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ABSTRACT

A growing literature estimates price multipliers — per-unit impacts of demand shocks on

asset prices — using plausibly exogenous but small shocks. However, it is theoretically

ambiguous how these estimates extrapolate to the large shocks that are often of interest for

policy and economic questions. This paper documents a new stylized fact: stock-level price

multipliers decrease as the magnitude of demand shocks increases. We study three widely-

used demand shocks unrelated to cash flow news, and find that multipliers are smaller for

both larger contemporaneous and larger cumulative past shocks. Using investor holdings

data, we also find higher demand elasticities in securities with larger price dislocations.

Our findings shed light on the microfoundations of inelastic demand. While these findings

cannot be explained by several prominent mechanisms, they are consistent with models

in which investors endogenously allocate more attention and capital toward greater profit

opportunities.
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1 Introduction

Many questions in asset pricing involve quantifying the impact of large shifts in quantities

on asset prices. For instance, how do central bank asset purchases move prices (Koijen

et al., 2021)? How has the shift to passive investing impacted price efficiency (Haddad

et al., 2024), and how has the rise of green investing impacted stock prices and firms’ cost

of capital (Van der Beck, 2021; Pástor et al., 2022)? These questions motivate a growing

literature that studies demand effects in asset markets, where estimating “price multipliers”

— the per-unit impact of investor demand shocks on prices — is crucial (Koijen and Yogo

(2019); Gabaix and Koijen (2022); Haddad et al. (2024)). Given the difficulty in finding

natural experiments involving large demand shocks, the literature has focused on plausibly

exogenous but relatively small shocks. These studies consistently find large price multipliers.

Yet a fundamental question remains unresolved: How do these price multipliers measured

from small shocks relate to those that would arise for the large shocks of interest in many

asset pricing questions? The answer is theoretically ambiguous, as different models offer

conflicting predictions about how multipliers vary with shock size. For instance, some models

suggest that multipliers increase with shock size, while others predict they remain constant

or even decrease. Thus, new empirical evidence is required to answer this question.

This paper documents a new stylized fact: stock-level price multipliers decrease as the

magnitude of demand shocks increases. Using three demand shocks from the literature, we

find that price multipliers monotonically decrease as the magnitude of both contemporaneous

and accumulated past demand shocks grows. We interpret this result as evidence that

investors’ asset demand endogenously becomes more price-elastic in response to larger price

dislocations. This finding helps distinguish competing theories of inelastic demand. Several

prominent mechanisms—such as those based on arbitrageur financial constraints—cannot

account for this empirical regularity. However, this finding is consistent with models in which

investors allocate more attention and capital to securities with greater profit opportunities.
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We begin by providing empirical evidence that larger uninformed demand shocks have smaller

price multipliers (in Section 3). To estimate multipliers, we use three demand shocks from

the literature: Russell index reconstitution-induced changes in benchmarking intensity (BMI)

from Pavlova and Sikorskaya (2023), fund flow-induced trading (FIT) from Lou (2012), and

order flow imbalance (OFI) from Li and Lin (2023). We acknowledge that any such measure

is imperfect because identifying purely exogenous variation in demand is difficult, especially

given our focus on large shocks. Nevertheless, we employ these measures because previous

literature have studied them extensively and showed them to be largely unrelated to cash

flow news.

Across all three measures, our cross-sectional contemporaneous regressions reveal concave

price impact curves: price multipliers decline as demand shock size increases. We analyze

these price effects at horizons relevant for asset pricing, studying FIT and OFI at quarterly

frequencies and BMI at a monthly frequency (as in Pavlova and Sikorskaya (2023)). This

concavity is economically significant. For example, using the FIT measure, small shocks

have a price multiplier of approximately 4: a shock of size X ≈ 0% raises price by about

4X%. However, this multiplier falls by roughly 0.7 for each one percentage point increase in

shock size. We find qualitatively similar patterns across all three demand measures.

Our findings are inconsistent with a key alternative hypothesis: that multipliers do not vary

with shock size per se, but rather with omitted variables that are correlated with shock size.

We address this potential concern in several ways. First, by estimating all regressions within

each time period, we mitigate the concern that large demand shocks might cluster in periods

when price multipliers are systematically lower. Second, our results are robust to alternative

specifications that allow price multipliers to vary cross-sectionally with various liquidity

measures. This approach assuages the potential concern that large shocks are concentrated

in more liquid stocks, which may generally have smaller multipliers.

We next show that this endogenous price multiplier behavior is time-consistent (in Section
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4). Using the FIT and OFI shocks, we find that multipliers decrease not only with contem-

poraneous demand shock magnitude, but also with the magnitude of accumulated demand

shocks over the past several quarters. Thus, several consecutive small shocks (e.g. three 1%

shocks) have the same price impact as one large shock (e.g. one 3% shock). These results

suggest price multipliers decrease in the face of larger accumulated price dislocations.

In the final empirical section, we examine holdings data to shed light on the origins of the

endogenous price multiplier behavior we document (in Section 5). We estimate demand

elasticities — which are inversely related to price multipliers — for institutional investors

in the U.S. stock market using holdings data from the SEC Form 13F. Motivated by our

preceding findings, we allow demand elasticity to depend on the magnitude of cumulative

past price dislocations. Using the optimal granular instrumental variable (GIV) approach

of Chaudhary et al. (2024), which extends the approach of Gabaix and Koijen (2024), we

find that most institutions become more price-elastic as past price dislocations grow larger

— consistent with our price impact findings. This effect is particularly pronounced for more

active institutions. Moreover, we document this variation in elasticities on the intensive mar-

gin of holdings, within each investor and quarter, suggesting that our findings are not driven

solely by investors entering or exiting positions or reallocation of capital among investors.

Lastly, we use these empirical results to shed light on microfoundations of inelastic demand

(in Section 6). We find that many existing mechanisms cannot explain our results. Models

with position constraints on arbitrageurs or intermediaries (e.g., Diamond and Verrecchia,

1987; Shleifer and Vishny, 1997; Duffie et al., 2002; He and Krishnamurthy, 2013) cannot

explain our static result that multipliers decrease with shock size. In these models, multipliers

actually increase with shock size, as larger shocks tighten these constraints. Models with

benchmarking and investment mandates (e.g., Petajisto, 2009; Gabaix and Koijen, 2022;

Pavlova and Sikorskaya, 2023), as well as those using logit demand specifications (Koijen

and Yogo, 2019), predict that multipliers are unrelated to shock size. Models with convex
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position adjustment costs (e.g., Gârleanu and Pedersen, 2013; Van der Beck, 2025) cannot

explain our dynamic result that multipliers decrease with the magnitude of accumulated past

demand shocks. While models with participation costs (e.g., Vissing-Jorgensen, 2002; Gomes

and Michaelides, 2005; Alan, 2006) or endogenous reallocation of capital across investors (e.g.,

Duffie and Strulovici, 2012) can explain our price multiplier results, they cannot explain our

results from holdings data that demand elasticities vary on the intensive margin of holdings

within an investor-quarter.

Our findings are consistent with mechanisms in which investors in general face frictions, but

can pursue costly actions to overcome these frictions and become more elastic when price

dislocations (and so expected returns) are large. This behavior arises in models with fixed

adjustment costs Constantinides (1986); Grossman and Laroque (1987)). Fixed-adjustment

costs gives rise to (S, s)-style adjustment behavior (Scarf (1960)). For small shocks, an

investor’s initial position is close to the optimum, so the benefit of adjustment does not

exceed the fixed cost. Large shocks, however, significantly alter the optimal quantity (since

they alter expected returns), making adjustment worthwhile. Thus, for sufficiently large

shocks, investors become more price-elastic. This behavior also arises in models with costly

information acquisition (Grossman and Stiglitz (1980); Kyle (1989); Van Nieuwerburgh and

Veldkamp (2009, 2010); Kacperczyk et al. (2016); Han (2018)). Uncertainty about cash flows

renders demand inelastic. However, if investors can pay to acquire information to reduce this

uncertainty, they will be more willing to do so when they believe expected returns are higher.

Lower uncertainty allows investors to take larger positions to more aggressively exploit the

high expected returns without exposing themselves to a lot of perceived risk. Thus, for large

shocks that create large price dislocations and high expected returns, investors acquire more

information, and so become more price-elastic.

We wish to clarify several points regarding the interpretation of our paper. First, while

many mechanisms cannot explain all of our findings, we do not claim these frictions are
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unimportant. Rather, our paper should be interpreted as arguing that these frictions are not,

by themselves, sufficient to fully explain inelastic demand. Second, although price multipliers

decrease with shock size, they remain substantially larger than predicted by frictionless

models.1 Thus, our findings shed light on endogenous variation in price multipliers, rather

than suggest that multipliers are small in an absolute sense. Finally, our findings are distinct

from the “square root” price impact curves at the trade or order level documented in the

microstructure literature (e.g., Frazzini et al., 2018). Those studies focus on high-frequency,

intraday time horizons, whereas our analysis is at much lower frequencies of interest in asset

pricing, at which most microstructure effects have dissipated.

The paper is structured as follows. Section 2 describes our data and the construction of

demand shock measures. Sections 3 and 4 present empirical evidence that price multipliers

decrease with the magnitude of both current and cumulative past demand shocks. Section 5

analyzes institutional holdings data and shows that demand elasticities increase with the

magnitude of past price dislocations. Section 6 uses our empirical findings to differentiate

among competing theories of inelastic demand. Section 7 concludes.

1.1 Related Literature

This paper contributes to a growing literature that estimates the effects of demand on as-

set prices. This literature, using both plausibly exogenous demand shocks (Shleifer (1986);

Harris and Gurel (1986); Lou (2012); Chang et al. (2015); Hartzmark and Solomon (2022);

Schmickler and Tremacoldi-Rossi (2022); Pavlova and Sikorskaya (2023)) and structural as-

set demand systems (Koijen and Yogo (2019, 2020); Huebner (2023); Haddad et al. (2024);

Koijen et al. (2024)), finds that empirical demand elasticities are much smaller — and so

price multipliers much higher — than predicted by classical asset pricing models. Our paper

contributes to this literature by documenting that price multipliers decline with the magni-

1Frictionless asset pricing models predict that uninformed demand shocks have stock-level price multipliers
on the order of 1/6000 (e.g., Petajisto, 2009).
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tude of current and past demand shocks, and by establishing the theoretical conditions under

which this pattern can arise. While the literature has generally not focused on endogenous

variation in multipliers, a notable exception is Haddad et al. (2024), who use a structural

model to show that demand elasticities vary across stocks depending on strategic investor

interactions. In contrast, we show that demand elasticities vary with the magnitude of the

shocks, representing a different source of multiplier variation.

Prior research has proposed a myriad of microfoundations for inelastic demand. These

include leverage constraints (e.g., Shleifer and Vishny, 1997; He and Krishnamurthy, 2013),

short-selling constraints (e.g., Diamond and Verrecchia, 1987; Duffie et al., 2002), investment

mandates and benchmarking (e.g., Petajisto, 2009; Gabaix and Koijen, 2022; Pavlova and

Sikorskaya, 2023), and convex adjustment costs (e.g., Gârleanu and Pedersen, 2013; Van der

Beck, 2025). To generate heterogeneity in price multipliers, researchers have also explored

mechanisms involving capital reallocation between investors (e.g., Duffie and Strulovici, 2012)

or investor entry and exit (e.g., Vissing-Jorgensen, 2002; Gomes and Michaelides, 2005;

Alan, 2006). As we argue in detail in Section 6, these mechanisms cannot fully explain our

findings. Instead, our evidence is most consistent with two classes of models: those featuring

endogenous information or attention (e.g., Van Nieuwerburgh and Veldkamp, 2010; Gabaix,

2019), and those with fixed adjustment costs (e.g., Constantinides, 1986; Grossman and

Laroque, 1987), which give rise to “(S,s)”-style adjustment behavior (Scarf, 1960).

Additionally, the industry-oriented market microstructure literature documents that price

impacts appear to follow a “square-root law” at high frequencies, such as at the trade or order

level (e.g., Tóth et al., 2011). In the econophysics literature, researchers explain this effect

using microstructure arguments (e.g., Alfonsi et al., 2010; Gatheral, 2010; Donier et al., 2015).

For instance, Donier et al. (2015) derives square-root price impact under the assumption

that the density of limit orders in the order book is locally linear. Bouchaud et al. (2018)

(chapter 18) links the shape of price impact curves to another microstructure consideration:
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the frequency of trading. Specifically, he argues that price impact tends to be concave in

frequently traded markets, while infrequently traded markets should exhibit patterns closer

to linear price impact. Our work is distinct, as we focus on a much lower frequency: monthly

to quarterly time horizons. To our knowledge, no previous work has established whether the

nonlinearity documented in microstructure settings extends to these lower frequencies and

the much larger demand shocks we analyze. Crucially, because we study a frequency at which

many microstructure effects have likely dissipated, the potential explanations for our findings

differ from those in the microstructure literature. Furthermore, microstructure explanations

cannot readily explain our results derived from quarterly institutional holdings.

2 Data and Demand Shocks

To study how price multipliers vary with demand shock size, we use three demand shocks

from previous work that researchers argue are largely devoid of cash flow information, and

thus are useful for studying demand-induced price effects. Admittedly, finding cash flow-

unrelated demand shocks is a difficult task. The literature on demand-based price effects

has yet to reach a consensus on the “optimal” demand measure, as each measure has its own

strengths and limitations. To ensure robustness, we analyze all three measures and highlight

findings that are consistent across them.

2.1 Data

We download monthly stock returns and market capitalization from CRSP, and we aggregate

monthly returns to the quarterly frequency when needed. To control for known return pre-

dictors, all regressions control for 13 commonly used stock characteristics from the website

of Chen and Zimmermann (2022).2 To capture stock liquidity, we also include size, effec-

2The stock characteristics we use include accruals, asset growth, beta, book-to-market, gross profitabil-
ity, industry momentum, intermediate momentum, 1 year issuance, 5 year issuance, momentum, seasonal
momentum, net operational assets, and short-term reversal.
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tive bid-ask spread, quoted bid-ask spread, realized volatility, turnover, and dollar trading

volume. These liquidity variables are obtained from CRSP and WRDS Intraday Indicators.

Following common practice in the literature on modeling the cross-section of returns, for all

these characteristics, we transform each into uniform distributions over [-0.5, 0.5] in each

cross-section (e.g. Kelly et al., 2019).

In constructing the demand measures, we download the data for the benchmarking intensity

(BMI) measure from Pavlova and Sikorskaya (2023). For the flow-induced-trading (FIT)

measure, we use mutual fund flows from CRSP, holdings data from Thomson Reuters, and

link the two using MFLINKS from Russ Wermers. For the order flow-imbalance (OFI)

measure, we download daily Lee-Ready classified order flows fromWRDS intraday indicators.

For the holdings-based estimation in Section 5, we use institutional holdings data from SEC

Form 13F (from 1980 to 2021), which are provided by Thomson Reuters through WRDS. The

SEC requires all institutional investors with at least $100 million in assets under management

(AUM) to report stock-level long positions each quarter. Following Koijen and Yogo (2019),

we allocate all stock holdings not covered by 13F institutions to a residual “household” sector,

which includes both direct stock holdings by households and those by non-13F institutions

(i.e. institutions with less than $100 million AUM).

2.2 Demand measures

We briefly explain the construction and logic behind the three demand measures we use. For

more details of these measures, as well why researchers argue they are unrelated to cash flow

news, we refer the reader to the original papers.

Benchmarking Intensity (BMI) Our first demand measure is based on index inclu-

sion, which captures changes in benchmarked investors’ demand for a stock when it enters

or exits an index (Shleifer (1986); Harris and Gurel (1986); Chang et al. (2015)). In particu-
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lar, we use the benchmarking intensity (BMI) measure from Pavlova and Sikorskaya (2023),

which provides a continuous measure of demand changes driven by Russell index reconsti-

tutions. While there are also other index-based demand shocks, such as S&P 500-based

measures (e.g. Shleifer, 1986), BMI stands out for its rule-based inclusion criterion and the

fact that it exhibits cross-sectional variation in demand shock magnitudes (as a fraction of

shares outstanding).

Each May, Russell ranks eligible stocks by market capitalization to determine index mem-

bership. The inclusion criterion is solely based on market capitalization on the cutoff date,

and there is no discretionary judgment on inclusion. Stocks above a specified rank enter the

Russell 1000, while those below join the Russell 2000. The Russell 2000 historically attracts

more benchmarked institutional capital than does the Russell 1000. When stocks cross the

cutoff during the annual reconstitution in June, they experience institutional flows: stocks

moving down to the Russell 2000 see inflows and positive returns, while those moving up

to the Russell 1000 face outflows and negative returns. Conditional on the market cap as

of the May ranking date, Russell index membership in June is exogenous to June cash-flow

news, and so these reconstitution-driven flows are an uninformed demand shock (Chang et al.

(2015); Crane et al. (2016); Glossner (2019)).

Even within one reconstitution window, Russell reconstitution provides cross-sectional varia-

tion in demand shock magnitudes (normalized by shares outstanding) because the construc-

tion in Pavlova and Sikorskaya (2023) considers multiple indices. Every stock in the Russell

2000 Blend index is also in the Russell 2000 Value or Growth indices, which have different

levels of benchmarked capital. Every stock in the Russell 1000 Blend index is also in the

Russell 1000 Value or Growth indices, and some — those with market cap rank between 1000

and 2000 — are in the Russell Midcap Blend, Value, and Growth indices. This is a desirable

feature as it allows us to estimate the relationship between price impact and demand shock

size within time periods (Section 3).
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Concretely, the Pavlova and Sikorskaya (2023) benchmarking intensity (BMI) measure cap-

tures the benchmarking-induced variation:

BMIn,t =
∑

Index j

Institutional AUM Benchmarked to Index j in Month t
× Weight of Stock n in Index j in Month t

Stock n Market Value in Month t
.

This measure quantifies the index-induced demand for each stock from benchmarked funds.

Variation in this measure depends on which indices a stock is part of and the proportion of

the total market value of stock n that is held by benchmarked investors. BMI is calculated

from thirty-four indices that cover approximately 90% of mutual fund and ETF assets.

