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1 Introduction

Most theories of asset pricing postulate that market prices are determined by agents who

continuously optimize their asset allocation. Following the approach of Merton (1973),

numerous studies consider asset prices as driven by the portfolio choice of a representative

investor who dynamically adjusts the allocation of wealth across asset classes in response

to changes in the investment opportunity set. In practice, however, the majority of

investors make no change to their asset allocation over time (Ameriks and Zeldes, 2011).

This paper presents a theory of asset prices motivated by the observation that a broad

group of investors deviate from dynamic optimization by adopting a static asset allocation

strategy. Investors relying on this strategy rebalance their portfolios to maintain a con-

stant asset allocation, despite changes in the investment opportunity set that may occur

over time. Static asset allocation strategies are commonly recommended by professional

advisers (Canner, Mankiw, and Weil, 1997). For example, a frequent recommendation is

to hold a balanced portfolio with a 60/40 allocation between stocks and bonds.

By emphasizing the dynamic optimization of agents, standard theories of asset pricing

devote limited attention to important considerations, such as whether static asset alloca-

tion strategies influence market prices, and when this effect might be most pronounced.

As a step in this direction, this paper presents a tractable theory in which asset prices

result from the interaction of investors using heterogeneous asset allocation strategies.

The contribution of the paper is to show that static asset allocation strategies give

rise to a rational asset price bubble in the securities classified within target asset classes.

This finding, referred to in what follows as the asset classification effect, suggests that

the level of wealth allocated to an asset class through static asset allocation strategies

affects the aggregate valuation of its constituent securities, over and above their expected

cash flows and the discount rates applied by investors. To the best of my knowledge, this

effect has not been previously articulated in the literature, despite its simplicity.

The asset classification effect offers a generalization of the index inclusion effect, the

long-recognized tendency for a security’s price to rise when included in an index. The

general idea is fairly simple: just as the inclusion of a security in an index attracts index-

tracking investors, the classification of a security within an asset class draws investments

from static asset allocation strategies. In both cases, the demand for securities unrelated

to future fundamentals drives asset prices above their discounted cash flows. However,

rather than the price of specific securities, the asset classification effect influences the

combined price of all of the securities classified within an asset class.
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To develop intuition, the model considers a risk-free bond and a set of risky stocks

that distribute stochastic dividends. As a group, the stocks form the equity asset class.

Agents fall into two categories, distinguished by their asset allocation strategies – dynamic

investors and static investors. Dynamic investors optimally revise their asset allocation

upon the arrival of information to the market. Static investors maintain a fixed allocation

between the bond and the equity asset class, regardless of intertemporal changes in the

volatility of equity assets and in their expected returns in excess of the risk-free rate.

The asset classification effect can be demonstrated through the analysis of investors’

responses to news, facilitated by the analytical solutions of the model. Following negative

news about the stock market, dynamic investors reduce their allocation to the equity

asset class, driving down stock prices. In contrast, static investors maintain a constant

allocation to the equity asset class, cushioning the price of the securities it comprises.

Through time, static investors consistently enforce an asset allocation that is unresponsive

to new information, fostering the rational expectation of persistent deviations between the

aggregate valuation of the equity asset class and the underlying economic fundamentals.

Formally, static asset allocation strategies give rise to a rational asset price bubble.

Rational asset price bubbles are considered incompatible with the dynamic optimizing be-

havior of economic agents (Tirole, 1982), absent portfolio constraints (Hugonnier, 2012).

This paper shows that the adoption of static asset allocation by some agents, in devi-

ation from dynamic optimization, generates a rational bubble. Accordingly, the theory

predicts that the aggregate valuation of stocks rises with the wealth allocated to the

equity asset class through static asset allocation strategies. This effect is relatively more

important when expected excess returns on equity assets are low and volatile, at which

point dynamic investors shift their investments toward the bond market.

The asset classification effect is consistent with the empirical evidence reported by

Da, Larrain, Sialm, and Tessada (2018), who examine the reallocation of wealth between

static asset allocation funds with different equity and bond targets in a setting plausibly

unrelated to fundamental information. Their results indicate that the reallocation of

wealth across asset classes generates price pressure on the aggregate stock market.

Thanks to its tractability, the model extends to the cross section of stocks. In this

extension, investors are classified as either active stock pickers or passive index trackers.

Cross-sectional portfolio constraints affect the relative price of index and non-index stocks,

generating the index inclusion effect. By contrast, market-timing portfolio constraints

inherent in static asset allocation strategies impact the aggregate stock market valuation

for a given interest rate in the bond market, generating the asset classification effect.
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Generally speaking, traditional approaches to asset pricing assume that agents opti-

mize their portfolio choice dynamically. This assumption is common in frameworks where

the agent is a household optimizing consumption (Merton, 1973), a firm optimizing pro-

duction (Cochrane, 1991), and a specialized intermediary facing capital constraints (He

and Krishnamurthy, 2013) or investment mandates (Koijen and Yogo, 2019).

Notwithstanding the widespread adoption of the static asset allocation strategy, theo-

retical exploration of its impact on asset prices remains limited. Chien, Cole, and Lustig

(2011) show that heterogeneous asset allocation strategies help to match asset prices and

the distribution of household wealth. In their setup, agents trade state-contingent bonds

with finite maturity, which rule out rational bubble considerations that are central to

this paper. Gabaix and Koijen (2022) show that wealth flows into static asset allocation

investment funds create market impact due to the absence of arbitrageurs to accommo-

date the resulting demand. This paper proposes a distinct principle whereby, even in

the presence of unconstrained agents, the intertemporal consistency of the static asset

allocation strategy creates rational expectations of asset price deviations from their dis-

counted fundamentals. Guided by this insight, this is the first paper to introduce the asset

classification effect and explore its relationship with the price of individual securities.

The effect of demand forces on asset prices was first explored in the cross section of

stocks by Harris and Gurel (1986) and Shleifer (1986). Recent related literature includes

Pavlova and Sikorskaya (2023), Greenwood and Sammon (2025), and Haddad, Huebner,

and Loualiche (2021). Boyer (2011) examines groups of stocks with the same style label.

This paper extends this line of research beyond the cross section by examining investment

strategies of static wealth allocation across asset classes, which can be of importance for

the pricing of stocks independently of their inclusion in indices or categories. By doing so,

the paper offers a theoretical perspective intended to complement the empirical literature

on the effect of demand forces on the price level of the aggregate stock market, which

includes Warther (1995), Edelen and Warner (2001), and Hartzmark and Solomon (2022).

This paper fits into the literature on asset pricing theory in intertemporal settings and

through models with heterogeneous agents. Related work includes studies by Veronesi

(1999), Basak and Chabakauri (2010), Basak and Pavlova (2013), and Chabakauri (2013).1

This literature provides tractable characterizations of equilibria with stochastic invest-

ment opportunities primarily in models where agents engage in dynamic optimization.

1A related strand of this literature examines the interaction of newswatchers and trend followers in the stock market (Hong
and Stein, 1999; Barberis and Shleifer, 2003; Barberis, Greenwood, Jin, and Shleifer, 2015). Although dynamic investors
resemble newswatchers, trend followers form beliefs about future price changes by extrapolating past price changes. This
marks a sharp difference from static investors, who maintain a constant exposure to the stock market even during time
periods when bonds represent more efficient investment opportunities, generating significantly different market outcomes.
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The paper is organized as follows. Section 2 presents the intertemporal asset pricing

theory, and Section 3 generalizes it to the cross section of stocks. Section 4 discusses

robustness. Section 5 examines the empirical relevance of the theory. Section 6 concludes.

2 The Model

The model is set in continuous time over an infinite horizon and considers financial

markets with two groups of agents, dynamic and static investors. Dynamic investors

optimally revise their asset allocation in response to news. Static investors maintain a

constant asset allocation, without regard to the revelation of information.

2.1 Assets

There is a risk-free bond and a set of risky stocks that distribute stochastic dividends.

The risk-free bond is elastically supplied and yields the instantaneous real rate of return r.

The set of risky stocks forms the equity asset class, a portfolio that distributes stochastic

dividends based on the aggregate earnings of the firms underlying the individual stocks.

