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ABSTRACT

A central assumption in asset pricing theories is dynamic portfolio choice by agents.
This assumption is violated when investors adopt static asset allocation strategies.
The paper presents a tractable model with dynamic investors, whose asset allo-
cation responds to news, alongside static investors, with constant asset allocation
regardless of changing investment opportunities. The model uncovers the “asset
classification effect,” the effect of static asset allocation strategies on the prices of
securities classified within target asset classes. Given fundamentals and discount
rates, static asset allocation strategies raise stock prices and contribute to excess
volatility, particularly when expected returns are low and volatile.
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1 Introduction

The standard approach in financial economics postulates that asset prices are determined

by agents who continuously optimize their asset allocation. For instance, in Merton

(1973), asset prices are driven by the portfolio choice of a representative investor who

dynamically adjusts the allocation of wealth across asset classes in response to changes

in the investment opportunity set. In practice, however, the majority of investors make

no change to their asset allocation over time (Ameriks and Zeldes, 2011).

This paper presents a theory of asset prices motivated by the observation that a large

group of investors adopt a static asset allocation strategy. Those investors establish an

asset allocation and maintain it over their desired horizon, regardless of the changes in the

investment opportunity set that occur over time. Such static asset allocation strategies

are commonly recommended by professional advisers, who might suggest, for example,

that a conservative investor hold a 30/70 stocks/bonds portfolio, while a balanced investor

hold a 60/40 stocks/bonds portfolio.

By focusing on the dynamic optimization of agents, the standard approach to asset

pricing leaves no role for important considerations, such as whether static asset allocation

strategies influence asset prices, and under what conditions this effect might be most

pronounced. To fill this gap, this paper presents a tractable model in which asset prices

result from the interaction of investors using heterogeneous asset allocation strategies.

The model introduces the notion of “asset classification effect,” the effect of static

asset allocation strategies on the prices of securities classified within target asset classes.

This notion suggests that the aggregate value of assets within an asset class is at least

as great as the wealth invested in that asset class to implement static asset allocation

strategies. This principle holds true regardless of the expected cash flows generated by

the assets and the discount rates required by the market participants. To the best of my

knowledge, this finding has not been previously articulated in the literature, despite its

simplicity. Although this effect is likely to be of broader importance, the analysis of the

paper is centered around the equity asset class.

The “asset classification effect” offers a generalization of the “index inclusion effect,”

a phenomenon where the inclusion of stocks into an index increases their prices. The

general idea is fairly simple: just as stocks included in a benchmark index attract the

capital of index trackers, the classification of a security within an asset class draws the

investment from static asset allocation strategies. In both cases, the demand for securities

unrelated to their future fundamentals drives asset prices above discounted cash flows.
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The model considers two asset classes: one generating a risk-free return, and the other

consisting of securities that distribute risky dividends. There are two groups of agents,

who differ in their asset allocation strategy – dynamic investors, and static investors.

Dynamic investors optimally revise their asset allocation upon the arrival of information

to the market. Static investors hold a constant allocation between the two asset classes,

regardless of how the risk and expected returns of these asset classes change over time.

Except for heterogeneous asset allocation strategies, the model has a standard structure.

Thanks to its tractability, the model extends to the cross-section of risky assets,

allowing for an analysis of the relationship between the well-documented index inclusion

effect and the asset classification effect introduced in this paper. The index inclusion

effect stems from investors constrained from stock picking, who affect relative prices in

the cross-section of stocks. In contrast, the asset classification effect stems from investors

constrained from market timing, who affect the relative prices of stocks and bonds.

The asset classification effect can be demonstrated through the analysis of a change

in the investment opportunity set, facilitated by the exact closed-form solutions of the

model. As market volatility or the risk-free interest rate rise, dynamic investors reduce

their allocation of wealth to the risky asset class, driving down the price of risky assets.

Meanwhile, static investors maintain a constant proportion of their wealth allocated to

the risky asset class, thereby cushioning the price of securities it comprises.

Through time, static investors enforce investment decisions that are not responsive

to news about the economic fundamentals, generating cash-in-the market features that

affect the level of asset prices. This effect becomes relatively more important when the

expected excess returns on risky assets are low and volatile.

Formally, static asset allocation strategies give rise to a rational asset price bubble.

Rational asset price bubbles are considered incompatible with the dynamic optimizing be-

havior of economic agents (Tirole, 1982), absent portfolio constraints (Hugonnier, 2012).

As shown in this paper, a rational asset price bubble arises when some of the agents depart

from dynamic maximization by adopting a static asset allocation strategy. This strategy

introduces a divergence between the present discounted value of the fundamentals and

the level of asset prices consistent with rational expectations.

Moreover, static asset allocation strategies contain information about the response of

investors to price changes. Market movements that grow the wealth of static investors

prompt the reinvestment of capital gains in fixed proportions across asset classes. The

paper finds that this procyclical price pressure gives rise to conditional price volatility in

excess of the volatility of fundamentals, but still connected to it.
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Generally speaking, traditional approaches to asset pricing assume that agents opti-

mize their portfolio choice dynamically. This assumption is common in frameworks where

the agent is a household optimizing consumption (Merton, 1973), a firm optimizing pro-

duction (Cochrane, 1991), and a specialized intermediary facing capital constraints (He

and Krishnamurthy, 2013) or investment mandates (Koijen and Yogo, 2019).

It is somewhat surprising that despite the widespread adoption of the static asset

allocation strategy, theoretical exploration of its impact on asset prices remains limited.

Related work by Chien, Cole, and Lustig (2011) shows that heterogeneous asset allocation

strategies help to match asset prices and the distribution of household wealth. In their

model, agents trade state-contingent bonds with finite maturity, which rule out rational

bubble considerations that are central to this paper. Gabaix and Koijen (2022) point out

that wealth flows into static asset allocation investment funds drive asset price fluctua-

tions. This effect arises from the absence of unconstrained agents, integral to this paper.

This paper emphasizes the intertemporal consistency of static asset allocation strategies,

which makes it rational for unconstrained investors not to expect the realignment of prices

with discounted fundamentals. The contribution of this paper is to introduce the asset

classification effect, which, to my knowledge, is new to the literature.

The effect of demand forces on asset prices has been explored, in relation to stock

indexes, in a program of research pioneered by Harris and Gurel (1986) and Shleifer

(1986). More recently, Basak and Pavlova (2013) show that the incentive of professional

investors to outperform their benchmark generates procyclical leverage decisions, leading

to a higher index level and volatility. Related literature on passive investing includes

Greenwood and Sammon (2025), Pavlova and Sikorskaya (2023), and Haddad, Huebner,

and Loualiche (2021). Building on this literature, this paper examines the distinct port-

folio constraint imposed by static asset allocation strategies. Fully analytical solutions

show that the resulting asset classification effect constitutes a generalization of the index

inclusion effect, of importance even for the pricing of stocks outside benchmark indices.

The paper also relates to the literature on asset pricing with heterogeneous agents,

a strand of which focuses on newswatchers and trend followers (Hong and Stein, 1999;

Barberis and Shleifer, 2003). Although newswatchers resemble dynamic investors, trend

followers differ sharply with static investors, who allocate wealth to stocks even when

bonds are more efficient. Moreover, the paper builds upon the literature on intertemporal

asset pricing, including Veronesi (1999), Basak and Chabakauri (2010), and Chabakauri

(2013), which provides tractable characterizations of equilibria with stochastic investment

opportunities primarily in models where agents engage in dynamic optimization.
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The paper is organized as follows. Section 2 presents the model in the time series,

and Section 3 generalizes it to the cross section of stocks. Section 4 explores selected

extensions. Section 5 tests the predictions of the model. Section 6 concludes.

2 The Model

The model is set in continuous time over an infinite horizon and considers financial

markets with two groups of agents, dynamic and static investors. Dynamic investors

optimally revise their asset allocation in response to news. Static investors maintain a

constant asset allocation, without regard to the revelation of information.

2.1 Assets

There are two classes of investment assets: a riskless investment and a risky investment.

The riskless asset is elastically supplied and yields the instantaneous real rate of return r.

The risky asset is an aggregate of individual equities, and distributes stochastic dividends

based on the aggregate earnings of the firms in the economy. Pt denotes the ex-dividend

price of the risky asset, and µt and σt represent the instantaneous price drift and diffusion,

respectively. The aggregate earnings in the economy, denoted by Et and expressed in real

terms, follow a stochastic differential equation with drift m and diffusion ω,

dEt = mdt+ ωdBt, (1)

where Bt is a Brownian motion that generates the filtration {Ft}. This arithmetic process

is motivated by the linear growth of real earnings. The earnings payout ratio is constant,

so that the aggregate dividend per share, Dt, is a fixed proportion a of the earnings.1

2.2 Dynamic Investors

Dynamic investors optimize the utility function U(ct) = −e−δt−γc, where c denotes con-

sumption, and δ and γ are respectively patience and risk aversion parameters. Their

portfolio choice responds to news about earnings, in the style of Merton (1973), and

changes continuously as news reach the market.2

1Rights issues influencing the value of shares without affecting their supply to the public can account for negative dividends.
2Chien, Cole, and Lustig (2012) examine the effects of dynamic but intermittent portfolio rebalancing on asset prices.
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Dynamic investors control their consumption and investment policies to maximize

their expected intertemporal utility over an infinite time horizon, while respecting their

budget constraint and transversality condition. The wealth of dynamic investors is de-

noted by Wt, and their derived utility from wealth is

J ≡ max
{c,X}

Et

[ ∫ ∞

t

U(cs) ds

]
, (2)

s.t. dW = (rW − c)dt+XdY, lim
h→∞

E
[
Jt+h

]
= 0. (3)

In the above, dY = (D − rP )dt+ dP is the return of a share of the risky asset financed

at the risk-free rate, and Xt is the number of such shares held by dynamic investors.

This optimization program is similar to that in Veronesi (1999) and others, with the key

distinction that in this paper dynamic investors interact with other participants in the

market who follow static asset allocation strategies, as detailed below.

2.3 Static Investors

Static investors allocate their wealth in a fixed proportion across asset classes, without re-

gard to the going and prospective market prices. To implement this approach, which could

be microfounded by a preference for avoiding continuous market observation, a group of

agents transfers their wealth into professional investment funds that follow static asset

allocation strategies. Investment funds thus experience idiosyncratic wealth flows, and

continuously rebalance their portfolios to maintain target exposures across asset classes.

