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1 Introduction

The equity risk premium—the expected return on the equity market over the risk-free
rate—is a crucial input for corporate valuation and portfolio allocation. Unfortunately, it is
also notoriously hard to estimate ez ante. Martin (2017a) shows how the risk-neutral market
variance discounted at the risk-free rate provides a lower bound for the equity risk premium,
in a one-period economy that ignores the higher-order moments of market returns. A major
benefit of his approach is that the risk-neutral variance can be computed in real-time from
observed option prices. Chabi-Yo and Loudis (2020) and Tetlock, McCoy, and Shah (2024)
extend the approach of Martin (2017a) and provide estimates for the equity risk premium
that account for higher-order risks, still in a one-period model.

Restricting the economy to a one-period economy simplifies the analysis, but at the
expense of strong assumptions. In particular, the risks of future shifts in the economic
environment, e.g., changes in the expected returns or return volatility, are ignored. Consider,
for example, a forecast horizon 77 > t. A one-period model assumes that investors choose
their portfolio allocation at time ¢ ignoring the risks beyond time T7. These risks, however,
impact future consumption. Merton (1973) shows that investors optimally seek to hedge
these risks by tilting their portfolio allocation towards assets that deliver higher returns
when consumption is negatively affected. Intertemporal hedging of risk materializing after
time 77 therefore affects demand as well as equilibrium prices and risk premia at horizon T7.

We derive novel estimates for the equity and variance risk premia, which take into ac-
count both higher order risks and intertemporal hedging. Our model features a multi-period
economy, in which the representative investor chooses the optimal allocation to the market,
to maximize the expected utility of the wealth accumulated between time ¢ and their invest-
ment horizon Ty > T;. In this economy, we derive an estimate for the equity and variance
risk premia at horizon T}, using a Taylor expansion of the inverse marginal utility. The
resulting premia depend on the conditional moments of the horizon Ti-market returns, but

also on time-t expected conditional moments of returns over [T7,Tx|. Whereas the equity



risk premium estimates of Martin (2017a), Chabi-Yo and Loudis (2020) and Tetlock, Mc-
Coy, and Shah (2024) only need options expiring at T} to forecast market returns at horizon
T1, our method extracts information from options at horizons 77 and Ty. Furthermore, we
show that the stochastic discount factor of our multi-period model nests the ones of Martin
(2017a), Chabi-Yo and Loudis (2020) and Tetlock, McCoy, and Shah (2024).

Using minimal assumptions on investors’ preferences, we compute estimates for the equity
and variance risk premia on the S&P 500 from 1996 to 2023, over horizons ranging from 10
days to 18 months. These estimates can be readily computed from option prices, in real-
time. We show that accounting for intertemporal hedging leads to an increase of the equity
risk premium, in particular during times of market calm. Intertemporal hedging accounts
for up to 80% of the total equity risk premium during these periods, and around 30%
during NBER recessions. Furthermore, our risk premium achieves higher out-of-sample R?
of return prediction than the bounds of Martin (2017a), Chabi-Yo and Loudis (2020) and
Tetlock, McCoy, and Shah (2024). For all forecast horizons T} from 10 days to 18 months, the
out-of-sample R? increases with the investors’ horizon Ty, up to a given Ty. For example,
for T} at 10 days, the maximum out-of-sample R? is achieved at 6 months. For T} larger
than two months, the maximum R? is obtained for the longest horizon for which we have
available option maturities, namely T = 2 years. This result suggests that having options
with maturity longer than two years would help us better capture intertemporal hedging, and
would improve the forecast of returns at horizons three months and more. We also construct
market-timing strategies and compute realized mean-variance certainty equivalents. These
certainty equivalents indicate that our risk premium reaches better forecasts of both the first
and second return moments, and that the improvements upon the forecasts of Chabi-Yo and
Loudis (2020) are statistically significant.

We define the implied investors’ horizon T, as the investment horizon which at each
time ¢ maximizes the fit of our equity risk premium estimate to the data. Specifically, T,

is chosen so that it maximizes the R? of returns over a window of three months [t — 3m, .



We find that the implied investors’ horizon switches between the longest available horizon
Ty, e.g., two years, and the shortest horizon Ty > T;. We further show that the investors’
implied horizon varies with the probability of a crash, which we are able to calculate in
real-time, from option prices. When the probability of a crash is high (above 10%), the
implied investors’ horizon is short. When this probability is low, the representative agent
behaves as a long-term investor. This result provides empirical evidence to the theory of
Hirshleifer and Subrahmanyam (1993), which predicts that investors’ time horizons shorten
during periods of uncertainty due to increased risk aversion and limited attention. It is also
in line with Campbell and Vuolteenaho (2004), who find that in volatile markets, investors
become more sensitive to ”"bad beta” — short-term cash flow shocks—, than to ”good beta” —
long-term discount rate changes—.

The equity risk premium using this implied investors’ horizon T3, is higher than the
one of Chabi-Yo and Loudis (2020) under normal market conditions, and achieves an out-of-
sample R? of return prediction that is about twice the one of Chabi-Yo and Loudis (2020).
This difference is statistically significant. Intertemporal hedging accounts for up to 70%
of the total premium. During market stress, the implied investors’ horizon shrinks to the
forecast horizon, and intertemporal hedging becomes negligible. The equity risk premium
hence remains roughly unchanged. Similarly, intertemporal hedging makes the variance
risk premium more negative during market calm, and accounts for up to 80% of the total
premium. During market turmoil, the variance risk premium overlaps with the one without
intertemporal hedging.

Our main results are based on preference parameters that are fixed. These results are
however robust to changes in this assumption. We estimate the preference parameters over
the period 1996-2023, in-sample. We test two different specifications: one in which the
preference parameters are constant and one in which they vary over time, as linear functions
of past returns. We show that the preference parameters in the second specification generate

the largest out-of-sample R%. However, such estimation over the full time period yields a



look-ahead bias. We overcome this issue by estimating these parameters over a telescopic
window of data, initially ranging from 1996 to 2006, and expanding with time. We find
that the resulting equity risk premium estimates do not improve upon our main estimates
in terms of out-of-sample R?, over the period 2006-2023. We also extend our estimates of
the equity and variance risk premia to third-order extensions, and study an extension of our
setup that allows the representative investor to rebalance their portfolio between times T
and T. These extensions do not allow reaching significantly higher out-of-sample R%. Our
results thus indicate that our risk premia with fixed preference parameters provide the best
overall performance: they can be computed from available option prices in real-time and
achieve high out-of-sample forecast performance. Finally, in all of the extensions, our results
on the magnitude and effect of intertemporal hedging on the equity and variance risk premia
still hold.

We contribute to different strands of literature.

First, we contribute to the growing literature that constructs bounds on and estimates of
physical return moments. Building on Martin (2017a), Crescini, Trojani, and Vedolin (2025)
use investors’ option holdings to recover investor-specific expected returns and risks. Martin
and Wagner (2019), Kadan and Tang (2020), and Chabi-Yo, Dim, and Vilkov (2021) build
bounds for the expected return on individual stocks and Kremens and Martin (2019) provide
a bound for currency expected exchange rate appreciation using Quanto index options. See
Back, Crotty, and Kazempour (2022) for a discussion and empirical tests of bounds for
individual stocks and the stock market. Our novel bound for the equity risk premium
involves intertemporal hedging demand implied from options prices.

Our intertemporal hedging term includes a risk-neutral leverage effect that is closely
related to the asymmetric volatility implied correlation studied by Jackwerth and Vilkov
(2019). They use short- and long-term options on the S&P 500 Index and options on VIX

futures to calibrate the risk-neutral correlation between returns and future volatility. As



options on VIX futures are available only starting in 2006, data availability prevents us from
using their methodology.

Second, our work is related to the Recovery Theorem of Ross (2015), which shows how
to disentangle the physical probability distribution from the pricing kernel and risk-neutral
probabilities. This work has been challenged on theoretical and empirical grounds.! Instead
of making assumptions about the pricing kernel process, Schneider and Trojani (2019) impose
sign restrictions on the risk premia of return moments and find predictive power for future
returns. Our approach differs in that we express, in a multi-period economy, the equity risk
premium and the market’s conditional variance under the phyisical measure as functions of
risk-neutral moments of returns at different horizons.

Close to us, Gormsen and Jensen (2020) use the Martin (2017b) approach with the
assumption that investors have power utility to estimate ex ante higher-order moments of
market returns under the physical measure, from their risk-neutral counterparts. Their focus
is on the behavior of estimated ex ante physical moments and their relation to proposed
macroeconomic risk mechanisms that have been proposed in the literature. Unlike Gormsen
and Jensen (2020), we do not make any assumption on the utility function.

Third, we build on the vast literature on the importance of the variance risk premium—
the difference between the physical and risk-neutral variance—for predicting the equity risk
premium (see, Bollerslev, Tauchen, and Zhou, 2009). Hu, Jacobs, and Seo (2021) show that
the leverage effect, measured under the physical probability measure, has a strong positive
relation with the variance risk premium. We derive an expression that relates the equity risk
premium to the variance and leverage effect under the risk-neutral measure.

Finally, our paper is related to the literature on the equity term structure. van Bins-

bergen, Brandt, and Koijen (2012) show that the expected one-period return on claims on

!Borovicka, Hansen, and Scheinkman (2016) show that Ross’ assumptions rule out realistic models. Bak-
shi, Chabi-Yo, and Gao (2018) do not find support for the implications of the Recovery Theorem using U.S.
Treasury bond futures. While Audrino, Huitema, and Ludwig (2019) find some forecasting power, Jensen,
Lando, and Pedersen (2019) generalize the assumptions of Ross’ (2015) model and find weak predictive power
for future realized returns.



dividends decreases in the maturity of the dividend. Gormsen (2020) shows that this slope is
countercyclical (see also, van Binsbergen, Hueskes, Koijen, and Vrugt, 2013; van Binsbergen
and Koijen, 2017; Bansal, Miller, Song, and Yaron, 2021; Ulrich, Florig, and Seehuber, 2022;
Giglio, Kelly, and Kozak, 2024). While the main object in this literature is the expected
one-period return on claims on dividends several years in the future, we focus on the term
structure of expected total market return with maturity of up to one year.

Recently, Knox, Londono, Samadi, and Vissing-Jorgensen (2025) identify equity premium
days, defined as days with significantly elevated equity premia relative to the daily equity
term structure. They show that these days coincide with macroeconomic releases, including
FOMC, CPI, and nonfarm payrolls. Equity premium events are identified using estimates
of the equity risk premium at short maturity (up to one month). Instead, we show that our
method provides improvements upon the standard estimates for forecast horizons from one
to six months and beyond.

Our paper proceeds as follows. Section 2 presents our theoretical results based on a
second-order approximation, Section 3 discusses our empirical framework to build equity
risk premium forecasts. Section 4 presents our main empirical results. In Section 5 we show
the results when estimating the preference parameters of our model. Sections 6 and E study

the robustness of our results to two extensions. Finally, Section 7 concludes.

2 Theoretical framework

In this section, we provide our main theoretical results. We derive a lower bound on the
equity risk premium in a multi-period economy, accounting for the risks of future intertem-
poral shifts in the economic environment. We further use our methodology to derive the
probability of a crash under the physical measure. We highlight the new components of the

equity risk premium and crash probabilities, compared to estimates that do not account for



intertemporal hedging. These components capture conditional moments of market returns

beyond the forecast horizon. All proofs are provided in Appendix A.

2.1 Equity risk premium in a multi-period economy

We consider a three-date (two-period) economy with dates ¢, T7, and Ty such that t < T} <
Ty.2, and a representative agent. 7T} is the forecast horizon at which we aim to build a lower
bound for the equity risk premium. T} is the representative agent’s investment horizon. We
assume that this economy is arbitrage-free, which guarantees the existence of a stochastic
discount factor (SDF) and of a risk-neutral measure. For simplicity, we assume no interest
rate risk.

At time t, the representative agent invests their wealth W, in an asset delivering the risk-
free gross return Ry, ,7,, and in a set of risky assets delivering gross returns Ry ;—,7,,k =
1, ..., N. Under no-arbitrage conditions, the expected excess return on each risky asset from
time ¢ to time T} can be expressed as the risk-neutral covariance between the asset return
and the inverse of the one-period SDF from ¢ to 71, m;—,:

(1)

* E m )
Et (Rk7t_>Tl - Rfﬂf—)Tl) - C@Vt <Rk,t—>T17 t—M) .

mt—>T1

See Appendix A.1 for the proof of this identity, also used by Chabi-Yo and Loudis (2019).
Let us aggregate the gross returns on risky assets between ¢ and 77 in the vector R;_p,
and between T and Ty in the vector Ry, 7, . At time 77, the agent rebalances their portfolio.

The terminal wealth of the representative agent at their investment horizon Ty is

Wiy = Wi (Rpamry, +w (Riry, — Ryeory)) (Rpm 1y + Wi (Rey—ry — Rpriory))

=W (w; Rt—>T1) (w;l RTI —>TN) ) (2)

2We use the notation Ty = t for simplicity.



where w; and wp, are the vectors of portfolio weights in risky assets at times ¢ and 77,
respectively. Ry p 7, is the risk-free gross return from time 73 to time Ty.

The investor chooses the portfolio weights {w;,wr, } so as to maximize their expected
utility of terminal wealth® over the period [t, Ty].* The main innovation of our approach is
that the investor considers what happens beyond the forecast horizon 77, up to the repre-
sentative agent’s investment horizon T, when solving the portfolio allocation problem. In
contrast, the equity risk premium estimates of Martin (2017a); Chabi-Yo and Loudis (2020);
Tetlock, McCoy, and Shah (2024) and Crescini, Trojani, and Vedolin (2025) are derived in
an economy in which the investor maximizes the expected utility of wealth over [¢, T}].

Provided that no-arbitrage conditions hold in this economy, and assuming that the gross
return on the market can be used as proxy for the return on aggregate wealth, we show in
Appendix A.2 that we can express the one-period stochastic discount factor (SDF) from ¢

to T17 mi—m as,

]Etmt—)Tl o UTl
M1y E; (UT1)

Ul [WtRf,HTN] >

ith =E;
w1 (% Th (ul [WtRM7t*>TN]

(3)

where E7. (-) denotes the expected value at time 7} under the risk-neutral measure, Ry,
is the risk-free gross return from ¢ to T and Ras¢— 7, is the gross market return.

The one-period SDF thus depends on the marginal utility of wealth at the representative
agent’s investment horizon 7. This result stands in contrast to the SDF of Martin (2017a),
Chabi-Yo and Loudis (2020), Tetlock, McCoy, and Shah (2024) and Crescini, Trojani, and

Vedolin (2025), which do not depend on any quantity beyond the forecast horizon Tj.

3The utility function u[.] is well-defined, its derivatives up to order four exist, and their signs obey the
following economic theory restriction: sign(u(i) [1) =sign(—1)""" (Beckhoudt and Schlesinger, 2006; Deck
and Schlesinger, 2014).

4We exclude consumption for simplicity. In the Internet Appendix G, we show that under minimal
assumptions regarding the sign of the correlation between the consumption wealth ratio and the market
return, the equity risk premium derived in this section still holds.



We do not assume that we know the functional form of the marginal utility function.> We
use a Taylor expansion series of the inverse of the marginal utility to produce a one-period

SDF of the form®
Emy o, o (14 21)
mi—n ]E: (1 + le) ’

(4)

where
Q¢ a2t A2t *(2
o = o (Baesn — Bpaon) + g —(Raresn — Rpyom)? + m——M, 1 (5)
f?tA)Tl f7t—>T1 f:Tl —TN
and M*T(IQLTN = B} (Run—ry — Rf,TlﬁTN)2 is the risk-neutral variance at time 7. The

coefficients a;4, as; and as; in the Taylor expansion series are functions of the investor’s

risk, skewness and kurtosis tolerance parameters 7;, p; and k;:

a1 = = a2t = =, azt = T3,

where

U(l) [WtRf,t—)TN]
T = = 2 ’ @)
WtRf,tﬁTNU( ) [WtRf,t%TN]

1 u® WiRp | u) [WiR ]

N : (8)
2! (u® [W,Ry sy ])”
o 1 u® [WtRf,HTN] (u(l) [WtRf,HTN])Q 9)
oL .
31 (u® [WiRpsry )

The proof of Equations (4) to (9) is in Appendix A.3.7

°In contrast, the equity risk premium estimates of Martin (2017a), Tetlock, McCoy, and Shah (2024) and
Crescini, Trojani, and Vedolin (2025) assume log utility. As logarithmic utility implies that the representative
agent is myopic, this assumption would not be suitable in our setting to study the effect of intertemporal
hedging.

6In Section 6, we extend our framework to allow the representative agent to rebalance her portfolio at
discrete times t such as T7 <t < Ty.

7Our baseline results do not involve kurtosis preference, but we define the kurtosis preference parameter
together with the risk aversion and skewness preference parameters for completeness. We will use the kurtosis
preference parameter in Section E, where we apply third-order Taylor expansion series.
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Equations (4) and (5) show that the inverse of the SDF is a function of three terms:
the excess market return, the squared excess market return, and the market risk-neutral
variance Mif_))TN at time 7. This risk-neutral variance term is new and only arises in a
two-period economy.® In contrast, the risk, skewness and kurtosis tolerance parameters in
Equations (7)—(9) differ from those derived by Chabi-Yo and Loudis (2020) but we expect
this difference to be small. They indeed involve risk-free returns between ¢ and Ty, instead
of these returns between ¢ and 77. Due to the shape of the yield curve, the risk-free returns
from T} to Ty tend to be close to 1 empirically.

We present our main theoretical result in Proposition 1 below. In this proposition,
we combine the risk premium expression in Equation (1) with the SDF expression (4) to

provide a closed-form solution to the conditional expected excess market return in terms of

risk-neutral moments.

Proposition 1 Up to a second-order expansion-series, consistent with (4), under no-arbitrage

conditions, the equity risk premium is a function of risk neutral return moments:

a17t M*(2) + agyt M*(3) + a27t L]EV:(

Rf,t%T t—T1 R? o t—Tq R?,T o

RP 1y = E (Rygsn — Rpgom) = 1 ot *(;) P ye——s ;
1 + R?,t%Tl Mt—>T1 + R?7T1*>TN Et MT1—>TN ( )
10

where
* * *(2
LEV; = COV, (RM,t—>T1 - Rf,t—>T17MT(1—)>TN> ; (11)
and

My = Ef, (Rumgor, — Rymor,)” withi <j, i=0,1, Ty=t, andn>1.  (12)

8We know from Merton’s ICAPM that shocks to risk can generate hedging demand and so can be priced.
But Merton’s ICAPM shows that market physical volatility is determinant in explaining the expected excess
return on a stock. Merton’s model argument is not about risk neutral market volatility. Strong evidence of
time-varying volatility risk premium suggests that the risk neutral market variance and the physical market
variance are distinct and carry different sets of information. Thus, our theoretical results are distinct from
implications from Merton’s ICAPM model. Further, Merton’s ICAPM was not intended to derive closed-
form expression of the risk premium on the market as a function of risk neutral correlation between market
return and market risk neutral volatility.

11



Proof. See Appendix A.4. m

Two new terms contribute to the equity risk premium in a two-period economy, compared
to a one-period economy: the risk-neutral leverage effect LEV; and the expected future
variance [E} M;EQLTN. Our conjecture is that the risk-neutral leverage effect, LEV}, is negative.
Provided that p, > 1, that is, as; is negative, a negative risk-neutral leverage contributes
positively to the conditional equity risk premium. This increase captures the compensation
required by investors for exposure to the future risk-neutral variance.’

Furthermore, under the assumptions: (i) odd market risk neutral moments are negative

and (ii) conditions 1/7; > 1 and p; > 2 hold, we can further restrict bound (10):

1 *(2) 1 *(3) 1 *
Rfior Mt—>T1 T R2 Mt—>T1 ~ R2 LEVt
RP > fit—Ty fit—T1 f,T1—TN (13)
t=T Ty = 1— 1 M*@) _ 1 E*M*(Q) ’
R,Ef,t—>T1 t—T, R,Ef,Tl TN t T1—TN

The proof is in Appendix A.5.
Finally, we show in Appendix G.2 that, when consumption is introduced in the repre-
sentative agent problem, under minimal realistic assumptions, our restricted measure of risk

premium remains a lower bound to the expected market return.

2.2 Comparison to existing bounds

The computation of the risk-neutral leverage effect LEV} and of the expected future variance
EIM*TSZTN relies on information from options of maturities 77 and Tx. In contrast, the
existing bounds of Martin (2017a) and Chabi-Yo and Loudis (2020) and the equity risk
premium estimates of Tetlock, McCoy, and Shah (2024) and Crescini, Trojani, and Vedolin
(2025) only rely on options with maturity 77.

