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1 Introduction

Conditional stock market expected returns are one of the most important yet elusive objects

in finance. Conditional expected returns are important because they are a basic component

of almost all asset pricing models. From the capital asset pricing model (Lintner (1965))

to the alternative factor specifications (Merton (1974), Fama and French (2015), Hou et al.

(2019)) and the life-cycle income models in household finance (Viceira (2001)), conditional

expected stock market returns are a key variable in financial decision making. Conditional

expected returns are elusive because there is no direct way of measuring forward-looking

expectations. Traditionally, expected returns for the aggregate stock market are obtained via

time-series (predictability) regressions, while expected returns at the firm-level are derived

from cross-sectional (factor) regressions.1

In either case, the derived conditional expected returns cannot be considered truly

forward-looking because they are are based on contemporaneous or lagged historical data

(e.g., asset pricing factors, price-dividend ratio, dividend growth), and are estimated us-

ing backward-looking relations that require strong assumptions. An alternative approach

to estimating expected returns are surveys (e.g., Gallup/UBS Survey of Investor Optimism,

Duke’s CFO survey) that directly ask investors about their expectations for the stock market

(e.g., Vissing-Jorgensen (2004)). However, these surveys tend to have a limited time-span,

and focus on subsets of individuals or professionals that do not encompass the aggregate

expectations of market participants.

In recent years, one of the most prominent methodologies for deriving forward-looking

conditional expected market returns is using option prices and option-implied risk-neutral

densities. For instance, Martin (2017) derives bounds for market-level expected returns that

are based on the risk-neutral market variance and the risk-free rate. In a subsequent paper,

Martin and Wagner (2019) derive variance-based bounds for firm-level expected returns,

while Chabi-Yo and Loudis (2020) and Chabi-Yo et al. (2022) derive bounds for expected

returns that are based on high-order risk-neutral moments.

Conditional expected market returns based on risk-neutral bounds are important because

they rely on forward-looking option prices as opposed to the traditional backwards-looking

regression approach. Despite this innovative methodology, option-derived bounds for ex-

pected returns are subject to criticism because they are based on risk-neutral moments, and

1Predictability tests: Campbell and Shiller (1988), Stambaugh (1999), Lettau and Ludvigson (2001a),
Goyal and Welch (2003), Goyal and Welch (2008), Ang and Bekaert (2007), van Binsgergen and Koijen
(2010), Lewellen (2015), Kostakis et al. (2015). Cross-sectional tests: Fama and French (1993), Fama and
French (2015), Hou et al. (2019), Liu et al. (2009), Lettau and Ludvigson (2001b), Yogo (2006), Delikouras
(2017), Delikouras and Kostakis (2019). These papers constitute a very small sample of a vast literature.
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ignore the physical measure. One way to resolve the issue of deriving expected returns using

risk-neutral moments is by assuming a pricing kernel that reflects investors’ risk-return pref-

erences. To this end, Bliss and Panigirtzoglou (2004) estimate the standard power utility

discount factor from option prices, while Linn et al. (2018) estimate a non-parametric pricing

kernel. Based on this approach, it is quite straightforward to multiply the option-based risk-

neutral density by the inverse of the estimated discount factor and derive the option-based

distribution of stock market returns under the physical measure. Using this physical density,

one could then calculate forward-looking expected returns.

Even in this case, however, there are several issues regarding the properties of the true

stochastic discount factor that need to be addressed. To begin with, discount factors are

not observable. Secondly, the structural parameters of the discount factor (e.g., elasticity of

intertemporal substitution, risk aversion, discount rate) can be time-varying (e.g., Schrein-

dorfer and Sischert (2022)). Thirdly, contrary to the standard monotonicity assumptions

for marginal utility in economics and finance, option-derived pricing kernels can be non-

monotonic (e.g., Cuesdeanu and Jackwerth (2018)). Motivated by these observations, in this

paper I jointly examine two important and contentious issues in the asset pricing literature.

First, I investigate the implications of non-monotonicities and time-variation in the param-

eters of the pricing kernel for the moments of the physical density. Second, I examine the

accuracy of the risk-neutral bounds across monotonic and non-monotonic discount factors.

To examine the effects of non-monotonicities and time-variation of the pricing kernel on

the option-based physical distribution of returns, I estimate four alternative specifications

for the discount factor: standard power utility (monotonic marginal utility with fixed pa-

rameters), power utility with VIX-dependent risk aversion (monotonic marginal utility with

time-varying parameters), power utility with quadratic exponent (non-monotonic marginal

utility with fixed parameters), power utility with VIX-dependent quadratic exponent (non-

monotonic marginal utility with time-varying parameters). These pricing kernels expand the

standard power utility specification and allow for non-monotonicities, as well as the possi-

bility of time-varying parameters in the discount factor. Hence, these parametric pricing

kernels are quite versatile, and allow for a rich set of risk preferences.

In estimating these pricing kernels, I calculate the option-based risk-neutral density

across four different maturities (1-, 2-, 3-, and 6-month) using the standard methodology

in Figlewski (2008), Linn et al. (2018), and Alexiou et al. (2024), which identifies the risk-

neutral density from the second derivative of option prices with respect to the strike price

(Huang and Litzenberger (1989)). Then, I use a GMM system that combines the moment

restrictions in Linn et al. (2018) with rational expectations. Specifically, I estimate the pa-

rameters in the four discount factors using the fact that any cumulative distribution function
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is a standard uniform random variable. Further, I combine these uniform moments with a

rational expectations moment restriction according to which average option-based expected

returns should be equal to average realized returns over the sample period. Finally, I multi-

ply the inverse of the four alternative discount factors with the common risk-neutral density

to derive alternative option-based physical distributions across the four expirations.

To address the issue of the importance of non-monotonicities and VIX-dependence (time-

variation) in the pricing kernel, first I examine, through standard GMM hypothesis testing,

the statistical significance of the linear and quadratic parameters of the pricing kernel as

well as the significance of the VIX-dependence parameters. My results indicate, that the

evidence in support of non-monotonicities are relatively weak since the parameters in the

quadratic terms of the pricing kernel are statistically insignificant. Similar results also hold

for the significance of the VIX-dependence parameters, which appear to be statistically

insignificant in most cases. To the contrary, the standard linear coefficients (risk aversion)

that capture monotonic marginal utility are statistically significant.

In addition to hypothesis testing, I examine whether the resulting physical distributions

from the four discount factors are similar, and whether the alternative discount factors gen-

erate significantly different distributions than the standard monotonic pricing kernel. To this

end, I use Kolmogorov-Smirnov tests for the pairwise equality of two distribution functions.

My results indicate that the monotonic pricing kernels with either fixed or VIX-dependent

parameters generate quite similar physical distributions, which are in turn relatively close

to the physical distribution from the non-monotonic discount factor with fixed-parameters.

To the contrary, the physical densities generated by the non-monotonic pricing kernel with

VIX-dependent parameters are substantially different from the densities of the other pricing

kernels. Importantly, the effects of the VIX, which for the purposes of this estimation is

normalized by its sample average, on risk-aversion is non-linear. Hence, my results suggest

that non-monotonicities need to be combined with time-variation of parameters to generate

substantially different physical densities from the standard monotonic (power utility) model.

I further identify the causes of these differences among the physical distributions by

examining the relation, both in levels and in comovement, among the option-based physical

moments (expected value, variance, skewness, and kurtosis) from the various discount factor

specifications. Regarding first moments, all discount factors are able to generate expected

returns that are higher than the ones implied by the risk-neutral density. This is because the

GMM moments for the estimation of the alternative pricing kernels force the average option-

based expected returns to be equal to the average realized return (rational expectations).

Although variances are not a target moment in the GMM estimation of the discount fac-

tors, variance levels are consistent across pricing kernels, and are similar, albeit lower, to the
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risk-neutral variance. The discount factor that generates the lowest forward-looking variance

is the non-monotonic pricing kernel with VIX-dependent parameters. Similar results hold

for skewness and kurtosis. The non-monotonic specification with VIX-dependent parame-

ters generates the least amount of variance, skewness, and kurtosis for the physical measure

due to the time-variation in its parameters, which depend on the VIX. In other worlds, the

non-monotonic pricing kernel with VIX-dependent parameters is the only pricing kernel that

can transform a risk-neutral density with large (in absolute value) variance, skewness, and

kurtosis into a physical distribution with moderate high-order moments. In fact, the physical

moments implied by the non-monotonic discount factor with VIX-dependent risk aversion

are too low and exhibit too little time-variation compared to the moments of the risk-neutral

density or to realized moments.

In addition to studying the levels of the option-based physical moments across pricing

kernels, I also examine their comovement using coefficients of determination (R2’s) from

pairwise regressions of the physical moments from one pricing kernel to the same moments

form the rest of the discount factors. The results from these tests suggest that variances

are highly correlated both across pricing kernels and with the corresponding risk-neutral

moments. To the contrary, odd physical moments, i.e., expected values and skewess, are less

correlated across discount factors and from the corresponding risk-neutral moments. This

is the first paper to show that the effects of monotonic and non-monotonic pricing kernels

differ across variances and the rest of the moments. Even moments, especially variances, are

strongly correlated across discount factors, whereas odd moments (means and skewness),

differ across pricing kernels, and this divergence in physical moments is mainly driven by the

non-monotonic discount factor with VIX dependent parameters.

Overall, my findings from comparing the physical densities across the different pricing

kernels suggest that the monotonic, monotonic with VIX-dependence, and non-monotonic

pricing kernels seem to generate somewhat similar moments, which are positively correlated.

To the contrary, the non-monotonic discount factor with VIX-dependent parameters implies

vastly different physical moments, which are almost orthogonal to the moments from rest

of the discount factors. Hence, non-monotonicity and VIX-dependence of the pricing kernel

alone do not generate substantially different physical moments from the standard monotonic

discount factor with fixed-parameters. To the contrary, the combination of non-monotonicity

with VIX-dependence, implies a unique physical distribution, which is different to those from

the alternative discount factors.

To complement these novel empirical results, I provide additional theoretical insights,

which explain the differential effects of non-monotonicities and VIX-dependence on the

option-based physical moments. To this end, I combine elements from actuarial science,
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termed linear and quadratic Esscher transforms (Esscher (1932), Monfort and Pegoraro

(2010)), with normal or skew-normal assumptions for the risk-neutral density. This is one

of the first attempts to theoretically explain how monotonicity and VIX-dependence of the

discount factor affect option-based physical moments.

Based on these results, the second contentious issue addressed in this paper is the accuracy

of the risk-neutral bounds for expected returns. Specifically, having derived option-based

distributions under the physical measure for various pricing kernels, I examine whether the

risk-neutral bounds proposed by the literature, e.g., bounds based on risk-neutral variances,

can accurately capture expected returns under the physical measure.

Expected returns are unobservable. Hence, deriving expected returns from options re-

quires assumptions for the pricing kernel. To avoid such assumptions, the existing litera-

ture (e.g., Martin (2017)) has argued that forward-looking expected returns can be mea-

sured using option-based risk-neutral moments (e.g., risk-neutral variance) via an (almost)

assumption-free approach. Importantly, Martin (2017) and Chabi-Yo and Loudis (2020) pro-

vide empirical evidence that risk-neutral bounds are accurate proxies for expected returns by

regressing realized returns on these risk-neutral bounds. More recently however Back et al.

(2022), using a different methodology, cast doubt on whether these risk-neutral bounds are

tight enough to accurately capture expected returns.

I further expand these regression tests for the accuracy of risk-neutral bounds along the

following dimensions. First, I provide summary statistics and correlations for the risk-neutral

bounds to verify whether these bounds, i.e, the risk-neutral variances, are aligned with

average realized returns or average expected returns from the option-based physical densities.

Secondly, in addition to the regressions of realized returns on risk-neutral variances, which

have been extensively used by the existing literate to empirically validate these bounds,

I regress option-based expected returns from the different pricing kernels on risk-neutral

variances. For these tests, in addition to realized returns or option-based expected returns,

I use backward-looking fitted returns, which are based on predictive regressions of realized

returns on the dividend yield, the dividend growth, and the risk-free rate.

Finally, I examine whether realized returns and option-based expected returns from the

different pricing kernels tend to violate the risk-neutral bounds. Specifically, the risk-neutral

bounds proposed by the literature are lower bounds for expected returns. Hence, I investigate

whether there are instances where the risk-neutral bounds are greater than the realized

returns or the option-based expected returns.

The results from this analysis highlight four important findings. First, longer option

maturities adversely affect the tightness of the risk-neutral bounds. Secondly, realized re-

turns and fitted returns are not appropriate for testing the accuracy of risk-neutral bounds
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via regressions. This is because binding risk neutral bounds would imply high R2’s and

a very accurate fit for the regressions of expected returns on risk-neutral bounds. To the

contrary, the risk-neutral bound regressions with realized returns as the dependent variable

have almost zero fit, standard errors are very large, and realized returns often violate the

risk-neutral lower bounds, which are strictly positive, due to their large negative values.

Thirdly, for the baseline monotonic power utility pricing kernel with constant parameters,

regression results of option-based expected returns on risk-neutral variances show that slope

estimates are close to one (e.g., 1.2-1.3), intercepts are zero (e.g., 0.01%), and the R2’s are

large (e.g., 99%). These results imply that, even if the slope coefficients are not equal to one,

risk-neutral variances are an accurate proxy for expected returns derived from the standard

monotonic power utility pricing kernel with constant parameters. These findings run against

the results in Back et al. (2022), who show that risk-neutral bounds are not binding.

Finally, for discount factors with VIX-dependent coefficients, the intercepts from re-

gressing option-based expected returns on risk-neutral bounds are significant and the slope

estimates are different than one. Hence, for these cases, the risk-neutral bounds are not

binding. The finding that the accuracy of the risk-neutral bounds for expected returns de-

pends on VIX-dependence (time-variation) of risk aversion is a novel empirical result that

has not been previously studied by the literature.

Interestingly, non-monotonicity does not seem to affect the tightness of the risk-neutral

bounds as much as the VIX-dependence of risk aversion since expected returns from the

non-monotonic pricing kernel with fixed parameters seem to be closely aligned to the risk-

neutral variance bounds. This is because non-monotonicities occur over sets of returns that

are assigned very low probabilities either in the left or right tail of the distribution of returns,

whereas VIX-dependence affects the entire distribution of returns.

Overall, this paper adds to the expanding literature that uses option markets to study

investor preferences and assess the accuracy of competing macroeconomic asset pricing mod-

els. Specifically, Ait-Sahalia and Lo (2000) and Rosenberg and Engle (2000) have motivated

a series of papers on the monotonicity of discount factors derived from option prices. They

document that the option derived-kernels can be increasing over a certain moneyness range

(U-shaped marginal utility). Linn et al. (2018) and Kim (2021) introduce conditional estima-

tion of their non-parametric discount factor during periods of high and low VIX values, and,

similar to Barone-Adesi et al. (2020), cannot find evidence in support of non-monotonicities

in option-derived marginal utility.

Driessen et al. (2022) examine the topic of non-monotonic pricing kernel using a cross-

section of option maturities to generate forward pricing kernels. Schreindorfer and Sischert

(2022) examine the issue of non-monotonicity through the lens of VIX-dependent param-
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eters. Beason and Schreindorfer (2022) use option prices to decompose risk premia and

examine which macroeconomic asset pricing model (e.g., long-run risk, habit, disappoint-

ment aversion) is consistent with this decomposition. Chabi-Yo et al. (2022) repeat this

exercise for conditional risk premia. In a closely related paper by Heston et al. (2023), the

authors estimate option-based pricing kernels by imposing restrictions such as monotonicity

and path-independence (recovery theory) to achieve good option fit and reasonable estimates

of equity and variance risk premiums, while resolving pricing kernel anomalies.

The findings in this paper complement these works by simultaneously examining the

implied physical densities from alternative pricing kernels (power utility, power utility with

VIX-dependent parameters, power utility with quadratic exponent, and power utility with

quadratic exponent and VIX-based parameters). Additionally, my empirical analysis is able

to identify the specific effects of non-monotonicity and VIX-dependence on the physical

density by examining the first four moments (mean, variance, skewness, kurtosis) of the

resulting physical distributions. Importantly, this is one of the first papers to theoretically

explain the effects of the different pricing kernel characteristics on the different moments

using results from actuarial science involving Esscher transforms (Esscher (1932), Monfort

and Pegoraro (2010)) and the skew-normal assumption for the risk-neutral density.

From the perspective of risk-neutral bounds for expected returns, Martin (2017) is the

seminal paper that establishes the relation between risk-neutral variance and expected re-

turns for the aggregate stock market. Chabi-Yo and Loudis (2020) expand this bound with

additional higher-order risk-neutral moments, while Martin and Wagner (2019) derive the re-

lation between risk premia and risk-neutral moments for individual stocks. Back et al. (2022)

conduct a thorough empirical investigation on the validity of these risk-neutral bounds, and

conclude that although the direction of the bounds is correct (lower bounds), these bounds

are not binding. Finally, Gandhi et al. (2023) relate option-based expected returns to return

expectations from investor surveys (UBS/Gallup survey for investor optimism, Duke’s CFO

survey), and show that the two sets of expected returns are quite different.

This paper adds to our understanding of the relation between expected returns and risk-

neutral moments by using alternative pricing kernels to obtain option-based expected returns

under the physical measure. I then test the validity of the risk-neutral bounds by examining

their summary statistics and comparing them to summary statistics of realized and expected

returns. Importantly, I provide theoretical explanations as to why the expected returns from

certain discount factors, e.g., monotonic marginal utility, satisfy the risk neutral bounds

while in other cases, e.g., expected returns from non-monotonic utility with VIX-dependent

parameters, do not.

The fact that the accuracy of risk-neutral bounds depends on option expiration and
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on time-variation of risk aversion but not on the monotonicity of the discount factor is

a novel finding that has not been previously examined by the literature. Although risk-

neutral bounds for expected returns may not be perfect, especially for long maturities (e.g.,

6-month), my results indicate that these bounds are superior to alternative measures of

expected returns such as average realized returns or fitted returns using predictive factors

(e.g., price-dividend ratio, dividend growth, etc.). This is mainly due to the forward-looking

aspect of option-based risk-neutral bounds.

The rest of the paper is organized as follows. Section 2 provides the theoretical frame-

work and discusses the alternative pricing kernels used in this study. Section 3 introduces

the data and estimation methodology for the risk-neutral density from option prices. Sec-

tion 4 discusses the estimation results for the different discount factors. Section 5 presents

the empirical results regarding the various forward-looking physical densities generated by

the alternative pricing kernels. Section 6 examines the validity of risk-neutral bounds for

expected returns, and Section 7 concludes.

2 Theoretical Background

To set the stage for the empirical analysis on how the different stochastic discount factors

affect the moments under the physical measure and the accuracy of risk neutral bounds for

expected returns, I first discuss the various pricing kernels used to derive option-based mo-

ments. These discount factors can be broadly classified into monotonic and non-monotonic

groups. For each group, I assume both constant and time-varying parameters.

2.1 Monotonic Pricing Kernel

The baseline specification used in my tests is the power utility discount factor defined over

stock market wealth Wt:

U1(Wt) =
W 1−γ1

t

1− γ1
.

Based on the above functional form, the intertemporal marginal rate of substitution between

dates t and t+ T is given by

M1,t,t+T (Rt,t+T ) = β
U ′(Wt+T )

U ′(Wt)
= exp{logβ − γ1lnRt,t+T}. (1)

8



The constant β is the rate of time preference, and Rt,t+T = Wt+T

Wt
is the return on total equity

wealth. The parameter γ1 > 0 describes (relative) risk aversion since

− Rt,t+T

M1,t,t+T

∂M1,t,t+T

∂Rt,t+T

= γ1.

