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Abstract

The equity risk premium at a given horizon T} depends on the risks of future
intertemporal shifts in the economic environment. These risks matter beyond 77 and up
to the representative agent’s investment horizon T > 7. We derive novel bounds on
the equity risk premium which account for these risks. Our bounds embed information
on the term structure of market return moments up to 7. We estimate them using
options and find that they improve the out-of-sample R? of market return prediction
by up to 40%. In particular, intertemporal hedging shifts the equity risk premium up
in times of market calm, leading to a term structure of equity risk premium that is

essentially flat during market calm and downward-sloping in stress times.
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1 Introduction

The equity risk premium—the expected return on the equity market over the risk-free
rate—is a crucial input for corporate valuation and portfolio allocation. Unfortunately, it is
also notoriously hard to estimate ez ante. Martin (2017) shows how the risk-neutral market
variance discounted at the risk-free rate provides a lower bound for the equity risk premium,
in a one-period economy that ignores the higher-order moments of market returns. A major
benefit of his approach is that the risk-neutral variance can be easily computed from observed
option prices. Chabi-Yo and Loudis (2020) and Tetlock (2023) extend the approach of Mar-
tin (2017) and provide bounds for the equity risk premium that account for higher-order
risks, still in a one-period model.

Restricting the economy to a one-period economy allows simplifying the analysis, but at
the expense of strong assumptions. In particular, it ignores the risks of future intertemporal
shifts in the economic environment, e.g., changes in the expected returns or return volatility.
Consider, for example, forecast horizon 17 > t. A one-period model assumes that investors
choose their portfolio allocation at time ¢ ignoring the risks beyond time T;. These risks,
however, impact future consumption. Merton (1973) shows that investors optimally seek to
hedge these risks by tilting their portfolio allocation towards assets that deliver higher returns
when consumption is negatively affected. Intertemporal hedging after time 77 therefore
affects demand, and thus equilibrium prices and returns at horizon 7.

We derive novel bounds for the equity risk premium, which take into account both higher
order risks and intertemporal hedging. Our model features a multi-period economy, in which
the representative investor chooses the optimal allocation to the market, to maximize the
expected utility of the wealth accumulated between time ¢ and time T > T7. T represents
the investment horizon of the investor. In this economy, we derive bounds for the equity
risk premium with horizon T}, using a Taylor expansion of the inverse marginal utility. The
resulting equity risk premium depends on the conditional moments of the horizon T;-market

returns, but also on time-t expected conditional moments of returns over [T, Tx]. All return



moments can be readily estimated using available option prices. Whereas the bounds of
Martin (2017) and Chabi-Yo and Loudis (2020) only need options expiring at T} to forecast
the equity risk premium at horizon 77, our method uses options at horizons 77 and Ty.

We estimate bounds for the equity risk premium on the S&P 500 from 1996 to 2023, over
horizons ranging from 10 days to 18 months. We show that accounting for intertemporal
hedging leads to an increase of the equity risk premium, in particular during times of market
calm. Intertemporal hedging accounts for up to 80% of the total equity risk premium during
these periods, and around 30% during NBER recessions. Furthermore, our risk premium
allows us to improve the out-of-sample R? of return prediction, compared to the bounds of
Martin (2017) and Chabi-Yo and Loudis (2020). For all forecast horizons 77 from 10 days
to 18 months, the out-of-sample R? increases with the investors’ horizon T, up to a given
Ty . For example, for T} at 10 days, the maximum out-of-sample R? is achieved at 6 months.
For T larger than two months, the maximum R? is obtained for the longest horizon for
which we have available option maturities, namely Ty = 2 years. We also construct market-
timing strategies and compute realized mean-variance certainty equivalents. These certainty
equivalents indicate that our risk premium reaches better forecasts of both the first and
second return moments, and that the improvements upon the forecasts of Chabi-Yo and
Loudis (2020) are statistically significant.

We define the implied investors’ horizon T, as the investment horizon which at each
time ¢ maximizes the fit of our equity risk premium estimate to the data. Specifically, Ty,
is chosen so that it maximizes the in-sample R? of returns over a window of three months
[t—3m,t]. We find that the implied investors’ horizon switches between the longest available
horizon Ty, e.g., two years, and the shortest horizon Ty > T;. When the probability of a
crash is high (above 10%), the implied investors’ horizon is short, and it is equal to two
years otherwise. This result provides empirical evidence to the theory of Hirshleifer and
Subrahmanyam (1993), which predicts that investors’ time horizons shorten during periods

of uncertainty due to increased risk aversion and limited attention. It is also in line with



Campbell and Vuolteenaho (2004), who find that in volatile markets, investors become more
sensitive to "bad beta” — short-term cash flow shocks—, than to ”"good beta” — long-term
discount rate changes—.

Whenever the probability of a crash is low, the representative agent thus behaves as a
long-term investor, and intertemporal hedging shifts the equity risk premium upward.

Given these switches in the implied investors’ horizon, we further optimize our equity risk
premium by setting it, at each time ¢, equal to the risk premium at investment horizon 7%,
—the implied investors’ horizon at time ¢—. We thus obtain an equity risk premium estimate
which matches the estimate at Ty = 2 years during most of the time series, and switches to
the estimate at the shortest available Ty > T7 when the probability of a crash is high. The
resulting equity risk premium is higher than the one of Chabi-Yo and Loudis (2020) under
normal market conditions, and roughly at the same level during market stress.

Intertemporal hedging increases the equity risk premium at short horizons more than
it does at longer horizons. Therefore, it also impacts the term structure of equity risk
premium, which we define as the hold-to-maturity yield on the S&P 500 implied by our
estimates at various horizons. Where as the term structure of equity risk premium of Chabi-
Yo and Loudis (2020) is upward sloping under normal market conditions, we obtain a term
structure of equity risk premium which is essentially flat. During market stress, it is strongly
downward sloping.

These results are robust to changes in our main assumptions. Our main results are
based on preference parameters that are fixed. We estimate these parameters over the
period 1996-2023, as linear functions of past returns. We show that the resulting preference
parameters vary with market conditions, and generate larger out-of-sample R2. However,
estimating them over the full time period yields a look-ahead bias. We overcome this issue by
estimating these parameters over a telescopic window of data, initially ranging from 1996 to
2006, and expanding with time. We show, however, that the resulting equity risk premium

estimates do not improve upon our main estimates in terms of out-of-sample R?, over the



period 2006-2023. We also study an extension of our setup that allows the representative
investor to rebalance her portfolio between times 77 and Ty. Our conclusions survive this
change.

We contribute to different strands of literature. The first strand uses options prices to
infer information about the return distribution under the physical probability measure. The
risk-neutral leverage effect used in this paper is closely related to the asymmetric volatility
implied correlation studied by Jackwerth and Vilkov (2019). They use short- and long-term
options on the S&P 500 Index and options on VIX futures to calibrate the risk-neutral
correlation between returns and future volatility. As options on VIX futures are available
only starting in 2006, data availability prevents us from using their methodology.

Our work is also related to the vast literature on the importance of the variance risk
premium—the difference between the physical and risk-neutral variance—for predicting the
equity risk premium (see, Bollerslev, Tauchen, and Zhou, 2009). Hu, Jacobs, and Seo (2021)
show that the leverage effect, measured under the physical probability measure, has a strong
positive relation with the variance risk premium. We derive an expression that relates the
equity risk premium to the variance and leverage effect under the risk-neutral measure.

We contribute to the growing literature that constructs bounds on physical return mo-
ments. Building on Martin (2017), Martin and Wagner (2019), Kadan and Tang (2020),
and Chabi-Yo, Dim, and Vilkov (2021) build bounds for the expected return on individual
stocks and Kremens and Martin (2019) provide a bound for currency expected exchange rate
appreciation using Quanto index options. See Back, Crotty, and Kazempour (2022) for a
discussion and empirical tests of bounds for individual stocks and the stock market. Our
novel bound for the equity risk premium involves intertemporal terms implied from options
prices.

The Recovery Theorem of Ross (2015) shows how to disentangle the physical probability

distribution from the pricing kernel and risk-neutral probabilities, but has been challenged



on theoretical and empirical grounds.® Instead of making assumptions about the pricing
kernel process, Schneider and Trojani (2019) impose sign restrictions on the risk premia of
return moments and find predictive power for future returns. Our approach differs in that we
express the equity risk premium as a function of risk-neutral moments of returns at different
horizons and preference parameters estimated from the data.

Finally, our paper is related to the literature on the equity term structure. van Bins-
bergen, Brandt, and Koijen (2012) show that the expected one-period return on claims on
dividends decreases in the maturity of the dividend. Gormsen (2020) shows that this slope is
countercyclical (see also, van Binsbergen, Hueskes, Koijen, and Vrugt, 2013; van Binsbergen
and Koijen, 2017; Bansal, Miller, Song, and Yaron, 2021; Ulrich, Florig, and Seehuber, 2022;
Giglio, Kelly, and Kozak, 2024). While the main object in this literature is the expected
one-period return on claims on dividends several years in the future, we focus on the term
structure of expected total market return with maturity of up to one year.

Our paper proceeds as follows. Section 2 presents our theoretical results based on a
second-order approximation, Section 3 discusses our empirical framework to build equity
risk premium forecasts. Section 4 presents our main empirical results. In Section 5 we show
the results when estimating the preference parameters of our model. Sections 6 and 7 study

the robustness of our results to two extensions. Finally, Section 8 concludes.

2 Theoretical framework

In this section, we provide our main theoretical results. We derive a lower bound on the
equity risk premium in a multi-period economy, accounting for the risks of future intertem-
poral shifts in the economic environment. We further use our methodology to derive the

probability of a crash under the physical measure. We highlight the new components of the

!Borovicka, Hansen, and Scheinkman (2016) show that Ross’ assumptions rule out realistic models. Bak-
shi, Chabi-Yo, and Gao (2018) do not find support for the implications of the Recovery Theorem using U.S.
Treasury bond futures. While Audrino, Huitema, and Ludwig (2019) find some forecasting power, Jensen,
Lando, and Pedersen (2019) generalize the assumptions of Ross’ (2015) model and find weak predictive power
for future realized returns.



equity risk premium and crash probabilities, compared to estimates that do not account for
intertemporal hedging. These components capture conditional moments of market returns

beyond the forecast horizon. All proofs are provided in Appendix A.

2.1 Equity risk premium in a multi-period economy

We consider a three-date (two-period) economy with dates ¢, T}, and T.? T} is the forecast
horizon at which we aim to build a lower bound for the equity risk premium. Ty is the
representative investor’s horizon. We assume that this economy is arbitrage-free, which
guarantees the existence of a risk-neutral measure. Consider a representative investor, who
can invest, at time ¢, in an asset delivering the risk-free gross return R ,7, and in a set
of risky assets. The gross return vector is denoted by R; 7. The intermediate wealth at
forecast horizon Ty is Wy, = W, (w] Ry 7, ), where w; is the vector of portfolio weights. At
forecast horizon 77, the investor can rebalance her portfolio so that her terminal wealth at
Ty is Wi, = Wion, (w;l RTIHTN), where wr, is the vector of portfolio weights at time 7.
The investor maximizes her expected utility of terminal wealth® over the period [t, Ty]| =

[t, T\ U [Ty, T]:*
max E,u [Wn,]. (1)

Wy
The main innovation of our approach is that the investor considers what happens over
[T1, Tx] when solving the portfolio allocation problem. In contrast, the bounds of Martin
(2017); Chabi-Yo and Loudis (2020) and Tetlock (2023) are derived in an economy in which
the investor maximizes the expected utility of wealth over [t,T}].

For simplicity, we assume no interest rate risk. Provided that no-arbitrage conditions hold

in this economy, we show in Appendix A.1 that we can express the one-period stochastic

2We use the notation Ty = t for simplicity.

3The utility function u[.] is well-defined, its derivatives up to order four exist, and their signs obey the
following economic theory restriction: sign(u(i) []) :sign(—l)l+1 (Eeckhoudt and Schlesinger, 2006; Deck
and Schlesinger, 2014).

4We exclude consumption in (1) for simplicity. In the Internet Appendix D, we show that under minimal
assumptions regarding the sign of the correlation between the consumption wealth ratio and the market
return, the expected return derived in this section still holds.



discount factor (SDF) from ¢ to Ti, m;r, in terms of marginal utility and expectations

under the risk-neutral measure as,

Eimy . Un

My~ B E? (UT1>

(2)

u [WtR f,t—)TN] )

with vr, = Ex, ( u Wiy ]
— 1IN

where E%, () denotes the expected value at time T; under the risk-neutral measure. Since
there is no interest rate risk, Ry = Rpiosm By o1y -
Under no-arbitrage conditions, the expected excess return on an individual risky asset

can be expressed as the risk-neutral covariance between the asset return and the inverse

SDF:®
% E mi_T
E; (Rytom — Rpom) = COV, <Rk,t—>T17 $) - (3)
mt—>T1
The inverse marginal utility function is a function of Ry 7, , 7, = % fori=1,2. Its

i—1

functional form is unknown. A second-order Taylor expansion series of the inverse marginal
utility (see Equation (2)) around (R i1y, Rvr—1y) = (Rftst, Rfm—1y) Produces a one-

period SDF of the form®
Etmt%Tl -~ (]. —+ ZTl)
M-y ]EZK (1 + ZTI) ’

(4)

where
it a2t A2t *(2
= R—(RM,t—m — Rppmy) + RQ—(RM,t—m — Rysom)’ + RQ—MT(llT,@)
ft—T ft—T1 Ti—TN
and M;EQTN = Ef (Rum—1y — Rf’T1_>TN)2 is the risk-neutral variance at time 77. The

coefficients a1+, as; and as; in the Taylor expansion series are functions of the investor’s

5This identity is reminiscent of the well-known asset pricing equation in which the expected excess return
is negatively related to the covariance between the return and the SDF under the physical measure. The
proof of this identity follows from no-arbitrage conditions and no interest rate risk assumption and is given
in Appendix A.2.

6While the representative agent re-balances her portfolio at any time ¢ with 77 < t < T, the Taylor
expansion-series implicitly exploits the information about re-balancing at 7; only. Later, we will provide
expressions of the expected return that uses information about re-balancing at all discrete times ¢ such as
T <t<Tn.



risk, skewness and kurtosis tolerance parameters 7;, p; and k;:

— 1 _ (1—Pt) . (Ht+1—2pt)
e = 7 A2t = Iz azt = =3 (6)

where

u [WtRf,tﬁ\TN]

T T WiRs oy u® [WiRpy )

- lu(i‘) [WiR sy ] uY [WiR sy sy ]
ol (@ W, Rpsry]) ’

O ) (0 ) .
31 (u® [WiRp i)’

The proof of Equation (4) is in Appendix A.3.”
Equations (4) and (5) show that the inverse of the SDF is a function of three terms:

the excess market return, the squared excess market return, and the market risk-neutral

*(2)

7,5, at time T7. This risk-neutral variance term is new and only arises in a two-

variance M
period economy. We know from Merton’s ICAPM that shocks to risk can generate hedging
demand and so can be priced. But Merton’s ICAPM shows that market physical volatility is
determinant in explaining the expected excess return on a stock. Merton’s model argument
is not about risk neutral market volatility. Strong evidence of time-varying volatility risk
premium suggests that the risk neutral market variance and the physical market variance are
distinct and carry different sets of information. Thus, our theoretical results are distinct from
implications from Merton’s ICAPM model. Further, Merton’s ICAPM was not intended to
derive closed-form expression of the risk premium on the market as a function of risk neutral
correlation between market return and market risk neutral volatility.

We present our main theoretical result in Proposition 1 below. In this proposition,

we combine the risk premium expression in Equation (3) with the SDF expression (4) to

7Our baseline results do not involve kurtosis preference, but we define the kurtosis preference parameter
together with the risk aversion and skewness preference parameters for completeness. We will use the kurtosis
preference parameter in Section 7, where we apply third-order Taylor expansion series.



provide a closed-form solution to the conditional expected excess market return in terms of

risk-neutral moments.

Proposition 1 Up to a second-order expansion-series, consistent with (4 ), under no-arbitrage
conditions, the one-period expected excess market return is a function of risk neutral return

moments:

ait M*(Z) + az.t M*(3) + ast ]LEV:

Ryior  t=Th R%,t—>T1 =T R?

RP,_rry =E (Ryimsn — Rpsomy) = o o) o iTI:(TZJ)V , (8)
1 + R?yt*}Tl Mt—)Tl + R?’TlﬁTN Et MTl%TN
where
LEV; = COV; (ryem My, ) (9)
and

M*(")Tj =E; (Rumzor, — Rpror,)" withi < j,i=0,1, Ty=t, andn > 1.  (10)

Ti—

Proof. See Appendix A.4. m

Two new terms contribute to the equity risk premium in a two-period economy, compared
to a one-period economy: the risk-neutral leverage effect LEV; and the expected future
variance E:M;(IQLTN. Our conjecture is that the risk-neutral leverage effect, LEV}, is negative
and as a result increases the equity risk premium due to the compensation required by
investors for exposure to the future risk-neutral variance. There is a vast literature on
leverage under the physical measure. Still, to our knowledge, our paper is the first to
show how relevant leverage under the risk-neutral measure is for computing the one-period
conditional expected excess market return in a two-period economy. Provided that as; is

negative, a negative risk-neutral leverage contributes positively to the conditional equity risk

premium.

10



We further show in the Internet Appendix D.3, that Eq. (8) remains a lower bound to the
expected excess market return provided that odd market risk neutral moments are negative

and conditions 1/7; > land p; — 1 > 1 hold.