The bound in Martin (2017a) corresponds to the expected excess return when the repre-
sentative agent is endowed with a myopic log utility. The log utility assumption corresponds

tor, =1 (a4 = 1) and pr = 1 (ag; = 0), making higher-order moments and the lever-

9There is a vast literature on leverage under the physical measure. But to our knowledge, this paper is
the first to show the relevance of the risk-neutral leverage for computing the equity risk premium.
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age under the risk-neutral measure irrelevant in a two-period economy. In case of a CRRA

utility with relative risk aversion «, an equivalent expression of (10) can be obtained by

recognizing that Equations (7)-(9) reduce to Tit =a,p=1 (ot1)(at2)

1
6 o2 . In

,and Ky =
case of a CARA utility with absolute risk aversion @, an equivalent expression of (10) can be
obtained by recognizing that Equations (7)-(9) reduce to % =y, py = 3, and Kk, = ¢ with
ar = aW Ry,

To compare our measure to the one of Chabi-Yo and Loudis (2020), we first introduce
Corollary 2, which expresses the conditional expected excess market return as a weighted

average of two risk premia.

Corollary 2 Up to a second-order expansion-series, consistent with (4), the expected excess

market return is a weighted average of two premia:

E, (RM,tﬁT1 - Rf,tﬂﬂ) = m RP 1, + (1 - 7:) R]P);;TN, (14)
where - -
Rf,tlj)Tl Mt*Tl + R} jjT Mt—>T1
RP, .z, = el , (15)
1 + 2a2,t M*( )
Rf,t%Tl t—T1
and
LEV?
RPVZATN = * 2t ) (16)
E;M; Y,
with o)
as, *
. 1 + R?‘,tj)Tl Mt—>T1 17
T = 1 EYRRY i) 2 e ® (17)
+ R?,t—>T1 t—T1 _'_ R?le_*TN t T —TnN

Proof. See Appendix A.6. m
The first risk premium RP, .7, in Equation (15), which corresponds to the measure
obtained by Chabi-Yo and Loudis (2020) in a one-period economy, involves the risk-neutral

variance and skewness of market returns.! The novelty of decomposition is the contribution

10Chabi-Yo and Loudis (2020) derive their expression using a third-order expansion-series of the inverse
marginal utility. The expression provided in Equation (15) is the counterpart of the one given by Chabi-Yo
and Loudis (2020) when using a second-order expansion-series of the inverse marginal utility.

13



of the risk-neutral leverage effect LEV; and expected future variance E;‘M;(IQLTN to the
conditional risk premium.

To derive their equity risk premium estimate, Tetlock, McCoy, and Shah (2024) assume
that the representative agent can trade the market, as well as derivatives securities that
make higher order moments of market returns tradable. While this approach seems more
general than ours, we show in Appendix A.7 that their SDF is equivalent to the one of Chabi-
Yo and Loudis (2020), and therefore a special case of ours. We further show in Appendix
A.8 that this SDF can be rewritten in the form of the SDF used by Crescini, Trojani, and
Vedolin (2025), i.e., as excess returns on a portfolio of index and options with maturity 7;.
Similarly, our SDF can be written as excess returns on a portfolio of index, options with
maturity 77 but also options with maturity T, sold at 77. The additional returns on options
with maturity Ty arise due to intertemporal hedging. The decomposition can be found in

Appendix A.9.

2.3 Intertemporal hedging demand premium

Building on Corollary 2, we define the intertemporal hedging demand premium as the dif-
ference between the equity risk premium from ¢ to 77 in our multi-period economy and the

premium in a one-period (two-date) economy.

Corollary 3 Up to a second-order expansion-series, the intertemporal hedging premium is

]HPt_>T17TN = W:Rpt—ﬁl + (1 - W:) RP;&QTN - RPt—>T17 (18)
N -— " N——
One-period expected excess One-period expected excess
return in a two-period economy return in a one-period economy

and can be alternatively written as

[HPt—>T17TN = (W: - 1) (RPt_)Tl - RP?ATN) ) (19)

14



where RP, 7y, RPY 7, 7} are defined in (15), (A28) and (17), respectively.

Under the assumption that p; > 1 and LEV; < 0, the intertemporal hedging demand
premium [H P, ,7, 7, is positive, i.e., our risk premium, RF,_,p, 7., is higher than RP,_,7,.
The differences in the shape of the term structure of risk premia depend on how I H P,_,7, 1,

varies across 7;.

2.4 Physical variance

Similar to the equity risk premium, the conditional variance can be written as a function of
risk-neutral moments between ¢ and the forecast horizon 77, but also intertemporal hedging

terms using information up to the representative agent’s investment horizon Tl.

Proposition 4 Up to a second-order expansion-series, consistent with (4), under no-arbitrage
conditions, the conditional variance of returns under the physical measure is a function of

risk neutral return moments:

Var, = E, (RM,taTl — EtRM,tﬁTlf

=E; (Ryiom — Rf,HTl)Q — (E¢ (R, — Rf,HTl))2 (20)

where By (Ryr i1, — Ryiomy) is given by Equation (10),

)

*(2) a1, #(3) a2,t *(4) a2,t x4 (2 mep(2)
t=T1 " Ry o Mt%Tl_FRQ taT1+R2 (]LEKt +Mt%T1EtMT1HTN
E (R R )2 _ T fit—=Ty fT1=TN
t( M, t—T, fit—T - 1+ ag ¢ M*(Q) N ag ¢ E*M*(2)
R2 t—T) T RZ . T =Ty
f,t%Tl f,TlﬁTN
(21)
and
2 2
LEK: - C@V: ((RM,t—>T1 - Rf,t—)Tl) 7<RM,T1—>TN - Rf,T1—>TN) ) . (22)

Proof. See Appendix A.10. =
This estimate of the physical variance presents two major advantages. First, it is com-

putable readily from available options and does not require high-frequency data, as in Tet-
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lock, McCoy, and Shah (2024) for example. Second, it is model-free and relies on minimal
assumptions, similar to our estimate of the equity risk premium.
In a two-period economy (without intertemporal hedging), the conditional variance (20)

reduces to

E; (Ryvisr, — Rf,t%Tl)Q = s . (23)

2.5 Probability of a market crash

We finally use our methodology to obtain the probability of a market crash under the physical
measure. We define the probability of a crash as P; (Ry— 1 < ) where « is given. For
example, o = 0.8 for a 20% market crash. We then exploit the no-arbitrage assumption
that allows us to move from the physical measure to the risk-neutral measure. While the
coefficient & could be time-varying or constant, we remove the time subscript on « to ease

notations.

Proposition 5 Up to a second-order expansion-series of the inverse marginal utilities, the
conditional crash probability defined as I;q, ry[a] = P (Ryisr < @) can be expressed in

terms of risk neutral quantities

*(0 a *(1 a *(2 a *
Mt(—grl [a] + ¢Mt(—>%ﬂ [a] + %Mt(—gm [a] + %Mt,v o]

Ryt Fit—T

_ ’ ) 1 f,T1—=TN

Ht%Tl,TN [O‘] - 14 az.t M*(Q) N ag E*M*(g) ) (24)
R?,t—)Tl t—T1 R%Tl TN t T —Tn

*(n * n * * *(2
where Mti%l [Oé] = Et ((RM,t%Tl - RﬂtHTl) 1R1W,t—>T1 <a) and Mt,v [a] = ]Et (MTELTNHRIVI,t—)Tl <a>'

Proof. See Appendix A.11. =

Proposition 5 shows that truncated market moments matter for extracting the probability
of the market crash. But more importantly, it shows that when the SDF is a function of
future risk-neutral volatility as in (5), the tail of the distribution of risk-neutral volatility,

captured by M, [a], has an impact on the probability of a crash. When the expected future
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volatility is not present in the SDF (4), i.e., with no intertemporal hedging, the probability

of a market crash reduces to

*(0 ail.t *(1 a2, *(2
MO0, o] + 7 MG, o] + 2 M, [of
I o] = P (Ryisr < ) = o o) 1 ) (25)
1 + R2 : Mt—>T1

fit—=Ty

3 Empirical framework

We show in this section how the theoretical expressions derived in Section 2 can be brought

to the data.

3.1 Leverage and future risk-neutral variance

The equity risk premium and crash probabilities are functions of risk-neutral moments, in-
cluding the risk-neutral leverage effect LEV] and the expected future risk-neutral variance

E;“Mi}(liTN. These moments involve T7- and Tx-horizon quantities. While closed-form ex-

*(n)

17, > for a given horizon Ty, are readily available from

pressions of risk-neutral moments M
option prices using the spanning formula of Carr and Madan (2001a) and Bakshi and Madan
(2000), similar closed-form expressions are not directly available for the risk-neutral leverage

effect and the expected future risk-neutral variance.

We propose a method to compute LEV; and Ef M2 using options with maturity 7T}

Ty —Tn

2)

and Ty. The key objective here is to isolate the component of M*T(l 1, that is correlated with

the excess market return from ¢ to 11, Ry, — Ryt We assume that this component

can be written as a nonlinear function f of Ry — R :

M;“(flTN = 0uf[Raspst, — Rpom] + €, (26)

with EI (€t|RM,t—>T1) = }E: (Et) = 0.11

HNote that Equation (26) is distinct from the assumption that the risk neutral volatility follows a GARCH
process. The returns in the left- and right-handsides are different: the risk-neutral variance on the left
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Multiplying both sides of Equation (26) by R?W,t _7, and taking the time-t risk-neutral

expectation, we obtain

*(2 *(2
M 2 - R?,TlﬁTNMt(—)%—'l

t—TN

N E;:k (R?W,t*)Tlf[RM,t%Tl - Rf,t*)Tl]) ’

(27)

0,
The expected future variance E;‘M;(IQLTN is obtained by taking the time-t risk-neutral
expectation of (26), and the leverage LEV} from the time-¢ risk-neutral covariance (11).
The final step consists to choose the function f[-]. We use (Rart—1 — Rf,HTl)Q for two
reasons. First, the numerator of 6, is always positive in the data. Therefore, our choice
of function f[-] ensures that the expected future variance is a positive number. Second,
as (Rart—m — /R’f,HTI)2 is a proxy for the first period conditional variance, this function
captures the well-documented fact that conditional variances are highly positively correlated
over time.

With this choice for the function f[-], we have,

*(2) *(2)
E*M*(Q) . Mt—>TN - R?,Tl%TNMt—}Tl *(2) (28)
t" T TN — (4 (3 *(2 t—T1)
' " Mti%—’l + 2Rf:t‘>T1 Mti%ﬁ + R?,t—}Tl Mt(*)%—'l '
and, ( o
M* 2) I R2 M* 2
LEV; = — v Ao Bh M) (29)
MtaTl + 2PifﬂfHTl MtaTl + Rf,t—>T1 Mt%Tl

Substituting Equations (28) and (29) in Equation (10) highlights that our expression for
the equity risk premium is a non-linear function of 7Ti-return moments and the Ty-return
variance. Using this decomposition, we show in Appendix A.12 that RP,_,p, 1, is increasing

in the investment horizon Ty.

handside depends on the return from 77 to T, while right-handside is a function of the return from ¢ to
T1. We further show in the Internet Appendix G.1, that the key risk-neutral volatility dynamics implied by
(26) is distinct from that of a GARCH process. Hence, a direct comparison cannot be made with a GARCH
process.
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3.2 Data

We use the S&P 500 index as the market portfolio. We obtain volatility surfaces, index
levels, and forward term structures for the S&P 500 Index and the zero-coupon rate term
structures from Ivy DB OptionMetrics. The data cover the period January 1996 to February
2023. When computing the excess returns on the S&P 500 index before January 1996, we
use its level and the Fama term structures on U.S. Treasuries from the Center for Research
in Security Prices (CRSP).

Implementing our risk premia requires the evaluation of different functions of risk-neutral
expected values. We estimate these expected values at the end of each month and for each
maturity provided in OptionMetrics’ Volatility Surface File (10, 30, 60, 91, 122, 152, 182,
273, 365, 547, and 730 days). We refer to these maturities as one week, one month, two
months, one quarter, four, five, six, and nine months, one year, 18 months, and two years.

We import annualized continuously-compounded zero-coupon yields from Jing Cynthia
Wu's website, Liu and Wu (2021). We interpolate the term structure of zero-coupon rates
using Nelson and Siegel (1987) model to find each maturity’s risk-free rate.

Following Chabi-Yo, Dim, and Vilkov (2021), we define a moneyness grid of 1,000 equally
spaced points from 1/3 to 3. We use a piecewise cubic Hermite polynomial to interpolate
the implied volatility surface to the moneyness grid. We extrapolate the implied volatility
using the closest value for moneyness points outside the implied volatility surface. Finally,
we use the Black-Scholes formula to convert implied volatilities to call and put prices for

each moneyness level.

3.3 Risk-neutral moments

We compute the risk-neutral moments of market returns and excess returns using the span-
ning formula of Carr and Madan (2001a) and Bakshi and Madan (2000), as described in
Appendix B.1. We report in Figure 1 excess return moments over time for horizons of one

week to two years. To compare values across horizons, we report the annualized volatility
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in the top graph <\/ (365/T7) M:(_%)Tl) , skewness in the middle graph <MZ‘S’£ / (M:(j%ﬂ) §> ’
and kurtosis in the bottom graph (M:f)ﬂ / (Mr(j)ﬂY) . We also report the expected future
second moments and leverage in Figure 2, using Equations (28) and (29).

Risk-neutral volatilities and expected future volatilies vary over time, reaching a peak
during the financial crisis of 2008. Risk-neutral skewness values are almost always negative
and decrease over the sample period. Risk-neutral kurtosis values range between three and

eight and trend upward over the sample period. The risk-neutral leverage effect is always

negative and exhibits large time variations.

3.4 Preference parameters

The expressions for the one-period equity risk premium and crash probabilities provided in
Section 2 are all functions of the investor’s preference parameters 7; and p;.

Following Chabi-Yo and Loudis (2020), we first set these parameters to 7, = 1 and p; = 2
for all ¢, which is equivalent to a;, = 1 and ay; = —1. Setting these parameters to constants
yields tractable equity and variance risk premia, which can be computed instantaneously
using readily available options. We derive our main results in Section 4 based on these values.
In Section 5, we attempt to estimate the preference parameters but find little improvement

in out-of-sample results. We further show that our main findings do not change.
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4 Results

In this section, we describe our estimates of equity risk premium RP,_,7, 7, and discuss
their ability to capture future returns. We show that RFP, .1, 1, outperforms the existing
premia for most horizons T, and underline the existence of an implied investors’ horizon,
which corresponds to the value of T that best matches the data. This horizon is long in
quiet times, when the probability of crash is low, and short during market turmoil, when

the probability of crash is high.

4.1 Estimated equity risk premium

We report in Figure 3 the time series of equity risk premia for horizons of T} equal to one
and six months, using investment horizons T of one and two years. In line with theory,
RP,_,7, vy is larger than RP,_,;, over the entire sample period, for both forecast horizons
T). Furthermore, RP; 1 2, is always larger than RFP; .1 1y, in line with RP,_,p, 1, being
increasing in the investment horizon Ty. The summary statistics in Table A3 further show
that the difference between RP,_,1, o, and RP;_,p, 1, is larger for shorter forecast horizons 71,
indicating that intertemporal hedging matters most for short maturity forecasts. This result
can be due to two reasons. Either the intertemporal hedging premium becomes smaller for
longer forecast horizons, or we only capture part of it because of our maximum 7 of two
years. For long forecast horizons, longer-maturity options may be needed to fully capture
the intertemporal hedging premium.

We further compare our equity risk premium estimate to the Implied Equity Risk Pre-
mium (IERP) of Tetlock, McCoy, and Shah (2024) in Figure 4.'> The investment horizons
are chosen such that the two time series be as close to each other as possible. This results

in Ty equal to one year for T} = one month, and Ty equal to two years for 7} = six months.

12We thank Paul Tetlock for providing us with the growth optimal weights needed to calculate the IERP,
from January 1997 to December 2021. Based on these weights, we computed the IERP for all forecast
horizons over this time period. For comparability, all tables and graphs with the IERP are from January
1997 to December 2021.
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Using these values of Ty, the two risk premium estimates are close during quiet times. Dur-
ing NBER recessions, the IERP is larger than our premium. The summary statistics in
Table A3 confirm and complement these results. For short forecast horizons 77, the IERP is
on average close to our premium with T, = one year, and smaller than our premium with
Tn = two years. As our estimate is a lower bound for the equity risk premium, whereas the
[ERP is a point estimate, the gap between the IERP and our premium is a lower bound to
the intertemporal hedging premium. When the forecast horizon increases, the gap reduces
and then disappears. This result further indicates that for forecast horizons of six months
and more, we would need options with maturity longer than two years to produce a more
precise measure of the intertemporal hedging premium.

Figure 5, Panel A, displays the intertemporal hedging premium, estimated by the differ-
ence between our risk premium RP,_,7, 7, and RP,_,,, for a forecast horizon of one month.
Intertemporal hedging accounts for about half of the total equity risk premium using an
investment horizon of one year, and up to 70% of the equity risk premium using an invest-
ment horizon of two years. These ratios are larger outside NBER recessions. During these
recessions, intertemporal hedging is about a quarter of the total premium.

Panel B shows that for longer forecast horizons (six months), intertemporal hedging
accounts for a smaller fraction of the total risk premium. But this fraction with Ty = 2
years is about twice the fraction with Ty = 1 year, indicating that it would grow further

had we access to longer maturity options.

4.2 Conditional variance and variance risk premium

Figure 6, compares the conditional physical variance obtained when ignoring intertemporal
hedging, to the its analogue with intertemporal hedging. Panel A corresponds to forecast
horizon 77 at 1 month, and Panel B to 7} at six months. For both forecast horizons,
the physical variance is lower with intertemporal hedging throughout the time period than

without intertemporal hedging. We observe large differences in times of market turmoil.
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Figure 7 displays the corresponding variance risk premium, computed as the difference
between the conditional variance under the physical measure, and under the risk-neutral
measure. As the risk-neutral variance is computed from options, it does not depend on the
investment horizon. Therefore, the lower physical variance with intertemporal hedging trans-
lates directly into a variance risk premium that is larger in magnitude, and more negative
than without intertemporal hedging.

We conclude that intertemporal hedging yields increases both in the equity and in the

variance risk premium.

4.3 Out-of-sample performance

We study whether accounting for intertemporal hedging improves the out-of-sample perfor-
mance of the equity risk premium. To assess the change in performance, we use two different
metrics.

First, we follow Welch and Goyal (2008) and Campbell and Thompson (2008) in com-

puting the out-of-sample R? measure as,

~ 2
R2OOS — 1 o Zt (TM,t—)Tl TM,t—)Tl) (30)

_ 29
t (TM,t—)Tl - /r‘M,t—)Tl)

where 1y, = Ry, — Ry capture the ex-post realized excess returns at horizon
Ty, P, 1s the sample average of excess returns at horizon 73 prior to week ¢ and 7az;—n,
is a risk premium forecast at time t. A positive R2oo g indicates that the prediction 7pz -7,
is more accurate than the past average realized returns, while a negative R%,s would favor

the past average realized returns.
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We report in Panel A of Table 2 the R2,q, in percent, for 7as;r :RPf_‘:%l, RP, .,
and RP,_,7, 1, over the period 1997 to 2021.'3 Forecast horizons T} range from one month
to 18 months and all available investment horizons T > T3 up to two years are considered.

For all forecast horizons 71, RP;,p, outperforms RPtL_‘:%l, and RP,_,1, 1, outperforms
RP,_,7, for almost all investment horizons 7. In particular, for the 10-day forecast horizon,
RP, ,pand Rﬂi’%lboth perform worse, out-of-sample, than a forecast based on the past
average realized returns, as they have negative R%¢. In contrast, RP;, 1, 1, exhibits pos-
itive R% ¢ for Ty between three months and one year. We test whether the differences in
performance between RP,_,p,and RP,_,p, 1, are statistically significant, using the Diebold
and Mariano (1995) test. The outperformance of RP,_ 1, 7, is significant for forecast hori-
zons 17 between three and nine months, and for most 1. Therefore, our results indicate
that accounting for intertemporal hedging in the equity risk premium leads to a large and
significant increase in out-of-sample forecast performance.

Inspection of the R% 4 achieved by RP; 1, 1, in Table 2 reveals the importance of Ty
on the performance of our risk premium. For all forecast horizons T, the R%,¢ increases
with T, up to a given Ty. For T} = 10 days, it reaches its maximum at T = 9 months, for
T1 = 1 month at Ty = 9 and 12 months, and for Ty = 2 months at T = 18 months. For
all T} equal to 10 days, 1 month and 2 months, the R%,4 drops after reaching it maximum
value, when increasing T. For Tj larger than two months, the R% ¢ increases up to Ty =
24 months. The pattern of R% ¢ that we observe for 77 < 2 months suggests that for 7} > 2
months, there exists an optimal Ty beyond 24 months. Overall, the R34 suggests the
existence of an optimal T > T}. The past column indicates the performance of a prediction
based on the average prediction across investment horizons Ty. Such prediction achieves

R%,5 that are all larger than those of RP; 7.

