans January
1996–December 2022 for 1-month options, May 1998–November 2022 for 2-month options, January 2002–October
2022 for 3-month options, and June 1996–June 2022 for 6-month options.

1-month 2-month 3-month 6-month

Num. of Calls 38,577 14,329 6,141 3,368
Num. of Puts 46,420 18,980 8,432 3,574
Total 84,997 33,309 14,573 6,942
Num. of Expiration Dates (without filters) 323 161 107 52
Num. of Expiration Dates (with filters) 323 159 96 52
Num. of Expiration Dates (with filters and

323 147 83 52
consecutive non-missing observations)
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Table OA.2 Backward-looking Fitted Returns

anel A of this table reports four sets of regression results for the backward-looking fitted returns of the S&P500.
Fitted returns, R̂t,t+T −1, are obtained by regressing realized returns, Rt,t+T −1, on the dividend yield divpt, lagged
dividend growth ∆divt−T,t, and the risk-free rate Rf

t,t+T . Realized returns, dividends, and dividend yields are from

the CRSP S&P Index files. The risk-free rate is the mean of the option-based RND, ERND
t [Rt,t+T − 1]. Reported t-

statistics (in parentheses) are corrected for heteroscedasticity and autocorrelation using Newey–West standard errors
with 12, 6, 4, and 2 lags for the 1-, 2-, 3-, and 6-month expirations, respectively. All regressions are estimated on
non-overlapping intervals. Panel B reports summary statistics for realized and backward-looking fitted returns. Panel
C presents correlations of realized and backward-looking returns with option-based expected returns derived from
the pricing kernels in equations (1), (2), (4), and (6). Option-based expected returns are labeled according to the
exponent of the corresponding discount factor: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r + γ2r
2 (equation

(4)), and γ1nvix
γ3r+γ2nvix

γ3r2 (equation (6)). Here, r denotes log-returns, and nvix is the normalized VIX, defined
as the VIX divided by its 1986–1995 average (to avoid look-ahead bias) and appropriately scaled for each expiration.
Estimation of the pricing kernels is based on the GMM system in equation (14), with results reported in Table 1.
risk-neutral denotes the moments of the risk-neutral density, and option-based physical and risk-neutral moments
are derived according to equation (15). risk-neutral bound is the expected return according to the variance-based
lower bound in equation (24) from Martin (2017). ρ∗ is the correlation between realized and backward-looking fitted
returns. The sample spans January 1996–December 2022 (1-month expiration), May 1998–November 2022 (2-month),
January 2002–October 2022 (3-month), and December 1996–June 2022 (6-month).

Panel A: Regressions for backward-looking fitted returns

Rt,t+T 1-month 2-month 3-month 6-month

divpt 12.954 16.092 10.930 14.037
(1.56) (1.24) (0.84) (1.22)

∆divt−T,t -0.011 -0.018 0.029 -0.028
(-1.15) (-0.57) (0.28) (-0.25)

Rf
t,t+T -0.520 0.314 -0.719 -0.359

(-0.66) (0.35) (-0.82) (-0.21)
constant -1.376% -3.797% -3.755% -9.082%

(-1.13) (-0.97) (-0.59) (-0.84)
R2 1.45% 2.25% 3.20% 8.59%
N 321 146 82 50

Panel B: Summary statistics for realized and backward-looking fitted returns

i) Rt,t+T 1-month 2-month 3-month 6-month

mean 0.63% 1.28% 1.66% 4.25%
st. deviation 4.88% 7.01% 7.41% 10.62%
N 323 147 83 52

ii) R̂t,t+T 1-month 2-month 3-month 6-month

mean 0.62% 1.24% 1.67% 3.78%
st. deviation 0.59% 1.05% 1.33% 3.10%
N 321 146 82 50
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Panel C: Correlations of realized and backward-looking fitted returns with option-based expected returns

1-month expiration

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral risk-neutral bound ρ∗

Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] ERND
t [Rt,t+T ] Rf

t,t+T +
varRND

t (Rt,t+T )

R
f
t,t+T

Rt,t+T 0.15 0.20 0.14 -0.17 -0.06 0.14

R̂t,t+T 0.01 0.27 0.01 -0.41 -0.56 -0.07 0.12

2-month expiration

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral risk-neutral bound ρ∗

Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] ERND
t [Rt,t+T ] Rf

t,t+T +
varRND

t (Rt,t+T )

R
f
t,t+T

Rt,t+T 0.14 0.10 0.04 -0.10 -0.01 0.13

R̂t,t+T 0.17 0.04 0.10 -0.24 -0.15 0.14 0.15

3-month expiration

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral risk-neutral bound ρ∗

Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] ERND
t [Rt,t+T ] Rf

t,t+T +
varRND

t (Rt,t+T )