2.2 Comparison to existing bounds

The computation of the risk-neutral leverage effect LEV; and of the expected future vari-
ance E;‘M*T(f_))TN relies on information from options of maturities 77 and Ty. In contrast,
the existing bounds of Martin (2017) and Chabi-Yo and Loudis (2020) and the equity risk
premium estimate of Tetlock (2023) only rely on options with maturity 7;. The bound in
Martin (2017) corresponds to the expected excess return when the representative agent is en-
dowed with a myopic log utility. The log utility assumption corresponds to 7 =1 (a1 = 1)
and p; = 1 (ag; = 0), making higher-order moments and the leverage under the risk-neutral
measure irrelevant in a two-period economy. In case of a CRRA utility with relative risk

aversion «, an equivalent expression of (8) can be obtained by recognizing that (7) reduces

to % =aq, pr = %(0‘21), and k; = %(a—&-li# In case of a CARA utility with absolute risk
aversion &, an equivalent expression of (8) can be obtained by recognizing that (7) reduce
to Tit =qQq, pr = %, and Ky = % with oy = aWi Ry,

To compare our measure to the one of Chabi-Yo and Loudis (2020), we first introduce

Corollary 2, which expresses the conditional expected excess market return as a weighted

average of two risk premia.

Corollary 2 Up to a second-order expansion-series, consistent with (4), the expected excess

market return is a weighted average of two premia:

E; (Raggom = Brism) = m RPon + (1 — ) RPY, (11)

11



where
ai ¢ M*(Z) + az ¢ M*(3)

Ryiop —t—T RZ, t—T
RPy g, = =g (12
1+ 2-M
Rf,t%Tl t—T1
and
LEV;
RP;’ = *—(2;, (13)
E;MTlﬁTN
with ,
1 + R2a2’t Mt(—)’_}pl
* fit—=T1
Ty = 1 az,t M*(Q) az,t E*M*(Q) <14)
+ 7, o t—>T1+m ¢ Sy

Proof. See Appendix A.5. m

The first risk premium RP, .7, in Equation (12), which corresponds to the measure
obtained by Chabi-Yo and Loudis (2020) in a one-period economy, involves the risk-neutral
variance and skewness of market returns.® The novelty of decomposition is the contribution
of the risk-neutral leverage effect LEV; and expected future variance Eng;(flTN to the

conditional risk premium. Provided that odd market risk neutral moments are negative and

conditions 1/7; > 1 and p; — 1 > 1 hold, Equation (8) can be bounded as follows:

1 *(2) 1 *(3) 1 *
Rfior Mt—>T1 T R2 Mt—>T1 ~ R2 LEVt
RP > fit—Ty fit—T1 f,T1—TN (15)
t=T Ty = 1— 1 M*(Q) _ 1 E*M*(Q) ’
R,Ef,t—>T1 t—T, R.Ef,Tl TN t T —TN

2.3 Conditional term premium

We build on Corollary 2 and derive the conditional term premium, which we define as the
difference between a one-period expected excess market return in a two-period (three-date)
economy and a one-period expected excess market return in a one-period (two-date) economy.
Note that our definition of conditional term premium is similar but distinct from the equity

term premium definition widely used in the literature.”

8Chabi-Yo and Loudis (2020) derive their expression using a third-order expansion-series of the inverse
marginal utility. The expression provided in Equation (12) is the counterpart of the one given by Chabi-Yo
and Loudis (2020) when using a second-order expansion-series of the inverse marginal utility.

9van Binsbergen, Brandt, and Koijen (2012) analyze returns on assets with claims to short-term dividends
(i.e., up to three years ahead) on the S&P 500 Index. They show that claims to short-term dividends earn

12



Corollary 3 Up to a second-order expansion-series, the conditional market term premium

18
CMTP;,p, = 7 RP, 7, + (1 — 7)) RPy — RP, 1, (16)
- ~~ o HH
One-period expected excess One-period expected excess
return in a two-period economy return in a one-period economy

and can be alternatively written as

CMTP,_,z, = (7F — 1) (RP7, — RPY), (17)

where RP,_,1,, RP}, n} are defined in (12), (13) and (14), respectively.

positive. A positive value indicates that our risk premia, RP;_,7, 7, will be higher than
RP, ,,. The difference in the shape of the term structure of risk premia depends on how

CMTP;_,p, varies across 7T}.

2.4 Probability of a crash

We further use our methodology to obtain the probability of a crash under the physical
measure. We define the probability of a crash as P; (Ry1, < o) where « is given. For
example, a = 0.8 for a 20% crash. We then exploit the no-arbitrage assumption that allows
us to move from the physical measure to the risk-neutral measure. While the coefficient «

could be time-varying or constant, we remove the time subscript on « to ease notations.

Proposition 4 Up to a second-order expansion-series of the inverse marginal utilities, the

conditional crash probability defined as I, ryla] = P (Ryisr < @) can be expressed in

higher average returns than claims on longer-term dividends: the unconditional dividend term structure is
downward sloping. This finding contrasts with predictions from leading asset pricing models. Few asset
pricing models with exogenous stochastic discount factors (e.g., Lettau and Wachter, 2007; Croce, Lettau,
and Ludvigson, 2015) are able to generate returns consistent with their findings.

13



terms of risk neutral quantities

*(0 ai.t *(1 as. t *(2 as. ¢ *
M) [o] + 2 M) (o] + 22 M ). [a] + 2 —Mg, [a]

Ry t—=Tq ft—T

. , , Y f.T1—=TN

Ht%Tl TN [Oé] - 1+ azt M*(g) N azt E*M*(z) ) (18)
?,t*’T1 t—T1 R?Tl STy t T —Tn

where M), [0] = Ef ((Ragaom, — Rpaom)" Ly, <a) ond MG, [0 = Ef (M52 Tay <o)

— T1

Proof. See Appendix A.6. m

Proposition 4 shows that truncated market moments matter for extracting the probability
of the market crash. But more importantly, it shows that when the SDF is a function of
future risk-neutral volatility as in (5), the tail of the distribution of risk-neutral volatility,
captured by M, [a], has an impact on the probability of a crash. When the expected future
volatility is not present in the SDF (4), the probability of a market crash reduces to

x(0) al, x(1) az, *(2)
Mt—>T1 [a] + ﬁMt—)Tl [Oz] + #jﬂMtﬁTl [a] (19)

Ht_>T1 [O{] = Pt (RM,t—)T < O{) - az t *(2)
1 + Rfi,t;Tl Mt—>T1

3 Empirical framework

We show in this section how the theoretical expressions derived in Section 2 can be brought

to the data.

3.1 Leverage and future risk-neutral variance

The equity risk premium and crash probabilities are functions of risk-neutral moments,
including LEV; and E;M\? . which involve T}- and Ty-horizon quantities. While closed-
form expressions of risk-neutral moments for a given maturity in terms of option prices
are directly available using the spanning formula of Carr and Madan (2001) and Bakshi and
Madan (2000), closed-form expressions of the risk-neutral leverage effect and expected future

moments are not directly available.

14



We propose a method to compute LEV; and E;‘M;(IQLTN using options with maturity 7T}

and Ty. As the future variance is a function of the information set at 7, we assume that it

can be written as a nonlinear function f of Ry — Rppm:

M;EQ—)>TN = 0uf (Raspsr, — Rppom) + €, (20)

with By (| Rare—r) = Ef (&) = 0. Multiplying both sides of Equation (20) by R3,, ., and

taking the time-t risk-neutral expectation, we obtain

*(2 *(2
M ( ) - R?,TlﬁTNMt(—)%ﬂl

et = t=TN : (21>
E; (R%W,t%Tlf(RM,tg)Tl - Rf,t‘)Tl))
and
@) M; % — R non Mooy
M B — S f(Ryi—r, — Rpimmy) + € (22)
hoi Er (R?\/I,t—)Tlf(RM,teTl — Rf,t—>T1)) A=l fit=T t

Note that (20) is distinct from the assumption that the risk neutral volatility follows a
GARCH process. The returns of interest in the left- and right-handsides of equation (20) are
different. The risk neutral quantity in the left-handside of (20) is obtained from the return
from time T to T while the quantity in the right-handside of Equation (20) is a function
of the realized return from ¢ to T;. We further show in the Internet Appendix D.1, that
the key risk-neutral volatility dynamics implied by (20) is distinct from that of a GARCH
process. Hence, a direct comparison cannot be made with a GARCH process. To obtain
the expected future variance, E; M*T@}TN, and leverage, LEV}, we compute the time-t risk-
neutral expected values of Equation (22) and the product of Ry -1, — Ryi—7, and Equation
(22), respectively.

The final step consists to choose the function f(-). We use (Rt — Rf,HTl)2 for two
reasons. First, note that the numerator of 6, is always positive in the data. Therefore,

our choice of function f(-) ensures that the expected future variance is a positive number.

Second, as (Rari—m, — Rf7HT1)2 is a proxy for the first period conditional variance, this
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function captures the well-documented fact that conditional variances are highly positively
correlated over time.
With this choice for the function f(-), we have,
*(2) *(2)
*(2) M - R?,TlﬁTNMt%Tl *(2)

E:MT =Ty (4 et (3 *(2 MtaT ’ (23)
' " Mti%ﬂl + 2Rf:t4>T1Mt£>%11 + R?,t—}Tl Mti)’)]jl '

and, ) 2)
*(2 2 *(2
L]EV* . Mt—)TN - Rf,T1—)TNMt—>T1 *(3) (24)
oMY 2R, ME) 4 R2, M) T
t—Th _'_ fit—=Ty t—Th _'_ fit—T t—T1

Substituting Equations (23) and (24) in Equation (8) highlights that our expression for
the equity risk premium is a non-linear function of 7Ti-return moments and the Ty-return

variance.

3.2 Data

We use the S&P 500 index as the market portfolio. We obtain volatility surfaces, index
levels, and forward term structures for the S&P 500 Index and the zero-coupon rate term
structures from Ivy DB OptionMetrics. The data cover the period January 1996 to February
2023. When computing the excess returns on the S&P 500 index before January 1996, we
use its level and the Fama term structures on U.S. Treasuries from the Center for Research
in Security Prices (CRSP).

Implementing our risk premia requires the evaluation of different functions of risk-neutral
expected values. We estimate these expected values at the end of each month and for each
maturity provided in OptionMetrics” Volatility Surface File (10, 30, 60, 91, 122, 152, 182,
273, 365, 547, and 730 days). We refer to these maturities as one week, one month, two
months, one quarter, four, five, six, and nine months, one year, 18 months, and two years.

We import annualized continuously-compounded zero-coupon yields from Jing Cynthia
Wu'’s website, Liu and Wu (2021). We interpolate the term structure of zero-coupon rates

using Nelson and Siegel (1987) model to find each maturity’s risk-free rate.
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Following Chabi-Yo, Dim, and Vilkov (2021), we define a moneyness grid of 1,000 equally
spaced points from 1/3 to 3. We use a piecewise cubic Hermite polynomial to interpolate
the implied volatility surface to the moneyness grid. We extrapolate the implied volatility
using the closest value for moneyness points outside the implied volatility surface. Finally,
we use the Black-Scholes formula to convert implied volatilities to call and put prices for

each moneyness level.

3.3 Risk-neutral moments

We compute the risk-neutral moments of market returns and excess returns using the span-
ning formula of Carr and Madan (2001) and Bakshi and Madan (2000), as described in
Appendix B.1. We report in Figure 1 excess return moments over time for horizons of one

week to two years. To compare values across horizons, we report the annualized volatility

3
in the top graph <\/ (365/11) M:(_%)Tl) , skewness in the middle graph <M:§’)Tl / (M:(j%) 2> 7

t—T1 t—Th

and kurtosis in the bottom graph (M*(4) / (M*(Z) >2> . We also report the expected future
second moments and leverage in Figure 2, using Equations (23) and (24).

Risk-neutral volatilities and expected future volatilies vary over time, reaching a peak
during the financial crisis of 2008. Risk-neutral skewness values are almost always negative
and decrease over the sample period. Risk-neutral kurtosis values range between three and
eight and trend upward over the sample period. The risk-neutral leverage effect is always

negative and exhibits large time variations.

3.4 Preference parameters

The expressions for the one-period equity risk premium and crash probabilities provided in
Section 2 are all functions of the investor’s preference parameters 7, and p;.
We first set these parameters to 7, = 1 and p, = 2 for all ¢, which is equivalent to

a1+ = 1 and asy = —1. We derive our main results in Section 4 based on these values. In
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Section 5, we attempt to estimate the preference parameters but find little improvement in

out-of-sample results. We further show that our main findings do not change.

4 Results

In this section, we discuss the ability of RP,_,7, 1, to capture accurately equity risk premia.
Following Chabi-Yo and Loudis (2020), we first set these parameters to 7 = 1 and p; = 2 for
all t. We show that RP,_,p, 1, outperforms the existing premia for most horizons T, and
underline the existence of an implied investors’ horizon, which corresponds to the optimal
Tn. This horizon is long in quiet times, when the probability of crash is low, and short

during market turmoil, when the probability of crash is high.

4.1 Estimated equity risk premium

We report in Figure 3 the time series of risk premia for a horizon of 77} = one month using
T = one year as the investment horizon. We compare in the top graph RP,_.1, 1, to RP,_,7,.
RP,_,7, 1, is larger than RP,_,7, over the entire sample period. This ordering suggests that
the risks of future shifts in the economic environment lead to an increase of the equity
risk premium. In the bottom graph, we further investigate how the equity risk premium
changes with the investment horizon T. The two lines depict the fraction of the total
risk premium that intertemporal hedging is responsible for. This fraction is computed as the
conditional term premium defined in Section 2.3 (i.e., the difference of the risk premium with
intertemporal hedging, RP;_,7, 7, and of the risk premium without intertemporal hedging,
RP,_.1,), as a percentage of the former. Intertemporal hedging represents up to 80% of
the total risk premium. This fraction increases with T: the blue line corresponds to an
investment horizon of T equal to one year, and the red line of two years. The red line
remains consistently above the blue line. Note that in times of market turmoil however, e.g.,

during the NBER recessions indicated in grey, intertemporal hedging accounts for a smaller
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percentage of the total premium, around 30%. The equity risk premium thus generally
increases with the investment horizon Ty. This increase is large during quiet market times,
and smaller during market stress.

In Appendix D.3, we show that our risk premium is a lower bound to the expected
excess return on the market. Therefore, irrespective of the forecast horizon used, increasing
the investment horizon makes the estimate tighter. We further show in Appendix D.2 that,
when consumption is introduced in the representative agent problem, under minimal realistic
assumptions, our measure of risk premium remains a lower bound to the expected market

return.

4.2 Conditional variance and variance risk premium

Higher order moments under the physical measure are computed similarly to risk-neutral
moments, as described in Appendix B.2. Figure 4, Panel A, compares the physical variance
obtained when ignoring intertemporal hedging, to the physical variance obtained with in-
tertemporal hedging. The forecast horizon is set at 1 month, and the investment horizon
at 1 year. The physical variance is lower with intertemporal hedging throughout the time
period. We observe large differences in times of market turmoil.

Panel B displays the associated variance risk premium, computed as the difference be-
tween the conditional variance under the physical measure, and under the risk-neutral mea-
sure. As the risk-neutral variance is computed from options, it does not depend on the
investment horizon. Therefore, the lower physical variance with intertemporal hedging trans-
lates directly into a variance risk premium that is larger in magnitude, more negative, than

without intertemporal hedging.
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4.3 Out-of-sample performance

We study whether accounting for intertemporal hedging improves the out-of-sample perfor-
mance of the equity risk premium. To assess the change in performance, we use two different
metrics.

First, we follow Welch and Goyal (2008) and Campbell and Thompson (2008) in com-

puting the out-of-sample R? measure as,

~ 2
RQOOS —1_ Zt (Tai—1 — Taristy)

(25)

_ 2
t (7" Mt—>T, — T M,HTl)

where 7y, is the sample average of returns at horizon 7) prior to week ¢ and Tari—m,
is a risk premium forecast. A positive R3¢ indicates that the prediction 74,7, is more
accurate than the past average realized returns, while a negative R%,q would favour the
past average realized returns.

We report in Panel A of Table 3 the R%,q, in percent, for 7y, 7, :RPtL_(;%l, RP, ,7,, and
RP,_,7, 7, over full period from 1996 to 2023. Forecast horizons 7} range from one month to
18 months and all available investment horizons Ty > T} are considered. We do not report
on a forecast horizon of two years because there are no options available with maturity 7Ty
larger than two years.

For all forecast horizons 77, RP,_,poutperforms Rﬂij%l, and RP,_,r, 1, outperforms
RP,_,p,for almost all investment horizons T. In particular, for the 10-day forecast horizon,
RP, ,pand Rﬂjf%lboth perform worse, out-of-sample, than a forecast based on the past
average realized returns, as they have negative R ,¢. In contrast, RP, 1, 1, exhibits pos-
itive R, for Ty between three months and one year. We test whether the differences in
performance between RP,_,p,and RP,_,p, 1, are statistically significant, using the Diebold
and Mariano (1995) test. The outperformance of RP,_,1, 7, is significant for forecast hori-

zons 17 between three and nine months, and for most Tx. Therefore, our results indicate
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that accounting for intertemporal hedging in the equity risk premium leads to a large and
significant increase in out-of-sample forecast performance.

Inspection of the R%,q achieved by RP,_,7, 1, in Table 3 reveals the importance of Ty
on the performance of our risk premium. For all forecast horizons T3, the R%,g increases
with T, up to a given Tyy. For T} = 10 days, it reaches its maximum at T = 6 months,
for 77 = 1 month at T = 9 months, and for T = 2 months at T, = 18 months. For all T}
equal to 10 days, 1 month and 2 months, the R4 drops after reaching it maximum value,
when increasing Ty. For T} larger than two months, the R%,¢ increases up to Ty = 24
months. The pattern of R%,¢ that we observe for 77 < 2 months suggests that for 7} > 2
months, there exists an optimal T beyond 24 months. Since options with maturities beyond
24 months are not available, we assume that the maximum R?,q is 24 months. Overall,
the R%q suggests the existence of an optimal Ty > Tj. The past column indicates the
performance of a prediction based on the average prediction across investment horizons 1)y .
Such prediction achieves R%¢ that are all larger than those of RP,_7;.