B The results are reported over the period 1997 to 2021 as this is the period over which we have the IERP.
Out-of-sample R? have been computed for RPtL_(:ng , RP,_,7, and RP;_,1, 7, over the full period from 1996

fo February 2023. They are comparable to those reported in Table 2.
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The comparison of our risk premium estimates to the IERP of Tetlock, McCoy, and Shah
(2024) is less straightforward. For short forecast horizons, up to 4 months, both RP,_,7, and
RP,_,7, 1, outperform the IERP, for almost all values of Ty. For T} at 10 days, the IERP
yields a negative R?, like other estimates that do not account for intertemporal hedging.
Our estimate is the only one to yield a positive R?, suggesting that even for short forecast
horizons, intertemporal hedging is important. For forecast maturities at 4 months and more,
the IERP outperforms RP, 1, , and RP,_,p, 1, outperforms the IERP for T above a given
threshold. For 77 = 4 months, RP,_,p, r, performs better than the IERP for all Ty larger
than 9 months. For T} = 6 months, RFP, ,p, 1, only performs better than the IERP for
Ty = 2 years. For T} = 1 year, the IERP outperforms RP,_,1, 1, . These results confirm the
need for options with maturity longer than 2 years, to accurately estimate the intertemporal
hedging premium at forecast horizons of more than 4 months.

Second, we construct market-timing strategies and compute realized mean-variance cer-
tainty equivalents. While the R3¢ reported in Panel A of Table 2 show that our method-
ology captures the expected excess market return, results in Panel B combine both first and
second moment predictions. For each forecasting method, we compute the weight of the

market portfolio in the optimal portfolio at time ¢ as,

TMt—T
wt—>T1 - ~9 (3]‘)
O-t—>T1

where 7 is a risk aversion parameter and 77 7, 18 the physical variance of returns computed
for each method, as described in Section 4.2. Then, we compute the realized mean-variance
certainty equivalent as,

O = B(ryevm) = 3 Var(rp), (32)

where r,+ = 71, +Wisn, "ar i, are portfolio returns. The certainty equivalent is estimated

using the sample return average and variance using non-overlapping returns over horizon 77.
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We report realized certainty equivalents annualized in percent for v = 3. We find better
performance of RP,_,p, 1, , compared to RP,_,1, and RPtLj%l, for investment horizons T up
to one year. In line with the results reported in Panel A of Table 2, the certainty equivalents
increase with Ty, reaching a maximum for 7 between 9 months and 24 months. Negative
values are not displayed. They are obtained for T = 18 and 24 months due to estimates of
the physical variance that are close to zero. We block-bootstrap the time-series of realized
portfolio returns to compute the significance of the certainty equivalent differences for each
strategy, compared to the one based on RP, 7, (see Politis and Romano, 1994).1 We
find that almost all differences between RP,_,7, 7, -based and RP,_,r,-based strategies are
statistically significant at the 5% level, when Ty is less or equal than the investment horizon
at which the out-of-sample R? reaches its maximum.

Both out-of-sample performance metrics —out-of-sample R? and realized certainty equivalents—
thus indicate that accounting for intertemporal hedging in the construction of the equity risk
premium allows reaching better forecasts of the first and second return moments. Most dif-
ferences are statistically significant.

These equity risk premium measures are lower bounds for the equity risk premium. As a
last analysis, we follow the methodology of Back, Crotty, and Kazempour (2022) and test for
the validity and tightness of these bounds. Results are provided in Online Appendix C. For
all measures and horizons T}, we do not reject that any of the bounds are valid lower bounds
for Ty up to one year. When increasing Ty, validity gets rejected more often. It is rejected in
half of the cases for T at two years, confirming that using the longest investment horizon is
not always optimal. We furthermore reject, for most bounds, that they are tight. However,

as expected, the magnitude of the error from our bound is lower than either RP; ., and

RPFos

t—T1°

14We use 10,000 bootstrap samples and a mean block length equivalent to three years.
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4.4 Implied investors’ horizon

We have shown that the out-of-sample performance of the equity risk premium depends on
the choice of the investment horizon T, for all forecast horizons Tj. Increasing Ty, up
to a threshold, improves the out-of-sample performance of our risk premium. The forecast
however deteriorates when increasing T beyond that threshold. Furthermore, for about
half of the forecast horizons T}, the validity of the bound using T = 2 years is rejected. In
this section, we study whether the optimal threshold is time-dependent, by optimizing the
investment horizon T used to make the prediction at each time t.

We select the optimal T at each time ¢ in sample, by maximizing the R? of the forecast
over a window of 90 days. This window covers the interval t — 77 — 90 days, up to t — T,
ensuring that there is no look-ahead bias. We denote this optimal time-varying horizon by
TR 4

Table 3 reports the out-of-sample R%,¢ achieved with T3, and compares them to the
R%,5 achieved with Ty at one and two years, and with the one obtained with the prediction
averaged across Txn. Comparing the first three columns (RPI,/L_‘:‘}1 , the IERP of Tetlock,
McCoy, and Shah (2024) and RP,_,7, ) to the next two columns (T = 1 year and Ty = 2
years) confirms that RP, ,r, and the IERP outperform RPtL_‘Z%1 for most 77, indicating that
higher order moments are important for out-of-sample performance. But none of the two
RP,_,7, 1, outperforms the other systematically. The Ty = 1 year estimate tends to perform
better for shorter forecast horizons, whereas the Ty = 2 years tends to outperform for longer
horizons. The average prediction in column 6 yields a more stable outperformance across
forecast horizons. The largest gain, for all 77 except 10 days, is achieved when optimizing
upon Ty (last column). The R? is 1.5 to twice that of Chabi-Yo and Loudis (2020) and 1.25
to 2 times that of Tetlock, McCoy, and Shah (2024) for maturities up to five months. This
increase is statistically significant. Similarly, the largest realized certainty equivalents are

obtained when optimizing Ty, for most forecast horizons.
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Figure 8 displays in Panel A the estimated risk premium obtained with 7%, for T} at four
months. Panel B depicts the time series of T ;. It oscillates between the smallest possible
value of Ty (five months) and its largest value (two years). In particular, it is at five months
during the two NBER recession periods, and tends to be at two years at most other times.
This result is robust to varying the forecast horizon 7. We thus conclude that in quiet times,
the implied investors’ horizon is long (here, at its maximum of two years). In contrast, in
turbulent times, the implied investors’ horizon is short. This conclusion provides empirical
evidence in line with the asset pricing model of Hirshleifer and Subrahmanyam (1993), in
which investors’ time horizon decreases in periods of high uncertainty, due to heightened risk
aversion and liquidity needs. It also echoes the results of Campbell and Vuolteenaho (2004),
who use a VAR approach to show that investors’ horizons shorten in volatile or declining
markets because they become more sensitive to "bad beta”, i.e., short-term negative cash
flow news.

In turbulent times, the short-term horizon implies that intertemporal hedging has a small
effect. As a result, the equity risk premium remains close to the one of RP,_,7, . In contrast,
it is important in calm times, and pushes the equity risk premium up, since RP,_,7, 7,
increases with Ty.

Figure 9 shows the variance risk premium resulting from using the investors’ implied
horizon T, for forecast horizon 7). The gap between the blue and the red line is due to
intertemporal hedging. This gap is the largest during quiet times. Panel B displays how
much this gap is as a the percentage of the total premium. In quiet times, intertemporal
hedging accounts for more than 80% of the variance risk premium. This percentage drops
during turbulent times, as expected.

To better understand these punctual switches between long and short implied investors’

horizon, we investigate the crash probabilities implied by our methodology.
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4.5 Crash probabilities

Figure 10, Panel A, displays the conditional probabilities of a 1 —a = 10% crash over a hori-
zon of four months. We present the probabilities without intertemporal hedging (11,1, []),
and those obtained with our methodology (Il;—7, 1y [c]), with an investment horizon Ty
of one and two years. Crash probabilities obtained with our method are lower than those
without intertemporal hedging. The longer the investment horizon, the lower the crash
probabilities.

In Panel B, we compare the crash probabilities from Martin (2017a) (Hfj“’Tl [a]) to ours
using the implied investors’ horizon T = Tj. During turmoil periods, the implied in-
vestment horizon is short, and the resulting crash probabilities are close to those without
intertemporal hedging. During quiet times, in contrast, the implied investment horizon is
long. As the crash probabilities are a decreasing function of the investment horizon, they
are thus lower, equal to about half the crash probabilities without intertemporal hedging.

To determine whether these lower probabilities are more accurate, we assess in Table 4

out-of-sample prediction performances. For each horizon, we compute the loss function of

our prediction as the negative of the log-likelihood function as,

lt%TLTN = - (]17“M,z—>T1 <« log (Ht%ThTN [Oé]) + (1 - :[I‘TM,I‘,—>T1 <Oé)(1 - lOg (Htﬁ‘ThTN [Oé]))) :

Similarly, we compute the loss function for II;_,p, [@] and HtLing [a] , which we respectively

lLog

1, - Next, we test the significance of the average difference in loss functions

denote l;_,7, and
using the Diebold and Mariano (1995) test. We find that our probabilities for a 10% crash,
reported in the third column, lead to significantly lower losses (i.e., higher realized log-

likelihoods) than other benchmark probabilities for most horizons. Finally, we similarly find

significantly superior predictions for a crash size of 20% for all horizons except one week.
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5 Estimating preference parameters

Using fixed preference parameters 7 = 1 and p = 2, we find that intertemporal hedging has
a large impact on the equity and the variance risk premia. This result holds true during
market calm, as the investors’ implied horizon is long. Intertemporal hedging then accounts
for up to 70% of the equity risk premium, and 80% of the variance risk premium.

In this section, we attempt to estimate the preference parameters, and study the robust-

ness of our results to the choice of these parameters.

5.1 Methodology

We estimate the preference parameters p; and 7, using a two-stage non-linear least squares

approach, similar to Chabi-Yo and Loudis (2020). Specifically, we estimate the coefficients

Tey Pty Bél), and 682) by minimizing the weighted sum of squared errors wlegTTleng +

w26§2_)>TT1 €§2_)>T1 in the following equations,

RM,t—>T1 - Rf,t—>T1 = B(()l) + RPt—>T1,TN + Egl_)ma
(Rariom, — Rpom)? = B2 +Ey (Rayn, — Rpn )2 + €0 (33)

In the first stage, we set w; = wo = 1. In the second stage, we weigh each sum of squared
errors by the inverse of the standard deviations of first-stage errors. Note that parameters
7, and p; enter the above equations through RP,_,1 7, and E; (R — Rf,HTl)Q. We
estimate parameters separately for each horizon 17 and T. We restrict the parameter space

such that the resulting risk premiums be positive.
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5.2 Performance with in-sample estimation

We first estimate the preference parameters over our time sample from 1996 to 2023.'°
We find estimates of 7 that range between 0.86 and 0.88 across forecast horizons 77 and
investment horizons T. There is therefore very little variation in the estimated 7 coefficient,
when estimated over the whole period of data. In contrast, the estimates of p vary more.
Specifically, the estimated p for the bound RPFP;_,p, decreases sharply with 77, from 5.06 to
1.20. The estimate of p also decreases with 7. The estimate for Ty = 2 years is quite
stable, between 1.20 and 1.60 for all 7}.

Figure 11 displays the equity risk premium estimate with these values of 7 and p. It
shows that the resulting risk premium (dotted line) overlaps with the risk premium with 7
and p set to 1 and 2 (dashed line), for most dates in the time series. This overlap happens
because the optimal T is two years most of the time. For Ty at two years, the values of 7
and p are rather close to the fixed values we chose in Section 4, so that the resulting equity
risk premium estimates nearly overlap. Discrepancies are observed during turmoil periods,
in which the optimal Ty is short, and the estimated p is thus equal to values close to or
above 5. This high p translates into a higher equity risk premium.

Table A6 compares the out-of-sample R? achieved when setting 7 = 1 and p = 2, as in
Section 4, to those obtained when estimating these parameters. This comparison is informa-
tive as to whether the high values of p during turmoil periods improve the return forecasts.
Column (4) contains the R? for our new bound, with T optimized, using estimated pref-
erence parameters. Estimating these parameters yields R? that are still larger than those
of RP,_,p, for all forecast horizons, but they are smaller than those obtained when setting
7 =1 and p = 2. This lack of forecast performance indicates the high p values estimated

during market turmoil overfit the data.

15As in Chabi-Yo and Loudis (2020), this estimation introduces a look-ahead bias when computing the
out-of-sample performance measures. The main goal of this exercise is not to provide an estimation method
for the preference parameters, but to question whether the results we obtained in Section 4 still hold with
optimal preference parameters. We eliminate this bias in Section 5.3.
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Alternatively, we model 7 and p as linear functions of past three-month returns, and
estimate the loadings on these returns and on a constant term over the whole data period.
The estimated time series of 7; are displayed in Panel A of Figure 12, for a forecast horizon
T7 of 1 month. The estimate for Ty = 1 year oscillates around a value close to 0.85, i.e., close
to the constant estimate found above. 7; increases and gets closer to 1 during recessions.
Decreasing the investment horizon T decreases the estimated 73, which oscillates around 0.65
for Ty = 6 months. This estimate however also increases during turmoil periods. The two
estimates therefore nearly overlap during these periods. As the implied investors’ horizon is
long in quiet times and short in stress times, the resulting time series of 7; oscillates around
a level close to 0.85, throughout the time period, with volatility that is nearly constant.
A similar result is achieved with the estimated time series of p;, displayed in Panel B.
p; exhibits time series variation, and oscillates around 2. It has low volatility for shorter
investment horizons, and higher volatility for longer horizons. This, combined with the long
investors’ implied horizon during market calm, leads to the conclusion that p; is volatile,
with volatility nearly constant over time. Setting 7 to 1 and p; to 2 thus eliminates the
noise of the estimation, improving the signal-to-noise ratio.

Column (5) of Table A6 reports the out-of-sample prediction results obtained when mod-
elling 7 and p as linear functions of past three-month returns. This additional degree of
flexibility improves the performance of our bound for most forecast horizons 77. This is
however at the expense of realized portfolio returns’ volatility. Certainty equivalents are for
most of them negative, because of the increased volatility.

These results show that a more precise estimation of the preference parameters, using a

time series as large as possible, leads to mixed results in terms of out-of-sample performance.

5.3 Telescopic and rolling window estimations

In order to avoid a look-ahead bias, we now estimate a set of parameters using windows of

data that do not include any observation beyond prediction time. We consider two types

32



of windows: first, a telescopic window of past observations, which starts in 1996 and ex-
pands with time, and second, a rolling window of the past most recent five years. We start
measuring performance in 2006, after ten years of observations.

Table A7 reports the out-of-sample prediction results when the parameters 7 and p are
estimated over a telescopic and rolling window. These results are expected to be worse than
those of the in-sample estimation described in Section 5.2. As this estimation did not yield
satisfactory results with constant preference parameters, but did achieve higher performance
with the preference parameters set linear in past 3-month returns, we only report the results
of this second specification. The bounds perform better than RP;_,p, but not as well as with
7 =1 and p = 2. Furthermore, the improvement compared to RP,_,7, is no longer significant.
Furthermore, the certainty equivalents are for most of them negative. These results illustrate
the challenge of achieving good out-of-sample performance when estimating the preference
parameters.

Figure 13 displays the fraction of intertemporal hedging demand relative to the total
equity risk premium estimate, for forecast horizons of 1 month (blue line) and 6 months (red
line), with the different estimation methods of 7 and p. In all estimations, the intertemporal
hedging demand represents up to 60% of the total equity risk premium in quiet times. During
recessions, intertemporal hedging disappears, as the implied investors’ horizon shrinks to the
forecast horizon.

The importance of intertemporal hedging is thus independent of the estimation method
chosen for the preference parameters.

In Appendix E, we extend all our results using a third-order approximation. Our results

do not change.
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6 Multi-period model with portfolio rebalancing

The results derived so far were under the assumption that the representative agent could
only rebalance her portfolio at time 7}. In this section, we relax this assumption and let the
representative agent rebalance her portfolio at any time ¢ such that 77 <t < Tx. We assess
whether this extension changes our main results.

As before, we use a second-order Taylor expansion-series of the inverse marginal utility
(term inside the conditional expectation in (3). The novelty is that the Taylor-expansion uses
the information that the agent re-balances her portfolio at any time ¢ such that T} <t < Ty.

We denote
N N
RM,t—)TN = H RM,TQ]._I—>TQ]. and Rf,t—)TN = H Rf,TQj_laTQj
j=1 j=1

with Ty =t and

Tj= RM,TQj71—>TQj and o ; = Rf,TijlﬁTQj

where Q;_1 € {0,1,..., N — 1} and Q; € {1,..., N} with Q;_1 < Q; . A second-order Taylor
expansion-series of the inverse marginal utility (term inside the conditional expectation in
(3)) around (x1,...,xy5) = (zo1,, .., o) and taking the expectation under the risk neutral

measure at time 77 allows us to write (3) as

N
1 (1=p) (1 —po) 1.
v =1+ Ty — 1) + 5 Ty — T91)° + B (2 — 2
T1 Teoq ( 1 01) xal Tt2 ( 1 0,1) 7_752 ; %J T1< J 0])

We replace this expression in (1) and derive the expected excess return on the market:

LM + U s gy

TRy 2T fto1 T

14+ — 1 (1_2Pt)M*(2) + (1;2/%)EIM*(2)

Rf,t_m1 i t—Ty t, TN

RP, 1 1y = (34)
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where

* * *(2
LEV; = COV; (Ruor, M),
al 1
W) _ «(2)
Mt,TN - 2 MTjSlaTQj'
7>1 f:TQj_lﬁT(%

Provided that preference parameters are estimated, expression (34) enables us to extract the

*(2)

risk premium from option prices if the risk neutral quantities MTQ_ can be recovered
J

,1*>TQJ'
from option prices with various maturities. We discuss the implementation of this approach

in section D.

6.1 Empirical results

Table 7 summarizes the results when portfolio rebalancing is allowed. The new bound is very
close to the bound obtained without rebalancing, for all forecast horizons T7. Therefore, it

still outperforms the bound RP, 1, and our results do not change.
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7 Conclusion

Given its importance in financial applications, there is considerable interest in improving
our measurement of the conditional expected return on the market portfolio. Several meth-
ods using forward-looking information embedded in option prices have been proposed in
recent years. Martin (2017a), Chabi-Yo and Loudis (2020) and Tetlock, McCoy, and Shah
(2024) measure a one-period expected excess return in a one-period, two-date economy. We
contribute to the literature by deriving an expression accounting for intertemporal hedging.

We, theoretically and empirically, show a significant difference between a static and a
dynamic estimation. In a dynamic economy, the SDF is a nonlinear function of the market
return as in a one-period economy. But it also depends on novel risk-neutral quantities such
as the expected future variance and skewness and the covariances between market returns
and future variance and skewness, namely the leverage effects. We show how these quantities
significantly impact the one-period conditional expected excess return on the market from
the perspective of an investor who holds the market portfolio in a multi-period economy. We
also derive expressions for the one-period conditional probability of a crash, in a multi-period
economy, in terms of risk-neutral quantities.

Our methodology provides significantly better risk premium and crash predictions and
market-timing allocations in empirical tests. We further use our measure to shed light on
the shape and time variations of the term structure of equity risk premia, which we define as
the expected excess market return as a function of the investment horizon. In a one-period
economy, Chabi-Yo and Loudis (2020) find that the term structure is upward sloping on
average and downward sloping during recessions. Our term structure slope is essentially flat
during normal market conditions and downward sloping during recessions.

While we have used the S&P 500 index to proxy for the market portfolio, our methodology
can be extended to individual assets and international markets. We leave these endeavors

for future research.
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Figure 1: Risk-neutral moments.

We report option-implied risk-neutral volatility, skewness, and kurtosis for the S&P 500
index at a horizon of one week, one month, one year, and two years. Data are weekly from
January 1996 to February 2023. Gray areas are NBER recessions.
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Figure 2: Risk-neutral expected future variance and leverage.

We report in the top graph the risk-neutral expected future volatility for the S&P 500 index.
We report in the bottom graph the risk-neutral covariance between market returns and future
variances in Equation (9). We use horizons 77 of one week, one month, one quarter, and one
year, and T = two years. We annualize each measure by multiplying by 365 . Data are

Tn
weekly from January 1996 to February 2023. Gray areas are NBER recessmns
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Panel A: 77 = 1 month
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Figure 3: Equity risk premium.