Investment funds are, without any loss of generality, aggregated into a representative

fund whose wealth, Vt, is allocated in a constant proportion, θ, to the risky asset class.3

Static investors collectively hold Qt shares of the risky asset class, where

Qt = θVt/Pt. (4)

Static investors present a downward sloping demand for the risky asset class, remindful

of Harris and Gurel (1986) and Shleifer (1986). For simplicity, it is assumed that static

3For example, a fund with wealth Vx = 100$ and equity allocation θx = 0.5 and a fund with wealth Vy = 200$ and θy = 0.75
aggregate into a representative fund with wealth V = 300$ that allocates to equities the average of the allocation of the
two agents weighted on their wealth, θ = 0.67. The subsequent wealth flows into each of the funds are scaled equivalently.
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investors reinvest the dividends distributed by risky assets. Their wealth dynamics are

dV = V
[
(1− θ)rdt+ θ(dP +Ddt)/P

]
+ πdF (5)

where F is a Brownian motion under the risk-adjusted measure adapted to {Ft} which

describes wealth flows to the static allocation fund net of share redemptions, and π is

a loading parameter. The flows process F summarizes the decisions of economic agents

to invest in or divest from the static fund. The wealth flows are considered uncorrelated

with economic fundamentals until Section 4, where this assumption is relaxed.

Equation (5) is a special case of Equation (3) when portfolio shares are constrained by

the asset allocation strategy θ and the investor’s wealth is subject to flow risk πdF .4 The

wealth of static investors, V , rises in past stock returns dP/P , all else equal. Section 4.2

shows that Equation (5) contributes to the predictable amplification of price volatility.

2.4 Market Clearing

The shares of the risky asset are in fixed supply, S, normalized to one without loss of

generality.5 The market clearing condition is

Xt(P,D, V ) +Qt(P, V ) = S. (6)

2.5 Equilibrium

The equilibrium consists of a price, P , of the risky asset such that the supply of shares, S,

is equal to their demand,X+Q. The portfolio choice of dynamic investors maximizes their

indirect utility from consumption, given their wealth, corporate earnings, and market

prices. Given the wealth flows, static investors allocate a fixed share θ of their wealth to

the risky asset. The equilibrium is described by the following conditions.

X +Q = S, 0 = max
{c,X}

U(c) +
Et[dJ(W,V )]

dt
, Q = θV/P.

The first equation is the market clearing condition, the second one the Bellman equation

of the dynamic investors, and the third one the asset allocation strategy of static investors.

The equilibrium is Walrasian and every share trades at the going market price.

4Following extreme fund outflows, V could turn implausibly negative. Its dynamics near this barrier can be regulated by a
term ηdL, where η is the speed of reflection and L the local time of V at zero, without affecting the content of the results.

5In standard models with stochastic supply, unlike in this paper, assets become worthless when holding them is not optimal.
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First, consider the price of the risky asset class in the absence of static investors.

Throughout, let E∗
t denote the expectation taken with respect to the probability measure

adjusted for the dynamic investors’ preferences toward risk.

Lemma 1. Equilibrium without Static Investors.

Pt = E∗
t

[ ∫ ∞

t

e−r(s−t)Ds ds

]
︸ ︷︷ ︸

Fundamentals

.

Proof. Special case of Proposition 1. See also Veronesi (1999).

By replacing the earnings process into Lemma 1, the price obtains in closed form,

Pt = pg + pDDt + pmm, (7)

where the parameters governing the price level are pg = −γω2

r2
, pD = 1

r
, and pm = 1

r2
.6

Lemma 1 presents a standard dividend discount valuation model, which can also be

derived by iterating forward the condition Pt = E∗
t [e

−rdt(Pt+dt + Dt)] and assuming the

absence of “rational bubbles.” Rational bubbles are terms that affect both the current

level of the asset price and its discounted future value equally. They are usually assumed

away by imposing the transversality condition lim
∆t→∞

E∗
t [e

−r∆tPt+∆t] = 0. The reasoning is

that, absent this condition, the asset price would exceed the discounted dividend stream.

Agents would find it optimal to sell the risky asset short and invest at the risk-free rate to

replicate the dividend stream, until the equivalence is restored. For this reason, bubbles

disappear when agents adopt a dynamic maximizing behavior (Tirole, 1982).

Proposition 1 below demonstrates that the pesence of static investors generates a

rational bubble, θVt = E∗
t

[
e−rdtθVt+dt

]
. This is because, regardless of fundamentals and

discount rates, static investors exert price pressure on securities in the risky asset class.

Moreover, as their asset allocation is static, it is rational to expect such price pressure

to persist in the future. In risk-adjusted expectations, the demand of static investors for

the risky asset class grows at the risk-free rate. These features imply that the equity

exposure of static investors affects both the current level of the risky asset class price and

its discounted future value equally. In the presence of a rational bubble, the high price

of the risky asset class relative to its fundamental value is merited, as the expected total

returns are equal to the returns on alternative assets (Stiglitz, 1990).

6To ease notation, the dividend payout ratio a is set to 1. The general case achieves by multiplying pg , pD, and pm by a.

7



Proposition 1. Equilibrium with Dynamic and Static Investors.

Pt = E∗
t

[ ∫ ∞

t

e−r(s−t)Ds ds

]
︸ ︷︷ ︸

Fundamentals

+ E∗
t

[
e−rdtθVt+dt

]
.︸ ︷︷ ︸

Asset Classification Effect

Proof. See Appendix A, which also reports the portfolio choice and consumption level

that maximize the Hamilton-Jacobi-Bellman Equation for dynamic investors.

Proposition 1 outlines the first main result of the paper. It shows that, beyond the

expected cash flow and the discount rates of marginal agents, the price of the risky asset

class reflects the equity exposure of static investors. As this price represents the sum of

all stock prices, the proposition highlights the presence of an “asset classification effect.”

This effect suggests that the aggregate value of assets within an asset class is at least

as great as the wealth invested in that asset class to implement static asset allocation

strategies. Section 3 carves out which stocks in the cross-section are most impacted by

this effect.

The asset classification effect can be illustrated through a change in the investment

opportunity set. As the opportunity cost of the risky asset class temporarily increases,

its aggregate value declines under the selling pressure of dynamic investors reallocating

their portfolios toward the risk-free asset. However, static investors, who hold a constant

asset allocation over time, maintain their exposure to the risky asset class unchanged.

Through this mechanism, the demand pressure of static investors provides a floor to the

aggregate value of the securities in the risky asset class.

It is important to emphasize that this mechanism is not specific to the CARA utility

of dynamic investors, whose main advantage is tractability; it also extends to cases where

dynamic investors have CRRA and more general utility functions. The fundamental

condition for the asset classification effect is that some investors engage in dynamic

intertemporal optimization, while others follow a static asset allocation strategy.

For instance, as r → ∞, the dividend stream becomes worthless, prompting dynamic

investors to allocate their entire wealth to the bond market and setX = 0. In models with

dynamic optimization, risky assets would be worthless. In this model, static investors

would maintain their exposure to the risky asset class unchanged. Market clearing ensures

P = θV , making stock prices a mere unit of account for the cash-in-the-market. Naturally,

some agents may adjust their exposure to static asset allocation investment strategies in

response to news. Section 4.1 shows that the results remain robust to this consideration.
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One more insight emerging from the proposition is that the price of risky assets is

influenced by the stock of wealth of static investors, rather than solely by stochastic wealth

flows. The effect of wealth flows on the price of risky assets has received the attention of

an active area of literature (for instance, Coval and Stafford, 2007). Proposition 1 shows

that the equilibrium level of asset prices reflects the stock of wealth of static investors,

which incorporates flows, but is more broadly influenced by the returns on both risk-free

and risky assets, and follows the intertemporal dynamics of Equation (5).

From Proposition 1, the total value of the risky asset class obtains in closed form as

Pt = PDVt(D) + θVt, (8)

where PDVt(D) = pγ + pDDt+ pmm denotes the discounted value of the expected aggre-

gate dividend stream, which incorporates the risk adjustment pγ = − γ
r2

(
ω
r
+θπ

)2
required

by dynamic investors for the exposure of the price to earnings risk and flow risk. The

workings of dynamic investors ensure that the price corresponds to Equation (8). On

the other hand, the intertemporally consistent price pressure of static investors generates

the rational asset price bubble.7 In this regard, the price impact of trades is tied to the

dynamic behavior of the investors. The equity exposure of static investors, θV , affects

the price of the risky asset regardless of the cash flows, D, the risk-free rate, r, and the

adjustment for risk, pγ, required by dynamic investors who are marginal to asset prices.

Quantities held by investors characterize the equilibrium in conjunction with the price.

X(P,D, V ) =
µ− rP +D

rγσ2
− 1− θ

rγ
Q, Q(P, V ) = θV/P. (9)

Dynamic investors hold a position in the risky asset class, X, that increases with expected

returns per unit of variance and decreases with the risk-free rate. Equilibrium prices may

change under the pressure of static investors, even if the discount rate or the fundamen-

tals have not, motivating the hedging term of the demand of dynamic investors. Static

investors holds a position, Q, that consistently fulfills their strategy. The market clearing

condition, X + Q = 1, together with Equation (8) and the asset allocation strategy of

static investors, implies that the equilibrium holdings can be characterized as follows.

Xt(P,D, V ) = PDVt(D)/P, Qt(P, V ) = θV/P. (10)

7Section 4.1 shows that the rational price bubble also depends on the correlation between wealth flows and earnings news.
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Ceteris paribus, as the present discounted value of fundamentals rises, so does the

proportion of the risky asset class held by dynamic investors. Conversely, the proportion

of the risky asset class held by static investors rises in bad times.

The asset classification effect is more pronounced when the expected returns on the

risky asset class are low and volatile. All else equal, when the risk-return ratio is higher

the scope for static investors’ demand to affect asset prices is more limited, as dynamic

investors take comparatively more aggressive positions. By contrast, when dynamic in-

vestors reduce their exposure to the risky asset class, the effect of static investors’ demand

on asset prices is relatively more important.

Corollary 1. The forecast accuracy of the price of the risky asset class for the aggregate

stream of dividends rises in the expected return to risk ratio of the risky asset class.

Proof. Under the earnings process of Equation (1), PDVt(D) is the best linear unbiased

estimator of the dividend stream. Equation (10) shows that Pt = PDVt(D) when Xt = 1,

making the price an accurate forecast. In general, the forecast accuracy of stock prices

for dividends rises when dynamic investors have stronger incentives to allocate resources

to the risky asset class, which occurs as the expected return to risk ratio rises. Q.E.D.