Second, we construct market-timing strategies and compute realized mean-variance cer-
tainty equivalents. While the R%,¢s reported in Panel A of Table 3 convey how our method-
ology captures the expected excess market return, results in Panel B combine both first and
second moment predictions. For each forecasting method, we compute the weight of the

market portfolio in the optimal portfolio at time ¢ as,

TMt—T
wt—)Tl = ~9 ! (26)
P)/O—t%Tl

where 7 is a risk aversion parameter and ;_,,, is the physical variance of returns computed
for each method, as described in Section 4.2. Then, we compute the realized mean-variance
certainty equivalent as,

O = B(ryevm) = 3 Var(ryp): (27)
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where 1, = 71 +Wisn, "ar e, are portfolio returns. The certainty equivalent is estimated
using the sample return average and variance using non-overlapping returns over horizon 77.

We report realized certainty equivalents annualized in percent for v = 3. We find better
performance of RP,_,7, 1, , compared to RP,_,1, and RPtL_i’%l , for investment horizons Ty
up to one year. In line with the results reported in Panel A, the certainty equivalents
increase with Ty, reaching a maximum for T between 9 months and 24 months. Negative
values are not displayed. They are obtained for Ty = 18 and 24 months due to estimates of
the physical variance that are close to zero. We block-bootstrap the time-series of realized
portfolio returns to compute the significance of the certainty equivalent differences for each
strategy, compared to the one based on RP, .7, (see Politis and Romano, 1994).1° We
find that almost all differences between RP,_,p, 1, -based and RP,_,r,-based strategies are
statistically significant at the 5% level, when Ty is less or equal to a year.

Both out-of-sample performance metrics —out-of-sample R? and realized certainty equivalents—
thus indicate that accounting for intertemporal hedging in the construction of the equity risk
premium allows reaching better forecasts of the first and second return moments. The dif-
ferences are statistically significant.

These equity risk premium measures are lower bounds for the equity risk premium. As
a last analysis, we follow the methodology of Back, Crotty, and Kazempour (2022) and test
for the validity and tightness of these bounds. In Online Appendix 2, we find results exactly
in line with theirs. For all measures and horizons 77, we do not reject that they are valid
lower bounds and reject that they are tight. However, as expected the magnitude of the

. : L
error from our bound is lower than either RP,_,p, and RP,“}7, .

4.4 Implied investors’ horizon

We have shown that the out-of-sample performance of the equity risk premium depends on

the choice of the investment horizon Ty, for all forecast horizons 7. Increasing Ty, up

10We use 10,000 bootstrap samples and a mean block length equivalent to three years.
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to a threshold, improves the out-of-sample performance of our risk premium. The forecast
however deteriorates when increasing T beyond that threshold. We study whether the
optimal threshold is time-dependent, by optimizing the investment horizon T used to make
the prediction at each time t.

We select the optimal T at each time ¢ in sample, by maximizing the R? of the forecast
over a window of 90 days. This window covers the interval t — 77 — 90 days, up to t — T,
ensuring that there is no look-ahead bias. We denote this optimal time-varying horizon by
TN 4

Table 4 reports the out-of-sample Rpg achieved with T}, and compares them to the
R?% ¢ achieved with Tl at one and two years, and with the one obtained with the prediction
averaged across T. The study period starts in 2000'*. Comparing the first two columns
(RPtL_'i‘:’F1 and RP;,1, ) to the next two columns (Ty = 1 year and Ty = 2 years) confirms
that RP,_,1, outperforms RPtngT1 for most 77, but that none of the two outperforms the other
systematically. The Ty = 1 year estimate tends to perform better for shorter maturities,
whereas the Ty = 2 years tends to outperform for longer maturities. The average prediction
in column 5 yields a more stable outperformance across forecast horizons. The largest gain,
for all Ty except 10 days, is achieved when optimizing upon Ty (last column). The R?
increases, compared to Chabi-Yo and Loudis (2020), by 40% to nearly 200% for forecast
horizons T} between 2 and 9 months. This increase is statistically significant. Similarly,
the largest realized certainty equivalents are obtained when optimizing Ty, for all forecast
horizons except 10 days and one month.

Figure 5 displays in Panel A the estimated risk premium obtained with 7%, for 71 at
four months. Panel B depicts the time series of Ty ;. It oscillates between the smallest
possible value of T (five months) and its largest value (two years). In particular, it is at
five months during the two NBER recession periods, and tends to be at two years at most

other times. This result is robust to varying the forecast horizon 77;. We thus conclude that

1 As the optimal T is computed, at each time ¢, over a window that ends at t — 77, we cannot study the
R%,¢ over the full window of data as in Table 3.
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in quiet times, the implied investors’ horizon is long (here, at its maximum of two years). In
contrast, in turbulent times, the implied investors’ horizon is short. This conclusion provides
empirical evidence in line with the asset pricing model of 77, in which investors’ time horizon
decreases in periods of high uncertainty, due to heightened risk aversion and liquidity needs.
It also echoes the results of 7?7, who use a VAR approach to show that investors’ horizons
shorten in volatile or declining markets because they become more sensitive to ”bad beta”,
i.e., short-term negative cash flow news.

In turbulent times, the short-term horizon implies that intertemporal hedging has a
negligible impact. As a result, the equity risk premium remains close to the one of RP;
. In contrast, it is important in calm times, and pushes the equity risk premium up, since
RP,_,7, ryincreases with T%. To better understand these punctual switches between long
and short implied investors’ horizon, we investigate the crash probabilities implied by our

methodology.

4.5 Crash probabilities

Figure 6 displays the conditional probabilities of a 1 — o = 10% crash over a horizon of
four months. We present the probabilities from Martin (2017) (Hfi%pl [a]), those obtained
by excluding the future risk neutral volatility from the SDF specification (II;_,1,[c]), and
those obtained with our methodology (Il;—7, 7 [a]) using the implied investors’ horizon as
Tn. The green areas display the conditional probability term premium which corresponds
to IIiypy 1y (@) — isry [a] (see Equation (18)).

Crash probabilities obtained with our method are lower than either Hfi%,l [a] or I, 1, []at
all times. The green areas are thus always in the range of negative values. Most of the dif-
ferences between I, 7, 7, [a]and II;_,7, [@]come from quiet times. During NBER recessions,
the crash probabilities almost overlap.

To determine whether these lower probabilities are more accurate, we assess in Table 5

out-of-sample prediction performances. For each horizon, we compute the loss function of
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our prediction as the negative of the log-likelihood function as,

lt_>T17TN - = (:H‘le,taTl <a log (Ht—>T1,TN [Oz]) + (1 - :H'R]M,tﬁTl <a)(1 - 10g (Ht—>T17TN [a]))) :

Similarly, we compute the loss function for Il; 1, [@] and Hfing [a] , which we respectively
denote l,_,1, and lfngl. Next, we test the significance of the average difference in loss functions
using the Diebold and Mariano (1995) test. We find that our probabilities for a 10% crash,
reported in the third column, lead to significantly lower losses (i.e., higher realized log-
likelihoods) than other benchmark probabilities for most horizons. Finally, we similarly find
significantly superior predictions for a crash size of 20% for all horizons except one week.
Now that we have confidence in the crash probabilities implied by our method, we can
assess whether they have a link with the investors’ implied horizon. Figure 7 plots in Panel
A, the four-month 10% crash probability, with in grey the times at which this probability
exceeds its 80% quantile of 12.4%, calculated over the full 1996 to 2023 time period. These
grey areas thus indicate the times of market stress, during which the probability of a crash
is high. Panel B displays the implied investors’ horizon, together with these stress periods.
Stress times are almost systematically associated with a short implied investors’ horizon.
With 77 at four months, the shortest possible investment horizon T > T} is five months.
In stress times, the implied investors’ horizon is thus equal to five months. The implied
investors’ horizon jumps back to two years as soon as the probability of a crash decreases.
This analysis confirms that the implied investors’ horizons switches with market condi-

tions.

4.6 Term structure of equity risk premium

As in Chabi-Yo and Loudis (2020), we define the term structure of equity risk premium to

be the hold-to-maturity yield on the S&P 500 implied by our equity risk premium estimates
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at various horizons.'? Figure 8 compares the term structure of equity risk premium without
(RP,—1,, Panel A) and with (RP,_,1, 1, Panel B) intertemporal hedging. Without intertem-
poral hedging, the equity risk premium tends to slightly increase in 7 in quiet times, and
to strongly decrease in 7T} during turbulent times, as documented by Chabi-Yo and Loudis
(2020).13

With intertemporal hedging, the investors’ implied horizon T is long in quiet times,
pulling the equity risk premium up, and short in turbulent times, leaving it almost un-
changed. As a result, the term structure of equity risk premium is most of the time decreas-
ing in 77. In times of market calm, it is nearly flat, and it is strongly decreasing in times of

market stress.

5 Estimating preference parameters

In this section, we attempt to improve the results achieved in Section 4 by calibrating the
preference parameters p; and 7; to past data. We show the challenge of estimating these
coefficients, and underline the importance of having enough data, covering both market

turmoil and calm, to do so.

5.1 Methodology

We estimate the preference parameters p; and 7, using a two-stage non-linear least squares

approach, similar to Chabi-Yo and Loudis (2020). Specifically, we estimate the coefficients

Tty Pt 6((]1), and ﬁ((f) by minimizing the weighted sum of squared errors wleil_ZTTleng +

12This definition differs from the literature studying the term structure of equity yields, which are defined
in analogy to bond yields and extracted from dividend strips data. See van Binsbergen, Brandt, and Koijen
(2012); van Binsbergen, Hueskes, Koijen, and Vrugt (2013) and van Binsbergen and Koijen (2017). Bansal,
Miller, Song, and Yaron (2021) raise the potential criticism that traded dividend strips may be illiquid, and
that their results on the term structure of equity yields may be artefacts of this illiquidity. Giglio, Kelly,
and Kozak (2024) do not use dividend strips and instead use equity returns to estimate an affine model and
make inference on the term structure of equity yields.

13 Ait-Sahalia, Karaman, and Mancini (2020) found similar dynamics of the term structure by estimating
an affine model on variance swaps with maturities ranging from 2 to 24 months.
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wgegTTl eng in the following equations,

Ry — Ry = ﬁ(()l) + RP 1y + Eng’
(Ratiory — Rf,HTl)Q = ﬁ(()z) + E (Ravom, — Rf,HTl)Q + GQTI- (28)

In the first stage, we set w; = ws = 1. In the second stage, we weigh each sum of squared
errors by the inverse of the standard deviations of first-stage errors. Note that parameters
7 and p; enter the above equations through RP, 7, 1, and E; (Ryir — Rf,t—>T1)2-14 We
estimate parameters separately for each horizon T} and Ty. We restrict the parameter space

such that the resulting risk premiums be positive.

5.2 Performance with in-sample estimation

Similar to Chabi-Yo and Loudis (2020), we use all observations in our time sample from 1996
to 2023 to estimate the preference parameters.'®

We first estimate constant preference parameters over the period. We find estimates of
7 that are between 0.86 and 0.88 for all forecast horizons 17 and investment horizons 1.
In contrast, the estimates of p vary much more. Specifically, the estimated p for the bound
RP;_,p,decreases sharply with 77, from 5.06 to 1.20. The estimate of p also decreases with
Tn. The estimate for Ty = 2 years is quite stable, between 1.20 and 1.60 for all T7.

Table 6 compares the out-of-sample R? achieved when setting 7 = 1 and p = 2, as
in Section 4, to those obtained when estimating these parameters. Columns (4) and (5)
contain the R? for the bound of RP,_ 7 and our new bound, with Ty optimized, using
constant preference parameters. Estimating these parameters yields an increase in the R?

and realized certainty equivalents of RP;_,r,. But for our bounds, the results are less clear.

The R? obtained are still larger than those of RP,_.7,for all forecast horizons larger than one

14The physical second moments are provided in Appendix B.2.
15This estimation introduces a look-ahead bias when computing the out-of-sample performance measures.
We will eliminate this bias in Section 5.3.
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month, but they are smaller than those obtained when setting 7 = 1 and p = 2, for forecast
horizons up to five months. The lack of performance of our estimate when estimating the
preference parameters is due to the positivity constraint we impose on the risk premium
estimates. Our estimation is performed over a time series ranging from 2000 to 2023, thus
covering various economic conditions. The positivity constraint restricts the set of admissible
preference parameters considerably, thereby limiting the gain of letting them free.

Second, we model 7 and p as linear functions of past three-month returns, and estimate
the loadings over the whole data period. The estimated time series of 7; are displayed in
Panel A of Figure 9, for a forecast horizon 77 of 1 month. 7; increases and gets closer to
1 when the investor horizon Ty increases. It exhibits variation both in the time series and
term structure dimension. In particular, in times of market stress, 7; decreases, in line with
investors’ risk aversion being higher. In quiet times 7; is closer to 1, indicating that investors
are less risk averse. The estimated time series of p; are displayed in Panel B. p; exhibits
large time series variation. It is close to 2 in calms markets but increases sharply during
the financial crisis. In particular, inspection of the results reveals that the estimated values
of p and 7 obtained when estimating them constant (7 =0.88 and p = 5.06) are now only
reached during the Financial Crisis. The values of p; are, as in the first estimation, larger
when Ty = T} (RP,_,1,), than the values with intertemporal hedging. For longer investment
horizons T3, p; oscillates around 2 and exhibits less volatility.

Columns (6) and (7) of Table 6 report the out-of-sample prediction results obtained when
modelling 7 and p as linear functions of past three-month returns. This additional degree of
flexibility improves the performance of the two bounds RP,_,z,and RP, 7, 1. Our bound
provides R? that are consistently larger than those of RP;_,p,, with an improvement up to
45%.

These results show that a more precise estimation of the preference parameters, using a

time series as large as possible, improves the performance of our bound.
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5.3 Telescopic and rolling window estimations

In order to avoid a look-ahead bias, we now estimate a set of parameters using a telescopic
window of past observations. We start in 2006 and use the past ten years of data to ensure
we have enough stability in our estimated parameters.

Figure 10 displays the estimated time series of preference parameters, when assuming
them constant over the estimation period. These time series make it clear that the values
achieved in Section 5.2 result from realized returns during the Financial Crisis. From 2010,
the preference parameter estimates stabilize, to only change slightly during the Covid period.

Table 7 reports the results when the parameters 7 and p are assumed constant and
estimated on window that at each time ¢ does not include any data further to ¢. The first
striking results is that for forecast horizons that are shorter than five months, estimating the
preference parameters without look-ahead bias produces poor results for both RP; 1 and
our bound. The values that are left blank in the table are negative and smaller than -1,
indicating that the prediction is far worse than the long-term mean. For forecast horizons of
6 months and more, the best results are obtained with our bound, and a telescopic estimation
of the preference parameters. Inspection of the certainty equivalents however shows that the
estimation of the second moment is poor for all estimations except the one which sets 7 =1
and p = 2.

These results illustrate the challenge of achieving good out-of-sample performance when
estimating the preference parameters. The time series of estimated 7; and p; suggest that
the instabilities in the telescopic estimation may be linked to the high values achieved during
the 2006-2009 period. We now re-assess the out-of-sample performance of the different risk
premia, excluding this time period from the evaluation. Table 8 provides the results.

Excluding the 2006-2009 period, the R%,4 achieved by RP, .7, with both telescopic and
rolling window estimations of 7, and p; are higher than those with p fixed, for all forecast
horizons, except for 77 at ten days in the rolling window estimation. Furthermore, the rolling

window estimation fails at delivering high R% ¢, but the telescopic estimation achieves R%¢

29



for RP,_,p, 1, that further improve upon RP,_,1,. Our results therefore illustrate the need

for an estimation window that includes large negative returns (as in 2008).

6 Portfolio rebalancing

The results derived so far were under the assumption that the representative agent could
only rebalance her portfolio at time 7}. In this section, we relax this assumption and let the
representative agent rebalance her portfolio at any time ¢ such that 77 <t < Tx. We assess

whether this extension changes our main results.

6.1 Theoretical setup

As before, we use a second-order Taylor expansion-series of the inverse marginal utility (term
inside the conditional expectation in (2). The novelty is that the Taylor-expansion uses the
information that the agent re-balances her portfolio at any time ¢ such that 77 <t < Ty.

We denote
J J
Ry = H RM,TQJ.A%TQJ. and Ry, 7y = H Rf,TjSlﬁTQj
j=1 j=1

with Ty = t and

Tj= RM,TQ]._I*)TQJ. and xg; = Rf,TQj_laTQj

where Q);_1 € {0,1,...,N — 1}. In the previous section, we set J = 2. A second-order Taylor
expansion-series of the inverse marginal utility (term inside the conditional expectation in

(2)) around (1, ...,zn) = (o1, ..., Zo.n) and taking the expectation under the risk neutral

measure at time 7 allows us to write (2) as

J

1 L (1—p) s (1—pr) 1 )
=1 - ———— (11— ST PUNT DR/ (s — w0 )2
) + T%on (x1 —201) + 95%,1 2 (1 —x01)" + 5 ; %J T (:cj xo_J)
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We replace this expression in (3) and derive the expected excess return on the market:

_ 1 W@ 1 (=p)pp® (1—pt) «
o TtRf,t—)Tl =T + R?’,t—)Tl th t—T, + 7-3 ‘Cgvt

LN 1+ = 1 (1_2pt)Mtfgl“1 + (l_pt)EIMt,(ZI%L

2
ftom Tt T

where

cev; = CoV; (Ruer, MiF).
4 1
W) _ “(2)
MthN _ Z 2 MTQj—l A)TQ]. :
i>1 " ST, 1~ T, ‘

Provided that preference parameters are estimated, expression (29) enables us to extract the

risk premium from option prices if the risk neutral quantities Mé;g? can be recovered

i—1 —)TQJ,

from option prices with various maturities.