The ex-dividend price of the equity asset class, Pt, is the sum of the ex-dividend prices

of the individual stocks, with drift and diffusion denoted by µt and σt, respectively. The

aggregate earnings of the firms in the economy, denoted by Et and expressed in real

terms, follow a stochastic differential equation with drift m and diffusion ω,

dEt = mdt+ ωdBt, (1)

where Bt is a Brownian motion that generates the filtration {Ft}. Equation (1) is moti-

vated by the linear growth of real earnings. The earnings payout ratio is constant, so that

the aggregate dividend per share, Dt, is a fixed proportion a of the aggregate earnings.2

2.2 Dynamic Investors

Dynamic investors optimize the utility function U(ct) = −e−δt−γc, where c denotes con-

sumption, and δ and γ are respectively patience and risk aversion parameters. Their

portfolio choice responds to news about earnings, in the style of Merton (1973), and

changes continuously as news reach the market.3

2Rights issues influencing the value of shares without affecting their supply to the public can account for negative dividends.
3Chien, Cole, and Lustig (2012) examine the asset pricing implications of dynamic but intermittent portfolio choice.
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Dynamic investors control their consumption and investment policies to maximize

their expected intertemporal utility over an infinite time horizon, while respecting their

budget constraint and transversality condition. The wealth of dynamic investors is de-

noted by Wt, and their derived utility from wealth is

J ≡ max
{c,X}

Et

[ ∫ ∞

t

U(cs) ds

]
, (2)

s.t. dW = (rW − c)dt+XdY, lim
h→∞

E
[
Jt+h

]
= 0. (3)

In the above, dY = (D − rP )dt + dP is the return of a share of the equity asset class

financed at the risk-free rate, and Xt is the number of such shares held by dynamic

investors. This optimization program is similar to that in Veronesi (1999) and others, with

the key distinction that in this paper dynamic investors interact with other participants

in the market who follow static asset allocation strategies, as detailed below.

2.3 Static Investors

Static investors allocate their wealth in a fixed proportion across asset classes, without re-

gard to the going and prospective market prices. To implement this approach, which could

be microfounded by a preference for avoiding continuous market observation, a group of

agents transfers their wealth into professional investment funds that follow static asset

allocation strategies. Investment funds thus experience idiosyncratic wealth flows, and

continuously rebalance their portfolios to maintain target exposures across asset classes.

Investment funds are, without any loss of generality, aggregated into a representative

fund whose wealth, Vt, is allocated in a constant proportion, θ, to the risky asset class.4

Static investors collectively hold Qt shares of the risky asset class, where

Qt = θVt/Pt. (4)

Static investors present a downward sloping demand for the equity asset class, remindful

of the downward sloping demand for individual securities in Harris and Gurel (1986) and

Shleifer (1986). For simplicity, it is assumed that static investors reinvest the dividends

4For example, two funds with wealth Vx = 100$ and Vy = 200$ and static equity allocation θx = 0.5 and θy = 0.75
aggregate into a representative fund with wealth V = 300$ that allocates to equities the average of the allocation of the
two funds weighted on their wealth, θ = 0.67. The subsequent wealth flows into each of the funds are scaled equivalently.
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distributed by equity assets. Their wealth dynamics are

dV = V
[
(1− θ)rdt+ θ(dP +Ddt)/P

]
+ πdF (5)

where F is a Brownian motion under the risk-adjusted measure adapted to {Ft} which

describes wealth flows to the static allocation fund net of share redemptions, and π is a

loading parameter. This process for wealth flows summarizes the decisions of economic

agents to invest in or divest from the static fund. The wealth flows are considered uncor-

related with economic fundamentals until Section 4, where this assumption is relaxed.

Equation (5) is a special case of Equation (3) when portfolio shares are constrained by

the asset allocation strategy θ and the investor’s wealth is subject to flow risk πdF .5 The

wealth of static investors, V , rises in past equity market returns, dP/P , all else equal.

Section 4.2 shows that this feature contributes the predictability of price volatility.

2.4 Market Clearing

The shares of the equity asset class are in fixed supply, S, normalized to one without loss

of generality.6 The market clearing condition is

Xt(P,D, V ) +Qt(P, V ) = S. (6)

2.5 Equilibrium

The equilibrium is Walrasian and consists of a price, P , of the equity asset class such that

the supply of stock shares, S, is equal to their demand, X +Q. Dynamic investors maxi-

mize their indirect utility from consumption, given their wealth, corporate earnings, and

market prices. Static investors allocate a fixed share θ of their wealth to the equity asset

class, given their wealth flows. The following conditions characterize the equilibrium.

X +Q = S, 0 = max
{c,X}

U(c) +
Et[dJ(W,V )]

dt
, Q = θV/P.

The first condition imposes market clearing, the second presents the Bellman equation for

dynamic investors, and the third reflects the asset allocation strategy of static investors.

5Following extreme fund outflows, V could turn implausibly negative. Its dynamics near this barrier can be regulated by a
term ηdL, where η is the speed of reflection and L the local time of V at zero, without affecting the content of the results.

6The economic mechanism emphasized in this paper differs from that in standard models with stochastic supply. In those
models, assets typically lose all value when it is no longer efficient to hold them.
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First, consider the equilibrium price of the risky asset class in the absence of static

investors. Throughout, let E∗
t denote the expectation taken with respect to the probability

measure adjusted for the dynamic investors’ preferences toward risk.

Lemma 1. Equilibrium without Static Investors.

Pt = E∗
t

[ ∫ ∞

t

e−r(s−t)Ds ds

]
︸ ︷︷ ︸

Fundamentals

.

Proof. Special case of Proposition 1. See also Veronesi (1999).

By replacing the earnings process into Lemma 1, the price obtains in closed form,

Pt = pg + pDDt + pmm, (7)

where the parameters governing the price level are pg = −γω2

r2
, pD = 1

r
, and pm = 1

r2
.7

Lemma 1 describes a standard dividend discount valuation model. The result can be

derived by iterating forward the condition Pt = E∗
t [e

−rdt(Pt+dt + Dt)] and assuming the

absence of rational bubbles. Rational bubbles are terms that affect both the current level

of the asset price and its discounted future value equally. They are usually assumed away

by imposing the transversality condition, lim
∆t→∞

E∗
t [e

−r∆tPt+∆t] = 0. The reasoning is

that, absent this condition, the asset price would exceed the discounted dividend stream.

Agents would find it optimal to sell the risky asset short and invest at the risk-free rate to

replicate the dividend stream, until the equivalence is restored. For this reason, bubbles

disappear when (all of the) agents adopt a dynamic maximizing behavior (Tirole, 1982).

Proposition 1 below demonstrates that the pesence of static investors generates a

rational bubble, θVt = E∗
t

[
e−rdtθVt+dt

]
. This is because, regardless of fundamentals and

discount rates, static investors exert price pressure on securities in the risky asset class.

Moreover, as their asset allocation is static, it is rational to expect such price pressure to

persist in the future. Finally, in risk-adjusted expectations, the demand of static investors

for the risky asset class grows at the risk-free rate. These features imply that the equity

exposure of static investors affects both the current level of the risky asset class price and

its discounted future value equally. In the presence of a rational bubble, the high price

of the risky asset class relative to its fundamental value is merited, as the expected total

returns are equal to the returns on alternative assets (Stiglitz, 1990).

7To ease notation, the dividend payout ratio a is set to 1. The general case achieves by multiplying pg , pD, and pm by a.

7



Proposition 1. Equilibrium with Dynamic and Static Investors.

Pt = E∗
t

[ ∫ ∞

t

e−r(s−t)Ds ds

]
︸ ︷︷ ︸

Fundamentals

+ E∗
t

[
e−rdtθVt+dt

]
.︸ ︷︷ ︸

Asset Classification Effect

Proof. See Appendix A. The appendix also reports the portfolio choice and consumption

level that maximize the Hamilton-Jacobi-Bellman (HJB) equation for dynamic investors.

Proposition 1 outlines the first main result of the paper. It shows that, beyond the

expected cash flow and the discount rates of marginal agents, the price of the risky asset

class reflects the equity exposure of static investors. As this price represents the sum of

all stock prices, the proposition highlights the presence of an asset classification effect.

This effect suggests that the aggregate value of assets within an asset class rises with the

level of wealth invested in that asset class to implement static asset allocation strategies.

Section 3 carves out which stocks in the cross-section are most impacted by this effect.

The asset classification effect can be illustrated through a change in the investment

opportunity set. As the opportunity cost of the risky asset class temporarily increases,

its aggregate value declines under the selling pressure of dynamic investors reallocating

their portfolios toward the risk-free asset. However, static investors, who hold a constant

asset allocation over time, maintain their exposure to the risky asset class unchanged.

Through this mechanism, the demand pressure of static investors provides a floor to the

aggregate value of the securities in the risky asset class.