Corollary 1 highlights a connection between price forecast accuracy, portfolio hold-

ings, and the investment opportunity set. For stock prices to accurately reflect future

dividends, it is essential that dynamic investors find it attractive to allocate resources to

the risky asset class.8

Overall, this section has demonstrated the presence of an asset classification effect,

whereby the sum of the total market value of stocks is at least as great as the equity

exposure of investors following static asset allocation strategies. In the time series, the

asset classification effect becomes more important as the expected excess returns from

holding risky assets are low and volatile.

3 The Cross Section

The model presented thus far characterizes the aggregate stock market in the time series.

Which stocks appreciate the most, when the wealth of static investors rises?

To model the cross section of stocks, three agents are required. Dynamic investors

engage in stock picking and market timing. Static investors can be grouped into stock

8The effort to connect price forecast accuracy to observable market conditions shares similarities with Dávila and Parlatore
(2023), who study the relation between price informativeness and idiosyncratic volatility in a heterogeneous beliefs model.
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pickers, who select stocks optimally but do not time the market; and index trackers,

constrained from both stock picking and market timing. Figure 1 illustrates the agents.

Investors

Dynamic Static

Stock Pickers Index Trackers

Figure 1: Agents. The figure illustrates the agents based on their portfolio constraints.
Dynamic investors are unconstrained in the time series and in the cross section of stocks. Static
investors hold constant equity shares over time. Within the cross section, static asset allocation
stock pickers actively select stocks to optimize their portfolios, while static asset allocation index
trackers passively replicate the performance of a benchmark index.

3.1 Assets

There are I firms in the economy. Real earnings Eit of firm i at time t follow the dynamics

dEit = midt+ ωidBit, (11)

wheremi denotes the expected growth of earnings and ωi their volatility. Bit is a Brownian

motion. The pairwise correlations between earnings news are dBitdBjt = ωijdt. Firms’

stock shares trade at the real price Pit and distribute dividends Dit with constant earnings

payout ratio a. µit and σit denote the price drift and diffusion of stock i, and σijt the

price correlation between stocks i and j. The shares of each stock are in fixed supply, Si,

normalized to one without loss of generality.

The price of the risky asset class of Section 2 is the total market value of equities,

Pt =
I∑

i=1

Pit.
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There is a stock market index consisting of a collection of N < I stocks. As the supply

of shares is fixed, float-adjusted market capitalization index weights coincide with price

index weights. The index level is

P IDX
t =

I∑
i=1

NiPit,

where the dummy variable Ni equals 1 if stock i is included in the index and 0 otherwise.

Consistently with the previous section, real aggregate earnings in the economy continue

to follow Equation (1), defining m =
I∑

i=1

mi and ω =
√∑

i ω
2
i +

∑
i

∑
j ̸=i ωij.

3.2 Dynamic Investors

The wealth of dynamic investors follows classical Merton (1973) dynamics

dWt = (rWt − ct)dt+
I∑

i=1

Xit[(Dit − rPit)dt+ dPit] (12)

Their utility function and transversality condition are in Section 2.2. Dynamic investors

optimally select the number of shares, Xit, in the cross section of stocks. The aggregate

number of shares of risky assets held by dynamic investors is Xt =
∑

iXit. As previously

derived, the proportion of their wealth allocated to the risky asset class equals XtPt/Wt.

3.3 Static Investors

As a group, static investors allocate a proportion θ of their wealth in the stock market,

with important differences in the cross section. Static “stock pickers” actively optimize

their portfolio in the cross section of stocks. Static “index trackers” passively buy each

stock in proportion to its index weight. The wealth of static investors discussed previously

is the sum of the wealth of static stock pickers and index trackers, Vt = V A
t + V IDX

t .

3.3.1 Stock Pickers

Static asset allocation stock pickers have wealth V A, allocated in fixed proportion θ to

the stock market, and receive a share πA of wealth flows F . In the cross section, they
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invest in each stock in proportion qit. Their wealth follows the dynamics

dV A
t = rV A

t (1− θ)dt+ θV A
t

I∑
i=1

qit (dPit +Ditdt)/Pit + πAdFt. (13)

Static asset allocation stock pickers actively select their cross-sectional stock holdings,

qit, as a solution to their mean-variance portfolio optimization problem,

max
{qit}

Et[dV
A
t ]− 0.5γEt[(dV

A
t )2] s.t.

I∑
i=1

qit = 1, θ given. (14)

In the above, the risk aversion γ of stock pickers equals that of dynamic investors.9

Effectively, asset allocation stock pickers differ from dynamic investors only because the

proportion of their wealth invested in stocks is fixed, rather than sensitive to changes in

the investment opportunity set. Let {q̂it} denote the solution to the portfolio optimization

problem problem in Equation (14). The number of shares of the i-th stock optimally held

by static asset allocation stock pickers is QA
it = q̂itθV

A
t /Pit.

3.3.2 Index Trackers

Static asset allocation index trackers have wealth V IDX , allocated in fixed proportion

θ to the stock market, and receive a share πIDX = π − πA of wealth flows F . They

passively invest a fraction of their equity allocation into each stock equal to its weight

in the index. Thus, their cross-sectional stock holdings are represented by the dummy

variable λi = Ni/N , and their wealth dynamics follow

dV IDX
t = rV IDX

t (1− θ)dt+ θV IDX
t

I∑
i=1

λi (dPit +Ditdt)/Pit + πIDXdFt. (15)

The number of shares of the i-th stock held by static asset allocation index trackers is

QIDX
it = λiθV

IDX
t /Pit.

9This assumption does not affect the results, and is meant to create a level-playing field with the preferences of dynamic
investors, ensuring that the financial decisions of asset allocation stock pickers are not driven by their risk preferences.
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3.4 Market Clearing

The market clearing condition for the i-th stock is

Dynamic Investors
↓

Xit +

Stock Pickers
↓

QA
it +

Index Trackers
↓

QIDX
it = Si. (16)

Proposition 2. Equilibrium in the Cross Section of Stocks.

Pit = E∗
t

[ ∫ ∞

t

e−r(s−t)Dis ds

]
︸ ︷︷ ︸

Fundamentals

+

Asset Classification Effect︷ ︸︸ ︷
q̂itE∗

t

[
e−rdtθV A

t+dt

]
+ λiE∗

t

[
e−rdtθV IDX

t+dt

]
︸ ︷︷ ︸
Index Inclusion Effect

.

Proof. See Appendix B, which also reports the portfolio choice and consumption level

maximizing the Hamilton-Jacobi-Bellman equation of dynamic investors and the optimal

portfolio choice of stock pickers.

Proposition 2 outlines the second main result of the paper. It shows that each stock’s

price reflects its discounted future fundamentals, along with the price pressure from the

investors following a static asset allocation strategy, including both active stock pickers

and passive index trackers.

As the proposition illustrates, the “asset classification effect” offers a generalization of

the “index inclusion effect.” Both effects stem from investors’ portfolio constraints. The

index inclusion effect arises from the cross-sectional index tracking constraint, λi, which

prevents stock selection. The asset classification effect arises from the intertemporally

static asset allocation strategy, θ, which prevents market timing.

Proposition 2 shows that, just as stocks included in an index can become overpriced

relative to their fundamentals due to the price pressure from index trackers, securities

classified within an asset class can become overpriced due to the price pressure from static

asset allocation strategies.

In contrast to the index inclusion effect, which pertain to the relative pricing of stocks

included and not included into a benchmark index, the asset classification effect pertains

to the relative pricing of the risky asset class and the risk-free asset. This is because

the asset classification effect relates to the wealth that is allocated to the stock market

without consideration of intertemporal changes in its opportunity cost.
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Appendix B shows that the i-th stock price can be expressed in closed form as

Pit = PDVit(Dit) + θ
[
q̂itV

A
t + λiV

IDX
t

]
, (17)

where PDVit(Dit) = pγi + pDDit + pmmi is the present discounted value of dividends

distributed by stock i and incorporates the risk correction, pγi = − γ
r2

(
ωi +

∑
ωij

)
. The

index inclusion dummy variable λi equals 1/N if the stock is included in the index and 0

otherwise. The price of index stocks rises in the equity exposure of index trackers, θV IDX
t ,

capturing a time varying benchmarking intensity.

A key insight from the proposition is that even active investors, such as stock pickers,

exert price pressure on stocks as long as they adhere to static asset allocation strategies.

Stock pickers following a static asset allocation strategy maintain a fixed share of their

wealth, θV A
t , in the equity asset class. Their optimal investment choice, q̂it, places more

weight on the stocks with high expected return-to-risk ratio.

Importantly, q̂it does not respond to changes in the risk-free rate, as the risk-free asset

is not part of the stock picking problem given the fixed allocation of wealth to equity.

Thus, while stock pickers select the most efficient stocks, they exert price pressure on the

aggregate valuation of the risky asset class. This contrasts with dynamic investors, who

time their allocation to the risky and risk-free asset classes.

Appendix B presents closed form solutions for q̂it, alongside the stock price drifts,

volatilities, and pairwise correlations. Interestingly, the wealth of static investors influence

correlations in excess of the fundamentals between pairs of stocks included in the index, a

classical result, as well as between non-index stocks and both index and non-index stocks.

Overall, this section has demonstrated that the asset classification effect represents

a generalization of the index inclusion effect, of importance even for stocks not included

into any index. In the cross-section, the asset classification effect is more pronounced for

i) index stocks, which attract the investment of index trackers, and ii) stocks with high

and stable expected excess returns, which attract the investment of stock pickers.

4 Extensions

This section develops the baseline model of Section 2 in three key directions. Section 4.1

shows the robustness of the asset classification effect to the correlation between wealth

flows and earnings news. Section 4.2 examines the implications of this effect for asset price

dynamics. Section 4.3 discusses the asset classification effect in the Treasury market.
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4.1 Wealth Flows and Earnings News

Thus far, wealth flows F were assumed to be uncorrelated with earnings newsB. However,

wealth invested under static allocation strategies may partly reflect information, and can

be regarded as endogenous to the economy. To extend the model in this direction, let

dFt = ρdB +
√

1− ρ2dZt, (18)

where Z is a Brownian motion uncorrelated with earnings news. It appears reasonable

to consider 0 < ρ < 1, since some attentive fund shareholders may use the fund as a

substitute for stocks, whilst other fund shareholders are inattentive to news. Appendix

C.1 shows that the findings of the model are robust to this extension.10

4.2 Asset Price Dynamics

The dynamics of price of the risky asset class price obtain by Equation (8), as follows

dP = pDdD + θdV.