6.2 Implementation

To compute the risk neutral quantities, we use an approach similar to (20) by considering

the decomposition:
To, ,—Ta, — VTa, =Ta; \MMi=Tg, | — ffimTg, + Nrg;_, (30)

with E* (UTijl |RM7t_>TQ_1> = 0. We then show:

*(2)  _ p2 *#(2)
9 - Mt—}TQj Rf,TQj_ 1 A)TQ]. Mt—}TQj71
TQj—l_)TQj - 2 .
E; (R%LHTQ“ (Rusero, | = Rraor, ) )
and
J
* 1 * *(2
LEV; =Y =————COV} (Raro: My iz, ) (31)

7>1 f7TQj71—>TQj
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with

% *(2 * *(2 * *(2
Cov; (RM,HTUMT(Q) 1—>TQJ,> = E <RM7t—>T1MT(Q;71—>TQj> - Rf,t—>T1]EtMT(62371—>TQ(32)

I- 3

In Appendix ??7, we show that the second term in the right-hand-side of the covariance

expression (32) simplifies to

2) £(2)
F ML — 0 M
t Tijl —)TQj TQj71 —>TQ]- t—>TQ]~,1

If Ty, , = T, the first term in the right-hand-side of (32) simplifies to
* *(2 *(3 *(2
Et (RM,t%TlMT(llTQ]) = ‘9T1—>TQj (Mt(—>)Tl + Rf,t%TlMt(e)Tl)
Now, assume that Tgp, , > T1, the first term of the covariance expression simplifies to

* 3 2

eTlﬁTijlEt (RM,t—>T1 (RM,t%Tl - RfﬂfﬁTl) )
* *(2) _ 2 « (3 *(2)
1o <RM¢—>T1MTQ]._1—>TQj> - QTQJ‘—I_)TQ]‘ +Rf,T1—>TQj71Et (RM,HTI) - 2Rf7t_>TQj_1RfaTlﬁTQj_lMt—)Tl

2 2
_2Rf,t—>TQj_1 Rf,T1—>TQj_1 Rf,t—>T1 + Rf,t—>TQj71 Rf,t—>T1

We leave the proof details of these expressions in Appendix ?7. Provided that odd market risk
neutral moments and the risk neutral leverage LEV] are negative and conditions 1/7 > land

pr —1 > 1 hold, we can further bound (29) as follows:

1 #(2) 1 *(3) *
7 M, — = M, o, — LEV,
P > fit=Ty fit—Tq
R t—T1,Tn — 2 9
1— M%) — B
R?,t%Tl t—T1 t TQj71_>TQj

We then use option prices to recover the expected excess market for a fixed value J. For each
fixed value J, there is a finite set of maturities that can be considered. To avoid presenting
the results for all sets of maturities, we search for each J, the set of maturities that produces

the best out-of-sample R-squared.
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6.3 Empirical results

Table 10 summarizes the results when portfolio rebalancing is allowed. The new bound is
very close to the bound obtained without rebalancing, for all forecast horizons T;. Therefore,

it still outperforms the bound RP;_,1, and our results do not change.

7 Higher-order approximation of the equity risk pre-
mium

When using a second-order Taylor series-expansion, our theoretical results in the previous
section show that LEVY is a key contributor to the conditional expected excess market return.
In this section, we investigate how higher-order leverage measures theoretically contribute to
the conditional equity risk premium. We show that increasing the order of the approximation,
therefore allowing for kurtosis preference, generates additional terms that contribute to the
equity risk premium.

We show in Appendix C.3 that, under no-arbitrage assumptions, a third-order Taylor

expansion-series produces a one-period SDF in a three-date (two-period) economy of the

form
Eimym N T+ 2 + 27y (33)
My, E; (1 + 27, + z%l) ’

where
Q1 A2t a3t

= I0 (RM,t—m—Rf,t—>T1)+R2—(RM,t—>T1—Rf,t—>T1)2+ J2 (RM,HTl—Rf,HTl)S,
ft—=T1 fit—T fit—T

. Azt *(2) ast *(3) a3t *(2)

2%1 - RQ MT14)TN _'_ R3 MTlﬁTN + R RQ (RM:tHTl - Rfvt‘)Tl>MT1~>TN’

F.T1—Tw F T —TN Ft=Tiby Ty

(34)
where a3, = 2a; + 3as;. Using this third-order expansion, we next derive the conditional

expected excess market return and the probability of a crash.
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7.1 Equity risk premium

With the third-order Taylor expansion-series approach, Equation (33) depends on, in addi-
tion to risk-neutral variance, new terms such as risk-neutral skewness and cross-term between
risk-neutral volatility and market excess return. These additional terms, as shown below,
introduce additional high-order leverage effects in the expected excess return decomposi-
tion. To find a closed-form expression for the equity risk premium in terms of risk-neutral
moments and high-order leverages, we first define high-order leverage effects under the risk-

neutral measure as:

LES; = COV; (ruen Moy, ), (35)
* * *(2
LEK; = COV; (130 Mihry ) (36)

We then show how the equity risk premium depends on these terms in the following Propo-

sition.

Proposition 5 Up to a third-order expansion-series, the one-period expected excess market

return 1s
Dy + Doy
RPN ry = 5 37
t—T1,Tn D3’t T D47t ( )

with

2 a

o k,t *(k+1)
Dy = Y, = Mo
k=1 fit—T
a2t * a3t * 2.3 ¢ * *(2 *(2

Dot = g —LEV; + 5 —LES; + =—= (LEK; + M%) B M2, )

f.T1—TxN fTi—Ty ft=Titb e Ty

3
A ¢ k
D37t = 1 + Z k M:L%H
k=2 fit—=T
3 a a
k.t * k 2,3,t %
Dt = > =t —EMIY, + - o LEV;
k=2 f,T1 A)TN fat‘)Tl f,Tl %TN
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where as 3¢ = 2a24 + 3as, and the risk-neutral quantities LEV} MT lT, LES; and LEK}

are defined in Equations (9), (10), (35), and (36), respectively.

The proof of Proposition 5 is given in Appendix C.1.
We refer to our risk premium measure in Equation (39) as RPY%. ;. When (34) is
removed from the SDF specification (33), which corresponds to a static SDF in a one-period

economy, the equity risk premium reduces to
RPY, = == (38)

Notice that the one-period expected excess market return obeys the following decomposition

E: (Ryimy — Rpgor) = 7 RP2G, + (1 — 7)) P, (39)
with
ai,t M*(2) + az,t M*(3) + as,t M*(4)
Rfir, =T R? 1y t—T1 R3, T t—Ty
RP?;Td — fs fs (4())
=Ty 1+ az,t M*(2) + as M*(3) ’
R? Ty t—T1 R? Ty t—T1
et LRYE 4%t RESF 4 G2s (]L]EK* + M) ErME®) )
RP?S = le*TN Ry sy Rpiom Rf T1—TN ' =h n—y
a2t st (2) s (3) a2 3.t * ’
R? T1—TN = MTIHTN + E; T =Ty E MTI%TN + Rfiom R?',T1—>TN LEVt
(41)
and
a * k
1 + Z fij t(—g“l
Ty = . (42)
1 ak + *(k _ apt *(k) 42,3, *
+ Z ft~>T1 tHTl * Z leaTN MTlHTN ™ Rf,t—»TlRfc,Tl—mN ]LEVt

RP}d. corresponds to the expected excess return in Chabi-Yo and Loudis.
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7.2 Conditional crash probability

We next express the conditional probability of a crash using a third-order Taylor expansion-

series for the SDF. To derive this probability, we define additional truncated moments as

* * *(3
;o) = Ef (M, Tny i <a) (43)
* * *(2
Mt,sv [Oé] = ]Et (rMyt‘)TIMTEl)TN]lRALt—»Tl <a) (44>

We then show:

Proposition 6 Up to a third-order approximation, the conditional probability of a crash

3rd _
I o] = P (Rysr < @), s
0 A ¢ (k)
M [a] + a
t—Th [ ] Z th—>T1 t—)Tl [ ]
azt * as,t * a2,3,t *
+R2 M [ ] R3—Mt,s [Oé] + Ry i1 R2 t,sv [Oé]
H3rd [Oz] _ fT1—=Tn £, T1—TN , 15,71 =T
t—T1 -
k) a.3.+ *(2)
1+ Okt + 3 et EEM 2, Eragssr M
Z Rf t—Tq t_)Tl Z fT1~>TN Th—Tn Rf,t*)TlR?’TlﬂTN i andh! Th—TN
(45)
where az 3 = 2a2; + 3a3;.

The proof of Proposition 6 is given in Appendix C.2

When 27, is absent in the SDF expression (33), the SDF corresponds to the SDF in a

one-period static economy. Under this scenario, the probability of crash reduces to

M), [o] + 2 e M. [a)

3rd By HTI
Ht%Tl [Oé] - (k;)
1 + ak t *
Z Rf b1y t—>T1

We refer to our crash probability in Equation (46) as I, ; [a]. This conditional crash

probability in a two-period (three-date) economy is a weighted average of two probabilities

Py (Rupsm < @) = 75 H?:jTl [a] +(1 - )H;}—S)Tl o],

(46)
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with

(0 a *(1 a *(2 a *(3
M 0T [o] + g2MG), (o] + 2 M, (o] + MG, [of

H3rd — ) fit—Ty fit—T1 47
N T E .
ft~>T1 t—)Tl
=M, [o] + =M [o] + M, o]
R R s R R t,sv
H?—iTl [a] _ fNoTy leﬂTN(k) frt=Ty YT STy , (48)
14+ — M* + 92,3 LEV?
Z 1; Ty Ty T —TN Rf Ty R? T Ty t

where as 3¢ = 2as + 3a3; and 7y is defined in Equation (42)

7.3 Empirical results with fixed preference parameters

Table A3 reports the out-of-sample performance of our bound using the third-order Taylor
expansion-series for the inverse SDF. We find that the predictions are overall not better than
those of the second-order case. They are slightly worse for long investment horizons Ty, il-
lustrating the challenge of accurately estimating higher order moments for long maturities,
and slightly better for short maturities. While these results are in favour of our simpler
second-order bounds, they are likely to improve should the liquidity of longer-maturity op-

tions improve with time, yielding better estimations of risk-neutral moments.

8 Conclusion

Given its importance in financial applications, there is considerable interest in improving our
measurement of the conditional expected return on the market portfolio. Several methods
using forward-looking information embedded in option prices have been proposed in recent
years. Martin (2017), Chabi-Yo and Loudis (2020) and Tetlock (2023) measure a one-period
expected excess return in a one-period, two-date economy. We contribute to the literature

by deriving an expression accounting for intertemporal hedging.
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We, theoretically and empirically, show a significant difference between a static and a
dynamic estimation. In a dynamic economy, the SDF is a nonlinear function of the market
return as in a one-period economy. But it also depends on novel risk-neutral quantities such
as the expected future variance and skewness and the covariances between market returns
and future variance and skewness, namely the leverage effects. We show how these quantities
significantly impact the one-period conditional expected excess return on the market from
the perspective of an investor who holds the market portfolio in a multi-period economy. We
also derive expressions for the one-period conditional probability of a crash, in a multi-period
economy, in terms of risk-neutral quantities.

Our methodology provides significantly better risk premium and crash predictions and
market-timing allocations in empirical tests. We further use our measure to shed light on
the shape and time variations of the term structure of equity risk premia, which we define as
the expected excess market return as a function of the investment horizon. In a one-period
economy, Chabi-Yo and Loudis (2020) find that the term structure is upward sloping on
average and downward sloping during recessions. Our term structure slope is essentially flat
during normal market conditions and downward sloping during recessions.

While we have used the S&P 500 index to proxy for the market portfolio, our methodology
can be extended to individual assets and international markets. We leave these endeavors

for future research.
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Figure 1: Risk-neutral moments.

We report option-implied risk-neutral volatility, skewness, and kurtosis for the S&P 500
index at a horizon of one week, one month, one year, and two years. Data are weekly from
January 1996 to February 2023. Gray areas are NBER recessions.
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Figure 2: Risk-neutral expected future variance and leverage.

We report in the top graph the risk-neutral expected future volatility for the S&P 500 index.
We report in the bottom graph the risk-neutral covariance between market returns and future
variances in Equation (9). We use horizons 77 of one week, one month, one quarter, and one
year, and T = two years. We annualize each measure by multiplying by 365 . Data are

Tn
weekly from January 1996 to February 2023. Gray areas are NBER recessmns
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Figure 3: Equity risk premium.

This graph represents the different equity risk premium bounds.
bounds of Chabi-Yo and Loudis (2020), RP,_,7,, to our bound RP,_,1, 1, in Equation (8),
for T} — one month and Ty = one year. Panel B displays the percentage of the total premium
RP,_,7, v, that is not part of RP,_,1,, i.e., the fraction of the total premium that comes from
intertemporal hedging. The forecast horizon T; is of one month, and Ty = 1 year (blue) and

2 years (red).
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Figure 4: Variance risk premium.

This graph represents the expectation of the physical variance (Panel A) and the associated
variance risk premium (Panel B) with and without intertemporal hedging. The forecast
horizon T is of one month, and Ty = 1 year with intertemporal hedging.
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Panel A: Equity market risk premium
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Figure 5: Implied investors’ horizon for 77 = 4 months.

This graph represents, in Panel A, the 4-month ERP obtained with an optimized investors’

horizon. Panel B displays the implied investors’ horizon T} ,, which maximizes the in-sample
fit of our bound to the realized returns, as measured by the R? over a window of 90 days.
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Figure 6: Probability of a 10% market crash

We report the time-varying probability of a 10% stock market crash from Proposition 4
and the conditional probability term premium (C'PTF;) from Corollary 16. The top graph
reports on a horizon of T} = one month and the bottom graph report on a horizon of T} =
one quarter. We use Ty = optimal. Gray areas are NBER recessions.
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o Panel A: Probability of a 1 — a = 10% crash over a T; = 4-month horizon
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Figure 7: Probability of a 10% market crash and implied investors’ horizon.
Panel A displays the time-varying probability of a 10% stock market crash from Proposition
4. The grey areas are times when the probability of a 10% market crash is above its 80%
quantile, calculated over the 1996-2023 time period. Panel B displays the implied investors’
horizon Ty, which maximizes the in-sample fit of our bound to the realized returns, as
measured by the R? over a window of 90 days.
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Figure 8: Term structure of equity risk premium

This graph represents the term structure of the equity risk premium bounds RF;_,1,, Chabi-
Yo and Loudis (2020) (Panel A) and of our bound RP,_,7, 1, (Panel B). The forecast horizons
are 71 = 1 month, 6 months and 1 year, and Ty is set equal to T ,.
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Figure 9: Estimated preference parameters 7, and p; over the period 1996-2023.
This graph represents the estimated time series of risk aversion parameter 7; and skewness

tolerance parameter p;, for T;

1 month and varying Tn. Estimates are obtained by

applying the estimation methodology described in Section 5.1 on the whole dataset, from

1996 to 2023.
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Figure 10: Estimated preference parameters 7; and p; in telescopic estimation.
This graph represents the estimated time series of risk aversion parameter 7; and skewness
tolerance parameter p;, for 7) = 1 month and varying 7). Estimates are obtained using
the estimation methodology described in Section 5.1 on an expanding window of time. The
initial window starts in 1996 until 2006.
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Table 4: Out-of-sample prediction and allocation performance with T optimized
We report the out-of-sample performance of different risk premium prediction methods, from January 2000
to February 2023. R]-thng1 is the lower bound of Martin (2017). RP,_,p, is the second-order lower bound
of Chabi-Yo and Loudis (2020) in Equation (12). RP,_,1, 1, is the risk premia measure in Equation (8).
We report in Panel A the out-of-sample prediction R% ¢ in percent (see Equation (25)). For each predic-
tion method, we test for the significance of the R3¢ difference relative to RP;_,7, using a Diebold and
Mariano (1995) test. We estimate the variance of the differences using a Newey-West correction with 12
lags. We report in Panel B the realized mean-variance certainty equivalents using each period the predicted
risk premium and physical variance to obtain the optimal allocation (see Equation (27)). The physical vari-
ances are computed using option prices (see Appendix B.2). For each prediction method, we test for the
significance of the realized certainty equivalent difference relative to RP;_.7, using a block-bootstrap with
average block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. x, **, and * * * denote significance at the 10%, 5%, and 1% level, respectively.

Horizon T3 Txn = 1 year TN = 2 years Average across Ty T optimized
(in months) RP%%. RPi,1, RP1 .1, RP, 1, 1y RP, 7, 1y RP, 7, 1y

Panel A: Out-of-sample R?