To exploit exogenous changes in BMI, we focus on June BMI changes in each year, denoted

as ∆BMI, for stocks in a narrow window (150 stocks on both sides of the threshold in the

baseline specification) around Russell 1000/2000 reconstitution thresholds (following Pavlova

and Sikorskaya (2023)). Stocks with positive (negative) ∆BMI experience benchmarking

inflows (outflows). While the level of BMI is generally correlated with stock profitability

because index membership is based on market capitalization, the change ∆BMI for stocks

in this window are driven by Russell index membership changes, which are exogenous to

June cash flow news conditional on the May rank-date market cap.3

We use the BMI and Russell index constituents data provided by Pavlova and Sikorskaya

(2023). All of our specifications include the stock-level controls used by Pavlova and Siko-

rskaya (2023): May rank-date log market cap, one-year monthly average bid-ask percentage

spread, and the banding controls from Appel et al. (2019) (an indicator for having rank-date

3More specifically, prior to 2007 the rank cutoff was the 1,000th stock. To reduce turnover, since 2007
Russell has used a “banding policy” under which there are two separate cutoffs for stocks starting in the
Russell 1000 and 2000 pre-reconstitution, both of which are still mechanical functions of the firm size distri-
bution. Thus, there is a “band” of market caps including stocks from the Russell 1000 and 2000. Appendix
A.1 explains the Russell methodology we use to calculate these cutoffs. Since Russell ranks stocks using a
proprietary market cap that we lack access to, we use the method of Ben-David et al. (2019) to approximate
this proprietary market cap using standard databases. Doing so predicts assignment to the Russell 1000 and
2000 with high accuracy. Following previous work, we use May — not June — market caps to calculate the
Russell reconstitution thresholds to avoid selection bias (e.g. Chang et al. (2015); Appel et al. (2021); Wei
and Young (2021)).
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market cap in the “band”, an indicator for being in the Russell 2000 in May, and the in-

teraction of these indicators). Whereas Pavlova and Sikorskaya (2023) use the proprietary

Russell market cap, we calculate market cap from standard databases using the method of

Ben-David et al. (2019).

Fund Flow-Induced Trading (FIT) Our second demand measure is flow-induced trad-

ing (FIT) from Lou (2012), which captures the non-discretionary stock-level trading by

mutual funds and ETFs in response to fund flows. While not initially intended as a demand

instrument, it has been used as such by subsequent work (e.g. Li (2022); Chaudhry (2023);

Van der Beck (2025)).

In response to inflows (outflows), funds tend to scale up (down) their pre-existing holdings

in a non-discretionary fashion, a behavior that is documented in Coval and Stafford (2007)

and Lou (2012), among others. For example, if Apple’s existing weight is 5% in a fund’s

portfolio, a $1 inflow (outflow) induces the fund to increase (decrease) capital allocation of

about five cents to Apple. This behavior is not only true for index funds, but also on average

true for active mutual funds and exchange-traded funds (Figure A4 in Li (2022)). Frazzini

and Lamont (2008) and Lou (2012) show that the fund flow-induced trades appear to have

price impacts that revert over time, which is consistent with the idea that such trades are

not motivated by superior information about cash flows.

While funds tend to trade one-for-one in stocks in response to fund flows, the relationship

can exhibit heterogeneity as a function of realized fund flows and pre-existing fund portfolio

positions. Therefore, we construct a refined version of the Lou (2012) FIT measure to account

for this heterogeneity and avoid any potential mechanical bias in our results (Appendix A.2).

We first calculate the quarterly percentage flow to fund i as

fi,t =
TNAn,t − TNAn,t−1 · (1 + Retn,t)

TNAn,t−1

.
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where TNAn,t and Retn,t are fund i’s end-of-quarter-t total net assets and return from end

of quarter t − 1 to t, respectively. The predicted non-discretionary trading by fund i in

stock n due to this flow is proportional to SharesHeldi,n,t−1 · fi,t. To allow these predicted

trades to vary flexibly with the realized fund flow fi,t and the pre-existing portfolio weight

wi,n,t−1, we estimate a scaling factor b(·), which is empirically approximately equal to one.

Appendix A.2 provides further details for the estimation of this scaling factor. Aggregating

across all funds and scaling by shares outstanding yields:

FITn,t =
∑
fund i

b(wi,n,t−1, fi,t) ·
SharesHeldi,n,t−1

Shares Outstandingn,t−1︸ ︷︷ ︸
≡Si,n,t−1

fi,t. (1)

where Si,n,t−1 is the proportion of stock n shares owned by mutual fund i in quarter t− 1.

Why does FIT constitute a cash flow-unrelated demand shock? The original Lou (2012)

paper, as well as follow up papers of Li (2022) and Huang et al. (2024), argue that a large

fraction of fund flows are directed by less sophistiated retail investors. They also show

that FIT-induced price effects revert over time, which is consistent with it being unrelated

to genuine cash flow news. Chaudhry (2023) further argues that, because FIT is a shift-

shares instrument (Goldsmith-Pinkham et al., 2020), a weaker requirement is that the lagged

ownership shares (Si,n,t−1) of a given fund i is uncorrelated with stock cash flows in the cross-

section of stocks, after controlling for various cross-sectional stock characteristics (detailed

in Section 3.1).

Order flow imbalance (OFI). Our third demand measure is the Lee-Ready signed order

flow imbalance (OFI). Specifically, this measure takes all trades in the U.S. stock market, and

uses the Lee and Ready (1991) algorithm to classify trades as buyer- or seller-initiated. We

download daily Lee-Ready signed OFI data from WRDS intraday indicators, aggregate to

quarterly frequencies, and then normalize it by lagged shares outstanding. We should clarify

that OFI captures all trades that are executed aggressively, but not all trading flows. Many
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sophisticated institutional investors tend to execute trades slowly and passively to reduce

price impact, and those flows will not be captured by OFI. The OFI measure has been used

heavily in the microstructure literature to study price effects at daily or higher frequencies.

Recently, Li and Lin (2023) argue that it can also be useful for studying demand effects at

“asset pricing frequencies” (i.e. monthly or lower).

Relative to the previous two measures, OFI has the benefit of having a lot more variation.

This can be seen in the summary statistics of Table 1. One standard deviation is equal

to 0.54% of shares outstanding for FIT but 1.59% for OFI. In the tails, the 1% and 99%

percentiles of OFI are -4.66% and 4.48%, respectively. This is particularly helpful for this

paper because we are interested in price impacts of large demand shocks.

At the same time, a drawback of OFI is the concern about its information content. By its

nature, OFI captures trading behavior by many investors, as opposed to FIT and BMI which

zoom in on the trades by specific investors in specific circumstances. Li and Lin (2023) run

extensive tests and do not find evidence that OFI is related to various measures of cash-flow

news. However, they also admit that, due to the difficulty of measuring news, one cannot

be fully certain about the information content of OFI.

Overall, our three demand shocks have their own respective strengths and weaknesses. Suc-

cessful instruments need to be exogenous and relevant. In our context, exogeneity means not

being correlated with cash flow-relevant news, and relevance refers to the amount of return

variation it can explain. BMI is arguably the most exogenous, but index changes happen

relatively rarely, so it has the lowest explanatory power over returns. Some researchers may

be somewhat concerned about the exogeneity of FIT, but it has more variation as fund flow

shocks impact all stocks over all periods. Finally, OFI probably has even more concern

regarding its exogenenity, but it also has the highest amount of variation. Importantly, the

findings we present in this paper are robust across these three measures, which we see as a

strength: we do not rely on any single demand shock to draw our conclusions.
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Table 1 reports summary statistics. Because we are interested in how the price multiplier

varies by demand size, we show the percentile distributions in the right-most columns. All

demand measures are reported as a percentage of lagged market capitalization. ∆BMI and

FIT have similar ranges, with standard deviations of 0.72% and 0.54%, respectively.4 OFI,

which has the largest range, has a standard deviation of 1.59% and varies from -4.66% to

4.48% from the 1th to the 99th percentile.

Our analysis spans 1998 to 2018 for the BMI demand shock, and 1993 to 2022 for FIT

and OFI. The BMI sample is limited by the period for which we observe Russell index

constituents. The OFI sample is limited by the availability of the signed OFI measure from

WRDS. We constrain the FIT sample to match that of OFI.

Percentiles

Obs Mean StDev 1% 5% 25% 50% 75% 95% 99%

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Quarterly return (%) 4,712 2.82 30.36 -63.81 -41.00 -12.40 1.09 14.42 50.00 108.70
Demand (∆BMI (scaled), %) 472 0.05 0.72 -2.10 -1.14 -0.16 0.00 0.24 1.32 2.32
Demand (FIT, %) 4,564 0.07 0.54 -1.22 -0.65 -0.12 0.01 0.21 0.98 1.92
Demand (OFI, %) 2,877 0.09 1.59 -4.66 -2.29 -0.57 0.12 0.79 2.42 4.48
Market cap ($m) 4,712 4,082 26,608 6 15 76 311 1,471 14,915 68,551

Table 1. Summary Statistics
Column (1) reports the average number of stocks per period. For FIT and OFI, one period is one quarter. For
BMI, one period is the month of June — which is when Russell index reconstitution occurs — in a specific
year. The sample for all variables consists of quarterly data from 1993 to 2022, except the BMI sample
which consists of data for each June from 1998 through 2018. For the demand measures, ∆BMI refers to
changes in benchmarking intensity in Pavlova and Sikorskaya (2023), FIT refers flow-induced trading in Lou
(2012), and OFI refers to order flow imbalance in Li and Lin (2023). All demand measures (in percent) are
expressed as a fraction of shares outstanding; for this purpose, we multiply ∆BMI by 0.2, following Pavlova
and Sikorskaya (2023).

4Since ∆BMI measures the Russell index reconstitution-induced change in inelastic demand for a stock by
only benchmarked mutual funds and ETFs — not the total change in demand by all institutional investors —
we scale it to have the same units as OFI and FIT. Pavlova and Sikorskaya (2023) find that a one percentage
point reconstitution-induced change in BMI raises total institutional ownership by 0.20 percentage points.
See Column 3 of Table 3 in Pavlova and Sikorskaya (2023) for justification for this scaling.
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3 Static Evidence of Endogenous Elasticities

In this section, we estimate the contemporaneous relationship between demand shocks and

returns, and find evidence of concave price impact: price multipliers shrink with demand

shock size. Section 3.1 provides evidence of this behavior using the three demand shocks

discussed in Section 2. Section 3.2 examines alternative hypotheses.

3.1 Testing for Nonlinear Price Impact

To test for nonlinear demand effects, we estimate cross-sectional regressions of stock-level

returns rn,t on demand shocks dn,t (∆BMI, FIT, or OFI) and their interaction shock magni-

tudes |dn,t| in each time period t:

∀t : rn,t = b1,t · dn,t + b2,t · |dn,t| · dn,t + c
′

txn,t−1 + τt + ϵn,t. (2)

where the controls xn,t−1 include the stock characteristics discussed in Section 2, as well as

the BMI-specific controls discussed in Section 2 when studying the BMI demand measure.

We use the quarterly frequency for FIT and OFI because we are interested in price impacts

that are sufficiently long-lasting to be of interest to asset pricing. For BMI, to be consistent

with the prior literature (Pavlova and Sikorskaya, 2023), we use the monthly frequency and

focus on the effects in the month of June when Russell index reconstitution occurs.

The implied shock-size dependent price multiplier in regression (2) is M = b1 + b2 × |dn,t|.

The key coefficient of interest is b2. If price impacts are smaller for larger demand shocks,

then b2 would be negative.

We estimate regression (2) in each cross section and report the average regression coefficients

(in the style of Fama and MacBeth (1973)). Doing so ensures we use only cross-sectional

variation to identify the regression coefficients, and thus avoids concerns about omitted vari-
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ables driving time variation in both price multipliers and demand shock sizes. In Appendix

Table B.3, we find that estimating regression (2) using panel regressions with time fixed

effects yield similar results.

Dependent variable: stock return rn,t
dn,t = ∆ BMI FIT OFI

(1) (2) (3) (4) (5) (6) (7) (8) (9)

dn,t 2.60∗∗∗ 2.06∗∗∗ 1.96∗∗∗ 4.48∗∗∗ 3.85∗∗∗ 3.97∗∗∗ 4.94∗∗∗ 4.67∗∗∗ 4.65∗∗∗

(0.69) (0.58) (0.57) (0.62) (0.45) (0.37) (0.21) (0.18) (0.18)
dn,t × |dn,t| −0.72∗∗∗ −0.60∗∗∗ −0.54∗∗ −0.70∗∗ −0.63∗∗∗ −0.71∗∗∗ −0.31∗∗∗ −0.28∗∗∗ −0.28∗∗∗

(0.25) (0.22) (0.21) (0.33) (0.24) (0.21) (0.02) (0.02) (0.02)

Predictor controls N Y Y N Y Y N Y Y
Liquidity controls N N Y N N Y N N Y

Obs 9,914 9,914 9,914 561,405 561,405 561,405 333,772 333,772 333,772

R2 0.048 0.139 0.170 0.009 0.064 0.080 0.063 0.127 0.144
Marginal R2(dn,t) 0.016 0.012 0.011 0.009 0.005 0.005 0.063 0.056 0.054

Table 2. Static Price Impact Regressions
We estimate cross-sectional regression (2) of stock returns on demand shocks and demand shocks interacted
with their absolute values in each time period and report time-series average coefficients. Columns (1)
through (3) report results using the ∆BMI demand shock and monthly returns. Columns (4) through
(6) and (7) through (9) report results using quarterly returns and the FIT and OFI demand measures,
respectively. In columns (2), (5), and (8), we also control for return-predicting stock characteristics. In
columns (3), (6), and (9), we further control for liquidity-related proxies. Those controls are described in
Section 2. Levels of significance are presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Columns (1), (4), and (7) of Table 2 report the results of regression (2). The coefficient on

dn,t (b1) implies that price multipliers for small demand shocks (i.e. |dn,t| ≈ 0) lie in a range

of 2.6 to 4.9. That is, for small X, buying X% of all shares outstanding of a stock raises

price by around 2.6X% to 4.9X%.5

The coefficient on dn,t×|dn,t| (b2) is negative, indicating that larger shocks are associated with

smaller price multipliers. The coefficient magnitudes represent how much the multiplier falls

by when demand shock magnitude rises by 1% (i.e. |dn,t| = 1% versus 2%). This interaction

coefficient is statistically significantly negative at the 5% level for FIT and at the 1% level

for BMI and OFI. The magnitude of b2 is economically significant: assuming a constant price

5There are multiple reasons why price multiplier may between demand shocks beyond just shock sizes. For
instance, ∆BMI primarily impacts stocks with smaller market capitalizations than FIT and OFI. Therefore,
examining differences across demand shock types is not a “ceteris paribus” exercise and so we focus on
variations within demand shock type.
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multiplier significantly overestimates the actual price impact of large demand shocks.6

The point estimates for the three demand shocks suggest different degrees of nonlinearity,

but the result are not statistically significantly different. The b2 estimates in columns (1),

(4), and (7) in Table 2 indicate that a 1% larger shock lowers the multiplier by about 0.72,

0.70, and 0.31 for the BMI, FIT, and OFI shocks, respectively. Due to the sizeable standard

errors for BMI and FIT, however, the differences are not statistically significant.

In the other columns of Table 2, we add additional control variables and find qualitatively

similar results. Specifically, columns (2), (5), and (8) control for the 13 return predictors

discussed in Section 2.1. Columns (3), (6), and (9) further control for the 6 liquidity proxies

discussed in Section 2.1.

Note that while we find price multipliers decline with shock size, we still find that multipliers

— even for large shocks — are far larger than suggested by frictionless asset pricing models,

which imply multipliers on the order of 1/6000 (e.g. Petajisto, 2009). Therefore, our findings

should be interpreted as shedding light on the endogenous variation of price multipliers,

rather than arguing that multipliers are as small as in frictionless asset pricing models.

3.2 Alternative Interpretation: Variation in Multipliers

We interpret the results in Section 3.1 as evidence that ceteris paribus, a stock exhibits a

smaller price multiplier when experiencing a larger demand shock. However, the results may

also be consistent with a general class of alternative interpretations: that price multipliers

do not vary with shock size per se, but do vary for other reasons that correlate with shock

6For example, the result in Column 1 (BMI) imply that buying 1% of shares outstanding has a multiplier
of about M = 1.88 (b1 + b2 × 1 = 2.60 − 0.72 × 1 ≈ 1.88) and so raises price by about 1.88% (M × 1%),
not 2.60% as a constant multiplier M = b1 would suggest. A 2% shock has a multiplier of about M = 1.16
(b1 + b2 × 1 = 2.60− 0.72× 2 ≈ 1.16%) and so raises price by about 2.32% (M × 2% = 2.32%), not 5.2% as
a constant multiplier M = b1 would suggest (b1 × 2% = 5.2%).
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size. In general, one may suspect that the true model is:

rn,t = (b+ βn,t)︸ ︷︷ ︸
price multiplier

·dn,t + c′txn,t−1 + τt + ϵn,t (3)

where βn,t denotes unobserved price multiplier variation that happens to be correlated with

|dn,t|. We address three variants of this concern.

Dependent variable: stock return rn,t
dn,t = ∆ BMI FIT OFI

(1) (2) (3) (4) (5) (6) (7) (8) (9)

dn,t 2.00∗∗∗ 2.24∗∗∗ 2.30∗∗∗ 3.98∗∗∗ 3.89∗∗∗ 3.82∗∗∗ 4.65∗∗∗ 4.50∗∗∗ 4.65∗∗∗

(0.59) (0.66) (0.70) (0.37) (0.42) (0.43) (0.18) (0.18) (0.18)
dn,t × |dn,t| −0.53∗∗ −0.69∗∗ −0.76∗∗ −0.74∗∗∗ −0.77∗∗∗ −0.69∗∗∗ −0.28∗∗∗ −0.36∗∗∗ −0.33∗∗∗

(0.23) (0.28) (0.32) (0.21) (0.23) (0.25) (0.02) (0.02) (0.03)

Direct controls Y Y Y Y Y Y Y Y Y
Interacted: predictors N Y Y N Y Y N Y Y
Interacted: liquidity N N Y N N Y N N Y

Obs 9,914 9,914 9,914 561,405 561,405 561,405 333,772 333,772 333,772

R2 0.173 0.207 0.225 0.080 0.085 0.087 0.145 0.168 0.178
Marginal R2(dn,t) 0.012 0.011 0.011 0.005 0.004 0.004 0.054 0.040 0.034

Table 3. Static price impact regressions: controlling for demand-characteristic
interactions
We estimate cross-sectional regression (4) of stock returns on demand shocks and demand shocks interacted
with their absolute values in each time period and report average coefficients across all available time periods.
All regressions control for stock return predictors and liquidity proxies as described in Section 2.1. Columns
(1) through (3) report results using the ∆BMI demand shock and monthly returns. Columns (4) through
(6) and (7) through (9) report results using quarterly returns and the FIT and OFI demand measures,
respectively. In columns (2), (5), and (8), we also control for the interaction of return predictors with
demand. In columns (3), (6), and (9), we further control for the interaction of liquidity proxies with demand.
Levels of significance are presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Time-varying multipliers. One potential concern is that multipliers happen to be larger

in times when demand shocks are smaller. For example, it is well-documented that liquidity

conditions vary over time. For instance, during the 2008 financial crisis, liquidity conditions

worsen so price multipliers are larger, and there is also less trading (|dn,t|) at the same time.