A natural extension to the standard power-utility pricing kernel of equation (1) is to

assume that risk aversion is time-varying depending on observable variables that are known

at time t. To this end, Linn et al. (2018) and Kim (2021) introduce conditional estimation of

their non-parametric discount factor during periods of high and low VIX values. Given the

importance of the VIX in option-pricing and the recent results in Schreindorfer and Sischert

(2022), I assume an extension of the monotonic pricing kernel of equation (1) for which γ1

is time-varying with an explicit dependence on the VIX:

M2,t,t+T (Rt,t+T ) = β
U ′
2(Wt+T )

U ′
2(Wt)

= exp{logβ − γ1nvix
γ3
t,t+T lnRt,t+T}. (2)

Risk aversion in the above discount factor is given by γ1nvix
γ3
t,t+T , where nvixt,t+T is the

VIX (V IXt,t+T ) normalized by its unconditional average (V IXt,t+T ) and scaled by
√
T , the

number of days in 1-, 2-, 3-, and 6-month intervals (T ≈ 30, 60, 90, 180), over
√
365:

nvixt,t+T =
V IXt,t+T

√
T

V IXt,t+T

√
365

(3)

The intuition behind this formulation is that there is a natural level of risk associated with

investing in the stock market, which is captured by the average VIX. When VIX is greater

or lower than its average, risk aversion will be affected depending on the signs of γ1 and

γ3. Similarly, since VIX is a percentage, I opt for the specification nvixγ3
t,t+T in equation (2)

instead of the term V IXγ3
t,t+T to avoid extreme values for risk aversion when the VIX is very

low (high) and γ3 is a negative (positive) number. The VIX and the normalized VIX (nvix)

are known to the investor at time t. Hence, to avoid any look-ahead bias, the average VIX,

V IX in equation (3), is estimated over the 1986-1995 period before the start of our sample.

The values for the average VIX are 5.356%, 7.818%, 10.186%, and 13.119% for the 1-, 2-, 3-,

and 6-month maturities respectively.2

Given the positivity of the VIX and nvix, a well-defined risk aversion coefficient would

require a positive γ1 parameter. The constant γ3 captures the procyclicality of risk-aversion

2The VIX values before 1990 were fitted by estimating the regression of the VIX on the old methodology
VIX at the daily frequency. The estimates of this regression are: intercept = 0.240% (t-stat= 1.04), OLS
coefficient = 0.987 (t-stat=71.01), R2 = 96%. Standard errors were calculated with a 30-lag Newey-West
correction for autocorellation and heteroscedasticity.
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with respect to the nvix. For positive γ1, if γ3 is positive (negative), risk aversion is pro-

cyclical (counter-cyclical) with respect to the nvix. Empirically, we would expect γ3 to be

positive so that risk aversion raises with the nvix. If γ3 is zero, equation (2) collapses to the

utility function with constant risk aversion (equation (1)).

2.2 Non-monotonic Pricing Kernel

One contentious aspect of the option-derived pricing kernel is its monotonicity. Although

Linn et al. (2018) cannot find evidence in support of non-monotonicities in option-based

marginal utility, the existing literature has advocated for U-shaped discount factors (e.g., Ait-

Sahalia and Lo (2000), Rosenberg and Engle (2000)). Given the recent findings in Schrein-

dorfer and Sischert (2022) and Driessen et al. (2022), I also allow for non-monotonicities in

the pricing kernel. The non-monotonic pricing kernel is described by a power utility function

with a quadratic exponent.

Specifically, I assume the following quadratic intertemporal marginal rate of substitution

M3,t,t+T (Rt,t+T ) = exp{logβ − γ1lnRt,t+T − γ2ln
2Rt,t+T}. (4)

The non-monotonicity of the pricing kernel is captured by the square term ln2Rt,t+T and

the parameter γ2. A possible interpretation of the non-monotonic model is a power utility

specification with a risk-aversion coefficient that depends on the stock market since

− Rt,t+T

M3,t,t+T

∂M3,t,t+T

∂Rt,t+T

= γ1 + 2γ2lnRt,t+T . (5)

Based on the above relation, the coefficient γ2 determines the procyclicality of the coefficient

of risk aversion with respect to stock market returns. If γ2 is positive (negative) then risk

aversion is procyclical (counter-cyclical) with respect to the stock market. According to

Bakshi and Madan (2007) and Bakshi et al. (2010), another possible interpretation of the

quadratic term is that it captures risk aversion of investors who are shorting the market.

Cuesdeanu and Jackwerth (2018) provide an thorough analysis of the possible causes of the

non-monotonic pricing kernel.

Finally, similar to the VIX-dependent model of equation (2), in addition to non-monotonicities,

I introduce a more complicated pricing kernel, which is characterized by dependence of the

quadratic preference parameters on the normalized VIX (nvix). Specifically, I assume that

the discount factor is

M4,t,t+T (Rt,t+T ) = exp{logβ − γ1nvix
γ3
t,t+T lnRt,t+T − γ2nvix

γ3
t,t+T ln

2Rt,t+T}. (6)
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The dependence of the above pricing kernel on the normalized VIX (nvix) is regulated by

the constant γ3. In this case, risk aversion depends both on the VIX and on stock market

returns since

− Rt,t+T

M4,t,t+T

∂M4,t,t+T

∂Rt,t+T

= γ1nvix
γ3
t,t+T + 2γ2nvix

γ3
t,t+T lnRt,t+T . (7)

Because the VIX is positive, the coefficient γ2 in equation (6) determines the procyclical-

ity of risk aversion with respect to stock market as in the non-monotonic discount factor

with fixed parameters of equation (4). If γ2 is positive (negative) then risk aversion is pro-

cyclical (counter-cyclical) relatively to the stock market. Nevertheless, the introduction of

a quadratic term complicates the dependence of risk aversion on the normalized VIX nvix,

which is given by

γ1γ3nvix
γ3−1
t,t+T + 2γ2γ3nvix

γ3−1
t,t+T lnRt,t+T .

In this case, the procyclicality of risk aversion with respect to the VIX also depends on the

level of stock market returns.

The dependence of option-based pricing kernels on the VIX has gained considerable

traction in the existing literature (e.g., Linn et al. (2018), Kim (2021)). To the contrary,

the existence and significance of non-monotonic (quadratic) terms in the pricing kernel is a

controversial topic with evidence both in support (e.g., Schreindorfer and Sischert (2022),

Driessen et al. (2022)) and against (e.g., Linn et al. (2018), Barone-Adesi et al. (2020)).

To further advance this discussion, the GMM estimation in my empirical analysis is uncon-

strained, and the preference parameters are dictated by the data.

Overall, I opt for parametric specifications of the pricing kernel as opposed a non-

parametric one (e.g., Linn et al. (2018)) for two reasons. First, the parametric discount factor

is based on solid economic foundations, and allows me to derive risk-return relations that

involve structural parameters (e.g., risk aversion). Secondly, and more importantly, paramet-

ric discount factors allow me to examine how different properties, e.g, non-monotonicities or

time-variation of parameters, affect the resulting option-based physical measures. In general,

my assumptions for the parametric pricing kernels are quite versatile, and allow for a rich

set of risk attitudes. Finally, as shown in Sichert (2023) non-monotonicities in option-based

pricing kernels can be accurately captured by quadratic functions, and it is not necessary to

resort to higher-order models.
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2.3 Estimation of the Pricing Kernel and the Forward-looking

Physical Measure

In estimating the moments under the physical distribution across different pricing kernels, I

assume that Q(R) is the cumulative distribution function for gross equity returns, R, under

the risk-neutral measure. The risk-neutral density can be estimated from option prices. I

also assume that P (R) is the forward-looking continuous cumulative distribution function

for equity returns under the physical measure, and dP (R)/dQ(R) is the Radon-Nikodym

derivative between the two measures. The forward-looking physical measure is unobservable.

However, assuming that the conditions in Linn et al. (2018) hold, the Radon-Nikodym

derivative is unique, and is equal to the inverse of the discount factor

dP (R)

dQ(R)
= Mt,t+T (R)−1. (8)

The forward-looking physical measure can therefore be calculated as the product of the

risk-neutral measure with the inverse of the pricing kernel

dP (R) = Mt,t+T (R)−1dQ(R). (9)

In general, the pricing kernel is also unobservable. However, I can use equations (1) - (6)

in a GMM system to estimate the unknown parameters of the discount factor. To this end,

I employ two sets of GMM moment conditions. The first one, which is introduced in Linn et

al. (2018), is based on the fact that any continuous density function is a standard uniform

random variable, P (R) ∼ U [0, 1], and thus

E
[( ∫ R∗

t,t+T

0

Mt,t+T (R)−1dQt,t+T (R)
)n]

=
1

n+ 1
, n = 1, 2, .... (10)

The variable R∗
t,t+T above is the realized gross equity return between dates t and t+ T .

The second set of target GMM moments is a rational expectations restriction where the

unconditional average of option-based expected returns according to the physical measure

are equal to the unconditional averages of realized returns
(
E
[
R∗

t,t+T

])
:

E
[ ∫ +∞

0

R Mt,t+T (R)−1dQt,t+T (R)
]
= E

[
R∗

t,t+T

]
. (11)

By equating average realized returns to average expected returns, I establish a link between

realized and option-based expected returns. The rational expectations moment condition of
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equation (11) is a novel component in the GMM estimation of option-based discount factors

that has not been used before.

Following Bliss and Panigirtzoglou (2004), I further impose the normalisation

(∫ +∞

0

Mt,t+T (R)−1dQt,t+T (R)
)−1

(12)

in the above theoretically-derived moment conditions to guarantee that the estimated pa-

rameters imply well-behaved conditional physical density functions for every date in my

sample. After this normalization, the GMM system from equations (10) and (11) becomes E
[(∫R∗

t,t+T
0 Mt,t+T (R)−1dQt,t+T (R)∫+∞

0 Mt,t+T (R)−1dQt,t+T (R)

)n]
− 1

n+1
, n = 1, 2, ...,

E
[∫+∞

0 R Mt,t+T (R)−1dQt,t+T (R)∫+∞
0 Mt,t+T (R)−1dQt,t+T (R)

]
− E

[
R∗

t,t+T

]
 . (13)

As in Bliss and Panigirtzoglou (2004), due to this normalization, the discount rate parameter

β in equations (1), (2), (4), and (6) cannot be identified and will be dropped. The normal-

isation in equation (13) is equivalent to imposing an additional time-varying parameter in

the discount factor as in Schreindorfer and Sischert (2022), which forces every estimated

physical density to integrate to one.

I estimate the parameters in the pricing kernels of equations (1), (2), (4), and (6) with

an exactly identified single-stage GMM, i.e., n is equal to m− 1 in equation (13), where m

is the number of parameters in the discount factor. For the case that m = 1, namely the

estimation of the simple power utility model from equation (1), GMM is conducted with an

over-identified 2× 2 system with one degree of freedom. This over-identification stems from

the fact that I force the simple one-parameter discount factor to satisfy both the uniform

moments (equation (10)) and the rational expectations (equation (11)) condition.

For all pricing kernels, I use an m×m diagonal weighting matrix with diagonal elements

{1, 1, ..., 100}. The weighting matrix assigns a weight of one to the uniform moments (equa-

tion (10)), and a weight of 100 to the rational expectations condition (equation (11)). This

is because the scale of the rational expectations condition is much lower than that of the

uniform moment. The gradient of the GMM objective function is obtained numerically by

differentiating equation (13) with respect to the parameters of each discount factor. Stan-

dard errors are corrected for autocorrelation and heteroscedasticity using the Newey and

West (1987) formula with 12, 6, 4, and 2 lags for the 1-, 2-, 3-, and 6-month expirations,

respectively. For the over-identified GMM system that corresponds to the standard power

utility model of equation (1), I also calculate the χ2-test for GMM errors. The estimation

of the remaining discount factors (equations (2) to (6)) is based on exactly-identified GMM
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systems for which the χ2-test has zero degrees of freedom.

After estimating the preference parameters via GMM, I can multiply the inverse of the

estimated pricing kernel with the option based risk-neutral density to derive the option-based

physical measure. Specifically, the option-based physical density, distribution function, and

corresponding physical moments are given by

dPt,t+T (R)/dR =
Mt,t+T (R)−1dQt,t+T (R)∫ +∞

0
Mt,t+T (R)−1dQt,t+T (R)

/dR (14)

Pt,t+T (R
∗
t,t+T ) =

∫ R∗
t,t+T

0 Mt,t+T (R)−1dQt,t+T (R)∫ +∞
0

Mt,t+T (R)−1dQt,t+T (R)

Et[Rt,t+T ] =

∫ +∞
0

R Mt,t+T (R)−1dQt,t+T (R)∫ +∞
0

Mt,t+T (R)−1dQt,t+T (R)

vart(Rt,t+T ) =

∫ +∞
0

(R− Et[R])2 Mt,t+T (R)−1dQt,t+T (R)∫ +∞
0

Mt,t+T (R)−1dQt,t+T (R)

skewt((R)t,t+T ) =

∫ +∞
0

(R− Et[R])3 Mt,t+T (R)−1dQt,t+T (R)

vart(Rt,t+T )3/2
∫ +∞
0

Mt,t+T (R)−1dQt,t+T (R)

kurtt(Rt,t+T ) =

∫ +∞
0

(R− Et[R])4 Mt,t+T (R)−1dQt,t+T (R)

vart(Rt,t+T )4/2
∫ +∞
0

Mt,t+T (R)−1dQt,t+T (R)
.

The same approach without the term
Mt,t+T (R)−1∫+∞

0 Mt,t+T (R)−1dQt,t+T (R)
is used to calculate moments of

the risk-neutral density. Finally, log-return moments are calculated by replacing the terms

(R−Et[R])n above with (lnR−Et[lnR])n, both for the physical and the risk-neutral measures.

3 Option Data and the Risk-Neutral Density

In this section, I discuss the options data used in my empirical analysis that examines how

different pricing kernels affect the moments of the physical distribution and the accuracy of

risk-neutral bounds for expected returns.

3.1 Data

For my tests, I use option data with expirations of one, two, three, and six months. Choosing

a cross-section of expirations is done for two reasons. First, it helps verify the robustness

of my results across expirations. Second, it allows for term-structure implications across

preference parameters similar to Driessen et al. (2022). The sample of option contracts on

the S&P500 is from OptionMetrics, and is summarized in Table 1. I do not to include
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high-frequency options (0DTE’s) in my sample so that the time-series of my options dataset

spans a long period of time characterized by a wealth of events (Great Recession, Covid,

etc.). Tothe contrary, high-frequency options were introduced after 2015: 2016 for weekly’s

and 2022 for daily’s. Finally, in selecting option contracts, I impose the following filters:

non-missing implied volatility, positive volume, and bid price above $3/8. After imposing

these criteria, I also require that outside the ±2% moneyness range, there are at least six

option contracts for each date, with at least three puts and at least three calls.

There are two nonconsecutive 2-month observations and eleven nonconsecutive 3-month

observations at the beginning of the sample for which the risk-neutral distributions could not

be estimated. For these dates, there were not enough option contracts satisfying the sample

selection criteria. Further, consecutive observations are required to calculate autocorrelations

for Newey-West standard errors in the GMM estimation. Hence, for the 2- and 3-month

options additional observations had to be deleted. The resulting sample is from January

1996 to December 2022 for 1-month expiration options, May 1998 to November 2022 for

2-month expiration, January 2002 to October 2022 for 3-month expiration, and June 1996

to June 2022 for 6-month options.

3.2 Derivation of the Risk-neutral Density

The derivation of the risk-neutral density (RND) follows the methodology in Figlewski

(2008), Birru and Figlewski (2012), Linn et al. (2018), and Alexiou et al. (2024). The

first step is to construct the implied volatility (IV) curve across strike prices. For strike

prices (K) outside the ±2% range of the underlying spot price (St), I use IV’s provided

by OptionMetrics. For strike prices inside the ±2% range of the underlying spot price, I

combine the IV’s of OptionMetrics for puts (IVp) and calls (IVc) with the same strike price

into a single point

IV
(
K ∈ (1± 2%)St

)
= ωIVp

(
K ∈ (1± 2%)St

)
+ (1− ω)IVc

(
K ∈ (1± 2%)St

)
,

where ω = (Kmax −K)/(Kmax −Kmin), and Kmax and Kmin are respectively the maximum

and minimum strike prices in the ±2% moneyness range. As in Alexiou et al. (2024), this

is done to avoid an artificial jump at the ATM region, which could arise from ATM puts

potentially trading at higher IV relative to ATM calls.

Based on these IV points, I construct the IV curve by fitting a quintic spline with

1,000 moneyness nodes. Using the Black and Scholes (1973) formula, the IV curve is then

converted into a curve of call option prices, Ct,t+T (StRi,t, St, r̃f,t,t+T , IVt,t+T (K), divt,t+T ),

where Ri,t = Ki,t/St is the moneyness (or gross return) for every strike price, r̃f,t,t+T is the
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continuously-compounded risk-free rate (Federal funds rate), and divt,t+T is the continuously-

compounded dividend yield from OptionMetrics. The risk-neutral density, q̃t,t+T (SR) =

dQ̃t,t+T (SR)/d(SR), is derived using the result in Breeden and Litzenberger (1978) where

q̃t,t+T (StRt,t+T ) = eT r̃f,t,t+T
∂2Ct,t+T (StRt,t+T , St, r̃f,t,t+T , IVt,t+T (K), divt,+T )

∂(StRt,t+T )2
.

The chain rule implies that the risk-neutral density for gross returns is

q̃t,t+T (Rt,t+T ) = Ste
T r̃f,t,t+T

∂2Ct,t+T (StRt,t+T , St, r̃f,t,t+T , IVt,t+T (K), divt,+T )

∂(StRt,t+T )2
.

The second derivative above is calculated using a second-order centered difference approxi-

mation. Further, I can rescale the RND with the factor

q̂t,t+T (Ri,t) =
q̃t,t+T (Ri,t)∑1,000

i=1 q̃t,t+T (Ri,t)(Ri+1,t −Ri,t)
.

In this case, q̂t,t+T (Ri,t) is a well-defined density function for gross returns (moneyness) since

1,000∑
i=1

q̂t,t+T (Ri,t)(Ri+1,t −Ri,t) =

1,000∑
i=1

q̃t,t+T (Ri,t)(Ri+1,t −Ri,t)∑1,000
i=1 q̃t,t+T (Ri)(Ri+1,t −Ri,t)

= 1.

The derived density is truncated at its tails because options for extreme values of the

stock market index are dropped from the sample (< $3/8) or the corresponding prices are

zero. Hence, as in Figlewski (2008) and Linn et al. (2018), the final step in the derivation of

the RND is adjusting its tails by appending heavy-tailed distributions. To this end, I assume

that the left (l) and right (r) tails of the RND are given by two-parameter Pareto density

functions, fl(R) and fr(R):

fl(R) =
αl(λl −R)−αl−1

λ−αl
l

, R ≤ λl, fr(R) =
αrR

−αr−1

λ−αr
r

, R ≥ λr. (15)

The two parameters, αl and λl (αr and λr) are identified by solving a 2× 2 system of non-

linear equations where I set the left (right) Pareto density above equal to the values of the

derived empirical RND at the 2% and 5% (95% and 98%) percentiles. Finally, using the

solutions for the parameters in the tail distributions, I extend the domain of moneyness by

approximately 60% (30% in the left tail and 30% in the right tail) from 1,000 to 1,600 nodes

and re-normalize the RND to obtain a well-defined density that integrates to one:
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qt,t+T (Ri) =
q̂t,t+T (Ri)∑1,400

i=1 q̂t,t+T (Ri)(Ri+1 −Ri)
.

Overall, I obtain 323 RND’s for the 1-month expiration, 147 for the 2-month, 83 for the

3-month, and 52 RND’s for the 6-month expiration. Figure A.1 in the Appendix shows the

average RND, with and without tail adjustments, obtained from option prices for different

expirations. These graphs are very similar to the ones in Linn et al. (2018).