Asset price dynamics are driven by the evolution of fundamentals and the wealth of static

investors. Discount rates are instead fixed by the tractable CARA utility specification.

By replacing in the above expression dV from Equation (5),

dP = pDdD + θ
[
rV (1− θ)dt+Q(dP +Ddt) + πdF

]
. (19)

Equation (19) highlights that the equity holdings of static investors, Q, give rise to price

amplification effects.11

While price changes dP affect the wealth of both dynamic and static investors, their

response differs. Dynamic investors with CARA preferences only revise their portfolio

conditionally on the arrival of unpriced news. When faced with capital gains, dynamic

investors simply increase their consumption level, c. In contrast, static investors reinvest

into the risky asset class a proportion θ of their capital gains, exerting upward price pres-

sure. This result sharply contrasts with common wisdom, since static investors rebalance

their portfolio in the opposite direction of price changes. A numerical example helps to

clarify this mechanism.

10The relationship between wealth flows and past performance was also considered. Details are available upon request.
11This wealth amplification effect resembles Kyle and Xiong (2001) and Basak and Pavlova (2013), but it pertains to a
distinct group of investors following a static asset allocation strategy.
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Example 1. Suppose P = $100, X = Q = 0.5, and θ = 0.4. As firms announce good

earnings, the present value of the dividend stream increases by $20. Dynamic investors

demand more shares and the price rises to P + dP = $120. Dynamic investors realize

capital gains dW = XdP = $10 and increase their consumption level. Static investors

realize capital gains dV = QdP =$10, of which θdV = $4 are reinvested into the stock

market leading to a price of $124, which has a second-round effect on wealth, and so forth,

leading to an amplification of 1
1−θQ

= 1.25. In the new equilibrium, P = $125, X = 0.56,

and Q = 0.44. Following a revision of the fundamentals of $20, the price changes by $25.
Absent static investors, the price would have closed at $120.

Example 1 shows that as the price of the risky asset class increases, static investors

sell some of their shares, Qt, trading against the price change. However, the level of their

wealth investment, θVt, increases. Ultimately, it is the wealth invested that influences

security prices, rather than the number of shares traded. The example highlights the

importance of the counterfactual price that would prevail in the absence of static investors.

The intuition behind this amplification mechanism is that static investors, in contrast

to dynamic investors, have a predictable response to price changes, exerting procyclical

price pressure in response to market movements. Earlier papers largely focused on the

observation that demand unrelated to fundamentals slopes down in the price of stocks

(Shleifer, 1986; Wurgler and Zhuravskaya, 2002). Less attention has been devoted to

the feature that they also slope upwards in wealth. Appendix C.2 further develops the

analysis in this direction.

While this argument carries important implications for empirical research in the field,

it is crucial to note that, unlike the other findings in the paper, it depends on the prefer-

ences of dynamic investors being independent of their wealth. As is well known, dynamic

investors with CRRA utility would also generate wealth amplification effects. Thus, it is

reasonable to expect static investors to amplify price volatility when dynamic investors

are less wealthy, while potentially dampening price volatility when dynamic investors are

more wealthy.

4.3 Asset Classification Effects in the Treasury Market

The baseline model illustrates the “asset classification effect” in relation to the equity

market, but fixed asset allocations target several asset classes or subsets thereof. In

particular, the analysis can be extended to the bond market, which is itself subject to

price pressure (D’Amico and King, 2013; Vayanos and Vila, 2021).
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A simple way to extend the analysis to the Treasury market is to use a model with price

pressure on the Treasury market, regarding the demand of static investors for bonds as a

demand risk factor. Greenwood and Vayanos (2014) suggest that a shock to the demand

factor should move the yields of all bonds in the opposite direction as the shock and the

instantaneous expected returns of all bonds in the opposite direction as the shock. After

an exogenous increase to the wealth passively invested, one should thus observe lower

yields and bond expected returns. Appendix C.3 extends the model in this direction.

The wealth of static investors reflects the developments of the stock price, and thus

generates comovement between the two markets. Previous contributions in the literature

who focused on the excess comovement between stocks and bonds, such as Shiller and

Beltratti (1992), Connolly, Stivers, and Sun (2005), Baele, Bekaert, and Inghelbrecht

(2010), David and Veronesi (2013), and Duffee (2023), largely abstract from the price

pressure resulting from static asset allocation strategies.

Figure A.3 provides evidence suggestive of the spillover of wealth effects between the

U.S. equity and Treasury bond market using dividend pay dates as a clean instrument

for wealth shocks unrelated to information. Days with large dividend payment amounts

feature large returns on the stock market (Panel A), with low term premia (Panel B),

and low expected returns on 10-year Treasury bonds (Panel C).

5 Empirical Estimation

5.1 Testable Predictions

The model generates three main empirically testable hypotheses, reported below.

Hypothesis 1: Asset classification effect. The aggregate value of assets within an

asset class is at least as great as the wealth invested in that asset class to implement

static asset allocation strategies. Proposition 1 forms the basis for this hypothesis.

Hypothesis 2: Wealth amplification effect. Static asset allocation strategies generate

conditional price volatility in excess of the volatility of earnings, but still connected to it.

This hypothesis follows from Equation 19.

Hypothesis 3: Forecast accuracy and the risk/return trade-off. Static asset allocation

strategies reduce the forecast accuracy of stock prices for future earnings, particularly

when expected returns are low and volatile. This hypothesis stems from Corollary 1.

It is briefly explained here how the elements of the model and the ensuing analysis

help to set up to the empirical examination that follows thereafter. An increase in the
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wealth invested under static asset allocation strategies increases the demand for the risky

asset class in the present as well as the forecast of its realization in the future, generating

the asset classification effect outlined in Hypothesis 1. Stock price movements affect

the wealth of investors with allocation mandates, who reinvest their capital in static

proportions and amplify the price responses to news, leading to Hypothesis 2. The price

of a stock contains information on its expected earnings, as well as on its expected future

price. Hypothesis 3 follows from the fact that an increase in the wealth committed to

the risky asset puts upward pressure on its price and biases its signal for prospective

fundamentals, even more so when low and volatile expected returns induce dynamic

investors to invest less in the risky asset and more in the safe asset.

5.2 Measurement

To model the heterogeneous composition of investors in a parsimonious manner, it is

assumed that dynamic households trade on their own account to optimize their utility.

In contrast, other households are less attentive to the stock market and delegate their

investment decisions to professional portfolio managers, such as Mutual Funds (MFs) and

Exchange-Traded Funds (ETFs). In managing the wealth of these households, investment

professionals operate under asset allocation mandates, which may be driven by agency

considerations, as discussed by He and Xiong (2013).

Static allocation mandates present an intriguing aspect of capital markets, by con-

straining a large set of investors from exploiting intertemporal changes in the investment

opportunity set. This is evidenced in Figure A.1, which shows that MFs and ETFs

maintain a constant asset allocation in spite of changing investment opportunities.

The paper considers the presence of investors adopting static asset allocation strategies

as a given feature of the financial markets and examines the equilibrium investment policy

of intertemporally optimizing investors. For the purpose of model estimation, households

are treated as dynamic investors if they invest directly in stocks, while they are considered

static investors if they hold assets through MFs and ETFs subject to static asset allocation

mandates.

Figure A.2 plots the ownership structure of the U.S. equity market over time. The

importance of delegated portfolios is on the rise, particularly after the ’90s. By 2020,

households only directly held around 40% of U.S. equity markets. Meanwhile, MFs and

ETFs combined ownership shares approximately accounted for 35% of the total market

value, with the remaining proportion of the stock market mostly held by foreign investors.
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5.3 The Time Series

The theory discussed so far underscores that adequate modeling of asset price dynamics

should account for the ownership structure of the stock market. As a first descriptive

step of the analysis, consider a yearly data sample retrieved from Robert Shiller’s website

and the Fed Flow of Funds ranging from 1870 to 2021.12 To gain intuition of the data, it

is helpful to construct a static share variable, defined as the proportion of the U.S. stock

market held by MFs and ETFs.13 Figure 2 illustrates the positive time-series association

between the static share and the price/earnings ratio, with linear correlation of 0.61. A

first inspection of the data thus indicates that the static ownership share of the market

correlates positively with the equity valuation multiple. In the model, this occurs since

static investments affect prices, but not earnings. This simple correlation analysis goes

in the direction outlined in Hypothesis 1.
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Figure 2: Static Investors and Equity Valuations. The figure shows a time series scatter
plot of the price/earnings valuation multiple of the S&P500 and the equity ownership held by
domestic Mutual Funds and ETFs, using yearly data from the Fed Flow of Funds and Robert
Shiller’s website ranging from 1870 to 2020.

In terms of time series implications, a contribution of this paper is to suggest that the

12Flow of Fund equity data are obtained from Table L.224 at https://www.federalreserve.gov/releases/z1.
13The static share variable is set to zero before 1951, when holdings data are available from the Flow of Funds.
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same news may have different effects on returns depending on the ownership structure of

the stock market – see Hypothesis 2. For example, the model suggests that unexpected

good earnings should have a stronger impact when they lead to capital gains that are

automatically reinvested. Mutual funds and ETFs are professional asset managers who

invest a constant proportion of their wealth into equities. Figure 3 shows one measure

of their importance, their ownership share of the Standard & Poor’s 500, along with the

index real price and earnings recorded over 150 years. The figure shows that the volatility

of prices exceeds the volatility of fundamentals, but is still connected to it. Consistent

with the model, the stock market ownership share of MFs and ETFs is positively cor-

related with the responsiveness of prices to earnings in the data. The structural breaks

in the price/earnings multiple around 1954 and 1994 first documented by Lettau and

Van Nieuwerburgh (2008) are a clear reflection of this amplified dependence of price on

earnings, and coincide with persistent changes in the ownership structure.14

These consideration motivate a time series model of volatility with a structural in-

terpretation of equity ownership data. Consider the GARCH-MIDAS specification for

the volatility of stock returns proposed by Engle, Ghysels, and Sohn (2013), that blends

a slow-moving component recorded at low frequency and a high-frequency conditionally

autoregressive component.15 The model reported in Equation (20) relates the returns rd,q

realized on day d to a constant mean m, as well as to white noise innovations ed,q that enter

the specification through a component model for volatility. The long-run component lq

is a function of the contemporary and lagged proportion of the U.S. stock market held by

MFs and ETFs recorded on quarter q, where n is the intercept and fk is a beta function

weighting the K lags included. The short-run component is a GARCH(1,1) model with

daily lagged innovations and parameters a and b.

rd,q = m+
√
lqgd,qed,q,

lq = n+ c

K∑
k=1

fk(w1, w2)Static Shareq−k,

gd,q = (1− a− b) + a
(rd−1,q − m)2

lq
+ bgd−1,q. (20)

The model in Equation (20) enables the same news to have different effects depending

14Previous explanations have focused on improved capital markets participation (Vissing-Jørgensen, 2002) and the prospects
of higher productivity growth (Jermann and Quadrini, 2007). These earlier contributions are consistent with a Gordon
model where stock prices are equal to the present discounted value of dividends.