In the limit as r → ∞, the dividend stream becomes worthless, prompting dynamic

investors to allocate their entire wealth to the bond market and set X = 0, regardless of

their preferences toward risk. In models with dynamic optimization, risky assets would

be worthless. In this model, static investors would maintain their exposure to the risky

asset class unchanged. Market clearing ensures P = θV , making stock prices a mere unit

of account for the cash-in-the-market invested under static asset allocation strategies.8

It is important to emphasize that the above mechanism is not specific to the CARA

utility of dynamic investors, whose main advantage is tractability; it also extends to

cases where dynamic investors have CRRA and more general utility functions. The

fundamental condition for the asset classification effect is that some investors engage in

dynamic intertemporal optimization, while others follow a static asset allocation strategy.

8In light of this observation, it is natural to consider that some agents may adjust their exposure to static asset allocation
investment funds in response to new information. Section 4.1 shows that the results remain robust to this consideration.
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Another insight emerging from the proposition is that the price of risky assets is

influenced by the level of wealth of static investors, rather than solely by stochastic wealth

flows. The effect of wealth flows on the price of risky assets has received the attention

of an active area of literature (for example, Coval and Stafford, 2007). Proposition 1

shows that the equilibrium price reflects the level of wealth of static investors, which

incorporates flows, but is more broadly influenced by the returns on both risk-free and

risky assets, and follows the intertemporal dynamics of Equation (5).

From Proposition 1, the total value of the risky asset class obtains in closed form as

Pt = PDVt(Dt) + θVt, (8)

where PDVt(Dt) = pγ + pDDt + pmm denotes the discounted value of the expected

aggregate dividend stream, which incorporates the risk adjustment pγ = − γ
r2

(
ω
r
+ θπ

)2
required by dynamic investors for the exposure of the price to earnings risk and flow

risk. The workings of dynamic investors ensure that Equation (8) is satisfied. In the

equation, the intertemporally consistent price pressure of static investors generates the

rational asset price bubble, θVt.
9 The equity exposure of static investors, θV , affects the

risky asset price regardless of the cash flows, D, the risk-free rate, r, and the adjustment

for risk, pγ, required by dynamic investors who are marginal to asset prices.

The price impact of a trade is thus observed to depend on the dynamic behavior of

its initiator. In the model, stock purchases by dynamic investors do not generate any

price pressure. Stock purchases generates price pressure on the equity asset class only

if initiated by an investor that is committed to maintaining a static asset allocation,

regardless of changes in the investment opportunities. This observation offers a new

perspective on the literature estimating the market-level price multiplier, namely, the

price increase resulting from each dollar of equity purchases (Gabaix and Koijen, 2022).

How does the passage of time affect the relative wealth shares of dynamic and static

investors? As the portfolio choice of dynamic investors is relatively more efficient, their

wealth share can be expected to rise over time. Importantly, the asset classification

effect remains robust to this consideration. The asset classification effect reflects the

absolute level of wealth that static investors allocate to the target asset class, rather than

their relative wealth share. Accordingly, in Equation (8), the rational bubble term, θVt,

depends on the level of wealth of static investors. As this wealth level increases over time,

the contribution of the rational bubble term correspondingly becomes more significant.

9Section 4.1 shows that the rational price bubble also depends on the correlation between wealth flows and earnings news.
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Quantities held by investors characterize the equilibrium in conjunction with the price.

In Appendix A, it is shown that, in equilibrium,

Xt(P,D, V ) =
µt − rPt +Dt

rγσ2
t

− 1− θ

rγ
Qt, Qt(P, V ) = θVt/Pt. (9)

Dynamic investors hold a number of stock shares, X, that increases with expected returns

per unit of variance and decreases with the risk-free rate. Dynamic investors’ position

presents a hedging term, since equilibrium prices are affected by the pressure of static

investors. Static investors holds a number of stock shares, Q, that consistently fulfills their

strategy. Moreover, the market clearing condition, X+Q = 1, together with Equation (8)

and the asset allocation strategy of static investors, implies that the equilibrium holdings

can be characterized as follows.

Xt(P,D, V ) = PDVt(Dt)/Pt, Qt(P, V ) = θVt/Pt. (10)

As the present discounted value of fundamentals rises, the proportion of the risky

asset class held by dynamic investor rises and that held by static investors falls.

The asset classification effect is relatively more important when the expected returns

on the risky asset class are low and volatile. All else equal, when the risk-return ratio

is higher the scope for static investors’ demand to affect asset prices is more limited,

as dynamic investors take comparatively more aggressive positions. By contrast, when

dynamic investors reduce their exposure to the risky asset class, the influence of static

investors’ demand becomes a relatively more important determinant of equity asset prices.

Corollary 1. The forecast accuracy of the price of the risky asset class for the aggregate

stream of dividends rises in the expected return to risk ratio of the risky asset class.

Proof. Under the earnings process of Equation (1), PDVt(Dt) is the best linear unbi-

ased estimator of the dividend stream. Equation (10) shows that Pt = PDVt(Dt) when

Xt = 1, at which point price forecast accuracy is maximized. In general, the forecast

accuracy of the price of the risky asset class for the aggregate stream of dividends rises

when dynamic investors have stronger incentives to allocate resources to the equity as-

set class, which occurs as the expected return to risk ratio of equity assets rises. Q.E.D.

Corollary 1 emphasizes a connection between price forecast accuracy and the invest-

ment opportunity set. For stock prices to accurately reflect future dividends, it is essential
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that dynamic investors find it attractive to allocate resources to the equity asset class.10

Overall, this section has demonstrated the presence of the asset classification effect

under fairly general conditions. According to this effect, the total market value of equity

increases with the equity exposure of investors following static asset allocation strategies.

In the time series, the asset classification effect becomes more pronounced when expected

excess returns on risky assets are low and volatile.

3 The Cross Section of Stocks

The model presented thus far, which characterizes the aggregate stock market in the time

series, leaves room for an important question: Which stocks appreciate the most, when

the wealth of static investors rises?

In the cross section of stocks, investors can be categorized as either active stock pickers

or passive index trackers. For simplicity, dynamic investors are assumed to engage in both

stock picking and market timing. Static investors are instead grouped into stock pickers,

who select stocks optimally but do not attempt to time the market; and index trackers,

constrained from both stock picking and market timing. Figure 1 illustrates the agents.

Investors

Dynamic Static

Stock Pickers Index Trackers

Figure 1: Agents. The figure illustrates the agents based on their portfolio constraints.
Dynamic investors are unconstrained in the time series and in the cross section of stocks. Static
investors hold constant equity shares over time. Within the cross section, static asset allocation
stock pickers actively select stocks to optimize their portfolios, while static asset allocation index
trackers passively replicate the performance of a benchmark index.

10The effort to connect price forecast accuracy to observable market conditions shares similarities with Dávila and Parlatore
(2023), who study the relation between price informativeness and idiosyncratic volatility in a heterogeneous beliefs model.
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3.1 Assets

There are I firms in the economy. Real earnings Eit of firm i at time t follow the dynamics

dEit = midt+ ωidBit, (11)

wheremi denotes the expected growth of earnings and ωi their volatility. Bit is a Brownian

motion. The pairwise correlations between earnings news are dBitdBjt = ωijdt. Firms’

stock shares trade at the real price Pit and distribute dividends Dit with constant earnings

payout ratio a. µit and σit denote the price drift and diffusion of stock i, and σijt the

price correlation between stocks i and j. The real earnings of each firm are related to

the real aggregate earnings in the economy in Equation (1) by the conditions m =
I∑

i=1

mi

and ω =
√∑

i ω
2
i +

∑
i

∑
j ̸=i ωij.

The shares of each stock are in fixed supply, Si, normalized to one without loss of

generality. The aggregate price of the equity asset class discussed in Section 2 is the total

market value of equities,

Pt =
I∑

i=1

Pit.

There is a stock market index consisting of a collection of N < I stocks. As the supply

of shares is fixed, float-adjusted market capitalization index weights coincide with price

index weights. The index level is

P IDX
t =

I∑
i=1

NiPit,

where the dummy variable Ni equals 1 if stock i is included in the index and 0 otherwise.

3.2 Dynamic Investors

The wealth of dynamic investors follows classical Merton (1973) dynamics

dWt = (rWt − ct)dt+
I∑

i=1

Xit[(Dit − rPit)dt+ dPit] (12)

Their utility function and transversality condition are in Section 2.2. Dynamic investors

optimally select the number of shares, Xit, in the cross section of stocks. The aggregate
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number of shares of risky assets held by dynamic investors is Xt =
∑

iXit. As previously

derived, the proportion of their wealth allocated to the risky asset class equals XtPt/Wt.