R
f
t,t+T

Rt,t+T -0.05 -0.09 -0.05 -0.13 -0.10 -0.06

R̂t,t+T -0.09 -0.31 -0.10 -0.26 -0.53 -0.15 0.18

6-month expiration

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 risk-neutral risk-neutral bound ρ∗

Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] ERND
t [Rt,t+T ] Rf

t,t+T +
varRND

t (Rt,t+T )

R
f
t,t+T

Rt,t+T 0.05 -0.05 0.02 -0.17 -0.11 0.02

R̂t,t+T -0.02 -0.26 -0.08 -0.40 -0.62 -0.14 0.29
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Table OA.3 Summary Statistics of Option-based Log-return Moments for the Phys-
ical Measure Across Pricing Kernels

This table reports summary statistics for option-based moments of log-returns under the physical measure, derived
from the pricing kernels in equations (1), (2), (4), and (6). The kernels are labeled by their discount factor exponents:
γ1r, γ1nvix

γ3r, γ1r + γ2r
2, and γ1nvix

γ3r + γ2nvix
γ3r2, where r denotes log-returns and nvix the normalized VIX.

Estimation follows the GMM system in equation (14) (see Table 1). risk-neutral indicates moments of the risk-neutral
density, and realized refers to sample moments of realized returns. Option-based physical and risk-neutral moments
are computed using equation (15). Panel A reports expected returns, Panel B variances, Panel C skewness, and
Panel D kurtosis. The sample spans January 1996–December 2022 (1-month), May 1998–November 2022 (2-month),
January 2002–October 2022 (3-month), and June 1996–June 2022 (6-month).

Panel A: Option-based expected log-returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month

mean 0.38% 0.83% 1.13% 3.14%
st. deviation 0.58% 1.11% 1.12% 1.71%
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 0.38% 0.82% 1.11% 3.12%
st. deviation 2.19% 0.80% 0.78% 1.19%
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 0.45% 0.49% 1.04% 2.88%
st. deviation 0.57% 4.26% 1.13% 1.70%
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month

mean 0.43% 0.86% 1.13% 3.49%
st. deviation 0.74% 1.49% 1.69% 1.65%
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month

mean -0.36% -0.64% -0.68% -1.24%
st. deviation 0.67% 1.42% 1.32% 2.13%
N 323 147 83 52

vi) realized mean 1-month 2-month 3-month 6-month

0.51% 1.01% 1.37% 3.60%
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Panel B: Option-based physical variances of log-returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month

mean 0.47% 0.94% 1.13% 2.19%
st. deviation 0.51% 0.90% 0.82% 1.08%
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 0.47% 0.98% 1.17% 2.25%
st. deviation 0.32% 1.27% 1.08% 1.55%
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 0.36% 3.38% 1.37% 3.02%
st. deviation 0.28% 29.63% 1.29% 2.78%
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month

mean 0.44% 0.96% 1.15% 1.41%
st. deviation 0.95% 2.67% 1.78% 1.81%
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month

mean 0.64% 1.51% 1.79% 3.96%
st. deviation 0.94% 2.67% 1.74% 3.16%
N 323 147 83 52

vi) realized variance 1-month 2-month 3-month 6-month

0.25% 0.56% 0.58% 1.19%

Panel C: Option-based physical skewness of log-returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month

mean -1.90 -2.06 -2.07 -1.64
st. deviation 0.96 1.03 1.02 0.54
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean -1.90 -2.05 -2.05 -1.59
st. deviation 0.96 1.02 0.99 0.48
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean -1.54 -2.13 -2.32 -2.18
st. deviation 0.71 1.13 1.36 1.22
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month

mean -0.86 -0.87 -1.02 -0.54
st. deviation 0.70 0.69 0.93 0.37
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month

mean -1.96 -2.17 -2.21 -2.02
st. deviation 0.93 1.09 1.15 0.92
N 323 147 83 52

vi) realized skewness 1-month 2-month 3-month 6-month

-1.78 -2.39 -1.44 -1.37
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Panel D: Option-based physical kurtosis of log-returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month

mean 10.96 12.71 12.97 9.85
st. deviation 7.33 9.34 9.53 4.97
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 10.48 12.84 13.04 9.59
st. deviation 6.69 9.44 9.48 4.60
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 8.81 13.36 14.85 13.86
st. deviation 4.80 10.88 12.85 11.53
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month

mean 5.54 5.56 6.41 3.97
st. deviation 3.35 3.59 5.57 1.18
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month

mean 10.17 11.73 11.99 10.49
st. deviation 6.01 7.96 8.41 6.63
N 323 147 83 52

vi) realized kurtosis 1-month 2-month 3-month 6-month

11.72 13.89 5.76 6.26
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Table OA.4 Coefficient of Determination for Log-Return Moments under the Phys-
ical Measure across Pricing Kernels