15This specification is traditionally employed to evaluate the effect of macroeconomic variables on market volatility.
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Figure 3: Market Ownership, Price, and Earnings. The figure shows the U.S. equity
ownership share of domestic Mutual Funds and ETFs (left y-axis), as well as the price of the
Standard and Poor’s 500 and the earnings accruing to the index (right y-axis), both expressed
in real terms. The data are obtained from the Fed Flow of Funds and Robert Shiller’s website.

on the ownership structure of the stock market, captured by the proportion of the U.S.

stock market held by MFs and ETFs in quarter q and denoted by Static Shareq – the

same variable used in the previous Figures 3 and 2. The model of Section 2 suggests that

the response of returns to news should be amplified when static investors hold a larger

proportion of the stock market. In the above specification, the wealth amplification effect

is directly tied to c, that is thus expected to be positive and statistically significant.

Holdings data are readily available at the quarterly frequency from the Federal Reserve

Flow of Funds statistics, and can be useful to complement workhorse time-series models

of the daily volatility of aggregate returns using mixed data sampling techniques. The

daily S&P 500 returns data are retrieved from Bloomberg. Table 1 presents the estimates.

Panel A pertains to the baseline estimation, and Panel B presents a robustness test where

the long-run component is estimated on a rolling basis. The coefficient estimate c has

the expected sign and is both statistically significant and economically meaningful. For
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the full sample, the parameter estimate is 0.024 with a t-statistics of 4.7, suggesting that

an increase in static ownership predicts greater volatility in the financial market for the

upcoming quarter. The estimates appear remarkably robust across specifications. For

example, in Panel B the estimate of c is again 0.024, with t-statistics of 4.6. Consistently

with the proposed theory, where the amplification effect is a concave function of static

ownership, the estimate of c is larger in the earlier 1953-1984 subsample characterized by

lower levels of static ownership. On the other hand, during the 1985-2010 period the static

ownership variable rises dramatically from 0.06 to 0.31, in correspondence to a long-run

component coefficient estimate of 0.014.16 The results of this analysis of volatility go in

the direction outlined in Hypothesis 2.

Aggregate patterns suggest that rising static ownership is associated with a higher

sensitivity of stock prices and returns to fundamentals, but should be interpreted cau-

tiously. Further econometric analyses can be carried out in the cross section of stocks,

which has the advantage of delivering a better identification.

5.4 The Cross Section

To further examine the link between stock price returns and ownership structure outlined

in Hypothesis 2, this paper relies on cross-sectional regressions of abnormal returns on

standardized earnings surprises around corporate announcements. Event studies around

earnings announcements are a widely used empirical strategy in financial economics.

These studies focus their attention on a narrow window around the event date. Take as

an example Hotchkiss and Strickland (2003), who document that the investor composition

matters for the response of stock prices to corporate earnings announcements. Consider

the following panel regression model:

Abnormal Returnit = b0 + Firm FE + Time FE + b1 × Earnings Surpriseit

+ b2 × Earnings Surpriseit ×Wealth Benchmarkedit + εit. (21)

A unit of observation is an announcement earnings of firm i at time t. For each stock,

the abnormal return is estimated with respect to the constant mean model, the market

model (CAPM), and the Fama and French (1992) model (FF3). Earnings surprises are

calculated by taking the increase in earnings per share over four quarters and dividing it

16Future research could assess the forecasting performance of ownership data for volatility, using the data sampling methods
discussed in Ghysels, Plazzi, Valkanov, Rubia, and Dossani (2019).
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by its eight-quarters rolling standard deviation, and wealth benchmarked to each stock is

the measure of Pavlova and Sikorskaya (2023). The sample construction follows standard

conventions, and is described in detail in Appendix D. The working sample is a compre-

hensive cross section of more than 5 thousand U.S. firms observed from 1998 to 2018.

Table 2 reports summary statistics of firm-level variables. In the data, earnings sur-

prises and benchmarked wealth have average values equal to 0.29 and 0.18, respectively.

However, earnings surprises have a volatility of 0.25, much higher than the volatility of

benchmarked wealth, equal to 0.08. The regression model includes firm FEs to control

for any time-invariant firm-specific factors such as a firm’s industry. Also, time FEs are

included to take care of market-wide factors like the macroeconomic environment.

The event study setup helps to pin down whether the amplification mechanism results

from static wealth. Table 3 presents the results of the estimation. The effects of earnings

announcements are amplified by the wealth benchmarked to the stock. The documented

effect is economically large and statistically significant, as the baseline earnings response

coefficient of 0.276 increases to 0.380 at the median of the distribution of benchmarked

wealth, equal to 0.181. The result is robust to alternative statistical models for normal

returns. This economically sizeable effect is not easy to explain using standard theories.

For example, most theories of overreaction to news about fundamentals are based on the

dynamic portfolio choices of extrapolating investors, and remain silent as to why passive

investors would amplify prices response to news. In the model, this excess sensitivity of

prices to earnings news is associated with a wealth amplification effect that originates from

the procyclical price pressure exerted by static investors. This finding is corroborated

by Sammon (2024), who uses a different sample and measure of static ownership and

documents that a stock in the 90th percentile of static ownership responds nearly 3 times

as much to earnings news as a stock in the 10th percentile of static ownership. To assess

if the effect is persistent, Panels B and C of Table 3 assess the cumulative abnormal

reaction of stock prices over progressively the longer time horizons of 3 and 7 trading

days around the corporate earnings announcements. The magnitude of the coefficients is

remarkably stable, and while standard errors progressively widen with the event window,

the estimates remain statistically and economically significant in all specifications.

The amplification of stock price responsiveness to news and the reduction in forecast

price accuracy are two sides of the same coin. By its nature, the accounting system

recognizes information with a lag with respect to the stock market. Hence, when the stock

price is less informative about future earnings, its responsiveness to corporate earnings

reports is higher. Overall, the data are consistent with the predictions of the model.
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6 Conclusion

The paper introduces a model that highlights the importance of heterogeneous asset

allocation strategies for the price of financial securities. The key insight of the paper is

that static asset allocation strategies drive security prices above their fundamentals. As

the model shows, strategies that invest in static proportions across asset classes—despite

fluctuations in their risk and returns—exert a price pressure on the securities within

these asset classes. Given the persistence of this pressure, attempting to reverse its price

effects is irrational. Even strategies that dynamically adjust asset allocations in response

to information would find it profitable to hold assets priced above their fundamentals

in the expectation to sell them at a good price. This mechanism leads to a divergence

between asset prices and their discounted cash flows, which becomes more pronounced

when expected returns are low and volatile. Formally, static asset allocation strategies

contribute to the formation of rational price bubbles.

The paper defines the “asset classification effect,” whereby a security’s classification

within an asset class attracting capital unresponsive to changes in investment opportuni-

ties has a persistent effect on the security’s price. This finding constitutes a generalization

of the index inclusion effect. Recent literature on the index inclusion effect has focused

on the strength of the effect over time (Greenwood and Sammon, 2025) and across stocks

(Pavlova and Sikorskaya, 2023). Future research could investigate the asset classification

effect and its variation across different asset classes and time periods.
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Appendix

A Proof of Proposition 2

As is standard in the literature, the proof proceeds by postulating that the price function

is as guessed and verifies that the Hamilton-Jacobi-Bellman (HJB) equation, the market

clearing condition, and the transversality conditions are satisfied in equilibrium.

Pt = pγ + pDDt + pmm+ θVt,

where pγ = − γ
r2

(
ω
r
+ θπ

)2
, pD = 1

r
, and pm = 1

r2
.

Price dynamics follow the Itô process

dPt = pDdDt + θ
[
rVt(1− θ)dt+Qt(dPt +Dtdt) + πdFt

]
.

The state variables follow dynamics

dDt = mdt+ ωdBt,

dVt = rVt(1− θ)dt+Qt(dPt +Dtdt) + πdFt,

Price drift and diffusion are, respectively,

µt =
m
r
+ θ[rVt(1− θ) +QtDt]

1− θQt

, σt =
ω
r
+ θπ

1− θQt

. (22)

The Hamilton-Jacobi-Bellman (HJB) equation is

0 = max
{c,X}

U(c) +
Et[dJ ]

dt

= max
{c,X}

U(c) + Jt + JWEt[dW ] + JVEt[dV ] +
1

2
JWWEt[dW

2] +
1

2
Et[dV

2] + JWVEt[dWdV ].
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Moreover,

Et[dW ] = [rW − c+X
(
µ− rP +D

)
]dt,

Et[dW
2] = Et[(XdP )2] = (Xσ)2dt,

Et[dV ] = [rV (1− θ) +Q(µ+D)]dt,

Et[dV
2] = (Q2σ2 + π2)dt,

Et[dV dW ] = XQσ2dt.

By substituting the above expressions in the HJB equation,

0 = max
{c,X}

U(c) + Jt + JWEt[dW ] + JVEt[dV ] +
1

2
JWWEt[dW

2] +
1

2
Et[dV

2] + JVWEt[dWdV ]

= max
{c,X}

U(c) + Jt + JW
[
rW − c+X(µ− rP +D)

]
+ JV

[
rV (1− θ) +Q(µ+D)

]
+

1

2
JWWX2σ2 +

1

2
JV V (Q

2σ2 + π2) + JWVXQσ2.

The first order conditions (FOCs) are

U ′(c) = JW ,

X = − JW
JWWσ2

(µ− rP +D
)
− JWV

JWWσ2
Qσ2.

Dynamic investors have CARA utility, suggesting an educated guess for the value function

J(W,V, t) = −e−δt−rγW−g(V )−β, (23)

thus Jt = −δJ , JW = −rγJ , JWW = (rγ)2J , JV = −g′(V )J , JV V =
(
g′(V )2 − g′′(V )

)
J ,

and JWV = rγg′(V )J . Therefore, the FOCs become

c(W,V ) = rW +
1

γ

(
g(V ) + β − log r

)
,

X(P,D, V ) =
µ− rP +D

rγσ2
− g′(V )

rγ
Q.