This graph represents the different equity risk premium estimates, for a forecast horizon of
1 month (Panel A) and 6 months (Panel B). The following estimates are compared: the
bound of Chabi-Yo and Loudis (2020), RP,_,1,, and our bound RP, 7, r,, in Equation (10),
for Ty = 1 year and 2 years.
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Panel A: 77 = 1 month
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Figure 4: Comparison with /ERP, .,

This graph compares our estimate of the equity risk premium, RP,_,7, 7, to the Implied
Equity Risk Premium of Tetlock, McCoy, and Shah (2024), I ERP,_,,, for a forecast horizon
of 1 month (Panel A) and 6 months (Panel B). In our bound, the investment horizon Ty is
1 year in Panel A, and 2 years in Panel B, chosen to match the IERP as closely as possible.
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Panel A: T7 = 1 month
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Figure 5: Intertemporal hedging premium IHPFP, .1, 1,
This graph represents the intertemporal hedging premium, I H P, ,p, 1, as defined in Equa-

tion (18), for different equity risk premium estimates RP,_p 7. [HP, 7, 1, is displayed
in percentages of RP,_,1, 7y. The forecast horizon is of 1 month (Panel A) and 6 months

(Panel B).
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Panel A: 77 = 1 month
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Figure 6: Conditional variance under the physical measure.

This graph represents the conditional physical variance as defined in Equations (20)-(22),
for T; = 1 month (Panel A) and 7T; = 6 months (Panel B). The conditional variance without
intertemporal hedging (Ty = 77) is compared to the variance with intertemporal hedging,
using Ty = 1 year and Ty = 2 years.
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Figure 7: Variance risk premium.

This graph represents the variance risk premium for 77 = 1 month (Panel A) and 7} = 6
months (Panel B) without intertemporal hedging (Ty = 1 and 6 months, respectively) and
with intertemporal hedging. The variance risk premium is defined as the difference between
the conditional variance under the physical measure and under the risk-neutral measure.
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Panel A: Equity market risk premium
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Figure 8: Implied investors’ horizon for 77 = 4 months.

This graph represents, in Panel A, the 4-month ERP obtained with an optimized investors’
horizon. Panel B displays the implied investors’ horizon T} ,, which maximizes the in-sample
fit of our bound to the realized returns, as measured by the R? over a window of 90 days.

47



Panel A

1
ot

Annualized (%)

1
—
(e}

T

-15

96

97 -
98 -
99 -
00 -

0.6 -

0.2 +

Iy

[
[N\ g
A AN

-
F ——
L —
—
=

IH“

T L
O -0 O O = AN M <t
S o oo ~H A~ A~ -

[
o
AN A

19 -

| |
D~ o0
—

16 -

sszzszazas
Figure 9: Variance risk premium with the implied investors’ horizon.

This graph represents, in Panel A, the variance risk premium at 77 = 1 month, obtained
with an optimized investors’ horizon. The variance risk premium is defined as the difference
between the conditional variance under the physical measure and under the risk-neutral
measure. Panel B displays the fraction of variance risk premium captured by intertemporal

hedging, as a percentage of the total variance risk premium.
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Panel A: Crash probability as a function of Ty
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Figure 10: Probability of a 10% market crash

We report the time-varying probability of a 10% stock market crash from Proposition 5,
for T} = 4 months. Panel A reports the crash probabilities for different values of Tly.
Panel B compares our estimate of the crash probability with the optimal Ty, to the crash
probabilities without intertemporal hedging and the one of Martin (2017a). Gray areas are
NBER recessions.
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Panel A: 77 = 1 month
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Figure 11: Equity risk premium with estimated preference parameters.
This graph compares the equity risk premium without intertemporal hedging RP,_,7, , to two
estimates of the equity risk premium with intertemporal hedging. The dotted line, RP;ZTl1 ””TT;

has the preference parameters set to their default values. The dashed line, RR;”’Tfo];v, has

them estimated. In Panel A, the forecast horizon is 77 = 1 month and in Panel Bitis 17 =6
months.
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Figure 12: Estimated preference parameters 7; and p; over the period 1996-2023.
This graph represents the estimated time series of risk aversion parameter 7; and skewness
tolerance parameter p;, for 77 = 1 month and varying Tl . Estimates are obtained by letting
the preference parameters be linear functions of past 3-month returns, and applying the
estimation methodology described in Section 5.1 on the whole dataset.
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7 and p estimated in-sample

Panel A: Constant Panel B: Linear in past returns
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Figure 13: Intertemporal hedging premium for all estimations I H P, ,p, 1,

This graph represents the intertemporal hedging premium, I H P, ,1, 1., as defined in Equa-
tion (18), for different equity risk premium estimates RP; 7, 1. {H P11, is displayed in
percentages of RP,_,1, 1. The forecast horizon is of 1 month (blue lines) and 6 months (red
lines). In Panels A and B, the preferences parameters are estimated over the full sample
from 1996 to 2023. In Panels C and D they are estimated over a telescopic window and in
Panels E and F they are estimated over a rolling window of 5 years. In Panels A, C and E,
preference parameters are estimated constant over the estimation period and in Panels B, D
and F, they are assumed linear in past 3-mogbh returns.
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Table 3: Out-of-sample prediction and allocation performance with 7y optimized

We report the out-of-sample performance of different risk premium prediction methods, from January 1997
to December 2021. RPtL_‘Z%l is the lower bound of Martin (2017a). IERP;_,, is the Implied Equity Risk
Premium of Tetlock, McCoy, and Shah (2024). RP;_,r, is the second-order lower bound of Chabi-Yo and
Loudis (2020) in Equation (15). RP,_p, 1\ is the risk premia measure in Equation (10). We report in
Panel A the out-of-sample prediction R% 4 in percent (see Equation (30)). For each prediction method,
we test for the significance of the R% ¢ difference relative to RP,_,1, using a Diebold and Mariano (1995)
test. We estimate the variance of the differences using a Newey-West correction with 12 lags. We report
in Panel B the realized mean-variance certainty equivalents using each period the predicted risk premium
and physical variance to obtain the optimal allocation (see Equation (32)). The physical variances are
computed using option prices (see Appendix A.10). For each prediction method, we test for the signifi-
cance of the realized certainty equivalent difference relative to RP,_,1, using a block-bootstrap with aver-
age block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. x, *x, and * * *x denote significance at the 10%, 5%, and 1% level, respectively.

Horizon T} Ty =1y Ty =2y Av. across Ty Tn opt.
(in months) RPtI;O'g«I IERPtHTl RPt%Tl RPt%Tl,TN RPt—)Tl,TN RPt%Tl,TN RPt%Tl,TN

Panel A: Out-of-sample R?

10d —0.40 -0.59 -0.37 0.12 —0.69 0.14

1 0.93 1.40 1.08 1.85 1.00 1.81

2 1.52 2.18 1.97 3.66 3.89 3.44

3 1.43 2.73 2.23 4.39* 5.58 4.22%
4 2.18 5.22 3.36 5.57** 7.38% 5.63*
) 3.08 8.01 4.67 6.73%* 8.94** 7.14%*
6 3.43 9.44 5.31 7.08** 9.56** 7.99**
12 2.69 10.39 5.61 - 8.15%** 7.56%**

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 5.45 - 5.62 12.36* - 11.18**
1 4.78 - 5.00 7.10 - 6.97*
2 4.90 - 5.30 7.95%* - 7.48%*
3 5.25 - 5.79 8.29** - 8.03***
4 5.47 - 6.13 8.16™* - 8.28**
) 5.19 - 5.87 7.38** 9.49* 7.85*
6 5.21 - 5.99 7.16%* 8.47 8.03**
12 5.28 - 6.33 - 8.09* 7.67*
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0.17
1.86
4.15%*
5.39***
6.54***
7.70***
8.40***
7.84%**

3.44
3.00
10.22**
10.63***
8.77**
8.71*



Table 4: Out-of-sample crash prediction with Ty optimized

We report the out-of-sample performance of different crash prediction methods. Each month, we use the
crash probability from Martin (2017a) (Hfjgipl [a]), the one from Chabi-Yo and Loudis (2020) (II;— 1, [¢] in
Equation (25)), and the one from our methodology, II;_.1, 1 [a], defined in Equation (24) of Proposition
5. T'n is set equal to the implied investors’ horizon Ty, at each time ¢. We compute the loss function
for Ht%leTN [a] as lt%Tl,TN = 7(]‘RNI,t—>T1 <a log(Ht‘}Tl,TN [a]) + (1 - ]]-RM,f,—»Tl <Oé)(1 - log(Ht‘}Tl,TN [a]>))
Similarly, we compute a loss function for other methods. For each method in rows, we test whether the
average loss functions are significantly larger than those of the method in columns using the Diebold and
Mariano (1995) test. A significantly positive test statistic indicates that the column-method outperforms
the row-method. We estimate the variance of the difference in loss functions using a Newey-West correction
with 12 lags. *, *x, and * * * denote significance at the 10%, 5%, and 1% level, respectively. We report

on a 90% (« = 0.10), and 80% (« = 0.20) crash size. Data are from January 1996 to February 2023.

10% crash 20% crash
Ht*}Tl [a] Ht*}Tl TN [Oé] Ht*}Tl [a] Ht*}Tl TN [a]
Panel A: One week
I1,%%. [a] 1.56* 1.92%* 1.29% —0.92
I, (o] - 2.06™* - —0.92
Panel B: One month
I1,%%. [a] 1.76%* —0.97 5.71%%* 6.58***
O, @] - —0.98 - 6.42%*
Panel C: One quarter
1%, [a] 442 7147 2,67 2.58%**
i, [ - 6.75*** - 2.40%**
Panel D: Siz months
HtLjﬂ]’l [a] 3.91%** 8.21*** 3.36%** 3.71H**
;7 [of - 10.54*** - 3.45%**
Panel E: Nine months
%%, [a] 2.66** 5.10°* 1.48* 2.18**
I @] - 7.18%** - 2.36%**
Panel F: One year
11,%%. [a] 2.18* 2.79*** 1.25 2.02**
i, [ - 3.34%* - 2.51%**
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Table 5: Out-of-sample prediction and allocation performance with 7 and p esti-
mated in-sample

We report the out-of-sample performance of different risk premium prediction methods, from January 1997
to December 2021. RPtLj%l is the lower bound of Martin (2017a). RP;_ 1, is the second-order lower
bound of Chabi-Yo and Loudis (2020) in Equation (15). RP,_1, 1y is the risk premia measure in Equa-
tion (10). In columns (2) and (3), results are reported setting the preference parameters to 7 = 1 and
p = 2 (benchmark). In column (4), they are kept constant over the time series of data, but the con-
stants are estimated. In column (5), they are modelled as linear functions of past 3-month returns. We
report in Panel A the out-of-sample prediction R% ¢ in percent (see Equation (30)). For each prediction
method, we test for the significance of the R% g difference relative to RP;_,1, using a Diebold and Mar-
iano (1995) test. We estimate the variance of the differences using a Newey-West correction with 12 lags.
We report in Panel B the realized mean-variance certainty equivalents using each period the predicted risk
premium and physical variance to obtain the optimal allocation (see Equation (32)). The physical vari-
ances are computed using option prices, using Equation (20). For each prediction method, we test for the
significance of the realized certainty equivalent difference relative to RP;_.7, using a block-bootstrap with
average block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. #*, %%, and * % * denote significance at the 10%, 5%, and 1% level, respectively.

Ty T=1and p=2 p, T est. constant p, T est. linear in past returns
L
(months) RP o9 RPt%Tl RPt%Tl,T;, RPt%Tl,TI’{, RPt%Tl,T;\}

t—T

(1) 2) 3) (4) ()

Panel A: Out-of-sample R?

10d —0.40 -0.37 0.17 0.04 —0.08™
1 0.93 1.08 1.86 1.58 2.23
2 1.52 1.97 4.15%* 3.79* 4.52
3 1.43 2.23 5.39*** 4.67* 7.16%*
4 2.18 3.36 6.54*** 6.42** 8.39
) 3.08 4.67 7.70%** 8.28** 10.26**
6 3.43 5.31 8.40%** 9.48* 10.99
12 2.69 5.61 7.84*** 8.36™** 9.48

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 5.45 5.62 - - -

1 4.78 5.00 3.44 6.08 8.45**
2 4.90 5.30 3.00 8.80" 9.21
3 5.25 5.79 10.22** 10.23*** 0.63*
4 5.47 6.13 10.63*** 10.28** -

) 5.19 5.87 8.77** 5.64 -

6 5.21 5.99 8.71* - -

12 5.28 6.33 - - -

57



Table 6: Out-of-sample prediction and allocation performance with 7 and p esti-
mated without look-ahead bias

We report the out-of-sample performance of different risk premium prediction methods, from January 2006
to December 2021. RPtL_‘Z%l is the lower bound of Martin (2017a). IERP;_,7, is the estimate of Tetlock,
McCoy, and Shah (2024). RP,_,r, is the second-order lower bound of Chabi-Yo and Loudis (2020) in
Equation (15). RP,_,, 1, is the risk premia measure in Equation (10). In columns (3) and (4), results
are reported setting the preference parameters to 7 = 1 and p = 2 (benchmark). In column (5), they
are modelled constant and estimated on a telescopic window of time. In column (6), they are modelled
constant and estimated on a rolling window of five years. We report in Panel A the out-of-sample prediction
R%,¢ in percent (see Equation (30)). Values smaller than -1 are not reported and left blank. For each
prediction method, we test for the significance of the R% 4 difference relative to RP;_,p, using a Diebold
and Mariano (1995) test. We estimate the variance of the differences using a Newey-West correction with 12
lags. We report in Panel B the realized mean-variance certainty equivalents using each period the predicted
risk premium and physical variance to obtain the optimal allocation (see Equation (32)). The physical
variances are computed using option prices (see Appendix A.10). For each prediction method, we test for
the significance of the realized certainty equivalent difference relative to RP;_,7, using a block-bootstrap
with average block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed
from non-overlapping returns. *, x*, and ** * denote significance at the 10%, 5%, and 1% level, respectively.

T T=1and p=2 telescopic est.  rolling est.
RPtLj?pl IERP,_,7, RP,_7, RPi 1, 1, RP 1, 1%, RP 1, 1,
(1) (2) (3) (4) (5) (6)

Panel A: Out-of-sample R?

10d —-0.41 —0.60 —0.38 0.16 —0.20 —0.59
1 0.39 0.64 0.56 2.21 1.03 0.90*
2 0.76 0.77 1.25 4.92%* 2.10 4.19
3 -0.13 0.48 0.73 5.64*** 3.70 5.98
4 1.11 4.63 2.52 7.05%** 8.90 5.88
5 2.46 9.13 4.47 8.33*** 10.96 7.34
6 2.76 11.46 5.26 9.12%** 12.82 9.08
12 2.03 16.29 6.68 10.14** 11.66 9.54

Panel B: Out-of-sample mean-variance certainty equivalent with v = 3

10d 3.53 - 3.61 - - -
1 4.10 - 4.33 - - -
2 3.91 - 4.26 3.22 - -
3 4.76 - 5.40 13.38*** 0.20 14.13
4 4.19 - 4.54 6.48 1.13 -
5 4.24 - 4.96 8.61** - -
6 5.00 - 5.92 9.75* - -
12 4.83 - 6.22 7.22 0.95 5.58
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Table 7: Out-of-sample prediction and allocation performance with 7 = 1 and
p = 2, with rebalancing

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values 7 = 1 and p = 2.
RPtIﬁ%l is the lower bound of Martin (2017a). RP,_,, is the second-order lower bound of Chabi-Yo and
Loudis (2020) in Equation (15). RP,_,1, 1 is the risk premia measure in Equation (10). In columns (2)
and (3), results are reported using no rebalancing (benchmark). In columns (4) and (5), they are reported
with rebalancing. We report in Panel A the out-of-sample prediction R%,¢ in percent (see Equation
(30)). Values smaller than -1 are not reported and left blank. For each prediction method, we test for
the significance of the R% g difference relative to RP;_,7, using a Diebold and Mariano (1995) test. We
estimate the variance of the differences using a Newey-West correction with 12 lags. We report in Panel B
the realized mean-variance certainty equivalents using each period the predicted risk premium and physical
variance to obtain the optimal allocation (see Equation (32)). The physical variances are computed using
option prices (see Appendix A.10). For each prediction method, we test for the significance of the realized
certainty equivalent difference relative to RP,_,7, using a block-bootstrap with average block length of three
years and 10,000 bootstraps. Realized certainty equivalents are computed from non-overlapping returns. ,
xx, and * * * denote significance at the 10%, 5%, and 1% level, respectively.

T No rebalancing With rebalancing

Log
RP, "7, RP; 1, RP 1y 13, RP; .1, RP 1, 1,

(1) (2) 3) 4) (©)

Panel A: Out-of-sample R?

10d —0.09 —0.07 0.06 —0.07 0.16
1 1.09 1.18 1.73 1.18 1.65
2 1.34 1.59 3.84** 1.59 3.16
3 1.18 1.61 4717 1.61 3.76
4 2.16 2.86 5.47** 2.86 4.81
5 3.12 4.19 6.45%* 4.19 5.94
6 3.61 4.97 7.26** 4.97 7.00
9 4.32 6.37 8.76** 6.37 8.75
12 4.00 6.54 8.44 6.54 8.89
18 2.29 6.17 7.66 6.17 7.66

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.56 4.69 5.75 4.69 5.34
1 3.55 3.68 3.52 3.68 2.78
2 3.69 3.96 6.40 3.96 6.51
3 4.14 4.54 9.50*** 4.54 8.48
4 4.27 4.75 8.46** 4.75 7.96
5 4.01 4.50 6.85 4.50 6.69
6 4.26 4.89 7.24 4.89 7.23
9 4.18 4.88 6.19 4.88 6.18
12 4.52 5.45 6.85** 5.45 6.98
18 4.59 5.62 6.11%* 5.62 6.11
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Table 8: Out-of-sample prediction and allocation performance of the third-order
bound with 7 =1, p=2 and Kk =4

We report the out-of-sample performance of different risk premium prediction methods, from Jan-
uary 2000 to February 2023, setting the preference parameters to their default values 7 = 1, p = 2 and
Kk =4. RPtLj%l is the lower bound of Martin (2017a). RP;_,7, is the lower bound of Chabi-Yo and Loudis
(2020) in Equation (15). RP,_,p 7, is the risk premia measure in Equation (10). Results are reported
setting the preference parameters to 7 =1, p = 2 and k = 4. Columns (2) and (3) report the second-order
bounds while columns (4) and (5) report the thir-order bounds. We report in Panel A the out-of-sample
prediction R% g in percent (see Equation (30)). Values smaller than -1 are not reported and left blank.
For each prediction method, we test for the significance of the R% 4 difference relative to RP;_,7, using
a Diebold and Mariano (1995) test. We estimate the variance of the differences using a Newey-West
correction with 12 lags. We report in Panel B the realized mean-variance certainty equivalents using each
period the predicted risk premium and physical variance to obtain the optimal allocation (see Equation
(32)). The physical variances are computed using option prices (see Appendix A.10). For each prediction
method, we test for the significance of the realized certainty equivalent difference relative to RP;_,p, using
a block-bootstrap with average block length of three years and 10,000 bootstraps. Realized certainty
equivalents are computed from non-overlapping returns. *, #*, and * * * denote significance at the 10%, 5%,
and 1% level, respectively.

T 2nd order 3rd order
RP!%, RP; 1, RPi 1, 13, RPi 1, RPi1, 13,
(1) (2) (3) (4) (5)

Panel A: Out-of-sample R?

10d -0.40 -0.37 0.17 -0.37 —0.48

1 0.93 1.08 1.87 1.13 0.91
2 1.52 1.97 4.07* 2.07 3.51

3 1.43 2.23 5.32%** 2.37 5.59**
4 2.18 3.36 6.49*** 3.74 6.75"*
) 3.08 4.67 7.70*** 5.44 9.33**
6 3.43 5.31 8.40*** 6.41 -

12 2.69 5.61 7.84%** 8.00 -

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 6.00 6.17 13.00 6.17 -
1 4.50 4.69 - 4.75 -
2 4.59 4.88 3.91 4.97 -
3 5.01 5.52 8.66™* 5.74 -
4 4.86 5.35 8.62* 5.53 -
) 5.09 5.80 8.93** 6.17 3.57
6 4.63 5.35 6.93 5.76 -
12 5.12 6.11 7.83** 6.37 -
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A Proofs and derivations

This section contains the proofs and derivations of the main results presented in Section 2.

A.1 Proof of Equation (1)

Let Ry 7, be the return of risky asset k from time ¢ to time 7 and m,_,, be the one-period
SDF. We show that the conditional expected return of risky assets can be expressed as the
risk-neutral covariance between the asset return and the inverse of the SDF m;_,p,. This
result is not new, and was derived in Equation (2) of Chabi-Yo and Loudis (2019).

The conditional expected return of asset k& can be expressed using the identity

E.m m
By (Risosr,) = By (Rk,HTl e ) (A1)

miy—m Etmt—>Tl

The ratio ]EZ’;%T; defines the risk-neutral distribution. Hence, the Radon-Nykodym theorem
—11

allows us to express the conditional expected return of asset k as a function of moments

under the risk-neutral measure:

E, (Rk,tﬁTl) = E: <Rk,t%T1

E E
= COV; (M7 Rk,t—)Tl) +E (M) E (Ryr,)

Etmt—>T1 )

mt—}Tl

mym my—m
E.m

— COV! | == Ry | + Rpsosry. (A2)
mt—)Tl

We use Ef (%—;Tl) = 1 and E} (Rx—1) = Ry, This identity is reminiscent of the
—17

well-known asset pricing equation in which the expected excess return is negatively related

to the covariance between the return and the SDF under the physical measure.
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A.2 Proof of Equation (3)

We show that the inverse of the one-period SDF m;_,p, can be expressed as a function of
the marginal utility of wealth and expectations under the risk-neutral measure.