Fortunately, this potential concern is already addressed by our baseline specification, as we

estimate (2) only using cross-sectional variation.
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Heterogeneous multipliers across stocks with different liquidity. Another potential

concern is that some stocks are more liquid and have smaller price multipliers than others,

and those stocks also experience larger demand shocks.

Formally, in equation (3), this concern can be modeled as βn,t = b′3,t · zn,t−1 where zn,t−1 are

stock-specific liquidity-related characteristics.

To address this concern, we augment our baseline specification (2) with interactions of the

demand shock with stock characteristics zn,t−1:

∀t : rn,t = b1,t · dn,t + b2,t · |dn,t| · dn,t + b
′

3,t · zn,t−1︸ ︷︷ ︸
added

·dn,t + c
′

txn,t−1 + τt + ϵn,t. (4)

where the interaction terms b
′

3,t · zn,t−1 · dn,t absorb the βn,t · dn,t term in (3). As in Section

3.1, we estimate regression (4) in each cross section and report the average coefficients, in

the style of Fama and MacBeth (1973).

We report results in Table 3. For comparison purposes, columns (1), (4), and (7) reproduce

the specification with all controls from Table 2. Columns (2), (5), and (8) also control for

interactions of demand with return predictors. Columns (3), (6), and (9) further control for

interactions of demand with the liquidity variables. The results are qualitatively unchanged,

and we continue to see significant evidence for concave price impact curves. Appendix B.1

further shows that our results are robust throughout the process of progressively adding each

individual characteristic interaction. Specifically, we plot the evolution of the coefficient

of interest (b2) as we add one interaction at a time, and find that the estimate is stable

throughout all specifications. Overall, we find no evidence that our results are explained by

cross-sectional correlations between stock characteristics and demand shock sizes.

Stock-specific variation in multiplier and demand shock sizes. To the extent that

our liquidity proxies can indeed capture the variation of multipliers across stocks, Table 3
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shows that differential liquidity does not explain our findings. However, one may still worry

that there is further variation of liquidity across stocks that cannot be controlled for. Specifi-

cally, let Mn be the stock-specific multiplier and σ(dn,t) be the stock-specific demand volatil-

ity. Suppose cross-sectional variation inMn cannot be fully captured by liquidity controls. In

this case, if stocks with lower Mn happen to have higher σ(dn,t), then we may still spuriously

find nonlinear price impact curves.

Under this alternative hypothesis, standardizing demand shocks

dstdn,t = dn,t/σ(dn,t),

should remove the nonlinearity. We test this in Appendix Table B.6. Specifically, for each

stock n in period t, we use the previous h = 4, 8, or 12 quarters to estimate the stock-specific

demand volatility and construct standardized demand. When using standardized demand

shocks in the price impact regression, we continue to see strong evidence of nonlinear price

impact, which suggests that stock-specific liquidity is unlikely to drive our results.

3.3 Additional Results and Robustness

We now summarize several robustness checks. The detailed results are in Appendix B.

Piecewise regression specification. Our evidence for concave price impact in Section 3.1

are based on a parametric specification. We also consider a non-parametric specification

using piecewise linear regressions. In each time period, we sort observations by realized

demand shock sizes |dn,t| into bins b = 1, 2, 3, and then estimate cross-sectional regressions:

rn,t =
∑
bin b

Mb,t · I|dn,t|∈b · dn,t + c
′

txn,t−1 + τt + ϵn,t (5)
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where the {Mb}b coefficients represent price multipliers for different shock sizes. To sort

observations into bins, we compute the cross-sectional demand shock standard deviation

(σ(dn,t)) in each period. Bin b = 1 collects observations with |dn,t| < σ(dn,t)), b = 2 collects

those with σ(dn,t) ≤ |dn,t| ≤ 2σ(dn,t), and b = 3 collects the remaining observations. We

use the same stock characteristics from Table 2 as controls xn,t−1. We report the time-series

average estimated price multipliers and Fama-MacBeth standard errors.

Figure 1. Multiplier by current shock size: piecewise linear specification

For each demand shock measure, we estimate cross-sectional Fama-MacBeth regressions:

rn,t =
∑
bin b

Mb,t · I|dn,t|∈b · dn,t + c
′

txn,t−1 + τt + ϵn,t (7)

where rn,t is stock return and dn,t is the demand shock. In each period, we split the sample into
three bins b by comparing |dn,t| with one or two times the cross-sectional standard deviation of dn,t. The
controls xn,t−1 are the same set of stock return predictors and liquidity proxies used in Table 2. The bars
plot the time-series average price multiplier estimates ({Mb}b). The whiskers represent 95% confidence
intervals. Detailed regression results are in Table B.4.

The resulting estimated multipliers are plotted in Figure 1, with the error bars indicating

95% confidence intervals. The results are broadly consistent with those in Table B.4. For the

BMI measure, the price multiplier is around two when considering demand shocks within one

standard deviation, and it monotonically decreases to less than one for shocks larger than

two standard deviations. Similar monotonic declines also appear for the multipliers based

on FIT and OFI. Detailed regression results are shown in Table B.4 where we also conduct
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statistical tests of the differences between multiplier estimates and compute standard errors

using the Delta method. For the FIT and OFI regressions, pairwise comparisons of multi-

pliers associated with different demand shock sizes are always statistically significant at the

1% level. The regression using BMI has lower power, with around half of the multiplier dif-

ferences being statistically significant, but the signs are always in the anticipated directions.

Overall, we find these piecewise linear regressions to yield similar conclusions relative to the

parametric specifications in Table 2.

Measurement errors. One may be concerned that our findings are driven by larger

measurement error for larger demand shocks. If the shock magnitudes are overestimated for

large shocks, we could spuriously find concave price impact.

Measurement error is unlikely to explain our findings. First, while measurement error is

potentially a concern for the contemporaneous regressions in Section 3, it is less relevant

for dynamic regressions in Section 4. We find that when the magnitude of cumulative past

demand shocks is large in magnitude, the contemporaneous price multiplier is lower. As long

as measurement errors are not serially correlated, this finding cannot be accounted for by

attenuation biases.

Second, even for the contemporaneous results in this section, measurement error is an unlikely

concern, as we explain in more details in Appendix B.2. OFI is measured directly by summing

up signed trades, rather than imputed. Even though FIT is imputed, in the Appendix, we

show that the results are not sensitive to filtering out large fund flows or flexibly estimating

flow-to-trade pass-throughs.

Removing news days from the sample. Of the three demand measures we use, one

may be most concerned about omitted variable bias in the multiplier estimates for the OFI

measure. As discussed in Section 2.2, OFI captures aggressive trading from many market

participants, and we do not know the exact motive behind their trading. While Li and Lin
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(2023) do not find evidence that OFI is driven by information-based trading, they also admit

it is difficult to rule out.

To address the concern that correlation with news releases may drive our OFI results, in

Appendix B.3 we remove days with more news releases. Specifically, we remove days with

earnings releases, analyst updates, or Ravenpack news releases from our sample. Our finding

of nonlinear price impact is robust to removing these days.

4 Dynamic Evidence of Endogenous Elasticities

Section 3 finds that price multipliers decrease with contemporaneous demand shock magni-

tudes. If so, then price multipliers should also decrease with the magnitude of cumulative

past shocks: if demand shocks are persistent, then price dislocations will depend on past

shocks in addition to contemporaneous shocks. This section finds evidence consistent with

this hypothesis.

4.1 Empirical Test

We test how multiplier vary with cumulative past shock size using FIT and OFI. We do not

use the BMI measure because it only features shocks in the month of June and so does not

have consecutive demand realizations. Specifically, we estimate cross-sectional regressions:

rn,t = b1,t · dn,t + b2,t · dn,t ·

∣∣∣∣∣
L∑
l=1

dn,t−l

∣∣∣∣∣+ ct
′xn,t−1 + τt + ϵn,t (8)

where the key coefficient of interest is b2,t, which measures whether the price multiplier

changes with the absolute value of cumulative demand shocks over the previous L quarters.

As in Section 3, we estimate the regression by each cross-section and report the time-series

average coefficients, in line with the Fama-MacBeth procedure. The vector of controls xn,t−1

is the same as in Table 2. To account for the use of lags in the regression, we compute
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Newey-West standard errors with L+ 1 lags.

The regression results reported in Table 4 indicate that price multipliers decline with the

magnitude of cumulative past demand shocks. Columns (1) through (4) report results based

on FIT where we vary the number of lags L. For instance, column (1) shows that for each

1% increase in the magnitude of previous quarter’s demand shock, the contemporaneous

price multiplier declines by 1.62, and the interaction coefficient is statistically significant

at the 1% level. To quantify the economic magnitude of multiplier variation, the last row

reports that one standard deviation of the previous quarter’s demand shock magnitude is

0.54%. Thus, one standard deviation change in this variable means that the contemporaneous

price mutliplier declines by around 1.62 × 0.54 ≈ 0.87, which is around one-fifth of the

unconditional price multiplier.

Columns (2) through (4) vary the number of lags L. The interaction coefficient remains

negative, indicating price impact declines with the magnitude of past cumulative demand

shocks. The magnitude of coefficient b2 declines, which is consistent with the idea that

more recent demand shocks matter more.7 Columns (5) through (8) examine OFI and find

qualitatively consistent results.

Piecewise linear specification. As a robustness check, we also estimate piecewise linear

specifications. Specifically, for each demand measure, we estimate:

rn,t =
∑
bin b

Mb,t · I|∑L
l=1 dn,t−l|∈b · dn,t + c

′

txn,t−1 + τt + ϵn,t (9)

where bins b = 1, 2, 3 are subsamples split by comparing the magnitude of past cumula-

tive demand shock (
∣∣∣∑L

l=1 dn,t−l

∣∣∣) with its cross-sectional standard deviation. The resulting

time-series average price multiplier estimates are plotted in Figure 2. For FIT, when the

7While the coefficient declines, because the standard deviation of cumulative demand shock increases
with the lookback period (the last row), the resulting implied variation on price multiplier does not decrease.
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Dependent variable: stock return rn,t
dn,t = FIT OFI

L = 1 2 3 4 L = 1 2 3 4

(1) (2) (3) (4) (5) (6) (7) (8)

dn,t 4.11∗∗∗ 3.96∗∗∗ 4.00∗∗∗ 3.82∗∗∗ 3.83∗∗∗ 3.82∗∗∗ 3.74∗∗∗ 3.75∗∗∗

(0.36) (0.34) (0.32) (0.33) (0.26) (0.30) (0.34) (0.36)

dn,t × |
∑L

l=1 dn,t−l| −1.62∗∗∗ −0.84∗∗∗ −0.68∗∗∗ −0.44∗∗∗ −0.20∗∗∗ −0.14∗∗∗ −0.09∗∗∗ −0.10∗∗∗

(0.28) (0.19) (0.13) (0.11) (0.03) (0.03) (0.03) (0.03)

Controls Y Y Y Y Y Y Y Y
Obs 538,398 517,033 497,185 478,324 314,110 296,241 279,914 264,872
R2 0.081 0.082 0.084 0.085 0.144 0.146 0.147 0.148

σ(|
∑L

l=1 dn,t−l|) 0.54% 0.94% 1.30% 1.63% 1.55% 2.16% 2.61% 2.95%

Table 4. Dynamic price impact regressions

We estimate cross-sectional regressions (8) using quarterly data and report the average time-series coefficients.
Specifically, we regress stock return rn,t on the contemporaneous demand shock dn,t, as well as the demand

shock interacted with the absolute value of cumulative past shocks over L periods (dn,t ×
∣∣∣∑L

l=1 dn,t−l

∣∣∣).
The regressions control for the same set of characteristics as in Table 2. We compute Newey-West standard
errors with L + 1 lags. The first four columns examine the FIT demand shock and the last four columns
examine OFI. Levels of significance are presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. The last row
reports one standard deviation of the cumulative demand shock.

cumulative past demand shocks are less than one standard deviation, the price multiplier is

around 4. The multiplier monotonically declines to around 2 when past cumulative demand

shocks are above two standard deviations. For OFI, we see qualitatively similar patterns,

though with a smaller range of multiplier variation. The detailed regression results are

reported in Table B.5.

Overall, these results imply that price multipliers vary dynamically and decrease with the

magnitude of past demand shocks.

Additional implications The dynamic results in this section help alleviate potential

concerns about dynamic consistency. If price impact curves do not vary over time, but

exhibit concavity in each period (as in Section 3), then one may be able to make profits

through manipulative trades. Specifically, one can make profits by first buying 1 unit for

N periods and then selling N units in period N + 1. While this is not a riskless arbitrage

(it requires require taking risk over N + 1 quarters), it would nontheless be counterintuitive
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(a) FIT (b) OFI

Figure 2. Multiplier by past demand shock size: piecewise linear specification

For each demand shock measure and lookback horizon h, we estimate cross-sectional regressions:

rn,t =
∑
bin b

Mb,t · I|∑h
l=1 dn,t−l|∈b · dn,t + c

′

txn,t−1 + τt + ϵn,t (11)

where rn,t is stock return and dn,t is the demand shock. In each period, we split the sample into

three bins b by comparing
∣∣∣∑h

l=1 dn,t−l

∣∣∣ with its cross-sectional standard deviation σ. The controls xn,t−1

include the return-predicting and liquidity characteristics used in Table 2. The bars plot time-series average
multiplier estimates M̂b along with 95% confidence intervals. Panels (a) and (b) shows results for demand
measures FIT and OFI, respectively. The regression results are presented with more details in Table B.5.
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for such strategies to be profitable on average. In fact, Huberman and Stanzl (2004) predict

that, if contemporaneous price impact curves are not linear, then price impacts should vary

dynamically. Our results are consistent with their prediction.

Second, the dynamic findings also help alleviate concerns about measurement error. As

explained in Section 3.3, one may worry that our contemporaneous results are due to larger

measurement error for larger measured demand shocks. However, as long as measurement

errors are not serially correlated over time, this is unlikely to explain how price multipliers

vary with past demand shocks.

5 Evidence from Investor Holdings

The preceding sections have shown that price multipliers are smaller when either contempora-

neous or past cumulative demand shocks are larger. Given that equilibrium price multipliers

are inversely related to investor demand elasticities, we next examine institutional holdings

data to directly investigate the behavior of these elasticities using the granular instrumental

variable (GIV) approach. Our analysis reveals that demand elasticities increase with the

magnitude of accumulated price dislocations. We further find that this effect is driven in

large part by within-investor intensive-margin adjustments rather than capital shifting across

investors or investors entering or exiting the asset. Together, these results help pinpoint the

micro-level mechanism responsible for the endogenous variation in price multipliers.

5.1 GIV Methodology

We estimate investor-level demand elasticities using the granular instrumental variable (GIV)

methodology of Gabaix and Koijen (2022, 2024). Specifically, we develop a dynamic, non-

linear extension of the optimal GIV methodology from Chaudhary et al. (2024), which is de-

signed to maximize statistical power when estimating heterogeneous elasticities. In essence,

the GIV approach constructs a price instrument for each investor by aggregating the id-
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iosyncratic trades of all other investors under a set of structural assumptions. We adopt this

methodology because it offers substantially greater statistical power for estimating demand

elasticities compared to the demand measures used in the preceding sections.

5.1.1 Nonlinear and Dynamic Model for Investor Demand

We are interested in whether investors’ demand becomes more elastic when accumulated

past price changes are larger in magnitude. Following the results in Section 4, we model

demand as:

∆qi,n,t = −
(
ζ1,i,t + ζ2,i,tP̃n,t

)
︸ ︷︷ ︸

Price Elasticity of Demand

∆pn,t + λ
′

i,tηn,t + ui,n,t︸ ︷︷ ︸
Demand Shock

(12)

P̃n,t =

∣∣∣∣∣
L∑
l=1

∆pn,t−l

∣∣∣∣∣− Et

[∣∣∣∣∣
L∑
l=1

∆pn,t−l

∣∣∣∣∣
]
,

where ∆qi,n,t is the change in log quantity of shares demanded by investor i for stock n in

quarter t. This quantity change has two components: movement along the demand curve

and demand shocks (i.e. demand curve shifts). The first component is the price elasticity

of demand times the percentage price change (∆pn,t), which captures how demand reacts to

prices after holding constant the rest of the investor’s information set.

The second component captures changes in non-price determinants of demand, such as new

information about future cash flows or risk. ηn,t represents stock-quarter specific character-

istics such as firm-level fundamentals or news. ui,n,t are residual demand shocks that are

assumed to be conditionally mean-independent across investors, within and across quarters:

∀i ̸= j,∀t,∀l = 0, . . . , L : E[ui,n,t | uj,n,t−l,ηn,t] = 0. (13)

Our main goal is to test if ζ2,i,t > 0. Here, ζ1,i,t represents the average elasticity, while ζ2,i,t

captures how elasticity changes with the magnitude of demeaned cumulative price changes
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over the past L quarters (P̃n,t). Thus, finding ζ2,i,t > 0 (ζ2,i,t < 0) indicates that demand

becomes more (less) elastic when past price changes have larger magnitudes.

5.1.2 Using GIV to Identify Elasticities

A key challenge in identifying elasticities is that demand and prices are jointly determined

in equilibrium. Through market clearing, investor i’s demand shock correlates with the

contemporaneous price change. Furthermore, if demand shocks are serially correlated, the

current demand shock will also correlate with lagged price changes. Thus, a simple regression

of equilibrium quantity changes on current and lagged price changes fails to identify ζ1,i,t

and ζ2,i,t due to omitted variable bias. Instead, identification requires exogenous variation

in current and lagged price changes that is uncorrelated with investor i’s demand shocks.