3.3 Static Investors

As a group, static investors allocate a proportion θ of their wealth in the stock market,

with important differences in the cross section. Static stock pickers actively optimize their

portfolio in the cross section of stocks. Static index trackers passively buy each stock in

proportion to its index weight. The wealth of static investors discussed previously is the

sum of the wealth of static stock pickers and index trackers, Vt = V A
t + V P

t .

3.3.1 Stock Pickers

The wealth of static asset allocation stock pickers, V A, is allocated in fixed proportion, θ,

to the stock market. These investors receive a fraction, πA, of the wealth flows, F . The

proportion of stock pickers’ wealth invested in each stock is denoted by qit. Their wealth

follows the dynamics

dV A
t = rV A

t (1− θ)dt+ θV A
t

I∑
i=1

qit (dPit +Ditdt)/Pit + πAdFt. (13)

Static asset allocation stock pickers actively select their cross-sectional stock holdings,

qit, as a solution to their mean-variance portfolio optimization problem,

max
{qit}

Et[dV
A
t ]− 0.5γEt[(dV

A
t )2] s.t.

I∑
i=1

qit = 1, θ given. (14)

In the above, the risk aversion γ of stock pickers equals that of dynamic investors.11

Effectively, asset allocation stock pickers differ from dynamic investors only because the

proportion of their wealth invested in stocks is fixed, rather than sensitive to changes in

the investment opportunity set. Let {q̂it} denote the solution to the portfolio optimization

problem problem in Equation (14). The number of shares of the i-th stock optimally held

by static asset allocation stock pickers is QA
it = q̂itθV

A
t /Pit.

11This assumption does not affect the results and is intended to level the playing field between the risk preferences of
dynamic investors and those of static asset allocation stock pickers, so that differences in their portfolio choices can be
attributed solely to their asset allocation strategies.
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3.3.2 Index Trackers

Static asset allocation index trackers have wealth V IDX , allocated in fixed proportion

θ to the stock market, and receive a share πIDX = π − πA of wealth flows F . They

passively invest a fraction of their equity allocation into each stock equal to its weight

in the index. Thus, their cross-sectional stock holdings are represented by the dummy

variable λi = Ni/N , and their wealth dynamics follow

dV P
t = rV P

t (1− θ)dt+ θV P
t

I∑
i=1

λi (dPit +Ditdt)/Pit + πPdFt. (15)

The number of shares of the i-th stock held by static asset allocation index trackers is

QP
it = λiθV

P
t /Pit.

3.4 Market Clearing

The market clearing condition for the i-th stock is

Dynamic Investors
↓

Xit +

Stock Pickers
↓

QA
it +

Index Trackers
↓

QP
it = Si. (16)

Proposition 2. Equilibrium in the Cross Section of Stocks.

Pit = E∗
t

[ ∫ ∞

t

e−r(s−t)Dis ds

]
︸ ︷︷ ︸

Fundamentals

+

Asset Classification Effect︷ ︸︸ ︷
q̂itE∗

t

[
e−rdtθV A

t+dt

]
+ λiE∗

t

[
e−rdtθV IDX

t+dt

]
︸ ︷︷ ︸
Index Inclusion Effect

.

Proof. See Appendix B, which also reports the portfolio choice and consumption level

maximizing the Hamilton-Jacobi-Bellman equation of dynamic investors and the optimal

portfolio choice of stock pickers.

Proposition 2 extends the main result of the paper to the cross section of stocks. It

shows that each stock’s price reflects its discounted future fundamentals, along with the

price pressure from the investors following a static asset allocation strategy, including

both active stock pickers and passive index trackers.

This proposition enables a comparison between the widely recognized index inclusion

effect and the asset classification effect introduced in this paper. The index inclusion

14



effect arises from the cross-sectional index-tracking constraint, λi, which imposes a limit

on stock selection. The asset classification effect arises from the static asset allocation

portfolio constraint, θ, which imposes a limit on market timing.

Proposition 2 demonstrates that, just as stocks included in an index can become

overpriced relative to their fundamentals due to the price pressure from index trackers,

securities classified within an asset class can become overpriced due to the price pressure

from static asset allocation strategies. In contrast to the index inclusion effect, which

concerns the relative pricing of stocks included and not included into a benchmark index,

the asset classification effect concerns the pricing of the equity asset class relative to the

risk-free interest rate. This is because the asset classification effect relates to the wealth

that is allocated to the stock market without consideration of the relative efficiency of

the bond market. Finally, it can be observed that the asset classification effect coincides

with the index inclusion effect in the absence of static asset allocation stock pickers. By

accounting for these investors, whose presence shapes much of equity market activity, the

asset classification effect offers a generalization of the index inclusion effect and remains

important even for non-index stocks.

In Appendix B, the price of the i-th stock is derived in closed form, as follows.

Pit = PDVit(Dit) + θ
[
q̂itV

A
t + λiV

P
t

]
, (17)

where PDVit(Dit) = pγi + pDDit + pmmi is the present discounted value of dividends

distributed by stock i and incorporates the risk correction, pγi = − γ
r2

(
ωi +

∑
ωij

)
. The

index inclusion dummy variable λi equals 1/N if the stock is included in the index and 0

otherwise. The price of index stocks rises in the equity exposure of index trackers, θV P
t ,

capturing a time varying benchmarking intensity.

A key insight from the proposition is that even active investors, such as stock pickers,

exert price pressure on stocks as long as they adhere to static asset allocation strategies.

Stock pickers following a static asset allocation strategy maintain a fixed share of their

wealth, θV A
t , in the equity asset class. Their optimal investment choice, q̂it, places more

weight on the stocks with high expected return-to-risk ratio. Importantly, q̂it does not

respond to changes in the risk-free rate, as the risk-free asset is not part of the stock

picking problem given the fixed allocation of wealth to equity. Thus, while stock pickers

select the most efficient stocks, they exert price pressure on the aggregate valuation of

the risky asset class. This contrasts with dynamic investors, who time their allocation to

the risky and risk-free asset classes.
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Appendix B presents closed form solutions for q̂it, alongside stock price drifts, volatil-

ities, and pairwise correlations. Interestingly, static investors influence correlations in

excess of the fundamentals between pairs of stocks included in the index, a classical

result, as well as between non-index stocks and both index and non-index stocks.

Overall, this section has demonstrated that the asset classification effect represents

a generalization of the index inclusion effect, of importance even for stocks not included

into any index. In the cross-section, the asset classification effect is more pronounced for

index stocks, which attract the investment of index trackers, and for stocks with high

and stable expected excess returns, which attract the investment of stock pickers.

4 Robustness and Extensions

This section develops the baseline model of Section 2 in three key directions. Section 4.1

shows the robustness of the asset classification effect to the correlation between wealth

flows and earnings news. Section 4.2 examines the implications of this effect for asset price

dynamics. Section 4.3 discusses the asset classification effect in the Treasury market.

4.1 Wealth Flows and Earnings News

Thus far, wealth flows, F , were assumed to be uncorrelated with earnings news, B.

However, wealth invested under static allocation strategy investment funds may partly

reflect information, and can be regarded as endogenous to the economy. For example,

positive news about the stock market may attract wealth inflows into static investment

funds; conversely, negative news may prompt outflows. To extend the model in this

direction, consider the following specification for wealth flows.

dF = ρdB +
√

1− ρ2dZ, (18)

where Z is a Brownian motion uncorrelated with earnings news. A value of 0 < ρ < 1

is empirically plausible, considering that some attentive fund shareholders may time

their exposure to the fund in response to earnings news, whilst other buy-and-hold fund

shareholders are inattentive to earnings news. Appendix C shows that the findings of the

model are robust to this extension.12

12The relationship between wealth flows and past performance was also considered. Details are available upon request.

16



4.2 Asset Price Dynamics

The dynamics of the price of the risky asset class described in Equation (8) are given by

dP = pDdD + θdV.

Asset price dynamics are driven by the evolution of dividends and the wealth of static

investors. Discount rates are instead fixed by the tractable CARA utility specification.