The representative agent’s optimization problem can be re-written as
s (u[Vr, ) = mox B, (maxEn (u(1¥s,)). (43
Solving Problem (A3) backward, the first step is to solve
max Er, (u[Wr,]). (A4)

w T1

Equation (A4) produces an optimal weight w7, , and the terminal wealth achieved with this
weight is Wz, = Wn (w;IRTl_}TN). The corresponding one-period SDF from time 7} to

time T, mq 7y, has the form
mr, sy = oy (Wi ] (A5)
Given the optimal value, wy, , the second step solves
max E (Er, (u [W5,]))- (A6)
This produces a one-period SDF from time ¢ to time 77 of the form
Moty = 0K, <u (Wi ] (w3 RTHTN)) . (A7)
From (A7), the constant J; can alternatively be written as

8y = Mior, (ETl <u Wi] (w;]RTHTN)))_l . (A8)
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Because parameter ¢; is a constant, we have §; = [E;0;. We exploit the no-arbitrage conditions

that allow us to move from the physical measure to the risk-neutral measure to obtain,

s oo ) )
= B B (s (B (4 093] (tn-)) )

E, (mt—>T1

— E (men,) EF ( (ETl <u (Wi ] (w37 Rey ) ) ) 1) . (A9)

Next, we replace d; by its expression in (A7) and show that

EtmtA)T1 _ 1/ETI (U’, [W’;N] (w;{RTl‘)TN)) (Alo)
M=y E; (1/Ez, (v [Wi,] (Wi Brioy)))
Similarly, we can use the SDF (A5) and show that
Er,mrp 1y _ 1/ [W%N} (A1)

mr Ty E;} (1/ul [W;N}>

Next, we write Ep, (ul (Wi ] (Wil Rry—1y)) in (A10) as a function of risk-neutral quantities:

, . E / . .
Er (u (Wi, ] (WTIRTI—)TN)> = Ep ( mr 1y Enmnory Wi ] (wiT RT1—>TN))

ET1 mTl *)TN mT1 HTN

ET mr,
_ * 1 12Ty ! * *T
= By (PRI 3] ] B
mTlg)TN
*T

le Eé—‘l RTI %TN
Er, (1/u [Wi,])
Ryrory
= — — — (A12)
IET1 (1/U [WTN]>

where we have used the no-arbitrage conditions to move from the physical measure to the risk-

neutral measure in the second equation, and Equation (A11) to obtain the third equation.
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We replace (A12) in (A10) to obtain

* 1
]ETl (u, {W* ] )
N N R 8 A
Emy_m, . Bym-ry
mt%Tl Ex 1
O\ wiy |
E N

t Rfr 1y

((1/Ryr—1y) /B (1/ Ry ) Efy <M)

) o Wiy | .
E; (((1/Rf,TﬁTN) /B¢ (1 Rymisry)) By (W»

Since there is no interest rate risk, 1/Rs 1y = E¢ (1/Rf 11y ), this last expression sim-

plifies to

E: (_u/ [WtRf’t—’TN])
Eymy _ n u' {W%N] .
my—m E: <]E,?1 (ul [V[ft[?;i,*tﬁ]TN] ) )
w Wi,

Assume that the gross return on the market can be used as proxy for the return on

(A13)

aggregate wealth:

Wr Wr
RM,t—>TN = I/VtN and RM,T1—>TN = WTT (A14)
Equation (A13) can be rewritten as
Eé“ (—u/’ [WtRf’t—’TN] )
Etmt_gl _ L\ u [WtRM,tHTN] (A15)
mi—m £ Ex u [WtRf,tHTN] .
EA\TT N\ W [WeRag ety

This ends the proof.
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A.3 Proof of Equation (4)

In this Section we detail the second-order expansion of the inverse of the marginal utility,
which we use to derive Proposition 1.

Define the function
u [(Wizoyo)
f [.1;, y] e
u [thy]
with * = Ryyeom, ¥ = Run—1y, To = Rprr and yo = Ry —7,. Since we assume no

interest rate risk, Ry 7y = oy and Ry 1y = ToYo.

Let us write the inverse of the SDF as

Eomi s, Ep (f [z, y])

o B (B, (f[0,0]) (A16)

where the function f is defined as

u [(Wixoyo]

flo,yl = o Wiry]

and © = Raism, o = Rpisr, ¥ = Runory, and yo = Ryory/Risn = Rernory-
We adopt the following short notations. First, we use f, and f, to denote the first partial
derivatives of the function f, f,, and f,, the second partial derivatives, and f,, the cross-
derivative, all evaluated at (g, yo). Second, we denote as u', v, and v the first, second, and
third derivatives of u [-] evaluated at (x¢,yo). We perform a second-order Taylor expansion
series of f [z, y] around (z,y) = (zo, yo):

Pl ~ Lt g (= 20) fat (5= 90) fy + o (2 = 20) fo

1

_’_5 (y . yO)Q fyy + % (:L‘ — $0) (y - yO) fa:ya
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where:

’

fac — @fy — i <_ (Wt$oyo) UH)

Zo ZTo u
= 1 ( Wt:toyou"> N 1 (thoyou”)Q (2 umul>
xy ToYo u Z0Yo (u')? W')?)’
7\ 2
£ = y_g _ 1 (VVtxoyou ) . oy
TT x% yy ($0)2 (ul)Q (UII)Q

Note that f,, = fy. Thus, we obtain,

flry] =~ 1+xio%(w—xo)+i%(y—yo)
1 . (1 _2/)15) ( 0)2 + 1 5 (1 _th> (y o y0)2
(o) Tt Yo) Tt
L /1 2(1—p)
+M <;t + T—E) (z —20) (¥ — w0), (A17)

where 7, and p; are defined in equations (7) and (8). Replacing z, xg, y, and yo by their
expressions and using preference parameters a;; and as; defined in Equations (7) and (8),

we obtain,

ayg Q1,t

E;‘l (f [ZL‘, y]) = 1+ (Rf,T1—>TN - Rf,T1—>TN)

(Ryvipor, — Rppory) + 5———
fit—=Ty Rf7T1 —TNn

a a .
+$2 (Ryrism — Rf,t—>T1)2 + 21 5 K7, ((RM,T1—>TN — Rf,T1—>TN)2)
(Rptom) (Ryri-ry)
ar: + 2a
— =2 (Ryrysr, — Rpaory) (Rpmsmy — Bpmory) - (A18)

Rf,t%Tg
Thus, E7, f [z,y] simplifies to

u' [WiRgsom Ry 1]
u [Wt RM,HTl RM,Tl —TN

B flo,g] = Ko, ( ]) e, (A19)
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where

Q¢ a2t A2t M*(Q)

T —TN

(A20)

2 = (Ryvist, — Rpsomy) + (Raior, — Rf,t—>T1)2 +

2 2
Rf t—T, Rf t—T1 Rf’Tl —TN

We then replace Equation (A19) in (A16) to obtain Equation (4).

A.4 Proof of Proposition 1

We use the expression for the SDF (4) derived in Section A.3, and plug it in the expected
return expression identity (1). We obtain
1+ 2
E; (R - R =COV; | R —
t( M t—T f,t—>T1) t ( M,t—T1 1 + EIZTI)

i 14z
= C@Vt <RM7t_>T1 - Rf,t—)TN H‘TZ)
t~Th

. 1+ =
=E; ((RM,HTl - Rf,HTl)ﬁ) (A21)
t 1

We then replace (A20) in (A21) and obtain the estimate for the market risk premium in

Equation (10).

A.5 Restricted bound (13)

Let us assume that (i) odd market risk neutral moments are negative and (ii) conditions

1/7 > 1 and p; > 2 hold. Under these conditions, a;¢ > 1 and as; < —1. Hence,

Aip oen(2) 1 X(2)
M > ——M A22
Rf7t—>T1 t—T1 — Rf,t—>T1 t—T1 ( )
A2t *(3 1 *(3
2 Mti)Tl 2 2 Mti%’l (A23)
Rf t—T1 Rf,t—)Tl
1
2! IRV > ——LEV; (A24)
Rf T1—TN Rf T1—TN

67



which shows that the numerator of (10) is larger than the numerator of (13). Furthermore,

Az (2 —1 (2
R2 Mt(_>%w1 S R2 Mt(—>%—’1 (A25)
fit—T fit—T
a?,t somk(2 -1 snomk(2
g, <"l mae®, (a2
f,T14>TN f,TlﬁTN
(A27)
which shows that the denominator of (10) is smaller than the denominator of (13).
The inequality follows.
A.6 Proof of Corollary 2
The expected excess return can be decomposed into
a *(2) al, *(2) a
1+ oM, REMS) + M

]E’t (RM,t—>T1 - Rf,t—>T1) =

1+ a2t M:fgpl_'_Rz az E*M 1+ a2t M*(Q)

f t—Ty F.T =Ty T1 _>TN f t—Ty =T
a2t * ( ) a ¢ *
2 EMD 2t LRV
+ £, T1=TN f T —=TN
2) az ¢ az ¢ *
1+ oM ), + M, M
R? Ty t—T7 R; T =Ty T —>TN R? Ty —Ty T1 —)TN
Setting o
1+ =2t M
ﬂ.* B R?‘,taTl t—T1
[ 14+ a9t M*(2) + as.¢ E*M*(2)
R? o1y t—T1 R%Tl T t t—T)

ends the proof.

Furthermore, provided that p, > 1, ie., as; <0, 7y > 1,ie., 1 —m <0. Assuming that

LEV* <0,
} LEV*
RP 7y = —— 75— <0, (A28)
Et MTl—)TN
which gives
By (Rya—r — Rpuom) = i RPom + (1 = m)) RP, 1y 2 RP oy (A29)
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This shows that under minimal assumptions, our risk premium is always larger than the

one of Chabi-Yo and Loudis (2020).

A.7 Comparison of the models of Chabi-Yo and Loudis (2020) and

Tetlock, McCoy, and Shah (2024)

In this subsection, we show that the SDF of Chabi-Yo and Loudis (2020) and Tetlock, McCoy,
and Shah (2024) are equivalent.

In the model of Tetlock, McCoy, and Shah (2024), the representative agent can trade the
market as well as K — 1 derivatives securities, with payoffs the higher-order moments of the
market returns. The excess return on the market is }N%Mvt_,Tl = Ry, — Rfsr, and the
excess returns on the derivatives securities is Eﬂ“\“ 1y — Ck, With ¢ = Ef <§’f\“ %Tl).

Equation (9) of Tetlock, McCoy, and Shah (2024) gives the inverse SDF as follows:

E,m K
t Tt —Ty
—:1+§

w <§k —c ) A30
mi—m 1 Rf,t—)T1 ot M= g ( )
where wy; are the weights if the growth-optimal portfolio, held by logarithmic investors.

In comparison, the SDF of Chabi-Yo and Loudis (2020) is given by Equations (13) and

(21) in their paper, as
P
Emisr, 1+ P R t—T)

_ it (A31)
mym 1+ Zle A tCk,
with
3= At
kit =
R?,t%’fﬁ
The SDF (A31) can be expanded as
E;m - a
t!Tot—Th k,t
— = + —— R% (A32)
my—m 1+ Zk; 1 (lk tCr kz; (1 + Zf:l amck) MA=T

a'k:t Sk
= 1+ E R —c A33
<1 + Zk 1 akt0k> ( Mt=h k) ( )
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Setting the weights as follows

A ¢
K ~ )
L+ ) QriCh

Wet = R ft—Ty

we recover the SDF of Tetlock, McCoy, and Shah (2024).

The model of Tetlock, McCoy, and Shah (2024) allows for investors who are not loga-
rithmic investors. The complexity of these investors portfolios determines the value of K.
Consider K = 3, for illustration purposes. If the weights wy, for k =1,..., K are known (or
computed) as it is the case in Tetlock, McCoy, and Shah (2024), then the coefficients ay; can
be recovered and the preference parameters 1/7;, p; and k; can be uniquely identified. In
this case, the two SDF's are equivalent. Conversely, if the preference parameters 1/7;, p; and
k¢ are known, ai, can be recovered and the weights can be computed. The same reasoning

extends to any finite K > 3.

A.8 Comparison of the models of Crescini, Trojani, and Vedolin

(2025) and Tetlock, McCoy, and Shah (2024)

In this subsection, we show that the SDF in Tetlock, McCoy, and Shah (2024) can be
rewritten in the form of the SDF used by Crescini, Trojani, and Vedolin (2025).
From the spanning formula of Carr and Madan (2001b), ﬁﬁ“ _1,, for k > 1 can be written

as a collection of calls and puts:

ﬁ?\/l,tﬁTl - (RM,t—>T1 - Rf,t—>T1)k
k
k=1 ) Jsrpn (% - Rf,HT1> (S, — K)"dK
- o2 k
St _'_foStRf,t—>T1 (Sﬁt _ Rf,t%Tl) (K . ST1)+ dK

where S; is the spot market price at time t¢.
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Substituting this expression in (A30), it follows that IE;ZL%? is a weighted sum of the
excess market return, and payoffs of calls and puts (both tradable) with maturity 77 and
strike K. This SDF can thus be rewritten in form of the SDF of Crescini, Trojani, and
Vedolin (2025):

Eimy—m

=1+0R"
mt—>T1

where R = R — 1 be the excess forward return of the index and options. #’R¢ is a weighted
sum of the excess market return and payoffs of tradable call and put options.

In the model of Crescini, Trojani, and Vedolin (2025), portfolio weights are allowed to
vary across investors: 6 = 6; to reflect varying demand of investors for the different assets.
For logarithmic investors, the resulting SDF is equivalent to the one of Tetlock, McCoy, and
Shah (2024). Other investors’ SDF depend on their holdings, which allows Crescini, Trojani,

and Vedolin (2025) to construct subjective measures of investor expected return and risk.

A.9 Comparison of our model to the model of Crescini, Trojani,

and Vedolin (2025)

Unlike Tetlock, McCoy, and Shah (2024) and Crescini, Trojani, and Vedolin (2025), we do
not model explicitely heterogenous investors’ beliefs. It is therefore unclear whether our SDF
incorporates information on option demand. In this subsection, we show that it does.

Our inverse SDF can be viewed as an extension of the inverse SDFs proposed by Chabi-
Yo and Loudis (2020), augmented with the conditional risk-neutral variance of the market
between time 77 and time T (when a second-order expansion of the inverse marginal utility
is used). We showed in Appendix A.7 that the SDF of Chabi-Yo and Loudis (2020) is
equivalent to the one of Tetlock, McCoy, and Shah (2024), when the preference parameters
are calibrated as functions of the weights in Tetlock, McCoy, and Shah (2024). Hence,
our inverse SDF can be expressed as a weighted sum of the excess market return and a

collection of call and put payoffs, augmented by the risk-neutral variance M;EQLTN. As
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M*T(IQTN = K7, éﬁ/f,ﬂ 7, for k> 1 depends on future option prices, the spanning formula

implies

ok _ S Tn g
RM,Tl =Ty Sr - Rfle —TNn
1

1

k
R=1) | oy (85— Bonony) (Sny = K)TdK

2 k
STl _'_J'OSTlRf,Tl—)TN (% _ Rf,TI%TN> (K _ STN)+ dK
Thus
M*(k) _ k (k B 1) Rf»TIHTN fSTlRf’Tl_,TN (E o Rfle‘)TN> CTN [K] dK
sl S2 Sty Ry 1 —T K k ’
n ety (L= Ryg ) Pry (K] dE

where Cr, [K] and Pr, [K]| are the prices of call and put options with strike & and maturity
Ty.

Therefore, our inverse SDF can be written as a weighted sum of the excess market return,
a collection of payoffs on calls and puts and a set of payoffs from a strategy that buys call
and put options expiring at T and sells them at T}.

Our estimated parameters ay; hence embed information on aggregate demand for options
with maturity 77 -as in Chabi-Yo and Loudis (2020), Tetlock, McCoy, and Shah (2024) and
Crescini, Trojani, and Vedolin (2025)- as well as for strategies that involve buying options
with maturity Ty and selling them at 7. These strategies arise due to intertemporal hedging

in a multi-period economy.

A.10 Physical variance

In this section, we provide expressions for the option-implied physical variance

Bt (Rarsost, — BiRarisry)” = By (Rarussty, — Rpvosr)” — (B (Rarusst, — Rpassmy))”
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We already have an expression for E; (Rys—r, — Ryt ). Note that

EtmtﬁTl

By (Rarsosty, — Rpvosm)” = Ef { (Ratosr, — Rf,Hﬂ)?} .

mt—>T1

Using the second-order approximation in Equation (4), we obtain

az,¢ M*(4)

2
Rf,t%Tl t—T1

+R2 az,t (L]EK: + M:(_?%“l EIM*@) )

M*(Q) + ai,t M*(3) +

t—T1 Rf,t%Tl t—T1

2 £, T1=TN ot
E, (RM,t%Tl - Rf,t%Tl) = as. ¢ *(2) a2, s (2) (A34)
1 + : M + R2 i ]Et MT1 HTN

p)
Rf,t—>T1 t—=Th T Ty

where

LEK; = COV; (Ruresty — Rpasm)? s (Rumoty — Remory)’) -

A.11 Proof of Proposition 5

Under no-arbitrage conditions, we use the Radon-Nikodym theorem. It allows us to move
from the physical to the risk neutral measures and express the conditional crash probability

as

My EtmtﬁTl

P, (Rypor <o) = E, ( 1r <a)
7 Eimyr musm M=t

E
= E; ( Ty 1RM,t—>T1<Ol) . (A35)

mt%T1

We then replace the inverse of the SDF by Equation (4) in the conditional crash probability

to obtain,

Ef (:H‘RM,taTl <Oé) + Ef (le]]‘R]\/I,t%Tl <Oc) + Ef (Z%llRM,t%Tl <Oé)

2) a2, *n e (2)
1+ 2 M%) + 2 EM
Rf‘,t%Tl t=T R?,TlﬁTN TN

P (RM,t—>T1 <a) =

)

(A36)
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where

* a1t *
]Et (ZTI:H‘RIM,taTl <Ot) = th T IE’t ((RM»tﬁTl - Rf,t—>T1) ]]'RM,tﬁTl <06)
s t—11
(05} %
+R ! ]E't ((RM,t—>T1 - Rf,t—)Tl)z :H'RM,tHTl <OZ) )
fit—=T
E; (241 ) = 2wy (M®, 1 (A37)
t ZTl RM,z—>T1 <o RQ Ty —Tn RM,t—>T1 <a ) -
fT1—>TN

A.12 RP, ., 1, as a function of Ty

Using Equations (28) and (29), we can rewrite RP,,7, 1, as a function of Mt(j?pN'

ATI + BTI t—>TN/Rf T1—TN

RPyyry 7y = T (A38)
Cr, + Dry t(—>TN/RfT1%TN
with
*(3)
A2t MHT
BT1 - R2 % 3)1 #(2) (A39)
fTh—TN Mt—>T1 + 2Rf t—>T1Mt—>T1 + Rf t—Th Mt—>T1
*(2)
Azt MtﬁT
DT1 = R2 *(4) *(31 x(2) (A40)
fTi—TN Mt—>Tl + 2Rf t—T Mt—>T1 + Rf t—Ty Mt—>T1

and Ay, and C7, gather all remaining terms in RP_,7, 7,

Assuming as; < 0 and LEV; <0, we have By, > 0 and Dy, <0.

Compute the derivative of RP;_,7, 7, with respect to x to study the sign of this derivative

aRPtA)Tl,TN _ BT1 (CTl + DTlx> - (ATI + BT1x>DT1

ox (Cr, + Dpyx)? (A1)

We already know that By, > 0 and Dy, < 0. Furthermore, for x > 0, the numerator

of RP,_,1, 1, is positive, hence Ay, + Bryz > 0. Assuming that RP, .1, 1, is positive, the

denominator Cr, + Dy« will also be positive: Cp, + Dz > 0. This gives

aRPt_>Tl s

TN >
5 >0, (A42)
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hence, RP,_,1, 1, is increasing in z. As R%Tl L7y & 1, increasing Ty increases mechani-

cally x = M:(j)TN / R} 1,1y, and hence RP, 7, 1 -
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B Estimation of moments

We provide closed-form solutions to the risk-neutral and physical moments used in our
analysis. In many cases, we use the spanning formula of Carr and Madan (2001a) and
Bakshi and Madan (2000) to evaluate the risk-neutral expected value of a twice-differentiable

function of the underlying asset price, H (St,) as

EiH [St,] = H[SiRpin] +E{Hs [SiRper] St (Raisty — Rpaosry)
Ryt

00 St Ry 11y
+Rf,taT1 [/ Hgg [K] C, [K]dK—i—/ Hgg [K]Pt[K]dK ,
S, 0

(B1)

where Hg and Hgg are the first and second derivative of function H(-), respectively. We
evaluate the integral terms via numerical integration using the 1,000-point moneyness grid

described in Section 3.2.