To identify the elasticity parameters ζ1,i,t and ζ2,i,t, we build on the optimal granular instru-

mental variables (GIV) methodology of Chaudhary et al. (2024). This identification strategy

is motivated by market clearing. Assuming a fixed supply, the aggregate equilibrium change

in quantity demanded must be zero:

0 =
∑
i

Si,n,t−1∆qi,n,t, (14)

where Si,n,t−1 are lagged ownership share weights — the proportion of outstanding shares

held by investor i. After plugging (12) into (14), a first-order approximation around P̃n,t = 0

yields the equilibrium price change:

∆pn,t ≈

(
1

ζ1,S,t
− ζ2,S,t

ζ21,S,t
P̃n,t

)
︸ ︷︷ ︸

Price Multiplier

(
λ

′

S,tηn,t + uS,n,t

)
, (15)

where the S subscript denotes ownership-share weighted averages (e.g., uS,n,t =
∑

i Si,n,t−1ui,n,t).

Intuitively, the demand shocks of investors with larger ownership shares have a greater impact
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on prices. Additionally, as we find empirically in Section 4, the price multiplier depends on

the magnitude of past price changes (P̃n,t), and the relationship is governed by −ζ2,S,t/ζ
2
1,S,t.

By the assumption in (13), residual demand shocks are uncorrelated across investors. For

each investor i, we can combine the residual demand shocks of other investors j ̸= i to form

a price instrument. Furthermore, Chaudhary et al. (2024) show that statistical power is

maximized by constructing the GIV instrument as the ownership-share weighted average of

other investors’ residual demand shocks, zi,n,t =
∑

j ̸=i Sj,n,t−1uj,n,t. Thus, the following two

moment conditions identify ζ1,i,t and ζ2,i,t:

0 = E
[
ui,n,t · zi,n,t | ηn,t

]
(16)

0 = E
[
ui,n,t · zi,n,t · Z̃i,n,t | ηn,t

]
, (17)

for zi,n,t =
∑
j ̸=i

Sj,n,t−1uj,n,t, and

Z̃i,n,t =

∣∣∣∣∣
L∑
l=1

zi,n,t−l

∣∣∣∣∣− Et

[∣∣∣∣∣
L∑
l=1

zi,n,t−l

∣∣∣∣∣
]

where the expectations are taken across stocks n in quarter t. The moment conditions above

are formally equivalent to a two-stage least squares (2SLS) regression of ∆qi,n,t on both ∆pn,t

and the interaction term ∆pn,t · P̃n,t, witgh zi,n,t and zi,n,t · Z̃i,n,t as instruments, and ηn,t

included as controls. Intuitively, zi,n,t and Z̃i,n,t provide exogenous variation in the current

price change and the magnitude of past price changes.

A practical challenge, however, is that constructing these instruments requires observing

other investors’ residual demand shocks:

uj,n,t = ∆qj,n,t +
(
ζ1,j,t + ζ2,j,tP̃n,t

)
∆pn,t − λ

′

j,tηn,t,

which in turn requires knowledge of their elasticity parameters (ζ1,j,t, ζ2,j,t). To resolve this
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problem, we estimate ζ1,j,t and ζ2,j,t for all investors simultaneously using generalized method

of moments (GMM) with moment conditions (16) and (17).

5.1.3 Empirical Specification

We estimate the nonlinear demand curve from equation (12) using institutional holdings

data from the SEC Form 13F, obtained from Thomson Reuters.8 We restrict our sample to

intensive-margin quantity changes, defined as observations where investor i holds a positive

quantity of stock n in both quarters t− 1 and t.

We parsimoniously characterize heterogeneity in the elasticity parameters across investors

by parameterizing ζ1,i,t and zeta2,i,t as linear functions of each investor’s active share:

ζk,i,t = ζk,0,t + ζk,Active Share,t · Active Sharei,t−1−L.

Active share is the demeaned sum of the absolute deviations between an investor’s portfolio

weights and the market cap-weighted portfolio weights for that investor’s universe (divided

by two). 9 We use a four-quarter rolling average of active share, lagged to quarter t− 1−L,

to prevent correlation with demand shocks from quarters t − L to t. For k ∈ {1, 2}, ζk,0,t

represents the parameter for the average investor, while ζk,Active Share,t describes how the

parameter varies with active share. This parametric approach preserves statistical power

since we lack power to estimate the elasticity parameters separately for every investor.

8Following Davis and Haltiwanger (1992), we calculate ∆qi,n,t as:

∆qi,n,t =
Q̂i,n,t − Q̂i,n,t−1

1
2 (Q̂i,n,t + Q̂i,n,t−1)

,

where Q̂i,n,t−1 = Hi,n,t−1 is investor i’s dollar holdings in stock n in quarter t− 1, and Q̂i,n,t = Hi,n,t/(1 +
RX

n,t−1→t) is the dollar holdings in quarter t adjusted for the ex-dividend return RX
n,t−1→t. This specification

is motivated by potential measurement errors in share data (e.g., unadjusted stock splits) in 13F filings.
Using dollar holdings circumvents this issue, while the denominator, which maps the expression into the
range [−2, 2], effectively winsorizes large percentage changes.

9Following Koijen and Yogo (2019), an investor’s universe is all stocks held in the past 11 quarters.
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As in the preceding sections, we estimate the parameters for each quarter t using the cross-

section of stocks. To improve numerical stability, we perform the estimation over rolling

four-quarter windows and report the average parameter estimates across all windows. We

compute Fama-MacBeth standard errors with a Newey-West correction (8 lags) to account

for the overlapping windows.

The stock characteristic controls, ηn,t, include the observed characteristics discussed in Sec-

tion 2 and five latent characteristics estimated via principal component analysis on the

investor-stock ownership panel. Our results are robust to using different numbers of la-

tent characteristics (Appendix C.2). We also include investor-quarter fixed effects to ensure

that the elasticity parameters are identified solely from cross-sectional variation within each

investor’s portfolio. Appendix C.1 provides further estimation details.

Table 5 summarizes the holdings data we use. The mean ∆qi,n,t is around zero, and one

standard deviation is around 46%, which corresponds to buying or selling 46% of pre-existing

holdings. The mean active share is 0.44 and one standard deviation of active share is 0.20.

Percentiles

Obs Mean StDev 1% 5% 25% 50% 75% 95% 99%

∆qi,n,t 31,544,619 -0.04 45.67 -163.13 -74.01 -7.67 0.22 7.96 72.66 161.56
∆pn,t 31,544,619 3.67 18.63 -44.40 -25.61 -6.08 3.36 12.89 33.33 57.22∑L

l=1∆pn,t−l 31,544,542 31.55 36.11 0.40 2.03 10.41 22.39 40.87 88.00 167.66
Active Sharei,t 31,544,619 0.44 0.20 0.07 0.10 0.30 0.44 0.58 0.77 0.88

Table 5. Summary Statistics
This table provides summary statistics for the data underlying the GIV model estimation in Section 5.
Variables include quarterly percentage changes in quantity of shares demanded (∆qi,n,t), quarterly percentage
changes in price (∆pn,t), percentage absolute accumulated lag price changes over the past four quarters

(|
∑L=4

l=1 ∆pn,t−l|), and investor-level active share (Active Sharei,t). The sample for all variables consists of
quarterly data from 1982 to 2021.

5.2 Empirical Results

Table 6 displays the estimation results for the nonlinear, dynamic demand function (12).

The first two columns display the time-series average of the estimates of ζ1,0 and ζ1,Active Share
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ζ1,0 ζ1,Active Share ζ2,0 ζ2,Active Share

Coefficient 0.4580∗∗∗ 1.3880∗∗∗ 0.0072∗∗∗ 0.0325∗∗∗

(0.0424) (0.1554) (0.0028) (0.0110)

Table 6. Nonlinear and Dynamic Demand Curve Estimation

We estimate nonlinear demand curve (12) using quarterly 13F holdings data in rolling annual window
and report the average coefficient values over all time periods. The standard errors are computed using
the Newey-West method with 8 quarterly lags. The first column (ζ1,0) displays the average elasticity for
investors with average active share. The second column (ζ1,Active Share) displays how much the average
elasticity varies with active share. The third column (ζ2,0) displays how much elasticity changes with the
magnitude of past accumulated price changes for the average investor. The fourth column (ζ2,Active Share)
displays how much this sensitivity of elasticity to the magnitude of past accumulated price average elasticity
varies with active share. The estimation controls for the same set of controls as in Table 2, as well as five
latent stock-characteristics estimated using PCA. Levels of significance are presented as follows: ∗p<0.1;
∗∗p<0.05; ∗∗∗p<0.01.

— the parameters that control the elasticity for the average stock (i.e. when the demeaned

absolute lag accumulated price change P̃n,t = 0). In the first column, we find ζ1,0 ≈ 0.46: on

average investors reduce their quantity demanded by 0.46% in reponse to a 1% ceteris paribus

price increase. This estimate is similar to the investor-level elasticity estimates from Koijen

and Yogo (2019). In the second column we find a positive ζ1,Active Share: more active investors

have higher elasticities. The magnitude of ζ1,Active Share ≈ 0.69: impies that a one standard

deviation increase in active share above the mean raises elasticity by about 1.39×0.2 ≈ 0.28,

or from ζ1,0 = 0.46 for the average investor to 0.74, an economically significant increase.

The last two columns display the estimates of ζ2,0 and ζ2,Active Share, the parameters of interest

that govern how demand elasticity varies with past cumulative price changes. In the third

column, we find ζ2,0 > 0: the average investor becomes more elastic as accumulated past

price changes grow in magnitude. In the fourth column we find ζ2,Active Share > 0, which

implies that more active investors display this behavior to a greater degree — they become

even more elastic (compared to the average investor) as accumulated past price changes grow

in magnitude.

The magnitudes of ζ2,0 and ζ2,Active Share are economically significant. Figure 3 Panel (a)

displays total elasticity as a function of active share and absolute past price change. Figure 3
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Panel (b) displays total elasticity as a function of absolute past price change for fixed active

shares. For the average investor, moving from the 5th to the 95th percentile of absolute past

annual price change (from approximately 2% to 88% from Table 5) raises the total elasticity

from 0.23 to 0.87. For more active investors, such as those in the 75th percentile of active

share, moving from the 5th to the 95th percentile of absolute past annual price change raises

the total elasticity from 0.28 to 1.32. Even for relatively inactive investors — those in the

25th percentile of active share — moving from the 5th to the 95th percentile of absolute past

annual price change raises the total elasticity from 0.18 to 0.42. Thus, we find that most

investors indeed become more elastic in the face of larger past price dislocations and that

this behavior is particularly pronounced among more active investors.

Crucially, since we restrict our sample to intensive-margin quantity changes, these results

provide evidence that the endogenous multiplier results from Sections 3 and 4 are not driven

solely by investors entering or exiting on the extensive margin. Investors become more elastic

as past accumulated price changes grow in magnitude even for stocks they already hold and

continue to hold. Moreover, since we estimate demand curve (12) in the cross-section of each

investor’s holdings, these results provide evidence that our endogenous multiplier results are

not driven solely by reallocation of AUM to more elastic investors when past price changes

grow in magnitude.
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(a) Elasticity as a Function of Active Share and Past Price Changes

(b) Elasticity as a Function of Past Price Changes for Fixed Active Shares

Figure 3. Visualizing variation in demand elasticities

We visualize the variation in institutional demand elasticities estimated in Section 5.2. Panel (a) uses a
heatmap to show the estimated demad elasticities as a function of the absolute value of lagged four-quarter
price change (

∑L=4
l=1 ∆pn,t−l) on the x-axis and the active share of institutions on the y-axis. Panel (b) plots

the model-implied demand elasticity as a function of past price changes for different fixed active shares.
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6 Implications for the Microfoundations of Inelastic

Demand

There are many mechanisms that can generate inelastic demand. In this section, we use our

empirical findings to shed light on the applicability of various mechanisms. Many mechanisms

fail to explain at least some aspect of our findings, which includes the static multiplier

results in Section 3, the dynamic multiplier results in Section 4, and the within-investor,

intensive-margin holdings-based results in Section 5. Our results therefore shed light on the

microfoundations of inelastic demand.

In this section, we first present a stylized model that nests many different frictions that can

give rise to inelastic demand. We then specialize the model to particular frictions, derive

the resulting implications, and examine whether those implications are consistent with our

empirical results.

6.1 Stylized Model

The model has three periods: t = 0, 1, 2. At t = 0, investors receive a fixed endowment.

At t = 1, a supply shock occurs, the asset market clears, and the equilibrium price is

determined. At t = 2, the asset’s payoff is realized. We explore the static and dynamic

properties of demand elasticities and price multipliers by characterizing how these objects

at t = 1 relate to investor holdings at t = 0 and t = 1.

Assets. There is one risky asset that pays a dividend at t = 2:

D̃ ∼ N
(
D̄, σ2

D

)
.

Unless otherwise noted, all investors are endowed with Θ0 shares of the asset at t = 0.

At t = 1, an exogenous supply shock changes total supply to Θ1. This supply should be
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interpreted as the residual supply faced by optimizing investors: the total fixed supply less

the demand from noise traders outside the model. The risk-free rate is normalized to zero.

Agents and Preferences: There are two types of investors. First, there is mass 1− ϵ of

type-I (inelastic) investors who choose portfolios at t = 1 to maximize mean-variance utility

over t = 2 (i.e. terminal) wealth subject to a reduced-form cost C(Q,E
[
D̃ − P

]
,Θ0):

max
QI

QIE
[
D̃ − P

]
− γ

2
Q2

IV
[
D̃ − P

]
− C

QI ,E[D̃ − P ]︸ ︷︷ ︸
≡µ

,Θ0

 (18)

The cost can in general depend on the quantities held in both this and last period (QI and

Θ0), as well as the expected return µ. This cost renders these investors’ demand inelastic

and can nest many different frictions, as discussed in Section 6.2.10

Taking the first-order condition, the type-I investors’ optimal quantity satisfies

P = D̄ −Q · γσ2
D − ∂

∂Q
C (Q, µ,Θ0)︸ ︷︷ ︸

≡MC(Q,µ,Θ0)

. (19)

MC (Q, µ,Θ0) is the marginal cost of holding one more share of the asset.

Second, there is a fringe of type-E (elastic) investors with mass 0 < ϵ < 1 who do not face

cost C(·):

max
QE

QEµ− γ

2
Q2

Eσ
2
D → QE =

µ

γσ2
D

These investors ensure the market clears even if the type-I investors are constrained.

10Assume ∂2C
∂Q2 > 0 so the investor’s objective function is strictly concave.
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Equilibrium: Market-clearing implies

(1− ϵ)QI + ϵQE = Θ1. (20)

Substituting this equation into the type-I first-order condition (19) yields equilibrium price

P = D̄ −Θ1 · γσ2
D − 1

1− ϵ
MC (Θ1 − ϵQE, µ,Θ0) . (21)

Price depends on marginal cost. If the marginal cost of holding an additional share is high,

then price must be low to incentivize the type-I investors to do so.

Differentiating both sides of (21) with respect to Θ1 yields the following price multiplier as

ϵ → 0 (the per-unit change in price due to a change in Θ1, expressed as a positive number):

M ≡ − dP

dΘ1

=
γσ2

D + ∂
∂Θ1

MC (Θ1, µ,Θ0)

1− ∂
∂µ
MC (Θ1, µ,Θ0)

. (22)

The multiplier M can be large for two reasons. First, M is large if marginal cost increases

with quantity held (∂MC
∂Θ1

> 0). If holding more shares requires paying a higher marginal

cost, the price must adjust (i.e. drop) to incentivize investors to do so. Second, M is large if

marginal cost increases as expected return rises (∂MC
∂µ

> 0). In this case, when supply rises

and expected return rises because price falls, investors’ marginal cost rises. Thus, price must

fall even more to compensate investors.

The endogenous behavior of the multiplier depends on the nonlinear relationships between

marginal cost, current and past supply shocks, and expected returns. These relationships

vary across different microfoundations for the cost function, as discussed in the next section.
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6.2 Endogenous Multiplier Behavior with Different Frictions

Our empirical results discipline the set of underlying frictions for the cost function C(·) that

can be used to microfound inelastic demand. We examine which frictions can and cannot

explain each of our empirical results, as summarized in Table 7.

Price Multiplier Results Demand Elasticity Results

Multiplier
Decreases with
Contemporane-
ous Shock Size

Multiplier
Decreases with
Accumulated
Shock Size

Elasticity
Increases Within

Investor

Elasticity
Increases on

Intensive Margin

Position
Constraints

No No No No

Benchmarking
& Investment
Mandates

No No No No

Convex
Adjustment
Costs

Yes No No No

Reallocation of
Capital Across
Investors

Yes Yes No No

Participation
Costs

Yes Yes Yes No

Fixed
Adjustment
Costs

Yes Yes Yes Yes

Costly
Information
Acquisition

Yes Yes Yes Yes

Table 7. The Empirical Facts that Can or Cannot be Explained by Mechanisms
This table summarizes the implications of different mechanisms for explaining variation in price multipliers
and demand elasticities. Each row corresponds to one mechanism and each column corresponds to an
empirical finding in this paper.

6.2.1 Mechanisms that Do Not Explain Static Multiplier Results

In Section 3, we find that price multipliers decrease with contemporaneous shock size. Mech-

anisms emphasizing position constraints, as well as those emphasizing benchmarking and
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investment mandates, cannot explain this result (rows 1 and 2 in Table 7).

Position constraints. Contrary to our findings, models with position constraints, such

as leverage constraints (e.g., Shleifer and Vishny (1997); He and Krishnamurthy (2013)) and

short sale constraints (e.g., Diamond and Verrecchia (1987); Duffie et al. (2002)), often imply

price multipliers increase — not decrease — with supply shock magnitude. To show this,

Appendix D.1 considers a model in which type-I investors face a quantity limit: |Q| ≤ α.

In this case, the cost function can be written as

C(Q, µ) = −λ(µ)(α− |Q|).

where λ(µ) is the shadow cost of the constraint. For small shocks (|Θ1| ≤ α), the constraint

does not bind and λ(µ) = 0. For large shocks (|Θ1| > α), the constraint binds, and λ(µ)

increases with the magnitude of the expected return µ. Intuitively, when supply shocks are

large, expected returns are also large, so these investors want to take large positions but

cannot due to the constraint. Thus, per (22), the multiplier increases with the supply shock

magnitude |Θ1|:

M =


γσ2

D , |Θ1| ≤ α

γσ2
D/ϵ , |Θ1| > α

Large shocks tighten investors’ constraints, lower their elasticities, and thus raise multipliers.

Hence, position constraints do not explain the static results in Section 3.