4 Estimation of the Alternative Pricing Kernels

Using the GMM estimation methodology from Section 2.3 and the RND’s from Section 3.2,

I estimate the parameters in the various discount factors from equations (1), (2), (4), and

(6). The estimated pricing kernels will help us identify how different functional forms of the

pricing kernel affect physical moments and the accuracy of risk-neutral bounds.

4.1 Monotonic Pricing Kernels

Table 2 reports the estimates for the standard monotonic power utility model (equation (1)).

The risk aversion parameters are positive across expirations, and range from 1.266 (2-month)

to 1.524 (6-month). The values of these parameters are consistent with the ones reported in

Bliss and Panigirtzoglou (2004), and imply that risk aversion is stable across expirations.

Table 3 reports the results for the monotonic pricing kernel with time-varying risk aversion

coefficients that depend on the normalized VIX (nvix) from equation (2). γ1 estimates

are positive across all expirations implying positive risk aversion. The γ1 estimate for the

1-month options is 0.518. To the contrary, the γ1 estimates for the 2-,3-, and 6-months

options range from 1.295 to 1.661. These discrepancies in γ1 for the VIX-dependent pricing

kernel across expirations can be explained he coefficient that regulates the dependence of

risk aversion on the normalized VIX, γ3, which is positive for the 1-month expiration (1.936)

and negative (from -0.817 to -0.559) for the 2-, 3-, and 6-month expirations.

The above estimates imply that risk aversion is procyclical with respect to the VIX for

the 1-month expiration, and counter-cyclical for the remaining expirations. The finding that

risk aversion increases with VIX for the 1-month expiration is intuitive. However, the fact

that risk aversion decreases with VIX for the 2-, 3-, and 6-month expirations might appear

counter-intuitive. Nevertheless, this finding is consistent with the results in Schreindorfer

and Sischert (2022) regarding counter-cyclical risk aversion with respect to the VIX.
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4.2 Non-Monotonic Pricing Kernels

Table 4 reports the GMM results for the non-monotonic discount factor of equation (4)

with constant parameters. For the 1-month expiration, the linear coefficient γ1 is positive

(0.814) and the quadratic parameter γ2 is negative (-7.412). This implies that risk-aversion

is counter-cyclical with respect to market returns (equation (5)), and that marginal utility is

U-shaped. To the contrary, for 2-, 3-, and 6-month expirations, both the linear γ1 parameter

and the quadratic γ2 coefficients are positive (γ1 = 1.386-1.672, γ2 = 0.334-0.779). According

to equation (5), this finding implies that risk aversion for these expirations is pro-cyclical,

and that marginal utility is inverse U-shaped. For the 2-, 3-, and 6-month expirations, the

procyclicality of risk aversion with respect to the stock market is counter-intuitive. However,

this procyclicality with respect to the stock market is consistent with the counter-cyclicality

of risk aversion with respect to the nvix for the VIX-dependent model of equation (2), which

was documented in Table 3.

Finally, Table 5 reports estimation results for the non-monotonic pricing kernel with

VIX-dependent parameters from equation (6). In this case, the linear coefficient γ1 is pos-

itive (0.129 to 1.991) and the quadratic coefficient γ2 is negative (-47.470 to -2.143) across

all expirations. These estimates imply U-shaped marginal utility and counter-cyclical risk

aversion with respect to the stock market. The parameter γ3 that determines the dependence

of the linear and quadratic coefficients on the nvix is also negative (γ3 = -9.720 to -4.421).

However, negative estimates for the VIX-dependence coefficients γ3 do not necessarily mean

that risk aversion is decreasing in the VIX. As shown in equation (7), the overall cyclicality

of risk aversion with respect to the nvix in the VIX-dependent quadratic discount factor

also depends on the level of stock market returns.

Based on the standard errors and t-statistics of the estimates in Table 2 to Table 5, the

option-implied pricing kernel is probably monotonic since the quadratic terms are mostly

statistical insignificant. To the contrary, the t-statistics (t-stats: 4.43 to 6.83 in Table 2,

0.31 to 5.12 in Table 3, and 0.23 to 4.08 in Table 5) for the linear γ1 coefficients in the

monotonic and non-monotonic discount factors of equations (1), (2), and (6) are much larger,

in absolute magnitude, than those for the quadratic γ2 coefficients (-1.38 to -0.30 in Table

5) in the pricing kernels of equations (4) and (6). Regarding VIX-dependence the evidence

most likely points towards VIX-independence with the exception of two instances in Table

5: the 1- and 2-month expirations for the non-monotonic VIX-dependent model of equation

(6) with t-statistics for γ3 equal to -2.21 and -2.29. In all other cases in Table 3 and Table

5, the estimates for the VIX-dependence parameter γ3 are statistically insignificant.

Figure 1 plots the various pricing kernels based on the GMM results from Table 2 through
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Table 5. In these plots, the nvix in the VIX-dependent discount factors is set equal to its

sample average for each expiration. With the exception of the 2-, 3-, and 6-month expira-

tions for the fixed parameters non-monotonic pricing kernel (equation (4)), the remaining

discount factors appear to be monotonically decreasing for most moneyness values. The

fixed-parameters non-monotonic model for 2-, 3-, and 6-month expirations has an inverse

U-shape because the estimates both for the linear γ1 and the quadratic γ2 coefficients are

positive (Table 4). Nevertheless, the increasing part of this pricing kernel corresponds to very

low values for market returns (e.g., -100% to -50%), which are assigned almost zero prob-

abilities in practice. For realistic market returns (e.g., -50% to 30%), the non-monotonic

pricing kernel of equation (4) is decreasing.

The VIX-dependent non-monotonic specification of equation (6) is decreasing for most

moneyness values. There is a small increasing portion for this discount factor that cor-

responds to large, positive values for market returns. The U-shape of the non-monotonic

pricing kernel with VIX-dependent parameters is due the fact that the quadratic parame-

ter γ2 is negative (Table 5). According to equation (7), for negative γ2 and large positive

values of stock market returns, risk aversion turns negative. In this case, the pricing kernel

is increasing, and the risk-return relation is negative. Regardless of whether non-monotonic

pricing kernels are U-shaped on inverse U-shaped, these non-monotonicities appear in ei-

ther extremely large or extremely low returns, which are assigned near zero probabilities in

the far-left or far-right of the distribution of returns. This shows that non-monotonicities

may not be particularly important in affecting the moments of the physical density. We

shed more light on this conjecture in our empirical analysis below, where we compare the

resulting physical densities and corresponding moments from the various estimated pricing

kernels, regardless of the statistical significance of their coefficients.

5 Physical Densities from Alternative Pricing Kernels

Using the estimation results for the discount factors from the previous section, I derive the

corresponding option-based physical densities and moments for gross returns according to

equation (14). This will allow me to identify how different functional forms of the pricing

kernel affect physical moments and the accuracy of risk-neutral bounds for expected returns.

For comparison, I also derive the distribution and density functions of realized returns by

fitting a kernel-density estimator on the set on realized returns, and then interpolating the

density values over the entire range of moneyness using a piecewise cubic hermite polynomial.

Figure 2 plots the average option-based physical densities across pricing kernels and

expirations to verify that these densities are well-defined. Most of the resulting physical
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distribution functions appear to be quite similar with the exception of the density for the

non-monotonic VIX-dependent discount factor from equation (6) and the density for realized

returns. To this end, for my first set of tests, I run pairwise Kolmogorov-Smirnov statistics

that examine the equality of option-based physical distributions across discount factors.3 In

these tests, I also compare the option-based physical distributions to the risk-neutral ones

and the distribution of realized returns.

5.1 Kolmogorov-Smirnov Tests

Results for the Kolmogorov-Smirnov tests are reported in Table 6, where option-based phys-

ical densities are identified by the exponents of the corresponding discount factors: γ1r

for equation (1), γ1nvix
γ3r for equation (2), γ1r + γ2r

2 for equation (4), and γ1nvix
γ3r +

γ2nvix
γ4r2 for equation (6). Based on the percentage of rejections of these tests over the

sample period, the most similar option-based distributions are those derived from the two

monotonic specifications (equations (1) and (2)) with rejections ranging from 3% (2-month)

to 23% (6-month).

The option-based physical distributions from the non-monotonic model with fixed param-

eters (equation (4)) are somewhat different to those from the monotonic specifications with

rejections of the Kolmogorov-Smirnov tests ranging from 2% (2-month) to 77% (1-month).

Finally, the option-based distributions from the non-monotonic discount factor with VIX-

depended parameters (equation (6)) are quite different to the rest of the distributions with

very high rejection percentages (84% to 96%) across all expirations.

These results shed additional light on a very contentious literature (e.g., Linn et al.

(2018), Schreindorfer and Sischert (2022)) regarding the importance of VIX-dependent pa-

rameters and non-monotonicities in the pricing kernel from the perspective of equality of the

resulting physical distributions. Specifically, the VIX-dependent quadratic pricing kernel

from equation (6) induces much different option-based physical distributions than the rest

of the discount factors. To the contrary, the VIX-dependent monotonic pricing kernel of

equation (2), and to a lesser extend the constant parameter non-monotonic discount factor

of equation (2), imply physical distributions that are quite similar to the fixed-parameter

monotonic discount factor of equation (1). In other words, non-monotonic pricing kernels

with constant parameters or monotonic pricing kernels with VIX-dependent risk aversion

yield relatively similar physical distributions to those from the standard monotonic discount

factor. To the contrary, combining non-monotonicities with VIX-dependence of preference

parameters generates vastly different physical densities than the rest of the discount factors.

3In untabulated results, I also run the Cramer-von Mises test. The results are quantitative similar.
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According to the results in Table 6, all specifications generate physical-distribution that

are different than the risk-neutral measure with rejections of the Kolmogorov-Smirnov test

ranging from 23% to 100%. Interestingly, the average option-based physical distribution is

quite different to the distribution of realized returns across all discount factors and expira-

tions. To identify which moments cause the Kolmogorov-Smirnov tests to reject equality of

distributions across distributions, I further compare the values and comovement of the first

four moments of these distributions.

5.2 Moments of the Physical Distribution

Table 7 reports summary statistics for the first four moments of the option-based physical

distributions across expirations and pricing kernels. Table 7 also reports summary statistics

for the first four moments of the risk-neutral distribution as well as the sample moments of

the realized distribution. Panel A shows the results for expected returns across distributions.

All discount factors are characterized by the same average expected returns (0.63% for

1-month to 4.25% for 6-month), which are identical to the average realized return, since

this moment is part of the GMM objective function (equation (2.3)). Similarly, the physical

expected returns across all pricing kernels are larger than the risk-neutral ones (-0.06%

for 1-month to 0.46% for 6-month). Although average expected returns are the same across

models, the volatility of expected returns differs significantly across discount factors, with the

VIX-dependent non-monotonic model of equation (6) yielding less volatile expected returns

than the remaining models across all maturities, with the exception of the 3-month expected

returns for the VIX-dependent monotonic specification of equation (6).

Panel B, Table 7 reports the variances of the option-based physical densities across

discount factors and expirations. Although the variance is not a target moment in the

GMM estimation, the resulting physical variances are quite consistent across pricing kernels

(0.34%−0.43% for 1-month to 1.33%−2.23% for 6-month), and are less than the risk-neutral

ones. The option-based physical densities result in average variances that are larger than the

variance of realized returns (0.24% for 1-month to 1.13% for 6-month). According to Panel B,

among the different discount factors, the non-monotonic pricing kernel with VIX-dependent

parameters (equation (6)) generates the lowest physical variances.

Panel C, Table 7 reports the results for physical skewness, which is negative across all

expirations and discount factors (-1.45 to -0.59 for 1-month and -0.91 to -0.15 for 6-month).

Option-based physical skewness is, in absolute value, less than the risk-neutral one (-1.51

for 1-month to -0.98 for 6-month). Similar to the variance case, the non-monotonic VIX-

dependent model (equation (6)) generates the lowest, in absolute magnitude, physical skew-
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ness (-0.59 for 1-month to -0.15 for 6-month). To the contrary, the rest of the discount

factors imply physical skewness that is large in absolute value and similar in magnitude,

albeit smaller, to the risk-neutral one. The results are similar for physical kurtosis in Panel

D of Table 7, where the non-monotonic model with VIX-dependent parameters generates

the least amount of kurtosis (3.24 or 6-month to 4.37 for 1-month).

In general, the risk-neutral density has negative skewness and positive excess kurtosis

(7.67 for 1-month to 4.49 for 6-month), and these characteristics carry over to the physical

densities as well. Interestingly, the non-monotonic specification with VIX-dependent param-

eters generates the least amount of negative skewness and excess kurtosis for the physical

measure. In fact, skewness and kurtosis from the VIX-dependent non-monotonic discount

factor are too low compared to the corresponding risk-neutral and realized moments. Finally,

Table A.2 in the Appendix reports moments for the physical and risk-neutral distributions

for log-returns (lnRt,t+T ). The results are qualitatively similar to the ones in Table 7 with a

key difference that skewness (in absolute value) and kurtosis for log-returns are larger than

for gross returns.

Overall, the results in this section constitute an out-of-sample analysis for the option-

based physical moments from the various pricing kernels. The GMM system of equation

(13) estimates the various discount factors by matching higher-order moments of the physical

distribution function to moments from the uniform distribution and average expected returns

to average realized returns (equations (10) and (11)). Hence, the results in Table 7 examine

the “out-of-sample” plausibility of the resulting high-order physical moments (e.g., variance,

skewness) although these high-order moments are not part of the estimation.

The various discount factors generate plausible and consistent higher-order moments.

For example, in all cases risk-neutral variance and skeweness are larger than physical ones.

Yet, risk-neutral kurtosis is similar to the physical one. Notably, the VIX-dependent non-

monotonic pricing kernel of equation (6) not only generates the lowest higher order moments

across discount factors, but also yields moments with the least amount of time-variation. This

is because the combination of non-monotonicity with VIX-dependence results in a discount

factor, whose times-series volatility is much larger than that of the remaining specifications

with fixed parameters or with monotonic VIX-dependence.

The pronounced movements of the non-monotonic VIX-dependent pricing kernel soak up

most of the time variation of the risk-neutral density and result is a fairly stable physical

distribution. This might be an important argument regarding the plausibility of this discount

factor. The fact that the VIX-dependent non-monotonic pricing kernel generates very low,

in absolute magnitude, moments for the physical density than the rest of the specifciations

(fixed-parameter non-monotonic, VIX-dependent monotonic, fixed-parameter monotonic) is
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a novel result that has not been studied by the literature.

5.3 Coefficients of Determination for Physical Moments

To complement the findings regarding the levels of the first four moments of the option-based

physical densities, Table 8 reports the adjusted coefficients of determination (R2’s) from

regressing the physical moments of each pricing kernel to the same moments implied by the

other pricing kernels and the risk-neutral measure. These tests examine the comevement

across the option-based physical moments from the various discount factors.

First, the option-based variances across pricing kernels are highly correlated with R2’s

much higher than 80% across all expirations (average R2 93% to 97%). To the contrary, the

moments with the highest degree of divergence across discount factors are expected returns,

with average R2’s between 33% and 43% across expirations (42% and 50% if we exclude the

R2’s from regressions of the risk-neutral expected returns). Skewness and kurtosis exhibit

similar degrees of divergence across discount factors. Specifically, the results from Table 8

suggest that expected returns, skewness, and kurtosis are strongly correlated (R2’s from 62%

to 99%) across the monotonic pricing kernels of equations (1) and (2). The moments from

these two monotonic pricing kernels are also strongly correlated (R2’s from 55% to 99%)

to those from the fixed-parameter non-monotonic pricing kernel of equation (4). To the

contrary, expected returns, skewness, and kurtosis from the VIX-dependent non-monotonic

discount factor (equation (6)) are almost completely orthogonal (R2’s from 0% to 23%) to

the corresponding moments from the remaining pricing kernels.

Nevertheless, the most striking result in Table 8 is that the physical variance is near-

perfectly correlated across all four discount factors and the risk-neutral density (R2’s from

82% to 99%). In sum, physical variances are highly correlated both across pricing kernels

and with the corresponding risk-neutral moments. To the contrary, the rest of the physical

moments are less correlated across discount factors and from the risk-neutral ones. This

divergence in the comovement of physical moments is mainly driven by the non-monotonic

discount factor with VIX dependence.

This is the first paper to show that the effects of monotonic and non-monotonic pricing

kernels vary considerably across moments. The option-implied variances are strongly corre-

lated across discount factors, whereas the rest of the moments, especially odd moments such

as expected returns and skewness, differ significantly across pricing kernels. The differential

effects of the various pricing kernels on odd and even moments are clearly illustrated in Ta-

ble 9, which shows the coefficients of determination across pricing kernels for the third and

fourth central moments (skewness and variances without the variance scaling). The R2’s for

23



the third moments range from 46% (1-month) to 86% (3-month), whereas the R2’s for the

fourth moments range from 87% (1-month) to 93% (3-month). For all expirations, the co-

movenemnt of fourth moments is much more similar across pricing kernels than that of third

moments. Hence, Table 8 and Table 9 highlight the differential effects of the various pric-

ing kernels across odd and even moments: even moments, especially variances, are strongly

correlated across pricing kernels, whereas odd moments are exhibit a weaker relation across

discount factors.4

Overall, the findings from Table 7 and Table 8 suggest that the monotonic (equation

(1)), monotonic with VIX-dependence (equation (2)), and non-monotonic (equation (4))

pricing kernels seem to generate somewhat similar moments, which are strongly correlated.

To the contrary, the non-monotonic discount factor with VIX-dependent parameters implies

vastly different physical moments that are almost orthogonal to the moments from rest of

the discount factors. A notable exception is the physical variance, which is similar and

strongly correlated across all discount factors, including the VIX-dependent non-monotonic

model. Hence, Table 7 and Table 8 indicate that non-monotonicity (equation (4)) and

VIX-dependence (equation (2)) of the pricing kernel alone cannot generate substantially dif-

ferent physical moments from the standard monotonic discount factor with fixed-parameters

(equation (1)). To the contrary, the combination of non-monotonicity with VIX-dependence,

implies a unique physical distribution, which is quite different to those obtained from the

remaining discount factors.

5.4 Pricing Kernels and Moments of the Physical Distribution:

Theoretical Explanation

The above empirical findings regarding the differential effects of the various pricing kernels

on physical moments can be explained using standard results from the normal distribution.

Most of the theoretical results in this section are about the moments of log-returns from

log-normal or skew log-normal distributions. These results can be applied to gross returns

either using the approximation lnR ≈ R−1 or using the exact formulas from the log-normal

and skew log-normal distributions.

In actuarial science, the baseline monotonic utility of equations (1) and (2) with the

normalization of equation (13) are referred to as a linear Esscher (1932) transform. More

recently, Monfort and Pegoraro (2010) introduced the concept of the second-order Esscher

transform, which is related to the quadratic pricing kernels of equations (4) and (6). Within

4Table A.3 and Table A.4 report adjusted R2’s from regressions of option-based physical moments for
log-returns across pricing kernels. These results are similar to the ones presented here for gross returns.
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this framework, if the risk-neutral density for log-returns is normal with mean r̃ft,t+T and

variance σ2
RND,t,t+T , the monotonic discount factors from equations (1) and (2) preserve nor-

mality and result in physical densities which are normal with mean and variance respectively

given by

Et[lnRt,t+T ] = r̃ft,t+T + γ1,tσ
2
RND,t,t+T (16)

vart
(
lnRt,t+T

)
= σ2

RND,t,t+T . (17)

Above, γ1,t captures risk aversion, which can either be a fixed parameter, γ1,t = γ1 as in

equation (1), or a time-varying coefficient, γ1,t = γ1nvix
γ3
t,t+T as in equation (2). Hence,

when the risk-neutral density is normal, linear discount factors, with either constant or

time-varying coefficients, shift expected returns by the product of the risk aversion with the

variance, but leave the risk-neutral variance unaltered (see Appendix A.1). Equations (16)

and (17) illustrate why option-based expected returns and variances are so similar, both in

levels (Table 7) and in comovement (Table 8), across the two monotonic pricing kernels of

equations (1) and (2).