B.1 Closed-form expressions for Mfﬁfgpj and Ef <Rﬁu _)Tj>

To evaluate the risk-neutral moments of order £, I\\/JI:(_IT)TJ and Ef <Rﬁ4¢ _)Tj), we set H (STj) =

S, k Sr.\ k
<Si: —R f,t_gj) and H (STj) = (si:) in Equation (B1), respectively. Then, we use options

with maturity 7; to evaluate Equation (B1).

B.2 Closed-form expression of LEK}

Notice that

LEK; = COV; ((Rayom — Rpoon)? s (Rumomy — Rymory)?)
= E; (Rugor — Rpesr) By (Rumony — Remoty)?)
~M; L BB (Rt — Rpiory)
= O, VAR, ((Raom — Rpeom)?)
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because

E;’l (RM,T:[A)TN - Rf,T1~>T1\]>2 == et (RM,tHTl - Rf,tﬁT1>2

Hence

LeK; =, (%, - (%))

B.3 Closed-form expression for E:Mi}(ﬁim and LES;

We can write [E; M*T(3) and LES; respectively as,

1—TN

* 3
Lo MT(llTN Et ((RM»T1—>TN - Rf7T1_>TN) )
= E (RM T —TN Rf T1—>TN) 3Rf T1—>TNE MTELTJ\N
and
* *(3
LESt = (RM t—T1 T1—>TN>
= R E: R3 — R ) — 3R M*(Z)
Mt—Ty T1 M, Ty —TN F. T =Ty [ Ti—=TN YT Ty

= COV:

(
= C(O)V: (RM,tHTl ) E;“l (RgM,Tl —TN Rf T —>TN) ) - 3Rf,Tl —TN LEV:

Ry =T E;l (Rﬁ/[,Tl —TN R .1 —>TN)) - 3Rf,T1 —TN C@V: (RM =T

(B2)

M*(Q)

Ty —>TN>

(B3)

Let us assume that the term Ej, (R3, 7, — R}p_p,) is a nonlinear function g of

RM,t—)Tl - Rf,t—>T11

]E;l (R?\/[,T1—>TN) - R?‘,T1—>TN = 'Vtg[RM,t—>T1 - Rf7t—>T1] + U,

7



with E} (v¢| Rarems) = Ef (v) = 0. Multiplying both sides of Equation (B4) by R}, ,r,

and taking the time-t risk-neutral expectation, we obtain,

t—TnN t—Tn t—s

M*(g) + 3Rf,t—>TNM*(2) - R?”,T1HTN (M*(Sg’jl + 3Rf’t_>T1M:(_2>%F1>

Te= - (B5)
Et (R?\/[,t_)Tlg[RM,teTl - Rf,t—>T1])
If we use g[Rar¢—1, — Ry | = R3, 7, we obtain
%(3 x(2 *(3 *(2
Mt(—f}WN + 3Rfat_>TNMt(—>%ﬂN - R‘?;',T14>TN (Mt(—)')Tl + SRﬁt_)TlMt(—)%“l)
Tt = ¥ 6 ) <B6)
Et (RM,t%Tl)
Taking the expectation of (B4) under the risk neutral measure,
Ey (R?\4,T1—>TN) - R?‘,T1—>TN = &y (R?\/[,t—>T1) ) (B7)

Multiplying both sides of Equation (B4) by Ry 7, and taking the time-t risk-neutral ex-

pectation

]E;fk (RMﬂf—)Tl R?M,']&—)T}v) = Rfﬂf_)Tl R?,T1—>TN + /YtE;k (R%/I,t—ﬁl) ° (B8)

Therefore, using Equations (B2) and (B3) we obtain IE;‘I\\/JI*T(I?iTN and LES; as,
E M;(l?iTN = 1Ky (R?\/[,t—)Tl) = 3Rpm oy B M;EQLTW
and
LES; = wE! (Rior) — RuonE-MGY, . — 3Ry m Ry oy EiMA 2, — 3Ry LEV;

To compute the physical variance, we also need the following moments which we obtain using

a similar approach:

E: (RM,t—>T1 - Rf,t—)T1>3 (RM,T1—)TN - Rf,Tl—)TN)2 = E;k (RM,t—>T1 - Rf,t—)Tl)g E;‘l (RM,Tl—)TN - Rf,Tl—)TN)
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Using expression (26)

. 2 2
ET (Rur-ry — Rymisry)” = 0 (R, — Rygsm)” +eny,

it follows that

E; (Ryoosr, — Rpvor) (Rumory — Rimiory)” = 0B (Ryreor, — Rpssn)”

In addition, let us provide a closed-form expression of another risk neutral quantity:

E; (Rurion — Rpom) (Rumsny — Rpnory)’
= E; (Ruor — Rpaon)” Riymomy

—R} o B (Raresny, — Rpeory)?

+3R5 1o Bl (Rargsn — Rpeor)” Rumioy

2
_3Rf,T1 —TN ]E: (RM,t%Tl - RfiﬁTl) R?M,Tl —TN

This expression simplifies to

2 3
Ef (Raisn — Rpiosn)” (Rum -1y — Rymiory)
* 2 ok 3
- Et (RM,t—>T1 - Rf,t—>T1) En RM,TlaTN
3 *(2)
+R o M

_3Rf»T1_>TN]E: (RM,t—>T1 — Rf,t_g“l)? M*(Q)

Tr—TnN

Since

* 3 _ 3
ETl RM,T1 STy — N RM,HTI
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It follows that

E;ﬁk (RM,t—>T1 - Rf,t—>T1)2 (RM,T1—>TN - Rf,T1—>TN)3

= wE; (Rareon — Rpasm)’ Rirom)
*(2
+R} L M e

t—T1

3Ry 1,1y ((Rageor, — Rpaom) My, )

*(2)

. 2
where expression E; <(RM¢_>T1 — Rysr )" My g,

) can be derived as follows:

(Rmysr — R f,HTl)Q M*T(IZLTN =0, (Ryysr — Rf,HTl)4 + (Rvysry — R f,HTl)2 ETy

and

Ef <(RM,HT1 — Rpomy)’? M?ﬁﬂm) = OE; (Raem — Rpeor)' + Ef (Rarus, — Rpuom ) ey
= OF; (Ruyor, — Rpeomy)’
B.4 Closed-form expression of M:f)ﬂ [a]

Recall that MZ@TI [a] = Ef {(RM,HT1 — RfyHTl)k HST1<aSt}- Therefore, we set H [z] =

k
<S% - Rf,t_m) in Equation (B1) and obtain,

aSt

M;% [o] = H[aS) B} [Sr, < a8 — Hs [aS)] Rpeor, P [0S)] + Ry, / Hgs [K] P [K]dK.
0

B.5 Closed-form expression of Ef (r{w —>T1M;(1]€—)>TN 1 RM,t—>T1<a)

Let us consider the case k = 2. First, we have

* Tk *(2 *(2
M;, o] = Ef (M2, Tn e m<a) = 0, o], (B9)
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and
* Tk *(2 *(3
Mt sU [ ] = Et ((RM,t—>T1 - Rf»t—>T1) M'T(l—{TN]]'RM,t%TI <O¢> = etMtL’zﬁ [Oz] : (BlO)

Next, we can write the future third central moment as,

* 3 *
MCZ“(l—)>TN = ETI (RMT1—>TN) RfT1—>TN 3RfT1—>TNET1 (RMT1—>TN) +3RfT1—>TJ\(B11)

E* (M;ELTN 1RM ;=T <a> = E;tk (RM T —Tn 1RM,t—>T1 <Oé)
_3Rf TlﬁTN]E* (]E;l RM T —TN 1RM,t—>T1 <a)

+2Rf T1—)TNE* 1RM,t—>T1 <o

which simplifies to

]E* (M;—SLTN 1R1\/I =Ty <a) = E: (RM T —Tn 1RM,t—>T1 <C‘f)
* *(2
_3Rf,T1HTNEt ((MTELTN + R?,TlﬁTN) 1RM,HT1<a>

+2Rf Ty —TnN E: 1RM,t~>T1 <o

and

E* (M;l lTN ]‘RM ATy <Oé) - ]E* (1RM t—Ty <aET1 RM 1 *)TN)
* *(2
_3Rf Ty —>TNE <MT1 lTN 1RM Ty <Oé>

*
Rf T —>TNJE 1RM,t~>T1 <a
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Since

with

Hence

* 3 o 3
Er Rymory = %Ruiorm +en
*(2) 2
Mp" 0, = 0 (Rymisn — Raesny)” +0my

E: [ng |RM,t—>T1] =0 and E: [nT1 ’RM,t%Tl] =0

% *(3 * 3
Et (MTSLTN]‘RM,tﬁTl <O¢> = ’YtEt (1RM,t~>T1 <aRM,t—>T1)

Recall that

(RM,tA)Tl - Rf,t~>T1):3

and

—3Rs 110} (Rarisr, — Ruor)” 1Ry sz, <a)

3 *
- Rf,Tl —TN IE:t 1RIM,t—>T1 <a

3 3 2 2
RM7t—>T1 - Rf,t—)Tl - 3RM7t—>T1 RfvtﬁTl + 3Rf,t—)T1 RMytHTl

2

R3 iy _3 (Rartsr — Rypismy)
Mt—T, Fit—Ty )
2Ry Ry — Rf,t%Tl

3 3 2
RM,t—>T1 - Rf,t—>T1 -3 (RM,t—>T1 - Rf7t—>T1) Rf7t—>T1

—6Rnr4m R o, + 3R}y + 3R%,p Ruaomy

(B12)

Rf7t—>T1 + SRi,tﬁTl RM,

3 2
(Ratesm, — Rpesn)” = Riypon =3 (Rargosty — Rpaory)” Rpssn—3Ruun Ry o 2R L,

That is

R?V[,t—)Tl = (RMﬂf‘)Tl - Rf:tHT1>3+3 (RMﬂf‘)Tl - RfytHT1)2 Rf»t%T1 +3RM¢%T1 R?,t—)Tl _2R3,t—>T1
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We can then simplify (B12) as

(Rargor — Rf,t—>T1)3
* *(3) ¥
Et <MT(1—)TN]'RJ\/I,1$~>T1 <Oé> - %ﬁEt 1RAI,t~>T1 <a +3 (RM,t%T1 - RﬁtHTl)Q Rfvt%Tl
+3 R - R?‘,t%Tl - QR?J;,t%Tl

_3Rf,T1—>TN QtE: ((RM,t—>T1 - RM7t—>T1>2 1RM,t4>T1 <a)

3 *
_Rf,Tl TN Et 1RM,t—>T1 <«
Finally

E; (Ryor, — Riior)’ 1RM,t_,T1<a)
* 2
E <M*(3) 1 ) _ 3R By ((RM,t%Tl — Ryiom) 1RM,1HT1<&)
¢ T =Ty Rumi—m <o Tt ) .
+3Rf,t—>T1Et (RM,t%Tl 1RJ\/I,t—>T1 <a)
_QR?JHTHEI (1RM,t~>T1<OC)

—3Rs1 o1y 0 E; ((RM,t—>T1 — RM,t—>T1)2 LRarsom, <a>

\ /

3 *
_Rf,T1—>TNEt 1RM,t—>T1 <a

and

*(3 *(2
) M; S o] + 3Ry M2, [of
B (MTﬁTwlRMvHﬂ <“> - 2 +(1) 3 *(0)
+3Rf,t—)T1Mt—)T1 [Oé] + Rf,t—}TlMt—)Tl [O{]

* *(0
3Ry oy M, (o] — RS _p M) [0

C Validity and tightness tests

We follow the methodology of Back, Crotty, and Kazempour (2022) and test for the validity

and tightness of these bounds. We recall below the methodology.
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The test is based on the set of inequalities

Et[((RM,teTl - Rf,t—>T1) - RPt—>T1)Zt] >0

for a vector z; of nonnegative conditioning variables in the time-t¢ information set. Back,
Crotty, and Kazempour (2022) refer to ((Ray—r, — Rpim ) — RPir,) as realized slackness.
We consider RP,_,p, € {RPtLj%l, RP, ., RPHTI,T]*V}. The vector z; contains variables from
Welch and Goyal (2008): Dividend Price Ratio (defined as the difference between the log of
dividends and the log of the S&P 500 index price level, plus 5 to ensure a positive conditioning
variable); Earnings Price Ratio (defined as the difference between the log of earnings and
the log of the S&P 500 index price level, plus 5 to ensure a positive conditioning variable);
Book-to-Market Ratio (the ratio of book value to market value for the Dow Jones Industrial
Average); T-bill Rate (the 3-month Treasury bill rate); 1 + Term Spread (defined as the
difference between the long-term yield from Ibbotson’s and the 3-month T-bill rate, plus 1 to
ensure a positive conditioning variable); Credit Spread (defined as difference between BAA
and AAA-rated corporate bond yields); Stock Variance (defined as the sum of squared daily
returns on the S&P 500); 1 + Net Equity Issuance (the ratio of 12-month moving sums of
net issues by NYSE-listed stocks to the total end-of-year market capitalizations of NYSE
stocks, plus 1 to ensure a positive conditioning variable); 1 + Inflation (the Consumer Price
Index, plus 1 to ensure a positive conditioning variable).

Denote by A\ the population mean of E;[((Rat—7, — Rftmn) — RPiory ) 2. To evaluate
a bound’s validity, we test the null hypothesis A\ > 0 against the alternative that A is

unrestricted. To test tightness, we test the null hypothesis A\g = 0 against the alternative

that )\0 Z 0.
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Let A denote the sample mean of ((Rysr, — Rfisr) — RPisr )z, and ¥ its sample

covariance. Validity is tested using the statistic D;, defined as

D; = min(A — )I (A = X) (C13)

A>0

Under the null that Ay > 0, Back, Crotty, and Kazempour (2022) show that D; is asymp-
totically distributed as a mixture of chi- square distributions.

Under validity, tightness is tested using the statistic
Dy = NS, (C14)

where \ is the vector of A which reaches the minimum in equation (C13). under the null
that A\g = 0, Dy is also asymptotically distributed as a mixture of chi-square distributions.
Following Back, Crotty, and Kazempour (2022), we calculate finite sample p— values
using Monte-Carlo simulations.
Table A1 reports the results, for investors’ horizons T = 1 and 2 years. The statistic D,

) L
is zero for RP~%

7, and for RP; .7, for most forecast horizons Tj. It is positive for RP; 7 1y,

but always below the 10% critical value. It is positive but larger for RP;_,p 9,, such that
validity is rejected for half of the forecast horizons. The statistic Dy is the largest for RPtngTl,

slightly smaller for RP;_,7, , and smaller for RP; 1, 1, and RP,_,7, 2,. Tightness is rejected

for all bounds, except for RP,_,7, 1, and RP,_,p, o, at T} = 10 days.

D Portfolio Rebalancing: Implementation

To compute the risk neutral quantities, we use an approach similar to (26) by considering

the decomposition:
M =0 R R : D1
TQj—lﬁTQj — TQj—l —)TQ]. M,tﬁ)TQj_l - f:t*)TQj_l + 77TQ]._1 ( )
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Table Al: Validity and tightness tests

We report test statistics for bound validity and bound tightness for different equity risk premium
bounds.  The test statistics D; and Ds are defined in equation (C13) and (C14). The sam-
ple moments are means of weekly realized slackness and weekly realized slackness interacted with
each of the variables from Welch and Goyal (2008) in z;. The p-values (in percent notation) are
based on 100 Monte-Carlo simulations. Data are weekly from January 1996 to February 2023.

RPtL—(:ng RP 1, RP 7 1y RP;_ 7, 2y
Panel A: One week
Dy 0.00 0.00 0.39 1.91
p-value for validity 0.91 0.91 0.76 0.43
Do 15.19 15.00 7.94 4.11
p-value for tightness 0.05 0.06 0.42 0.81
Panel B: One month
Dy 0.00 0.07 3.06 10.94
p-value for validity 0.93 0.76 0.24 0.01
Dy 82.60 80.94 69.15 61.51
p-value for tightness 0.00 0.00 0.00 0.00
Panel C: Two months
Dy 0.00 0.00 2.30 10.46
p-value for validity 0.88 0.83 0.27 0.01
Dy 225.41 221.85 193.71 168.46
p-value for tightness 0.00 0.00 0.00 0.00
Panel D: One quarter
D, 0.00 0.00 1.71 8.02
p-value for validity 0.83 0.82 0.32 0.02
Do 405.06 395.76 352.33 304.26
p-value for tightness 0.00 0.00 0.00 0.00
Panel E: Six months
Dy 0.00 0.00 0.64 4.33
p-value for validity 0.79 0.83 0.46 0.11
Do 707.61 680.64 636.71 548.28
p-value for tightness 0.00 0.00 0.00 0.00
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with E* (nTQj_l ‘RM,HTQ,l) = 0. We then show:

*(2) *(2)
Mt—}TQ - Rf,TQJ 1 Q Mt—}TjSl
QTQj71—>TQj = 2\
E; (RM g, (Rviomy, = R, ) )

and

. 1 )

LEV; =3 —r——COV; (Rupom M2 g ). (D2)
i>1 " FTq; =T,

with

" *(2 * *(2 *
C@Vt (RM,tHTl?MT(Q:_I%TQj) = Et <RM¢HT1 MT(QJ_IHTQ]) Rf tHTl]E M Qj HT4D3
Taking the expectation, under the risk neutral measure, of (D1) at time ¢ leads to

s (2) _ *(2)
K MTQ —To; GTQJ—I*}TQth*}Tijl

If Ty, , = Ty, (D3) simplifies to
E; <RM¢—>T1M;(12—)>TQ].> = Ono1y, (M*(ST + Rf,taTlM:(j)Tl)

Now, assume that Ty, , > T1. We then replace M;(QZ? . by its decomposition and show
i- j

2
* *(2 *
E; (RM»HTlMT(QjA —>TQj> = E; (RM,t—>T19TQj1—>TQj (RM,t—ﬁ%1 - Rf,t—>TQj71> )

+E: <RM,t—)T1 T’Tijl )

Since Tg,., > T, it follows that

]E;k (RM7t—>T177TQj_1) = ]E;k (RM7t_>T1E;—:1T]TQj_1>
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Given that E*TlnTjSl = 0, it follows that

2
* *(2) . * -
E; (RuonMiy) gy ) = E (RM,HTleTQjﬁTQj (Rariorre, , = Rreore, )

2
- QTjSl—)TQj ]E’;k (RM,t%Tl <RM,t—>TQj71 - Rf7t—>TQj71> )

Observe that

— R2 _ 2
(RMvt_)TQj_l R.ﬂt_)TQj_l ) - RM,t—)TQj71 2RM7t_>TQ]'_1 RfvtﬁTQj_l + Rf,t—)TjSl

Thus
% %(2) _ * 2 2 \
Et <RM7t4)T1MTQ]._1~>TQj> - eTQj_lﬂTQjEt (RMat‘)Tl (RM,t—YTQj_l - QRMvtg)TQ]'_lRfthTQ]‘_l + R ,t—)TQj_l/
. 2
IE:t <RM7t—>T1RM,t—>TQj_1>
*
Oy, »10, ¢ —2R fi-Tg, B (RM,t—>T1 Ry, )

+IE; (RM t=Th R?‘,taTjSl )

Since }%J\/Lt_gpQF1 = Ryiom, RM7T1_>TQJ,71, the above expression simplifies to

* 3 2
Et (RM7t—>T1 RM,Tl —)TQ].71 )
E; ( Rageor M = 07, T, —2R E: ( R? R
t A= L1 T 1ﬁ\TQJ. Qj_171Q; f,t—>TQj71 t M t—T M,T1—>TQ];1

j—

2
+Rpn R ft=To;

and

E;fk (‘R%ﬂf—)’]—i R?M,Tl —)TQJ. 1 )
E; (Ryon My

— * 2
TQj—l —)TQj > QTijl _>TQj _2Rf,t—>TQj71 Rf,T1 _>TQj—1 Et (RM,t—>T1 )

2
+Ryim R ft-Tg,
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We further expand this expression to

* 3 2 2 2
]Et <RM,t—>T1 (RM,T1—>TQ].71 - Rf,T1—)TQ]._1 + Rf,T1—)TQ]._1>>

* *(2) _ 2
Et (RMi_)Tl MTijl _>TQ]' > - HTijl _>TQj _QRfvt%TQ]’71 RfleﬁTijl E;fk (RM,t—>T1)

2
+Rf,t—>T1 Rf,t—)TjS 1

which simplifies to

3 +(2) )
E: (RM,t—>T1 MTl —)TQj_l >
+R?,T1 —>TQ].71 E: (R?\/[,t%’fﬁ )

* *(2) _
E; (RM’t_)TlM 1_>TQ1> N QTQJ'*_)TQJ' *(2)
_2Rf,t%TQ]-_1 Rf7T1 —Tg; Mt%Tl

TQ]‘,

2 2
\ _QRf7t—>TQj,1Rf,T1—>TQj,1Rf,HT1 + Rf,t—>T1Rf,HTQ]._1
(D4)

/

Recall that

M;EZATQ].A = 01,515, , (Raeor, — Rpaom)” + 1z with Ef (7, | Rageor)
Hence, (D4)

* 2
QTHTQj_lEt (R?M,HTl (Bt — Rpom) )
+R?,T1 *)TQj—l E: (R}O)WJ—)Tl )

* *(2) _
= <RM oMy s, > = Or, -1, «(2)
_2Rf7t—)TQ771 Rf7T1 _>TQj71 Mt—>T1

T,

_2Rfat4)TQ]-_1 Rf,TlﬁTQ]-_1 R?‘,t—)Tl + RfiﬁTl R?‘,t—)TjSl )
(D5)

\

Thus

* 2
0T1—>TQj_1Et (R%J,tHTl (RM,t—>T1 - Rf7t—>T1) )

* *(2) . *(2)

K (RM:HTlMTQj,lﬁTQj) - QTijl_yTQj +R?‘,T1HTQ]._1E: (R%,HTI) - 2Rf,t—>TQj,1Rf,TlﬁTQj,lMtaTl

2 2
_2}%‘%—@@].,1 Rf,T1—>TQj,1 Rf,HTl + Rf,HTQj_1 Ryiom
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Provided that odd market risk neutral moments and the risk neutral leverage LEV; are

negative and conditions 1/7 > land p, — 1 > 1 hold, we can further bound (34) as follows:

1 *(2) 1 *
Ry, Ty Mt—>T1 R? oy Mt—>T1 'CEV
by 2 7 M, — B M
_ f _
Rf Ty t—>T1 —>TQ].