By replacing Equation (5) in the above expression,

dP = pDdD + θ
[
rV (1− θ)dt+Q(dP +Ddt) + πdF

]
. (19)

From Equation (19), it is observed that the equity holdings of static investors, Q, give

rise to price amplification effects.13

The intuition for this effect is as follows. Price changes, dP , affect the wealth of

both dynamic and static investors. Dynamic investors with CARA preferences only

revise their portfolio conditionally on the arrival of unpriced news. When faced with

capital gains, dynamic investors simply increase their consumption level, c. In contrast,

static investors reinvest into the risky asset class a proportion θ of their capital gains,

exerting upward price pressure. This result sharply contrasts with common wisdom, since

static investors rebalance their portfolio in the opposite direction of price changes. The

numerical example reported below helps to clarify this mechanism.

Example 1. Suppose P = $100, X = Q = 0.5, and θ = 0.4. As firms report earnings,

the present value of the dividend stream increases by $20. Dynamic investors demand

more shares and the price rises to P +dP = $120. Dynamic investors realize capital gains

dW = XdP = $10 and increase their consumption level. Static investors realize capital

gains dV = QdP =$10, of which θdV = $4 are reinvested into the stock market leading

to a price of $124, which has a second-round effect on wealth, and so forth, leading to an

amplification of 1
1−θQ

= 1.25. In the new equilibrium, P = $125, X = 0.56, and Q = 0.44.

Following fundamental news of $20 increase in the present value of dividends, the price

changes by $25. Absent static investors, the price would have closed at $120.

Example 1 shows that as the price of the risky asset class increases, static investors sell

some of their equity shares, Qt, trading against the price change. Recently, Harvey, Maz-

zoleni, and Melone (2025) have highlighted the quantitative importance of this pattern

13This wealth amplification effect resembles Kyle and Xiong (2001) and Basak and Pavlova (2013), but it pertains to a
distinct group of investors following a static asset allocation strategy.
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in the data. Despite countercyclical rebalancing, it can be observed that the level of the

wealth invested through static asset allocation strategies, θVt, is procyclical. The model

emphasizes that it is the level of wealth invested through static asset allocation strategies

that influences asset prices, rather than the number of shares traded. Accordingly, the

example highlights the importance of the counterfactual price that would prevail in the

absence of static investors.

Several influential papers have focused their attention on the observation that demand

unrelated to fundamentals slopes down in the price of stocks (Shleifer, 1986; Wurgler and

Zhuravskaya, 2002). Less attention has been devoted to the feature that they also slope

upwards in wealth of investors subject to portfolio constraints. While this argument

carries implications for empirical research in the field, it is important to recognize that,

unlike the other findings in the paper, it depends on the preferences of dynamic investors

being independent of their wealth. As is well known, dynamic investors with CRRA

utility would also generate wealth amplification effects. Appendix D further develops the

analysis of asset price dynamics.

4.3 The Asset Classification Effect in the Treasury Market

The baseline model illustrates the asset classification effect in the equity market, treating

the bond market as exogenous. However, the literature shows that the bond market also

responds to price pressure (D’Amico and King, 2013; Vayanos and Vila, 2021).

To extend the analysis in this direction, it is possible to consider a model with price

pressure on the Treasury market, regarding the demand of static investors for bonds as a

demand risk factor. Greenwood and Vayanos (2014) suggest that a shock to the demand

factor should move the yields of all bonds in the opposite direction as the shock and the

instantaneous expected returns of all bonds in the opposite direction as the shock. After

an exogenous increase to the wealth of static investors, one should thus observe lower

yields and bond expected returns. Appendix E extends the model in this direction.14

14Static asset allocation strategies can also increase the comovement between asset classes in excess of their common
fundamentals. Previous literature on the excess comovement between stocks and bonds includes Shiller and Beltratti
(1992), Connolly, Stivers, and Sun (2005), Baele, Bekaert, and Inghelbrecht (2010), David and Veronesi (2013), and
Duffee (2023). This literature has largely abstract from the influence of static asset allocation strategies on asset prices.
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5 Empirical Relevance

To quantify the importance of static investors in financial markets, a natural empiri-

cal proxy is given by the assets under management of professional portfolio managers,

such as mutual funds (MFs) and exchange-traded funds (ETFs), operating under static

asset allocation portfolio mandates. These mandates, which may be driven by agency

considerations (He and Xiong, 2013), are often publicly observable.

Static asset allocation portfolio mandates constrain investors from exploiting intertem-

poral changes in the investment opportunity set. This point is illustrated in Figure 2.

The figure builds on Gabaix and Koijen (2022), who document that MFs and ETFs

maintain a constant proportion of their assets under management invested in the equity

asset class, but also emphasizes the pronounced variability of the investment opportunity

represented by the equity asset class. Indeed, the Sharpe ratio of the equity asset class

exhibits substantial time variation, reaching a peak of 1.75 and a trough of 0.25, and re-

flecting sizable and stochastic changes in the investment opportunity set. These changes

in the investment opportunities are, at least partly, predictable. For example, Moreira

and Muir (2017) show that portfolios that take less risk when volatility is high produce

large alphas. Figure 2 makes an equilibrium asset pricing model with dynamic and static

investors a compelling one to study.

The model delivers a central prediction: the presence of the asset classification effect.

Proposition 1, which underpins this prediction, shows that the aggregate valuation of

assets within a given class rises with the wealth allocated to that asset class through

static asset allocation strategies. The construction of a formal test for the presence of

the asset classification effect presents a challenge, as the classification of assets within

asset classes lacks exogenous variation. This makes it difficult to study the effect of the

classification of the asset while keeping the fundamentals constant, as researchers do in

the context of index inclusion. To overcome this challenge, the literature on aggregate

price pressure exploits variation in the level of wealth allocated to an asset class. A

strand of this literature presents strong evidence that unexpected aggregate cash flows

into mutual funds are closely correlated with aggregate security returns (Warther, 1995;

Edelen and Warner, 2001; Ben-Rephael, Kandel, and Wohl, 2011). Recent evidence by

Parker, Schoar, and Sun (2023) shows that portfolio rebalancing by target date funds

can increase the transmission of shocks across asset classes. Moreover, Hartzmark and

Solomon (2022) show that predictable uninformed cash flows forecast aggregate market

stock returns. The theory developed in this paper provides a framework to interpret these
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Figure 2: Static Asset Allocation Strategies and the Investment Opportunity Set.
The figure shows the average U.S. Equity shares held by Mutual Funds and ETFs with weights
corresponding to assets under management and the realized Sharpe ratio of the U.S. Equity
asset class. Mutual Funds data from Morningstar are restricted to funds classified as U.S.
Equity, Sector Equity, Allocation, and International Equity. The realized Sharpe ratio of the
U.S. Equity asset class is computed as the monthly return on the value-weighted CRSP U.S.
Total Market Index in excess of the risk-free rate, scaled by its one-year rolling volatility.

empirical findings.

Policymakers appear inclined to use the asset classification effect to influence finan-

cial markets. For example, on October 31, 2014, Japan’s Government Pension Investment

Fund (GPIF), the largest pension fund in the world, announced a major revision to its

strategic asset allocation, doubling its target allocation to domestic equities from 12%

to 25%. This reallocation reflected both structural demographic pressures and a broader

effort to stimulate the economy under Prime Minister Shinzo Abe’s administration, and

was arguably unrelated to news about economic fundamentals. On the announcement

day, the Japanese stock market capitalization rose by 4.5%. On the same day, the Bank

of Japan announced an expansion of its Quantitative and Qualitative Easing program,

complicating the attribution of market reactions. However, the magnitude of the GPIF

reallocation toward domestic equities, approximately ¥17 Trillion, was likely a contribut-

ing element to observed aggregate price movements. As another example, on January 23,

2025, China Insurance Regulatory Commission asked state insurers to invest a minimum

of 30% of newly added insurance premiums in local shares, while mutual funds to increase
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these shareholdings by 10% annually for the next three years. On the announcement day,

the China Securities Index rose by 1.8%, pointing toward an appreciation of the domes-

tic equity asset class. These examples illustrate that exogenous variation in static asset

allocation investment targets can occur alongside an appreciation of the market value of

assets classified within the respective asset classes.

6 Conclusion

The paper highlights the importance of heterogeneous asset allocation strategies for the

price of financial securities. The key insight of the paper is that static asset allocation

strategies drive security prices above their discounted fundamentals. As the model shows,

strategies that invest in static proportions across asset classes exert a price pressure on the

securities within these asset classes. Given the persistence of this pressure, attempting

to reverse its price effects would not be rational. Even investors employing dynamic

asset allocations strategies can regard assets priced above their fundamental values as

profitable, in the expectation to sell them at a higher price. This mechanism leads to a

divergence between asset prices and their discounted cash flows. Formally, static asset

allocation strategies generate a rational asset price bubble.

