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ABSTRACT

We document a new stylized fact about inelastic demand in financial markets: larger un-

informed demand shocks have smaller per-unit price impact (i.e. smaller price multipliers).

That is, we find total price impact is concave in the size of demand shocks. This finding

reveals an important dimension of endogenous variation in price multipliers. Since many

existing theories imply convex or linear price impact, our finding helps discipline potential

theories of inelastic demand. Based on these insights, we propose a nonlinear asset de-

mand system with endogenous price elasticities of demand. The estimated demand system

demonstrates this concavity is quantitatively important: extrapolating local price multiplier

estimates may overstate the impact of large quantity shifts on prices.
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1 Introduction

Many questions in asset pricing and macro-finance concern the impact of large shifts in quan-

tities on asset prices. How do government asset purchases impact prices? How has the shift

to passive investing impacted price efficiency? How has the rise of green investing impacted

stock prices and firms’ cost of capital? These questions motivate a growing literature that

studies inelastic demand in asset markets and measures “price multipliers”: the per-unit

impact of investor demand shocks on prices (Koijen and Yogo (2019); Gabaix and Koijen

(2022); Haddad et al. (2024)). Given the difficulty in finding natural experiments involv-

ing large demand shocks, to cleanly identify these multipliers, the literature has focused on

plausibly exogenous but relatively small shocks. These studies find large price multipliers.

Yet a fundamental question remains unresolved: How do these price multipliers measured

from small shocks relate to those that would arise for the large shocks in the motivating

questions? This question persists because the true microfoundations underlying large price

multipliers remains unknown. While there are many potential explanations for large multi-

pliers, different models offer conflicting predictions about how multipliers endogenously vary

with shock size. Some models suggest multipliers increase with shock size, but others predict

they remain constant or decrease. Thus, empirical evidence on how price multipliers vary

with shock is essential to understand how large demand shocks impact prices.

In this paper, we document a new stylized fact: stock-level price multipliers are smaller for

larger demand shocks. Using three common demand shocks from the literature, we find that

larger shocks have smaller per unit price impact, as displayed in Figure 1. This pattern

implies that total price impact is concave in shock size.

To quantify the importance of this concavity, we propose a nonlinear asset demand system

with endogenous price elasticities of demand. We find this concavity is quantitatively impor-

tant for counterfactual analyses in financial markets: multipliers for small shocks (10 basis
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points) are three times larger than multipliers for large shocks (10 percentage points), with

values of 10 and 3 respectively.

Our findings have three important implications. First, the concavity we document suggests

that price multipliers for the large demand shocks in the motivating questions are likely

smaller than multipliers measured from small shocks. Second, our new stylized fact sheds

light on the crucial question of why markets feature inelastic demand and large price mul-

tipliers. Since many models imply convex or linear price impact, our findings suggest such

models miss first-order determinants of price multipliers. Thus, our new stylized fact disci-

plines the set of theories that can explain large price multipliers. Third, this result provides

a new empirical moment to discipline asset pricing and macro-finance models more broadly.

Many of these models rely on frictions that do not generate concave price impact, which

suggests other frictions may be more important in reality.

(a) (b) (c)

Figure 1. Price impact is concave
This Figure plots binscatter plots and piecewise linear regressions of average stock returns against demand
shocks by bins, using the method of Cattaneo et al. (2024). The demand shocks include the benchmarking
intensity (BMI) of Pavlova and Sikorskaya (2023), flow-induced trading (FIT) of Lou (2012), and order flow
imbalance (OFI) in Li and Lin (2023). We include the controls from Pavlova and Sikorskaya (2023) in Plot
(a).

We begin by presenting a stylized model to illustrate how different potential microfoundations
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for large price multipliers yield conflicting predictions for how multipliers vary with demand

shock size (in Section 2). We model a representative investor who maximizes mean-variance

utility subject to a general cost function that reduces his willingness to absorb exogenous

supply shocks. This cost function nests many frictions including physical trading costs, psy-

chological costs of adjustment, shadow costs of constraints, and even subjective uncertainty.

Many common mechanisms imply price impact is either convex (e.g. certain convex adjust-

ment costs (Gârleanu and Pedersen (2013); Bacchetta et al. (2023)) or leverage constraints

(He and Krishnamurthy (2013); Brunnermeier and Sannikov (2014))) or linear (e.g. bench-

marking or investment mandates (Petajisto (2009); Pavlova and Sikorskaya (2023); Gabaix

and Koijen (2022))). We discuss what conditions on the cost function give rise to concave

price impact as well as what classes of mechanisms satisfy these conditions. In particular,

concavity is consistent with two broad classes of mechanisms: those in which it is less costly

to take larger positions than smaller ones (e.g. fixed costs, as in Lo et al. (2004)), and

those in which investors can pay to expand their risk-bearing capacity when presented with

profitable opportunities (e.g. costly information acquisition as in Van Nieuwerburgh and

Veldkamp (2009), Van Nieuwerburgh and Veldkamp (2010), Kacperczyk et al. (2016), or

Han (2018) ) or endogenous slow-moving capital (Duffie and Strulovici (2012))). We then

provide empirical evidence of concave price impact. To measure price multipliers, we use

three uninformed demand shocks from previous work (as detailed in Section 3). As estab-

lished in previous work, these shocks are plausibly unrelated to cash flow news and so allow

us to measure how prices respond to “exogenous” changes in demand unrelated to changes

in firm fundamentals.