This table reports coefficients of determination (R2) from regressions of option-based moments of log-returns across
the pricing kernels in equations (1), (2), (4), and (6). Panel A presents results for the 1-month expiration, Panel B for
the 2-month expiration, Panel C for the 3-month expiration, and Panel D for the 6-month expiration. Option-based
physical moments are derived from equation (15). The kernels are labeled by the exponents of their discount factors:
γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r + γ2r
2 (equation (4)), and γ1nvix

γ3r + γ2nvix
γ3r2 (equation (6)),

where r denotes log-returns and nvix is the normalized VIX (the VIX divided by its 1986–1995 average and scaled to
each maturity). Estimation of the pricing kernels is based on the GMM system in equation (14), with results reported
in Table 1. risk-neutral refers to the moments of the risk-neutral density, and N is the number of observations. The
sample spans January 1996–December 2022 (1-month), May 1998–November 2022 (2-month), January 2002–October
2022 (3-month), and June 1996–June 2022 (6-month).

Panel A: Coefficients of determination for 1-month expiration

R2’s of option-based expected log-returns regressions (average R2 = 43.80%; excl. risk-neutral: 57.19%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 62.28%

γ1r + γ2r
2 91.20% 59.22%

γ1nvix
γ3r + γ2nvix

γ3r2 31.42% 53.89% 45.17%
risk-neutral 0.47% 26.34% 6.63% 61.46%

R2’s of option-based log-return variances regressions (average R2 = 83.53%; excl. risk-neutral: 82.55%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 79.10%

γ1r + γ2r
2 94.38% 82.69%

γ1nvix
γ3r + γ2nvix

γ3r2 94.05% 59.08% 86.04%
risk-neutral 95.10% 65.74% 82.55% 96.60%

R2’s of option-based log-return skewness regressions (average R2 = 53.54%; excl. risk-neutral: 43.85%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 97.35%

γ1r + γ2r
2 75.55% 77.83%

γ1nvix
γ3r + γ2nvix

γ3r2 5.34% 3.27% 3.77%
risk-neutral 99.02% 95.08% 69.86% 8.41%

R2’s of option-based log-return kurtosis regressions (average R2 = 55.35%; excl. risk-neutral: 44.85%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 98.72%

γ1r + γ2r
2 72.28% 70.96%

γ1nvix
γ3r + γ2nvix

γ3r2 12.69% 13.63% 0.87%
risk-neutral 99.13% 98.08% 73.78% 13.41%
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Panel B: Coefficients of determination for 2-month expiration

R2’s of option-based expected log-returns regressions (average R2 = 27.22%; excl. risk-neutral: 22.28%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 65.82%

γ1r + γ2r
2 4.27% 5.69%

γ1nvix
γ3r + γ2nvix

γ3r2 22.76% 0.58% 34.53%
risk-neutral 0.14% 26.95% 41.93% 69.55%

R2’s of option-based log-return variances regressions (average R2 = 79.83%; excl. risk-neutral: 74.92%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 97.23%

γ1r + γ2r
2 41.64% 55.75%

γ1nvix
γ3r + γ2nvix

γ3r2 85.57% 94.90% 74.44%
risk-neutral 87.12% 94.35% 71.90% 95.39%

R2’s of option-based log-return skewness regressions (average R2 = 61.95%; excl. risk-neutral: 52.58%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.52%

γ1r + γ2r
2 97.99% 98.82%

γ1nvix
γ3r + γ2nvix

γ3r2 4.34% 6.58% 8.25%
risk-neutral 96.74% 98.16% 99.11% 10.02%

R2’s of option-based log-return kurtosis regressions (average R2 = 65.54%; excl. risk-neutral: 57.12%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.71%

γ1r + γ2r
2 97.55% 96.93%

γ1nvix
γ3r + γ2nvix

γ3r2 14.88% 16.20% 17.46%
risk-neutral 97.01% 98.00% 96.04% 21.65%
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Panel C: Coefficients of determination for 3-month expiration

R2’s of option-based expected log-returns regressions (average R2 = 37.35%; excl. risk-neutral: 41.17%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 60.65%

γ1r + γ2r
2 92.07% 72.60%

γ1nvix
γ3r + γ2nvix

γ3r2 14.08% 3.10% 4.50%
risk-neutral 6.61% 56.39% 20.92% 42.56%

R2’s of option-based log-return variances regressions (average R2 = 92.45%; excl. risk-neutral: 92.82%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 98.33%

γ1r + γ2r
2 89.79% 90.22%

γ1nvix
γ3r + γ2nvix

γ3r2 92.52% 96.35% 89.70%
risk-neutral 90.75% 90.35% 98.66% 87.78%

R2’s of option-based log-return skewness regressions (average R2 = 63.85%; excl. risk-neutral: 54.82%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 98.66%

γ1r + γ2r
2 91.91% 95.01%

γ1nvix
γ3r + γ2nvix

γ3r2 7.97% 14.11% 21.28%
risk-neutral 96.96% 98.69% 97.42% 16.55%

R2’s of option-based log-return kurtosis regressions (average R2 = 69.04%; excl. risk-neutral: 61.19%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 99.55%