At this stage, it is standard to replace in the HJB the FOCs paired with the usual market

clearing condition X = 1. However, the market clearing conditions requires X +Q = 1.
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By replacing the expression for Q,

X(P,D, V ) =
P − θV

P
, Q(P, V ) =

θV

P
,

or, replacing the expression of the candidate price,

X(P,D, V ) =
pγ + pDD + pmm

pγ + pDD + pmm+ θV
, Q(P, V ) =

θV

pγ + pDD + pmm+ θV
.

The equilibrium price must ensure consistency between the market clearing condition and

the FOCs of the optimization program of the dynamic investors, requiring

µ− rP +D

rγσ2
− g′(V )

rγ

θV

P
=

P − θV

P
,

µ− rP +D =
P − θV

(
1− g′(V )

rγ

)
P

rγσ2. (24)

In the constrained equilibrium, θ = 0, and the Sharpe ratio equals to the supply of

bonds normalized to 1 (see Veronesi, 1999). In general, however, a portion of investors

may exert price pressure unrelated to fundamentals. In order for dynamic investors to

be comfortable with the equilibrium, the Sharpe ratio must decrease as price pressure

increases. Let us workout the left-hand-side of Equation (24).

µ− rP +D = − P

P − θ2V
rpγ, (25)

which uses the relation 1
1−θQ

= P
P−θ2V

. Turning to the right-hand-side of Equation (24),17

P − θV
(
1− g′(V )

rγ

)
P

rγσ2 =
P

P − θ2V
rγ

(
ω

r
+ θπ

)2

.

Therefore, the requisite that the FOC and the market clearing condition simultaneously

hold necessitates 1 − g′(V )
rγ

= θ, satisfied when g′(V ) = (1 − θ)rγ. As a result, Equation

17The two chains of equality are µ − rP + D =
m
r

+θ[rV (1−θ)+QD]

1−θQ
− rP + D = 1

1−θQ

(
m
r

+ θ[rV (1 − θ) + QD]
)
−

rP + D = 1
1−θQ

(
m
r

+ θ[rV (1 − θ) + QD] − r(P − θ2V )
)
+ D = 1

1−θQ

(
D(θQ − 1) − rpγ

)
+ D = 1

1−θQ

(
D θ2V −P

P
−

rpγ
)
+D = − P

P−θ2V
rpγ ; and

P−θV
(
1− g′(V )

rγ

)
P

rγσ2 =
P−θV

(
1− g′(V )

rγ

)
P

rγ

(
ω
r
+θπ

1−θQ

)2

=
P−θV

(
1− g′(V )

rγ

)
P

rγ

(
ω
r
+θπ

1−θQ

)2

=

P−θV
(
1− g′(V )

rγ

)
P

rγ

(
ω
r
+ θπ

)2(
P

P−θ2V

)2

= P−θ2V
P

(
ω
r
+ θπ

)2

rγ

(
P

P−θ2V

)2

=

(
P

P−θ2V

)
rγ

(
ω
r
+ θπ

)2

.
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(24) simplifies to

pγ = − γ

r2

(
ω

r
+ θπ

)2

,

consistently with the definition of pγ. In the constrained equilibrium, θ = 0, and the

required compensation for risk accounts for uncertainty over earnings. In the more com-

prehensive equilibrium with both dynamic and static investors, the required compensation

for risk incorporates flow risk. Let us replace the FOCs into the HJB.

0 =
1

J
U(c∗) +

1

J

Et[dJ ]

dt
= r +

1

J

Et[dJ ]

dt

= r − δ − rγ

[
1

γ
(log r − g(V )− β) +X∗(µ− rP +D)

]
− g′(V )

[
rV (1− θ) +Q(µ+D)

]
+

1

2
(rγσX∗)2 +

1

2

(
g′(V )2 − g′′(V )

)
(Q2σ2 + π2) + rγσ2g′(V )X∗Q.

Substituting X∗,

0 = r − δ − rγ

[
1

γ
(log r − g(V )− β) +

(
µ− rP +D

rγσ2
− g′(V )

rγ
Q

)(
µ− rP +D

)]
− g′(V )

[
rV (1− θ) +Q(µ+D)

]
+

1

2

[
rγσ

(
µ− rP +D

rγσ2
− g′(V )

rγ
Q

)]2
+

1

2

(
g′(V )2 − g′′(V )

)
(Q2σ2 + π2) + rγσ2g′(V )

(
µ− rP +D

rγσ2
− g′(V )

rγ
Q

)
Q.

Simplifying the expression yields

0 = r − δ − r(log r − g(V )− β)− (µ− rP +D)2

2σ2

− g′(V )[rV (1− θ) +Q(µ+D)−Q(µ− rP +D) +
π2

2
]

= r − δ − r(log r − g(V )− β)− (µ− rP +D)2

2σ2
− g′(V )[rV (1− θ) + rQP +

π2

2
].

Equivalently,

0 = r − δ − r(log r − g(V )− β)− (µ− rP +D)2

2σ2
− g′(V )[rV +

π2

2
]

= r − δ − r(log r − g(V )− β)− (rγ)2

2

(
ω

r
+ θπ

)2

− g′(V )[rV +
π2

2
].
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We have used the equivalence (µ − rP + D)2/σ2 = (rγ)2
(
ω
r
+ θπ

)2
from the Equations

(22) and (25). We further know g(V ) = (1 − θ)rγV + K, thus g′(V ) = (1 − θ)rγ, and

g′′(V ) = 0. After replacing β = (γω)2

2r
+ δ

r
+ log(r)− 1,

0 = r − δ − r(log r − g(V )− β)− (rγ)2

2

(
ω

r
+ θπ

)2

− g′(V )[rV +
π2

2
]

=
(γω)2

2
− rK − (rγ)2

2

(
ω

r
+ θπ

)2

− (1− θ)rγ
π2

2
.

It is immediate to see that the guess satisfies the requisite optimality and market clearing

conditions for suitable constant K. The transversality condition is respected. From

Equation (23) and the investors’ wealth dynamics,

lim
h→∞

E
[
Jt+h

]
= lim

h→∞
E
[
− e−δ(t+h)−rγWt+h−rγ(1−θ)Vt+h−β

]
= 0.

The equilibrium of Lemma 1 achieves as a special case when θ = 0, restraining static

investors from allocating their wealth into equity markets.

Q.E.D.

B Proof of Proposition 3

Before proceeding with the formal proof, consider the following equilibria as a benchmark.

First, consider the equilibrium with only dynamic investors, by setting θ = 0. By the

optimality of dynamic investors, the price of the i-th stock takes the standard form

Pit = E∗
t

[ ∫ ∞

t

e−r(s−t)Dis ds

]
= pγi + pDDit + pmmi,

where that pγi = − γ
r2

(
ωi +

∑
ωij

)
.

Second, consider the equilibrium with only static stock pickers, that achieves with

r → ∞, luring dynamic investors to the riskless asset, and λi = 0, excluding the stock

from the index. By market clearing, the price of the i-th stock is

Pit = q̂itθV
A
t .
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In this case, the solution of the problem of the stock picker simplifies to

q̂it =

[
mi +Dit

γω2
i

Pit

θV A
t

−
∑
j ̸=i

qjtωij

ω2
i PitPjt

]/∑
j ̸=i

[
mi +Dit

γω2
i

Pit

θV A
t

−
∑
j ̸=i

qjtωij

ω2
i PitPjt

]
.

We have cash-in-the market pricing, since
∑

Pit = θV A
t .

Third, consider the equilibrium with static stock pickers and index trackers, that

achieves with r → ∞, luring dynamic investors to the riskless asset, and λi = 1, relevant

for stocks included in the index. By market clearing, the price of the i-th stock is

Pit = q̂itθV
A
t + λiθV

IDX
t .

There total market value of the risky asset class is
∑

Pit = θVt.

In the general equilibrium with dynamic investors, static stock pickers, and index

trackers, guess that the price of the i-th stock takes the following form.

Pit = pγ + pDDit + pmmit + θ
[
q̂itV

A
t + λiV

IDX
t

]
.

Static stock pickers solve their mean-variance portfolio selection problem by setting

q̂it =

[
µit +Dit

γσ2
it

Pit

θV A
t

−
∑
j ̸=i

qjtσijt

σ2
itPitPjt

]/∑
i∈I

[
µit +Dit

γσ2
it

Pit

θV A
t

−
∑
j ̸=i

qjtσijt

σ2
itPitPjt

]
.

The portfolio weights of index trackers are λi = 1/N . Static stock pickers ensure that

index stocks and non-index stocks are priced consistently in the cross section. This greatly

simplifies the problem of dynamic the dynamic investors, who can simply keep track

of aggregate static wealth V , the state variable determining changes in the investment

opportunity set over time. The sum of the wealth of static stock pickers and index trackers

delivers the wealth of static investors V = V A + V IDX , which follows Equation (5)

dV = rV (1− θ)dt+Q(dP +Ddt) + πdF

= rV (1− θ)dt+
∑
i

Qi(dPi +Didt) + πdF.

This formulation implies QP =
∑

QiPi and QD =
∑

QiDi. Similarly, Equation (12) im-

plies XP =
∑

XiPi and XD =
∑

XiDi. Intuitively, the aggregate exposure of investors

to the equity asset class is the sum of their exposures to individual stocks. Finally, by

definition of P =
∑

Pi, we have µ =
∑

µi and σ2 = E
[(∑

dPi

)2]
.
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The HJB equation of the dynamic investors is

0 = max
{c,X}

U(c) + Jt + JWEt[dW ] + JVEt[dV ] +
1

2
JWWEt[dW

2] +
1

2
Et[dV

2] + JWVEt[dWdV ],

where

dW = (rW − c)dt+
∑
i

Xi[(Di − rPi)dt+ dPi].

Define the vectors X = [Xi] and Q = [Qi] and the matrix Σ = [σij]. We have

Et[dW ]/dt =
[
rW − c+

∑
i

Xi

(
µi − rPi +Di

)]
,

Et[dV ]/dt = [rV (1− θ) +Q(µ+D)],

Et[dW
2]/dt = XΣXT = Et

[( I∑
i=1

XidPi

)2]
= Et[(XdP )2] = X2σ2,

Et[dV
2]/dt = QΣQT + π2 = Et

[( I∑
i=1

QidPi

)2]
+ π2 = Et[(QdP )2] + π2 = Q2σ2 + π2,

Et[dWdV ]/dt = XΣQT = Et

[( I∑
i=1

XidPi

)( I∑
i=1

QidPi

)]
= XQEt[dP

2] = XQσ2.