On the other hand, when the risk-neutral density is normal, the quadratic pricing kernels

from equations (4) and (6) preserve normality but alter both the mean and the variance of

log-returns. Specifically, as shown in Appendix A.1, if the risk-neutral density for log-returns

is normal, the quadratic discount factors, with either constant or time-varying coefficients,

yield normal physical densities with mean and variance equal to

Et[lnRt,t+T ] =
r̃ft,t+T + γ1,tσ

2
RND,t,t+T

1− 2γ2,tσ2
RND,t,t+T

(18)

vart
(
lnRt,t+T

)
=

σ2
RND,t,t+T

1− 2γ2,tσ2
RND,t,t+T

. (19)

In this case, the physical variance is less than the risk-neutral one only if the non-monotonic

discount factor has a negative quadratic γ2,t parameter. The fixed-parameter non-monotonic

pricing kernel from equation (4) for 1-month options and the VIX-dependent non-monotonic

discount factor from equation (6) across all expirations are characterized by negative γ2,t

parameters (Table 4). Thus, according to equations (5) and (19), these discount factors

imply risk-aversion that is counter-cyclical to market returns and generate low values for the

physical variance compared to the risk-neutral one (Table 7 and Table A.2 in the Appendix).

To the contrary, the fixed-parameter non-monotonic pricing kernel from equation (4) with

positive γ2,t coefficients for the 2-, 3-, and 6-month expirations (Table 4) yields pro-cyclical

risk aversion (equation (5)) and relatively large physical variances (see Table 7 and Table A.2
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in the Appendix). Nevertheless, even for the non-monotonic pricing kernels, the denominator

in equation (19), 1−γ2,tσ
2
RND,t,t+T , is a number close to one for both the fixed- and the VIX-

dependent specification due to the low values of σ2
RND,t,t+T (Table 7). This could explain the

findings in Table 7 through Table 8 for gross returns and Table A.2 through Table A.3 in

the Appendix for log-returns, according to which physical variances are quite similar across

pricing kernels and highly correlated with each other and with the risk-neutral one.

On the other hand, expected returns vary both across pricing kernels and from the risk-

neutral density due to the γ1,tσ
2
RND,t,t+T term in equation (16) and in the numerator of

(18). Specifically, for the non-monotonic VIX-dependent pricing kernel of equation (6), the

non-linear relation of equation (18) is amplified by VIX-dependence. Hence, the resulting

expected returns are orthogonal to the expected returns of the remaining discount factors

(Table 8) although their levels are the same and equal to average realized returns (Table 7).

As highlighted in Table 7 (and Table A.2 of the Appendix), the risk-neutral density for

both gross and log-returns is negatively skewed with excess kurtosis across all expirations.

Hence, even if the assumption of normality provides helpful insights, it is is quite restrictive.

To this end, I further examine the results from Table 7 and Table 8 for gross returns under

the assumption that the risk-neutral density is skewed log-normal with location, scale, and

shape parameters respectively given by ωt, σt, λt, and θt. For these parameters, according to

the log skew-normal specification of Henze (1986), the density function, up to a normalisation

constant, is

dQt(R) =
1

R
Exp

[ lnR− ωt

2σ2
RND,t

]
Φ
(
λt
lnR− ωt

σt

+ ξt

)
.

The sign of λt determines the sign of skewness, and ξt(> 0) amplifies skewness and kurtosis.

In this case, the risk-neutral expected log-return is

ERND
t [lnRt,t+T ] = ωt +

(
λt/

√
1 + λ2

t

)(
ϕ
(
− ξt√

1 + λ2
t

)
/
[
1− Φ

(
− ξt√

1 + λ2
t

)])
σt, (20)

where ϕ(x)/(1 − Φ(x)) is the inverse Mills ratio. Based on the results for the risk-neutral

density for gross- and log-returns in Table 7 and Table A.2 of the Appendix respectively, λt

should be negative and ξt should be positive for the option-based RND across all expirations.

As shown in Appendix A.6, applying a linear pricing kernel with positive risk-aversion

parameter γ1,t to the above skew log-normal RND implies that the mean under the physical

density becomes
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Et[lnRt,t+T ] = ωt + γ1,tσ
2
t +

λt√
1 + λ2

t

ϕ
(
− ξt+λtγ1,tσ2

t√
1+λ2

t

)
1− Φ

(
− ξt+λtγ1,tσ2

t√
1+λ2

t

)σt. (21)

Hence under non-normality, the linear pricing kernel increases the risk-neutral expected

return by the term γ1,tσ
2
t , as in the case of a normal RND (equation (16)), and by decreasing

the absolute value of the negative skewness term in equation (20) from

λt√
1 + λ2

t

ϕ
(
− ξt√

1+λ2
t

)
1− Φ

(
− ξt√

1+λ2
t

)σt to
λt√
1 + λ2

t

ϕ
(
− ξt+λtγ1,tσ2

t√
1+λ2

t

)
1− Φ

(
− ξt+λtγ1,tσ2

t√
1+λ2

t

)σt. (22)

Since the parameter λt is negative for a negatively-skewed RND, and the inverse Mills

ratio is positive and monotonically increasing (see Appendix A.5), the terms in equation

(22) are negative. A positive risk aversion coefficient combined γ1,t with a negative λt

parameter decrease the argument in the inverse Mills ratio from ξt√
1+λ2

t

to
ξt+λtγ1,tσ2

t√
1+λ2

t

. Given

the monotonicity of the inverse Mills ratio, the decrease in the argument of the inverse Mills

ration decreases the absolute value of the negative term in equation (22), and increases the

expected value of the physical density (equation (21)) relative to the expected value of the

risk-neutral measure (equation (20)).

In Appendix A.6 (equation (a.3)), I also derive the physical variance for skew log-normal

RND’s and linear discount factors. These results confirm that when the RND is non-normal,

the linear pricing kernel affects both the mean and the variance of the RND, and explain why

the levels of the physical variances of the monotonic pricing kernels are different to that of

the risk-neutral ones (Table 7). To the contrary, in the case of normality, the linear pricing

kernel only alters the mean of the risk-neutral distribution but not its variance (equations

(16) and (17)).

Regarding the quadratic pricing kernels and the skew log-normal RND, an interesting

result from Appendix A.6 is that as long as the quadratic parameter γ2,t in equations (4)

and (6) is negative, the mean of the physical density could still increase relatively to the

mean of the RND, as shown in Table 7, even if the linear term in the quadratic pricing

kernel γ1,t is low, such as the estimates in Table 5, or negative. This is because, according

to equations (a.4) and (a.5) of the Appendix, a negative γ2,t parameter in the quadratic

discount factor decreases the absolute magnitude of the negative term in equation (22), and

thus increases physical expected returns relative to risk-neutral ones.

In sum, the theoretical results derived in this section can help explain the empirical
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regularities reported in Table 7 through Table 8 for gross returns (and Table A.2 through

Table A.3 of the Appendix for log-returns). One of the most important results of this

section is that if the RND is normal, then linear pricing kernels (equations (1) and (2)) do

not change the risk-neutral variance. To the contrary, if the RND is non-normal, then linear

pricing kernels can affect higher moments of the physical distribution as well.

Regarding the non-monotonic pricing kernels, the findings in this section highlight the

importance of negative values for the quadratic parameter γ2,t in equations (4) and (6) to

generate plausible physical variances, skewness, and kurtosis that are smaller in absolute

magnitude than the RND ones. Negative γ2,t parameters in quadratic pricing kernels are

also important for generating option-based physical means that are greater than RND means,

when the RND is either normal or negatively skewed. These theoretical results cast doubt on

the plausibility of the fixed parameter non-monotonic pricing kernel with positive quadratic

γ2 parameters (2-, 3-, 6-month expirations in Table 4).

6 Option-based Expected Returns and Risk-Neutral

Lower Bounds

Physical expected returns are unobservable, and their extraction from option prices requires

assumptions for the pricing kernel. Nevertheless, recent works (Martin (2017), Chabi-Yo

and Loudis (2020)) have argued that forward-looking expected returns can be proxied by

risk-neutral moments via an assumption-free approach. I can assess the accuracy of these

risk-neutral bounds for expected returns using the option-based physical expected returns

from the various pricing kernels. Specifically, Martin (2017) derives a lower bound for risk

premia that depends on the risk-neutral variance

Et[Rt,t+T ]−Rf
t,t+T ≥ varRND(Rt,t+T )/R

f
t,t+T . (23)

Chabi-Yo and Loudis (2020) derive a similar lower bound for expected returns that depends

on high-order risk-neutral moments

Et[Rt,t+T ]−Rf
t,t+T ≥

m2
t,t+T

Rf
t,t+T

− m3
t,t+T

(Rf
t,t+T )2

+
m4

t,t+T

(Rf
t,t+T )3

1− m2
t,t+T

(Rf
t,t+T )2

+
m3

t,t+T

(Rf
t,t+T )3

, (24)
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where the terms mn
t,t+T above are risk-neutral moments of excess returns

mn
t,t+T =

∫ +∞

0

(
R−Rf

t,t+T

)n
dQt,t+T (R).

The above risk-neutral bounds are not completely assumption-free. Martin’s bound assumes

that the covariance covt(Mt,t+TRt,t+T , Rt,t+T ) is non-positive, while Chabi-Yo and Loudis

impose restrictions on preferences.

To empirically assess whether the risk-neutral bounds are binding, the existing literature

regresses realized excess returns on these bounds, e.g.,

Rt,t+T −Rf
t,t+T = a+ b · varRND(Rt,t+T )/R

f
t,t+T + ϵt (25)

If a is statistically insignificant and b is statistically equal to one, then the inequalities (23)

and (24) are in fact equalities, and the lower bounds are binding. I further expand these

tests along the following dimensions.

First, in addition to the regression results, I provide summary statistics and correlations

for the risk-neutral variances to verify whether these bounds are aligned with average realized

returns or average expected returns from the option-based physical densities. Secondly, al-

though Martin (2017) derives the lower-bound condition in terms of the risk-neutral variance

(equation (23)), in his empirical tests he uses the SVIX, which is defined as varRND
(Rt,t+T

Rf
t,t+T

)
.5

For consistency with the rest of my tests, I measure the risk-neutral lower bound for expected

returns using the risk-neutral variance from equation (14), which is consistent in Martin’s

original framework (equation ((23)) here and equation (4) in his paper). In untabulated tests,

I find that using SVIX does not affect the results, which are similar to the ones reported

here with the risk-neutral variance.

Thirdly, in addition to using realized returns as the dependent variable in equation (25),

I test whether the risk-neutral bounds are binding by regressing option-based risk premia

from the different pricing kernels on these variances, i.e.,

Et[Rt,t+T ]−Rf
t,t+T = a+ b · varRND(Rt,t+T )/R

f
t,t+T + ϵt. (26)

Further, I consider a specification where the dependent variable in equation (26) is fitted

returns based on predictive regressions of realized returns on the dividend yield, the dividend

growth, and the risk-free rate.

5The SVIX is equal to
2Rf

t,t+T

T ·Ft,t+T

{∫ Ft,t+T

0
Putt,t+T dK+

∫∞
Ft,t+T

Callt,t+T dK
}
, where Ft,t+T is the forward

price of the underlying asset with Ft,t+T = Et[St+T ].
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Finally, I test whether the realized returns and the option-based risk premia from the

different pricing kernels violate these risk-neutral lower bounds. That is, I test whether

there are instances where the inequality (23) is reversed. For all these tests, I only report

the results for the risk-neutral variance bound of Martin (2017) (equation (23)). This is

because my findings suggest that the risk-neutral bound in Chabi-Yo and Loudis (2020)

(equation (24)) is dominated by the second moment term (M2
t,t+T ), and is indistinguishable

from the variance bound of Martin (2017).

6.1 Summary Statistics for Risk-Neutral Lower Bounds

Table 10 reports summary statistics and correlations for Martin’s risk-neutral bounds from

equation (23), where the risk-free rate, Rf
t,t+T , is measured by the mean of the risk-neutral

distribution. The results in Table 10 for the summary statistics of the option-based variance

bounds should be compared to the summary statistics in Panel A, Table 7 for expected

returns across pricing kernels and expirations, and to the summary statistics for realized

returns in Panel B, Table A.1 of the Appendix. According to these results, the levels of the

risk-neutral bounds from equation (23) (0.45% for 1-month, 1.05% for 2-month, 1.37% for

3-month and 3.23% for 6-month) somewhat diverge from the level of average expected and

realized returns (0.63% for 1-month, 1.28% for 2- months, 1.66 % for 3-month, and 4.25%

for 6-month) in Tables 7 and A.1, respectively. Importantly, this divergence increases as the

option expiration increases, especually for 6-month maturities.

Nevertheless, the correlations of risk-neutral bounds with expected returns are quite large

across all pricing kernels and expirations, with values ranging from 0.8 to 1. The notable

exception is the VIX-dependent non-monotonic pricing kernel whose expected returns are

negatively correlated to the risk-neutral variance bounds. Taken together these results sug-

gest that for short-maturities, the risk-neutral variance bounds are a valid proxy for expected

returns for all pricing kernels with the exception of the VIX-dependent non-monotonic speci-

fication. Importantly, regardless of the stochastic discount factor, as the expiration increases,

the level of risk-neutral bounds diverges from expected returns (Panel A in Table 10).

This is the first paper to highlight that the validity of the risk-neutral bounds as a

measure of expected returns under the physical measure depends on option expiration and

the VIX-dependence of preference parameters. These results are important because they

complement the existing literature, which either unconditionally accepts (Martin (2017)) or

unconditionally rejects (Back et al. (2022)) the tightness of these bounds.
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6.2 Regressions of Expected Returns on Risk-Neutral Lower Bounds

Table 11 reports results from regressing realized and option-based expected returns on the

risk-neutral bound of equation (23). Consistent with the findings in Martin (2017) and

Chabi-Yo and Loudis (2020), when regressing realized returns on the risk-neutral bound

(Panel A in Table 11), I cannot reject the hypothesis that the intercept in equation (26) is

zero (t-stats: -0.47 to 1.06) or that the slope is one (t-stats: -0.66 to 0.89).

However, the results of these regressions, which test the accuracy of risk-neutral bounds

using realized returns, should be interpreted with caution for several reasons. First, as

indicated by the low R2’s (0.13% to 4.63%), the fit of these regressions is quite poor. This

means that realized returns are not aligned with risk-neutral bounds contrary to the strict

lower-bound theoretical relation from equation (23), which implies that the coefficients of

determination between returns and risk-neutral variances should be large. Secondly, the

slope estimates for these regressions are marginally statistically significant (t-stats: 0.25 to

2.06). Hence, these parameters are not informative regarding the relation between returns

and risk-neutral bounds.

Regression results become more reliable in Panel B of Table 11, where realized returns

are replaced by fitted returns based on regressions of realized returns on the dividend yield,

the dividend growth, and the risk-free rate. The estimation of fitted returns is described in

Table A.1 of the Appendix. Compared to realized returns, fitted returns yield more accurate

slope estimates (t-stats: 2.97 to 4.73) in regressions with the risk-neutral bounds. In this

case, the null hypothesis that risk-neutral bounds for expected returns are binding (slope is

one, zero intercept) is rejected for short expirations (1- and 2-month options) with t-statistics

equal to -4.15 and -4.16 for slopes, and 2.65 and 2.83 for the intercepts. To the contrary, the

null hypothesis cannot be rejected for 3- and 6-month expirations (t-stats: -1.71 and 0.03

for slopes, 1.32 and 0.57 for intercepts). Consistent with these statistics, the slope estimates

for short expirations are 0.532 and 0.409, whereas the slope estimates for long expirations

are closer to one, with values 0.625 and 1.011.

The accuracy of the regressions with fitted returns in Panel B of Table 11 is much better

than those with realized returns (Panel A) with R2’s between 10.33% to 14.68%. Yet, the low

values for the coefficient of determination continues to cast doubt on the overall explanatory

power of these regressions. A tight risk-neutral bound in equation (23) should be able to

explain a large part of the variation in physical expected returns.

Relative to realized and fitted returns, the accuracy of the regressions tests for risk-

neutral bounds increases dramatically when I consider the option-based expected returns

from equation (14) across the different pricing kernels. First, the R2’s in regression (26)
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increase substantially across all expirations and pricing kernels (R2’s = 70% to 99%), with

the exception of the VIX-dependent non-monotonic discount factor of equation (6).

As shown in Panel C of Table 11, the best fit in the regressions of physical expected returns

on risk-neutral variances corresponds to the baseline power utility model of equation (1) with

constant coefficients. For this discount factor, the intercept in equation (26) is economically

insignificant across all expirations (0.01% to 0.10%) despite its large statistical significance

(t-stat: 4.78 to 7.23). Further, even though I can reject the null hypothesis that the slope

is equal to one (t-stat: 23.19 to 67.13), the estimated slopes are economically close to one:

1.195 to 1.371. Similar results hold in Panel E of Table 11 for the non-monotonic pricing

kernel with constant coefficients from equation (4), even though in this case, intercepts are

economically more significant: 0.1% to 0.5% for the non-monotonic model in Panel E against

0.01% to 0.1% for the monotonic model in Panel C.

For the both the monotonic and the non-monotonic VIX-dependent pricing kernels from

equations (2) and (6), the null hypothesis in equation (26) that the risk-neutral bounds are

binding is rejected (Panels D and F). This is because the intercepts are both statistically

significant (t-stat absolute value: -4.80 to 13.44) and economically meaningful (intercepts

0.51% to 4%). Importantly, most of the slope estimates are quite different than one with

values ranging from 0.623 to 4 for the VIX-dependent monotonic pricing kernel of equation

(2) and from -0.276 to -0.081 for the VIX-dependent non-monotonic model of equation (6).

For the majority of the regressions in Table 11, the economic magnitude and statistical

significance of the intercept in equation (26) increases across expiration, not always mono-

tonically though. This result implies that longer option expiration adversely affects the

accuracy of the risk-neutral bound for expected returns. This is consistent with the the

summary statistics of the risk-neutral bounds from (Table 10), which show that the align-

ment between average risk-neutral variances and average expected returns across pricing

kernels from Panel A, Table 7 is negatively affected by option expiration: for longer option

maturities, e.g., 6-month, this alignment deteriorates.

6.3 Violations of Risk-Neutral Lower Bounds

The fact that realized or fitted returns are not suitable for testing risk-neutral lower bounds

is also confirmed in Table 12 that reports the percentage of instances where realized and

expected returns violate the risk-neutral lower bound of equation (23).6

The percentage of violations of the risk-neutral lower-bound by realized and fitted returns

is approximately 40% and remains constant across expirations. The frequency of violations of

6Similar results hold for the risk-neutral bound of equation (24).
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the lower bound in equation (23) by expected returns from the fixed-parameter monotonic

(equation (1)) and the non-monotonic (equation (4)) discount factors is near zero across

all maturities. To the contrary, expected returns from the VIX-dependent pricing kernels

(equations (2) and (6)) violate the risk-neutral lower bounds. This is particularly true for

the VIX-dependent quadratic pricing kernel of equation (6), whose excepted returns violate

the risk-neutral bounds 40% of the time across expirations. In sum, the evidence from Table

12 suggest that realized and fitted returns are not reliable sources for testing the risk-neutral

lower bounds because realized and fitted returns violate risk-neutral bounds 40% of the time.

To the contrary, option-based expected returns rarely violate the risk neutral lower bounds

with the exception of the expected returns from the VIX-dependent non-monotonic pricing

kernel of equation (6).