γ1r + γ2r
2 95.00% 95.73%

γ1nvix
γ3r + γ2nvix

γ3r2 19.85% 23.52% 33.49%
risk-neutral 98.47% 99.08% 97.46% 28.20%
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Panel D: Coefficients of determination for 6-month expiration

R2’s of option-based expected log-returns regressions (average R2 = 33.82%; excl. risk-neutral: 38.92%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 52.72%

γ1r + γ2r
2 79.44% 74.41%

γ1nvix
γ3r + γ2nvix

γ3r2 8.19% 18.77% 0.00%
risk-neutral 0.02% 35.25% 15.09% 54.36%

R2’s of option-based log-return variances regressions (average R2 = 85.53%; excl. risk-neutral: 84.31%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 97.42%

γ1r + γ2r
2 76.73% 79.97%

γ1nvix
γ3r + γ2nvix

γ3r2 85.95% 94.40% 71.38%
risk-neutral 87.88% 89.60% 92.92% 79.05%

R2’s of option-based log-return skewness regressions (average R2 = 50.41%; excl. risk-neutral: 39.64%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 81.72%

γ1r + γ2r
2 65.41% 82.65%

γ1nvix
γ3r + γ2nvix

γ3r2 2.22% 3.54% 2.29%
risk-neutral 86.11% 88.81% 91.31% 0.02%

R2’s of option-based log-return kurtosis regressions (average R2 = 54.78%; excl. risk-neutral: 44.16%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 91.73%

γ1r + γ2r
2 76.42% 88.34%

γ1nvix
γ3r + γ2nvix

γ3r2 0.05% 4.22% 4.21%
risk-neutral 91.12% 95.57% 94.060% 1.53%
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Table OA.5 Coefficient of Determination for Third and Fourth Log-Return Moments
under the Physical Measure across Pricing Kernels

This table reports coefficients of determination (R2) from regressions of option-based third and fourth central moments
of log-returns across the pricing kernels in equations (1), (2), (4), and (6). Panel A presents R2 values for the 1-
month expiration, Panel B for the 2-month expiration, Panel C for the 3-month expiration, and Panel D for the
6-month expiration. Option-based physical moments are derived from equation (15). The pricing kernels are labeled
by the exponents of their discount factors: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r + γ2r
2 (equation (4)),

and γ1nvix
γ3r + γ2nvix

γ3r2 (equation (6)), where r denotes log-returns and nvix is the normalized VIX (the VIX
divided by its 1986–1995 average and scaled to each maturity to avoid look-ahead bias). Pricing kernel estimation is
based on the GMM system in equation (14), with results reported in Table 1. risk-neutral refers to the moments
of the risk-neutral density, and N is the number of observations. The sample spans January 1996–December 2022
(1-month), May 1998–November 2022 (2-month), January 2002–October 2022 (3-month), and June 1996–June 2022
(6-month).

Panel A: Coefficients of determination for 1-month expiration

R2’s of option-based third central moment regressions (average R2 = 53.65%; excl. risk-neutral: 46.38%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 24.80%

γ1r + γ2r
2 73.90% 37.73%

γ1nvix
γ3r + γ2nvix

γ3r2 86.24% 3.31% 52.28%
risk-neutral 92.81% 11.50% 57.36% 96.60%

R2’s of option-based fourth central moment regressions (average R2 =54.22%; excl. risk-neutral: 46.67%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 18.95%

γ1r + γ2r
2 82.17% 24.31%

γ1nvix
γ3r + γ2nvix

γ3r2 89.44% 4.48% 60.70%
risk-neutral 92.01% 9.05% 62.12% 98.95%

Panel B: Coefficients of determination for 2-month expiration

R2’s of option-based third central moment regressions (average R2 = 85.06%; excl. risk-neutral: 81.08%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 92.10%

γ1r + γ2r
2 55.48% 78.65%

γ1nvix
γ3r + γ2nvix

γ3r2 72.64% 92.63% 94.97%
risk-neutral 79.53% 94.46% 92.64% 97.53%

R2’s of option-based fourth central moment regressions (average R2 = 88.88%; excl. risk-neutral: 86.23%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 90.72%

γ1r + γ2r
2 67.13% 90.24%

γ1nvix
γ3r + γ2nvix

γ3r2 75.11% 95.23% 98.94%
risk-neutral 77.68% 95.77% 98.48% 99.51%
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Panel C: Coefficients of determination for 3-month expiration

R2’s of option-based third central moment regressions (average R2 = 83.46%; excl. risk-neutral: 81.73%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 92.78%

γ1r + γ2r
2 77.78% 76.04%

γ1nvix
γ3r + γ2nvix

γ3r2 77.02% 91.76% 75.02%
risk-neutral 89.35% 83.32% 95.84% 75.67%

R2’s of option-based fourth central moment regressions (average R2 = 81.30%; excl. risk-neutral: 79.01%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 92.11%