We then use option prices to recover the expected excess market return.

E Higher-order expansion

In this section, we investigate how higher-order moments contribute to the equity risk pre-
mium. We show that increasing the order of the approximation, therefore allowing for

kurtosis preference, generates additional terms that contribute to the equity risk premium.

E.1 One-period SDF

Under no-arbitrage assumptions, a third-order Taylor expansion-series produces a one-period

SDF in a three-date (two-period) economy of the form

Etmt%Tl ~ 1 + ZTI + Z;—’l
mem E; (1 + 2y + Z%/}H)

, (E1)

where
Q¢ A2t ast
=4 (Rmpor—Rypiom )+ RQ—(RM o —Rpism)? Rg—(RM o —Rpism)?)
fit—=Ty t—T t—T
a2t *(2 a3t *(3 2.3t *(2
Z;l - 2 MT(l—)>TN + R3 MTELTN + R R2 (RM,t—>T1 - Rf,t—>T1>MT(1lTN7
f.Ti—TN fTi—Ty ft=Ttl e Ty
(E2)

where ag3; = 2as+ + 3as;.
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Proof. Consider the partial derivatives

9 (Wt$0youll) 2 u/// u/
fac:cy 2 N2 2 - "\ 2
()"0 (u) (u”)
norom " "\ 3
1 W, s W,
+—= 6( txoyo)/ g L Wiaewe)* S - 6—( two/yogu ) ;
(o)™ ¥o () u (w)
3 3 " m 3 W 3 7”3
fow = Yop o 1 6(I/Vtivoyo) uu  (Wizoyo) u —6( 1Zoyo)” (u”)
Txrxr x% yyy (mo):’) (ul)2 u’ (u/)3

Thus, a third order Taylor expansion-series yields

f[x,y] = f[$’y]2nd
1 (Kjt+1_2pt)(x—w0)3+ 1 (ke +1—2p)

(o)” 7 (%0)” 7

(y — yo)3

1 2(1—py) 3(/‘0t+1—2pt)> 2
+ + (x —20)" (¥ — %0)
(330)2 Yo ( Tt2 Tt3
1 2(1—pt) 3("3t+1—20t)> 2
+ (Y — )" (v — o), (E3)
Zo (y0)2 ( Tt2 7't3
where f [z, ] 2nd is the second order Taylor expansion-series in Equation (A17).

Replacing z, xg, y, and yg by their expressions and using preference parameters a;, as,

and ag defined in Equation (6), we obtain,

* a , a ,
ETl (f [13, y]) = 1+ 1 (RM¢_>T1 — Rf,t_g“l) + % (Rf»Tl—>TN - Rf,T1—>TN>
ft—T f,T1—TN
a a .
+ 2 2 (RM,t%Tl - Rf,t%Tl)Q + #Q]ETI ((RM,T:[%TN - Rf,TlﬁTN)Q)
(Rpisri) (Rymi—7y)
a1+ 2a
LT (Ryviisr, — Reony) (Remory — Remoy)
Rf,t—)TQ
a a .
0 (Rarysry — Rposm)® + B (Rumsry — Rimory)?)
(Rptom) (Ryr-1y)
2a9; + 3a
2t 5 2 (Rari—m, — Rf,HTl)2 (Rfr—1y — Rrm—ry)
(Rf,tHTl ) Rf,Tl —TN
2a9; + 3asz

SEr (Rumory — Rrmsty)?) (Baesn — Rpon)  (E4)
Ryior (Rymoy)
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which gives the desired result when interest rates are deterministic.

]

When (E2) is removed from the SDF specification (E1), which corresponds to a static
SDF in a one-period economy, the equity risk premium reduces to the expected excess return
in Chabi-Yo and Loudis. We refer to the Chabi-Yo and Loudis bounds to as RP"4. .

Using this third-order expansion, we next derive the equity risk premium.

E.2 Equity risk premium

With the third-order Taylor expansion-series approach, Equation (E1) depends on, in addi-
tion to risk-neutral variance, new terms such as risk-neutral skewness and cross-term between
risk-neutral volatility and market excess return. These additional terms, as shown below,
introduce additional high-order leverage effects in the expected excess return decomposi-
tion. To find a closed-form expression for the equity risk premium in terms of risk-neutral
moments and high-order leverages, we first define high-order leverage effects under the risk-

neutral measure as:

LES; = COV; (Ruun — Breor, M, ) (E5)
LEK: = COV? ((RM,HTl—Rf,HTI)Q,M;ﬁTN) (E6)

We then show how the equity risk premium depends on these terms in the following Propo-

sition.

Proposition 6 Up to the third-order Taylor expansion-series of the inverse marginal utility,

the one-period expected excess market return obeys the following decomposition

Ei (Ryrgon — Rpgory) = nf RPN + (1 — 7)) RPY, (E7)
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with

ait *(2) az,t *(3) as,; *(4)
Rf,t—>T1 Mt%Tl + R2 Mt*)Tl + R3 Mt%Tl

T T
RPYE. — faoty Feoy , (E8)
1 1+ CL2 + M*(Q) + as M*(S)
f Ty t—Th Rf oy t—Th
az.¢ * as,¢ * a2.3. * #(2) manr*(2)
LRV} + o LES] + 25 LEK; + M;%), ExM;2, .
RPYS — f.T1—=TN 7T —TN =T 1 Ty 172N
LE*M (2 + —E*M *(3) + a2,3,t LEV* ’
Rf, T Ty Ti—Tn R? Ty Ty Ti—Tn Ry R?’,Tl STy t
(E9)
and
ak t k)
1+ Z Rf 1y t—>T1
Ty = 3 . (E10)
k) _apg *(k) a2.3.¢ *
1+ are R4 E;M + 2 LEV
,;2 Rl},t—) t_>T1 Z R} Ty =Ty Ti—TN Ry ismy R?”,Tl STy ¢

where as 3, = 2as; + 3as, and the risk-neutral quantities LEVY, M*TEIC_))TJ_, LES; and LEK}

are defined in Equations (11), (12), (E5), and (E6), respectively.
Proof. This proposition results from Proposition 7 below. =

Proposition 7 Up to a third-order expansion-series, the one-period expected excess market

return 1s
Dyt + Doy
RPY 7y = = Ell
t—T1, TN D37t + D47t ( )
with
3 a
_ k.t *(k+1)
Dlvt - Z Rk Mt%’]ﬁ
k=1 fit—=T1
ag ¢ » a3t * 2.3t * #(2) #(2)
Dy = — 2t LEV; + — ' LES; + (LEK; + M B 1, )
Rz,THTN Rf T —TxN Rf,t%TlR},TﬁTN h e
3
A ¢ *(k
Dy = 1+ Z k Mt(—gﬂ
k= fit—T
> a
Dy = L 8 M 231 LEV:
kz fTh—TN N Rfvt_}Tl R307T1—>TN
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where as 3¢ = 2a24 + 3as, and the risk-neutral quantities LEV} MT k) LES; and LEK}

=T}y

are defined in Equations (11), (12), (E5), and (E6), respectively.
Proof. The expected excess market return is

Etmt—>T1

Et (Rt—>T1 - Rf,t—)Tl) = C@VI < 3 (Rt—>T1 - Rf,t—}Tl)) .

my—m

We then replace the inverse SDF by its expression and obtain

y 1427 + 27
IEt (Rt—>T1 - Rf,t—>T1) - C@Vt (1 + E*ZTl + Ej;lzv 7(RM,t—>T1 - Rf,t—>T1)>
t 1 t T

COVY (21, i t_>T1) + C@V* (z%l, ert_,Tl)

Setting rasi1 = Ruisr — Ryt and using the definitions of 27, and z7,, it follows that

* _ * *
Efzr, = ———Eiry, o, t 53— E Ty G
ft—)Tl f,t—)Tl
Ezb = — 2 mpap® Bt pyp® 92,3 £ M ?)
tZT1 - 2 T —Tn + R.?) T —TN + R RQ trM’tg)Tl T —Tn
fT1—Tx £, T =Ty ft—=Ti Y T TN
and
as,

* * * *
Et Ty (RMﬂf‘)Tl - RfﬂfHTl) - TM =Ty + RQ —5 K 7GM =Ty =+ Rg =5 E TM t—Ty
t—T t—T

Rf7t*>Tl

Ayt *(2) gt *(3) ast *(4)
= M + M + M
Rﬁt—)T t—T1 Rf Ty t—T1 R37t_>T t—1T1

and

—’tC(O)V;“ <r M M >

T —TnN
Rf T —Tn

7t *k
A COV; (raeon,

Efzp, (Bt — Rptor) 7
f T —TnN

a2,3t * 2
+ 5 <C@V (TM t—T1 ) MT(I —)>TN> + Mti%ﬁE MT(l —)>TN

Rf,HTl R f T —TN

This ends the proof. =
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E.3 Conditional crash probability

We next express the conditional probability of a crash using a third-order Taylor expan-
sion series for the inverse marginal utility. To derive this probability, we define additional

truncated moments as

* * *(3
Mt,s o] = E; <MT(1—)>TNILRM,HT1 <a> ) (E12)
Mi o] = B (raeon M2, Loy <a) - (E13)

Proposition 8 Up to the third-order expansion-series of the inverse marginal utility, the
conditional crash probability in a two-period (three-date) economy is a weighted average of

two probabilities:

Py (Rasosr, < ) = w1 o] + (1= ) T}, [a], (E14)
with
*(0 a *(1 a *(2 as.t *(3
oo MG (o] MG o] + MG, o] + oML, (o]
I [o] = e . (E15)
a
L+ z LM,
f t—T1

M 0] + M, o] + ——2% M,
1,757, [o] = Ry ity vlo] Ry ] Ry Byrory H, (E16)

t—T1
1 + Z _ Okt M*(k) + az.3,t LEV:

2
Ry T Ty N—=TN " Ryiom R, T =Ty

where as 3+ = 2as4 + 3az: and ) is defined in Equation (E10)

Proof. The proof results from Proposition 9 below. m
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Proposition 9 Up to a third-order approximation, the conditional probability of a crash
2%, (o] = P (Ryrsr < ), is

t—T1

*0 A ¢ *(k
M), [ 1+z L MY

Rf t—Tq ti}TI
at * as,t * a2,3,t *
+R2 Mt,v [Oé] + R3 Mt,s [Oé] + Ryt R2 Mt,sv [Oé]
H3rd [ ] _ £T1—=TN f,T1—=TN ) 1T TN
i (k) @
2
1 + ak t + ag ¢ ]E*M* a2 3¢ E*th T M*
Z f Ty t—)Tl Z f Ty Ty t T —TN Rf,tﬁTl R?,Tl STy t =T T1—TN
(E17)
where ag 3¢ = 2a; + 3a3 ;.

Proof. The probability of crash is

Em
H?SlTl[ ] E* (ﬂlRMtaT<a>

mym

We then replace the inverse SDF by its expression and obtain

H3rd [ a]

t—T1

E: ((1 + ZTI + 2%1) 1RM,t—>T<C¥)
1+ Efzp + Eizp

E;fk (1R1M,t~>T<O¢) + E?f (ZTl]‘RM,tHT<O¢) + E;fk (Zél)“llRM t~>T<04)
1+ E*ZTl -+ E*Z%l

(lt k
MHTI[HZ ke M)

o)+
th—>T1 t—>T1 [ ]
azt M* as,t * a2,3,t *

e ol + ss——M7_ |a] + «

B R? Ty 5Ty t,v [ ] R?} Ty 5Ty t,s [ ] Rf,taTl R?,TlﬂTN t,sv [ ]
2)
1+ ag.t + ag¢ E:M *(k) + a2t Erras i M*(
Z Rf t—=Ty t_>Tl Z Rf T1—TN T—=TN Rf,tHTlRf,naTN t ’ =Ty

This ends the proof. m
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When 27, is absent in the SDF expression (E1), the SDF corresponds to the SDF in a

one-period static economy. Under this scenario, the probability of crash reduces to

ag t k
Mt%Tl [ ] + 2 RE = ti%“l [a]

fit—=Tq
H?Slﬂ[ ] =

a *k
1+Z et t(—>%11

f t—Tq

We refer to our crash probability in (E14) as I, ;. [a].

E.4 Empirical results with fixed preference parameters

We detail in Appendix B.3 our calculation of E*M;ﬁiT and LES;.

Table A2 reports the out-of-sample performance of our bound using the third-order Taylor
expansion-series for the inverse SDF. We find that the predictions are overall not better than
those of the second-order case. They are slightly worse for long investment horizons Ty,
illustrating the challenge of accurately estimating higher order moments for long maturities,
and slightly better for short maturities. While these results are in favor of our simpler second-
order bounds, they are likely to improve should the liquidity of longer-maturity options

improve with time, yielding better estimations of risk-neutral moments.

F  Out-of-sample performance over the full sample

In this section, we reproduce the out-of-sample performance results but on the full sample

up to 2023.
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Table A5: Out-of-sample prediction and allocation performance with Ty optimized

We report the out-of-sample performance of different risk premium prediction methods, from January 1997
to February 2023. RPtLj%l is the lower bound of Martin (2017a). RP;_,7, is the second-order lower bound
of Chabi-Yo and Loudis (2020) in Equation (15). RP;_,p, 1, is the risk premia measure in Equation (10).
We report in Panel A the out-of-sample prediction R% ¢ in percent (see Equation (30)). For each predic-
tion method, we test for the significance of the R3¢ difference relative to RP;_,7, using a Diebold and
Mariano (1995) test. We estimate the variance of the differences using a Newey-West correction with 12
lags. We report in Panel B the realized mean-variance certainty equivalents using each period the predicted
risk premium and physical variance to obtain the optimal allocation (see Equation (32)). The physical vari-
ances are computed using option prices (see Appendix A.10). For each prediction method, we test for the
significance of the realized certainty equivalent difference relative to RP;_.7, using a block-bootstrap with
average block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. *, *x, and * x x denote significance at the 10%, 5%, and 1% level, respectively.

Horizon T} Ty =1y Tn =2y Av. across Ty TN opt.
(in months) RP/%. RPi,r, RPi1m1,\ RP, 7, 7y RP, 7, 1y RP,_r, 18

Panel A: Out-of-sample R?

10d —0.09 -0.07 0.04 -0.93 0.16 0.08
1 1.11 1.25 1.72 0.66 1.75 1.73
2 1.66 2.04 3.28 3.07 3.16 3.95**
3 1.65 2.33 4.02 4.66 3.91 5.09**
4 2.36 3.36 5.13% 6.34 5.18* 5.96**
) 3.18 4.57 6.29** 7.95* 6.62** 7.08**
6 3.53 5.22 6.73%* 8.71%* 7.48** 7.86™
12 2.86 5.66 - 8.00 7.46 7.68

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 4.56 4.69 8.18 - 8.19% -

1 4.42 4.60 5.85 - 5.99 2.69
2 4.60 4.94 7.03* - 6.71%* 4.59
3 4.95 5.43 7.50** - 7.30** 9.48**
4 5.17 5.75 744 - 7.55%* 9.17*
) 5.03 5.64 6.97** 8.39 7.38%* 8.01%
6 5.07 5.78 6.83"* 7.61 7.58** 8.12
12 5.24 6.27 - 7.91%* 7.54** -
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Table A6: Out-of-sample prediction and allocation performance with 7 and p
estimated in-sample

We report the out-of-sample performance of different risk premium prediction methods, from January 1997
to December 2021. RPtLj%l is the lower bound of Martin (2017a). RP;_,1, is the second-order lower
bound of Chabi-Yo and Loudis (2020) in Equation (15). RP,_1, 7y is the risk premia measure in Equa-
tion (10). In columns (2) and (3), results are reported setting the preference parameters to 7 = 1 and
p = 2 (benchmark). In column (4), they are kept constant over the time series of data, but the con-
stants are estimated. In column (5), they are modelled as linear functions of past 3-month returns. We
report in Panel A the out-of-sample prediction R% ¢ in percent (see Equation (30)). For each prediction
method, we test for the significance of the R% g difference relative to RP;_,1, using a Diebold and Mar-
iano (1995) test. We estimate the variance of the differences using a Newey-West correction with 12 lags.
We report in Panel B the realized mean-variance certainty equivalents using each period the predicted risk
premium and physical variance to obtain the optimal allocation (see Equation (32)). The physical vari-
ances are computed using option prices, using Equation (20). For each prediction method, we test for the
significance of the realized certainty equivalent difference relative to RP;_.7, using a block-bootstrap with
average block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed from
non-overlapping returns. #*, %%, and * % * denote significance at the 10%, 5%, and 1% level, respectively.

Ty T=1and p=2 p, T est. constant p, T est. linear in past returns
L
(months) RP o9 RPt%Tl RPt%Tl,T;, RPt%Tl,TI’{, RPt%Tl,T;\}

t—T

(1) 2) 3) (4) ()

Panel A: Out-of-sample R?

10d —0.10 —0.08 0.07 0.01 —0.02
1 0.73 0.87 1.96 0.83 1.58
2 1.03 1.41 4.56** 2.96 4.08
3 0.30 0.98 5.16*** 3.27* 6.29
4 1.43 2.57 6.14** 5.44 9.00
) 2.64 4.35 7.38"* 7.92 11.82
6 2.94 5.13 8.29** 9.86 12.90
12 2.30 6.73 9.84 11.18 12.90

Panel B: Out-of-sample mean-variance certainty equivalent with v =3

10d 2.67 2.73 - 2.79 3.64
1 3.75 3.94 - 3.26 6.00
2 3.42 3.69 2.56 - 4.94
3 4.26 4.79 11.44** 8.25% 8.17
4 3.94 4.21 5.14 - -

) 4.05 4.67 8.01% 7.63 -

6 4.55 5.29 8.70* 9.06 2.44
12 5.01 6.43 7.45 8.06 5.51
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Table A7: Out-of-sample prediction and allocation performance with 7 and p
estimated without look-ahead bias

We report the out-of-sample performance of different risk premium prediction methods, from January 2006
to February 2023. RPtL_‘:ng is the lower bound of Martin (2017a). IERP; 1, is the estimate of Tetlock,
McCoy, and Shah (2024). RP,_,r, is the second-order lower bound of Chabi-Yo and Loudis (2020) in
Equation (15). RP,_,, 1 is the risk premia measure in Equation (10). In columns (3) and (4), results
are reported setting the preference parameters to 7 = 1 and p = 2 (benchmark). In column (5), they
are modelled constant and estimated on a telescopic window of time. In column (6), they are modelled
constant and estimated on a rolling window of five years. We report in Panel A the out-of-sample prediction
R%,¢ in percent (see Equation (30)). Values smaller than -1 are not reported and left blank. For each
prediction method, we test for the significance of the R% 4 difference relative to RP;_,7, using a Diebold
and Mariano (1995) test. We estimate the variance of the differences using a Newey-West correction with 12
lags. We report in Panel B the realized mean-variance certainty equivalents using each period the predicted
risk premium and physical variance to obtain the optimal allocation (see Equation (32)). The physical
variances are computed using option prices (see Appendix A.10). For each prediction method, we test for
the significance of the realized certainty equivalent difference relative to RP;_,7, using a block-bootstrap
with average block length of three years and 10,000 bootstraps. Realized certainty equivalents are computed
from non-overlapping returns. *, x*, and ** * denote significance at the 10%, 5%, and 1% level, respectively.