First, we use index-reconstitution induced changes in benchmarking intensity (BMI, Pavlova

and Sikorskaya, 2023; Sikorskaya, 2023). BMI measures changes in the amount of bench-

marked institutional capital from funds tracking the Russell indices. Each June, stocks

mechanically enter and exit the Russell 1000 and 2000 based on which side of a cutoff their

May market caps fell on. Thus, the flows from benchmarked funds prompted by this recon-
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stitution and the resulting price pressure are exogenous to June cash flow news (Chang et al.

(2015); Crane et al. (2016); Glossner (2019)).

Second, we use mutual fund flow-induced trading (FIT, Lou, 2012; Li, 2022; Ben-David et al.,

2022; Van der Beck, 2021, 2022; Chaudhary et al., 2023; Chaudhry, 2023). Flows induce

funds to do some mechanical rebalancing: funds tend to scale their preexisting holdings

proportionally in response to flows. This mechanical component of the cross-sectional trading

induced by flows is plausibly unrelated to cash flow news.

Third, we use order flow imbalance (OFI, Li and Lin, 2023). OFI is calculated from all

executed trades in the U.S. stock market, signed as buy or sell trades using the Lee and

Ready (1991) algorithm. Thus, OFI captures all trades that are executed aggressively. Li

and Lin (2023) run extensive tests and do not find evidence that OFI is related to various

measures of cash flow-relevant news. However, they also acknowledge that, due to the

difficulty of measuring news, one cannot be fully certain about the information content of

OFI.

Each of these demand shocks has its own strengths. On one hand, BMI and FIT provide

shifts in asset demand that are plausibly unrelated to cash flow news. On the other hand,

OFI has far greater variation than the other two shocks, which proves useful in measuring

price multipliers for large shocks (OFI has a quarterly volatility of 400 basis points versus

a quarterly volatility of 60 basis points for FIT and a monthly volatility of 70 basis points

for BMI). Though these shocks use different sources of variation, we find consistent results

across all three, which underscores the robustness of our findings.

Across all three measures, we find evidence of concave price impact (in Section 4). Price

multipliers estimated at the monthly (for BMI) and quarterly (for FIT and BMI) frequencies

are smaller for shocks that are larger in magnitude. This concavity is economically significant:

while buying X% of shares outstanding of a stock raises price by 1.5X% to 3X% (depending
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on the demand shock) for small X, each 1% increase in the magnitude of X reduces this

impact by 14 to 59 basis points.

We conduct a series of tests to rule out alternative explanations of our results. We estimate

all baseline specifications across stocks within each time period. This cross-sectional ap-

proach avoids the possibility that large demand shocks might cluster in periods when price

multipliers are systematically lower. We consider alternate specifications that allow price

multipliers to vary cross-sectionally with stock characteristics and still find quantitatively

similar degrees of concavity. This approach assuages the potential concern that large shocks

might concentrate in stocks with characteristics that generally have small multipliers. We

also conduct specifications in which we strip out returns from days with high news content.

Doing so addresses the potential concern that our demand shocks correlate with cash flow

news (which creates positive omitted variable bias in the estimated multipliers) and this

correlation is weaker for larger demand shocks. The plausible exogeneity of the BMI and

FIT demand shocks to cash flow news further addresses this concern.

It is important to note that even though price multipliers decrease with shock size, they

remain much larger than standard asset pricing models predict.1 Thus, our findings should

be interpreted as shedding light on the endogenous variation of price multipliers, rather than

arguing that multipliers are as small (and demand is as elastic) as in standard models. It is

also worth clarifying that, despite the apparent similarity, our finding is different from the

microstructure “square root” price impact curves at the trade or order levels (e.g. Frazzini

et al., 2018). Those studies typically focus on time periods that are intraday to up to a

few days, while we focus on “asset pricing” frequencies of months to quarters, a horizon at

which many microstructure effects should have dissipated. Accordingly, the explanations

we consider for concave price impact is also different from that given in the econophysics

literature, which is based on the shape of order books and the frequency of trading (e.g.

1Classical asset pricing models predict uninformed demand shocks to have stock-level price multipliers
on the order of 1/6000 (e.g. Petajisto, 2009).
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Bouchaud et al., 2018).

Motivated by these reduced-form results, we propose a nonlinear asset demand system to

study the quantitative implications of concave price impact. Building on Koijen and Yogo

(2019) and Koijen et al. (2024), we model investor-level demand for stocks as a function of

stock characteristics. However, departing from previous work, we assume each investor is

subject to a portfolio adjustment cost that renders his price elasticity of demand endogenous.

The adjustment cost function is flexible enough to allow elasticity to increase or decrease

(depending on the estimated parameters) with the size of adjustment. We estimate the

demand system on institutional investor holdings data from SEC Form 13F. The estimated

system reveals that most investors become more elastic when making larger adjustments,

which is consistent with the concave price impact we document. We use the estimated system

to study how much this concavity dampens the price impact of large demand shocks. We

find that multipliers for small shocks (10 basis points) are three times larger than multipliers

for large shocks (10 percentage points), with values of 10 and 3 respectively.

The paper is structured as follows. Section 2 presents our stylized model. Section 3 describes

the data and demand shocks we use. Section 4 presents empirical evidence of the concave

price impact. Section 5 presents the nonlinear asset demand system. Section 6 concludes.

1.1 Related Literature

This paper relates to two literatures: the demand-based asset pricing literature and the

literature studying equilibrium effects of frictions in asset pricing and macro-finance.