10d —0.09 —0.07 0.04 —0.93 0.20 0.08
1 1.09 1.18 1.14 -0.37 1.39 1.73
2 1.34 1.59 2.16 1.32 241 3.84**
3 1.18 1.61 2.66 2.64 2.96 4.71%*
4 2.16 2.86 4.09 4.72 4.41 5.47**
) 3.12 4.19 5.50 6.67 5.94% 6.44**
6 3.61 4.97 6.18* 7.76 6.93* 7.26™*
9 4.32 6.37 7.01** 9.07* 8.32** 8.76**
12 4.00 6.54 - 8.78 8.32 8.44
18 2.29 6.17 - 7.66 7.66 7.66

Panel B: Out-of-sample mean-variance certainty equivalent with v = 3

10d 4.56 4.69 8.18 13.90 8.44 5.81
1 3.55 3.68 4.16 0.48 4.80 3.52
2 3.69 3.96 5.55 2.92 5.70* 6.41
3 4.14 4.54 6.39* 5.63 6.64** 9.50***
4 4.27 4.75 6.21* 4.58 6.69** 8.46™*
5 4.01 4.50 5.59* 5.60 6.16* 6.85
6 4.26 4.89 5.83* 6.78 6.78* 7.24
9 4.18 4.88 5.23* 6.53 6.15" 6.19
12 4.52 5.45 2.06 6.98** 6.72%* 6.85"*
18 4.59 5.62 2.14 6.11%* 6.11** 6.11**
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Table 5: Out-of-sample crash prediction with 7T optimized

We report the out-of-sample performance of different crash prediction methods. Each month, we use the
crash probability from Martin (2017) (IItL_OfT1 []), the one from Chabi-Yo and Loudis (2020) (I;—1 [@] in
Equation (19)), and the one from our methodology, II;_,1, 1, [¢], defined in Equation (18) of Proposition
4. Ty is set equal to the implied investors’ horizon T, at each time ¢. We compute the loss function
for Ht%Tl,TN [a] as lt%Tl,TN = _(]lRM,t%Tl <a 1Og(Ht%T17TN [a]) + (1 - ]lRI\/I,tﬁTl <Oé)(1 - log(Ht‘)ThTN [a])))
Similarly, we compute a loss function for other methods. For each method in rows, we test whether the
average loss functions are significantly larger than those of the method in columns using the Diebold and
Mariano (1995) test. A significantly positive test statistic indicates that the column-method outperforms
the row-method. We estimate the variance of the difference in loss functions using a Newey-West correction
with 12 lags. *, *x, and * x x denote significance at the 10%, 5%, and 1% level, respectively. We report on a
90% (a = 0.10), and 80% (« = 0.20) crash size. Data are from January 1996 to February 2023.

10% crash 20% crash
Ht‘)Tl [O‘] Ht%ThTN [Oé] Ht"Tl [Oé] Ht"ThTN [a]
Panel A: One week
1% o] 1.56* 1.92* 1.29* ~0.92
;7 [a] - 2.06** - ~0.92
Panel B: One month
;%% [o] 1.76** —0.97 5.71% 6.58"*
iy @] - —0.98 - 6.42***
Panel C: One quarter
HtL_O)‘% (] 4.42%%* 7.14%** 2.67*** 2.58%**
L7, [0 - 6.75%* - 2.40***
Panel D: Siz months
%%, [a] 3.91* 8.21%* 3.36%* 3714
;1 [a] - 10.54%** - 3.45%**
Panel E: Nine months
11,%%. [o] 2.66*** 5.10%** 1.48* 2.18**
i, @] - 7.18*** - 2.36***
Panel F: One year
1% o] 2.18** 2.79*** 1.25 2.02**
Iy 7, [o] - 3.34%** - 2.51%%*
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Table 6: Owut-of-sample prediction and allocation performance with 7 and p
estimated

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023. RPtL_‘:%l is the lower bound of Martin (2017). RP,_,7, is the second-order
lower bound of Chabi-Yo and Loudis (2020) in Equation (12). RP;_,p, 7, is the risk premia measure in
Equation (8). In columns (2) and (3), results are reported setting the preference parameters to 7 = 1 and
p = 2 (benchmark). In columns (4) and (5), they are kept constant over the time series of data, but the
constants are estimated. In columns (6) and (7), they are modelled as linear functions of past 3-month
returns. We report in Panel A the out-of-sample prediction R% ¢ in percent (see Equation (25)). For each
prediction method, we test for the significance of the RQOOS difference relative to RP,_,, using a Diebold
and Mariano (1995) test. We estimate the variance of the differences using a Newey-West correction with 12
lags. We report in Panel B the realized mean-variance certainty equivalents using each period the predicted
risk premium and physical variance to obtain the optimal allocation (see Equation (27)). The physical
variances are computed using option prices (see Appendix B.2). For each prediction method, we test for the
significance of the realized certainty equivalent difference relative to RP;_,7, using a block-bootstrap with
average block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed
from non-overlapping returns. *, %%, and ** x denote significance at the 10%, 5%, and 1% level, respectively.

Ty T=1land p=2 p, T estimated constant p, 7 estimated linear in past returns
RPtLj?pl RPi 17, RP 7y 1; RPisy,  RPsm7; RPismy RP 1y 13,
(1) (2) 3) (4) ) (6) (7)

Panel A: Out-of-sample R?

10d —0.09 —0.07 0.08 —0.06 0.15 0.02 —0.03

1 1.09 1.18 1.73 1.23 1.11 1.49 1.56
2 1.34 1.59 3.84%* 1.66 2.47 2.57 3.69*
3 1.18 1.61 4.71%%* 1.79 2.92% 4.66 5.80
4 2.16 2.86 5.47** 3.37 4.38 5.56 7.80**
5 3.12 4.19 6.44** 5.34 6.13 7.58 8.22
6 3.61 4.97 7.26** 6.64 7.40 8.61 9.00
9 4.32 6.37 8.76** 7.98 8.59* 9.79 10.15
12 4.00 6.54 8.44 7.68 8.68 9.36 10.10
18 2.29 6.17 7.66 8.06 9.44 9.33 11.16

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.56 4.69 5.81 5.95 8.17 6.89 8.51
1 3.55 3.68 3.52 3.35 3.64 4.83 2.69
2 3.69 3.96 6.41 4.61 6.77* 5.76 5.01
3 4.14 4.54 9.50** 5.38 8.28** 7.42 8.74
4 4.27 4.75 8.46** 5.21 7.46* 7.38 8.12
) 4.01 4.50 6.85 4.76 6.11 5.24 1.62
6 4.26 4.89 7.24 4.80 4.02 0.28 3.88
9 4.18 4.88 6.19 5.04 5.71 3.13 4.51
12 4.52 5.45 6.85** 5.71 6.61** 5.81 3.80
18 4.59 5.62 6.11** 3.67 —-0.47 2.56 1.18
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Table 7: Out-of-sample prediction and allocation performance with 7 and p
estimated, from 2006

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2006 to February 2023. RPtL_‘:ng is the lower bound of Martin (2017). RP;_,7, is the second-order
lower bound of Chabi-Yo and Loudis (2020) in Equation (12). RP;_,7, 7, is the risk premia measure in
Equation (8). In columns (2) and (3), results are reported setting the preference parameters to 7 = 1 and
p = 2 (benchmark). In columns (4) and (5), they are modelled constant and estimated on a telescopic
window of time. In columns (6) and (7), they are modelled constant and estimated on a rolling window of
five years. We report in Panel A the out-of-sample prediction R% 4 in percent (see Equation (25)). Values
smaller than -1 are not reported and left blank. For each prediction method, we test for the significance
of the R% 4 difference relative to RP,_,7, using a Diebold and Mariano (1995) test. We estimate the
variance of the differences using a Newey-West correction with 12 lags. We report in Panel B the realized
mean-variance certainty equivalents using each period the predicted risk premium and physical variance
to obtain the optimal allocation (see Equation (27)). The physical variances are computed using option
prices (see Appendix B.2). For each prediction method, we test for the significance of the realized certainty
equivalent difference relative to RP,_,p, using a block-bootstrap with average block length of three years
and 10,000 bootstraps. Realized certainty equivalents are computed from non-overlapping returns. s, s,
and # * * denote significance at the 10%, 5%, and 1% level, respectively.

T T=1land p=2 p, T estimated on telescopic window p, 7 estimated on rolling window
RPtL_(Z?pl RPi 17, RP11; RPismy RPi 1y 13, RP 1, RP 1 3,
(1) (2) 3) (4) () (6) (7)

Panel A: Out-of-sample R?

10d —0.10 —0.08 0.07 0.07 0.01 - -

1 0.74 0.87 1.97 - - - -

2 1.03 1.41 4.55** - - - 0.14*
3 0.29 0.97 5.16%** - - - -

4 1.43 2.57 6.14** - - - 0.65
5 2.65 4.35 7.39** 3.04 4.98 —0.52 4.67
6 2.95 5.13 8.29** 7.46 9.12* 5.62 5.98
9 3.11 6.55 10.01** 11.46 12.29 - -

12 2.29 6.71 9.83 10.48 11.21 1.09 2.92
18 —0.67 6.08 8.44 10.72 12.38 17.97 19.67

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.54 4.67 5.83 4.95 7.44 —2.79 —15.57
1 4.08 4.29 4.89 -3.04 —1.87 —-17.92 —12.85
2 4.10 4.45 9.71* 291 —0.68 —13.41 —7.30**
3 4.7 5.28 11.89** 2.45 9.03*** —7.66 0.03**
4 4.38 4.99 8.42 4.44 7.02 —4.76 —2.33
5 4.96 5.76 8.92 2.27 7.55 0.99 5.45%
6 4.77 5.69 8.73* 5.12 4.60 —0.13 4.65
9 5.01 6.21 6.85 8.13 7.98 —19.57 —23.97
12 5.19 6.68 8.45 —1.94 1.18 —16.32 —12.62
18 5.31 7.41 8.08** 4.40 1.19 —0.75 —4.24
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Table 8: Out-of-sample prediction and allocation performance with 7 and p
estimated, from 2009

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2009 to February 2023. RPtL_‘:ng is the lower bound of Martin (2017). RP;_,7, is the second-order
lower bound of Chabi-Yo and Loudis (2020) in Equation (12). RP;_,7, 7, is the risk premia measure in
Equation (8). In columns (2) and (3), results are reported setting the preference parameters to 7 = 1 and
p = 2 (benchmark). In columns (4) and (5), they are modelled constant and estimated on a telescopic
window of time. In columns (6) and (7), they are modelled constant and estimated on a rolling window of
five years. We report in Panel A the out-of-sample prediction R% 4 in percent (see Equation (25)). Values
smaller than -1 are not reported and left blank. For each prediction method, we test for the significance
of the R% 4 difference relative to RP,_,7, using a Diebold and Mariano (1995) test. We estimate the
variance of the differences using a Newey-West correction with 12 lags. We report in Panel B the realized
mean-variance certainty equivalents using each period the predicted risk premium and physical variance
to obtain the optimal allocation (see Equation (27)). The physical variances are computed using option
prices (see Appendix B.2). For each prediction method, we test for the significance of the realized certainty
equivalent difference relative to RP,_,p, using a block-bootstrap with average block length of three years
and 10,000 bootstraps. Realized certainty equivalents are computed from non-overlapping returns. s, s,
and # * * denote significance at the 10%, 5%, and 1% level, respectively.

T T=1land p=2 p, T estimated on telescopic window p, 7 estimated on rolling window
RPtL_(Z?pl RPi 17, RP11; RPismy RPi 1y 13, RP 7 RP 1, 1y,
(1) (2) 3) (4) () (6) (7)

Panel A: Out-of-sample R?

10d 0.38 0.45 0.86 0.61 0.79 - -

1 2.12 2.58 4.65* 4.57 4.95 2.57 3.58
2 4.07 5.30 10.26*** 9.63 10.94 6.85 11.22
3 4.91 7.36 14.00*** 15.13 17.16* 9.19 -

4 6.04 9.55 15.50** 19.71 20.88 18.95 18.10
5 6.42 10.72 16.07** 21.99 23.23 21.88 20.65
6 5.36 10.43 16.63**~ 22.56 24.52 25.60 21.27
9 2.98 10.32 17.03*** 21.80 23.44* 17.06 15.31
12 - 8.33 15.20 19.28 21.35 17.47 21.16
18 - 1.88 6.73 12.49 16.27 20.82 23.77

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.87 5.04 6.85 5.34 8.58 -3.03 —16.35
1 5.11 5.48 7.67 1.94 3.08 —9.22 —8.22
2 5.34 5.99 13.18* 9.96 6.25 —4.99 0.08**
3 6.14 7.13 15.56™** 7.39 15.84*** 2.63 5.84
4 5.71 6.80 11.45 9.51 13.29 1.55 5.39*
) 6.09 7.43 11.94% 11.20 14.59 5.26 13.43*
6 6.07 7.59 11.99* 9.76 10.83 9.65 13.86™*
9 6.23 8.18 10.77 12.39 12.90 5.57 4.36
12 6.31 8.79 12.11** 1.84 7.08** 3.24 7.08*
18 6.14 9.47 11.51%** 11.08 9.40 0.50 4.36*
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Table 9: Out-of-sample prediction and allocation performance with 7 = 1 and
p = 2, with rebalancing

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values 7 = 1 and p = 2.
RPtL_‘:gwl is the lower bound of Martin (2017). RP;_,p, is the second-order lower bound of Chabi-Yo and
Loudis (2020) in Equation (12). RP;_,7, 1, is the risk premia measure in Equation (8). In columns (2) and
(3), results are reported setting the preference parameters to 7 = 1 and p = 2 (benchmark). In columns
(4) and (5), they are modelled constant and estimated on a telescopic window of time. In columns (6) and
(7), they are modelled constant and estimated on a rolling window of five years. We report in Panel A the
out-of-sample prediction R%,g in percent (see Equation (25)). Values smaller than -1 are not reported
and left blank. For each prediction method, we test for the significance of the R%OS difference relative
to RP,_,1, using a Diebold and Mariano (1995) test. We estimate the variance of the differences using a
Newey-West correction with 12 lags. We report in Panel B the realized mean-variance certainty equivalents
using each period the predicted risk premium and physical variance to obtain the optimal allocation (see
Equation (27)). The physical variances are computed using option prices (see Appendix B.2). For each
prediction method, we test for the significance of the realized certainty equivalent difference relative to
RP,_,7, using a block-bootstrap with average block length of three years and 10,000 bootstraps. Realized
certainty equivalents are computed from non-overlapping returns. *, x*, and * % * denote significance at the
10%, 5%, and 1% level, respectively.

Ty No rebalancing With rebalancing

Log
RP,“T, RP,_.7, RP; 7 3, RP,_.7, RP; 1, 13,

(1) (2) (3) 4) ()

Panel A: Out-of-sample R?

10d —0.09 —0.07 0.06 —0.07 0.16
1 1.09 1.18 1.73 1.18 1.65
2 1.34 1.59 3.84** 1.59 3.16
3 1.18 1.61 4.717%* 1.61 3.76
4 2.16 2.86 5.47%* 2.86 4.81
5 3.12 4.19 6.45%* 4.19 5.94
6 3.61 4.97 7.26** 4.97 7.00
9 4.32 6.37 8.76** 6.37 8.75
12 4.00 6.54 8.44 6.54 8.89
18 2.29 6.17 7.66 6.17 7.66

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.56 4.69 9.75 4.69 5.34
1 3.55 3.68 3.52 3.68 2.78
2 3.69 3.96 6.40 3.96 6.51
3 4.14 4.54 9.50*** 4.54 8.48
4 4.27 4.75 8.46** 4.75 7.96
5 4.01 4.50 6.85 4.50 6.69
6 4.26 4.89 7.24 4.89 7.23
9 4.18 4.88 6.19 4.88 6.18
12 4.52 5.45 6.85** 5.45 6.98
18 4.59 5.62 6.11** 5.62 6.11
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Table 10: Out-of-sample prediction and allocation performance of the third-order
bound with 7 =1 and p =2

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values 7 = 1 and p = 2.
RPtL_‘:gwl is the lower bound of Martin (2017). RP;_,p, is the second-order lower bound of Chabi-Yo and
Loudis (2020) in Equation (12). RP;_,7, 1, is the risk premia measure in Equation (8). In columns (2) and
(3), results are reported setting the preference parameters to 7 = 1 and p = 2 (benchmark). In columns
(4) and (5), they are modelled constant and estimated on a telescopic window of time. In columns (6) and
(7), they are modelled constant and estimated on a rolling window of five years. We report in Panel A the
out-of-sample prediction R%,g in percent (see Equation (25)). Values smaller than -1 are not reported
and left blank. For each prediction method, we test for the significance of the R%OS difference relative
to RP,_,1, using a Diebold and Mariano (1995) test. We estimate the variance of the differences using a
Newey-West correction with 12 lags. We report in Panel B the realized mean-variance certainty equivalents
using each period the predicted risk premium and physical variance to obtain the optimal allocation (see
Equation (27)). The physical variances are computed using option prices (see Appendix B.2). For each
prediction method, we test for the significance of the realized certainty equivalent difference relative to
RP,_,7, using a block-bootstrap with average block length of three years and 10,000 bootstraps. Realized
certainty equivalents are computed from non-overlapping returns. *, x*, and * % * denote significance at the
10%, 5%, and 1% level, respectively.

Ty No rebalancing With rebalancing
RPtL—ngl RP,_.7, RP; 7 3, RP,_.7, RP; 1, 13,

(1) (2) (3) 4) ()

Panel A: Out-of-sample R?

10d —0.10 —0.08 0.06 —0.08 -
1 0.74 0.87 1.97 0.91 -
2 1.03 1.41 4.56* 1.44 -
3 0.29 0.97 5.16™** 0.92 -
4 1.43 2.57 6.14** 2.80 -
5 2.65 4.35 7.40** 5.14 -
6 2.95 5.13 8.29** 6.41 -
9 3.11 6.55 10.01** 9.23 -
12 2.29 6.71 9.83 10.51 -
18 —0.67 6.08 8.44 11.55 -

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.54 4.67 5.77 4.68 3.81
1 4.08 4.29 4.89 4.35 —0.99
2 4.10 4.45 9.72% 4.56 2.75
3 4.71 5.28 11.90*** 5.48 2.29
4 4.38 4.99 8.42 5.23 1.15
) 4.96 5.76 8.92 6.08 1.21
6 4.77 5.69 8.73* 6.17 2.56
9 5.01 6.21 6.85 6.81 1.32
12 5.19 6.68 8.45 7.41 0.57
18 5.31 7.41 8.08** 4.59* —12.76
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A Proofs and derivations

This section contains the proofs and derivations of the main results presented in Section 2.