γ1r + γ2r
2 72.73% 70.92%

γ1nvix
γ3r + γ2nvix

γ3r2 75.05% 90.59% 72.69%
risk-neutral 87.76% 81.35% 94.94% 74.90%

Panel D: Coefficients of determination for 6-month expiration

R2’s of option-based third central moment regressions (average R2 = 72.35%; excl. risk-neutral: 68.86%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 92.48%

γ1r + γ2r
2 61.48% 63.17%

γ1nvix
γ3r + γ2nvix

γ3r2 68.00% 87.65% 40.38%
risk-neutral 85.48% 81.78% 87.29% 55.81%

R2’s of option-based fourth central moment regressions (average R2 = 70.71%; excl. risk-neutral: 66.85%)

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2

γ1nvix
γ3r 93.41%

γ1r + γ2r
2 59.37% 56.43%

γ1nvix
γ3r + γ2nvix

γ3r2 71.79% 89.14% 30.93%
risk-neutral 86.76% 80.33% 85.47% 53.51%
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Online Appendix C Details of the GMM Estimation of Pricing Kernels

The parameters in the pricing kernels of equations (2), (4), and (6) are estimated using an exactly

identified single-stage GMM. If the number of parameters in the discount factor is m, the GMM

system in equation (14) consists of m−1 uniform moments conditions (equation (10)) together with

the rational expectations condition (equation (11)). In the special case where m = 1 in equation

(14), namely, the simple power utility model of equation (1), GMM estimation is over-identified in a

2× 2 system with one degree of freedom. This over-identification arises because the one-parameter

discount factor must satisfy both the uniform moments condition (equation (10)) and the rational

expectations condition (equation (11)).

For all pricing kernels, I use an m × m diagonal weighting matrix with diagonal elements

1, 1, . . . , 100. Uniform moments conditions (equation (10)) are assigned a weight of one, while the

rational expectations condition (equation (11)) is assigned a weight of 100, reflecting its smaller

scale relative to the uniform moments. For the exactly identified GMM system corresponding to

the discount factors in equations (1), (4), and (6), the choice of weighting matrix is immaterial. The

weighting scheme primarily affects estimation of the monotonic fixed-parameter model (equation

(1)), whose GMM system is over-identified. In all cases, the gradient of the GMM objective is

computed numerically by differentiating equation (14) with respect to model parameters.

Standard errors are computed following Cochrane (2005) and are corrected for autocorrelation

and heteroscedasticity using the Newey and West (1987) methodology with 12, 6, 4, and 2 lags

for the 1-, 2-, 3-, and 6-month expirations, respectively. For the over-identified GMM system

corresponding to the standard power utility model in equation (1), the χ2 test for GMM errors has

one degree of freedom. By contrast, for the exactly identified GMM systems of the discount factors

in equations (2), (4), and (6), the χ2 test has zero degrees of freedom.

Online Appendix D Derivation of the Risk-neutral Density

The derivation of the risk-neutral density (RND) follows the methodology in Figlewski (2010), Birru

and Figlewski (2012), Linn et al. (2018), and Alexiou et al. (2025). The first step is to construct

the implied volatility (IV) curve across strike prices. For strike prices (K) outside the ±2% range

of the underlying spot price (St), I use IV’s provided by OptionMetrics. For strike prices inside the
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±2% range of the underlying spot price, I combine the IV’s of OptionMetrics for puts (IVp) and

calls (IVc) with the same strike price into a single point

IV
(
K ∈ (1± 2%)St

)
= ωIVp

(
K ∈ (1± 2%)St

)
+ (1− ω)IVc

(
K ∈ (1± 2%)St

)
,

where ω = (Kmax −K)/(Kmax −Kmin), and Kmax and Kmin are, respectively, the maximum and

minimum strike prices in the ±2% moneyness range. As in Alexiou et al. (2025), this is done to

avoid an artificial jump at the ATM region, which could arise from ATM puts trading at higher IV

relative to ATM calls.

The IV curve is constructed by fitting a quintic spline with 1,000 moneyness nodes to the derived

IV estimates. Using the Black and Scholes (1973) formula, the IV curve is then converted into a

curve of call option prices, Ct,t+T (StRi,t, St, r̃f,t,t+T , IVt,t+T (K), divt,t+T ), where Ri,t = Ki,t/St is

the moneyness (or gross return) for every strike price, r̃f,t,t+T is the continuously-compounded

risk-free rate (Federal funds rate), and divt,t+T is the continuously-compounded dividend yield

from OptionMetrics. The risk-neutral density, q̃t,t+T (SR) = dQ̃t,t+T (SR)/d(SR), is derived using

the result in Breeden and Litzenberger (1978):

q̃t,t+T (StRt,t+T ) = eT r̃f,t,t+T
∂2Ct,t+T (StRt,t+T , St, r̃f,t,t+T , IVt,t+T (K), divt,+T )

∂(StRt,t+T )2
.