First, our paper contributes to a growing literature on demand-based asset pricing. Previous

work using asset demand systems (Koijen and Yogo (2019, 2020); Huebner (2023); Haddad

et al. (2024); Koijen et al. (2024)) and plausibly exogenous demand shocks (Shleifer (1986);

Harris and Gurel (1986); Chang et al. (2015); Hartzmark and Solomon (2022); Li (2022);

Schmickler and Tremacoldi-Rossi (2022); Pavlova and Sikorskaya (2023)) finds price elastic-
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ities of asset demand are much smaller empirically than in standard models, and so price

multipliers are much higher. Broadly, this literature has not studied endogenous variation in

multipliers. This paper contributes to this literature by empirically documenting that price

multipliers decline as demand shock size increases. Moreover, we establish the theoretical

conditions under which this pattern arises.

A particularly relevant paper is Haddad et al. (2024), which finds price elasticites of demand

(and so price multipliers) vary across stocks depending on which other investors hold the

stock. In this paper, we document a novel and different source of variation in multipliers.

We argue that multipliers depend on demand shock size: larger demand shocks have smaller

price multipliers.

Second, our paper relates to the asset pricing and macro-finance literatures that study real

and financial effects of various market frictions. Our new stylized fact that price impact is

concave provides a new moment to discipline these models because many proposed frictions

imply price impact is either convex (e.g. convex adjustment costs (Gârleanu and Pedersen

(2013); Bacchetta et al. (2023)) or leverage constraints (He and Krishnamurthy (2013);

Brunnermeier and Sannikov (2014))) or linear (e.g. benchmarking or investment mandates

(Petajisto (2009); Pavlova and Sikorskaya (2023); Gabaix and Koijen (2022))). The concave

price impact we document is consistent with models in which large adjustments are relatively

cheaper on a per-unit basis than small adjustments (e.g. fixed costs (Lo et al. (2004)),

and those in which investors can pay to expand their risk-bearing capacity when presented

with profitable opportunities (e.g. costly information acquisition (Van Nieuwerburgh and

Veldkamp (2009, 2010); Kacperczyk et al. (2016); Han (2018) ) or endogenous slow-moving

capital (Duffie and Strulovici (2012))).

Additionally, the industry-oriented microstructure literature documents that price impacts

appear to follow “square-root laws” at higher frequencies at the trade or order levels (e.g.

Tóth et al., 2011). In the econophysics literature, the microfoundation for this effect is based
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on microstructure arguments(e.g. Alfonsi et al., 2010; Gatheral, 2010; Donier et al., 2015).

For instance, Donier et al. (2015) derives square root price impact under the assumption

that the order book is locally linear. Bouchaud et al. (2018) (chapter 18) argues that price

impact tends to be concave in markets that trade more frequently, while markets that trade

infrequently should exhibit patterns closer to linear price impact. We believe our work is thus

quite different as we focus on monthly to quarterly time scales, and no previous work has

established whether concavity in microstructure settings extend to lower frequencies and for

much larger demand shocks. More importantly, because we study frequencies at which many

microstructure effects have arguably dissipated, the possible explanations for our findings

are also different from those in the microstructure literature.

2 Theoretical Framework

In this section, we present a stylized model to illustrate the theoretical ambiguity of how

price multipliers vary across demand shock size. We discuss under what conditions concave

price impact can arise, and which mechanisms satisfy these conditions.

2.1 Setup

There are two periods: t = 1, 2.

Asset: There is one asset that pays a risky dividend in period t = 2:

D̃ = D̄ + ϵ, ϵ ∼ N
(
0, σ2

ϵ

)
.

At time t = 1, the asset has exogenous, stochastic supply Θ ∼ N(0, σ2
Θ), which should be

interpreted as the residual supply the representative investor faces: the total fixed, positive

net supply minus the exogenous demand shocks of some noise traders. The exogenous risk-

free rate is normalized to zero.
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Agents and Preferences: There is a representative investor who chooses Q, the number

of risky shares, at t = 1 to maximize mean-variance utility over t = 2 (i.e. terminal) wealth

subject to a cost C(Q,P ):

max
Q

E
[
Q
(
D̃ − P

)]
− γ

2
V
[
Q
(
D̃ − P

)]
− C(Q,P ) (1)

The cost function can depend both on the number of shares held (e.g. as in models with

adjustment or entry costs) and on the price (e.g. as in models with leverage constraints).

The properties of C (Q,P ) determine if price impact is convex, linear, or concave. Assume

∂2

∂Q2C (Q,P ) > 0 so the investor’s objective function is strictly concave. The cost function

nests many frictions including physical trading costs, psychological costs of adjustment,

shadow costs of constraints, and even subjective uncertainty, as discussed in Section 2.2.

Taking the first-order condition of (1), the investor’s optimal quantity demanded satisfies

P = E
[
D̃
]
−Q · γV

[
D̃
]
− ∂

∂Q
C (Q,P )︸ ︷︷ ︸

≡MC(Q,P )

. (2)

MC (Q,P ) is the marginal cost of holding one more share of the asset.

Equilibrium: Plugging the market-clearing condition

Q = Θ. (3)

into the first-order condition (2) yields the equilibrium price

P = E
[
D̃
]
−Θ · γV

[
D̃
]
−MC (Θ, P ) . (4)

Price depends on marginal cost. If the marginal cost of holding an additional share is high,

the price must be low to incentivize the investor to hold the share in equilibrium.
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2.2 Properties of Price Multiplier

Differentiating both sides of (4) with respect to P and rearranging yields the following

expression for the price multiplier (the per-unit change in price due to a change in Θ):

M ≡ −∂P

∂Θ
=

γV
[
D̃
]
+ ∂

∂Θ
MC (Θ, P )

1 + ∂
∂P

MC (Θ, P )
. (5)

Note that the multiplier is expressed as a positive number (since ∂P
∂Θ

< 0 as increases in

supply Θ lower price).