A.1 Proof of Equation (2)

Problem (1) can alternatively be written as

max [, (maXIET1 (u [Wt—m\,])) . (A1)
Solving backward Problem (A1), the first step of (A1) is
max Ep, (u[Wisry]) - (A2)

w T1

Equation (A2) produces an optimal weight w7, , and the corresponding SDF has the form
My -1y = o U (Wion, (Wil Rrysry)] - (A3)
Given the optimal value, w}, , the second step solves
max Ei (Ery (u[Wisry])) (A4)
with Wir, = Wiop (W;IRTlﬁTN) . This produces a SDF of the form
Mz, = 0B, (u Wiy ] (w3 RTﬁTN)> . (A5)
From (A5), the constant ¢, can alternatively be written as

5y = Mo, (ETl (u W) ()] RTﬁTN)))_1 . (A6)
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Because parameter §; is a constant, we have §; = E;d;. Then, we exploit the no-arbitrage
conditions that allows us to move from the physical measure to the risk-neutral measure to

obtain,

b = (o () )
= E(mysm) By (LT) (ETI <u Wiy (@i RTHTN)))_I)

E, (mtﬁTl

— E (men) E! ((En <u Wi, ] (w;]RTﬁTN)))_I) . (A7)

Next, we replace ¢; by its expression in (A5) and show that

Etmt—>T1 _ 1/IET1 (u/ [Wt_)TN] (w;IRTI_)TN)> (AS)
My E; (1/Eq, (v [Wisry] (Wl Ry o1y )
Similarly, we can use the SDF (A3) and show that
IET1 M1y Ty _ 1/u/ [VVt—>TN] (AQ)
myory B (1/u [Wis,])

Our next goal is to write Er, (¢’ [Wiry] (Wil Rry—7y)) in terms of risk-neutral quantities.

Note that:

, . m Erm / N
ET1 (u [Wt%TN] (WTI RTl —TN ) > = ET;[ < Dot & shl (% [WtHTN] (wTI RT1 —TN ) )

ET1 mmp -1y MT—-Ty
Erm
— E;l (Mu/ [Wt—>TN] (W;IRTl—)TN))
mm Ty
wi By Ry 1y
B (1/u [Wisry])'

Rf T1—-T,
_ TioTy Al0
By (1/d W) (A10)

where we have used the no-arbitrage conditions to move from the physical measure to the

risk-neutral measure in the second equation, and Equation (A9) to obtain the third equation.
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Finally, we replace (A10) in (A8) and obtain

* 1
%(qmﬂﬂ>

]EtmtﬁTl . Ry 1 1y
my—my E* 1
T1 u/ [Wt T ]
E* —IN
t Ry1 1y

(1/Rymmy) /B (1 Ry o)) iy (W )

B (((1/Rf,TﬁTN) JE: (1) Ry, 51y ) B, (W)) |

Since there is no interest rate risk, 1/R¢ 1y = Et (1/Rf 11y ), this last expression sim-

plifies to
B (u/ [WtRf,t%TN])
Etmt%Tl — h u’ [Wt—VTN:I (A]_l)
mon g (g (e )Y
PN W [Wisry
This ends the proof.
A.2 Proof of Equation (3)
We first use the identity
Emesr, musm
E, (Rysm) = B, (RkaTl e oy ) (A12)
mysr Eemgsm

Hence, and

E E
Rz, = COV? (M Rt_m) +E; <M> E: (Risr,).

M1y My

Notice that Ej (M) = 1. This ends the proof.

mi—Ty
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A.3 Proof of Equation (4)

Assume that the gross return on the market can be used as the proxy for the return on

Wt—»TN

the aggregate wealth, Ry 1y = —7 and Ry = Wy sy

Wt%Tl

and adopt the following

notations & = Rarsm, o = Rper, Y = Rupr—ry, and yo = Ryery /Rpssr, = Ry -

The inverse of the SDF (adjusted by its mean) is

E:my_m, _ ]E:}l (f [a:,y])
mesr, Ep (By (f[z,9])

(A13)

where mp, 1, is defined in Equation (A11) and,

Flo,yl = u' /[thoyo]'

u' [Wizy]
We adopt the following short notations. First, we use f, and f, to denote the first partial
derivative, f,, and f,, the second partial derivatives, and f,, the cross-derivative all evalu-
ated at (xg, ). Second, we denote as u', ', and " the first, second, and third derivatives
of u[-] evaluated at (zg,y0). We perform a second-order Taylor expansion series of f [z, y]
around (z,y) = (xg,yo) as,

Flrl & 1 (= a0) fot g1 (= w0) fy + o (2 = 20)

1

_’_5 (y . y0>2 fyy + ; (I — 1'0) (y - yO) f;tya
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where:

’

fac — @fy — i <_ (Wt$oyo) UH)

Zo ZTo u
= 1 ( Wt:toyou"> N 1 (thoyou”)Q (2 umul>
xy ToYo u Z0Yo (u')? W')?)’
7\ 2
£ = y_g _ 1 (VVtxoyou ) . oy
TT x% yy ($0)2 (ul)Q (UII)Q

Note that f,, = fy. Thus, we obtain,

fle,yl =~ 1+%%($—I0)+i%(y—%)
1 (1—p) )2 1 1=p), )2
(x0>2 TtQ ( D) + (y0)2 th ( Y )
L1 20 p)
+M <;t + T—E) ( —0) (¥ — v0), (A14)

where 7; and p; are defined in Equation (7). Replacing z, z¢, y, and yo by their expressions

and using preference parameters a; and ag defined in Equation (6), we obtain,

* a ) a 9
En (fley]) = 1+ R, :T (Baraom — Ryppsry) + RJCT% (Bpri»1y — Bynioy)
) 1 41 N
a a *
+$2 (RM,t—)Tl - Rf,t—)T1)2 + 2 QETI ((RM,T1—>TN - Rf,T1—>TN)2)
(Rptor) (Ryms1y)
a1 + 2a
+% (Rarisn — Rpeom) (Rpmomy — Rymsry) - (A15)
f7t—>T2
Thus, E7, f [z, y] simplifies to
U [WiRsoyr Ry 7y] )
E: flz,y] = E: ) : =) =1+ 2, Al16
Tlf[ y] n (U [V[/tRM,t—)TlRM,TI—)TN] n ( )
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where

Ayt (RM,HTl - R ft—Ty ) a2t a2t

2
+ B} (RM,t—)Tl - Rf,t—)Tl ) 2
Rf,t—>T1 Rf,tﬁTl R T —TN

M, £A17)

ZT1

We then replace Equation ((A16)) in (A13). This ends the proof.

A.4 Proof of Proposition 1

Given (A16), We replace (A13) in the expected return expression identity (3) and obtain.

1+ 21
E: (R - R =COV; (R — ).
t ( M,t—T, f,t—)T1) t ( Mt—T1, 1 I E;;ZTl )

We then replace (A17) in this expression, expand the covariance term and obtain the desired

result. This ends the proof.

A.5 Proof of Corollary 2

The expected excess return can be decomposed into

a ot *(2) al,t *(2) a t *(3)
L+ =My T M T My
E, (R R o fit—Ty fit—=Tq fit—Ty
t( Mt—T; — f,taT1> - 1+ a2t M*(g) N as E*M +(2) 1 + azt M #(2)
7 t—T1 R? Ty —Tx T —TN f Ty t—T1
#E*MT ) r ot RV
4 T Ty 177IN T Ty
2) az,t *(2) az,t *(2)
14+ o2t M + m——EM ——EM
By, t=Ty =T R}, T TN h=Tn R}, T >Ty =T

Setting
2)
1+ a2t M*(
7.(_* _ R?‘,t—>T1 t—T1
t 1+ az ¢ M*(Z) + az¢ E*M *(2)
R?,taTl t—T, R? T Ty t—T1

ends the proof.
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A.6 Proof of Proposition 4

Under no-arbitrage conditions, we use the Radon-Nikodym theorem. It allows us to move
from the physical to the risk neutral measures and express the conditional crash probability

as

my—m EtmtﬁTl

Py (Rypor <a) = E, ( 1r <a)
7 Emy—r mum M=t

E
— ]E;‘ ( Mty ]]‘RM,t—>T1<01) . (A18)

mtA)T1

We then replace the inverse of the SDF by Equation (4) in the conditional crash probability

to obtain,

]P) R . Er (:H‘Rlbl,t%Tl <a) + Er (le ]]'RJ\Lt"Tl <Oc) + Er (25}—'1 ]]‘RM,t%Tl <O‘)
t ( M ,t—Th < Oé) - az,t *(2) az ¢ ar*(2) ’
1+ M + m——FE/M

Rf‘,t%Tl =T R?‘,TlﬁTN T—=TN
(A19)
where
E; (27,1 ) = M B ((R — Ry 1 )
t T LRyt <o Rf T t M, t—T fit—=T1 Ryt <o
7t*> 1
a2t * 2
+R2 Et ((RM7t—>T1 - Rf7t—>T1) ILRM,taTl <a> )
fit—T
a2t *(2)
* v . y *
IE:t (ZTl ]lR]w,t—>T1<a) - RQ Et (MTlﬂTN]lRM,taT1<Ol : (AZO)
fT1—Tn

68



B Estimation of moments

We provide closed-form solutions to the risk-neutral and physical moments used in our anal-
ysis. In many cases, we use the spanning formula of Carr and Madan (2001) and Bakshi and
Madan (2000) to evaluate the risk-neutral expected value of a twice-differentiable function

of the underlying asset price, H (Sz,) as

EiH [St,] = H[SiRpin] +E{Hs [SiRper] St (Raisty — Rpaory)
Ryt

00 St Ry 11y
+Rf,taT1 [/ Hgg [K] C, [K]dK—i—/ Hgg [K]Pt[K]dK ,
S, 0

(B21)

where Hg and Hgg are the first and second derivative of function H(-), respectively. We
evaluate the integral terms via numerical integration using the 1,000-point moneyness grid

described in Section 3.2.

B.1 Closed-form expressions for M:@T] and E; <Rﬁ4,t _)Tj>

To evaluate the risk-neutral moments of order k, Mi@,’j and Ef <Rﬁ/[7t %Tj>, we set H (STj) =

k k
<SS—T; — Rf,HTj) and H (STj) = <Ssi:> in Equation (B21), respectively. Then, we use

options with maturity 7j to evaluate Equation (B21).

B.2 Physical variance

In this section, we provide expressions for the option-implied physical variance

Ey (Rareon, — BeRariosry)” = By (Rarussr, — Rpasny)” — (By (Rasesty, — Rpaom))”
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We already have an expression for E; (Rys—r, — Ryt ). Note that

EtmtﬁTl

By (Rarsosty, — Rpvosm)” = Ef { (Ratosr, — Rf,HTf} .

mt—>T1

Using the second-order approximation in Equation (4), we obtain

2) ai.¢ *(3) as.¢ *(4)
M =t M + 2t M
t—T + Ryt r, =T R?‘,t%Tl t—T1

a * *(2 wR k(2
iz (LEK; + M5 EMG 2 1, )
f,T1—=TN

E¢ (Rarism — Rf,HTl)Q = (B22)

2) a2t *(2)
1+ 2 M)+ 2 EfM
Rf,t—)Tl t—T1 Rf,T1—>TN t T —TnN

B.3 Closed-form expression of LEK}

Notice that

LEK; = COV; (Rueor — Rpn)?, (Rumoty — Remory)’)
= E; (Ruesty — Rpaon ) By (Rumory — Rymoty)?)
_M:S%HEIE;H (RMyTl*)TN - RﬂTlﬁ‘TN)2

= 0,VAR; ((Raeom — Rpin)’)

because

E;”l (RM,T1—)TN - Rf,T1—)TN)2 = 9t (RM,t—)Tl - Rf,t—>T1)2

Hence

eK; = o (M, - (%))
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B.4 Closed-form expression of E; M;(l?iTN and LES;

We can write E; M*T(l?iTN and LES] respectively as,

* *(3 *
EtMT(llTN = E; (Rumoty — Rimory)’)

* * *(2
= Et (R%,Tl —>TN> - R?,Tl —Tn 3RfyT1 —Tn Et MT(1 l}TN ) (B23)
and

LES; = COV; (rarem, My, )
= E; (rmion (Rurory — Rf,TﬁTN)?’)
*(2)

3 3
= _Rfyt%ﬂ Rf,T1—>TN - RfJHTl]E:M;‘(llTN - 3Rf’t‘>T1 Rf:TlﬁTNE:MTlaTN

3Ry 1,1y LEV; + E; (Rugeor R%TIHTN) . (B24)

To obtain LES}, we need to evaluate the terms E; (Rasy—n Ry 7,1, ) and EIM}EZZTN (The
terms I\\/JI;EQTN and LEV} have been derived in the main text). To do so, we assume that the
term B3, (RY; 7,1y ) — B} 1,1, 18 & nonlinear function of a function g of Raryr, — Ryimy

as

Ei}l (R?\4,T1—>TN) - R?‘,T1—>TN = %9<RM,t—>T1 - Rf,t—>T1) + U, (B25)

with Ef (ve| Rarewr,) = Ef (v;) = 0. Multiplying both sides of Equation (B25) by R3;, 1,

and taking the time-t risk-neutral expectation, we obtain,

*(3 *(2 *(3 *(2
Mtg%—b + 3Rf7t‘>T2Mt(~>%—‘2 - R?“,Tl—)TN <Mt(~>%—‘1 + 3Rf7t‘>Tl Mti%—‘l)

Ve = " (B26)
[ (R?W,t—)Tlg(RM,t%Tl - Rf7t—>T1))
If we use g(Rasi—1, — Rpir) = Ry p,, we obtain
*(3 *(2 *(3 *(2
Mt(—>%“2 + 3Rf7t_>T2Mt£>%12 - RS,T1—)TN <Mt(—>'.)T1 _I_ 3Rf7t_>T1 Mti%ﬁ)
Tt = ) (B27)

]E:fk (R?W,t—ﬂﬂl )
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Taking the expectation of (B25) under the risk neutral measure,

]E: (R?W,T1—>TN) - R?,T1—>TN = ’Yt]E: (R?W,t—}'lﬁ) ) (B28)

Multiplying both sides of Equation (B25) by R, and taking the time-t risk-neutral

expectation

E: (RM,t—>T1 R?W,Tl *}TN) - Rf,t_>Tl R?,Tl HTN + ’VtEr (R;IW,tHTl) : (B29)

Therefore, using Equations (B23) and (B24) we obtain Ef M;(?’) 1, and LES; as,

1—
Et MT(l—)>TN = %fEt (R?\/[,t—>T1) - 3Rf7T1_>TN]EtM ®

Ty —TnN>

and

LES; = B} (Riin) — RpeonEMEY, 1 — 3Ryyom Rpr o EIMG, 1 — 3Ry py o, LEV;

Ty —TnN

To compute the physical variance, we also need the following moments which we obtain using

a similar approach:

E; (Rarisn — Rruom)’ (Rumory — Remioty)’ = Ef (Rusr — Rpn )’ Er (Rumory — Remioty)
Using expression (20)
ET (Rur—ry — Rf,T1—>TN)2 = 0; (Rmp—m, — Rf,t—>T1)2 + €y,

it follows that

E; (Ryior — Rf,t—>T1)3 (Rmr—1y — Rf,T1—>TN)2 = 0,E; (Rasssmy, — Rpsory)’
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Further,

E;ﬁk (RM,t—>Tl - Rf,t—>T1)2 (RM,T1—>TN - Rf,T1—>TN)3

* 2 53
= Et (RM,t—>T1 - Rf,t—>T1) RM,T1—>TN
3 * 9
_Rf,T1—>TNEt (RM,t—>T1 - Rf,t—>T1)
* 2
+3R% 1y Br (Ruusmy — Rpvsn)” Ry oy

* 2 2
_3Rf7T1—>TNEt (RM,t—>T1 - Rf7t—>T1> RM,T1—>TN

which simplifies to

2 3
E;ﬁk (RM,tﬁ)Tl - Rf,tA)Tl) (RM,Tl —Tn — Rf,Tl *)TN)
2
- E: (RM’t‘)Tl - Rf:tg)Tl ) E;l R%J,Tl —Tn
+R3,Tl *)TN M* (2)

t—T1

* *(2
_3Rf»T1*>TN]Et (RM,t%Tl - RfﬂHTl)2 MTELTN

Since

* 3 _ 3
ETl RM,T1 STy — N RM,t—>T1

It follows that

E: (RM,t%Tl - Rf,t%Tl)Z (RM,TlﬁTN - ~R‘]C,T1~)TN)3

= /Vt]E: ((RM,t—>T1 - Rf,t—>T1)2 R%J,t%Tl)
*(2
+R§,T1%TNM 2

t—T1

* 2 *(2
—3Ry 1 1y Ky <(RM,t—>T1 — Ryisry) MTE l,TN >
Th—TN

where expression Ef ((RM,t—>T1 — Rfvt_>T1)2 M) > can be derived as follows:

x 2
(Raior, — Rf,t—>T1)2 MT(IQLTN =0 (R — Rf,t—>T1)4 + (Ryviosr — Riromy) eny
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and

E; ((RM,t—>T1 — Rpiomy)’ Mi}ﬁﬁ) = 0,E! (Ryeory, — Rpvosry)* +Ef (Ryser, — Rpvosry ) ey

= 0,E! (Ryemry, — Rpoosry )t

B.5 Closed-form expression of M:@Tl [a]

Recall that M:ﬁfr}l a] = E; {(RM,t—>T1 — Rpoopy)” Lsy, <a5t}. Therefore, we set H [x] =

k
<S% — Rf’HTl) in Equation (B21) and obtain,
. aSt
M%), [a] = H[aS)P;[Sr, < aS] — Hs[aS)] Ryer, Py [0S) + Ryeon /0 Hes [K) P, [I] dK.