The paper proposes the asset classification effect, whereby a security’s classification

within an asset class has a persistent effect on its price. This effect, originating from static

asset allocation strategies, offers a generalization of the index inclusion effect. Recent

literature on the index inclusion effect examines its strength over time (Greenwood and

Sammon, 2025) and across stocks (Pavlova and Sikorskaya, 2023). Future research could

examine the asset classification effect across asset classes and time periods.

21



Appendix

A Proof of Proposition 1

As is standard in the literature, the proof proceeds by postulating that the price function

is as guessed and verifies that the Hamilton-Jacobi-Bellman (HJB) equation, the market

clearing condition, and the transversality conditions are satisfied in equilibrium.

Pt = pγ + pDDt + pmm+ θVt,

where pγ = − γ
r2

(
ω
r
+ θπ

)2
, pD = 1

r
, and pm = 1

r2
.

Price dynamics follow the Itô process

dPt = pDdDt + θ
[
rVt(1− θ)dt+Qt(dPt +Dtdt) + πdFt

]
.

The state variables follow dynamics

dDt = mdt+ ωdBt,

dVt = rVt(1− θ)dt+Qt(dPt +Dtdt) + πdFt,

Price drift and diffusion are, respectively,

µt =
m
r
+ θ[rVt(1− θ) +QtDt]

1− θQt

, σt =
ω
r
+ θπ

1− θQt

. (20)

The Hamilton-Jacobi-Bellman (HJB) equation is

0 = max
{c,X}

U(c) +
Et[dJ ]

dt

= max
{c,X}

U(c) + Jt + JWEt[dW ] + JVEt[dV ] +
1

2
JWWEt[dW

2] +
1

2
Et[dV

2] + JWVEt[dWdV ].
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Moreover,

Et[dW ] = [rW − c+X
(
µ− rP +D

)
]dt,

Et[dW
2] = Et[(XdP )2] = (Xσ)2dt,

Et[dV ] = [rV (1− θ) +Q(µ+D)]dt,

Et[dV
2] = (Q2σ2 + π2)dt,

Et[dV dW ] = XQσ2dt.

By substituting the above expressions in the HJB equation,

0 = max
{c,X}

U(c) + Jt + JWEt[dW ] + JVEt[dV ] +
1

2
JWWEt[dW

2] +
1

2
Et[dV

2] + JVWEt[dWdV ]

= max
{c,X}

U(c) + Jt + JW
[
rW − c+X(µ− rP +D)

]
+ JV

[
rV (1− θ) +Q(µ+D)

]
+

1

2
JWWX2σ2 +

1

2
JV V (Q

2σ2 + π2) + JWVXQσ2.

The first order conditions (FOCs) are

U ′(c) = JW ,

X = − JW
JWWσ2

(µ− rP +D
)
− JWV

JWWσ2
Qσ2.

Dynamic investors have CARA utility, suggesting an educated guess for the value function

J(W,V, t) = −e−δt−rγW−g(V )−β, (21)

thus Jt = −δJ , JW = −rγJ , JWW = (rγ)2J , JV = −g′(V )J , JV V =
(
g′(V )2 − g′′(V )

)
J ,

and JWV = rγg′(V )J . Therefore, the FOCs become

c(W,V ) = rW +
1

γ

(
g(V ) + β − log r

)
,

X(P,D, V ) =
µ− rP +D

rγσ2
− g′(V )

rγ
Q.

At this stage, it is standard to replace in the HJB the FOCs paired with the usual market

clearing condition X = 1. However, the market clearing conditions requires X +Q = 1.
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By replacing the expression for Q,

X(P,D, V ) =
P − θV

P
, Q(P, V ) =

θV

P
,

or, replacing the expression of the candidate price,

X(P,D, V ) =
pγ + pDD + pmm

pγ + pDD + pmm+ θV
, Q(P, V ) =

θV

pγ + pDD + pmm+ θV
.

The equilibrium price must ensure consistency between the market clearing condition and

the FOCs of the optimization program of the dynamic investors, requiring

µ− rP +D

rγσ2
− g′(V )

rγ

θV

P
=

P − θV

P
,

µ− rP +D =
P − θV

(
1− g′(V )

rγ

)
P

rγσ2. (22)

In the constrained equilibrium, θ = 0, and the Sharpe ratio equals to the supply of

bonds normalized to 1 (see Veronesi, 1999). In general, however, a portion of investors

may exert price pressure unrelated to fundamentals. In order for dynamic investors to

be comfortable with the equilibrium, the Sharpe ratio must decrease as price pressure

increases. Let us workout the left-hand-side of Equation (22). After some tedious algebra,

µ− rP +D = − P

P − θ2V
rpγ, (23)

which uses the relation 1
1−θQ

= P
P−θ2V

. Turning to the right-hand-side of Equation (22),

P − θV
(
1− g′(V )

rγ

)
P

rγσ2 =
P

P − θ2V
rγ

(
ω

r
+ θπ

)2

.

Therefore, the requisite that the FOC and the market clearing condition simultaneously

hold necessitates 1 − g′(V )
rγ

= θ, satisfied when g′(V ) = (1 − θ)rγ. As a result, Equation

(22) simplifies to

pγ = − γ

r2

(
ω

r
+ θπ

)2

,

consistently with the definition of pγ. In the constrained equilibrium, θ = 0, and the
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required compensation for risk accounts for uncertainty over earnings. In the more com-

prehensive equilibrium with both dynamic and static investors, the required compensation

for risk incorporates flow risk. Let us replace the FOCs into the HJB.

0 =
1

J
U(c∗) +

1

J

Et[dJ ]

dt
= r +

1

J

Et[dJ ]

dt

= r − δ − rγ

[
1

γ
(log r − g(V )− β) +X∗(µ− rP +D)

]
− g′(V )

[
rV (1− θ) +Q(µ+D)

]
+

1

2
(rγσX∗)2 +

1

2

(
g′(V )2 − g′′(V )

)
(Q2σ2 + π2) + rγσ2g′(V )X∗Q.

Substituting X∗,

0 = r − δ − rγ

[
1

γ
(log r − g(V )− β) +

(
µ− rP +D

rγσ2
− g′(V )

rγ
Q

)(
µ− rP +D

)]
− g′(V )

[
rV (1− θ) +Q(µ+D)

]
+

1

2

[
rγσ

(
µ− rP +D

rγσ2
− g′(V )

rγ
Q

)]2
+

1

2

(
g′(V )2 − g′′(V )

)
(Q2σ2 + π2) + rγσ2g′(V )

(
µ− rP +D

rγσ2
− g′(V )

rγ
Q

)
Q.

Simplifying the expression yields

0 = r − δ − r(log r − g(V )− β)− (µ− rP +D)2

2σ2

− g′(V )[rV (1− θ) +Q(µ+D)−Q(µ− rP +D) +
π2

2
]

= r − δ − r(log r − g(V )− β)− (µ− rP +D)2

2σ2
− g′(V )[rV (1− θ) + rQP +

π2

2
].

Equivalently,

0 = r − δ − r(log r − g(V )− β)− (µ− rP +D)2

2σ2
− g′(V )[rV +

π2

2
]

= r − δ − r(log r − g(V )− β)− (rγ)2

2

(
ω

r
+ θπ

)2

− g′(V )[rV +
π2

2
].

We have used the equivalence (µ − rP + D)2/σ2 = (rγ)2
(
ω
r
+ θπ

)2
from the Equations

(20) and (23). We further know g(V ) = (1 − θ)rγV + K, thus g′(V ) = (1 − θ)rγ, and
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g′′(V ) = 0. After replacing β = (γω)2

2r
+ δ

r
+ log(r)− 1,

0 = r − δ − r(log r − g(V )− β)− (rγ)2

2

(
ω

r
+ θπ

)2

− g′(V )[rV +
π2

2
]

=
(γω)2

2
− rK − (rγ)2

2

(
ω

r
+ θπ

)2

− (1− θ)rγ
π2

2
.

It is immediate to see that the guess satisfies the requisite optimality and market clearing

conditions for suitable constant K. The transversality condition is respected. From

Equation (21) and the investors’ wealth dynamics,

lim
h→∞

E
[
Jt+h

]
= lim

h→∞
E
[
− e−δ(t+h)−rγWt+h−rγ(1−θ)Vt+h−β

]
= 0.