From (5), we see the multiplier M depends on how marginal cost varies with quantity and

price. First, M is large if marginal cost increases with quantity held ( ∂
∂Θ

MC (Θ, P ) > 0).

If holding more shares requires paying a higher marginal cost, the price must adjust (i.e.

drop) to incentivize the investor to do so. This behavior arises in models with, for example,

adjustment costs, uncertainty about expected returns, and benchmarking. Second, M is

large if marginal cost increases as price falls ( ∂
∂P

MC (Θ, P ) < 0). In this case, when supply

rises and price falls, the investor’s marginal cost rises, and so price must fall even more to

compensate the investor. This behavior arises in models with leverage constraints where the

shadow cost of the constraint is high when price is low (i.e. expected return is high) because

the investor wants to take a large position but cannot.

Thus, the relationship between the multiplier M and shock size |Θ| depends on whether

marginal cost grows faster for large or small shocks. We now discuss under which conditions

each of these situations arises, as well as which models these conditions.

When does M Grow with Shock Size? M grows with shock size (represented by the

red lines in Figures 2c and 2d) and price impact is convex in |Θ| (represented by the red

lines in Figures 2e and 2f) in two situations. First, M rises with |Θ| if larger positions lead

marginal cost to increase faster with quantity ( ∂2

∂|Θ|∂ΘMC(Θ, P ) > 0), as in red in Figure 2a.
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As shown in Appendix A.1, this behavior arises in certain specifications of convex adjustment

costs (e.g. Gârleanu and Pedersen (2013); Bacchetta et al. (2023)): the cost of adjusting ones

holdings rises with the size of the adjustment. Second, M rises with |Θ| if larger positions

lead marginal cost to increases faster as price falls ( ∂2

∂|Θ|∂PMC(Θ, P ) < 0), as in red in

Figure 2b. As shown in Appendix A.2, this behavior arises with in models with leverage

constraints (e.g. He and Krishnamurthy (2013); Brunnermeier and Sannikov (2014)). For

small Θ the constraint does not bind and the shadow cost is zero regardless of price. But

when Θ grows and the constraint binds, the shadow cost rises as price falls.

When does M Not Vary with Shock Size? M does not vary with shock size (as in

black in Figures 2c and 2d) and price impact is linear (as in black in Figures 2e and 2f)

if larger positions do not impact how quickly marginal cost changes with quantity or price

( ∂2

∂|Θ|∂ΘMC(Θ, P ) = ∂2

∂|Θ|∂PMC(Θ, P ) = 0), as in black in Figures 2a and 2b. As shown

in Appendix A.3, this behavior arises in many models with benchmarking or investment

mandates (e.g. Petajisto (2009); Gabaix and Koijen (2022); Pavlova and Sikorskaya (2023)):

the marginal cost of deviating from the benchmark increases at a constant rate.

When does M Shrink with Shock Size? M shrinks with shock size (as in blue in

Figures 2c and 2d) and price impact is concave (as in blue in Figures 2e and 2f) in two

situations. First, M falls with |Θ| if larger positions lead marginal cost to increase slower

with quantity ( ∂2

∂|Θ|∂ΘMC(Θ, P ) < 0), as in blue in Figure 2a. As shown in Appendix A.4, this

behavior arises in models with fixed adjustment costs: marginal cost increases significantly

for small adjustments, but then falls to zero for larger adjustments past that initial hurdle

(e.g. Lo et al. (2004)). Second, M falls with |Θ| if larger positions lead marginal cost to

increase slower as price falls ( ∂2

∂|Θ|∂PMC(Θ, P ) > 0), as in blue in Figure 2b. As show in

Appendix A.5, this behavior arises in models where investors can endogenously expand their

risk-bearing capacity, such as costly information acquisition (e.g. Van Nieuwerburgh and

Veldkamp (2009, 2010); Kacperczyk et al. (2016); Han (2018)) or slow-moving capital (e.g.
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Duffie and Strulovici (2012)). When price falls and raises expected return, investors can take

larger positions by paying to expand their risk-bearing capacity. Doing so lowers marginal

cost and reduces price impact.

Thus, different potential microfoundations for large price multipliers yield conflicting pre-

dictions for how multipliers vary with demand shock size.
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(a) Marginal cost when ∂2

∂|Θ|∂ΘMC(Θ, P ) ⋚ 0 (b) Marginal cost when ∂2

∂|Θ|∂P MC(Θ, P ) ⋚ 0

(c) Price multiplier when ∂2

∂|Θ|∂ΘMC(Θ, P ) ⋚ 0 (d) Price multiplier when ∂2

∂|Θ|∂P MC(Θ, P ) ⋚ 0

(e) Price when ∂2

∂|Θ|∂ΘMC(Θ, P ) ⋚ 0 (f) Price when ∂2

∂|Θ|∂P MC(Θ, P ) ⋚ 0

Figure 2. Panels (a), (c), and (e) plot the marginal cost MC(Q,P ), price multiplier M , and
equilbrium price P for D̄ = 0, σϵ = 0.02, and MC(Q,P ) = sign(θ)(exp[|θ|]− 1) (in red, has

∂2

∂|Θ|∂ΘMC(Θ, P ) > 0), MC(Q,P ) = θ (in black, ∂2

∂|Θ|∂ΘMC(Θ, P ) = 0), and MC(Q,P ) =

sign(θ) log(|θ|+1) (in blue, ∂2

∂|Θ|∂ΘMC(Θ, P ) < 0). Panels (b), (d), and (f) plot the marginal

cost MC(Q,P ), price multiplier M , and equilbrium price P for D̄ = 0, σϵ = 0.02, and
MC(Q,P ) = θ(1+ |D̄−P |) (in red, has ∂2

∂|Θ|∂PMC(Θ, P ) < 0), MC(Q,P ) = θ (in black, has
∂2

∂|Θ|∂PMC(Θ, P ) = 0), and MC(Q,P ) = θ(1− |D̄−P |) (in blue, has ∂2

∂|Θ|∂PMC(Θ, P ) > 0).
13



3 Data and Demand Shocks

To study how price multipliers vary with demand shock size, we use three demand shocks

from previous work that researchers argue are largely void of cash flow information.