B.6 Closed-form expression of K} (T%M —>T1M§F(1]€—)>TN 1 RM’HTKQ)

We use Equation (22) to obtain the required expressions when k = 2. First, we have

* vk *(2 *(2
M, (0] = B (M2 0, Lrr <o) = 0M;C), [a], (B30)
and
* Tk *(2 *(3
M, [o] = Ef ((RM,t—m - Rf,teTl)MT(llTNﬂRM,HTga) = QtMtigﬁ [a] . (B31)

Next, we can write the future third central moment as,

*(3 * *
MT(l—)>TN = ETI (Ri/[,Tl—»TN) - R?‘,T1—>TN - 3Rf7T1_>TNET1 (R?M,TI—WN) + 3R?‘,T1—>TJ\(B32)
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Multiplying this expression by Lg,,, ;. <o and computing the time-¢ risk-neutral expectation,

we obtain,

* * * 3 *
Mt,s [ ] E (MTllTN]lRM t—Ty <Oé) = %Et (R?\/l,taTl ]lRM,taTl <a)

_?)R)”,Tl—>TN]E;‘,k <(MT(1—)>TN + Rf T1~>TN> ﬂRJ\l,t%Tl <a)

+3Rf T1‘>TN]E* (ﬂ'R]\/[,t%Tl <cx) )

3 2 *(1
= N (Mti%ﬁ [ ] + 3Rf,t—>T1Mt(—>)T [ ] + 3R§,t—>T1Mt(—>%“1 [O‘]

*(0 *
+Rf t—>T1Mt(—>)T1 [a] ) - 3Rf7T1—>TNMt,u o],

where the second equality is obtained using Equation (B25).

B.7 Closed-form expressions for Nt(_g) (ko] and NU s _}T [Ko.t]

Observe that

N koy) = Ef {(Rarpon, — Rypor)" GO}

Sr, " S K
- m{(F-men) (5o 0) s

= E: {H(C) [STI] 1ST1>KO}

where

S "/S K
’H(C) [STl] _ ( 57;1 _ Rf,t—>T1> ( 5«7: . ?:l)

The Spanning formula allows us to write for j € {c, p}

HD S]] = HY [Ko] +HY [Ko] (S, — Ko) + | HUL[K] (S,

Ko

Ko
+ HYL K] (K — S7,)" dK

0

5

— K)"dK

(B33)



where ”Hg) 2] is the first derivative of H(® [x] and ”Hg% [z] is the second derivative of H(®) [x].

Multiplying this expression by lg,. >k, produces

HO (S 1sy omg = H [Ko] Lsy, sio + H [Ko] (S, — Ko)™

+ | HYK] (S, — K)TdK.

Ko

We then take the expected value of this expression and obtain

N9 (hos) = Ef {H[S1y] Loy >, }
= HO[Ko|Ef sy >k, + HS Ko Ef (S, — Ko)*

+ | HYEK)E: (S, — K)TdK

Ko

which simplifies to

N ko] = HO Ko P} [Sry, > Ko] + RpemHY [Ko] C: [Ko]

R | HY K C K] dK

Ko

Next, multiplying (B33) by 1s,, <5, and using j = p (focusing on put) produces

HP (1] Lsy <y = HP [Ko] 1ST1 ko — HP [Ko) (Ko — Spy)*
/ HI K] (K — 57,)" dK

We then take the expected value of this expression and obtain

NP (ko] = EIH(M [S7,] 1y, <o

= KO]E Loy <o — HE Ko Ef (Ko — Sry)*

/ HI K E: (K — Sp,) T dK

76

(B34)

(B35)



which simplifies to

Nt—>T1 [kO t] = E:H(p) [ST1] 1ST1<KO
= HP [Ko]P; [Sr, < Ko] — Rpesm HE [Ko] Py [Ko]

Ko
+Ryim / HY) (K] P, K] dK.
0

Next, let’s compute NU ' —>T1 [ko,t]. Observe that

Nv t—>T1 [k‘o t] E: |:M;(172TN13T1 >Kp (B36)
If
MT1—>TN GG (Raryssmy — Rpeom) + nny with Ef [n7y | Raresn] = 0 (B37)

where ¢; and the function G™ () is known, it follows that, using (B37), (B36) can alterna-

tively be written as

*x(n,c * n S 1
NG ko) = GE; [g( ) ( ;; - Rf,t—>T1> Lsy, >K0:| (B38)
Since (; is known, the risk neutral quantity Nv(f Ty [ko+] can be computed as

GO [Ko| Py [Sry, > Ko) + Ry G [Ko) C; [Ko]

Nv t%Tl [/{70 t] = C
+Rf t—=T fK g ] [K] dK

The proof is similar to the proof of (B34). Similarly

S
N2, Bl = GE7 [0 (52 = Ryaom ) ey <o (B39)
t
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and

N 7p) [kf ] g g(p) [KO] ]Pt [STl < K()] - Rf t%Tlggp) [StKO] Pt [KO]
0,t] —

v, t—T1

+Rppom Jy ' G8% [K] P [K]dK
C Implications of high-order leverage terms

C.1 Conditional expected return with high-order leverages

Proof. The expected excess market return is

EtmtﬁTl

Et (Rt—>T1 - Rf,t—)T1) = (C@V;k ( ) (Rt—>T1 - Rf,t—)Tl)) .

mt%Tl

We then replace the inverse SDF by its expression and obtain

1 -+ s + Z%l
(R —R
1 + E;ZTl —’—E?Z% ( M t—T f,t%Tl)
COV; (21, rai—r, ) + COVY (z%l, rMHTl)
L+ Efzr + Epzp,

Et (Rt*)Tl - Rf,tA)T1) = C@V: (

Setting rart1 = Ry — Ryir and using the definitions of z7, and z7,, it follows that

asg.t
* _ * ) * 3
Eizr, = R - E 7’M o1 T R [ TMt—Ty
ft—T ,t—)Tl
az ¢ a3t #(2)
* U . ) * * ) *
E; I E MT1—>TN + 53 E MT1—>TN + R R? E; TM,t—>T1MT1—>TN
f T —TxN fT1—TN ft=Titbe Ty
and
* o * s * *
Et ZTl (RMzt_)Tl - Rfvt_>T1) - R E TM =T + R2 Et TM,t—}Tl + R3 ]E TM,t—>T1
[t—=Th fit—T t—=T
a1t #(2) st *(3) ast *(4)
= R Mt—)Tl + RQ Mt—)T1 + R3 Mt—)Tl
ft—=T ft—T) fit—T
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and

* U az, * * *
Et ZT1 (RM,t_gw - Rf,t—)Tl) 2 2t C@Vt <7"M,t—>T17MT(12_)>TN> + —C@V <7"M,t—>T1,M ) )

T1—T;
Rf:Tl =Ty R?“ Th—TyN o
+ R R2 <C@Vt (TM,t—)T1 ) MTl A)TN) + Mt%Tl]E MTl *)TN>
Ft—=Th fTh—TN

This ends the proof. =

C.2 Conditional crash probability with high-order leverages

Proof. The probability of crash is

E
H?EZTl[ ] E* (MlRMt4T<a>

mymy

We then replace the inverse SDF by its expression and obtain

E; ((1 + 2 + Z%l) 1RM,t—>T<C¥)
1+ Efzr + E;“z%l
Er (1R1M,t~>T<O¢) + E?f (ZTl]'RM,t%T<OC) + Er (Z%llRM,tﬁT<Oé)
1+ Ejzp + E*z%l

G,t k
M; ), o] + z e M), o] +

H?SlTl [a]

f t—Tq
a a a
o —M, [a] + M [o] + g———M,, [0]
- f,T1 =Ty f T =Ty Ft=T1V T 5T ’
k) Gk *(k) a2,3.¢ * *(2)
1+ Y 2 MW 4 E:M + 3, Eiraesm,M
Z t—>T1 Z f T Ty T —TN Rftomy Rf,TlﬁTN t s 1T =T

This ends the proof m
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C.3 Proof of Equation (33)

Consider the partial derivatives

2 (th‘oyoun)g u///u/
fzzy 2 N2 2 - 11\ 2
(o)  (u) (u")
12 ! " " 1" 3
1 W,zoyo)? W,
+ 2 6( txoyO), g - (Wtono)S u_/ - 6—( tCEO;yggu )‘ )
(0)” Yo (u) u (u')
3 3 " m 3 W, 3 1\ 3
frw = Dogp 1 6(VVtﬂﬁoyo) uu  (Wiroyo) u —6( iwoyo)” () ‘
TTT xg yyy (CCO)S (ul)2 ul (ul)3

Thus, a third order Taylor expansion-series yields

f[x,y] = f[x’y]Qnd
1 (ke +1—2p,) 3 1 (ke+1-—2p) 3
(;[‘0)3 Ttg (x — )" + (y0)3 Ttg (Y —yo)
1 2 1 — Pt 3 t + 1 - 2 t
+($0)2yo ( ( 7} . - . 7 - )> (== x0)2 =)
1 2(1—pi) | 3(ke+1—2p

]2"d is the second order Taylor expansion-series in Equation (A14).

where f[z,y
Replacing z, xg, y, and yo by their expressions and using preference parameters a;, as,

and ag defined in Equation (6), we obtain,

aig alg

E;l (f [(E, y]) = 1+ R (RM,tﬁTl - Rfytﬁﬂ) + R— (Rf»TIHTN - RfyTlﬁTN>
fit—=T1 f,T1—TN
a a .
+$2 (RM,tHTl - Rf,tA)T1)2 + 21 QETI ((RM,Tl%TN - Rf,TlﬂTN)2)
(RfytHTl ) (RfyTlﬁTN )
ai: + 2a
M (RM,t—>T1 - Rf,t—)Tl) (Rf,T1—>TN - Rf,T1—)TN)
Rf,t—)Tg
a a
> 5 (Rar—r — Rf,HTl)g + 2 sET, ((RM,TlaTN — Rf,TlaTN)g)
(Rf o) (Rf1—1y)
2@2’15 + 3@3,,5

2
R 7R (Rt — Rpoosm)” (Rensmy — Rymo1y)
fit—=T1 T —TN

2a9; + 3a *
21 e 2]ET1 ((RM,T1HTN - Rf,T1%TN>2) (RM,tﬁTl - RfytHTl) (041)

Ryior (Rymoy)
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which gives the desired result when interest rates are deterministic.

D Online Appendix

D.1 Volatility Dynamic Implied by (20)

To further show that our formulation (20) is different from the GARCH (1,1), we use the

closed-form expression of 6, displayed in (21) and show that
M:(j)TN = etE: R?M,Hﬂ (RM,HTl - Rf,HTl)2 + R?‘,TlﬁTgM:(j%“l‘ (D42)
Since R%;, 7, = (Rareost, — Rpaosmy)’ + 2Raremny Rpvor, — B3y, it follows that
E; Ry om (Ration, — Rpeon)? = MG + 2R M) + RS, MG
We then replace this expression in the RHS of (D42) and obtain

*(2 *(4 *(3 *(2
M 2 = QtMt(—y}l + 2Rf7t_>T1 HtMt(—Y}'l + R?,T1—>TN (et + 1) Mt(—>%“1'

t—Tn

This shows that the process of M:® s different from a GARCH dynamic. To check

t—TNn

*(3) =0

similarities with the GARCH process, let’s assume for illustration purpose that M, }7,

t—T1

2
and M?ﬁ‘gﬁ =3 <M*(2) ) then
2
M, =30, (M3 ) + By (60 + MG, (D43)

t—Tn

Expression (D43) is reminiscent but distinct from the GARCH process.
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D.2 The case with consumption

In this section, we introduce consumption in the representative agent problem. Under the
minimal assumption that (i) odd risk neutral moments are negative, (ii) preference parame-
ters satisfy the restrictions as; > 0, asy <0, agy > 0, azs; > 0 (see Eq), (iii) consumption-
wealth ratio is positively related to the market return and (iv) the correlation of the square
of the consumption wealth ratio and market return is negative (condition reminiscent of
market coskewness), our measure of expected excess return remains a lower bound to the
true measure of market expected excess return.

To proceed, we start by having the representative agent solve the problem

max [, { max {Er,u [W,HTN]}} :
Wt,Ct Wy ,CTy
where the terminal wealth is
Wt—>TN = (1 — CTl) VVT1 ((JJr}l RT1—>TN) with VVT1 = (1 — Ct) Wt (W;Rt%ﬂ)
and ¢; is the consumption wealth ratio. The terminal wealth can alternatively be written as

Wt%TN = (1 - CTl) (1 - Ct) Wi (ngt*)Tl) (w;} RTlﬂTN) :

For simplicity, we assume no interest rate risk. Notice that the SDF is given by the identity:

Etmt%Tl _ UTl
M1y ]EZK (UTI) ’
where
% U/ W T . —
U, = ETl M with Wt—)TN = WtRf,t—>T1 Rf,T1—>TN' (D44)
u [Wt—>TN]
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We set

Ryror = Wi Risry, Rum sy = wi Ry oy, cony = (1 — o) (1 —¢) (D45)

Next, we define

X = CGny, Y= w;ﬁrRt—>T1> zZ = w;"l RT1—>TN (D46)
xo = 1,y0=Rsism, 2o = Rymory (D47)

and set

X = (X7Y7Z) and XO - (X07y07Z0) .

Notice that 0 < ceyy < 1since 0 < ey <1 and 0 < ¢ < 1. Now, assume that the utility

function is well-behaved and admits high-order derivatives that exist. Denote

n [Wt—)TN]
G- L IN]
u [Wisry]
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D.2.1 Second-order Taylor expansion-series

A second-order Taylor expansion of G around X = X, gives

WtZOUN [Wt—mv]
W Wy

WtYOZOUH [Wt—mv}
o Woor]

G = 1—(x—x0) —(y = o)

= m N 2
(- ) Wty/(]'U/_[WtﬁTN} n EWE g g [WtﬁTN] n 2 (lf BVIHTN]Z (x — XO)Q
U [Wisry ] 2 u [Wisry ] (v [Wisty])
/// " 2
_|_1Wt2zg _ [Wt%TN] + 2 ( [WtﬁTN}) (y Vo )
2 [W'HTN} ( [Wt—>TN
_i_th yO rt%TN} + Wt—)TN
2 u Wt—>TN] u WHTN
" WtaT ] ( [WtHT )2
+Wiyoxoz] <_ T p (x —x0) (¥ — o)
t ’ [Wt_VTN] ( [Wt—>TN] )2
’G ’G
+ (aXaZ)X:XO (X - XO) (Z - ZO) + <8yaz XX, (Z - ZO) (y _ YO) .
Notice that
E7 (z —29) =0
and
E7 (x —X¢) (z—20) = (x—x0)E7 (z—120) =0,

E% (z—20)(y —yo) = (y—Yo)Ep, (z—12) =0.
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We use these expressions to simplify (D44) as

WtYOIZOU” [WHTN} (% — %0) — (¥ — Yo I/Vtz?u” [WHTN}
u WHTN} U WHTN}

v [Wiory] | (” THTNQ) (x — %)’

+=-W¢yozs | ——

)
" ” 2
g (—u Wer] | 2 [Weory]) )
2

Uy, = 1-—

u Wt—)TN} (u WHTN
1Wt2 2 <_ " [Wt—>TN] + ( Wt—>TN

_'_ —
2 [W'HTN} ( WtHTN

—l—W y0X0Z0 (_ rtﬁTN} + ( rtHTN)Z ) x — XO) <y yo)

u' Wt—>TN} (u WHTN}

E _ZO

Yo Ty

which simplifies to

1 (L—p1)

1
v, = 14 —E% (CCtT1 — 1) + (ngt‘)Tl — Rf,taTl) + 3 (CCtT1 — 1)2
Tt TtRf,t—>T1 Ty
(1—pe) 2 (I—p) _, 2
toom (wi Ry, — Ryysmy)” + oy E%, (wl, Rry»1 — Rpn—1y)
Ty e oy F T —Ts
2(1— py) .
+ 2P g (e, — 1) (@I Ruor, — Rpaoom)
T Rym

We then exploit the notation Razy 7 = w{ Riry, Ry 1y = Wi, Ry 1y and express the

expected value of vy, under the risk neutral measure as

1 1-—
E:UTl = 1+ —E: (CCtTl — 1) + ( 2pt>E: (CctT1 — 1)2
(L—pt) (@ (1 —pr) )
—M —]E*M
+Tt2R?f t—Ty ~n T TQR?C T —Ty oy
+—C@V (CCtT17 RM t~>T1) . (D48)
Ti Rf t—T
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where

MI&% = E; (Ryvisr, — Rpsom)”

*(2) _ * 2
M7, = En (Runory — Renory)

The expected excess market return is

EtmtﬁTl my—m ]
E; (R L — R ) = E R . — R )
(Rarioin = Rygon) = B | SO D (g Ry )
. | E:m
= E; {’*—“T (Ratiom, — Rf,HTl)}
mt%Tl
(C@V: [UTU RM,HTJ
]E?UTI '
Observe that
COV; [vry, Ryypsry] = 1+ —COV} (cevry, Rvgo) + —— M,
Tt TtRf,t%Tl
1- *
+( szt) Cov; ((CctT1 - 1)2 ) RM7t—>T1)
t
(1= p1) o) (1—py)
+ ="M + ———"—LEV;
T} R?”,t—>T1 i 7} R?,Tl—m\, '
2 (1 — pt) * 2
+TE7§ ((CCtT1 — 1) (RM,taTl — Rf,t%Tl) ) . (D49)
Te L5 4y

Notice that Ef ((cct;p1 — 1) (W Resry, — Rf,t—>T1)2> < 0 because ccyy, — 1 < 0. In addition,

M ®). <0, LEV! <0, and COV? (Ryssr,, LEV?) < 0. Recall that

t—T1 —

1
—>0and 1—p, <0. (D50)
Tt

In theory, each factor risk factor in vy, positively contributes to the risk premium. Thus

each term in (D49) is positive. Assuming (D50) is satisfied, one should expect

(C@V: (CCtTl, RM,t—)Tl) > (0 and C@VI ((CCtTl — 1)2 7RM,t—>T1> < 0. (D51)
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Since 1 — ¢y, = WTI}V—;CTl is the fraction of wealth Wy, invested at 77, it follows that
1

COV; (ceiry, Raposr) = (1—ct)<c<o>v;*(

* 2 o 2 * WT1 - OTl 2
(C@Vt (<CCtT1 - 1> ’RM’t*)Tl) - (1 - Ct) C©Vt - i 7RM,7§4)T1 .