The chain rule implies that the risk-neutral density expressed in terms of gross returns is

q̃t,t+T (Rt,t+T ) = Ste
T r̃f,t,t+T

∂2Ct,t+T (StRt,t+T , St, r̃f,t,t+T , IVt,t+T (K), divt,+T )

∂(StRt,t+T )2
.

The second derivative above is calculated using a second-order centered difference approximation.

Further, I can rescale the RND with the factor

q̂t,t+T (Ri,t) =
q̃t,t+T (Ri,t)∑1,000

i=1 q̃t,t+T (Ri,t)(Ri+1,t −Ri,t)
.

In this case, q̂t,t+T (Ri,t) is a well-defined density function for gross returns (moneyness) since

1,000∑
i=1

q̂t,t+T (Ri,t)(Ri+1,t −Ri,t) =

1,000∑
i=1

q̃t,t+T (Ri,t)(Ri+1,t −Ri,t)∑1,000
i=1 q̃t,t+T (Ri)(Ri+1,t −Ri,t)

= 1.
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The derived density is truncated at its tails because options for extreme values of the stock

market index are dropped from the sample (< $3/8) or the corresponding prices are zero. Hence,

as in Figlewski (2010) and Linn et al. (2018), the final step in deriving the RND is to adjust its

tails by appending heavy-tailed distributions. To this end, I assume that the left (l) and right (r)

tails of the RND are given by two-parameter Pareto density functions, fl(R) and fr(R):

fl(R) =
αl(λl −R)−αl−1

λ−αl
l

, R ≤ λl, fr(R) =
αrR

−αr−1

λ−αr
r

, R ≥ λr. (OA.1)

The two parameters, αl and λl (αr and λr) are identified by solving a 2 × 2 system of non-linear

equations where I set the left (right) Pareto density above equal to the values of the derived RND

at the 2% and 5% (95% and 98%) percentiles. Finally, using the solutions for the parameters in

the tail distributions, I extend the domain of moneyness by approximately 60% (30% in the left

tail and 30% in the right tail) from 1,000 to 1,600 nodes, and re-normalize the RND to obtain a

well-defined density that integrates to one:

qt,t+T (Ri) =
q̂t,t+T (Ri)∑1,400

i=1 q̂t,t+T (Ri)(Ri+1 −Ri)
.

Overall, I obtain 323 RND’s for the 1-month expiration, 147 for the 2-month, 83 for the 3-

month, and 52 RND’s for the 6-month expiration. Figure OA.1 in the Online Appendix shows the

average RND, with and without tail adjustments, obtained from option prices across expirations.

These graphs are similar to those in Linn et al. (2018).

Online Appendix E Proofs

E.1 Pricing Kernels and Log-normal Densities

This section derives the resulting probability densities from combining linear or quadratic pric-

ing kernels with log-normal or skew log-normal distributions. The log-normal probability density

function is proportional to

1

y
Exp

[(lny + ω)2

2σ2

]
.
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The constants ω and σ2 are the location and scale parameters of the distribution. The skew

log-normal probability density function is proportional to

1

y
Exp

[(lny + ω)2

2σ2

]
Φ
(
λ
lny − ω

σ
+ ξ

)
,

where Φ() is the standard normal cumulative distribution function. The constants ω and σ2 are the

location and scale parameters. The parameters λ and ξ are the skewness and kurtosis parameters

for R > 0. Based on the probability density functions above for the log-normal and the skew

log-normal distributions, the distributions resulting from the linear and quadratic pricing kernels

can be easily calculated.

Linear Pricing Kernel and Log-normal Distribution

1

y
Exp

[
γ1lny −

(lny − ω)2

2σ2

]
∝ 1

y
Exp

[
−

(
lny − (ω + γ1σ

2)
)2

2σ2

]
.

Quadratic Pricing Kernel and Log-normal Distribution

1

y
Exp

[
γ1lny + γ2ln

2y − (lny − ω)2

2σ2

]
∝ 1

y
Exp

[
−

(
lny − ω+γ1σ2

1−2γ2σ2

)2
2 σ2

1−2γ2σ2

]
.

Linear Pricing Kernel and Skew Log-normal Distribution

1

y
Exp

[
γ1lny −

(lny − ω)2

2σ2

]
Φ
(
λ
lny − ω

σ
+ ξ

)
∝

1

y
Exp

[
−

(
lny − (ω + γ1σ

2)
)2

2σ2

]
Φ
(
λ
lny − (ω + γ1σ

2)

σ
+ ξ + λγ1σ

)
.