Bechmarking Intensity (BMI) Our first demand shock is based on index inclusion,

which captures changes in benchmarked investors’ demand for a stock when it enters or exits

an index (Shleifer (1986); Harris and Gurel (1986); Chang et al. (2015)). In particular, we

use the benchmarking intensity (BMI) measure from Pavlova and Sikorskaya (2023), which

provides a continuous measure of changes in demand driven by Russell index reconstitutions.

Each May, Russell ranks eligible stocks by market capitalization to determine index mem-

bership. Stocks above a specified rank enter the Russell 1000, while those below join the

Russell 2000. The Russell 2000 historically attracts more benchmarked institutional capital

than the Russell 1000. When stocks cross the cutoff during annual reconstitution in June,

they experience institutional flows: stocks moving down to the Russell 2000 see inflows and

positive returns, while those moving up to the Russell 1000 face outflows and negative re-

turns. Conditional on the market cap as of the May ranking date, Russell index membership

in June is exogenous to June cash-flow news, and so these reconstitution-driven flows are an

uninformed demand shock (Chang et al. (2015); Crane et al. (2016); Glossner (2019)).

Russell reconsitution provides demand shocks of different sizes because, as Pavlova and

Sikorskaya (2023) note, these reconstitution-induced flows differ across stocks. Every stock

in the Russell 2000 Blend index is also in the Russell 2000 Value or Growth indices, which

have different levels of benchmarked capital. Every stock in the Russell 1000 Blend index is

also in the Russell 1000 Value or Growth indices, and some (those under market cap rank

200) are in the Russell Midcap Blend, Value, and Growth indices. Thus, a stock moving

from the Russell 1000 Value to the Russell 2000 Value may experience a different magnitude

of benchmarking demand shock than a stock moving from the Russell 1000 Growth to the

14



Russell 2000 Growth.2

The Pavlova and Sikorskaya (2023) benchmarking intensity (BMI) measure captures this

variation:

BMIi,t =
∑

Index j

Institutional AUM Benchmarked to Index j in month t · 1t (i ∈ Index j)

Index j Market Value in month t
.

This measure quantifies the inelastic demand for each stock from benchmarked funds. It

depends on which indices a stock is part of and the proportion of each index held by bench-

marked investors. BMI is calculated from thirty-four indices, including nine Russell bench-

marks, covering approximately 90% of mutual fund and ETF assets.

We use June BMI changes in each year, denoted ∆BMI, for stocks in a narrow window

(150 stocks in the baseline specification) around Russell reconstitution thresholds as an

uninformed demand shock. Stocks with positive (negative) ∆BMI experience benchmark-

ing inflows (outflows). While BMI is generally endogenous because index membership is,

∆BMI for stocks in this window are driven by Russell index membership changes, which

are exogenous to June cash flow news conditional on the May rank-date market cap.3

We use the BMI and Russell index constituents data provided by Pavlova and Sikorskaya

(2023). All of our specifications include the stock-level controls used by Pavlova and Siko-

rskaya (2023): May rank-date log market cap, one-year monthly average bid-ask percentage

2Technically all stocks in the Blend indices are in both the Value and Growth indices, just in different
proportions.

3More specifically, prior to 2007 the rank cutoff was the 1,000th stock. To reduce turnover, since 2007
Russell has used a “banding policy” under which there are two separate cutoffs for stocks starting in the
Russell 1000 and 2000 pre-reconstitution, both of which are mechanical functions of the firm size distribution.
Thus, there is a “band” of market caps including stocks from the Russell 1000 and 2000. Appendix B.1
explains the Russell methodology we use to calculate these cutoffs. Since Russell ranks stocks using a
proprietary market cap that we lack access to, we use the method of Ben-David et al. (2019) to approximate
this proprietary market cap using standard databases. Doing so predicts assignment to the Russell 1000 and
2000 with high accuracy. Following previous work, we use May — not June — market caps to calculate the
Russell reconstitution thresholds to avoid selection bias (e.g. Chang et al. (2015); Appel et al. (2021); Wei
and Young (2021)).
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spread,4 and the banding controls from Appel et al. (2019) (an indicator for having rank-

date market cap in the “band”, an indicator for being in the Russell 2000 in May, and the

interaction of these indicators). Whereas Pavlova and Sikorskaya (2023) use the proprietary

Russell market cap, we calculate market cap from standard databases using the method of

Ben-David et al. (2019). Conditional on these variables that determine Russell 1000/2000

membership, ∆BMIi,t in June is unrelated to June cash flow news.

Flow-Induced Trading (FIT) Our second demand shock is the flow-induced trading

(FIT) measure from Lou (2012), which captures the stock-level trading by mutual funds in

response to fund flows.

Fund flows induce uninformed stock-level trading by mutual funds, which tend to scale pre-

existing holdings proportionally to ex-ante portfolio weights (Frazzini and Lamont (2008)).

For example, if Apple’s existing weight is 5% in a fund’s portfolio, a $1 inflow (outflow)

induces the fund to increase (decrease) capital allocation of about five cents to Apple, a

behavior that is documented in Coval and Stafford (2007) and Lou (2012), among others.