Overall, the results in this section highlight four important findings. First, longer option

maturities adversely affect the tightness of the risk-neutral bounds. Secondly, realized returns

(or fitted returns) are not appropriate for testing the accuracy of risk-neutral bounds via the

OLS regression of equation (26). This is because regressions with realized returns have almost

zero fit, standard errors are very large, and realized returns often violate risk-neutral lower

bounds, which are strictly positive, due to their negative values. Thirdly, for the baseline

monotonic pricing kernel with constant parameters (equation (1)), regressions of expected

returns on risk-neutral bounds show that slope estimates are close to one, intercepts are

zero, and the R2’s are large. These findings imply that risk-neutral variances are an accurate

proxy for expected returns derived from the pricing kernel of equation (1), and run against

the findings in Back et al. (2022), who show that risk-neutral bounds are not binding.

Finally, non-monotonicity of the pricing kernel does not affect the tightness of the risk-

neutral bounds as both the mononotonic and non-monotonic discount factors with fixed

parameters (equations (1) and (4))) seem to generate expected returns that are aligned with

the risk-neutral variance bounds (Panels C and E Table 11). To the contrary, VIX-dependent

risk aversion regardless of monotonicity of the discount factor (equations (2) and (6)) distorts

the alignment between expected returns and the risk-neutral variance-based bounds (Panels

D and F in Table 11). Specifically, for pricing kernels with VIX-dependent parameters,

intercepts are economically and statistically significant, and slope estimates are different

than one across all expirations, implying that the risk-neutral bounds are not binding. The

fact that the accuracy of the risk-neutral bounds is mostly affected by the VIX-dependence

of risk aversion and not by the monotonicity of marginal utility is a novel finding that has

been shown before. This finding can be explained by the fact that non-monotonicities occur

over events that are assigned very low probabilities either in the left or right tail of the

distribution (Figure 1). To the contrary, VIX-dependence affects the entire distribution.
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Despite the shortcomings of the risk-neutral lower bounds, these bounds seem to be able

to track expected returns quite well for the fixed-parameters discount factors of equations

(1) and (4). Hence, if we take the stance that preference parameters are constant over time,

then, according the to the results in Table 10 and Panels C and E of Table 11, the variance-

based risk-neutral bounds do an excellent job in tracking expected returns. In this case, the

relation between risk-neutral variances and expected returns is stronger than any predictive

regression (e.g., Table A.1 in the Appendix) despite the fact that the coefficient of the risk

neutral bound is not identically equal to one as predicted by the theory, but slightly larger

(e.g., 1.2 from Panels C and E of Table 11).

6.4 Risk-neutral Bounds and Pricing Kernels: Theoretical Expla-

nation of Results

The tight alignment between risk-neutral bounds and expected returns for the fixed-parameters

linear pricing kernel of equation (1) documented in Table 11 can be explained by the ba-

sic equation in Martin (2017) for the derivation of the risk-neutral bound in equation (23).

According to Martin (2017), expected returns are equal to risk-neutral moments minus a

covariance term, which is assumed negative

Et[Rt,t+T ]−Rf
t,t+T = varRND(Rt,t+T )/R

f
t,t+T − covt

(
Mt,t+TRt,t+T , Rt,t+T

)
. (27)

As explained in Martin (2017), the covariance term is zero for log-preferences. According to

the results in Table 2 for the linear pricing kernel, γ1 estimates across expirations are close

to one. Hence, for this discount factor, the risk aversion estimates imply log preferences.

Hence, the covariance in equation (27) is zero, and expected returns are tightly linked to

risk-neutral bounds even if regression estimates are statistically different than one.

Similarly, as shown by the frequency of risk-neutral bound violations in Table 12, for

pricing kernels with VIX-dependent parameters, the covariance term in equation (27) is

non-trivial. In fact, for the VIX-dependent pricing kernels, the covariance term in equation

(27) might become positive, implying that the bound in equation (23) becomes an upper

bound and not a lower one. For those pricing kernels that the covariance in equation (27) is

non-zero or even positive, the results in Table 12 suggest that the risk-neutral bound is not

binding, and might even be reversed, i.e., an upper bound instead of a lower one, at least for

short maturities. For this reason, the regressions in Table 11 for the VIX-dependent pricing

kernels (equations (2) and (6)) yield economically and statistically significant intercepts as

well as slope coefficients that are different than one. These regression results suggest that

the risk-neutral bounds of equation (23) are not binding for expected returns from VIX-
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dependent models.

7 Conclusion

The goal of this paper is two-fold. The first part of the analysis identifies how different pricing

kernels interact with the option-based risk-neutral density across different option maturities

(1-month options, 2-, 3-, and 6-months) to generate different forward-looking distributions

for stock market returns under the physical measure. The theoretical framework of this

analysis is based on four power-utility pricing kernels, whose exponents are either linear

(monotonic) or quadratic (non-monotonic), and whose risk aversion parameters are either

fixed or dependent on the VIX. In the second part of my analysis, I use the resulting option-

based physical distributions from the various pricing kernels to test the accuracy of the

risk-neutral variance bounds for expected market returns proposed by the literature (e.g.,

Martin (2017), Chabi-Yo and Loudis (2020)).

Results from Kolmogorov-Smirnov tests indicate that option-based physical distribu-

tions derived from the fixed-parameter monotonic, VIX-dependent monotonic, and fixed-

parameter non-monotonic discount factors are quite similar. Instead, the physical distribu-

tion from the the non-monotonic pricing kernel with VIX-dependent parameters is different to

those from the rest of the discount factors. Hence, my results suggest that non-monotonicities

need to be combined with time-variation of parameters to generate substantially different

physical densities from the standard fixed-parameter monotonic (power utility) specification.

Additional tests focusing on the first four physical moments from the different pricing kernels

show that the variances of the option-based physical distributions are highly correlated. To

the contrary, odd moments (expected returns and skewness) are the least correlated moments

across pricing kernels. This is one of the first attempts to explain how different discount

factors affect the moments of the option-based physical distribution.

Regarding the risk-neutral bounds for expected returns, I find that these bounds are only

aligned to expected returns from pricing kernels with fixed parameters regardless of mono-

tonicity. To the contrary, for discount factors with VIX-dependent parameters, monotonic

and non-monotonic, my tests do not support the hypothesis that risk-neutral bounds are

binding and aligned with option-based expected returns. Similarly, my results indicate that

risk-neutral bounds diverge from the option expected returns across all discount factors as

option expiration increases, e.g., from 1-month to 6-months.

These results highlight that option-expiration and VIX-dependence of the pricing kernel

affect the accuracy of the risk-neutral bounds, which have proposed by the literature as a

proxy for forward-looking expected returns. To the contrary, non-monotonicities do not seem
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to impact the tightness of these bounds. I conclude that caution should be exerted when

risk-neutral moments are used as a proxy of stock market expected returns. Although risk-

neutral bounds may not be perfect, my results also indicate that these bounds are superior

to alternative measures of expected returns such as average realized returns or fitted returns

using predictive factors (e.g., price-dividend ratio, dividend growth, etc.).
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Figures

Figure 1 Pricing Kernels

This figure shows the monotonic and non-monotonic pricing kernels of equations (1), (2), (4), and (6) across
the 1- (Panel A), 2- (Panel B), 3- (Panel C), and 6-month (Panel D) expirations. Estimation of the pricing
kernels is reported in Table 2 through Table 5. In these graphs, I set the value of the normalized VIX
(nvix) equal to its sample average for pricing kernels with VIX-dependent parameters (Panels B and D).
The sample is from January 1996 to December 2022 for 1-month expiration options, May 1998 to November
2022 for 2-month expiration, January 2002 to October 2022 for 3-month expiration, and June 1996 to June
2022 for 6-month expiration options.
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Panel B: Two-month expiration
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Panel C: Three-month expiration
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Panel D: Six-month expiration
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Figure 2 Option-based Physical Distribution and Density Func-
tions

This figure shows the average distribution and density functions under the physical measure derived from
the monotonic and non-monotonic pricing kernels of equations (1), (2), (4), and (6) across the 1- (Panel
A), 2- (Panel B), 3-(Panel C), and 6-month (Panel D) expirations. The graphs are labeled according to
the exponents of the corresponding pricing kernels: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r +
γ2r

2 (equation (4)), and γ1nvix
γ3r + γ2nvix

γ3r2 (equation (6)), where r denotes log returns, and nvix is
the normalized VIX, which is the VIX divided by its 1986-1995 average (to avoid look-ahead bias) and
appropriately scaled for each expiration. risk-neutral denotes the risk-neutral density. Estimation of the
pricing kernels is reported in Table 2 through Table 5. Estimation of the physical distribution and density
functions is according to equation (14). I average the distribution and density functions for each expiration
across dates. realized is the distribution of realized returns for each expiration. The realized distribution
and density functions are derived by fitting a kernel-density estimator on the set of realized returns, and
then interpolating the values for the entire range of moneyness using a piecewise cubic hermite interpolating
polynomial. The sample is from January 1996 to December 2022 for 1-month expiration options, May 1998
to November 2022 for 2-month expiration, January 2002 to October 2022 for 3-month expiration, and June
1996 to June 2022 for 6-month expiration options.
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Tables

Table 1 Sample of Option Contracts

This table reports summary information for the S&P500 option contracts from OptionMetrics used to derive
the forward-looking density for S&P500 under the physical measure. In selecting option contracts, I impose
the following filters: non-missing implied volatility, positive volume, and bid price above $3/8. I also require
that there are at least six option contracts for each date, with at least three puts and at least three calls outside
the ±2% moneyness range. There are two nonconsecutive 2-month observations and eleven nonconsecutive 3-
month observations at the beginning of the sample for which the risk-neutral density could not be estimated.
For these dates, there were not enough option contracts satisfying the sample selection criteria. Further, a
sample of consecutive observations is required to calculate autocorrelations for Newey-West standard errors
in the GMM estimation. Hence, for the 2- and 3-month contracts additional observations had to be deleted
from the beginning of the sample. The resulting sample is from January 1996 to December 2022 for 1-month
expiration, May 1998 to November 2022 for 2-month, January 2002 to October 2022 for 3-month, and June
1996 to June 2022 for 6-month expiration.

1-month 2-month 3-month 6-month
Num. of Calls 38,577 14,329 6,141 3,368
Num. of Puts 46,420 18,980 8,432 3,574
Total 84,997 33,309 14,573 6,942
Num. of Expiration Dates (without filters) 323 161 107 52
Num. of Expiration Dates (with filters) 323 159 96 52
Num. of Expiration Dates (with filters and

323 147 83 52
consecutive non-missing observations)
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Table 2 GMM Estimation of the Option-based Monotonic Pricing
Kernel

This table reports GMM results for the option-based monotonic pricing kernel of equation (1). γ1 is the risk
aversion parameter. The GMM moment conditions are given in equation (13). t-statistics in parentheses
are corrected for heteroscedasticity and autocorrelation using Newey-West standard errors with 12, 6, 4, and
2 lags for the 1-, 2-, 3-, and 6-month maturities, respectively. χ2, dof , and p are the χ2 test, degrees of
freedom, and p-value that all target moments are jointly zero. GMM is the minimized value of the GMM
objective. The sample is from January 1996 to December 2022 for 1-month expiration options, May 1998
to November 2022 for 2-month expiration, January 2002 to October 2022 for 3-month expiration, and June
1996 to June 2022 for 6-month expiration options.

1-month 2-month 3-month 6-month
γ1 1.349 1.266 1.284 1.524

(4.77) (4.65) (4.43) (6.83)
χ2 0.21 0.01 0.01 0.01
dof 1 1 1 1
p 0.64 0.90 0.91 0.89
GMM 3.99e−05 6.01e−06 9.08e−06 2.49e−05
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Table 3 GMM Estimation of the Option-based Monotonic Pricing
Kernel with VIX-dependent Parameters

This table reports GMM results of the option-based VIX-dependent monotonic pricing kernel of equation
(2). γ1 is the risk aversion parameter and γ3 is the VIX-dependence coefficient. For the estimation, VIX is
the normalized VIX (nvix), which is the VIX divided by its 1986-1995 average (to avoid look-ahead bias)
and appropriately scaled for each expiration. The GMM moment conditions are given in equation (13). t-
statistics in parentheses are corrected for heteroscedasticity and autocorrelation using Newey-West standard
errors with 12, 6, 4, and 2 lags for the 1-, 2-, 3-, and 6-month maturities, respectively. χ2, dof , and p are the
χ2 test, degrees of freedom, and p-value that all target moments are jointly zero. GMM is the minimized
value of the GMM objective. The sample is from January 1996 to December 2022 for 1-month expiration
options, May 1998 to November 2022 for 2-month expiration, January 2002 to October 2022 for 3-month
expiration, and June 1996 to June 2022 for 6-month expiration options.

1-month 2-month 3-month 6-month
γ1 0.518 1.439 1.295 1.661

(0.31) (1.03) (5.12) (2.13)
γ3 1.936 -0.558 -0.817 -0.813

(0.47) (-0.12) (-0.11) (-0.15)
χ2 - - - -
dof 0 0 0 0
p - - - -
GMM 1.45e−13 2.64e−13 3.42e−17 1.73e−15
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Table 4 GMM Estimation of the Option-based Non-monotonic
Pricing Kernel

This table reports GMM results of the option-based non-monotonic pricing kernel of equation (4). γ1 is the
parameter for the linear term and γ2 is the parameter of the quadratic term in the discount factor. The GMM
moment conditions are given in equation (13). t-statistics in parentheses are corrected for heteroscedasticity
and autocorrelation using Newey-West standard errors with 12, 6, 4, and 2 lags for the 1-, 2-, 3-, and 6-
month maturities, respectively. χ2, dof , and p are the χ2 test, degrees of freedom, and p-value that all
target moments are jointly zero. GMM is the minimized value of the GMM objective. The sample is from
January 1996 to December 2022 for 1-month expiration options, May 1998 to November 2022 for 2-month,
January 2002 to October 2022 for 3-month, and June 1996 to June 2022 for 6-month expiration options.

1-month 2-month 3-month 6-month
γ1 0.814 1.386 1.439 1.672

(0.57) (1.27) (0.92) (1.35)
γ2 -7.412 0.334 0.732 0.779

(-0.32) (1.83) (0.16) (0.29)
χ2 - - - -
dof 0 0 0 0
p - - - -
GMM 9.70e−14 1.11e−15 1.86e−14 5.32e−17
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Table 5 GMM Estimation of the Option-based Non-monotonic
Pricing Kernel with VIX-dependent Parameters

This table reports GMM results of the option-based VIX-dependent non-monotonic pricing kernel of equation
(6). γ1 is the parameter for the linear term and γ2 is the parameter of the quadratic term in the discount
factor. γ3 is the VIX-dependence coefficient. For the estimation, the VIX is the normalized VIX (nvix),
which is the VIX divided by its 1986-1995 average (to avoid look-ahead bias) and appropriately scaled for
each expiration. The GMM moment conditions are given in equation (13). t-statistics in parentheses are
corrected for heteroscedasticity and autocorrelation using Newey-West standard errors with 12, 6, 4, and
2 lags for the 1-, 2-, 3-, and 6-month maturities, respectively. χ2, dof , and p are the χ2 test, degrees of
freedom, and p-value that all target moments are jointly zero. GMM is the minimized value of the GMM
objective. The sample is from January 1996 to December 2022 for 1-month expiration options, May 1998
to November 2022 for 2-month expiration, January 2002 to October 2022 for 3-month expiration, and June
1996 to June 2022 for 6-month expiration options.

1-month 2-month 3-month 6-month
γ1 0.700 0.660 0.129 1.991

(2.78) (2.61) (0.23) (4.08)
γ2 -47.470 -19.068 -2.143 -17.422

(-1.26) (-1.06) (-0.30) (-1.38)
γ3 -8.153 -7.415 -9.720 -4.421

(-2.21) (-2.29) (-0.43) (-1.09)
χ2 - - - -
dof 0 0 0 0
p - - - -
GMM 6.85e−13 4.68e−14 1.73e−14 7.81e−14
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Table 6 Kolmogorov-Smirnov Tests for the Option-based Physical
Distribution Functions Across Pricing Kernels

This table reports the frequency of rejections of the null hypothesis that any two option-based physical distri-
bution functions are equal according to the two-sample Kolmogorov-Smirnov test. The option-based physical
distributions are derived from alternative pricing kernels, and are classified according to the exponents of the
corresponding discount factors: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r+ γ2r
2 (equation (4)), and

γ1nvix
γ3r+γ2nvix

γ3r2 (equation (6)), where r denotes log returns, and nvix is the normalized VIX, which is
the VIX divided by its 1986-1995 average (to avoid look-ahead bias) and appropriately scaled for each expi-
ration. The estimation of the various pricing kernels is based on the GMM system of equation (13), and the
results are reported in Table 2 through Table 5. risk-neutral is the risk-neutral distribution, and realized is
the distribution of realized returns in the sample for each expiration. Option-based physical and risk-neutral
distributions are derived according to equation (14). The realized distribution and density functions are
derived by fitting a kernel-density estimator on the set of realized returns, and then interpolating the values
for the entire range of moneyness using a piecewise cubic hermite interpolating polynomial. For the realized
distribution, the Kolmogorov-Smirnov tests compare the density of realized returns to the averages of the
option-option densities. Panel A reports the frequency of rejections of the Kolmogorov-Smirnov tests at the
1-month expiration. Panel B reports the results for the Kolmogorov-Smirnov tests at the 2-month expira-
tion. Panel C shows frequency of rejections for the Kolmogorov-Smirnov tests at the 3-month expiration,
and Panel D reports rejections at the 6-month expiration. The confidence level for the tests is set to 5%.
The numbers in brackets are the average values for the Kolmogorov-Smirnov statistic. N is the number
of observations. The sample is from January 1996 to December 2022 for 1-month expiration, May 1998 to
November 2022 for 2-month expiration options, January 2002 to October 2022 for 3-month expiration, and
June 1996 to June 2022 for 6-month expiration options.

Panel A: Rejections of the Kolmogorov-Smirnov tests, 1-month expiration (N=323)
N=323 γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral

γ1nvix
γ3r 22% [4%]

γ1r + γ2r
2 50% [7%] 77% [9%]

γ1nvix
γ3r + γ2nvix

γ3r2 84% [26%] 87% [27%] 85% [25%]
risk-neutral 65% [7%] 23% [4%] 88% [12%] 86% [27%]
realized (N=1) 100% [14%] 100% [16%] 100% [10%] 100% [6%] 100% [19%]

Panel B: Rejections of the Kolmogorov-Smirnov tests, 2-month expiration (N=147)
N=147 γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral

γ1nvix
γ3r 3% [2%]

γ1r + γ2r
2 2% [1%] 5% [2%]

γ1nvix
γ3r + γ2nvix

γ3r2 87% [26%] 85% [26%] 89% [27%]
risk-neutral 87% [9%] 95% [10%] 90% [9%] 84% [29%]
realized (N=1) 100% [11%] 100% [11%] 100% [12%] 100% [7%] 100% [18%]

Panel C: Rejections of the Kolmogorov-Smirnov tests, 3-month expiration (N=83)
N=83 γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral

γ1nvix
γ3r 15% [3%]

γ1r + γ2r
2 20% [3%] 33% [5%]

γ1nvix
γ3r + γ2nvix

γ3r2 87% [26%] 84% [25%] 88% [27%]
risk-neutral 86% [10%] 92% [11%] 87% [8%] 78% [27%]
realized (N=1) 100% [23%] 100% [23%] 100% [24%] 100% [23%] 100% [25%]
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Panel D: Rejections of the Kolmogorov-Smirnov tests, 6-month expiration (N=52)
N=52 γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral

γ1nvix
γ3r 23% [3%]

γ1r + γ2r
2 40% [6%] 52% [7%]

γ1nvix
γ3r + γ2nvix

γ3r2 94% [27%] 90% [27%] 96% [30%]
risk-neutral 100% [14%] 100% [15%] 100% [11%] 100% [32%]
realized (N=1) 100% [18%] 100% [18%] 100% [19%] 100% [17%] 100% [21%]
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Table 7 Summary Statistics of Option-based Moments under the
Physical Measure Across Pricing Kernels

This table reports summary statistics for the option-based moments of returns under the physical measure
across the different pricing kernels from equations (1), (2), (4), and (6). The pricing kernels are classified
according to the their exponent: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r+γ2r
2 (equation (4)), and

γ1nvix
γ3r+ γ2nvix

γ3r2 (equation (6)), where r denotes log returns, and nvix is the normalized VIX, which
is the VIX divided by its 1986-1995 average (to avoid look-ahead bias) and appropriately scaled for each
expiration. The estimation of the various pricing kernels is based on the GMM system of equation (13), and
the results are reported in Table 2 through Table 5. risk-neutral denotes the moments of the risk-neutral
density. Option-based physical and risk-neutral moments are derived according to equation (14). realized
denotes the unconditional sample moments of realized returns for each expiration. Panel A reports summary
statistics for option-based expected returns. Panel B reports statistics for option-based variances. Panel C
reports summary statistics for option-based skewness, and in Panel D for option-based kurtosis. The sample
is from January 1996 to December 2022 for 1-month expiration options, May 1998 to November 2022 for
2-month expiration, January 2002 to October 2022 for 3-month expiration, and June 1996 to June 2022 for
6-month expiration options.