Benchmarking and Investment Mandates Contrary to our findings, models with

benchmarking or investment mandates often imply constant price multipliers (e.g., Peta-

jisto (2009); Gabaix and Koijen (2022); Pavlova and Sikorskaya (2023)). Appendix D.2

considers a model in which type-I investors maximize mean-variance utility over compensa-

tion, where compensation is a linear combination of both absolute return and return relative
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to a benchmark (as in Pavlova and Sikorskaya (2023)):

c(QI) = aQI

(
D̃ − P

)
︸ ︷︷ ︸
Absolute Return

+ b
[
QI

(
D̃ − P

)
− Q̄

(
D̃ − P

)]
︸ ︷︷ ︸

Return Relative to Benchmark

,

where Q̄ represents the benchmark holding. In this case, the cost function can be written as

C(QI , µ) = µ(λ(QI) +QI) +
γ

2
σ2
Dϵ

[
λ(QI)

2 −Q2
I

]
,

where λ(QI) is linear and decreasing in QI . This cost represents the welfare loss to an

investor who would prefer to maximize mean-variance utility over absolute returns but is

instead incentivized to tilt toward the benchmark. Since mean-variance utility (over both

absolute returns and compensation) is quadratic in quantity, so is this cost function. As a

result, the marginal cost is linear, and its derivatives with respect to quantity and expected

return are constant. Thus, per (22), the multiplier is constant:

M =
γσ2

D(a+ b)

1 + (a+ b− 1)ϵ
,

Intuitively, an investor’s unwillingness to deviate from a benchmark renders their demand

inelastic, resulting in large price multipliers. However, because this unwillingness does not

vary with quantity or expected return, the price multiplier is constant. Hence, benchmarking

or investment mandates cannot explain the static multiplier results in Section 3.

6.2.2 Mechanisms That Do Not Explain Dynamic Multiplier Results

In Section 4, we find that price multipliers decrease with the size of past accumulated shocks,

a result that standard convex adjustment cost models cannot explain (row 3 in Table 7).

(Contemporaneous) Convex Adjustment Costs Contrary to our findings, models in

which investors face costs to adjust their portfolios imply multipliers do not depend on
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past accumulated supply shocks (e.g., Gârleanu and Pedersen (2013); Van der Beck (2025)).

Appendix D.3 considers a model with a general adjustment cost function

C(QI ,Θ0) = λ |QI −Θ0|α ,

that penalizes type-I investors for adjusting from their initial holdings. The cost is convex

for α > 1. For α < 2, the marginal adjustment cost is concave (i.e., ∂MC
∂QI

decreases with

QI). Thus, per (22), such adjustment costs can generate multipliers that decrease with the

contemporaneous supply shock size (|Θ1 −Θ0|). Concretely, for ϵ → 0, the multiplier is

M = γσ2
D + α(α− 1)λ|Θ1 −Θ0|α−2.

Intuitively, for α < 2, large adjustments are relatively cheaper than small ones, so M declines

with shock size. Thus, certain convex adjustment costs can explain the static results in

Section 3. However, since the cost depends only on the quantity change (QI −Θ0) and not

on the level of past holdings (Θ0), multipliers do not depend on past shocks. Hence, convex

adjustment costs cannot explain the dynamic multiplier results in Section 4.

6.2.3 Mechanisms That Do Not Explain Within-Investor Elasticity Results

In Section 5, we find that investor-specific demand elasticities increase with the magnitude of

accumulated price dislocations, a finding that models of capital reallocation across investors

cannot explain (row 4 in Table 7).

Reallocation of Capital Across Investors Contrary to our findings, models with en-

dogenous reallocation of capital between investors (e.g., Duffie and Strulovici (2012)) do

not imply that investor-specific elasticities increase as accumulated price dislocations grow.
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Appendix D.4 considers a model in which type-I investors face a quadratic inventory cost

C(Q) = a ·Q2

that raises their effective risk aversion and renders their demand inelastic. Crucially, the

mass of type-E investors, ϵ, is endogenous:

ϵ(µ) = 1−
(
1 + µ2

)− 1
2 .

That is, capital flows to the more elastic type-E investors as the magnitude of the expected

return rises. Thus, the aggregate elasticity in the economy increases with the magnitude of

the expected return, causing the multiplier to decrease:

M =
γ(γ + a)σ2

D

γ + a
(
1− (1 + µ2)−

3
2

) .
Since the expected return magnitude (|µ|) increases with the accumulated supply shock

magnitude (|Θ1|), this model can explain both the static and dynamic results in Sections

3 and 4. However, each investor’s elasticity is fixed. Hence, reallocation of capital cannot

explain the within-investor elasticity results in Section 5.

6.2.4 Mechanisms That Do Not Explain Intensive-Margin Elasticity Results

In Section 5, we find that demand elasticities increase on the intensive margin of investor

holdings as accumulated price dislocations grow, a finding that models with participation

cost cannot explain (row 5 in Table 7).

Participation (Entry/Exit) Costs Contrary to our findings, models with participation

costs (e.g., Vissing-Jorgensen (2002); Gomes and Michaelides (2005); Alan (2006)) do not

imply that investor-specific elasticities increase on the intensive margin due to larger accu-
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mulated price dislocations. Appendix D.5 considers a model in which type-I investors are

endowed with zero holdings at t = 0 and face a fixed participation cost at t = 1:

C(QI) =


0 , QI = 0

λ ,QI ̸= 0

For small cumulative supply shocks, the expected return is insufficient to overcome the fixed

cost of entry. For large shocks, however, the expected return is high enough that type-I

investors optimally choose to enter and take non-zero positions. That is, when expected re-

turns grow sufficiently large, type-I investors become more elastic. As a result, the multiplier

decreases with the cumulative shock size (|Θ1|):

M = −dP

dΘ
=


γσ2

D

ϵ
, |Θ1| ≤

√
2λ
γσ2

D

γσ2
D , |Θ1| >

√
2λ
γσ2

D

Thus, participation costs can explain the static and dynamic multiplier results in Sections

3 and 4, as well as the within-investor results in Section 5. However, the only variation

in investor-specific elasticities in this model is on the extensive margin — when investors

decide whether to enter or exit an asset. On the intensive margin (i.e., conditional on holding

the asset), each investor’s elasticity is fixed. Hence, participation costs cannot explain the

intensive-margin elasticity results in Section 5.

6.2.5 Mechanisms That Can Explain Our Findings

Our results can be explained by models in which investors face frictions that make their

demand inelastic, but can overcome these frictions to become more elastic when expected

returns are large. Two mechanisms that generate this behavior are fixed adjustment costs

and costly information acquisition (rows 6 and 7 in Table 7).
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Fixed Adjustment Costs Appendix D.6 considers a model in which type-I investors face

a fixed adjustment cost λ at t = 1 for deviating from their t = 0 quantity Θ0 (e.g., as in

Constantinides (1986); Grossman and Laroque (1987)):

C(QI) =


0 , QI = Θ0

λ ,QI ̸= Θ0

This cost gives rise to (S, s)-style adjustment behavior (Scarf (1960)). For small shocks,

the initial position is close to the optimum, so the benefit of adjustment does not exceed

the fixed cost. Large shocks, however, significantly alter the optimal quantity (since they

alter expected returns), making adjustment worthwhile. Thus, for sufficiently large shocks,

type-I investors become more elastic. As a result, the multiplier decreases with the shock

size (|Θ1 −Θ0|):

M =


γσ2

D

ϵ
, |Θ1 −Θ0| ≤

√
2λγσ2

D

γσ2
D , |Θ1 −Θ0| >

√
2λγσ2

D

In this three-period model, M does not depend on past shocks conditional on the current

shock (Θ1 −Θ0). Yet in a fully dynamic model, the adjustment decision and the multiplier

would depend on accumulated shocks since the last adjustment, which need not have occurred

in the previous period. Hence, fixed adjustment costs can explain the static and dynamic

multiplier results in Sections 3 and 4, and the within-investor, intensive-margin elasticity

results in Section 5.

Costly Information Acquisition Appendix D.7 considers a model in which type-I in-

vestors have uncertainty about cash flows, which renders their demand inelastic. However,

these investors can pay to acquire information to reduce this uncertainty.11 The marginal

11E.g., as in Grossman and Stiglitz (1980); Kyle (1989); Van Nieuwerburgh and Veldkamp (2009, 2010);
Kacperczyk et al. (2016); Han (2018).
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benefit of reducing uncertainty is larger when investors believe expected returns are higher:

lower uncertainty allows them to take larger positions to more aggressively exploit the high

expected returns without incurring excessive perceived risk.

The portfolio choice cost takes the form

C(Q, µ) = Posterior Variance ·Q2

where Posterior Variance is a decreasing function of |µ|. The multiplier is

M = γ ·
(
σ2
D + Posterior Variance

)
,

which decreases with the accumulated supply shock size since |µ| increases with shock size.

These multiplier reductions arise from increases in investor-specific, intensive-margin elas-

ticities. Hence, costly information acquisition can explain the static and dynamic multiplier

results in Sections 3 and 4, and the within-investor, intensive-margin elasticity results in

Section 5.

7 Conclusion

In this paper, we document a new stylized fact about inelastic demand in stock markets:

larger uninformed demand shocks have smaller price multipliers. This pattern is robust across

three cash flow-unrelated demand shocks from previous work: index-reconstitution induced

changes in benchmarking intensity, fund flow-induced trading, and order flow imbalance. We

show that this finding is unlikely to be explained by mismeasurement or unobserved variation

in liquidity. Dynamically, we find price multipliers decrease both with the magnitude of

current shocks and with the accumulation of past shocks. Consistent with these results,

when examining institutional investor holdings data, we find that investor-specific price

elasticities of demand increase when past cumulative price changes are larger.
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Overall, our findings illuminate an important dimension of endogenous variation in price

elasticities: demand is more elastic in the face of larger price dislocations that create more

opportunities for active investment. This is important for the purpose of quantifying the

effect of large demand shocks such as government asset purchases, passive investing, and

green asset demand. The existing literature estimates price multipliers using small demand

shocks, and those price effects cannot be extrapolated linearly to larger-scale phenomenon.

Our results also shed light on the mircofoundations of inelastic demand in financial markets.

We show that several prominent mechanisms — such as those based on arbitrageur financial

constraints, or those emphasizing capital reallocation across investors — cannot explain our

findings. Our results are best explained by models in which investors allocate more attention

and capital to securities with greater profit opportunities.
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APPENDIX

A Supplemental Results for Demand Measurement

This section provides supplemental results and discussions about the three demand measures

used in Section 2.

A.1 Description of Russell Banding Methodology Starting in 2007

Prior to 2007, firms with market capitalizations on the May rank date that fell between ranks

1 and 1000 were assigned to the Russell 1000, and those with market caps ranked between

1001 and 3000 were assigned to the Russell 2000.

To reduce turnover, since 2007 FTSE Russell has used a “banding policy” under which there

are two separate cutoffs for stocks in the Russell 1000 and 2000 in the previous year, both

of which are based on a mechanical function of the firm size distribution in the year. Under

this policy:

• Stocks in the Russell 2000 in the previous year are assigned to the Russell 1000 if

they’re rank date market cap ranks fall between 1 and 1000− c1.

• Stocks in the Russell 1000 in the previous year are assigned to the Russell 2000 if

they’re rank date market cap ranks fall between 1000 + c2 and 3000.

To calculate c1 and c2 Russell first computes the cumulative market cap of the largest 1000

stocks (i.e. those with ranks 1 through 1000). Let C(N) represent the cumulative market

cap of the largest N stocks. c1 is calculated such that C(1000 − c1) = 0.95 · C(1000). c2

is calculated such that C(1000 + c2) = 1.05 · C(1000). That is, the band of stocks between

ranks 1000− c1 and 1000 + c2 constitutes a 5% band around the cumulative market cap of

the largest 1000 stocks.

Thus, even after the introduction of the banding policy, assignment to the Russell 1000 or

2000 is still based on a mechanical rule. After the introduction of the banding policy, this

mechanical rule changes each year with the distribution of firm sizes.
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A.2 Robustness in FIT Measurement

This section describes how we compute cleaned versions of flow-induced trading (FIT) to

help alleviate measurement error concerns. Specifically, as Section 3.3 discusses, we want

to guard against our main result — that multipliers are smaller when the magnitude of

FIT is large — arise from attenuation bias. Therefore, we want to alleviate the concern of

overestimating large FIT values in the tails.

Where would mismeasurement come from? Under the simplest specification where we assume

that trades respond one-to-one to flows, the FIT of fund n in stock n is given by

SharesHeldi,n,t−1 × fi,t.

From this perspective, there are two main mismeasurement concerns, and we tackle them in

turn.

1. Heterogeneous trading response to flows. Trades respond less than one-to-one

to flows, and this may be especially true when flows are large or when pre-existing

positions are large. When a fund faces large inflows, it may use a larger fraction of

the flows to buy new stocks, which reduces the need to purchase stocks in the existing

holdings (e.g. Pollet andWilson, 2008; Lou, 2012). Further, for diversification purposes,

it may reduce its purchase if a stock already occupies a large part of the portfolio (Chen,

2024). Both of these considerations may lead us to over-estimate large FIT values.

We address this by explicitly estimating heterogeneous trade-to-flow responses. We

estimate a panel regression of trades on dummy variables:

Tradei,n,t =
∑
b

∑
f

βb,f · Iwi,n,t−1∈ bin b × Ifi,t∈ bin f + ϵi,n,t (A.1)

where Tradei,n,t =
SharesHeldi,n,t

SharesHeldi,n,t−1
− 1 and wi,n,t−1 is the lagged portfolio weight of stock

n for fund i. To study heterogeneous responses, we sort the sample by fund flows

into f = −20, ..., 0, ..., 20 bins, with the first (last) 20 bins covering the flows below

-1% (above 1%) realizations, and bin 0 is defined by fj,t ∈ [−1%, 1%]. Panel (a) of

Figure A.1 plots the average flow by bins and show that they cover a large range from

approximately -30% to +100%.

Similarly, for each fund in each period, we sort its stock holdings by the existing port-
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folio weight into b = 1, ..., 20 bins. To reduce the impact of outliers due to “dividing by

a small number” in the dependent variable, we estimate (A.1) via a weighted regression

with weights equal to wi,n,t−1.
1

Panel (b) of Figure A.1 plots the point estimates of βb,f for bins b = 1, 10, and 20. The

result does indicate that when facing in flows, funds tend to trade less than one-to-one

in stocks that they already have large holdings in, but the heterogeneity is limited in

magnitude. This effect is less pronounced for out flows, a finding that is consistent

with Lou (2012).

To account for the heterogeneity of trade-to-flow responses, we compute FIT as:

FITn,t =
∑
fund i

SharesHeldi,n,t−1

Share Outstandingn,t−1

· β(wi,n,t−1, fi,t)︸ ︷︷ ︸
trade response

where the heterogeneous responses β(wi,n,t−1, fi,t) are based on the estimates in re-

gression (A.1). Specifically, we first sort holdings into 20 bins by wi,n,t−1 for each

fund-quarter, and then apply a third-order polynomial-estimated curve based on the

regression estimates.

2. Winsorize fund flows. Another possible concern is that the extreme fund flows

may be misestimated. To alleviate this concern, we recompute FIT after winsorizing

1%, 5%, or 10% of fund flows, with equal fraction of winsorization on each side. The

winsorization thresholds are illustrated in Panel (c) of Figure A.1. The black line plots

the density of fund flows, and the colored vertical dashed lines represent the cutoffs.

By removing extreme values of fund flows, we ensure that our FIT meaures are not

subject to mismeasured large flow values.

Panel (d) of Figure A.1 shows the effect of applying these cleaning and winsorization steps.

We sort the sample into 100 bins by “raw FIT,” which does not winsorize flows and assumes

a one-to-one trade-to-flow response, and we plot it on the horizontal axis. On the vertical

axis, the red line plots the average FIT after taking into account heterogeneous trade-to-flow

responses. The remaining lines plot the results after further applying fund flow winsorization.

The plot suggests that applying these cleaning steps serves to gradually dampen the large

1To control for the fact that, even without flows, portfolio weights tend to mean-revert — that is, the
largest (smallest) positions tend to be reduced (increased) subsequently — we estimate a first-stage regression
where we regress the dependent variable on indicators of existing portfolio weight bin b. We use the resulting
residuals as the dependent variable in regression (A.1).
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(a) Fund flow by bin (b) Trade response to flow

(c) Fund flow winsorization (d) Comparing FIT measures

Figure A.1. Cleaning the flow-induced trading (FIT) measure

Panel (a) plots fund flows by bins. Panel (b) plots the average fund trade as a function of fund flows by the
size of the pre-existing portfolio weights, and the dashed diagonal line is the 45 degree line. Panel (c) plots
the kernel density of fund flows, and the vertical dashed lines represent the various winsorization cutoffs.
Panel (d) plots the cleaned versions of FIT against the “raw FIT” which does not winsorize fund flows and
assumes that trades respond one-to-one to flows.
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values of FIT.
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B Additional Empirical Results for Section 3

B.1 Interaction with Stock Characteristics

To further visualize the impact of progressively adding each specific characteristic, Figure B.2

displays the estimated b1 and b2 coefficients from these regressions. Each point represents the

coefficient estimates from regression (4) when adding an additional characteristic (i.e. the

right-most points represent coefficient estimates from the regression including all characteris-

tics). We find evidence that price multipliers decrease with shock size across all specifications

for all three demand shocks: b2 < 0 for all specifications. Moreover, the coefficient estimates

are quantitatively stable across specifications.
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(a) ∆BMI (b) FIT

(c) OFI

Figure B.2. Nonlinear Price Impact Coefficient: Adding One Control at a Time

Panels (a), (b), and (c) plot the estimated interaction coefficient (b2) in regression (4) for the ∆BMI, FIT,
and OFI demand shocks, respectively. The left-most points represent estimates when no interactions between
the demand shock and any stock characteristics are included. Each subsequent point represents the estimates
from regression (4) when adding the interaction with characteristic labelled on the x-axis (i.e. the right-most
points represent coefficient esimtates from the regression including all liquidity and stock characteristics).
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B.2 Measurement Error

We argue that measurement errors are unlikely to explain the findings in Section 3.

FIT. This concern is potentially applicable for FIT because it is an imputed demand mea-

sure rather than a realized one. Where could mismeasurement come from? Recall that the

flow-induced-trading of fund n in stock n is given by

bi,n,t × SharesHeldi,n,t−1 × fi,t.