This behavior is not only true for index funds, but also approximately true for active mu-

tual funds and exchange-traded funds (Figure A4 in Li (2022)). This predicted mechanical

component of the cross-sectional trading due to flows is uninformed.

We use the FIT instrument of Lou (2012). We first calculate the quarterly (percentage) flow

to mutual fund n as

fn,t =
TNAn,t − TNAn,t−1 · (1 + Retn,t)

TNAn,t−1

.

where TNAn,t and Retn,t are fund n’s total net assets in quarter t and return from quarter

t − 1 to t, respectively. The predicted mechanical trading by fund n in stock i due to this

flow is SharesHeldn,i,t−1 ·fn,t. Aggregating across all funds and scaling by shares outstanding

4Pavlova and Sikorskaya (2023) note changes in a stock’s liquidity can impact both its returns (by altering
the liquidity premium) and BMI. Thus, they control for Russell’s proprietary float factor and the rolling
average bid-ask percentage spread (to address staleness in the float factor). Lacking access to Russell’s
proprietary float factor, we control for the bid-ask spread.
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yields:5

FITi,t =
∑
fund n

SharesHeldn,i,t−1

Shares Outstandingi,t−1︸ ︷︷ ︸
≡Sn,i,t−1

fn,t. (6)

Sn,i,t−1 is the proportion of all shares of stock i owned by mutual fund n in quarter t− 1.

Variation in FIT demand shock size comes from stocks having heterogeneous exposures to

fund flows. Since FIT is a cross-sectional shock, the variation comes from differences in fund

ownership shares across stocks, not fund-level flows. Stocks with higher (lagged) ownership

shares (Sn,i,t−1) by a given fund are more exposed to that fund’s flows. Thus, stocks more

exposed to high-flow funds have larger FITi,t.

FIT’s exogeneity to cash flow news requires only that these ex-ante ownership shares do not

correlate with cash flow news across stocks within each quarter (Chaudhry (2023); Chaudhary

et al. (2023)).6 This condition is plausible since FIT uses quarter t − 1 ownership shares,

which precede quarter t cash flow news. Thus, FITi,t remains an uninformed demand shock

even if flows contain cash flow information.

We construct FIT as in Lou (2012) using CRSP mutual fund flows, Thomson Reuters S12

holdings, and MFLINKS data from Russ Wermers.

All of our specifications include stock characteristic controls interacted with quarter fixed

effects. These controls address the potential concern that within a quarter, stock character-

istics may create a correlation between ownership shares and cash flow news. For example,

good cash flow news about small stocks in quarter t may raise prices directly and also drive

flows into small-cap funds. In this case the ownership shares are not exogenous: small stocks

5Following Li (2022), we do not multiply the numerator by a “partial scaling factor”, as in Lou (2012), to
adjust for differential flow-to-trade sensitivity for inflows and outflows. Li (2022) shows that applying this
scaling factor or not does not materially impact inference on the price impact of FIT. In order to estimate
price multipliers, we use shares outstanding in the denominator, so FITi,t = 0.01 represents the mutual fund
sector buying 1% of stock i’s shares.

6The sufficiency of cross-sectionally exogenous ownership shares follows from the result that exogenous
shares are sufficient for shift-share instrument exogeneity (Goldsmith-Pinkham et al. (2020)).
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are more exposed to both the good news shock and flows into small-cap funds. These cor-

related exposures to different “aggregate shocks” can threaten exogeneity. The solution is

to control for the problematic stock characteristics (size in this example) interacted with

time fixed effects to absorb the ownership share variation that correlates with exposures to

aggregate cash flow news shocks (Chaudhry (2023)).

Order flow imbalance (OFI). Our third demand shock is the Lee-Ready signed order

flow imbalance. Specifically, this measure takes all executed trades in the U.S. stock market,

and uses the Lee and Ready (1991) algorithm to classify trades as buyer- or seller-initiated.

In our implementation, we download daily Lee-Ready signed OFI from WRDS intraday

indicators, aggregate to quarterly frequencies, and then normalize it by lagged shares out-

standing. It is worth clarifying that OFI captures all trades that are executed aggressively,

but it does not capture all trading flows. Many sophisticated institutional investors tend

to execute trades slowly and passively to reduce price impact, and those flows will not be

captured by OFI.

This OFI measure has been used heavily in the microstructure literature to study price

effects at daily or higher frequencies. Recently, Li and Lin (2023) suggest that it can also be

useful for studying demand effects at “asset pricing frequencies” (i.e. monthly or slower), as

OFI does not revert and appears to create long-lasting price effects.

Relative to the other two measures, OFI has the benefit of having a lot more variation. This

can be seen in the summary statistics of Table 1. One standard deviation is equal to 0.59%

of shares outstanding for FIT but 4.15% for OFI. In the tails, the 1% and 99% percentiles

indicate that over 2% of OFI realizations are even larger than 10% in absolute magnitude.

This is particularly helpful for this paper because we are interested in price impacts of large

demand shocks.

At the same time, a drawback of OFI is the concern about its information content. By
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its nature, OFI captures trading behavior by many investors, as opposed to FIT and BMI

which zoom in on the trades by specific investors in specific circumstances that are plausibly

unrelated to cash flow news. Li and Lin (2023) run extensive tests and do not find evidence

that OFI is related to various measures of cash-flow news. However, they also admit that,

due to the difficulty of measuring news, one cannot be fully certain about the information

content of OFI.