Panel A: Option-based expected returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month
mean 0.61% 1.29% 1.67% 4.26%
st. deviation 0.77% 1.46% 1.41% 2.20%
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 0.63% 1.28% 1.66% 4.25%
st. deviation 2.56% 1.04% 0.94% 1.46%
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 0.63% 1.28% 1.66% 4.25%
st. deviation 0.69% 1.29% 1.42% 2.18%
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month
mean 0.63% 1.28% 1.66% 4.25%
st. deviation 0.40% 0.74% 1.12% 1.16%
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month
mean -0.06% 0.01% 0.11% 0.46%
st. deviation 0.44% 0.87% 0.97% 1.39%
N 323 147 83 52

vi) realized mean 1-month 2-month 3-month 6-month
0.63% 1.28% 1.66% 4.25%
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Panel B: Option-based physical variances across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month
mean 0.42% 0.82% 0.97% 1.98%
st. deviation 0.44% 0.76% 0.70% 1.02%
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 0.43% 0.82% 0.98% 2.00%
st. deviation 0.36% 0.88% 0.81% 1.19%
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 0.34% 0.89% 1.05% 2.23%
st. deviation 0.28% 1.37% 0.83% 1.39%
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month
mean 0.36% 0.70% 0.87% 1.33%
st. deviation 0.62% 1.17% 1.10% 1.31%
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month
mean 0.51% 1.04% 1.26% 2.67%
st. deviation 0.60% 1.12% 0.99% 1.52%
N 323 147 83 52

vi) realized variance 1-month 2-month 3-month 6-month
0.24% 0.49% 0.54% 1.13%
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Panel C: Option-based physical skewness across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month
mean -1.43 -1.34 -1.26 -0.72
st. deviation 0.77 0.71 0.62 0.29
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean -1.45 -1.32 -1.23 -0.68
st. deviation 0.79 0.68 0.57 0.21
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean -1.17 -1.37 -1.39 -0.91
st. deviation 0.64 0.72 0.71 0.38
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month
mean -0.59 -0.50 -0.56 -0.15
st. deviation 0.45 0.37 0.47 0.18
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month
mean -1.51 -1.47 -1.41 -0.98
st. deviation 0.76 0.75 0.71 0.42
N 323 147 83 52

vi) realized skewness 1-month 2-month 3-month 6-month
-1.24 -1.67 -1.15 -0.87
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Panel D: Option-based physical kurtosis across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month
mean 7.96 7.55 6.97 4.75
st. deviation 4.43 3.91 3.49 1.33
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 7.78 7.54 6.92 4.61
st. deviation 4.16 3.91 3.37 1.06
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 6.84 7.73 7.58 5.45
st. deviation 3.36 4.10 4.16 2.00
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month
mean 4.37 4.01 4.12 3.24
st. deviation 1.51 1.14 1.55 0.23
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month
mean 7.67 7.39 6.92 4.99
st. deviation 3.94 3.69 3.44 1.75
N 323 147 83 52

vi) realized kurtosis 1-month 2-month 3-month 6-month
9.10 9.36 4.71 4.55
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Table 8 Coefficient of Determination for Option-based Moments
under the Physical Measure across Pricing Kernels

This table reports coefficients of determination (R2) from regressing option-based moments for returns across
the different pricing kernels from equations (1), (2), (4), and (6). Option-based physical moments are derived
according to equation (14). The pricing kernels are classified according to the their exponents: γ1r (equation
(1)), γ1nvix

γ3r (equation (2)), γ1r+ γ2r
2 (equation (4)), and γ1nvix

γ3r+ γ2nvix
γ3r2 (equation (6)), where

r denotes log returns, and nvix is the normalized VIX, which is the VIX divided by its 1986-1995 average (to
avoid look-ahead bias) and appropriately scaled for each expiration. The estimation of the various pricing
kernels is based on the GMM system of equation (13), and the results are reported in Table 2 through Table
5. risk-neutral denotes the moments of the risk-neutral density. Panel A reports R2’s for option-based
moment regressions for the 1-month expiration. Panel B reports R2’s for option-based moment regressions
for the 2-month expiration. Panel C reports R2’s for the 3-month expiration, and Panel D shows R2’ for
the 6-month expiration. N is the number of observations. The sample is from January 1996 to December
2022 for 1-month expiration options, May 1998 to November 2022 for 2-month expiration, January 2002 to
October 2022 for 3-month expiration, and June 1996 to June 2022 for 6-month expiration.

Panel A: 1-month expiration

R2’s of option-based expected returns regressions (average R2 = 33.72%; excl. risk-neutral: 49.51%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 74.28%

γ1r + γ2r
2 95.80% 63.66%

γ1nvix
γ3r + γ2nvix

γ3r2 18.84% 21.39% 23.07%
risk-neutral 8.43% 0.19% 4.97% 26.58%

R2’s of option-based variances regressions (average R2 = 95.39%; excl. risk-neutral: 95.46%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 96.21%

γ1r + γ2r
2 96.94% 94.82%

γ1nvix
γ3r + γ2nvix

γ3r2 98.14% 90.57% 96.06%
risk-neutral 98.24% 92.60% 92.88% 97.43%

R2’s of option-based skewness regressions (average R2 = 55.47%; excl. risk-neutral: 46.18%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 98.80%

γ1r + γ2r
2 86.09% 86.23%

γ1nvix
γ3r + γ2nvix

γ3r2 0.66% 0.39% 4.93%
risk-neutral 98.78% 97.17% 79.33% 2.34%

R2’s of option-based kurtosis regressions (average R2 =55.87%; excl. risk-neutral: 45.63%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.66%

γ1r + γ2r
2 84.24% 82.54%

γ1nvix
γ3r + γ2nvix

γ3r2 1.66% 2.27% 3.44%
risk-neutral 99.44% 99.55% 83.64% 2.30%
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Panel B: 2-month expiration

R2’s of option-based expected returns regressions (average R2 = 38.60%; excl. risk-neutral: 42.98%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 91.44%

γ1r + γ2r
2 74.54% 84.39%

γ1nvix
γ3r + γ2nvix

γ3r2 6.33% 0.25% 0.93%
risk-neutral 16.64% 39.46% 33.79% 38.24%

R2’s of option-based variances regressions (average R2 = 93.30%; excl. risk-neutral: 92.26%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.61%

γ1r + γ2r
2 82.47% 86.20%

γ1nvix
γ3r + γ2nvix

γ3r2 98.57% 99.41% 87.28%
risk-neutral 97.33% 98.01% 87.49% 96.62%

R2’s of option-based skewness regressions (average R2 = 59.14%; excl. risk-neutral: 49.73%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.84%

γ1r + γ2r
2 98.79% 99.13%

γ1nvix
γ3r + γ2nvix

γ3r2 0.02% 0.21% 0.39%
risk-neutral 96.52% 97.20% 97.77% 1.49%

R2’s of option-based kurtosis regressions (average R2 = 60.41%; excl. risk-neutral: 50.73%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.95%

γ1r + γ2r
2 99.33% 99.23%

γ1nvix
γ3r + γ2nvix

γ3r2 1.44% 1.45% 2.94%
risk-neutral 98.36% 98.26% 99.34% 3.79%

57



Panel C: 3-month expiration

R2’s of option-based expected returns regressions (average R2 = 43.15%; excl. risk-neutral: 48.45%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 87.50%

γ1r + γ2r
2 98.81% 89.70%

γ1nvix
γ3r + γ2nvix

γ3r2 8.30% 0.35% 6.06%
risk-neutral 29.45% 59.03% 35.83% 16.53%

R2’s of option-based variances regressions (average R2 = 97.33%; excl. risk-neutral: 97.95%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.65%

γ1r + γ2r
2 98.40% 98.55%

γ1nvix
γ3r + γ2nvix

γ3r2 96.85% 97.72% 96.51%
risk-neutral 96.25% 96.22% 99.08% 94.08%

R2’s of option-based skewness regressions (average R2 = 58.31%; excl. risk-neutral: 48.50%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.09%

γ1r + γ2r
2 93.10% 95.12%

γ1nvix
γ3r + γ2nvix

γ3r2 0.00% 0.73% 2.97%
risk-neutral 94.59% 96.44% 98.51% 2.56%

R2’s of option-based kurtosis regressions (average R2 = 54.91%; excl. risk-neutral: 55.11%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 62.33%

γ1r + γ2r
2 54.35% 55.55%

γ1nvix
γ3r + γ2nvix

γ3r2 1.55% 0.90% 0.12%
risk-neutral 62.03% 63.14% 79.68% 34.70%
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Panel D: 6-month expiration

R2’s of option-based expected returns regressions (average R2 = 39.67%; excl. risk-neutral: 46.68%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 82.06%

γ1r + γ2r
2 98.07% 86.74%

γ1nvix
γ3r + γ2nvix

γ3r2 0.17% 0.12% 0.05%
risk-neutral 13.86% 41.75% 21.63% 39.36%

R2’s of option-based variances regressions (average R2 = 95.89%; excl. risk-neutral: 96.37%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.66%

γ1r + γ2r
2 96.77% 97.32%

γ1nvix
γ3r + γ2nvix

γ3r2 94.60% 96.64% 93.20%
risk-neutral 96.20% 96.18% 98.42% 89.91%

R2’s of option-based skewness regressions (average R2 = 44.37%; excl. risk-neutral: 35.91%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 86.59%

γ1r + γ2r
2 62.86% 62.75%

γ1nvix
γ3r + γ2nvix

γ3r2 1.11% 2.04% 0.14%
risk-neutral 71.35% 61.75% 90.33% 4.75%

R2’s of option-based kurtosis regressions (average R2 = 56.49%; excl. risk-neutral: 46.63%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 95.20%

γ1r + γ2r
2 79.27% 83.71%

γ1nvix
γ3r + γ2nvix

γ3r2 2.85% 9.34% 9.42%
risk-neutral 93.70% 92.96% 92.91% 5.50%
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Table 9 Coefficient of Determination for 3rd and 4th Central Mo-
ments under the Physical Measure across Pricing Kernels

This table reports coefficients of determination ( R2) from regressing option-based third and fourth central
moments across the different pricing kernels from equations (1), (2), (4), and (6). Option-based physical
moments are derived according to equation (14). The pricing kernels are classified according to the their ex-
ponents: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r+γ2r
2 (equation (4)), and γ1nvix

γ3r+γ2nvix
γ3r2

(equation (6)), where r denotes log returns, and nvix is the normalized VIX, which is the VIX divided by its
1986-1995 average (to avoid look-ahead bias) and appropriately scaled for each expiration. The estimation
of the various pricing kernels is based on the GMM system of equation (13), and the results are reported
in Table 2 through Table 5. risk-neutral denotes the moments of the risk-neutral density. Panel A reports
R2’s for option-based moment regressions for the 1-month expiration. Panel B reports R2’s for option-based
moment regressions for the 2-month expiration. Panel C reports R2’s for the 3-month expiration, and Panel
D shows R2’ for the 6-month expiration. N is the number of observations. The sample is from January
1996 to December 2022 for 1-month expiration options, May 1998 to November 2022 for 2-month expiration,
January 2002 to October 2022 for 3-month expiration, and June 1996 to June 2022 for 6-month expiration
options.

Panel A: 1-month expiration

R2’s of option-based third central moment regressions (average R2 = 46.87%; excl. risk-neutral: 38.79%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 31.36%

γ1r + γ2r
2 49.08% 45.05%

γ1nvix
γ3r + γ2nvix

γ3r2 81.39% 3.19% 22.70%
risk-neutral 95.89% 20.85% 31.96% 87.29%

R2’s of option-based fourth central moment regressions (average R2 =87.47%; excl. risk-neutral: 86.02%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 85.44%

γ1r + γ2r
2 96.26% 82.88%

γ1nvix
γ3r + γ2nvix

γ3r2 93.86% 67.92% 89.78%
risk-neutral 95.22% 77.93% 88.31% 97.07%

Panel B: 2-month expiration

R2’s of option-based third central moment regressions (average R2 = 79.58%; excl. risk-neutral: 78.70%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 96.59%

γ1r + γ2r
2 60.71% 69.90%

γ1nvix
γ3r + γ2nvix

γ3r2 81.39% 92.75% 70.85%
risk-neutral 95.77% 93.19% 57.81% 76.83%

R2’s of option-based fourth central moment regressions (average R2 = 88.55%; excl. risk-neutral: 86.75%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.44%

γ1r + γ2r
2 70.50% 75.67%

γ1nvix
γ3r + γ2nvix

γ3r2 96.69% 98.69% 79.53%
risk-neutral 97.61% 97.47% 75.94% 93.93%
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Panel C: 3-month expiration

R2’s of option-based third central moment regressions (average R2 = 86.45%; excl. risk-neutral: 86.57%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 93.89%

γ1r + γ2r
2 89.38% 90.26%

γ1nvix
γ3r + γ2nvix

γ3r2 75.14% 90.17% 80.60%
risk-neutral 89.23% 85.32% 97.07% 73.50%

R2’s of option-based fourth central moment regressions (average R2 = 92.92%; excl. risk-neutral: 93.51%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 98.82%

γ1r + γ2r
2 91.23% 91.47%

γ1nvix
γ3r + γ2nvix

γ3r2 92.58% 96.09% 90.85%
risk-neutral 91.79% 90.15% 98.62% 87.57%

Panel D: 6-month expiration

R2’s of option-based third central moment regressions (average R2 = 65.66%; excl. risk-neutral: 66.73%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 87.39%

γ1r + γ2r
2 58.46% 76.48%

γ1nvix
γ3r + γ2nvix

γ3r2 44.83% 72.75% 60.47%
risk-neutral 68.28% 69.88% 82.89% 35.09%

R2’s of option-based fourth central moment regressions (average R2 = 91.74%; excl. risk-neutral: 92.26%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.40%

γ1r + γ2r
2 91.09% 91.75%

γ1nvix
γ3r + γ2nvix

γ3r2 91.76% 94.98% 84.58%
risk-neutral 93.70% 92.64% 96.15% 81.38%
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Table 10 Summary Statistics of the Risk-neutral Variance Bounds
for Expected Returns

Panel A of this table reports summary statistics for the Martin (2017) bound of expected returns, which is

based on the risk-neutral variance according to equation (23), Rf
t,t+T + varRND(Rt,t+T )/R

f
t,t+T . The risk-

free rate is the expected stock market return according to the risk-neutral density, Rf
t,t+T = ERND

t [Rt,t+T ].
Panel B reports correlations between the risk-neutral variance bound for expected returns and the option-
based expected returns from the different pricing kernels. The pricing kernels are classified according to the
their exponents: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r + γ2r
2 (equation (4)), and γ1nvix

γ3r +
γ2nvix

γ3r2 (equation (6)), where r denotes log returns, and nvix is the normalized VIX, which is the VIX
divided by its 1986-1995 average (to avoid look-ahead bias) and appropriately scaled for each expiration.
The estimation of the various pricing kernels is based on the GMM system of equation (13), and the results
are reported in Table 2 through Table 5. risk-neutral denotes the moments of the risk-neutral density.
Option-based physical and risk-neutral moments are derived according to equation (14). The sample is from
January 1996 to December 2022 for 1-month expiration options, May 1998 to November 2022 for 2-month
expiration, January 2002 to October 2022 for 3-month expiration, and June 1996 to June 2022 for 6-month
expiration options.

Panel A: Risk-neutral bound for expected returns

Rf
t,t+T +

varRND(Rt,t+T )

Rf
t,t+T

− 1 1-month 2-month 3-month 6-month

mean 0.45% 1.05% 1.37% 3.12%
st. deviation 0.64% 1.28% 1.26% 1.77%
N 323 147 83 52

Panel B: Correlations of risk-neutral bound for expected returns with option-based expected returns

1-month expiration
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral

Rf
t,t+T +

varRND(Rt,t+T )

Rf
t,t+T

0.99 0.81 0.96 -0.33 0.42

2-month expiration
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral

Rf
t,t+T +

varRND(Rt,t+T )

Rf
t,t+T

0.99 0.97 0.87 -0.17 0.49

3-month expiration
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral

Rf
t,t+T +

varRND(Rt,t+T )

Rf
t,t+T

0.99 0.96 0.99 -0.20 0.63

6-month expiration
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral

Rf
t,t+T +

varRND(Rt,t+T )

Rf
t,t+T

0.98 0.95 0.99 0.09 0.53
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Table 11 Regressions of Risk-Neutral Variances as a Binding Lower
Bound for Option-based Expected Returns Across Pric-
ing Kernels

This table reports regression results for equation (26), which examines whether the risk-neutral variance lower
bound for risk premia from equation (23) is binding across the different pricing kernels. varRND

t (Rt,t+T ) is

the risk-neutral variance and Rf
t,t+T is the risk-free rate, which is measured by the mean of stock market

returns under the risk-neutral distribution, Rf
t,t+T = ERND

t [Rt,t+T ]. Panel A reports regression results for

realized excess returns as the dependent variable, Re
t,t+T = Rt,t+T − Rf

t,t+T , and Panel B shows results

for backward-looking fitted excess return, R̂e
t,t+T = R̂t,t+T − Rf

t,t+T as the dependent variable. Backward-

looking fitted S&P500 returns, R̂t,t+T , are fitted values from regressing realized returns on the price-dividend
ratio, the dividend growth, and the risk-free rate. These regressions are reported in Table A.1 of the
Appendix. Panels C and D report results where the dependent variable is the forward-looking option-based
risk premium, Et[R

e
t,t+T ] = Et[Rt,t+T ]− Rf

t,t+T , according to the monotonic pricing kernels from equations
(1), (2), (4), and (6). Panels E and F report results where the dependent variable is the forward-looking
option-based risk premium based on the non-monotonic pricing kernels from equations (4) and (6). Option-
based expected returns, Et[Rt,t+T ], are derived according to equation (14). The pricing kernels are classified
according to the their exponents: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r + γ2r
2 (equation (4)),

and γ1nvix
γ3r + γ2nvix

γ3r2 (equation (6)), where r denotes log returns, and nvix is the normalized VIX,
which is the VIX divided by its 1986-1995 average (to avoid look-ahead bias) and appropriately scaled for
each expiration. risk-neutral denotes the moments of the risk-neutral density. The estimation of the various
pricing kernels is based on the GMM system of equation (13), and the results are reported in Table 2 through
Table 5. All variables are contemporaneous, and all regressions are for non-overlapping intervals. t-statistics
in parentheses are corrected for heteroscedasticity and autocorrelation using Newey-West standard errors
with 12, 6, 4, and 2 lags for the 1-, 2-, 3-, and 6-month expirations, respectively. N is the number of
observations. The sample is from January 1996 to December 2022 for 1-month expiration options, May 1998
to November 2022 for 2-month expiration, January 2002 to October 2022 for 3-month expiration, and June
1996 to June 2022 for 6-month expiration options.