This formula indicates that not accounting for heterogeneity in flow-to-trade coefficient bi,n,t

may pose a concern. Specifically, funds may exhibit lower response coefficient when experi-

encing large fund flow magnitudes. It is also possible that funds also exhibit lower response

coefficients when handling stocks that is already a large part of their portfolios. Both of

these concerns can lead to over-estimation of FIT.

We tackle this concern in Appendix A.2 and summarize our findings here. We explicitly

estimate flow-to-trade responses that depend on both realized fund flow fi,t and wi,n,t−1,

the lagged portfolio weight of stock n in fund n’s portfolio. We do find evidence of slightly

weaker responses to large inflows, consistent with Lou (2012). We also find heterogeneous

responses for stocks with higher wi,n,t−1, but the degree of heterogeneity is limited. Therefore,

when we apply these heterogeneous responses in computing FIT, all results are qualitatively

unchanged.

As a further robustness step to guard against potential mismeasurement in fund flows fi,t,

we winsorize it at the 1%, 5%, or even the 10% levels (symmetrically on both sides). This

also had minimal effects on our main findings. Overall, we do not find measurement errors

to be a likely explanation of our findings.

∆BMI and OFI. We argue that the concern is less relevant for these two two demand

measures. OFI is directly computed from observed trades, rather than imputed. The only

inference step is assigning trade directions via the Lee-Ready algorithm. Prior work find

that the Lee-Ready algorithm contain errors at the individual trade level, but the errors

wash out when aggregating at the daily frequency (Chakrabarty et al., 2012). Therefore,

there is no clear reason why mismeasurement will become more pronounced at the quarterly

frequency and for larger OFI realizations. In unreported robustness checks, we also estimate

our OFI-based findings at monthly and weekly frequencies. We find evidence for concave
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price impacts at all those frequencies.

As described in Section 2, the main variation of ∆BMI is driven by differences in market cap-

italization between stocks. Because market capitalization is measured relatively accurately,

we also do not consider measurement error to be a significant concern.

B.3 Removing News Days

It is widely accepted that stock returns are often driven by news releases, which leads to the

concern that perhaps our demand shocks per se do not impact prices, but rather are just

correlate with news releases. Further, if demand is positively correlated with news-driven

returns, and if the magnitude of demand happens to scale sublinearly with the magnitude

of news-driven returns, then this can explain our finding.2 We argue this concern is less

relevant for BMI and FIT which exploit variation in trading by specific investors in specific

circumstances that are plausibly unrelated to cash flow news. However, this concern is

potentially more relevant for OFI, which captures trading behavior by many investors over

a whole quarter.

To assess this concern, we examine whether we observe concave price impact when focusing

on days with less news releases. We use three measures of news releases at the daily frequency.

The first is whether there is an earnings release. The second is the number of analyst updates

from IBES, and the third is the number of media reports about that company in Ravenpack.

For the latter two, we convert them into quintile indicators after sorting within each quarter-

stock to adjust for the fact that larger stocks and later sample periods tend to have more

updates. This conversion makes the news measures more comparable across stocks and over

time.

We first verify that these measures do capture price-relevant news. In Table B.1, we regress

the absolute value of daily stock returns on news indicators, and the results indicate that

days with earnings releases, as well as days in the top quintile of either IBES or Ravenpack

news releases, are associated with higher return volatility. To see the magnitudes, in the

last column of Table B.1 which contains all news indicators, we see that earnings days are

associated with 0.93% higher return absolute values. Days in the top quintile of IBES (and

Ravenpack) news releases are associated with 0.35% (and 0.49%) higher absolute returns.

There is also some evidence of higher return volatility in quintiles 4 for IBES and Ravenpack,

but the economic magnitudes are much smaller. These lead us to conclude that, when it

2For instance, consider the possibility that when news-driven return is 1%, demand shock is 1%. When
news-driven return is 2%, demand shock is 1.5% rather than 2%.
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comes to using IBES and Ravenpack to look for news days, it is most important to filter out

the top quintile of days. As a baseline, we note that the dependent variable’s average value

is 2.57% in the full sample.

Dependent variable: |rn,t| (%)
(1) (2) (3) (4)

Earnings 1.29∗∗∗ 0.93∗∗∗

(0.03) (0.04)
IBES bin 2 0.00 −0.00

(0.00) (0.00)
IBES bin 3 0.00 0.00

(0.00) (0.00)
IBES bin 4 0.01∗∗∗ 0.01∗∗∗

(0.00) (0.00)
IBES bin 5 0.36∗∗∗ 0.35∗∗∗

(0.01) (0.01)
Ravenpack bin 2 0.00∗∗ 0.00∗

(0.00) (0.00)
Ravenpack bin 3 0.01∗∗∗ 0.01∗∗

(0.00) (0.00)
Ravenpack bin 4 0.03∗∗∗ 0.04∗∗∗

(0.01) (0.01)
Ravenpack bin 5 0.56∗∗∗ 0.49∗∗∗

(0.02) (0.02)

Quarter-stock FE Y Y Y Y

Obs 36,461,790 27,145,392 21,239,328 16,125,776
Within R2 0.003 0.003 0.006 0.015

Table B.1. Information measures and return variability

We use daily panel regressions to estimate the relationship between the absolute value of stock returns and
indicators of news releases. The baseline average |rn,t| is 2.57%. All regressions control for quarter-stock
fixed effects, and standard errors are clustered by quarter and stock. Levels of significance are presented as
follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

We now re-estimate the results for OFI in Table 2 but remove days with news from our

computation of quarterly returns and demand. The results are reported in Table B.2. Col-

umn (1) reproduces the result in column (9) of Table 2 where no days are filtered out. In

the subsequent columns, we filter out earnings days. Starting from column (3), we impose

increasingly strong filters based on IBES and Ravenpack, where the filters are indicated in

the last three rows of the table. Throughout these specifications, we continue to see sig-

nificant evidence for nonlinearity. For instance, in the last column, we filter out earnings

days, as well as days in the top two quintiles of either IBES or Ravenpack indicators. The

result continue to indicate a similar degree of nonlinearity in the price impact curve. To

summarize, we do not find evidence that our discovery of nonlinear price impact is due to

news.

62



Dependent variable: stock return rn,t
(1) (2) (3) (4) (5) (6)

dn,t 4.65∗∗∗ 3.83∗∗∗ 3.33∗∗∗ 3.01∗∗∗ 3.06∗∗∗ 3.13∗∗∗

(0.18) (0.16) (0.15) (0.15) (0.15) (0.16)
dn,t × |dn,t| −0.28∗∗∗ −0.18∗∗∗ −0.19∗∗∗ −0.17∗∗∗ −0.19∗∗∗ −0.25∗∗∗

(0.02) (0.02) (0.02) (0.03) (0.03) (0.04)

Controls Y Y Y Y Y Y
Obs 333,771 315,606 279,612 204,703 204,703 204,703

R2 0.144 0.146 0.131 0.115 0.095 0.083
Marg R2(dn,t) 0.054 0.055 0.048 0.038 0.038 0.039

Sample selection:

Earnings days Y N N N N N
IBES filter N N < 80% < 80% < 60% < 60%
Ravenpack filter N N N < 80% < 80% < 60%

Table B.2. OFI Price Impact Regressions in Periods with Less News
We re-estimate the Fama-MacBeth regressions in Table 2 for OFI, but only use days with less news. That
is, from column (1) through (6), we progressively remove certain days with more news releases in computing
quarterly OFI and return. Column (1) does not apply any news filter and is the same as column (9) in
Table 2. Starting from column (2), we remove the earnings days. Column (3) further removes days on which
the IBES news indicator is above 80% within each quarter-stock, and column (4) also removes days on which
the Ravenpack news indicator is above 80% within each quarter-stock. Columns (5) and (6) make more
stringent removals and the filters applied are indicated by the bottom three rows. Levels of significance are
presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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B.4 Additional Specifications

Table B.3 estimates the same specification as in Table 2 using panel regressions.

Dependent variable: stock return rn,t
dn,t = ∆ BMI FIT OFI

(1) (2) (3) (4) (5) (6) (7) (8) (9)

dn,t 2.32∗∗∗ 2.18∗∗∗ 2.11∗∗∗ 4.84∗∗∗ 4.83∗∗∗ 4.83∗∗∗ 4.92∗∗∗ 4.93∗∗∗ 4.95∗∗∗

(0.78) (0.72) (0.73) (0.64) (0.62) (0.62) (0.24) (0.24) (0.25)
dn,t × |dn,t| −0.56∗∗ −0.54∗∗ −0.53∗∗ −0.52∗∗∗ −0.52∗∗∗ −0.52∗∗∗ −0.25∗∗∗ −0.25∗∗∗ −0.25∗∗∗

(0.25) (0.23) (0.24) (0.13) (0.12) (0.12) (0.02) (0.02) (0.02)

Time FE Y Y Y Y Y Y Y Y Y
Predictor controls N Y Y N Y Y N Y Y
Liquidity controls N N Y N N Y N N Y

Obs 9,914 9,914 9,914 561,405 561,405 561,405 333,772 333,772 333,772
R2 0.141 0.157 0.158 0.153 0.156 0.157 0.220 0.223 0.224
Marginal R2(dn,t) 0.007 0.006 0.005 0.004 0.004 0.004 0.043 0.043 0.043

Table B.3. Interacted price impact: panel regressions
This Table is simliar to 2 except that we estimate panel regressions instead of Fama-MacBeth regressions.
All regressions control for time fixed effect and cluster standard errors by time and stock. Column (1) reports
results using the BMI measure of Pavlova and Sikorskaya (2023) and monthly returns. Columns (2) reports
results using quarterly returns, whereas the demand is based on the FIT measure of Lou (2012) and the OFI
measure in Li and Lin (2023), respectively. Levels of significance are presented as follows: ∗p<0.1; ∗∗p<0.05;
∗∗∗p<0.01.

As discussed in Sections 3.3 and 4.1, for both the static and dynamic price multiplier re-

gressions, we also estimate piecewise linear specifications. This section reports the results.

Table B.4 report the static regression results and provide more details to Figure 1 in Sec-

tion 3.3. Table B.5 report results that support Figure 2.

Table B.6 report static regression results where we use dn,t standardized by its own stock-

specific rolling standard deviations. Those results support the discussion in Section 3.3.
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Panel A: price impact regressions
Dependent variable: stock return rn,t

BMI FIT OFI

(1) (2) (3) (4) (5) (6) (7) (8) (9)
M|dn,t|<σ 2.41∗∗∗ 1.75∗∗∗ 1.74∗∗∗ 4.78∗∗∗ 3.96∗∗∗ 3.92∗∗∗ 5.13∗∗∗ 4.71∗∗∗ 4.67∗∗∗

(0.30) (0.28) (0.28) (0.48) (0.36) (0.30) (0.12) (0.09) (0.10)
M|dn,t|∈[σ,2σ] 1.41∗∗∗ 1.06∗∗∗ 1.05∗∗∗ 3.69∗∗∗ 3.17∗∗∗ 3.33∗∗∗ 4.14∗∗∗ 4.02∗∗∗ 4.00∗∗∗

(0.41) (0.34) (0.33) (0.27) (0.21) (0.18) (0.10) (0.09) (0.09)
M|dn,t|>2σ 0.88∗∗∗ 0.67∗∗∗ 0.69∗∗∗ 3.13∗∗∗ 2.67∗∗∗ 2.69∗∗∗ 2.86∗∗∗ 2.77∗∗∗ 2.78∗∗∗

(0.17) (0.17) (0.17) (0.19) (0.16) (0.15) (0.09) (0.09) (0.09)

Predictor controls N Y Y N Y Y N Y Y
Liquidity controls N N Y N N Y N N Y

Obs 9,914 9,914 9,914 561,405 561,405 561,405 333,772 333,772 333,772
R2 0.051 0.142 0.172 0.009 0.064 0.080 0.063 0.127 0.144

Panel B: Coefficient differences
M|dn,t|∈[σ,2σ] −M|dn,t|<σ −1.00∗∗∗ −0.69∗ −0.69∗∗ −1.10∗∗∗ −0.78∗∗∗ −0.59∗∗∗ −0.99∗∗∗ −0.69∗∗∗ −0.66∗∗∗

(0.38) (0.35) (0.34) (0.28) (0.22) (0.20) (0.08) (0.06) (0.06)
M|dn,t|>2σ −M|dn,t|∈[σ,2σ] −0.53 −0.39 −0.36 −0.56∗∗∗ −0.50∗∗∗ −0.64∗∗∗ −1.29∗∗∗ −1.25∗∗∗ −1.22∗∗∗

(0.40) (0.35) (0.31) (0.17) (0.14) (0.14) (0.07) (0.07) (0.07)
M|dn,t|>2σ −M|dn,t|<σ −1.53∗∗∗ −1.07∗∗∗ −1.05∗∗∗ −1.65∗∗∗ −1.29∗∗∗ −1.23∗∗∗ −2.27∗∗∗ −1.94∗∗∗ −1.89∗∗∗

(0.29) (0.27) (0.26) (0.38) (0.29) (0.26) (0.10) (0.08) (0.08)

Table B.4. Price multiplier by demand shock sizes

In panel A, we report results for Fama-MacBeth regressions:

rn,t =
∑
bin b

Mb,t · I|dn,t|∈b · dn,t + c
′

txn,t−1 + τt + ϵn,t (B.2)

where rn,t is stock return and dn,t represent demand shocks. In each time period, we split the sam-
ple into three bins b by comparing |dn,t| against its cross-sectional standard deviation. Columns (1) through
(3) report results using the ∆BMI demand shock and monthly returns. Columns (4) through (6) and (7)
through (9) report results using quarterly returns and the FIT and OFI demand measures, respectively.
For each demand shock measure, same as in Table 2, we vary the set of regression controls in xn,t−1.
Panel B reports pairwise differences in price multipliers and the standard errors are computed using the
Delta method. Levels of significance are presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01. Figure 1 plots
coefficient estimates in columns (3), (6), and (9) in Panel A.
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Panel A: price impact regressions
Dependent variable: stock return rn,t

dn,t = FIT OFI

h = 1 2 3 4 h = 1 2 3 4

(1) (2) (3) (4) (5) (6) (7) (8)

M|dn,t|<σ 4.10∗∗∗ 3.93∗∗∗ 3.92∗∗∗ 3.72∗∗∗ 3.77∗∗∗ 3.68∗∗∗ 3.66∗∗∗ 3.66∗∗∗

(0.38) (0.33) (0.32) (0.32) (0.26) (0.29) (0.33) (0.35)
M|dn,t|∈[σ,2σ] 2.98∗∗∗ 2.92∗∗∗ 2.84∗∗∗ 2.80∗∗∗ 3.29∗∗∗ 3.33∗∗∗ 3.30∗∗∗ 3.21∗∗∗

(0.29) (0.33) (0.33) (0.34) (0.26) (0.30) (0.28) (0.31)
M|dn,t|>2σ 1.78∗∗∗ 1.90∗∗∗ 1.81∗∗∗ 2.01∗∗∗ 2.63∗∗∗ 2.74∗∗∗ 2.72∗∗∗ 2.63∗∗∗

(0.34) (0.34) (0.30) (0.32) (0.24) (0.28) (0.37) (0.35)

Predictor controls Y Y Y Y Y Y Y Y
Liquidity controls Y Y Y Y Y Y Y Y

Obs 538,398 517,033 497,185 478,324 314,110 296,241 279,914 264,872
R2 0.081 0.082 0.084 0.085 0.145 0.146 0.148 0.148

Panel B: Coefficient differences
M|dn,t|∈[σ,2σ] −M|dn,t|<σ −1.12∗∗∗ −1.01∗∗∗ −1.08∗∗∗ −0.93∗∗∗ −0.49∗∗∗ −0.34∗∗ −0.36∗∗ −0.45∗∗∗

(0.24) (0.26) (0.27) (0.29) (0.13) (0.16) (0.16) (0.13)
M|dn,t|>2σ −M|dn,t|∈[σ,2σ] −1.20∗∗∗ −1.01∗∗∗ −1.02∗∗∗ −0.78∗∗∗ −0.66∗∗∗ −0.59∗∗ −0.58∗∗ −0.59∗∗

(0.28) (0.28) (0.29) (0.25) (0.17) (0.23) (0.23) (0.23)
M|dn,t|>2σ −M|dn,t|<σ −2.32∗∗∗ −2.03∗∗∗ −2.11∗∗∗ −1.71∗∗∗ −1.14∗∗∗ −0.93∗∗∗ −0.95∗∗∗ −1.03∗∗∗

(0.38) (0.38) (0.32) (0.36) (0.17) (0.25) (0.32) (0.30)

Table B.5. Price Impact Regressions Interacted with Past Demand

For each demand shocks FIT and OFI, and for each lookback horizon h = 1 to 4 quarters, we estimate
cross-sectional regressions:

rn,t =
∑
bin b

Mb,t · I|∑h
l=1 dn,t−l|∈b · dn,t + c

′

txn,t−1 + τt + ϵn,t (B.4)

where rn,t is stock return and dn,t is the demand shock. In each period, we split the sample into

three bins b by comparing
∣∣∣∑h

l=1 dn,t−l

∣∣∣ with its cross-sectional standard deviation. The controls xn,t−1 are

the same as in Table 2. The first four columns use FIT as the demand shock and the last four columns use
OFI. Panel A reports regression estimates, and the results are also plotted in Figure 2. Panel B reports
pairwise coefficient differences with standard errors computed using the Delta method. Levels of significance
are presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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Dependent variable: stock return rn,t
dstdn,t = FIT OFI

lookback window N/A 4 8 12 N/A 4 8 12

(1) (2) (3) (4) (5) (6) (7) (8)

dstdn,t 3.97∗∗∗ 3.47∗∗∗ 3.76∗∗∗ 3.56∗∗∗ 4.65∗∗∗ 5.01∗∗∗ 4.80∗∗∗ 4.56∗∗∗

(0.37) (0.28) (0.32) (0.32) (0.18) (0.25) (0.26) (0.25)
dstdn,t × |dstdn,t | −0.71∗∗∗ −0.68∗∗∗ −0.96∗∗∗ −0.71∗∗∗ −0.28∗∗∗ −0.49∗∗∗ −0.52∗∗∗ −0.52∗∗∗

(0.21) (0.09) (0.15) (0.17) (0.02) (0.03) (0.03) (0.04)

Predictor controls Y Y Y Y Y Y Y Y
Liquidity controls Y Y Y Y Y Y Y Y

Obs 561,405 491,638 436,750 392,262 333,772 264,872 214,766 175,835

R2 0.080 0.082 0.085 0.086 0.144 0.138 0.144 0.145
Marginal R2(dstdn,t) 0.005 0.003 0.004 0.004 0.054 0.040 0.041 0.037

Table B.6. Contemporaneous Price Impact Regressions: Standardized Demand

This Table reports regression results for FIT and OFI and is similar to Table 2, except that it uses
standardized demand (dstdn,t) instead of raw demand (dn,t). Standardized demand is estimated as dstdn,t =

dn,t

σ̂(h)(dn,t)
× σ(dn,t), where σ̂(h) =

√
1

h−1

∑h
l=1(dn,t−l − d̄n,t−1)2, and where h = 4, 8, or 12 is the lookback

window. We multiply the standardized demand with the full-sample volatility (σ(dn,t)) so that the resulting
variable has the same amount of variation as the original one. For comparison purposes, columns (1) and
(5) reproduces columns (6) and (9) of Table 2 where the demand is not standardized. In the other columns,
we report results using standardized demand with different lookback windows. Levels of significance are
presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.
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C Supplements to Section 5

C.1 Estimation Details

C.1.1 Setup

We seek to estimate the following nonlinear demand curve

∆qi,n,t = −
(
ζ1,i,t + ζ2,i,tP̃n,t

)
︸ ︷︷ ︸

Price Elasticity of Demand

∆pn,t + λ
′

i,tηn,t + ui,n,t︸ ︷︷ ︸
Demand Shock

P̃n,t =

∣∣∣∣∣
L∑
l=1

∆pn,t−l

∣∣∣∣∣− Et

[∣∣∣∣∣
L∑
l=1

∆pn,t−l

∣∣∣∣∣
]
,

∆qi,n,t is the percentage change in quantity of shares demanded by investor i for stock n in

quarter t. ∆pn,t is change of log price for stock n in quarter t. L is the number of lagged

quarterly price changes to consider (L = 4 in the baseline analysis).