Overall, our three demand shocks have their own respective strengths and weaknesses. Suc-

cessful instruments need to be exogenous and relevant. In our context, exogenity means not

being correlated with cash flow-relevant news, and relevance refers to the amount of return

variation it can explain. BMI is arguably the most exogenous, but index changes happen

relatively rarely, so it has the lowest explanatory power over returns. Some researchers may

be slightly more concerned about the exogeneity of FIT, but it has more variation as it

happens to all stocks over all periods of time. Finally, OFI probably has the most amount

of concern regarding its exogenenity, but it also has the highest amount of variation.

The findings we present in this paper are largely robust across these three measures, which

we see as a strength: we do not rely on any single demand shock to draw our conclusions.

Institutional Holdings Data We use institutional holdings data from SEC Form 13F,

provided by Thomson Reuters through WRDS. The SEC requires all institutional investors

with at least $100 million in assets under management (AUM) to report stock-level long po-

sitions each quarter. I allocate all remaining stock holdings to a residual “household” sector,

which includes both direct stock holdings by households and those by non-13F institutions

(i.e. institutions with less than $100 million AUM).

Other Data We download monthly stock returns and market capitalization from CRSP,

and we aggregate monthly returns to quarterly frequency when needed. To control for

factor-level effects, all regressions control for 15 commonly used stock characteristics from
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the website of Chen and Zimmermann (2022).7 We also control for indicators for the Fama-

French 12 industries; the industry classifications are downloaded from Professor Ken French’s

website.

Summary Statistics Table 1 reports summary statistics. Because we are interested in

how the price multiplier varies by demand size, we show the percentile distributions on the

right-most columns. OFI, reported as a fraction of lagged market capitalization, varies from

-13.67% to 11.82% from the 1th to the 99th percentile. FIT and ∆BMI have similar ranges,

with the former ranging from -1.32% to 2.13% and the latter from -2.1% to 2.32%.8

Our analysis spans 1998 to 2018 for the BMI demand shock, and 1993 to 2022 for FIT

and OFI. The BMI sample is limited by the period for which we observe Russell index

constituents. The OFI sample is limited by the availability of the signed OFI measure from

WRDS. We constrain the FIT sample to match that of OFI.

7The stock characteristics we use include accruals, asset growth, beta, book-to-market, gross profitability,
industry momentum, intermediate momentum, 1 year issuance, 5 year issuance, momentum, seasonal mo-
mentum, net operational assets, realized volatility, short-term reversal, and size. Following common practice
in the literature on modeling the cross-section of returns, we transform each characteristic into uniform
distributions over [-0.5, 0.5] in each cross-section (e.g. Kelly et al., 2019).

8Since ∆BMI measures the Russell index reconstitution-induced change in inelastic demand for a stock by
only benchmarked mutual funds and ETFs — not the total change in demand by all institutional investors —
we scale it to have the same units as OFI and FIT. Pavlova and Sikorskaya (2023) find that a one percentage
point reconstitution-induced change in BMI raises total institutional ownership by 20 basis points. See
Column 3 of Table 3 in Pavlova and Sikorskaya (2023) for justification for this scaling.
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Percentiles

Obs Mean StDev 1% 5% 25% 50% 75% 95% 99%

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)
Return (%) 4,054 3.17 30.34 -63.28 -40.51 -12.17 1.38 14.87 50.59 108.54
Demand (∆ BMI, scaled) 472 0.05 0.71 -2.10 -1.14 -0.16 0.00 0.24 1.32 2.32
Demand (FIT, %) 4,054 0.08 0.59 -1.32 -0.72 -0.15 0.01 0.24 1.07 2.13
Demand (OFI, %) 4,054 -0.45 4.15 -13.67 -6.48 -1.68 -0.26 0.95 4.98 11.82
Market cap ($m) 4,054 4,049 25,126 8 20 98 367 1,592 14,857 67,060

Table 1. Summary statistics
Column (1) reports the average number of stocks per period. For FIT and OFI, one period is one quarter.
For BMI, one period is the month of June in a specific year (which is when Russell index reconstitution
occurs). The sample for all variables consists of quarterly data from 1993 to 2022, except the BMI sample
which consists of data for each June from 1998 through 2018. For the demand shocks, ∆BMI refers to
changes in benchmarking intensity in Pavlova and Sikorskaya (2023), FIT refers flow-induced trading in Lou
(2012), and OFI refers to order flow imbalance in Li and Lin (2023). ∆BMI has been multiplied by 0.2 to
have the same units as OFI and FIT, following Pavlova and Sikorskaya (2023).

4 Empirical Evidence of Concave Price Impact

In this section, we provide evidence of concave price impact: price multipliers shrink with

demand shock size. Section 4.1 provides parametric evidence of this behavior using all three

demand shocks discussed in Section 3. Section 4.2 exploits the large amount of variation in

the OFI shock to provide evidence of this concavity from non-parametric sorts. Section 4.3

provides additional empirics to rule out alternative interpretations of these results.

4.1 Parametric Evidence

To test for nonlinear effects of demand shocks, we estimate the following cross-sectional re-

gression of stock-level returns ri,t on demand shock di,t (BMI, FIT, or OFI) and its interaction

with shock magnitude |di,t| in each time period t:

∀t : ri,t = b1,t · di,t + b2,t · di,t × |di,t|+ c
′

txi,t−1 + τt + ϵi,t. (7)

The shock-size dependent price multiplier in (7) is M = b1 + b2 × |di,t|. The key coefficient

of interest is b2. If price impacts are smaller for larger demand shocks, then b2 is negative.

Structurally, b2 maps to the second derivative of the cost function C(Q,P ) in Section 2.
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The controls xi,t−1 include the stock characteristics and industry indicators discussed in

Section 3, as well as the BMI-specific controls discussed in Section 3 when using the BMI

shock. Following previous work, we use a quarterly frequency for FIT and OFI, and a

monthly frequency (just the month of June when Russell index reconstitution occurs) for

BMI.