Panel A: Realized returns

Re
t,t+T 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )

Rf
t,t+T

1.763 1.106 0.280 1.196

(2.06) (1.39) (0.25) (1.82)
{0.89} {0.13} {-0.66} {0.30}

constant -0.207% 0.120% 1.202% 0.604%
(-0.47) (0.14) (1.06) (0.28)

R2 4.63% 3.18% 0.13% 2.88%
N 323 147 83 52

Panel B: Backward-looking fitted returns

R̂e
t,t+T 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )

Rf
t,t+T

0.532 0.409 0.625 1.011

(4.73) (2.89) (2.87) (2.87)
{-4.15} {-4.16} {-1.71} {0.03}

constant 0.410% 0.823% 0.792% 0.653%
(2.65) (2.83) (1.32) (0.57)

R2 12.38% 10.33% 10.77% 14.68%
N 321 146 82 50
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Panel C: Option-based risk premia from pricing kernel in equation (1) (γ1r)

Et[R
e
t,t+T ] 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )

Rf
t,t+T

1.282 1.195 1.219 1.371

(172.37) (141.76) (204.61) (247.90)
{37.98} {23.19} {36.83} {67.13}

constant 0.014% 0.033% 0.026% 0.148%
(4.96) (4.78) (5.36) (7.23)

R2 99.96% 99.96% 99.94% 99.85%
N 323 147 83 52

Panel D: Option-based risk premia from pricing kernel in equation (2) (γ1nvix
γ3r)

Et[R
e
t,t+T ] 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )

Rf
t,t+T

3.993 0.725 0.623 0.735

(7.34) (23.09) (10.94) (16.41)
{5.50} {-8.75} {-6.61} {-5.91}

constant -1.348% 0.517% 0.769% 1.834%
(-4.80) (12.33) (10.59) (13.44)

R2 84.26% 96.84% 89.61% 89.11%
N 323 147 83 52

Panel E: Option-based risk premia from pricing kernel in equation (4) (γ1r + γ2r
2)

Et[R
e
t,t+T ] 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )

Rf
t,t+T

1.192 0.773 1.146 1.257

(16.20) (2.66) (26.41) (43.10)
{2.61} {-0.78} {3.38} {8.81}

constant 0.084% 0.467% 0.110% 0.442%
(2.30) (1.83) (3.04) (6.62)

R2 95.41% 69.95% 97.93% 97.26%
N 323 147 83 52

Panel F: Option-based risk premia from pricing kernel in equation (6) (γ1nvix
γ3r + γ2nvix

γ3r2)

Et[R
e
t,t+T ] 1-month 2-month 3-month 6-month

varRND
t (Rt,t+T )

Rf
t,t+T

-0.276 -0.271 -0.582 -0.081

(-4.53) (-3.66) (-4.17) (-1.08)
{-20.92} {-17.16} {-11.34} {-14.45}

constant 0.835% 1.557% 2.289% 4.009%
(11.47) (11.23) (7.39) (11.15)

R2 16.20% 18.76% 25.08% 1.25%
N 323 147 83 52
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Table 12 Violations of Risk-Neutral Lower Bounds for Option-
based Expected Returns Across Pricing Kernels

This table reports how often realized returns and option-based risk-premia are lower than the risk-neutral
variance lower bound from equation (23) Panel A reports the frequency of violations of the risk-neutral lower
bound for the 1-month expiration. Panel B reports the frequency of violations for the 2-month expiration,
Panel C shows the frequency of violations for the 3-month expiration, and Panel D for the 6-month expiration.
We calculate the frequency of the lower bound violations for alternative measures of realized and expected
returns. Re

t,t+T = Rt,t+T − Rf
t,t+T are excess returns. R̂e

t,t+T = R̂t,t+T − Rf
t,t+T are backward-looking

fitted excess return from regressing realized returns on the price-dividend ratio, the dividend growth, and
the risk-free rate. These regressions are reported in Table A.1 of the Appendix. Option-based risk premia,
Et[R

e
t,t+T ] = Et[Rt,t+T ] − Rf

t,t+T , are according to the pricing kernels from equations (1), (2), (4), and (6).
The pricing kernels are classified based on the their exponents: γ1r (equation (1)), γ1nvix

γ3r (equation
(2)), γ1r + γ2r

2 (equation (4)), and γ1nvix
γ3r + γ2nvix

γ3r2 (equation (6)), where r denotes log returns,
and nvix is the normalized VIX, which is the VIX divided by its 1986-1995 average (to avoid look-ahead
bias) and appropriately scaled for each expiration. Estimation of the various pricing kernels is based on
the GMM system of equation (13), and the results are reported in Table 2 through Table 5. Option-based
physical moments are derived according to equation (14). N is the number of observations. In these tests,
the risk-free rate for calculating risk premia is the expected stock market return according to the risk-neutral
distribution, Rf

t,t+T = ERND
t [Rt,t+T ]. The number in brackets are the average absolute differences between

the alternative measures of excess returns and the risk-neutral variance bound. The sample is from January
1996 to December 2022 for 1-month expiration options, May 1998 to November 2022 for 2-month expiration,
January 2002 to October 2022 for 3-month expiration, and June 1996 to June 2022 for 6-month expiration
options.

Panel A: Violations of risk-neutral lower bounds for expected returns, 1-month expiration

Re
t,T+T R̂e

t,T+T Et[R
e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ]

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 N

41% [3.41%] 36% [0.76%] 0% [0.15%] 83% [0.41%] 5% [0.18%] 45% [0.54%] 323

Panel B: Violations of risk-neutral lower bounds for expected returns, 2-month expiration

Re
t,T+T R̂e

t,T+T Et[R
e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ]

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 N

40% [4.93%] 36% [1.26%] 0% [0.23%] 5% [0.31%] 1% [0.32%] 41% [0.96%] 147

Panel C: Violations of risk-neutral lower bounds for expected returns, 3-month expiration

Re
t,T+T R̂e

t,T+T Et[R
e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ]

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 N

40% [5.83%] 40% [1.64%] 0% [0.30%] 8% [0.43%] 1% [0.29%] 53% [1.44%] 83

Panel D: Violations of risk-neutral lower bounds for expected returns, 6-month expiration

Re
t,T+T R̂e

t,T+T Et[R
e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ] Et[R

e
t,t+T ]

γ1r γ1nvix
γ3r γ1r + γ2r

2 γ1nvix
γ3r + γ2nvix

γ3r2 N

36% [8.42%] 36% [3.15%] 0% [1.13%] 4% [1.19%] 0% [1.13%] 42% [2.10%] 52
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Appendix

Appendix A Supplemental Figures

Figure A.1 Risk-neutral Density Functions

This figure shows the average risk-neutral density function across the different expirations with and without
tail adjustment. The tail adjustment is done by appending a type-I (two-parameter) Pareto distribution to
the tails of the risk-neutral distribution (equation (15)). The two parameters of the left-tail (right-tail) Pareto
distribution are identified by matching the Pareto distribution to the empirical risk-neutral distributions at
the 2% (98%) and 5% (95%). Details on the derivation of the risk-neutral distribution can be found in
Section 3.2. For these plots, we average, across dates, the risk-neutral density functions (with and without
tail adjustments) for each expiration. The sample is from January 1996 to December 2022 for 1-month
expiration options, May 1998 to November 2022 for 2-month expiration, January 2002 to October 2022 for
3-month expiration, and June 1996 to June 2022 for 6-month expiration options.
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Panel B: Two-month expiration
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Panel C: Three-month expiration
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Panel D: Six-month expiration
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Appendix B Supplemental Tables

Table A.1 Backward-looking Fitted Returns

Panel A of this table reports four sets of regression results for the backward-looking fitted returns of the
S&P500. Fitted returns, R̂t,t+T − 1, are derived by regressing realized returns, Rt,t+T − 1, on the dividend-

yield, divpt, the lagged dividend growth, ∆divt−T,t, and the risk-free rate, Rf
t,t+T . Realized returns, div-

idends, and dividend yield are from the CRSP S&P Index files. The risk-free rate is the mean of the
option-based RND (ERND

t [Rt,t+T − 1]). t-statistics in parentheses are corrected for heteroscedasticity and
autocorrelation using Newey-West standard errors with 12, 6, 4, and 2 lags for the 1-, 2-, 3-, and 6-month ex-
pirations, respectively. All regressions are for non-overlapping intervals. Panel B reports summary statistics
for realized and backward-looking fitted returns. Panel C reports correlations of realized and backward-
looking returns with option-based expected returns according to the various pricing kernels. Option-based
expected returns are classified according to the thee exponent of the corresponding discount factor: γ1r
(equation (1)), γ1nvix

γ3r (equation (2)), γ1r + γ2r
2 (equation (4)), and γ1nvix

γ3r + γ2nvix
γ3r2 (equation

(6)), where r denotes log returns, and nvix is the normalized VIX, which is the VIX divided by its 1986-
1995 average (to avoid look-ahead bias) and appropriately scaled for each expiration. The estimation of the
various pricing kernels is based on the GMM system of equation (13), and the results are reported in Table 2
through Table 5. risk-neutral denotes the moments of the risk-neutral density. Option-based physical and
risk-neutral moments are derived according to equation (14). risk-neutral bound is the expected returns
according to Martin (2017) variance-based lower bound from equation (23). ρ∗ is the correlation between re-
alized and backward-looking fitted returns. The sample is from January 1996 to December 2022 for 1-month
expiration, May 1998 to November 2022 for 2-month expiration, January 2002 to October 2022 for 3-month
expiration, and December 1996 to June 2022 for 6-month expiration.

Panel A: Regressions for backward-looking expected returns

Rt,t+T 1-month 2-month 3-month 6-month
divpt 12.954 16.092 10.930 14.037

(1.56) (1.24) (0.84) (1.22)
∆divt−T,t -0.011 -0.018 0.029 -0.028

(-1.15) (-0.57) (0.28) (-0.25)

Rf
t,t+T -0.520 0.314 -0.719 -0.359

(-0.66) (0.35) (-0.82) (-0.21)
constant -1.376% -3.797% -3.755% -9.082%

(-1.13) (-0.97) (-0.59) (-0.84)
R2 1.45% 2.25% 3.20% 8.59%
N 321 146 82 50

Panel B: Summary statistics for realized and backward-looking expected returns

i) Rt,t+T 1-month 2-month 3-month 6-month
mean 0.63% 1.28% 1.66% 4.25%
st. deviation 4.88% 7.01% 7.41% 10.72%
N 323 147 83 52

ii) R̂t,t+T 1-month 2-month 3-month 6-month
mean 0.62% 1.24% 1.67% 3.78%
st. deviation 0.59% 1.05% 1.33% 3.11%
N 321 146 82 50
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Panel C: Correlations of realized and backward-looking expected returns with option-based expected returns

1-month expiration
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral risk-neutral bound ρ∗

Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] ERND
t [Rt,t+T ] Rf

t,t+T +
varRND

t (Rt,t+T )

Rf
t,t+T

Rt,t+T 0.15 0.20 0.14 -0.17 -0.06 0.14

R̂t,t+T 0.01 0.27 0.01 -0.41 -0.56 -0.07 0.12

2-month expiration
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral risk-neutral bound ρ∗

Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] ERND
t [Rt,t+T ] rf∗t,t+T +

varRND
t (Rt,t+T )

Rf∗
t,t+T

Rt,t+T 0.14 0.10 0.04 -0.10 -0.01 0.13

R̂t,t+T 0.17 0.04 0.10 -0.24 -0.15 0.14 0.15

3-month expiration
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral risk-neutral bound ρ∗

Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] ERND
t [Rt,t+T ] rf∗t,t+T +

varRND
t (Rt,t+T )

Rf∗
t,t+T

Rt,t+T -0.05 -0.09 -0.05 -0.13 -0.10 -0.06

R̂t,t+T -0.09 -0.31 -0.10 -0.26 -0.53 -0.15 0.18

6-month expiration
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2 risk-neutral risk-neutral bound ρ∗

Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] Et[Rt,t+T ] ERND
t [Rt,t+T ] rf∗t,t+T +

varRND
t (Rt,t+T )

Rf∗
t,t+T

Rt,t+T 0.05 -0.05 0.02 -0.17 -0.11 0.02

R̂t,t+T -0.02 -0.26 -0.08 -0.40 -0.62 -0.14 0.29
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Table A.2 Summary Statistics of Option-based Log-return Moments for the
Physical Measure Across Pricing Kernels

This table reports summary statistics for the option-based moments of log-returns under the physical measure
across the different pricing kernels from equations (1), (2), (4), and (6). The pricing kernels are classified
based on the their exponents: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r + γ2r
2 (equation (4)), and

γ1nvix
γ3r+ γ2nvix

γ3r2 (equation (6)), where r denotes log returns, and nvix is the normalized VIX, which
is the VIX divided by its 1986-1995 average (to avoid look-ahead bias) and scaled appropriately for each
expiration. The estimation of the various pricing kernels is based on the GMM system of equation (13),
and the results are reported in Table 2 through Table 5. risk-neutral denotes the moments of the risk-
neutral density. realized denotes the moments of the distribution of the realized returns in the sample
fro each expiration. Option-based physical and risk-neutral moments for log-returns are derived according
to equation (14). Panel A reports summary statistics for option-based expected returns. Panel B reports
statistics for option-based variances. Panel C reports summary statistics for option-based skewness, and
in Panel D for option-based kurtosis. The sample is from January 1996 to December 2022 for 1-month
expiration options, May 1998 to November 2022 for 2-month expiration, January 2002 to October 2022 for
3-month expiration, and June 1996 to June 2022 for 6-month expiration options.

Panel A: Option-based expected log-returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month
mean 0.38% 0.83% 1.13% 3.14%
st. deviation 0.58% 1.11% 1.12% 1.71%
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 0.38% 0.82% 1.11% 3.12%
st. deviation 2.19% 0.80% 0.78% 1.19%
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 0.45% 0.49% 1.04% 2.88%
st. deviation 0.57% 4.26% 1.13% 1.70%
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month
mean 0.43% 0.86% 1.13% 3.49%
st. deviation 0.74% 1.49% 1.69% 1.65%
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month
mean -0.36% -0.64% -0.68% -1.24%
st. deviation 0.67% 1.42% 1.32% 2.13%
N 323 147 83 52

vi) realized mean 1-month 2-month 3-month 6-month
0.51% 1.01% 1.37% 3.60%
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Panel B: Option-based physical variances of log-returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month
mean 0.47% 0.94% 1.13% 2.19%
st. deviation 0.51% 0.90% 0.82% 1.08%
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 0.47% 0.98% 1.17% 2.25%
st. deviation 0.32% 1.27% 1.08% 1.55%
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 0.36% 3.38% 1.37% 3.02%
st. deviation 0.28% 29.63% 1.29% 2.78%
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month
mean 0.44% 0.96% 1.15% 1.41%
st. deviation 0.95% 2.67% 1.78% 1.81%
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month
mean 0.64% 1.51% 1.79% 3.96%
st. deviation 0.94% 2.67% 1.74% 3.16%
N 323 147 83 52

vi) realized variance 1-month 2-month 3-month 6-month
0.25% 0.56% 0.58% 1.19%
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Panel C: Option-based physical skewness of log-returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month
mean -1.90 -2.06 -2.07 -1.64
st. deviation 0.96 1.03 1.02 0.54
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean -1.90 -2.05 -2.05 -1.59
st. deviation 0.96 1.02 0.99 0.48
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean -1.54 -2.13 -2.32 -2.18
st. deviation 0.71 1.13 1.36 1.22
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month
mean -0.86 -0.87 -1.02 -0.54
st. deviation 0.70 0.69 0.93 0.37
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month
mean -1.96 -2.17 -2.21 -2.02
st. deviation 0.93 1.09 1.15 0.92
N 323 147 83 52

vi) realized skewness 1-month 2-month 3-month 6-month
-1.78 -2.39 -1.44 -1.37
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Panel D: Option-based physical kurtosis of log-returns across pricing kernels

i) γ1r 1-month 2-month 3-month 6-month
mean 10.96 12.71 12.97 9.85
st. deviation 7.33 9.34 9.53 4.97
N 323 147 83 52

ii) γ1nvix
γ3r 1-month 2-month 3-month 6-month

mean 10.48 12.84 13.04 9.59
st. deviation 6.69 9.44 9.48 4.60
N 323 147 83 52

iii) γ1r + γ2r
2 1-month 2-month 3-month 6-month

mean 8.81 13.36 14.85 13.86
st. deviation 4.80 10.88 12.85 11.53
N 323 147 83 52

iv) γ1nvix
γ3r + γ2nvix

γ3r2 1-month 2-month 3-month 6-month
mean 5.54 5.56 6.41 3.97
st. deviation 3.35 3.59 5.57 1.18
N 323 147 83 52

v) risk-neutral 1-month 2-month 3-month 6-month
mean 10.17 11.73 11.99 10.49
st. deviation 6.01 7.96 8.41 6.63
N 323 147 83 52

vi) realized kurtosis 1-month 2-month 3-month 6-month
11.72 13.89 5.76 6.26
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Table A.3 Coefficient of Determination for Log-return Moments under the Phys-
ical Measure across Pricing Kernels

This table reports coefficients of determination (R2) from regressing the corresponding option-based moments
for log-returns across the different pricing kernels from equations (1), (2), (4), and (6). Option-based
physical moments for log-returns are derived according to equation (14). The pricing kernels are classified
according to the their exponents: γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r+γ2r
2 (equation (4)), and

γ1nvix
γ3r+ γ2nvix

γ3r2 (equation (6)), where r denotes log returns, and nvix is the normalized VIX, which
is the VIX divided by its 1986-1995 average (to avoid look-ahead bias) and appropriately scaled for each
expiration. The estimation of the various pricing kernels is based on the GMM system of equation (13), and
the results are reported in Table 2 through Table 5. risk-neutral denotes the moments of the risk-neutral
density. Panel A reports R2’s for option-based moment regressions for the 1-month expiration. Panel B
reports R2’s for option-based moment regressions for the 2-month expiration. Panel C reports R2’s for the
3-month expiration, and Panel D shows R2’s for the 6-month expiration. N is the number of observations.
The sample is from January 1996 to December 2022 for 1-month expiration options, May 1998 to November
2022 for 2-month expiration, January 2002 to October 2022 for 3-month expiration, and June 1996 to June
2022 for 6-month expiration options.