The first step is to residualize ∆qi,n,t,∆pn,t, and
∣∣∣∑L

l=1 ∆pn,t−l

∣∣∣ with respect to stock charac-

teristics ηn,t. Note that by the Frisch-Waugh-Lovell theorem, this residualization is equiva-

lent to controlling for ηn,t. ηn,t contains both observed characteristics (as well as investor-

quarter fixed effects) and latent characteristics estimated using principal component analysis

on the within-quarter investor × stock panel of ∆qi,n,t. Since this panel is unbalanced and

the residual demand shocks are assumed to be heteroskedastic, we estimate the latent char-

acteristics using the deflated heteroskedastic PCA methodology of Zhou and Chen (2025).

Let q̌i,n,t, p̌n,t, and x̌n,t be the residualized counterparts of ∆qi,n,t,∆pn,t, and ∆pn,t · P̃n,t. So

we have the following residualized demand curve

q̌i,n,t = −ζ1,i,tp̌n,t − ζ2,i,tx̌n,t + ui,n,t. (C.1)

To increase statistical power, we parameterize ζ1,i,t and ζ2,i,t as linear functions of each

investor’s active share:

ζk,i,t = ζk,0,t + ζk,Active Share,t (Active Sharei,t−1−L − Et [Active Sharei,t−1−L])

ζk,i,t = ζ
′

k,tX i,t

where X i,t = [1,Active Sharei,t−1−L].
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The identifying assumption of GIV in our setting is that the residual demand shocks ui,n,t

are conditionally independent across investors both within and across quarters:

∀i ̸= j,∀t,∀l = 1, . . . , L : E[ui,n,t · uj,n,t−l] = 0.

From this conditional independence assumption, if we let

ui,n,t

(
ζ1,t, ζ2,t

)
= ∆qi,n,t +

(
ζ1,i,t + ζ2,i,tP̃n,t

)
∆pn,t − λ

′

i,tηn,t

= ∆qi,n,t +
(
ζ

′

1,tX i,t + ζ
′

2,tX i,t · P̃n,t

)
∆pn,t − λ

′

i,tηn,t (C.2)

then we obtain the following two sets of moment conditions that allow us to identify ζ1,t and

ζ2,t:

∀i, t : 0 = E

X i,t · ui,n,t

(
ζ1,t, ζ2,t

)
·
∑
j ̸=i

Sj,n,t−1uj,n,t

(
ζ1,t, ζ2,t

)
︸ ︷︷ ︸

≡zi,n,t(ζ1,t,ζ2,t)


= E

[
X i,t · ui,n,t

(
ζ1,t, ζ2,t

)
· zi,n,t

(
ζ1,t, ζ2,t

)]
(C.3)

and

∀i, t : 0 = E


Xi,t · ui,n,t

(
ζ1,t, ζ2,t

)
·



∣∣∣∣∣∣∣∣∣∣∣∣∣
L∑

l=1

∑
j ̸=i

Sj,n,t−1−luj,n,t−l

(
ζ1,t, ζ2,t

)
︸ ︷︷ ︸

≡zi,n,t−l(ζ1,t,ζ2,t)

∣∣∣∣∣∣∣∣∣∣∣∣∣
− E



∣∣∣∣∣∣∣∣∣∣∣∣∣
L∑

l=1

∑
j ̸=i

Sj,n,t−1−luj,n,t−l

(
ζ1,t, ζ2,t

)
︸ ︷︷ ︸

≡zi,n,t−l(ζ1,t,ζ2,t)

∣∣∣∣∣∣∣∣∣∣∣∣∣




·
∑
j ̸=i

Sj,n,t−1uj,n,t

︸ ︷︷ ︸
≡zi,n,t(ζ1,t,ζ2,t)



= E

Xi,t · ui,n,t

(
ζ1,t, ζ2,t

)
·
(∣∣∣∣∣

L∑
l=1

zi,n,t−l

(
ζ1,t, ζ2,t

)∣∣∣∣∣− E

[
L∑

l=1

zi,n,t−l

(
ζ1,t, ζ2,t

)])
︸ ︷︷ ︸

≡Z̃i,n,t(ζ1,t,ζ2,t)

·zi,n,t

(
ζ1,t, ζ2,t

)


= E
[
Xi,t · ui,n,t

(
ζ1,t, ζ2,t

)
· Z̃i,n,t

(
ζ1,t, ζ2,t

)
· zi,n,t

(
ζ1,t, ζ2,t

)]
(C.4)

All expectations are taken in the cross section of stocks n. Note that the constructed instru-

ments zi,n,t
(
ζ1,t, ζ2,t

)
and Z̃i,n,t

(
ζ1,t, ζ2,t

)
depend on the elasticity parameters ζ1,t and ζ2,t

because knowledge of these parameters is required to recover the residual demand shocks

from the (residualized) equilibrium quantity changes (as in (C.2)).

Note that (C.3) and (C.4) give us an overidentified system. If I is the total number of
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investors, then there are 4 parameters to identify (since each ζk,t has two elements) and

4I moment conditions. Chaudhary et al. (2024) prove that power is maximized by using

a GMM weighting matrix that places more weight on the moment conditions of investors

with less volatile residual demand shocks. Thus, following Chaudhary et al. (2024), we take

the precision weighted averages of moment conditins (C.3) and (C.4) to obtain an exactly

identified system:

∀t : 0 =
∑
i

wi,t

(
ζ1,t, ζ2,t

)
· E
[
X i,t · ui,n,t

(
ζ1,t, ζ2,t

)
· zi,n,t

(
ζ1,t, ζ2,t

)]
(C.5)

0 =
∑
i

wi,t

(
ζ1,t, ζ2,t

)
· E
[
X i,t · ui,n,t

(
ζ1,t, ζ2,t

)
· Z̃i,n,t

(
ζ1,t, ζ2,t

)
· zi,n,t

(
ζ1,t, ζ2,t

)]
(C.6)

wi,t

(
ζ1,t, ζ2,t

)
=

V−2[ui,n,t

(
ζ1,t, ζ2,t

)
]∑

j V−2[uj,n,t

(
ζ1,t, ζ2,t

)
]

(C.7)

Empirically, we find the minimizers of the following objective function for each period t

min
ζ1,t,ζ2,t

∑
k

(∑
i

ŵi,t

(
ζ1,t, ζ2,t

)
· Ê
[
Xi,t,k · ui,n,t

(
ζ1,t, ζ2,t

)
· zi,n,t

(
ζ1,t, ζ2,t

)])2

(C.8)

+
∑
k

(∑
i

ŵi,t

(
ζ1,t, ζ2,t

)
· Ê
[
Xi,t,k · ui,n,t

(
ζ1,t, ζ2,t

)
· Z̃i,n,t

(
ζ1,t, ζ2,t

)
· zi,n,t

(
ζ1,t, ζ2,t

)])2

,

(C.9)

where Ê indicates the empirical moments as opposed to the population moments and Xi,t,k

is the k-th element of X i,t.

C.1.2 Implementation Details

Time-Variation To improve numerical stability, we estimate the nonlinear demand curve

(12) in rolling five-year windows as opposed to in each quarter. Specifically, the residualiza-

tion process described in (C.1.1) is conducted in each quarter, but then the residual demand

curve (C.1) is estimated in the five-year window.

Leave-One-Type Out We compute moment conditions (C.3) and (C.4) for investor i and

all other investors j of a different 13 institution type (banks, investment advisors, insurance

companies, mutual funds, pension funds, and other, as well as for the residual “household”

sector that includes direct holdings by households as well as by non-13F institutions). That
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is, we construct the instruments zi,n,t and Z̃i,n,t in a leave-one-type out fashion as opposed

to a leave-one-investor out fashion.

Removing Latent Characteristics The baseline analysis removes five latent stock char-

acteristics using PCA from each within-quarter panel of stocks× pseudo investors. Appendix

C.2 presents similar results when removing alternative numbers of latent characteristics.

Unbalanced Panel Empirically, the within-quarter investor × stock panel is highly un-

balanced: most investors don’t hold most stocks. Thus, to increase power we replace the

precision weights in (C.7) with

wi,t (at, bt) =
V−2[ui,n,t]∑
k V−2[uk,n,t]

·Ni,t

where Ni,t is the number of stocks held by investor i in quarter t. That is, we put more

weight on the moment conditions of investors with more holdings.

Root Selection In some quarters, the GMM minimization problem (C.9) has multiple

roots — multiple solutions
(
ζ1,t, ζ2,t

)
that set the minimized value of the objective function

exactly equal to zero. This situation can arise since we are solving a nonlinear, exactly-

identified system of equations, so there is no guarantee of a unique solution. In these situa-

tions, we use the folowing approach to select among these multiple roots:

1. Let S be the set of candidate roots. Let S+ and S− be the subsets of candidate roots

for which ζ1,0 > 0 and ζ1,0 ≤ 0, respectively.

2. If only one candidate roots has ζ1,0 > 0 (i.e. |S+| = 1) use that root. Selecting roots

with ζ1,0 > 0 imposes the economic prior that, on average, demand curves should slope

down.

3. Otherwise if there is more than one candidate root with ζ1,0 > 0 (i.e. |S+| > 1),

then we use overidentifying restrictions to select amond these. While our baseline

estimation solves an exactly-identified GMM problem, we can expand the problem to

be overidentified using the following moment conditions:
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∀t : 0 = g1

(
ζ1,t, ζ2,t

)
≡

∑
i

wi,t

(
ζ1,t, ζ2,t

)
· E

[
Xi,t · ui,n,t

(
ζ1,t, ζ2,t

)
· zi,n,t

(
ζ1,t, ζ2,t

)]
(C.10)

∀t, l : 0 = g2,l

(
ζ1,t, ζ2,t

)
≡

∑
i

wi,t

(
ζ1,t, ζ2,t

)
(C.11)

· E

Xi,t · ui,n,t

(
ζ1,t, ζ2,t

)
·

sign

 L∑
l
′
=1

z
i,n,t−l

′
(
ζ1,t, ζ2,t

) zi,n,t−l

(
ζ1,t, ζ2,t

)
−

1

L
· E

 L∑
l=1

zi,n,t−l

(
ζ1,t, ζ2,t

)
 · zi,n,t

(
ζ1,t, ζ2,t

)
(C.12)

That is, we keep moment condition (C.5) as is and split up moment condition (C.6)

into L individual moment conditions (C.12) (that all sum to (C.6)). Letting

g
(
ζ1,t, ζ2,t

)
=
[
g1

(
ζ1,t, ζ2,t

)
, g2,1

(
ζ1,t, ζ2,t

)
, . . . , g2,L

(
ζ1,t, ζ2,t

)]
we choose the candidate root that minimizes this J statistic

J
(
ζ1,t, ζ2,t

)
= g

(
ζ1,t, ζ2,t

)′
g
(
ζ1,t, ζ2,t

)
. (C.13)

That is, we chose the candidate root that best fits the expanded set of moment condi-

tions (C.10) and (C.12) using the identity weighting matrix. This approach is analogous

to the Sargan-Hansen J-test (Hansen (1982)). The J-test is a test of overidentifying

restrictions: given a solution that fits one set of moment conditions, how well does

it fit a different (“held-out”) set of moment conditions (where fit is evaluated based

on the J-statistic (C.13), possibly with a more general weighting matrix). While the

J-test is usually used to test if a model is correctly specified, here we use the J-statistic

as a “model” selection criterion. Doing so ensures the selected solution is the most

consistent with all available moment conditions (C.10) and (C.12), not only the partic-

ular linear combinations (C.5) and (C.6) used in the exactly-identified GMM problem

(C.9).

C.2 Supplemental Empirical Results
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(a) ζ1,0

(b) ζ1,Active Share

(c) ζ2,0

(d) ζ2,Active Share

Figure C.3. Panels (a) through (d) display the estimation results for alternate specifications
of the nonlinear demand curve (8). The “None” spefification displays the estimation results
when controlling for no observed or latent characteristics. The “Obs.” specification controls
only for the observed stock characteristics and industry indicators described in Section 2.
All subsequent specifications control for both the observed stock characteristics and industry
indicators, as well the number of latent stock-quarter characteristics (estimated with PCA)
indicated on the x-axis.
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D Alternative Mechanisms

D.1 Position Constraints

Assume type-I investors maximize mean-variance utility over terminal wealth but is subject

to a “leverage constraint” — a limit on position size:

max
QI

E
[
QI

(
D̃ − P

)]
− γ

2
V
[
QI

(
D̃ − P

)]
s.t.QI ≤ α

If the constraint does not bind (QP < α), the investor demands

QI =
E[D̃]− P

γV
[
D̃
] ,

, which is the same as the type-E investors. Thus,

P = E
[
D̃
]
−ΘγV

[
D̃
]
.

If the constraint does bind, the type-I investors demand

Q = α.

Market clearing then implies

Θ1 = (1− ϵ)QI + ϵQE

↔ P =
E
[
D̃
]
− γV

[
D̃
]
− (Θ1 − (1− ϵ)α)

ϵ

Note that the constraint binds if

QI ≥ α

↔ E
[
D̃
]
− P ≥ αγV

[
D̃
]
.

That is, the constraint binds when the expected return is sufficiently large. We can plug in
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the unconstrained equilibrium price to reexpress this condition in terms of Θ1:

E
[
D̃
]
− P ≥ αγV

[
D̃
]
.

↔ E
[
D̃
]
−
(
E
[
D̃
]
−ΘγV

[
D̃
])

≥ αγV
[
D̃
]

Θ ≥ α.

So the price multiplier is

M = − d

dΘ1

P =

γV
[
D̃
]

, |Θ1| ≤ α

γV
[
D̃
]
/ϵ , |Θ1| > α

Thus, M increases at the point where the constraint binds (|Θ1| = α).

We can reexpress this setup in the cost function notation of Section 6 as

max
QI

E
[
QI

(
D̃ − P

)]
− γ

2
V
[
QI

(
D̃ − P

)]
− C(QI , µ),

where

C(QI , µ) = −λ(µ) (α− |QI |)

λ(µ) =

0, |Θ1| ≤ α

|µ| − γασ2
D, |Θ1| > α

λ(QI , P ) represents the shadow cost of relaxing the leverage constraint.

Hence, marginal cost is

MC(QI , µ) ≡
∂

∂QI

C(Q, µ) =

0, |Θ1| ≤ α

sign(QI)λ(µ), |Θ1| > α

and so we have

∂

∂µ
MC(QI , µ) =

0, |Θ1| ≤ α

1, |Θ1| > α.
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Thus, as Θ1 > 0 increases from below to α and the constraint binds, ∂
∂P

MC(QI , P ) rises

from 0 to 1, and so the multiplier rises.

D.2 Benchmarking

Let the type-I investors’ compensation be linear combination of her absolute return and her

return relative to a benchmark (as in Pavlova and Sikorskaya (2023))

c(QI) = aQI

(
D̃ − P

)
︸ ︷︷ ︸
Absolute Return

+ b
[
QI

(
D̃ − P

)
− Q̄

(
D̃ − P

)]
︸ ︷︷ ︸

Return Relative to Benchmark

,

where Q̄ represents the benchmark holding.

Assume the investor maximizes mean-variance utility over compensation

max
QI

E [c(QI)]−
γ

2
V [c(QI)] .

One can show the optimal quantity demanded is

QI =
E
[
D̃
]
− P

γV
[
D̃
]
· (a+ b)

+
b

a+ b
Q̄,

and so the equilibrium price is

Θ1 = (1− ϵ)QI + ϵQE

P = E
[
D̃
]
−
(
Θ1 − (1− ϵ)

b

a+ b
Q̄

) γV
[
D̃
]

1−ϵ
a+b

+ ϵ
.

The price multiplier is thus:

M = − d

dΘ1

P =
γV
[
D̃
]

1−ϵ
a+b

+ ϵ
=

γV
[
D̃
]
(a+ b)

1 + (a+ b− 1)ϵ
,

which is constant.
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Reformulating this setup in the notation of Section 6, we can write the cost function as

C = E
[
Q
(
D̃ − P

)]
− E [c(Q)] +

γ

2

[
V [c(Q)]− V

[
Q
(
D̃ − P

)]]
= (1− a− b)E

[
Q
(
D̃ − P

)]
− bE

[
Q̄
(
D̃ − P

)]
+

γ

2
V
[
D̃
] [(

(a+ b)2 − 1
)
Q2 − 2(a+ b)bQQ̄

]
= µ

(
Q− (a+ b)Q+ bQ̄

)
+

γ

2
σ2
D

[(
(a+ b)Q− bQ̄

)2 −Q2
]

↔ C(Q, µ) = µ(λ(Q) +Q) +
γ

2
σ2
D

[
λ(Q)2 −Q2

]
,

where λ(Q) = −(a+ b)Q+ bQ̄ is linear and decreasing in Q.