T T=1land p=2 telescopic est. rolling est.
RPtngpl RP_1, RP 1y 13, RP 1y 13, RP 1, 1,

(1) (2) (3) (4) (5)

Panel A: Out-of-sample R?

10d —0.10 —0.08 0.07 —0.21 —0.56
1 0.73 0.87 1.96 0.81 0.50
2 1.03 1.41 4.56%* 1.36 3.07
3 0.30 0.98 5.16™** 2.79 4.59
4 1.43 2.57 6.14** 7.14 4.04
5 2.64 4.35 7.38** 9.07 5.16
6 2.94 5.13 8.29** 11.08 7.10
12 2.30 6.73 9.84 11.25 8.66

Panel B: Out-of-sample mean-variance certainty equivalent with v = 3

10d 2.67 2.73 - - -
1 3.75 3.94 - - -
2 3.42 3.69 2.56 - -
3 4.26 4.79 11.44** - 9.94
4 3.94 4.21 5.14 0.18 -
5 4.05 4.67 8.01" - -
6 4.55 5.29 8.70* - -
12 5.01 6.43 7.45 1.67 6.57
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G Online Appendix

G.1 Volatility Dynamic Implied by (26)

To further show that our formulation (26) is different from the GARCH (1,1), we use the

closed-form expression of 6, displayed in (27) and show that

*(2 * 2 *(2
M 2 = etEt R?M,t%Tl (RMytﬁTl - RfytHTl) + R?‘,Tl—)TQMti)’)Tl' (G]‘)

t—TN

Since R%“ L = (R — Ry HT1)2 + 2Ry Ry — Rit 7, it follows that

* 2 *(4 *(3 *(2
Et R?M,HTl (RM,t%T1 - Rf,HT1) = Mti%“l + 2Rf7t*>TlMt(~>%ﬂl + R?,HTlMti)Tl-

We then replace this expression in the RHS of (G1) and obtain

*(2 *(4 *(3 *(2
M ( ) = QtMti%jl + 2Rf:t4)T1 etMt(—)%—‘l + R?",TlﬁTN (et + 1) Mt(—>%—‘1‘

t—)TN

This shows that the process of M:(_%%FN is different from a GARCH dynamic. To check

similarities with the GARCH process, let’s assume for illustration purpose that M:S’)Tl =0

2
and M:S)Tl =3 (M:(_%)Tl) then
*(2 *(2 2 *(2
;% =36, (M;2),) + Ry, (60 + M), (G2)

Expression (G2) is reminiscent but distinct from the GARCH process.

G.2 The case with consumption

In this section, we introduce consumption in the representative agent problem. Under the
minimal assumption that (i) odd risk neutral moments are negative, (ii) preference parame-

ters satisfy the restrictions as; > 0, as; <0, agy > 0, azs; > 0 (see Eq), (iii) consumption-
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wealth ratio is positively related to the market return and (iv) the correlation of the square
of the consumption wealth ratio and market return is negative (condition reminiscent of
market coskewness), our measure of expected excess return remains a lower bound to the
true measure of market expected excess return.

To proceed, we start by having the representative agent solve the problem

max E; { max {Enu [W,HTN]}} :
We,Ct Wy ,CTy
where the terminal wealth is
Wisry = (1 —cny) Wry (], Ry, 1y ) with Wy, = (1 — ¢) W, (wf Ry
and ¢; is the consumption wealth ratio. The terminal wealth can alternatively be written as

Wt—>TN - (1 - CT1) (1 - Ct) Wi (WtTRt—>T1> (w;l RT1—>TN) .

For simplicity, we assume no interest rate risk. Notice that the SDF is given by the identity:

E¢my _ Uy
mesr, Ef (vn)
where
" 'LL, W T . -
v, = ETl M with Wt—)TN = WtRf,tHTl RfleﬁTN. (G3)
u [Wt—>TN]
We set
Ryrismy = wf Riory, Ry ry = w}l Ry ory, cory = (1—ceny) (1= ¢) (G4)
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Next, we define

X = CCtTla y = w;ert—YTla Z = w’}l RT1—>TN (G5)
xo = 1,y0=Rsim, 2o = Remo1y (G6)

and set

X = (XJyJZ) and XO - (X07y07z0) .

Notice that 0 < ceyy < 1since 0 < ey <1 and 0 < ¢ < 1. Now, assume that the utility

function is well-behaved and admits high-order derivatives that exist. Denote

n [Wt—mv}
u’ [Wt—>TN]

G.2.1 Second-order Taylor expansion-series

A second-order Taylor expansion of G around X = X, gives

Wty()Z()U” [Wt_g“N] WtZOUN Wt—)TN]
0 [WHTN] u' [WHTN]

17 T 7 " 1 2
B (Z B ZO) WtYOU |:Wt~>TN1| i lwtgygzg (_ [[Wt%TN] i 2 (u [WtaTN}z ) (X . XO)Q

u [Wisry ] 2 Wiy (' [Wemy])

G = 1-(x-x) ~ (v =)

e (_ CWen 20 Wen ) o

[Wt*TN} ( [Wt—>TN

iy (—u Weony] | 2 (0 [Weor,)) )
2
)

u [Wt_)TN] (U Wt—)TN

"

[Wt—mv] ( [W'HTN
" [Wisry ] i (v [Wisry]

*G *G
() 0 em (55,)  eomly v

2
+WPyoXoz <— )2 > X —X) (¥ — ¥o)

Notice that

E7, (z—20)=0
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and

E7 (x —X0) (z—20) = (x—%0)E7 (z—120) =0,

Ei}l (z—20)(y —y0) = (¥ —Yo) ]E*Tl (z —2z0) = 0.

We use these expressions to simplify (G3) as

WtYOZOUH WHTN} WtZOu” [WHTN}

v, = 1— : (x —x0) — (¥ — ¥o) =
! U Wt—>TN} rHTN}
//l W 1"
42 WtoOZO [_t—>TN] + ( [_taTN}z X X0)2
u' [Wisry ] ( (Wisry])
" // 2
1 u" (Wit ] [_t—>TN
+-Wizg | —— + (v — YO
2 U WHTN} u WHTN
1 ll/ W W
_'__Wto(Q) . [ t—>TN] t—>TN 1 Z o Z
2 [Wt_yTN} Wt%TN
" // 2
u Wt T t—T,
+Wlyoxozg | —— [_% N} [_—> = z (x —%0) (¥ — ¥o)
U Wt—>TN} u WHTN
which simplifies to
1 1 1-—
vy, = 1+ —E} (ceory, — 1) + (wWfRismy — Rpsmy) + ( th) (ceyr, — 1)2
Tt TR Ti

(1—

2

(1 _pt) (

Pt)
]ETl (le RTl =Ty — Rf T —TN )

+ ngtﬁT - Rf,taT )2 +
Tt2 R? t—T1 ' ' 2‘Rf Ty —Ts
2(1
—( pt)ET1 (car, — 1) (W Ry — Ryyry) -
T Ryem

107



We then exploit the notation Rasyr = w/Riory, Ryr 1y = wp Ry o1y and express the

expected value of vy, under the risk neutral measure as

1 * 1- *
Efvy, = 1+ ;tEt (cepry, — 1) + ( TQ'Ot)Et (ceyr, — 1)2
i
(1= pt) o) (1 —pe) +(2)
- M ——— M
+Tt2R27t_>Tl t—T1 + Tt2R27Tl_)TN t T1—TN
2(1 — .
+—2( pt) C@Vt (CCtTl, RM,t—>T1) .
T Ryism
where
MI&% = E: (RM,t—>T1 - Rf,t—>T1)n
M. = Ei (R - R ?
T —TN Tl( M,T1—TN f7T1_>TN)

The expected excess market return is

Emyr, mu_r
E; (R - R = E ! ' (R — R
t( Mt—T, f,t—)Tl) t |: thTl Etmtg)Tl ( M,t—T, f,t—)Tl)
. | Eim
= Et [ﬂ (RM,HTI - Rf,HTl)]
mt%Tl
C@VI [UTU RM,HTJ
]E:;UTI '
Observe that
COV; [vry, Ryypsr] = 1+ —COV (ceory, Ryt ) + ——M,
Tt TtRf,tﬂTl
- *
+( szt) COv; ((CctT1 - 1)2 ) RM7t—>T1)
t
(1 - Pt) #(3) (1 - Pt) "
+—=——""M + ——""—LEV
R} o RS 1, oy, '
2(1— »
—2( 5 pt)Et ((ceer, — 1) (Raspsty — Rf,HTl)2) :
T Rf,t—>T1
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Notice that E; ((ccm — 1) (W Ry, — Rf,HTl)2> < 0 because ceiry, — 1 < 0. In addition,

M;%). <0, LEV; <0, and COV; (Rars7, LEVY) < 0. Recall that

1
—>0and1—p <0. (G9)

Tt

In theory, each factor risk factor in vy, positively contributes to the risk premium. Thus

each term in (G8) is positive. Assuming (G9) is satisfied, one should expect

COV; (cerry, Rargmry) > 0 and COV} ((cepr, — 1)?%, Ryriory) < 0. (G10)

W, —Cr,

Since 1 — ey = —

is the fraction of wealth Wy, invested at 77, it follows that

COV; (ceiry, Ragsy) = (1—cr) C@V:(

* 2 _ 2 * WT1 - CTl 2
C@Vt ((CCtT1 — 1) 7RM7t_>Tl) = (1 — Ct) C@Vt ——— ,RM,t—>T1 .

The positive sign of COVy (ceiry, Ry ) is motivated by the positive impact of wealth-
consumption ratio on the market expected excess return. Conditions (G10) are reminiscent
of the dependence between the wealth-consumption ratio and the return on the market
under the physical measure. Under the physical measure, the wealth-consumption ratio
is positively correlated to the market. Under conditions (G9) and (G10), the covariance
COV; [ury, Ryi—ry | is bounded:

COV; [ur,, Raraom] > ——— M%), + U =p) @ u_—%LEVI. (G11)

2 2 t—T 2
ft=T Tt Ry i Ry 1y T

Next, since ey < 1, we use (G7) and exploit (G9) and (G10) to obtain

(1= pt) o2 (L= pt) (2
=)y U200 g

E:UTl < 1 +
= 2 2
Rf,t—>T17't Rf,T1—>TNTt
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Therefore,
1 1

> .
Efvr, — 14 S M) U= g

Fit—Ty 2 toT 1, T1—>TNTt

(G12)

Combining (G11) and (G12), the expected excess return is bounded

T M + M + LR,
;=T fit—Tq 't ¥ T =Ty T
E, [RM,t—>T1 - Rf,t—m] > _(A=pt) r*(2) (1—p¢) *(2)
Lt g = Mo + g — = iMooy
N ft%T fT1—TN 't )

This is our measure of expected excess return

This shows that under minimal conditions, our measure of expected excess return is a bound
on the true expected excess return when consumption is taken into account.
Next, we focus on the third-order Taylor expansion-series of the inverse marginal utility

function.

G.2.2 Third-order Taylor expansion-series

U, [Wt—»TQ]
7

arround X = X, gives
u[ t—>T2]

A Third-order Taylor expansion of

110



G

11 11 il_'_i(l_f?t)

1+ (x—%x) —+(y—Yyo) — +(z—12 —Xo)?
( O) X0 Tt ( 0) Yo 7t ( 0) Zo Ty X% Tt2 ( 0)
1 (1—p) 2, L(—p) 2, 1 (2(1—p)
+y(2) Tt2 (y yO) + Z(Q) Tt2 (Z ZO) + X0Y0 th (X XO) (y YO)

" (gigz)X:XO (x = x0) (2 = 20) + (f;gz)XZXO (z —20) (¥ — ¥o) -

1 (/{t—th—l—l)

+X_8—7_153 (x — X0)3 + Zi%—(ﬁt — igt +1) (z — Z0)3 + yig—(ﬁt — igt 1) (v — YO)S
%ngo (4 (17:2 p) , 6(re —T?)pt + 1)) (x— %0 (5 — v0)
%y%lxo (4 (1% Pr) L6 (K —ngpt + 1)) (5 — yo (x — x0)
s (U )
%Zglyo (4 (17:2 ) + ol —T?%Pt - 1>> (z —20)" (¥ — ¥o)
#05 (eyr ) (=) =30 (=)
—1—3% <%)x:xo (x —x0)* (z — z0)
w5 (Gyas) =30 ta=20
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Therefore,

v = E*TIG
R

yi%(l ;2/%) (y — yo)? + Zlg(l Tt2pt)E* (2 — 70) + Xolyo (2 (1%—2 Pt)) (x — %o0) (¥ — ¥o)

b g e 2 e (o S

+%X%1yo (4 <th_2 p) , 6(r —;pt + 1)) (x— %02 (5 — v0)
%yglx() <4 (17—; ) " 6 (£ —T?)Pt + 1)) (y — y0>2 (% — %)
%zglxo (4(17; p) |, (e —Tépt + 1)) (x — x0) By (2 — 70)
%Zgyo (4(17; Pt) N 6 (ki —ngpt + 1)) 5 — o) Ex (2 2)

Using Eq (6) in the main text of the paper, it follows that

UTl = ]E;le
1 11 1
= 1+ (xX—x0) —ai +(y —yo) —— + =502, (x — x0)’
X0 Yo7 Xo
s (v — ¥0)’ + sy (7~ 20) + ——az (x — X0) (¥ — o)
— —a Z—7 ass (X — X —
y% Y —Yo zg 2, ¢l 0 — 2,t 0)\Y — Yo
1 1 1
+—3 34 (X — X0)3 + —<a3,E7 (z — 20)3 + —as, (y — YO)3
X0 Z Yo
6 1 6 1 9
3, a23t (x — Xo) (y —yo) + ﬁﬂaz’?”t (y —yo)" (x —xo)
6 1 * 2
+3' aggt(X—Xo)ETI (Z—Z(])
o1 v~y By (5 — )" (G13)
——a — 7 — 7
3l Z%yo 2,3t \Y —Yo) Lp, 0
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We then compute the expected value Ejvz, to obtain

1 1
Ejvr, = 14 (x—xo) X_Oal’t + ;CLQJEZ (x — x0)2
0

1 2 1 2
—|——CL27 E; Y —Yo + — 2, EES (z — Zo) +
y(Q) i ( ) Z% [t Al &1 ( ) X0Y0

+—3a37t]Et (X — X0)3 —+ —3a3,tEt ETl (Z — Z())3 + —3(13,25Et (y — y0)3
X0 Zy Yo
2

1 . 1 ) )
+y§X0 02587 (¥ = y0)” (x = xo) + %CLZ,?),tEt (x —x0) E7, (2 — 20)

1 * *
+ 2 a2,37t(C<O)Vt (y, ETl (Z — Z0)2)
ZyYo

Notice that

X—Xoﬁoa

and the following inequalities hold:

¢ > Oa A2t S 07 asgt 2 07 2.3 ¢ Z 07

and
E; (x — %)’ <0, Ej (y —y0)* <0, E} (x —x0)* <0,
and
E; (x = Xo) (¥ — ¥o) = COV; (x — Xo,) = 0
and

E; (y - }’0)2 (x —xp) < 0 (because (x —xg) <0)
E; (x — xo) E}, (z —29)° < 0 (because (x —xg) < 0)

COV; (y,Er (z—2)°) = LEV; <0.
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This allows us to bound Efvy, as

1 1
E:UTl S 1 + —QCLQJEI (y — y0)2 + —QCLQ,JEZ(E;I (Z — Z0)2
Yo Zj
1 * Tk 1 *
+—as, BBy (2 — 20)” + —a3.E; (y — yo)°
Z Yo
+——a33,COV; (y, B, (2 —20)”) .
ZpYo
As a result,
1 1
" >
Et Uy 2

1+ ngGQ,tE: (y - YO)2 + %GQ,tEIE;} (Z - ZO)
+%a3,tE?]EEH (z —20)° + yigas,tEZ‘ (y — yo)*

+—Oa2,37tC@V: (y, E;}l (Z — ZD)Z)

1
zgy
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Next, our goal is to bound COVy (vp,,y —yo) = COV;} (vry, Ry, — Ry ). We then

use (G13) to compute this covariance as

COV; (vry,y — yo)
11

1 2
= ——VAR; A — —
Vo T (y) + X(Q)aZtC@) t((X Xo)",y YO)

1 * 1 * *
+5202:COVE (v = 0)" ¥ = ¥0) + 52,COV (Ef, (2~ 20)" ¥~ ¥0)
0 0

_|_

az,COV} ((x — x0) (¥ — ¥0),¥ — Yo)
XoYo

1 . 1 * (T
—i—gag,tC@Vt ((x — x0)3 Yy — yg) + ;ag,t(C@Vt (]ET1 (z — z0)3 Y — yo)
0 0

1 *
+}§a3,tC@Vt ((y - YO)3 Y — YO)
0

3!X0y0a23tC@V ((x —%0)* (¥ — ¥0) ,¥ — Yo)
1

3y7x a23tC@ ; ((y — y0) % (x — o), Y — ¥o)
Yox

6 1 2

3 a23t(C@ (X Xo ETl z — 7) Jy_YO)

6 1 9

+ o7 52,3, COV; (y yo) E7, (z — 2o) ay—}’o)-
3! z2yo

Notice that

COV; ((x —x0) (y = ¥0),¥ —Yo) = E} (x —x¢) (y — yo)2 < 0 (since x < xp),

and

COV; ((x — x0)? (¥ — ¥0),¥ — yo) =E; (x — x0)” (y — y0)* > 0.

We assume

COV; ((x —x0)*,y —yo) <0 (G16)
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and

COV; ((x—x0)’,y —yo) > 0, (G17)
COV; ((y —yo)* (x —%o),¥y —¥o) > 0, (G18)
COV; ((x —x0) B, (2 —20)",y —yo) > 0 (G19)

These conditions are reminiscent of the sign of coskewness and cokurtosis when random
variables of interest are return. While y — yo and z — zg are realized excess returns, x — Xg
is a function of wealth-consumption ratio (See (G4)-(G6)). Because coskewness is negative
(see Harvey and Siddique (2000)) and cokurtosis is positive (Dittmar (2002)) and the wealth-
consumption ratio is positively correlated to the market return, one should expect (G17)-
(G19) to hold.

Under conditions (G16)-(G19), it follows that

COV; (v, y —yo) = ——VAR; (y) + —a2,E; (y — y0)’ + —a2,COV; (E}, (z —20)" .y — ¥o)
Yo 7: Yo Zj
1 * * 1 *
+;a3,tC@Vt (E}, (z—20)°,y — yo) + }ja:a,t@@vt ((y = y0)’.y — y0)
0 0
1 * *
+ 2y a2:COV; (v —yo) Ex, (2 —20)" ¥ — ¥0) (G20)
00
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Combining (G15) and (G20) leads to

COV; [vry, Rarios)
IE,’;UT1
( o LVAR! (y) + y%oaztE: (y — YO)3 \
%aZtC@VI (B, (z—20)",y — ¥o)
+%a3’tC@VI (E% (z - 20)° Y — Yo)
+5505,.COV; ((y = 0)* ¥ = ¥0)

1+ y—lgag,t]EI (y — yo)2 + %ag,tE;‘Ei}l (z — zo)2

Et (RM,t—>T1 - Rf,t—)Tl)

Vs

v

+%a3,tEfE*T1 (z —20)° + —15a3,tE%k (y —yo)*
+—=— 2 aggtC@V ( Tl ( — Z0)2)

which simplifies to

L% + Lo WS, + drag M)

Yo Tt t—Th t—Th t—T1

+Zi2a2’tL]EV: + z%a;),’tLESt
0
E: (Ryion, — Rpiomy) > >

L+ Jap M) + Bao ByMGD, o+ Jras M,

t%Tl t—T1

+%a3,tE;‘MTg?lTN+ 7033 LEV]

We, thereafter, replace yg and zg by their expressions

1 iM*(Q) + 1 ay tM*(g) + 1 as tM*(4)
fit=T fs

Ry tr Tt t—T1 R? ) t—T1 R3 oy t—Ty
1 1
+ R2 a27tLEVt + Rg a/3 tLES:
£ T1—=TN T —TN
E; (Rai— — Rypory) > o o
1 *(2 1 pa— *(3)
1 + R?‘,ta a27tMt_)Tl + R?,TI*;T a9 t]EtMT1—>TN + R?t ' a3,tMt—>T1
1 *r(3)
+——t—ay,E:M + LEV
R? Ty 3.t YA Ty R? T1—>TNth 7 2,3,t t

-~
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G.3 Is our Market Expected Return a Lower Bound to the Ex-

pected Return?

Setting consumption-wealth ratio to 1 in Section G.2 and using reasonable minimal assump-
tions that (i) odd risk neutral moments are negative, (ii) preference parameters satisfy the
restrictions (G9) proves that our measure of expected excess market return (10) remains a

lower bound to the true expected excess market return.
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