The positive sign of COV} (cciry, Ry, ) is motivated by the positive impact of wealth-
consumption ratio on the market expected excess return. Conditions (D51) are reminiscent
of the dependence between the wealth-consumption ratio and the return on the market
under the physical measure. Under the physical measure, the wealth-consumption ratio
is positively correlated to the market. Under conditions (D50) and (D51), the covariance
COV; [ury, Ryt is bounded:

11 1 , 1-
COV; [vry, Raryry] > ~M;% MM ® +MLEV*. (D52)

t—>T1 t—T1
=T Tt R3 =TT R3 T —Tn T}

Next, since car, < 1, we use (D48) and exploit (D50) and (D51) to obtain

(1—py) M*(Q) (1—py) ;M (2)

Efvp <1
thl — + Rf tHTl t—T1 + Rf T ﬁTN T —TN "
Therefore,
1 1
> : (D53)
* 1 *(2 1— %
Bom 1+ ;H—pj)Mti)Tl + B M2,

Combining (D52) and (D53), the expected excess return is bounded

1 1) (1—pt) *(3) (- *
7 TEMHTld"R? ptTMHleLRZ ptTL]EV
E, (R R > fit=Ty fit—T1 7t f,T1—=TN "t
el Byriom = Bpaom] 2 14 =pt) Pt) M*(Q) (1—pt) E*M*(z)
+ R?c . t—T1 + R?B T Tt Ty —Tn
N —T 1—~14N P

This is our measure of expected excess return

This shows that under minimal conditions, our measure of expected excess return is a bound

on the true expected excess return when consumption is taken into account.
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Next, we focus on the third-order Taylor expansion-series of the inverse marginal utility

function.

D.2.2 Third-order Taylor expansion-series

[Wt—%]

A Third-order Taylor expansion of u,[ ] arround X = X, gives
u t—To

11 11 11 1 (1—py) 2
G =1 —xy) —— — ) —— 7)) —— + — _
X0 o (7 =) o (B ) e T ()

1 (1—p) 2 1 (1—py) 2 1 2(1—p)
+yg 77 (¥ —yo)" + Z% = (z —20)" + Xo¥o 2 (x — o) (y — ¥o)

(o) w55 -,

_,_X%W (x — x0)* + %W (z — 20)° + ig(ﬂt - 72-§t +1) (v — yo)°
%X%lyo <4 (17_:2 o) + (s _T?»,pt i 1)) (x —x0)" (¥ — ¥o)
%yglx() <4 (17; ) + 6l —;,Ot * 1)) (v — YO)2 (x — o)
%zglxo (4 (1Tt_2 o) + s _T?),pt i 1)> (z — 20)” (x — x0)
%z%lyo (4 (1Tt_2 o) + 6l —;pt i 1>) (z —20)" (y — ¥o)
+6% (%)XXO (z — 20) (¥ — ¥o) (x — Xo)
+3% <%§Z)xxo (x —x0)* (z — 20)
"‘3% <%) X, (y — y0)* (z— 20)
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Therefore,

v = E*TIG
R

yi%(l ;2/%) (y — yo)? + Zlg(l Tt2pt)E* (2 — 70) + Xolyo (2 (1%—2 Pt)) (x — %o0) (¥ — ¥o)

b g e 2 e (o S

+%X%1yo (4 <th_2 p) , 6(r —;pt + 1)) (x— %02 (5 — v0)
%yglx() <4 (17—; ) " 6 (£ —T?)Pt + 1)) (y — y0>2 (% — %)
%zglxo (4(17; p) |, (e —Tépt + 1)) (x — x0) By (2 — 70)
%Zgyo (4(17; Pt) N 6 (ki —ngpt + 1)) 5 — o) Ex (2 2)

Using Eq (6) in the main text of the paper, it follows that

U, = ]E;le
1 11 1
= 1+ (xX—x0) —ai +(y —yo) —— + =502, (x — x0)’
X0 Yo7 Xo
s (v — ¥0)’ + sy (7~ 20) + ——az (x — X0) (¥ — o)
— —a Z—7 ass (X — X —
y% Y —Yo zg 2, ¢l 0 — 2,t 0)\Y — Yo
1 1 1
+—3 34 (X — X0)3 + —<a3,E7 (z — 20)3 + —as, (y — YO)3
X0 Z Yo
L6 1 6 1 )
3, a23t (x — Xo) (y —yo) + ﬁﬂaz’?”t (y —yo)" (x —xo)
6 1 N 9
+3' aggt(X—Xo)ETI (Z—Z(])
o1 v~y By (5 — )" (D54)
——a — 7 — 7
3l Z%yo 2,3t \Y —Yo) Lp, 0
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We then compute the expected value Ejvz, to obtain

Ejvp, = 14 (x—xo) x_oal’t + ;agvtEt (x —xq)°
0
L ( P+ L EIES, ( )+
o202, Yy —Yo 502, Z— 2
Yo o z; e XoYo

ag By (X - Xo) (y - YO)

1 * 1 Tk 1 *
+Fa’37t]Et (X — X0)3 + ;a;g’tEt ETl (Z — Z())3 + —3(13,25Et (y — y0)3

0 0 Yo
1 * 1 * *

+y§Xo as,3,E; (y — yo)? (x — %) + %02,3,@5 (x — x0) B}, (2 — 20)*
1 * E3

+— as 3, COV; (y,IEJT1 (z — z0)2)

ZpYo

Notice that

X—Xoﬁoa

and the following inequalities hold:

azy >0, a2, <0, azy >0, az3; > 0, (D55)

and
E; (x — %)’ <0, Ej (y —y0)* <0, E} (x —x0)* <0,
and
E; (x = Xo) (¥ — ¥o) = COV; (x — Xo,) = 0
and

E; (y - }’0)2 (x —xp) < 0 (because (x —xg) <0)
E; (x — xo) E}, (z —29)° < 0 (because (x —xg) < 0)

COV; (y,Er (z—2)°) = LEV; <0.
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This allows us to bound Efvy, as

1 1
E:UTl S 1 + —QCLQJEI (y — y0)2 + —QCLQ,JEZ(E;I (Z — Z0)2
Yo Zj
1 * Tk 1 *
+—as, BBy (2 — 20)” + —a3.E; (y — yo)°
Z Yo
+——a33,COV; (y, B, (2 —20)”) .
ZpYo
As a result,
1 1
" >
Et Uy 2

1+ ngGQ,tE: (y - YO)2 + %GQ,tEIE;} (Z - ZO)
+%a3,tE?]EEH (z —20)° + yigas,tEZ‘ (y — yo)*

+—Oa2,37tC@V: (y, E;}l (Z — ZD)Z)

1
zgy
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Next, our goal is to bound COVy (vp,,y —yo) = COV;} (vry, Ry, — Ry ). We then

use (D54) to compute this covariance as

COV; (vry,y — yo)
11

1 2
= ——VAR; A — —
Vo T (y) + X(Q)aZtC@) t((X Xo)",y YO)

1 * 1 * *
+5202:COVE (v = 0)" ¥ = ¥0) + 52,COV (Ef, (2~ 20)" ¥~ ¥0)
0 0

_|_

az,COV} ((x — x0) (¥ — ¥0),¥ — Yo)
XoYo

1 . 1 * (T
—i—gag,tC@Vt ((x — x0)3 Yy — yg) + ;ag,t(C@Vt (]ET1 (z — z0)3 Y — yo)
0 0

1 *
+}§a3,tC@Vt ((y - YO)3 Y — YO)
0

3!X0y0a23tC@V ((x —%0)* (¥ — ¥0) ,¥ — Yo)
1

3y7x a23tC@ ; ((y — y0) % (x — o), Y — ¥o)
Yox

6 1 2

3 a23t(C@ (X Xo ETl z — 7) Jy_YO)

6 1 9

+ o7 52,3, COV; (y yo) E7, (z — 2o) ay—}’o)-
3! z2yo

Notice that

COV; ((x —x0) (y = ¥0),¥ —Yo) = E} (x —x¢) (y — yo)2 < 0 (since x < xp),

and

COV; ((x — x0)? (¥ — ¥0),¥ — yo) =E; (x — x0)” (y — y0)* > 0.

We assume

COV; ((x —x0)*,y —yo) <0 (D57)
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and

COV; ((x—x0)’,y —yo) > 0, (D58)
Cov; ((y —¥0)* (x—%0),y — YO> > 0, (D59)
COV; ((x —x0) B, (2 —20)",y —yo) > 0 (D60)

These conditions are reminiscent of the sign of coskewness and cokurtosis when random
variables of interest are return. While y —yq and z — zy are realized excess returns, x — xg is
a function of wealth-consumption ratio (See (D45)-(D47)). Because coskewness is negative
(see Harvey and Siddique (2000)) and cokurtosis is positive (Dittmar (2002)) and the wealth-
consumption ratio is positively correlated to the market return, one should expect (D58)-
(D60) to hold.

Under conditions (D57)-(D60), it follows that

COV; (vr,,y —yo) = ——VAR; (y) + —asE; (y — o)’ + —502:COV; (Ef, (z — 20)”,y — ¥o)
Yo 7: Yo Zj
1 * * 1 *
+—503,COV; (E, (2 — 20)° .,y — yo) + Fa&tC@Vt ((y = y0)’.y — y0)
0 0
1 * *
+22y a2,3:.COV; ((y — yo) Ef, (z — 70)°,y — ¥o) (D61)

0Y0
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Combining (D56) and (D61) leads to

COV; [vry, Rarios)
IE,’;UT1
( o LVAR! (y) + y%oaztE: (y — YO)3 \
%aZtC@VI (B, (z—20)",y — ¥o)
+%a3’tC@VI (E% (z - 20)° Y — Yo)
+5505,.COV; ((y = 0)* ¥ = ¥0)

1+ y—lgag,t]EI (y — yo)2 + %ag,tE;‘Ei}l (z — zo)2

Et (RM,t—>T1 - Rf,t—)Tl)

Vs

v

+%a3,tEfE*T1 (z —20)° + —15a3,tE%k (y —yo)*
+—=— 2 aggtC@V ( Tl ( — Z0)2)

which simplifies to

L% + Lo WS, + drag M)

Yo Tt t—Th t—Th t—T1

+Zi2a2’tL]EV: + z%a;),’tLESt
0
E: (Ryion, — Rpiomy) > >

L+ Jap M) + Bao ByMGD, o+ Jras M,

t%Tl t—T1

+%a3,tE;‘MTg?lTN+ 7033 LEV]

We, thereafter, replace yg and zg by their expressions

1 iM*(Q) + 1 ay tM*(g) + 1 as tM*(4)
fit=T fs

Ry tr Tt t—T1 R? ) t—T1 R3 oy t—Ty
1 1
+ R2 a27tLEVt + Rg a/3 tLES:
£ T1—=TN T —TN
E; (Rai— — Rypory) > o o
1 *(2 1 pa— *(3)
1 + R?‘,ta a27tMt_)Tl + R?,TI*;T a9 t]EtMT1—>TN + R?t ' a3,tMt—>T1
1 *r(3)
+——t—ay,E:M + LEV
R? Ty 3.t YA Ty R? T1—>TNth 7 2,3,t t

-~
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D.3 1Is our Market Expected Return a Lower Bound to the Ex-

pected Return?

Setting consumption-wealth ratio to 1 in Section D.2 and using reasonable minimal assump-
tions that (i) odd risk neutral moments are negative, (ii) preference parameters satisfy the
restrictions (D50) proves that our measure of expected excess market return (8) remains a
lower bound to the true expected excess market return.

Setting consumption-wealth ratio to 1 in Section D.2 and using reasonable assumptions
that (i) odd risk neutral moments are negative, (ii) preference parameters satisfy the restric-
tions (D55) proves that our measure of expected excess market return (39) remains a lower

bound to the true expected excess market return.

E Additional performance tests
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Table A1l: Out-of-sample prediction and allocation performance reached by fixing
7 and p and estimating it, from 2000 (using 1-month returns as determinant for
preference parameters)

We report the out-of-sample performance of different risk premium prediction methods. ]“EPtLj%1 is
the lower bound of Martin (2017). RP,_,, is the second-order lower bound of Chabi-Yo and Loudis (2020)
in Equation (12). RP,_,7, 7, is the risk premia measure in Equation (8). We report in Panel A the
out-of-sample prediction R%,g in percent (see Equation (25)). For each prediction method, we test for
the significance of the R% g difference relative to RP;_,7, using a Diebold and Mariano (1995) test. We
estimate the variance of the differences using a Newey-West correction with 12 lags. We report in Panel B
the realized mean-variance certainty equivalents using each period the predicted risk premium and physical
variance to obtain the optimal allocation (see Equation (27)). The physical variances are computed using
option prices (see Appendix B.2). For each prediction method, we test for the significance of the realized
certainty equivalent difference relative to RP;_,p, using a block-bootstrap with average block length of three
years and 10,000 bootstraps. Realized certainty equivalents are computed from non-overlapping returns. *,
xx, and * * x denote significance at the 10%, 5%, and 1% level, respectively. Data are from January 1996 to
February 2023.

Ty T=1land p=2 p=2 p, T estimated
RPtngpl RP, 7, RP 1 13 RP, 7, RP 7, 12 RP, 7, RPy 1 13

Panel A: Out-of-sample R?

10d —0.09 —0.07 0.08 0.37 —1.44 0.11 0.12
1 1.09 1.18 1.73 1.15 —0.39 1.15 1.46
2 1.34 1.59 3.84** 1.30 2.09 1.42 1.98
3 1.18 1.61 4717 1.76 4.05 2.09 3.59*
4 2.16 2.86 5.47** 3.85 5.38 4.01 6.18**
5 3.12 4.19 6.44** 5.92 6.38 6.10 8.08**
6 3.61 4.97 7.26** 6.89 6.79 7.17 7.92
9 4.32 6.37 8.76** 8.98 10.35 8.59 9.35
12 4.00 6.54 8.44 9.23 9.09 8.27 9.24
18 2.29 6.17 7.66 9.70 10.65 7.72 9.29

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.56 4.69 5.81 8.50 —8.88 7.96 6.79
1 3.55 3.68 3.52 4.91 —13.24 4.40 2.94
2 3.69 3.96 6.41 4.39 —6.90 2.96 4.49
3 4.14 4.54 9.50** 4.93 1.44 5.23 7.88*
4 4.27 4.75 8.46** 5.71 1.05 5.39 6.75
) 4.01 4.50 6.85 5.80 5.17 5.66 4.41
6 4.26 4.89 7.24 4.91 1.95 4.92 2.50
9 4.18 4.88 6.19 3.58 3.91 5.48 5.03
12 4.52 5.45%** 6.85** —2.50%** —17.46 5.91%** 6.45"
18 4.59 5.62%** 6.11** —27.26*** —30.67 3.86"** 5.30**
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Table A2: Out-of-sample prediction and allocation performance reached by fixing
7 and p and estimating it, from 2000 (using 12-month returns as determinant
for preference parameters)

We report the out-of-sample performance of different risk premium prediction methods. ]“EPtLj%1 is
the lower bound of Martin (2017). RP,_,, is the second-order lower bound of Chabi-Yo and Loudis (2020)
in Equation (12). RP,_,7, 7, is the risk premia measure in Equation (8). We report in Panel A the
out-of-sample prediction R%,g in percent (see Equation (25)). For each prediction method, we test for
the significance of the R% g difference relative to RP;_,7, using a Diebold and Mariano (1995) test. We
estimate the variance of the differences using a Newey-West correction with 12 lags. We report in Panel B
the realized mean-variance certainty equivalents using each period the predicted risk premium and physical
variance to obtain the optimal allocation (see Equation (27)). The physical variances are computed using
option prices (see Appendix B.2). For each prediction method, we test for the significance of the realized
certainty equivalent difference relative to RP;_,p, using a block-bootstrap with average block length of three
years and 10,000 bootstraps. Realized certainty equivalents are computed from non-overlapping returns. *,
xx, and * * x denote significance at the 10%, 5%, and 1% level, respectively. Data are from January 1996 to
February 2023.

Ty T=1land p=2 p=2 p, T estimated
RPtLji}l RP 7 RPy 1 13 RP 7 RPy 1 13 RP 7 RPym 13
Panel A: Out-of-sample R?
10d —0.09 —0.07 0.08 0.60 0.33 0.52 —0.02
1 1.09 1.18 1.73 2.24 2.13 1.91 2.01
2 1.34 1.59 3.84** 2.45 2.69 2.05 2.75*
3 1.18 1.61 4,71+ 2.78 3.20 2.57 3.66*
4 2.16 2.86 5.47** 4.47 5.26 3.81 5.39**
5 3.12 4.19 6.44** 6.27 7.37* 6.07 7.45**
6 3.61 4.97 7.26%* 6.94 5.06 6.83 8.30*
9 4.32 6.37 8.76** 8.71 9.10 8.85 9.29
12 4.00 6.54 8.44 8.44 9.16 8.43 9.21
18 2.29 6.17 7.66 7.36 9.85 8.47 10.51
Panel B: Out-of-sample mean-variance certainty equivalent with v =3
10d 4.56 4.69 5.81 9.33 4.50 8.40 6.65
1 3.55 3.68 3.52 3.10 1.72 2.51 —0.10
2 3.69 3.96 6.41 3.69 4.27 3.36 2.85
3 4.14 4.54 9.50*** 6.49 5.74 6.38 6.45
4 4.27 4.75 8.46** 7.03 5.96 5.47 5.88
5 4.01 4.50 6.85 4.57 3.77 4.03 3.05
6 4.26 4.89 7.24 —1.76 —4.24 —2.67 —1.10
9 4.18 4.88 6.19 1.15 4.65 0.57 6.57*
12 4.52 5.45%** 6.85%* 3.74%** 1.80 3.34%** 0.20
18 4.59 5.62%** 6.11** 5.36%** —25.16 2.29%** —5.67
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