The equilibrium of Lemma 1 achieves as a special case when θ = 0, restraining static

investors from allocating their wealth into equity assets.

Q.E.D.

B Proof of Proposition 2

Before proceeding with the formal proof, consider the following equilibria as a benchmark.

First, consider the equilibrium with only dynamic investors, by setting θ = 0. By the

optimality of dynamic investors, the price of the i-th stock takes the standard form

Pit = E∗
t

[ ∫ ∞

t

e−r(s−t)Dis ds

]
= pγi + pDDit + pmmi,

where that pγi = − γ
r2

(
ωi +

∑
ωij

)
.

Second, consider the equilibrium with only static stock pickers, that achieves with

r → ∞, luring dynamic investors to the riskless asset, and λi = 0, excluding the stock

from the index. By market clearing, the price of the i-th stock is

Pit = q̂itθV
A
t .

In this case, the solution of the problem of the stock picker simplifies to

q̂it =

[
mi +Dit

γω2
i

Pit

θV A
t

−
∑
j ̸=i

qjtωij

ω2
i PitPjt

]/∑
j ̸=i

[
mi +Dit

γω2
i

Pit

θV A
t

−
∑
j ̸=i

qjtωij

ω2
i PitPjt

]
.
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There is aggregate price pressure, since
∑

Pit = θV A
t .

Third, consider the equilibrium with static stock pickers and index trackers, that

achieves with r → ∞, luring dynamic investors to the riskless asset, and λi = 1, relevant

for stocks included in the index. By market clearing, the price of the i-th stock is

Pit = q̂itθV
A
t + λiθV

P
t .

Thereby, the total market value of the risky asset class is
∑

Pit = θVt.

In the general equilibrium with dynamic investors, static stock pickers, and index

trackers, guess that the price of the i-th stock takes the following form.

Pit = pγ + pDDit + pmmit + θ
[
q̂itV

A
t + λiV

P
t

]
.

Static stock pickers solve their mean-variance portfolio selection problem by setting

q̂it =

[
µit +Dit

γσ2
it

Pit

θV A
t

−
∑
j ̸=i

qjtσijt

σ2
itPitPjt

]/∑
i∈I

[
µit +Dit

γσ2
it

Pit

θV A
t

−
∑
j ̸=i

qjtσijt

σ2
itPitPjt

]
.

The portfolio weights of index trackers are λi = 1/N . Static stock pickers ensure that

index stocks and non-index stocks are priced consistently in the cross section. This greatly

simplifies the problem of dynamic the dynamic investors, who can simply keep track

of aggregate static wealth V , the state variable determining changes in the investment

opportunity set over time. The sum of the wealth of static stock pickers and index trackers

delivers the wealth of static investors V = V A + V IDX , which follows Equation (5)

dV = rV (1− θ)dt+Q(dP +Ddt) + πdF

= rV (1− θ)dt+
∑
i

Qi(dPi +Didt) + πdF.

This formulation implies QP =
∑

QiPi and QD =
∑

QiDi. Similarly, Equation (12) im-

plies XP =
∑

XiPi and XD =
∑

XiDi. Intuitively, the aggregate exposure of investors

to the equity asset class is the sum of their exposures to individual stocks. Finally, by

definition of P =
∑

Pi, we have µ =
∑

µi and σ2 = E
[(∑

dPi

)2]
.

The HJB equation of the dynamic investors is

0 = max
{c,X}

U(c) + Jt + JWEt[dW ] + JVEt[dV ] +
1

2
JWWEt[dW

2] +
1

2
Et[dV

2] + JWVEt[dWdV ],
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where

dW = (rW − c)dt+
∑
i

Xi[(Di − rPi)dt+ dPi].

Define the vectors X = [Xi] and Q = [Qi] and the matrix Σ = [σij]. We have

Et[dW ]/dt =
[
rW − c+

∑
i

Xi

(
µi − rPi +Di

)]
,

Et[dV ]/dt = [rV (1− θ) +Q(µ+D)],

Et[dW
2]/dt = XΣXT = Et

[( I∑
i=1

XidPi

)2]
= Et[(XdP )2] = X2σ2,

Et[dV
2]/dt = QΣQT + π2 = Et

[( I∑
i=1

QidPi

)2]
+ π2 = Et[(QdP )2] + π2 = Q2σ2 + π2,

Et[dWdV ]/dt = XΣQT = Et

[( I∑
i=1

XidPi

)( I∑
i=1

QidPi

)]
= XQEt[dP

2] = XQσ2.

The value function is again J(W,V, t) = −e−δt−rγW−g(V )−β, and the FOCs of the HJB are

Xit(Pi, Di, V ) = − JW
JWW

(
µit − rPit +Dit

)
−

∑
j Xjtσijt

σ2
it

− JWV

JWW

PitQσ2

σ2
i

=
µit − rPit +Dit

rγσ2
it

−
∑

j Xjtσijt

σ2
it

− (1− θ)PitQσ2

σ2
it

,

ct(W,V ) = rWt +
1

γ

(
g(V ) + β − log r

)
.

Let us replace the FOCs into the HJB.

0 =
1

J
U(c∗) +

1

J

Et[dJ ]

dt
= r +

1

J

Et[dJ ]

dt

= r − δ − rγ

[
1

γ
(log r − g(V )− β) +

∑
i

X∗
i

(
µi − rPi +Di

)]
+

1

2
(rγσX∗)2

− (1− θ)rγ
[
rV (1− θ) +Q(µ+D)

]
+

1

2
(1− θ)rγ(Q2σ2 + π2) + (rγσ)2(1− θ)X∗Q.

The above expression coincides with the HJB derived in Appendix A if and only if∑
i

X∗
i

(
µi − rPi +Di

)
= X∗(µ− rP +D).

The relationship
∑

XiPi = XP directly implies r
∑

iX
∗
i Pi = rX∗P . Moreover, since
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X∗
i E[dPi] = X∗E[dP ], we have

∑
i X

∗
i µi = X∗µ. Finally,

∑
XiDi = XD implies that the

above condition holds. Therefore, the argument used in the proof of Proposition 1 applies,

the HJB is solved by the optimal choice of dynamic investors, the transversality condition

is respected, and the guess for the price is verified, completing the proof. Q.E.D.

C Wealth Flows and Earnings News

Guess the price is again given by

Pt = pγ + pDDt + pmm+ θVt.

Consider the price dynamics and replace Equation (18) into Equation (5) to obtain

dPt = pDdDt + θ
[
rVt(1− θ)dt+Qt(dPt +Dtdt) + π

dFt︷ ︸︸ ︷
(ρdD +

√
1− ρ2dZt)

]
= (pD + pR)dDt + θ

[
rVt(1− θ)dt+Qt(dPt +Dtdt) + πRdZt

]
,

where pR = θπρ and πR = π
√

1− ρ2. These dynamics generalize the baseline model,

since dF is correlated with dB, but follow similar structure. In light of the above, the

guess can be equivalently parameterized by

Pt = pγ + (pD + pR)Dt + pmm+ θṼt,

with the convenient redefinition of state variable dynamics, Ṽ , so that

dṼ = θ
[
rṼt(1− θ)dt+Qt(dPt +Dtdt) + πRdZt

]
,

Price drift and diffusion are, respectively,

µt =
m(pD + pR) + θ[rṼt(1− θ) +QtDt]

1− θQt

, σt =
ω(pD + pR) + θπR

1− θQt

.

The HJB equation is

0 = max
{c,X}

U(c) + Jt + JWEt[dW ] + JṼEt[dṼ ] +
1

2
JWWEt[dW

2] +
1

2
Et[dṼ

2] + JWVEt[dWdṼ ].
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The problem is traced back to the baseline model and the guess is verified by the steps

outlined in Appendix A. Q.E.D.

D Asset Price Dynamics

Asset price dynamics can be obtained by replacing the dynamics of dividends, dDt, and

those of the wealth dynamics of static investors, dVt, into Equation (19).

dPt = At

(
m

r
+ θ

[
rVt(1− θ) +QtDt

])
dt+ At

(
ω

r
dBt + θπdFt

)
, (24)

where At = 1/(1 − θQt) captures the amplification effect associated with static asset

allocation strategies. The strength of such effect rises as static investors own a larger

proportion of the stock market, Qt. As the investors composition is public information,

such amplification is predictable.