The value function is again J(W,V, t) = −e−δt−rγW−g(V )−β, and the FOCs of the HJB are

Xit(Pi, Di, V ) = − JW
JWW

(
µit − rPit +Dit

)
−

∑
j Xjtσijt

σ2
it

− JWV

JWW

PitQσ2

σ2
i

=
µit − rPit +Dit

rγσ2
it

−
∑

j Xjtσijt

σ2
it

− (1− θ)PitQσ2

σ2
it

,

ct(W,V ) = rWt +
1

γ

(
g(V ) + β − log r

)
.

Let us replace the FOCs into the HJB.

0 =
1

J
U(c∗) +

1

J

Et[dJ ]

dt
= r +

1

J

Et[dJ ]

dt

= r − δ − rγ

[
1

γ
(log r − g(V )− β) +

∑
i

X∗
i

(
µi − rPi +Di

)]
+

1

2
(rγσX∗)2

− (1− θ)rγ
[
rV (1− θ) +Q(µ+D)

]
+

1

2
(1− θ)rγ(Q2σ2 + π2) + (rγσ)2(1− θ)X∗Q.
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The above expression coincides with the HJB derived in Appendix A if and only if∑
i

X∗
i

(
µi − rPi +Di

)
= X∗(µ− rP +D).

The relationship
∑

XiPi = XP directly implies r
∑

iX
∗
i Pi = rX∗P . Moreover, since

X∗
i E[dPi] = X∗E[dP ], we have

∑
i X

∗
i µi = X∗µ. Finally,

∑
XiDi = XD implies that the

above condition holds. Therefore, the argument used in the proof of Proposition 1 applies,

the HJB is solved by the optimal choice of dynamic investors, the transversality condition

is respected, and the guess for the price is verified, completing the proof. Q.E.D.

C Extensions and Generalizations

C.1 Wealth Flows and Earnings News

Guess the price is again given by

Pt = pγ + pDDt + pmm+ θVt.

Consider the price dynamics and replace Equation (18) into Equation (5) to obtain

dPt = pDdDt + θ
[
rVt(1− θ)dt+Qt(dPt +Dtdt) + π

dFt︷ ︸︸ ︷
(ρdD +

√
1− ρ2dZt)

]
= (pD + pR)dDt + θ

[
rVt(1− θ)dt+Qt(dPt +Dtdt) + πRdZt

]
,

where pR = θπρ and πR = π
√

1− ρ2. These dynamics generalize the baseline model,

since dF is correlated with dB, but follow similar structure. In light of the above, the

guess can be equivalently parameterized by

Pt = pγ + (pD + pR)Dt + pmm+ θṼt,

with the convenient redefinition of state variable dynamics, Ṽ , so that

dṼ = θ
[
rṼt(1− θ)dt+Qt(dPt +Dtdt) + πRdZt

]
,
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Price drift and diffusion are, respectively,

µt =
m(pD + pR) + θ[rṼt(1− θ) +QtDt]

1− θQt

, σt =
ω(pD + pR) + θπR

1− θQt

.

The HJB equation is

0 = max
{c,X}

U(c) + Jt + JWEt[dW ] + JṼEt[dṼ ] +
1

2
JWWEt[dW

2] +
1

2
Et[dṼ

2] + JWVEt[dWdṼ ].

The problem is traced back to the baseline model and the guess is verified by the steps

outlined in Appendix A.

Q.E.D.

C.2 Asset Price Dynamics

Asset price dynamics obtain by replacing the dynamics of dividends, dDt, and those of

the wealth dynamics of static investors, dV , into Equation (19),

dPt = At

(
m

r
+ θ

[
rVt(1− θ) +QtDt

])
dt+ At

(
ω

r
dBt + θπdFt

)
, (26)

where At = 1/(1 − θQt) denotes the wealth amplification effect associated with static

asset allocation strategies. In equilibrium, stock price dynamics result from two distinct

processes, representing economic fundamentals and static demand for stocks. Accord-

ingly, the risky asset’s price drift is composed of the discounted earnings drift m
r

and

the predictable evolution of price pressure, which results from the proceeds of the wealth

invested in the bond market rVt(1− θ) as well as from the dividends distributed to static

investors QtDt. Simply put, strong earnings deliver handsome dividends, a share of which

is mechanically reinvested and contributes to generate upward price pressure.

Interestingly, even when predictable dividends are distributed, their reinvestment by

static investors generates price pressure. The logic is simply that the foreseeable effects of

future dividend distributions and associated investments are already priced – the problem

of dynamic investors and the resulting equilibrium price explicitly account for these price

dynamics. Thus, the occurrence of trades might still significantly move prices, even if

known in advance.18

18This mechanism speaks to the findings of Hartzmark and Solomon (2022), who document that days in the top quintile of
dividend payments are associated with higher market returns. The dividend amount is determined ahead of the payout
date, and hence the effect cannot be ascribed to information. Relatedly, Berkman and Koch (2017) document abnormal
returns and trading volume around the dividend payout dates of stocks of firms with dividend reinvestment plans.
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The volatility of price changes responds both to the uncertainty over the evolution of

economic fundamentals ω
r
, as well as to the risk of wealth flows, a proportion θπ of which

may affect asset prices introducing non-fundamental volatility, in line with the empirical

findings of Ben-David, Franzoni, and Moussawi (2018), who show that ETF ownership

increases volatility and introduces undiversifiable risk. The importance of either of the

two forces interacts with the composition of demand, as illustrated by the amplification of

both the drift and diffusion by the factor At, which quantifies the “feedback loop” between

the asset price movements and the investment decisions of the static investors. When

the market is mostly held by static investors, price movements and volatility thereof are

amplified by procyclical price pressure. As the proportion of the risky asset held by static

investors becomes small, instead, the solution approaches the equilibrium in Lemma 1,

from which might in general differ as flow risk commands a compensation even in the

absence of immanent price pressure.

The amplification effect At of the static asset allocation strategy on the dynamics of

the risky asset dPt varies in the time series. Specifically, these effects are stronger when

static investors own a larger proportion of the stock market Qt.

This property highlights that the magnitude of the reaction of the stock price to inno-

vations, whether regarding news about economic fundamentals or wealth flows to static

investors, depends on the ownership structure of the market. When static investors hold

large shares of the market, the proceeds of upward price revisions are reinvested, result-

ing in mounting demand pressure that amplifies the price increase. The effect is entirely

symmetric. Moreover, when prices deviate from fundamentals the equity valuation ratio
P
E
rises in the price pressure exerted by static investors and features meaningful variation

in the time series.

Moreover, static asset allocation strategies intensify the price volatility of risky assets,

σt. A higher ownership share static investors, Qt, strengthens the amplification dynamics

At and thus induces higher price volatility. Volatility reflects two sources of risk, dB

for earnings and dF for capital flows, and is both stochastic and predictable, since the

ownership structure of the market belongs to the information set of market participants,

Qt ∈ Ft. After dynamic investors observe a large drop in the stock price, a publicly

available signal, their optimal forecast of the distribution of price changes features higher

volatility and fatter tails, inducing more conservative portfolio choices. As a result, the

model generates volatility clusters. The price dynamics are best considered in combina-

tion with the portfolio holdings in Equation (10), according to which the proportion of

the market held by dynamic investors is higher when fundamentals are strong, in which
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case the conditional price volatility becomes lower going forward.

Following standard conventions, µt denotes the drift of stock price changes and σt

denotes their volatility. The drift and volatility of returns are obtained by dividing these

quantities by the price level, Pt. Thus, in line with previous literature, when the market

price is high, both the expected returns and the volatility are low, consistently with the

well-documented tendency of stocks with high valuations to have low expected returns.19

Moreover, demand pressure generates asymmetric features in the behavior of volatility,

which spikes when the market tanks.20 Static allocation rules may thus help to explain

the asymmetric behavior of volatility. While high market prices have a calming effect on

the volatility of returns, this effect is stronger when prices are upheld by fundamentals

as opposed to high prices sustained by demand forces.

In the presence of static investors, stock prices are more sensitive to news when the

Sharpe ratio of the equity asset class is lower. This occurs because as dynamic investors

fly to the safety offered by the risk-free asset, static investors own a comparatively larger

proportion of the market, and thus the procyclical price pressure exerted by the automatic

reinvestment of their capital gains and losses becomes more important for asset prices.

As a result, the amplification of news resulting from static investors is stronger during

downturns.

The importance of dynamic investors in the transmission of financial crises through

risk premia effects, is extensively studied in the literature. However, this paper is the first

to point out that the stronger amplification of financial fluctuations during downturns

also originate from static investors. Intuitively, static investors remain exposed to the

equity asset class even during crises, when their procyclical price pressure becomes more

important for the valuation of securities. This result requires a model where the static

investments are priced in the stock market, and the dynamics of the wealth of static

investors is endogenous to asset prices.

C.3 The Treasury Market

In the context of the model derived in this paper, asset allocation strategies require

static investors to invest a fixed proportion of their wealth (1− θ)Vt in the bond market,

which thus exerts price pressure on the Treasury price. The main difference relative to

19The exposure of stocks to demand pressure is associated with lower expected returns in related contributions, such as
Koijen and Yogo (2019) and Pavlova and Sikorskaya (2023).

20This property is sometimes referred to as the leverage effect, because when prices are low firm leverage increases along
with uncertainty (Black, 1976). More recently, Hasanhodzic and Lo (2019) have documented that the inverse relation
between stock price and return volatility is not specific to firms with leverage.
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Greenwood and Vayanos (2014) is that the price pressure Vt represents here a demand

factor rather than a supply factor. The maintained assumption on the bond market is that

dynamic investors have agile demand which does not separate prices from fundamentals,

while static investors do not attempt to time the bond market. The contribution is to

model the demand for bonds resulting from wealth effects on the stock market.

Greenwood and Vayanos (2014) suggest that a shock to the demand factor should

move the yields of all bonds in the opposite direction as the shock. Moreover, a shock to

the demand factor should the instantaneous expected returns of all bonds in the opposite

direction as the shock. After an exogenous increase to the wealth passively invested, one

should thus observe lower yields and bond expected returns. Hartzmark and Solomon

(2022) document that days in the top quintile of dividend payments are associated with

higher market returns. The amount of dividends is determined ahead of the dividend pay

date, and hence the effect documented cannot be ascribed to information. The impact

of dividend price pressure has increased since 1990, as static mutual funds and ETFs

have become a larger component of equity holdings. Dividend payout days are thus of

interest for the assessment of wealth effects. Figure A.3 provides evidence suggestive of

the spillover of wealth effects between the U.S. equity and Treasury bond market using

dividend pay dates as a clean instrument for wealth shocks unrelated to information. The

pattern revealed by the data is clear and sizeable. Days with large dividend payment

amounts feature large returns on the stock market (Panel A), with low term premia

(Panel B), and low expected returns on 10-year Treasury bonds (Panel C).