Panel A: 1-month expiration

R2’s of option-based expected log-returns regressions (average R2 = 43.80%; excl. risk-neutral: 57.19%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 62.28%

γ1r + γ2r
2 91.20% 59.22%

γ1nvix
γ3r + γ2nvix

γ3r2 31.42% 53.89% 45.17%
risk-neutral 0.47% 26.34% 6.63% 61.46%

R2’s of option-based log-return variances regressions (average R2 = 83.53%; excl. risk-neutral: 82.55%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 79.10%

γ1r + γ2r
2 94.38% 82.69%

γ1nvix
γ3r + γ2nvix

γ3r2 94.05% 59.08% 86.04%
risk-neutral 95.10% 65.74% 82.55% 96.60%

R2’s of option-based log-return skewness regressions (average R2 = 53.54%; excl. risk-neutral: 43.85%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 97.35%

γ1r + γ2r
2 75.55% 77.83%

γ1nvix
γ3r + γ2nvix

γ3r2 5.34% 3.27% 3.77%
risk-neutral 99.02% 95.08% 69.86% 8.41%

R2’s of option-based log-return kurtosis regressions (average R2 = 55.35%; excl. risk-neutral: 44.85%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 98.72%

γ1r + γ2r
2 72.28% 70.96%

γ1nvix
γ3r + γ2nvix

γ3r2 12.69% 13.63% 0.87%
risk-neutral 99.13% 98.08% 73.78% 13.41%
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Panel B: 2-month expiration

R2’s of option-based expected log-returns regressions (average R2 = 27.22%; excl. risk-neutral: 22.28%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 65.82%

γ1r + γ2r
2 4.27% 5.69%

γ1nvix
γ3r + γ2nvix

γ3r2 22.76% 0.58% 34.53%
risk-neutral 0.14% 26.95% 41.93% 69.55%

R2’s of option-based log-return variances regressions (average R2 = 79.83%; excl. risk-neutral: 74.92%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 97.23%

γ1r + γ2r
2 41.64% 55.75%

γ1nvix
γ3r + γ2nvix

γ3r2 85.57% 94.90% 74.44%
risk-neutral 87.12% 94.35% 71.90% 95.39%

R2’s of option-based log-return skewness regressions (average R2 = 61.95%; excl. risk-neutral: 52.58%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.52%

γ1r + γ2r
2 97.99% 98.82%

γ1nvix
γ3r + γ2nvix

γ3r2 4.34% 6.58% 8.25%
risk-neutral 96.74% 98.16% 99.11% 10.02%

R2’s of option-based log-return kurtosis regressions (average R2 = 65.54%; excl. risk-neutral: 57.12%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.71%

γ1r + γ2r
2 97.55% 96.93%

γ1nvix
γ3r + γ2nvix

γ3r2 14.88% 16.20% 17.46%
risk-neutral 97.01% 98.00% 96.04% 21.65%
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Panel C: 3-month expiration

R2’s of option-based expected log-returns regressions (average R2 = 37.35%; excl. risk-neutral: 41.17%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 60.65%

γ1r + γ2r
2 92.07% 72.60%

γ1nvix
γ3r + γ2nvix

γ3r2 14.08% 3.10% 4.50%
risk-neutral 6.61% 56.39% 20.92% 42.56%

R2’s of option-based log-return variances regressions (average R2 = 92.45%; excl. risk-neutral: 92.82%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 98.33%

γ1r + γ2r
2 89.79% 90.22%

γ1nvix
γ3r + γ2nvix

γ3r2 92.52% 96.35% 89.70%
risk-neutral 90.75% 90.35% 98.66% 87.78%

R2’s of option-based log-return skewness regressions (average R2 = 63.85%; excl. risk-neutral: 54.82%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 98.66%

γ1r + γ2r
2 91.91% 95.01%

γ1nvix
γ3r + γ2nvix

γ3r2 7.97% 14.11% 21.28%
risk-neutral 96.96% 98.69% 97.42% 16.55%

R2’s of option-based log-return kurtosis regressions (average R2 = 69.04%; excl. risk-neutral: 61.19%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 99.55%

γ1r + γ2r
2 95.00% 95.73%

γ1nvix
γ3r + γ2nvix

γ3r2 19.85% 23.52% 33.49%
risk-neutral 98.47% 99.08% 97.46% 28.20%
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Panel D: 6-month expiration

R2’s of option-based expected log-returns regressions (average R2 = 33.82%; excl. risk-neutral: 38.92%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 52.72%

γ1r + γ2r
2 79.44% 74.41%

γ1nvix
γ3r + γ2nvix

γ3r2 8.19% 18.77% 0.00%
risk-neutral 0.02% 35.25% 15.09% 54.36%

R2’s of option-based log-return variances regressions (average R2 = 85.53%; excl. risk-neutral: 84.31%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 97.42%

γ1r + γ2r
2 76.73% 79.97%

γ1nvix
γ3r + γ2nvix

γ3r2 85.95% 94.40% 71.38%
risk-neutral 87.88% 89.60% 92.92% 79.05%

R2’s of option-based log-return skewness regressions (average R2 = 50.41%; excl. risk-neutral: 39.64%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 81.72%

γ1r + γ2r
2 65.41% 82.65%

γ1nvix
γ3r + γ2nvix

γ3r2 2.22% 3.54% 2.29%
risk-neutral 86.11% 88.81% 91.31% 0.02%

R2’s of option-based log-return kurtosis regressions (average R2 = 54.78%; excl. risk-neutral: 44.16%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 91.73%

γ1r + γ2r
2 76.42% 88.34%

γ1nvix
γ3r + γ2nvix

γ3r2 0.05% 4.22% 4.21%
risk-neutral 91.12% 95.57% 94.060% 1.53%
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Table A.4 Coefficient of Determination for 3rd and 4th Moments under the
Physical Measure across Pricing Kernels

This table reports coefficients of determination (R2) from regressing option-based third and fourth central
moments across the different pricing kernels from equations (1), (2), (4), (6). Option-based physical moments
are derived according to equation (14). The pricing kernels are classified according to the their exponents:
γ1r (equation (1)), γ1nvix

γ3r (equation (2)), γ1r+γ2r
2 (equation (4)), and γ1nvix

γ3r+γ2nvix
γ3r2 (equation

(6)), where r denotes log returns, and nvix is the normalized VIX, which is the VIX divided by its 1986-
1995 average (to avoid look-ahead bias) and appropriately scaled for each expiration. The estimation of
the various pricing kernels is based on the GMM system of equation (13), and the results are reported in
Table 2 through Table 5. risk-neutral denotes the moments of the risk-neutral density. Panel A reports
R2’s for option-based moment regressions for the 1-month expiration. Panel B reports R2’s for option-based
moment regressions for the 2-month expiration. Panel C reports R2’s for the 3-month expiration, and Panel
D shows R2’ for the 6-month expiration. N is the number of observations. The sample is from January
1996 to December 2022 for 1-month expiration options, May 1998 to November 2022 for 2-month expiration,
January 2002 to October 2022 for 3-month expiration, and June 1996 to June 2022 for 6-month expiration
options.

Panel A: 1-month expiration

R2’s of option-based third central moment regressions (average R2 = 53.65%; excl. risk-neutral: 46.38%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 24.80%

γ1r + γ2r
2 73.90% 37.73%

γ1nvix
γ3r + γ2nvix

γ3r2 86.24% 3.31% 52.28%
risk-neutral 92.81% 11.50% 57.36% 96.60%

R2’s of option-based fourth central moment regressions (average R2 =54.22%; excl. risk-neutral: 46.67%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 18.95%

γ1r + γ2r
2 82.17% 24.31%

γ1nvix
γ3r + γ2nvix

γ3r2 89.44% 4.48% 60.70%
risk-neutral 92.01% 9.05% 62.12% 98.95%

Panel B: 2-month expiration

R2’s of option-based third central moment regressions (average R2 = 85.06%; excl. risk-neutral: 81.08%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 92.10%

γ1r + γ2r
2 55.48% 78.65%

γ1nvix
γ3r + γ2nvix

γ3r2 72.64% 92.63% 94.97%
risk-neutral 79.53% 94.46% 92.64% 97.53%

R2’s of option-based fourth central moment regressions (average R2 = 88.88%; excl. risk-neutral: 86.23%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 90.72%

γ1r + γ2r
2 67.13% 90.24%

γ1nvix
γ3r + γ2nvix

γ3r2 75.11% 95.23% 98.94%
risk-neutral 77.68% 95.77% 98.48% 99.51%
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Panel C: 3-month expiration

R2’s of option-based third central moment regressions (average R2 = 83.46%; excl. risk-neutral: 81.73%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 92.78%

γ1r + γ2r
2 77.78% 76.04%

γ1nvix
γ3r + γ2nvix

γ3r2 77.02% 91.76% 75.02%
risk-neutral 89.35% 83.32% 95.84% 75.67%

R2’s of option-based fourth central moment regressions (average R2 = 81.30%; excl. risk-neutral: 79.01%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 92.11%

γ1r + γ2r
2 72.73% 70.92%

γ1nvix
γ3r + γ2nvix

γ3r2 75.05% 90.59% 72.69%
risk-neutral 87.76% 81.35% 94.94% 74.90%

Panel D: 6-month expiration

R2’s of option-based third central moment regressions (average R2 = 72.35%; excl. risk-neutral: 68.86%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 92.48%

γ1r + γ2r
2 61.48% 63.17%

γ1nvix
γ3r + γ2nvix

γ3r2 68.00% 87.65% 40.38%
risk-neutral 85.48% 81.78% 87.29% 55.81%

R2’s of option-based fourth central moment regressions (average R2 = 70.71%; excl. risk-neutral: 66.85%)
γ1r γ1nvix

γ3r γ1r + γ2r
2 γ1nvix

γ3r + γ2nvix
γ3r2

γ1nvix
γ3r 93.41%

γ1r + γ2r
2 59.37% 56.43%

γ1nvix
γ3r + γ2nvix

γ3r2 71.79% 89.14% 30.93%
risk-neutral 86.76% 80.33% 85.47% 53.51%
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Appendix C Proofs

A.1 Pricing Kernels and Log-normal Densities

This section derives the resulting probability densities from combining linear or quadratic
pricing kernels with log-normal or skew log-normal distributions. The log-normal probability
density function is proportional to

1

y
Exp

[(lny + ω)2

2σ2

]
.

The constants ω and σ2 are the location and scale parameters of the distribution.
The skew log-normal probability density function is proportional to

1

y
Exp

[(lny + ω)2

2σ2

]
Φ
(
λ
lny − ω

σ
+ ξ

)
,

where Φ() is the standard normal cumulative distribution function. The constants ω and
σ2 are the location and scale parameters. The parameters λ and ξ are the skewness and
kurtosis parameters for R > 0. Based on the probability density functions above for the
log-normal and the skew log-normal distributions, the distributions resulting from the linear
and quadratic pricing kernels can be easily calculated.

Linear Pricing Kernel and Log-normal Distribution

1

y
Exp

[
γ1lny −

(lny − ω)2

2σ2

]
∝ 1

y
Exp

[
−

(
lny − (ω + γ1σ

2)
)2

2σ2

]
.

Quadratic Pricing Kernel and Log-normal Distribution

1

y
Exp

[
γ1lny + γ2ln

2y − (lny − ω)2

2σ2

]
∝ 1

y
Exp

[
−

(
lny − ω+γ1σ2

1−2γ2σ2

)2
2 σ2

1−2γ2σ2

]
.

Linear Pricing Kernel and Skew Log-normal Distribution

1

y
Exp

[
γ1lny −

(lny − ω)2

2σ2

]
Φ
(
λ
lny − ω

σ
+ ξ

)
∝

1

y
Exp

[
−

(
lny − (ω + γ1σ

2)
)2

2σ2

]
Φ
(
λ
lny − (ω + γ1σ

2)

σ
+ ξ + λγ1σ

)
.
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Quadratic Pricing Kernel and Skew Log-normal Distribution

1

y
Exp

[
γ1lny + γ2ln

2y − (lny − ω)2

2σ2

]
Φ
(
λ
lny − ω

σ
+ ξ

)
∝

1

y
Exp

[
−

(
lny − ω+γ1σ2

1−2γ2σ2

)2
2 σ2

1−2γ2σ2

]
Φ
( λ√

1− 2γ2σ2

lny − ω+γ1σ2

1−2γ2σ2

σ√
1−2γ2σ2

+ ξ + λ
γ1 + 2ωγ2
1− 2γ2σ2

σ
)
.

A.2 Location-Scale Moments

Let Y be a location-scale transformation of a standardized random variable r:

Y = ω + Zσ,

where ω and σ are the location and scale parameters. Then, it follows that

E[Y ] = ω + E[Z]σ

E[(Y − E[Y ])2] = E[(Z − E[Z])2]σ2

E[(Y − E[Y ])3] = E[(Z − E[Z])3]σ3

E[(Y − E[Y ])4] = E[(Z − E[Z])4]σ4.

A.3 Truncated Normal Moments

This section derives the moments of a standard normal variable, T , truncated below the
point − ξ√

1+λ2 :

T ∼ N(0, 1)

1− Φ
(
− ξ√

1+λ2

) , T > − ξ√
1 + λ2

.

The first moment is

E[T ] =
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) .
The second and third moments are respectively

E[T 2] = 1− ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)
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and

E[T 3] =

(
2 +

(
ξ√

1+λ2

)2)
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) .

Hence, the second and third central moments are respectively

E[(T − E[T ])2] = 1− ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) −
ϕ
(
− ξ√

1+λ2

)
2(

1− Φ
(
− ξ√

1+λ2

))2
and

E[(T − E[T ])3] =

(
2 +

(
ξ√

1+λ2

)2)
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)
−3

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)(1− ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

))+ 2
ϕ
(
− ξ√

1+λ2

)3
(1− Φ

(
− ξ√

1+λ2

)
)3((

ξ√
1+λ2

)2

− 1
)
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) + 3
ξ√

1 + λ2

ϕ
(
− ξ√

1+λ2

)2(
1− Φ

(
− ξ√

1+λ2

))2 + 2
ϕ
(
− ξ√

1+λ2

)3(
1− Φ

(
− ξ√

1+λ2

))3 .
.

A.4 Standard Skew-Normal Moments

The standard skew-normal random variable, r, can be derived as the linear combination of
a truncated standard normal variable, T , which is truncated above the point − ξ√

1+λ2 , and a
standard normal variable, V :

Z =
λ√

1 + λ2
T +

1√
1 + λ2

V, T ∼ N(0, 1)

1− Φ
(
− ξ√

1+λ2

) , T > − ξ√
1 + λ2

, V ∼ N(0, 1).

Using the binomial expansion, the general formula for the moments of r as a function of the
moments of T and V is given by

E[Zn] =
n∑

i=0

(
n

i

)( λ√
1 + λ2

)i( 1√
1 + λ2

)n−i

E[T i]E[V n−i].

Hence, the first moment of r is

E[Z1] =
λ√

1 + λ2
E[T 1] =

λ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) ,

82



where ϕ() is the standard normal density function. The second moment of r is given by

E[Z2] =
1

1 + λ2
+

λ2

1 + λ2

(
1− ξ√

1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)),
and its variance is equal to

var(Z) = 1− λ2

1 + λ2

ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) − λ2

1 + λ2

ϕ
(
− ξ√

1+λ2

)2(
1− Φ

(
− ξ√

1+λ2

))2 .

Similarly, the third central moment of r is

E[(Z − E[Z])3] =

λ3

(1 + λ2)3/2

[(( ξ√
1+λ2

)2

− 1
)
ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) + 3
ξ√

1 + λ2

ϕ
(
− ξ√

1+λ2

)2(
1− Φ

(
− ξ√

1+λ2

))2 + 2
ϕ
(
− ξ√

1+λ2

)3(
1− Φ

(
− ξ√

1+λ2

))3].
A.5 Derivative of the Inverse Mills Ratio

The inverse Mills ratio for a standard normal variable is

ϕ(x)

1− Φ(x)
.

Its derivative is

ϕ(x)

1− Φ(x)

(
− x+

ϕ(x)

1− Φ(x)

)
.

From Appendix A.3, if T̃ is a standard normal variable truncated from below at x, then

E[T̃ |T̃ ≥ x] =
ϕ(x)

1− Φ(x)
.

Thus, for a standard normal variable, truncated from below at x the following holds

E[T̃ |T̃ ≥ x] =
ϕ(x)

1− Φ(x)
> x,

and the inverse Mills ratio for a standard normal variable is strictly increasing.

A.6 Moments of Location-Scale Skew-Normal Distribution

Let the risk-neutral density for the random variable, Y , be skew log-normal with location,
scale, and shape parameters ω, σ, λ, and ξ. In this case, based on the results from Appendices
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A.2 and A.3, the density function, mean and variance are respectively given by

dQY (y) ∝
1

y
Exp

[
−

(
lny − ω

)2
2σ2

]
Φ
(
λ
lny − ω

σ
+ ξ

)
E[lnY ]RND = ω +

λ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

)σ
var

(
lnY

)RND
=

[
1− λ2

1 + λ2

ξ√
1 + λ2

ϕ
(
− ξ√

1+λ2

)
1− Φ

(
− ξ√

1+λ2

) − λ2

1 + λ2

ϕ
(
− ξ√

1+λ2

)2(
1− Φ

(
− ξ√

1+λ2

))2

]
σ2.

Linear Pricing Kernel

According to Appendix A.1, after applying the linear pricing kernel to the skew-normal
RND, the density function, mean, and variance respectively become

dPY (y) ∝
1

y
Exp

[
−

(
lny − (ω + γ1σ

2)
)2

2σ2

]
Φ
(
λ
lny − (ω + γ1σ

2)

σ
+ ξ + λγ1σ

)
(a.1)

E[lnY ] = ω + γ1σ
2 +

λ√
1 + λ2

ϕ
(
− ξ+λγ1σ√

1+λ2

)
1− Φ

(
− ξ+λγ1σ√

1+λ2

)σ (a.2)

var(lnY ) =
[
1− λ2

1 + λ2

ξ + λγ1σ√
1 + λ2

ϕ
(
− ξ+λγ1σ√

1+λ2

)
1− Φ

(
− ξ+λγ1σ√

1+λ2

) − λ2

1 + λ2

ϕ
(
− ξ+λγ1σ√

1+λ2

)2(
1− Φ

(
− ξ+λγ1σ√

1+λ2

))2

]
σ2(a.3)

According to the last equation above, when the risk-neutral density deviates from normality,
the linear pricing kernel alters both the expected return and the variance of the risk-neutral
density by changing the shape parameter in the inverse Mills ratio from ξ to ξ+λγ1σ. Hence,
the linear pricing kernel with positive risk aversion parameter γ1 increases the mean of the
risk-neutral distribution by the term γ1σ

2, as in the case of normal RND (Appendix A.1),
and also by decreasing in absolute value the negative term

λ√
1 + λ2

ϕ
(
− ξ+λγ1σ√

1+λ2

)
1− Φ

(
− ξ+λγ1σ√

1+λ2

)σ,
since λ is negative for a negatively skewed RND and the inverse Mills ratio, ϕ(x)

1−Φ(x)
, is strictly

increasing (Appendix A.5).

Quadratic Pricing Kernel

According to Appendix A.1, after applying the quadratic pricing kernel to the skew-normal
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RND, the density function, mean, and variance respectively become

dPY (y) ∝
1

R
Exp

[
−

(
lny − ω+γ1σ2

1−2γ2σ2

)2
2 σ2

1−2γ2σ2

]
(a.4)

×Φ
( λ√

1− 2γ2σ2

lny − ω+γ1σ2

1−2γ2σ2

σ√
1−2γ2σ2

+ ξ +
λ

σ

2ωγ2σ
2 + γ1σ

2

1− 2γ2σ2

)

E[lnY ] =
ω + γ1σ

2

1− 2γ2σ2
+

λ√
1−2γ2σ2√

1 + λ2

1−2γ2σ2

ϕ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)
1− Φ

(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)σ

var(lnY ) =
[
1−

λ2

1−2γ2σ2

1 + λ2

1−2γ2σ2

ξ + λ
σ
2ωγ2σ2+γ1σ2

1−2γ2σ2√
1 + λ2

1−2γ2σ2

ϕ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)
1− Φ

(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)

−
λ2

1−2γ2σ2

1 + λ2

1−2γ2σ2

ϕ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)2

(
1− Φ

(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

))2

] σ2

1− 2γ2σ2

For negative (positive) quadratic parameter γ2, the scale parameter decreases (increases)
from σ to σ/

√
1− 2γ2σ2. Further, for positive linear parameter γ1, the location parameter

increases by the term γ1σ2

1−2γ2σ2 and by decreasing the absolute value of the negative term

λ√
1−2γ2σ2√

1 + λ2

1−2γ2σ2

ϕ
(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)
1− Φ

(
−

ξ+λ
σ

2ωγ2σ
2+γ1σ

2

1−2γ2σ
2√

1+ λ2

1−2γ2σ
2

)σ. (a.5)

Interestingly, even if γ1 is negative, such that the term γ1σ
2 is negative, the mean of the

physical density could still increase relatively to the mean of the RND as long as the quadratic
parameter γ2 is negative, and decreases the absolute magnitude of the negative term in
equation (a.5).
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