In equilibrium, stock price dynamics result from two distinct processes, representing

economic fundamentals and the importance of static investors. Accordingly, the price

drift reflects predictable earnings, m
r
, and predictable price pressure from static investors,

θ[rVt(1− θ)+QtDt], resulting from their bond investments as well as from their dividend

reinvestments. The volatility of price changes refeclts both the volatility of fundamentals,
ω
r
, as well as that of wealth flows, a proportion θπ of which may affect asset prices intro-

ducing non-fundamental volatility. This mechanism is remindful of Ben-David, Franzoni,

and Moussawi (2018).

These consideration motivate a time series analysis of volatility of market returns with

a structural interpretation of equity ownership data. Daily S&P 500 returns data are

retrieved from Bloomberg. Quarterly U.S. stock market holdings data are retrieved from

the Flow of Funds statistics and illustrated in Figure A.1. The importance of professional

asset managers is on the rise, particularly after the ’90s. By 2020, households only directly

held around 40% of U.S. equity markets. Meanwhile, MFs and ETFs combined ownership

shares approximately accounted for 35% of the total market value, with the remaining

proportion of the stock market mostly held by foreign investors.

Consider the GARCH-MIDAS specification for the volatility of stock returns proposed

by Engle, Ghysels, and Sohn (2013), that blends a slow-moving component recorded

at low frequency and a high-frequency conditionally autoregressive component.15 As

15This specification is traditionally employed to evaluate the effect of macroeconomic variables on market volatility.

30



shown below, the model relates the returns rd,q realized on day d in quarter q to a

constant mean m, as well as to white noise innovations ed,q that enter the specification

through a component model for volatility. The long-run component lq is a function of

the contemporary and lagged proportion of the U.S. stock market held by MFs and ETFs

recorded on quarter q, where n is the intercept and fk is a beta function weighting the

K lags included. The short-run component is a GARCH(1,1) model with daily lagged

innovations and parameters a and b.

rd,q = m+
√
lqgd,qed,q,

lq = n+ c

K∑
k=1

fk(w1, w2)Static Shareq−k,

gd,q = (1− a− b) + a
(rd−1,q − m)2

lq
+ bgd−1,q. (25)

The model in Equation (25) enables the same news to have different effects depending

on the ownership structure of the stock market, captured by the proportion of the U.S.

stock market held by MFs and ETFs in quarter q and denoted by Static Shareq. The

model suggests that the response of returns to news should be amplified when static

investors hold a larger proportion of the stock market. This effect can be quantified by

the coefficient c, which is expected to be positive and statistically significant.

Table A.1 presents the coefficient estimates. Panel A pertains to the baseline estima-

tion, and Panel B presents a robustness test where the long-run component is estimated

on a rolling basis. The coefficient estimate c has the expected sign and is both statistically

significant and economically meaningful. For the full sample, the parameter estimate is

0.024 with a t-statistics of 4.7, suggesting that an increase in static ownership predicts

greater volatility in the financial market for the upcoming quarter. The estimates appear

remarkably robust across specifications. For example, in Panel B the estimate of c is

again 0.024, with t-statistics of 4.6. Consistently with the proposed theory, where the

amplification effect is a concave function of static ownership, the estimate of c is larger

in the earlier 1953-1984 subsample characterized by lower levels of static ownership. On

the other hand, during the 1985-2010 period the static ownership variable rises dramat-

ically from 0.06 to 0.31, in correspondence to a long-run component coefficient estimate

of 0.014.
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E Aggregate Price Pressure in the Treasury Market

The static asset allocation strategy requires investors to invest a fixed proportion of their

wealth in the bond market, regardless of risk and return considerations. Greenwood and

Vayanos (2014) suggest that a shock to the demand for bonds should impact the yields of

all bonds in the opposite direction as the shock. Moreover, a shock to the demand factor

should affect the instantaneous expected returns of all bonds in the opposite direction as

the shock. After an exogenous increase to the wealth invested under static asset allocation

strategies, one should thus observe lower yields and bond expected returns.

Recent empirical research has investigated aggregate price pressure in the context of

stock market dividend payout days. Hartzmark and Solomon (2022) document that days

in the top quintile of dividend payments are associated with higher stock market returns.

The amount of dividends is determined ahead of the dividend pay date, and hence the

effect documented cannot be ascribed to information. The impact of dividend price

pressure has increased since 1990, as MFs and ETFs have become a larger component of

equity holdings. With a model with static and dynamic investors in mind, it is natural to

extend such analysis to investigate whether stock market dividend payout days generate

effects on the Treasury market.

Figure A.2 provides evidence suggestive of the spillover of wealth effects between the

U.S. equity and Treasury bond market using dividend pay dates as a clean instrument

for wealth shocks unrelated to information. The data reveal a clear pattern of large

economic significance. Days with large dividend payment amounts feature large returns

on the stock market (Panel A), low Treasury term premia (Panel B), and low expected

returns on 10-year Treasury bonds (Panel C). This result is consistent with the aggregate

price pressure of investors following static asset allocation strategies.
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Internet Appendix for
“Asset Pricing with Dynamic and Static Investors”

Ruggero Jappelli
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Figure A.1: U.S. Equity Ownership. The figure displays the composition of investors in
U.S. corporate equities, based on Financial Accounts data published by the Federal Reserve.
ETFs denotes exchange-traded funds, while RoW refers to the rest of the world.
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Figure A.2: Wealth Effects in Equity and Treasury Markets. Trading days are grouped
into deciles by dividend payment amount, which are reported on the x-axis. Panel A: the y-
axis shows the value-weighted market return, averaged within each decile. Panel B: the y-axis
shows the return on the 10-year U.S. Treasury in excess of the 1-year U.S. Treasury, averaged
within each decile. Panel C: the y-axis shows the expected return on the 10-year U.S. Treasury,
averaged within each decile. Daily data from CRSP and Gürkaynak, Sack, and Wright (2007).
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Table A.1: Parameter Estimates of GARCH-MIDAS with Investor Holdings. The
Table presents parameter estimates of the component model relating volatility realized on day
d to its lags and a long-run component of the proportion of the U.S. stock market held by MFs
and ETFs in quarter q. The data are from Bloomberg and the Flow of Funds, both variables
are expressed in percentage terms, and numbers in parentheses are robust t-statistics.

Panel A: Fixed Long-Run Component

Sample m a b c w1 w2 n LLF/BIC

1951-2019 0.06494 0.08811 0.90279 0.02398 47.224 2.111 0.77061 -19247.1
(11.472) (42.374) (341.23) (4.709) (0.0020) (0.0009) (9.0894) 38562.5

1953-1984 0.06036 0.08365 0.90796 0.10584 1.0014 49.84 0.33247 -7446.29
(7.9467) (18.027) (178.36) (1.6083) (0.0179) (0.0019) (1.5682) 14955.5

1953-2010 0.06407 0.08052 0.91165 0.05200 48.918 49.51 0.60517 -16429.4
(10.485) (41.639) (358.17) (4.8109) (0.0875) (0.0862) (7.345) 32925.9

1985-2010 0.06273 0.06210 0.92964 0.01406 37.334 49.773 0.91895 -7506.17
(5.4763) (15.001) (197.23) (1.961) (0.0224) (0.0227) (5.8952) 15073.9

Panel B: Rolling Long-Run Component

Sample m a b c w1 w2 n LLF/BIC

1951-2019 0.06495 0.08819 0.90267 0.02437 44.66 17.662 0.77657 -19247.3
(11.498) (42.348) (340.77) (4.5952) (0.0326) (0.0330) (9.4833) 38562.8

1953-1984 0.06034 0.08370 0.90791 0.10727 1.7811 49.884 0.3278 -7446.23
(7.9491) (17.882) (176.58) (1.6381) (0.0384) (0.0352) (1.5766) 14955.4

1953-2010 0.06404 0.08046 0.91171 0.05280 40.498 49.881 0.60621 -16429.4
(10.486) (41.221) (358.3) (4.5349) (0.0757) (0.0777) (7.2433) 32925.9

1985-2010 0.06273 0.06209 0.92964 0.01487 37.947 49.754 0.9076 -7506.1
(5.4728) (15.025) (198) (1.9869) (0.0214) (0.0217) (5.5916) 15073.7

The specification is:

rd,q = m+
√
lqgd,qed,q,

lq = n+ c

K∑
k=1

fk(w1, w2)Static Shareq−k,

gd,q = (1− a− b) + a
(rd−1,q − m)2

lq
+ bgd−1,q.

The beta weighting function fk has K = 16 lags, rd,q is the S&P 500 return. The innovation ed,q
is white noise, Static Investorsq is the proportion of the stock market held by MFs and ETFs,
and the remaining terms are parameters.
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