D Data Description

The event study around earnings announcements is conducted using daily stock infor-

mation from CRSP, quarterly “street” earning reports from the actuals I/B/E/S files,

balance sheet variables from COMPUSTAT quarterly, and benchmarking intensity data

from Pavlova and Sikorskaya (2023).

Filters are standard, requiring CRSP ordinary stocks (share code 10 and 11) from the

daily security file to trade on NYSE, AMEX, or Nasdaq (exchange codes 1, 2, and 3).

The three models for normal returns are the benchmark stock-level constant mean, the

CAPM, and the Fama-French 3 factor model. The advantage of the former is to minimize

estimation noise. The latter two specifications are estimated on a rolling window of 1

year and lagged by 1 quarter from the event date. The residuals of these models are

the abnormal returns. The quarterly earnings per share (EPS) from I/B/E/S is used to
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construct standardized unexpected earnings (SUE), measured as the increment in EPS

over four quarters divided by their rolling standard deviation estimated over 8 quarters.

Earnings reported on weekends or on weekdays after 16:00 Eastern Time are imputed to

the first date on which is possible to trade on the information. Benchmarking intensity

is recorded at the yearly frequency and at the stock level every June from 1998 to 2018.

The variable is defined as the cumulative weight of a stock across benchmarks scaled by

the amount of assets following each benchmark and divided by the market capitalization

of the stock, and thus directly maps to Q = θV/P .

To reduce the influence of outliers, each quarter the SUE observations above and

below three standard deviations from the mean are dropped. To alleviate the effects of

microcaps and estimation noise, every year the observations below the 5th percentile of

market value are dropped, as in Jegadeesh and Titman (2001), and abnormal returns are

winsorized at the 1st and 99th percentiles. The final sample is composed of 5,568 firms

for the constant mean model, which does not require rolling estimates, and 5,516 firms

for the CAPM and FF3 models, the estimates of which require 250 valid trading days

per company. The sample offers thus a good representation of the universe of U.S. stocks

during the past two decades.
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Table 1: Parameter Estimates of GARCH-MIDAS with Static Holdings. The Table
presents parameter estimates of the component model relating volatility realized on day d to
its lags and a long-run component of the proportion of the U.S. stock market held by MFs and
ETFs in quarter q. The data are from Bloomberg and the Flow of Funds, both variables are
expressed in percentage terms, and numbers in parentheses are robust t-statistics.

Panel A: Fixed Long-Run Component

Sample m a b c w1 w2 n LLF/BIC

1951-2019 0.06494 0.08811 0.90279 0.02398 47.224 2.111 0.77061 -19247.1
(11.472) (42.374) (341.23) (4.709) (0.0020) (0.0009) (9.0894) 38562.5

1953-1984 0.06036 0.08365 0.90796 0.10584 1.0014 49.84 0.33247 -7446.29
(7.9467) (18.027) (178.36) (1.6083) (0.0179) (0.0019) (1.5682) 14955.5

1953-2010 0.06407 0.08052 0.91165 0.05200 48.918 49.51 0.60517 -16429.4
(10.485) (41.639) (358.17) (4.8109) (0.0875) (0.0862) (7.345) 32925.9

1985-2010 0.06273 0.06210 0.92964 0.01406 37.334 49.773 0.91895 -7506.17
(5.4763) (15.001) (197.23) (1.961) (0.0224) (0.0227) (5.8952) 15073.9

Panel B: Rolling Long-Run Component

Sample m a b c w1 w2 n LLF/BIC

1951-2019 0.06495 0.08819 0.90267 0.02437 44.66 17.662 0.77657 -19247.3
(11.498) (42.348) (340.77) (4.5952) (0.0326) (0.0330) (9.4833) 38562.8

1953-1984 0.06034 0.08370 0.90791 0.10727 1.7811 49.884 0.3278 -7446.23
(7.9491) (17.882) (176.58) (1.6381) (0.0384) (0.0352) (1.5766) 14955.4

1953-2010 0.06404 0.08046 0.91171 0.05280 40.498 49.881 0.60621 -16429.4
(10.486) (41.221) (358.3) (4.5349) (0.0757) (0.0777) (7.2433) 32925.9

1985-2010 0.06273 0.06209 0.92964 0.01487 37.947 49.754 0.9076 -7506.1
(5.4728) (15.025) (198) (1.9869) (0.0214) (0.0217) (5.5916) 15073.7

The specification is:

rd,q = m+
√
lqgd,qed,q,

lq = n+ c

K∑
k=1

fk(w1, w2)Static Shareq−k,

gd,q = (1− a− b) + a
(rd−1,q − m)2

lq
+ bgd−1,q.

The beta weighting function fk has K = 16 lags, rd,q is the S&P 500 return. The innovation ed,q
is white noise, Static Shareq is the proportion of the stock market held by mutual funds and
exchange-traded funds, and the remaining terms are parameters.
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Table 2: Descriptive Statistics. The Table presents summary statistics of the sample of
corporations used in the event study. Balance sheet variables are from Compustat. Earnings
per Share is from I/B/E/S, and Standardized Unexpected Earnings are computed as the yearly
difference in Earnings per Share divided by their eight-quarters trailing volatility. Benchmarking
Intensity is the measure of wealth tracking each stock proposed by Pavlova and Sikorskaya
(2023). The sample runs from 1998 to 2018.

Variable Observations Mean Median Std. Dev. Skewness

Total Assets 126,803 12710.37 1583.92 83497.32 19.39
Total Liabilities 126,768 9998.765 890.85 74809.12 19.79
Earnings per Share 125,124 1.498261 1.2490 3.826793 14.88
Benchmarking Intensity 135,582 0.179089 0.1894 0.079325 -0.55
Standardized Unexpected Earnings 135,582 0.289230 0.2515 1.686929 -0.23
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Table 3: Event Study around Earnings Announcements. The Table presents the result
of a regression of daily abnormal returns and cumulative abnormal returns on standardized
earnings surprises and its interaction with the wealth passively tracking the stock. A unit of
observation is an announcement of earnings of a U.S. company reported between 1998 and 2018.
The numbers in parentheses are robust standard errors.

Panel A: Abnormal Returns

Constant Mean CAPM FF3

(1) (2) (3) (4) (5) (6)

Earnings Surpriseit 0.276*** 0.280*** 0.280*** 0.285*** 0.281*** 0.287***
(0.034) (0.034) (0.035) (0.036) (0.036) (0.036)

Earnings Surpriseit ×Wealth Benchmarkedit 0.577*** 0.575*** 0.514*** 0.513*** 0.510*** 0.507***
(0.174) (0.175) (0.182) (0.182) (0.183) (0.183)

Firm FE Yes Yes Yes Yes Yes Yes
Time FE Year Quarter Year Quarter Year Quarter
No. Obs. 135,577 135,577 124,468 124,468 124,468 124,468

R
2

0.010 0.013 0.012 0.014 0.012 0.014
Firms 5,568 5,568 5,516 5,516 5,516 5,516

Panel B: CAR(-1, 1)

Constant Mean CAPM FF3

(1) (2) (3) (4) (5) (6)

Earnings Surpriseit 0.334*** 0.335*** 0.336*** 0.338*** 0.335*** 0.339***
(0.037) (0.038) (0.038) (0.038) (0.039) (0.039)

Earnings Surpriseit ×Wealth Benchmarkedit 0.472** 0.481** 0.423** 0.434** 0.429** 0.438**
(0.188) (0.188) (0.194) (0.194) (0.195) (0.195)

Firm FE Yes Yes Yes Yes Yes Yes
Time FE Year Quarter Year Quarter Year Quarter
No. Obs. 135,577 135,577 124,468 124,468 124,468 124,468

R
2

0.011 0.019 0.018 0.023 0.018 0.021
Firms 5,568 5,568 5,516 5,516 5,516 5,516

Panel C: CAR(-3, 3)

Constant Mean CAPM FF3

(1) (2) (3) (4) (5) (6)

Earnings Surpriseit 0.374*** 0.380*** 0.374*** 0.378*** 0.385*** 0.391***
(0.042) (0.043) (0.043) (0.043) (0.044) (0.044)

Earnings Surpriseit ×Wealth Benchmarkedit 0.479** 0.475** 0.445** 0.458** 0.397* 0.407*
(0.211) (0.210) (0.219) (0.219) (0.221) (0.221)

Firm FE Yes Yes Yes Yes Yes Yes
Time FE Year Quarter Year Quarter Year Quarter
No. Obs. 135,577 135,577 124,468 124,468 124,468 124,468

R
2

0.012 0.030 0.034 0.043 0.033 0.040
Firms 5,568 5,568 5,516 5,516 5,516 5,516
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Figure A.1: Funds’ Asset Allocation and the Investment Opportunity Set. The figure
shows the average share of U.S. Equity held by Mutual Funds and ETFs using monthly data
from Morningstar (left y-axis) and the monthly realized Sharpe ratio using data from CRSP
and the from Kenneth French data library (right y-axis). The sample includes the universe of
funds classified as U.S. Equity, Sector Equity, Allocation, and International Equity. The U.S.
Equity shares are aggregated with weights corresponding to the assets under management of
the fund. The realized Sharpe ratio of the U.S. Equity asset class is computed as the monthly
return on the value-weighted CRSP index in excess of the risk-free rate, divided by the one-year
rolling volatility of returns.
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Figure A.2: U.S. Equity Ownership. The figure shows the composition of investors in U.S.
corporate equities using Financial Account data from the Fed. RoW denotes rest of the world.
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Figure A.3: Wealth Effects in Equity and Treasury Markets. Trading days are grouped
into deciles by dividend payment amount, which are reported on the x-axis. Panel A: the y-
axis shows the value-weighted market return, averaged within each decile. Panel B: the y-axis
shows the return on the 10-year U.S. Treasury in excess of the 1-year U.S. Treasury, averaged
within each decile. Panel C: the y-axis shows the expected return on the 10-year U.S. Treasury,
averaged within each decile. Daily data from CRSP and Gürkaynak, Sack, and Wright (2007).
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