Marginal cost is

MC(Q, µ) = µ(1 + λ
′
(Q)) + γσ2

D

(
λ(Q)λ

′
(Q)−Q

)

Thus, we have

∂

∂Θ1

MC(Θ1, µ) = γσ2
D

((
λ

′
(Q)
)2

− 1

)
= γσ2

D

(
(a+ b)2 − 1

)
which is constant. Similarly, we have

∂

∂µ
MC(Θ1, µ) = 1 + λ

′
(Q) = −(1− a− b)

which is constant.

D.3 Convex Adjustment Costs

A representative investor maximizes mean-variance utility subject to an adjustment cost

max
Q

E
[
Q
(
D̃ − P

)]
− γ

2
V
[
Q
(
D̃ − P

)]
− λ |Q−Θ0|α .

Note that an economy with a continuum of investors with different fixed costs can be rep-

resented as an economy with a representative investor economy who solves this problem for

aggregate demand. The adjustment cost penalizes deviations from the number of shares the

investor is originally endowed with Θ0.
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From (21), one can show that for ϵ → 0 the equilibrium price is:

P = D̄ −Θ1 · γσ2
D − αλ(Θ1 −Θ0)

α−1 sign |Θ1 −Θ0|

The price multiplier is:

M = − d

dΘ1

P = γσ2
D + α(α− 1)λ|Θ1 −Θ0|α−2.

For 1 < α < 2, M decreases in the size of the t = 2 supply shock (|Θ1 − Θ0|). However,

regardless of the value of α, M does not depend on Θ0.

Reformulating this setup in the notation of Section 6, we can write the cost function as

C(Q,Θ0) = λ |Q−Θ0|α .

Marginal cost is given by

MC(Q,Θ0) =
∂

∂Q
C(Q,Θ0) = αλ(Q−Θ0)

α−1 sign |Q−Θ0| .

The derivative of marginal cost with respect to Q is

∂

∂Q
MC(Q,Θ0) = α(α− 1)λ|Θ1 −Θ0|α−2,

which does not depend on Θ0 conditional on Θ1 −Θ0.

D.4 Capital Reallocation Between Investors

Let tyep-I investors have a simple quadratic inventory cost that redners their demand in-

elastic:

C(QI) = aQ2
I .

But now assume the mass ϵ of type-E investors in t = 1 is endogneous

ϵ = 1− (1 + µ2)−
1
2

where µ = E[D − P ] is the expected return. Thus, the mass of type-E investors increases

with expected return.
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Market clearing in each period t = 1 is

Θ1 = (1− ϵ) Q1︸︷︷︸
= µ

(γ+a)σ2
D

+(1− ϵ) Q2︸︷︷︸
= µ

γσ2
D

. (D.1)

So the equilibrium price is

P = D̄ − 1
ϵ
γ
+ 1−ϵ

γ+a︸ ︷︷ ︸
≡f(µ)

σ2
DΘ1

Let

f(µ) ≡ 1
ϵ
γ
+ 1−ϵ

γ+a

=
γ(γ + a)

γ + aϵ

be the effective aggregate risk aversion in the economy. Note that f(µ) is decreasing in µ

since ϵ is increasing in µ.

The price multiplier is given by

M ≡ − dP

dΘ1

=
f(µ)σ2

D

1−Θ1σ2
Df

′(µ)

=
f(µ)σ2

D

1− µf ′(µ)
f(µ)

where the second line follows since the equilibrum price expression implies

µ = f(µ)σ2
DΘ1.

Note that

f
′
(µ) = − γ(γ + a)

(γ + aϵ)2
aϵ

′
(µ).

= − γ(γ + a)

(γ + aϵ)2
a(1 + µ2)−

3
2µ,
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so

f ′(µ)

f(µ)
=

− γ(γ+a)
(γ+aϵ)2

a(1 + µ2)−
3
2µ

γ(γ+a)
γ+aϵ

= − 1

(γ + aϵ)
a(1 + µ2)−

3
2µ,

Thus,

M =

γ(γ+a)
γ+aϵ

σ2
D

1 + µ2 1
(γ+aϵ)

a(1 + µ2)−
3
2

=
γ(γ + a)σ2

D

γ + aϵ+ µ2a(1 + µ2)−
3
2

=
γ(γ + a)σ2

D

γ + a− a(1 + µ2)−
1
2 + µ2a(1 + µ2)−

3
2

=
γ(γ + a)σ2

D

γ + a
(
1− (1 + µ2)−

1
2 + µ2(1 + µ2)−

3
2

)
=

γ(γ + a)σ2
D

γ + a
(
1− (1 + µ2)−

1
2 (1− µ2(1 + µ2)−1)

)
=

γ(γ + a)σ2
D

γ + a
(
1− (1 + µ2)−

3
2

)
which is decreasing in |µ|.

Lastly, µ is increasing in Θ1 since

µ = f(µ)σ2
DΘ1

→ dµ

dΘ
= f(µ)σ2

D + f
′
(µ)σ2

DΘ1
dµ

dΘ

↔ dµ

dΘ
=

f(µ)σ2
D

1 + γ(γ+a)
(γ+aϵ)2

a(1 + µ2)−
3
2µσ2

DΘ1

> 0

since µ and Θ1 have the same sign (since f(µ) > 0). A symmetric argument can be made to

show that −µ is decreasing in Θ1 for Θ1 < 0. Thus, |µ| is increasing in |Θ|.

Thus, the t = 2 multiplier is decreasing in |Θ1|. However, each investor’s elasticity is fixed,
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as can be seen from (D.1)

D.5 Participation Costs

Type-I investors have zero initial holdings in t = 0 and face a fixed participation cost λ in

t = 1 if they choose a non-zero quantity:

C(QI) =

0 , QI = 0

λ ,QI ̸= 0

Conditional on holding a non-zero quantitiy, all investors (both types I and E) choose

Q =
E
[
D̃ − P

]
γV
[
D̃
] (D.2)

Thus, type-I investors decides to enter the asset if

E
[
D̃ − P

]2
2γV

[
D̃
] > λ.

So aggregate demand (1− ϵ)QI + ϵQE is

Qagg =


ϵE[D̃−P ]
γV[D̃]

,E
[
D̃ − P

]2
≤ 2γV

[
D̃
]
λ

E[D̃−P ]
γV[D̃]

,E
[
D̃ − P

]2
> 2γV

[
D̃
]
λ

By market clearing Qagg = Θ1 we have the following equilibrium price:

P =

D̄ −Θ1
γσ2

D

ϵ
, |Θ1| ≤

√
2λ
γσ2

D

D̄ −Θ1γσ
2
D , |Θ1| >

√
2λ
γσ2

D
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So the price multiplier is

M ≡ −dP

dΘ
=


γσ2

D

ϵ
, |Θ1| ≥

√
2λ
γσ2

D

γσ2
D , |Θ1| <

√
2λ
γσ2

D

which is decreasing in the supply shock magnitude |Θ1|.

However, each investor’s elasticity on the intensive margin is fixed, as can be seen from (D.3).

D.6 Fixed Adjustment Costs

Type-I investors face a fixed adjustment cost λ in t = 1 if they adjust from their t = 0

quantity Θ0:

C(QI) =

0 , QI = Θ0

λ ,QI ̸= Θ0

Conditional on adjusting, all investors (both types I and E) choose

Q =
E
[
D̃ − P

]
γV
[
D̃
] (D.3)

Thus, type-I investors decides to adjust if

λ <
E
[
D̃ − P

]2
2γV

[
D̃
] −

[
Θ0E

[
D̃ − P

]
− γ

2
Θ2

0V
[
D̃
]]

↔ 0 <
1

2γσ2
D

µ2 −Θ0µ+
γ

2
Θ2

0σ
2
D − λ

↔ 0 < (µ− µ+) (µ− µ−)

where

µ+ = Θ0γσ
2
D +

√
2λγσ2

D

µ− = Θ0γσ
2
D −

√
2λγσ2

D
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So aggregate demand (1− ϵ)QI + ϵQE is

Qagg =


ϵµ

γV[D̃]
+ (1− ϵ)Θ0 , µ ∈ [µ−, µ+]

µ

γV[D̃]
, µ /∈ [µ−, µ+]

By market clearing Qagg = Θ1 we have the following equilibrium price:

P =


D̄−γσ2

D(Θ1−(1−ϵ)Θ0)

ϵ
, µ ∈ [µ−, µ+]

D̄ − γσ2
DΘ1 , µ /∈ [µ−, µ+]

Note that

µ > µ+ = Θ0γσ
2
D +

√
2λγσ2

D

↔ Θ1 > Θ0 +

√
2λ√
γσ2

D

and

µ < µ− = Θ0γσ
2
D −

√
2λγσ2

D

↔ Θ1 < Θ0 −
√
2λ√
γσ2

D

.

Thus,

µ ∈ [µ−, µ+] ↔ Θ1 ∈

Θ0 −
√
2λγσ2

D︸ ︷︷ ︸
≡Θ−

,Θ0 +
√

2λγσ2
D︸ ︷︷ ︸

≡Θ+

,



Hence, we can write the equilibrium price as

P =


D̄−γσ2

D(Θ1−(1−ϵ)Θ0)

ϵ
, |Θ1 −Θ0| ≤

√
2λγσ2

D

D̄ − γσ2
DΘ1 , |Θ1 −Θ0| >

√
2λγσ2

D
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So the price multiplier is

M ≡ −dP

dΘ
=


γσ2

D

ϵ
, |Θ1 −Θ0| ≤

√
2λγσ2

D

γσ2
D , |Θ1 −Θ0| >

√
2λγσ2

D

which is decreasing in the supply shock magnitude |Θ1|.

D.7 Costly Information Acquisition

D.7.1 Setup

Let the mass of type-E investors ϵ → 0 for simplicity.

There are three periods: t = 1, 2, 3. Information choice occurs in t = 1. The asset market

clears in both t = 1 and t = 2. Asset payoffs are realized in t = 3.

Assets: There is one asset that pays a risky dividend in period t = 3:

D̃ = D̄ + η + ε, ε ∼ N
(
0, σ2

ε

)
, η ∼ N

(
0, σ2

η

)
.

where the shocks ε and η are independent, and the latter is learnable by paying a cost (to

be explained later). The asset has exogenous, stochastic supply of Θt in period t:

Θ1 = z1

Θ2 = z1 + z2

zt ∼ N(0, σ2
z),

where z1 is independent of z2. The supply should be interpreted as the residual supply faced

by the representative investor: the total fixed, positive net supply minus the exogenous

demand shocks of some noise traders. The exogenous risk-free rate is normalized to zero.

Agents and Preferences: There is a unit mass of atomistic investors who choose their

portfolios at t = 1, 2 to maximize mean-variance utility over terminal wealth

max
Qt

Et

[
Qt

(
D̃ − P

)]
− γ

2
Vt

[
Qt

(
D̃ − P

)]
(D.4)

Information: At t = 1, the investor knows the asset pricing parameters D̄, σ2
ε , and σ2

Θ.
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However, she does not know η. She has the objectively correct prior and believes

η ∼ N
(
0, σ2

η

)
. (D.5)

After observing Θ1, the investor can pay a cost C̃(G) (not the same as the portfolio choice

cost function from Section 6) to acquire signal a noisy signal s for η at t = 2:3

s = η + u, u ∼ N
(
0, σ2

u

)
(D.6)

G =
σ−2
u

σ−2
u + σ−2

η

.

G denotes the Bayesian gain of signal s. With signal s, the investor’s posterior distribution

at t = 2 is

η ∼ N
(
G · s, (1−G) · σ2

η

)
. (D.7)

We assume the cost function C̃ is such that the marginal cost of reducing uncertainty is

positive (C̃
′
(G) > 0) and increasing (C̃

′′
(G) > 0).

Since the investor does not know at t = 1 what signal s she will observe at t = 2 , the

investor chooses G to maximize expected utility at t = 1 (which integrates over all possible

realizations of s):

max
G

E1

[
E2

[
Q2

(
D̃ − P

)]
− γ

2
V1

[
Q2

(
D̃ − P

)]]
− C (G) (D.8)

The investor’s beliefs are rational: her t = 1 beliefs about future prices and quantities are

consistent with the true equilibrium distributions.

Equilibrium Definition: An equilibrium is defined as a set of portfolio choices (Q), in-

formation choices (G), and asset prices (P ) such that:

1. The information choice G at t = 1 maximizes (D.8) given the investor’s prior beliefs

about η and her knowledge of the supply at t = 1 (Θ1).

2. The portfolio choice Qt at t = 1 and t = 2 maximizes (D.4) given the investor’s

information.

3As in e.g. Grossman and Stiglitz (1980); Kyle (1989); Van Nieuwerburgh and Veldkamp (2009, 2010);
Kacperczyk et al. (2016); Han (2018).
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3. The asset market clears in t = 1, 2:

Qt = Θt. (D.9)

D.7.2 Solving the Model

We solve the model backwards. First, we solve the investor’s portfolio choice problem (D.4)

in t = 1, 2 holding the information set fixed in both periods. Second, we then impose market

clearing (D.9) to solve for the equilibrium price in t = 1, 2 as a function of the investor’s

information choice. Third, we solve for the investor’s ex-ante optimal gain G at t = 1 that

maximizes (D.8), which pins down the equilibrium price and quantity in both periods.

Portfolio Choice: At t = 1, the investor solves (D.4) and obtains

Q1 =
D̄ − P1

γ
(
σ2
ε + σ2

η

) .
Similarly, at t = 2 the investor chooses

Q2 (I2) =
D̄ + Ḡ · s− P2

γ
(
σ2
ε + (1− Ḡ) · σ2

η

) . (D.10)

where Q2 is a function of the equilibrium t = 2 information set I2 =
(
s, Ḡ

)
: s is the random

realization of (D.6) and Ḡ denote the equilibrium gain chosen in t = 1.

Market Clearing: From market clearing (D.9) we have

P1 = D̄ −Θ1γ
(
σ2
ε + σ2

η

)
P2 = D̄ + Ḡ · s−Θ2γ

(
σ2
ε + σ2

η

(
1− Ḡ

))
. (D.11)

Note that, if supply equals its mean (Θt = 0), then price equals expected terminal dividend.

Exogenous supply shocks distort price away from this fundamental value.

Information Choice: At t = 1 the investor chooses the optimal gain for t = 2 after

observing Θ1. She also knows the equilibrium distributions of quantity Q (I2) and price P ,

which she takes as given.

Appendix D.7.4 shows the equilibrium first-order condition for the ex-ante information choice
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problem (D.8) is given by equalizing the marginal benefit and cost of information acquisition:

γ

2
σ2
η

(
Θ2

1 + σ2
z

)
= C̃

′
(G). (D.12)

Since the cost C is convex in the chosen gain G, (D.12) implies that the optimal gain G∗ is

increasing in the magnitude of t = 1 supply Θ1.

D.7.3 Model Implications

The equilibrium quantities (D.10) and prices (D.11) are consistent with our empirical find-

ings.

Price multipliers are smaller for larger (accumulated) supply shocks From (D.11),

the price multiplier in t = 2 is4

M(Θ1) ≡
∂P2

∂z2
= γ

(
σ2
ε + σ2

η

(
1− Ḡ

))
.

Since the equilibrium gain Ḡ is increasing in the magnitude of Θ1 by (D.12), M(Θ1) is de-

creasing in the magnitude of Θ1. Thus, the price multiplier is smaller for larger accumulated

supply shocks:

∂M(Θ1)

∂Θ1

< 0. (D.13)

Since we interpret the (residual) supply Θt as the demand from noise traders outside the

model, this theoretical result (D.13) as consistent with our dynamic empirical findings in

Section 4. Moreover, we interpret (D.13) as consistent with our static empirical findings in

Section 3 since one month or quarter is long enough for information acquisition and trading

to have occured (i.e. one can think of t = 1, 2 as two sub-periods within a month or quarter).

Demand is more elastic within-investor and on the intensive margin for larger

(accumulated) supply shocks From (D.10), the “price elasticity of demand” for the

representative investor in t = 2 is

ζ(Θ1) ≡
∂Q2

∂P2

=
1

γ
(
σ2
ε + (1− Ḡ) · σ2

η

)
4This is technically not the price multiplier which is defined in elasticity units. However, in this model

where portfolio choice is in the number of shares (instead of portfolio weights) and dollar expected returns
(instead of percentage expected returns), our definition is arguably a more natural object for measuring price
impact. The same comment applies to our later discussion of “demand elasticity”.
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Since the equilibrium gain Ḡ is increasing in the magnitude of Θ1 by (D.12), ζ(Θ1) is in-

creasing in the magnitude of Θ1. Thus, the price elasticity is larger for larger accumulated

supply shocks:

∂ζ(Θ1)

∂Θ1

> 0, (D.14)

which is consistent with our empirical findings from institutional investor holdings data in

Section 5. Note that (D.14) is a statement about how a particular investor’s elasticity varies

on the intensive margin of demand (i.e. for an asset that the investor already holds and

continues to hold).

D.7.4 Proof of Equation (D.12)

Proof. At t = 1 the investor chooses the optimal gain for t = 2 after observing Θ1. She

also knows the equilibrium distributions of quantity Q (I2) and price P , which she takes as

given.5

Rewrite the information choice problem (D.8) in terms of the optimal t = 2 quantity, which

is a function of the chosen gain G:

max
G

E1

[
Q2(G) · E

[
D̄ − P

]
− γ

2
Q2(G)2 · V

[
D̄ − P

]]
− C̃(G)

Note that by the envelope theorem, ∂Q2(G)/∂G = 0. Thus, taking the first-order condition

with respect to G yields

0 = E1

[
−γ

2
Q2(G)2 · ∂

∂G
V
[
D̄ − P

]
− C̃

′
(G)

]
= E1

[
−γ

2
Q2(G)2 · ∂

∂G

[
σ2
ε + σ2

η (1−G)
]
− C̃

′
(G)

]
= E1

[γ
2
Q2(G)2 · σ2

η − C̃
′
(G)
]

= E1

[γ
2
Θ2

2 · σ2
η − C̃

′
(G)
]

↔ γ

2
σ2
η

(
Θ2

1 + σ2
z

)
= C̃

′
(G)

where the fourth equation follows by market clearing (D.9), and the fifth equation follows

since information choice is done after observing Θ1.

5That is, the representative investor does not internalize the impact of her information choice on price,
just as she does not internalize the impact of her portfolio choice on price.
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