Quadratic Pricing Kernel and Skew Log-normal Distribution

1

y
Exp

[
γ1lny + γ2ln

2y − (lny − ω)2

2σ2

]
Φ
(
λ
lny − ω

σ
+ ξ

)
∝
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1

y
Exp

[
−

(
lny − ω+γ1σ2

1−2γ2σ2

)2
2 σ2

1−2γ2σ2

]
Φ
( λ√

1− 2γ2σ2

lny − ω+γ1σ2

1−2γ2σ2

σ√
1−2γ2σ2

+ ξ + λ
γ1 + 2ωγ2
1− 2γ2σ2

σ
)
.

E.2 Location-Scale Moments

Let Y be a location-scale transformation of a standardized random variable Z:

Y = ω + Zσ,

where ω and σ are the location and scale parameters. Then, it follows that

E[Y ] = ω + E[Z]σ

E[(Y − E[Y ])2] = E[(Z − E[Z])2]σ2

E[(Y − E[Y ])3] = E[(Z − E[Z])3]σ3

E[(Y − E[Y ])4] = E[(Z − E[Z])4]σ4.

E.3 Truncated Normal Moments

This section derives the moments of a standard normal variable, T , truncated below − ξ√
1+λ2

:

T ∼ N(0, 1)

1− Φ
(
− ξ√

1+λ2

) , T > − ξ√
1 + λ2

.

The first moment is

E[T ] =
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) .
The second and third moments are, respectively,

E[T 2] = 1− ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)
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E[T 3] =

(
2 +

(
ξ√

1+λ2

)2)
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) .

Hence, the second and third central moments are, respectively,

E[(T − E[T ])2] = 1− ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) −
ϕ
(
− ξ√

1+λ2

)
2(

1− Φ
(
− ξ√

1+λ2

))2
E[(T − E[T ])3] =

(
2 +

(
ξ√

1+λ2

)2)
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)
−3

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)(1− ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

))+ 2
ϕ
(
− ξ√

1+λ2

)3
(1− Φ

(
− ξ√

1+λ2

)
)3((

ξ√
1+λ2

)2
− 1

)
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) + 3
ξ√

1 + λ2

ϕ
(
− ξ√

1+λ2

)2(
1− Φ

(
− ξ√

1+λ2

))2 + 2
ϕ
(
− ξ√

1+λ2

)3(
1− Φ

(
− ξ√

1+λ2

))3 .
.

E.4 Standard Skew-Normal Moments

The standard skew-normal random variable, Z, can be derived as a linear combination of a truncated

standard normal variable, T , truncated above − ξ√
1+λ2

, and a standard normal variable, V :

Z =
λ√

1 + λ2
T +

1√
1 + λ2

V, T ∼ N(0, 1)

1− Φ
(
− ξ√

1+λ2

) , T > − ξ√
1 + λ2

, V ∼ N(0, 1).

Using the binomial expansion, the general formula for the moments of Z as a function of the

moments of T and V is given by

E[Zn] =
n∑

i=0

(
n

i

)( λ√
1 + λ2

)i( 1√
1 + λ2

)n−i
E[T i]E[V n−i].

Hence, the first moment of Z is

E[Z1] =
λ√

1 + λ2
E[T 1] =

λ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) ,
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where ϕ() is the standard normal density function. The second moment of Z is given by

E[Z2] =
1

1 + λ2
+

λ2

1 + λ2

(
1− ξ√

1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)),
and its variance is equal to

var(Z) = 1− λ2

1 + λ2

ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) − λ2

1 + λ2

ϕ
(
− ξ√

1+λ2

)2(
1− Φ

(
− ξ√

1+λ2

))2 .

Similarly, the third central moment of Z is

E[(Z − E[Z])3] =

λ3

(1 + λ2)3/2

[(( ξ√
1+λ2

)2
− 1

)
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) + 3
ξ√

1 + λ2

ϕ
(
− ξ√

1+λ2

)2(
1− Φ

(
− ξ√

1+λ2

))2 + 2
ϕ
(
− ξ√

1+λ2

)3(
1− Φ

(
− ξ√

1+λ2

))3 ].
E.5 Derivative of the Inverse Mills Ratio

The inverse Mills ratio for a standard normal variable is

ϕ(x)

1− Φ(x)
.

Its derivative is

ϕ(x)

1− Φ(x)

(
− x+

ϕ(x)

1− Φ(x)

)
.

From Section E.3 above, if T̃ is a standard normal variable truncated below x, then

E[T̃ |T̃ ≥ x] =
ϕ(x)

1− Φ(x)
.

Thus, for a standard normal variable truncated below x, the following holds

E[T̃ |T̃ ≥ x] =
ϕ(x)

1− Φ(x)
> x,
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and the inverse Mills ratio for a standard normal variable is strictly increasing.

E.6 Moments of Location-Scale Skew-Normal Distribution

Based on the results from the Online Appendices D.2 and D.3, for a skew log-normal random

variable Y with location, scale, and shape parameters ω, σ, λ, and ξ the density function, mean

and variance are, respectively, given by

dQY (y) ∝
1

y
Exp

[
−

(
lny − ω

)2
2σ2

]
Φ
(
λ
lny − ω

σ
+ ξ

)
E[lnY ]RND = ω +

λ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)σ
var

(
lnY

)RND
=

[
1− λ2

1 + λ2

ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) − λ2

1 + λ2

ϕ
(
− ξ√

1+λ2

)2(
1− Φ

(
− ξ√

1+λ2

))2

]
σ2.

Linear Pricing Kernel

According to Section E.1 in the Online Appendix, after applying the linear pricing kernel to the

skew-normal RND, the density function, mean, and variance, respectively, become

dPY (y) ∝
1

y
Exp

[
−

(
lny − (ω + γ1σ

2)
)2

2σ2

]
Φ
(
λ
lny − (ω + γ1σ

2)

σ
+ ξ + λγ1σ

)
(OA.2)

E[lnY ] = ω + γ1σ
2 +

λ√
1 + λ2

ϕ
(
− ξ+λγ1σ√

1+λ2

)
1− Φ

(
− ξ+λγ1σ√

1+λ2

)σ (OA.3)

var(lnY ) =
[
1− λ2

1 + λ2

ξ + λγ1σ√
1 + λ2

ϕ
(
− ξ+λγ1σ√

1+λ2

)
1− Φ

(
− ξ+λγ1σ√

1+λ2

) − λ2

1 + λ2

ϕ
(
− ξ+λγ1σ√

1+λ2

)2(
1− Φ

(
− ξ+λγ1σ√

1+λ2

))2

]
σ2. (OA.4)

According to the last equation above, when the risk-neutral density departs from normality, the

linear pricing kernel alters both the expected return and the variance of the risk-neutral density by

shifting the shape parameter in the inverse Mills ratio from ξ to ξ + λγ1σ. Thus, a linear pricing

kernel with a positive risk-aversion parameter γ1 raises the mean of the risk-neutral distribution by

γ1σ
2, as in the normal RND case (Online Appendix, Section E.1), while simultaneously reducing,
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in absolute value, the negative skewness adjustment term.

λ√
1 + λ2

ϕ
(
− ξ+λγ1σ√

1+λ2

)
1− Φ

(
− ξ+λγ1σ√

1+λ2

)σ.
Since λ is negative for a negatively skewed RND and the inverse Mills ratio, ϕ(x)

1−Φ(x) , is strictly

increasing (Online Appendix D.5), increasing ξ to ξ + λγ1σ, decreases the absolute magnitude of

the negative term

from
λ√

1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)σ to
λ√

1 + λ2

ϕ
(
− ξ+λγ1σ√

1+λ2

)
1− Φ

(
− ξ+λγ1σ√

1+λ2

)σ. (OA.5)

Quadratic Pricing Kernel

According to Section E.1 of the Online Appendix, after applying the quadratic pricing kernel to

the skew-normal RND, the density function, mean, and variance, respectively, become

dPY (y) ∝
1

R
Exp

[
−

(
lny − ω+γ1σ2

1−2γ2σ2

)2
2 σ2

1−2γ2σ2

]
(OA.6)

×Φ
( λ√

1− 2γ2σ2

lny − ω+γ1σ2

1−2γ2σ2

σ√
1−2γ2σ2

+ ξ +
λ

σ

2ωγ2σ
2 + γ1σ

2

1− 2γ2σ2

)

E[lnY ] =
ω + γ1σ

2

1− 2γ2σ2
+

λ√
1−2γ2σ2√

1 + λ2

1−2γ2σ2

ϕ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)

1− Φ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)σ

var(lnY ) =
[
1−

λ2

1−2γ2σ2

1 + λ2

1−2γ2σ2

ξ + λ
σ
2ωγ2σ2+γ1σ2

1−2γ2σ2√
1 + λ2

1−2γ2σ2

ϕ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)

1− Φ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)

−
λ2

1−2γ2σ2

1 + λ2

1−2γ2σ2

ϕ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)2

(
1− Φ

(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

))2

] σ2

1− 2γ2σ2
.

For negative (positive) quadratic parameter γ2, the scale parameter decreases (increases) from
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σ to σ/
√
1− 2γ2σ2. Further, for positive linear parameter γ1, the location parameter increases by

the term γ1σ2

1−2γ2σ2 and by decreasing the absolute value of the negative skewness adjustment term

λ√
1−2γ2σ2√

1 + λ2

1−2γ2σ2

ϕ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)

1− Φ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)σ. (OA.7)

Interestingly, even if γ1 is zero or negative, so that the direct effect of γ1σ
2 is zero or leads to

a decreases in the risk-neutral mean, the mean of the physical density may still exceed that of

the RND. This occurs when the quadratic parameter γ2 is negative. In that case, the quadratic

adjustment decreases the absolute magnitude of the negative term in equation (OA.7), effectively

offsetting or dominating the impact of γ1.
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