We estimate (7) in each cross section and report the average regression coefficients (in the

style of Fama and MacBeth (1973)). Doing so ensures we use only cross-sectional variation to

identify the regression coefficients, and so avoids the potential concern that omitted variables

drive time variation in both price multipliers and demand shock size. In Appendix Table

C.1, we find that estimating (7) using panel regressions with time fixed effects yield similar

results.

Dependent variable: stock return ri,t

d = BMI FIT OFI

(1) (2) (3)
di,t 1.68∗∗∗ 3.18∗∗∗ 3.00∗∗∗

(0.48) (0.35) (0.09)
di,t × |di,t| −58.73∗∗∗ −43.73∗∗ −13.92∗∗∗

(18.95) (20.63) (0.55)

Controls Y Y Y

Obs 9,910 544,662 529,619
R2 0.207 0.099 0.143
Marginal R2 of demand 0.009 0.004 0.048

Table 2. Interacted price impact regressions
We estimate cross-sectional regressions (7) of stock returns on demand and demand interacted with its abso-
lute value in each time period and report average coefficients pooled across all time periods. The regressions
control for commonly used stock characteristics and Fama-French 12 industry indicators as described in Sec-
tion 3. Column (1) reports results using the BMI demand shock and monthly returns. Columns (2) reports
results using quarterly returns and the FIT and FOI demand shocks, respectively. Levels of significance are
presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

Table 2 reports the results of regression (7). The coefficient on di,t (b1) implies that the

implied price multipliers for small demand shocks (i.e. |di,t| ≈ 0) shocks lie in a range of 1.5

(for BMI) to 3 (for FIT and OFI). That is, for small X, buying X% of all shares outstanding

of a stock raises price by around 1.5X% to 3X%.
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The coefficient on di,t × |di,t| (b2) is negative, indicating that larger shocks are associated

with smaller price multipliers. The coefficient magnitudes represent how many basis points

the multiplier falls by when demand shock magnitude rises by 1% (i.e. |di,t| = 1% versus

|di,t| = 2%). This interaction coefficient is statistically significantly negative at the 5% level

for FIT and at the 1% level for BMI and OFI.

The magnitude of b2 is economically significant: assuming a constant price multiplier sig-

nificantly overestimates the actual impact of large demand shocks. For example, the result

in Column 1 (BMI) imply that buying 1% of shares outstanding has a multiplier of about

M = 1.1 (b1+ b2× 1 = 1.68− 0.5873× 1 ≈ 1.1) and so raises price by about 1.1% (M × 1%),

not 1.68% as a constant multiplier M = b1 would suggest (b1 × 1% = 1.68%). A 2% shock

has a multiplier of about M = 0.5 (b1+b2×1 = 1.68−0.5873×2 ≈ 0.5%) and so raises price

by about 1% (M × 2% = 1%), not 3.36% as a constant multiplier M = b1 would suggest

(b1×2% = 1.68%). Thus, assuming a constant multiplier overestimates price impact by 70%

for a 1% shock and by over 200% for a 2% shock.

The three demand shocks exhibit different degrees of nonlinearity. The b2 results from Table

2 imply a 1% larger shock lowers the multiplier by about 59, 44, and 14 basis points for the

BMI, FIT, and OFI shocks, respectively. Due to the sizeable standard errors for BMI and

FIT, while the point estimates differ, the differences are not statistically significant.

Overall, all three demand shocks provide evidence that price multipliers shrink as demand

shock size grows. In other words, price impact is concave in shock size. It is important to

note, however, that even after accounting for this nonlinearity, multipliers are still far larger

than suggested by classical asset pricing models which predict uninformed demand shocks

have price multipliers on the order of 1/6000 (e.g. Petajisto, 2009). Therefore, our findings

should be interpreted as sheding light on the endogenous variation of price multipliers, rather

than arguing that multipliers are as small and demand is as elastic as predicted by classical

asset pricing models.
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4.2 Nonparametric Evidence

We next exploit the large degree of variation in the OFI demand shock to provide nonpara-

metric evidence that price multipliers shrink as demand shock size grows.

We sort observations by realized OFI demand shocks |di,t| into three ranges of r ∈ {[0, 2.5%),

[2.5%, 5%), [5%,+∞)}. We then estimate Fama-MacBeth regressions:

ri,t =
∑
r

Mr,t · I|di,t|∈r · di,t + c
′

txi,t−1 + τt + ϵi,t (8)

where the {Mr}r coefficients represent price multipliers for different demand shock sizes. The

controls xi,t−1 include the stock characteristics and industry indicators discussed in Section

3. We report the estimated price multipliers in Panel A of Table 3.

The full sample results are reported in column (1). When |di,t| < 2.5%, the estimated price

multiplier is 3.58; when |di,t| is between 2.5% and 5%, the associated multiplier declines to

2.55; when |di,t| ≥ 5%, the associated price multiplier is only 1.03.

To examine subsample robustness, in columns (2) through (5), we estimate the same regres-

sion over subperiods and find qualitatively similar results. In Panel B, we report pairwise

price multiplier differences for each regression and compute standard errors using the Delta

method. All differences are statistically significant at the 1% level. Overall, the results are

consistent with the idea that price impact is concave: larger demand shocks have smaller

price multipliers.

4.3 Ruling Out Alternative Interpretations

In this section, we conduct a series of robustness checks to rule out alternative interpretations

of the empirical results in Sections 4.1 and 4.2.
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Panel A: price impact regressions
Dependent variable: stock return ri,t

Full sample
Sub-periods

1993-1999 2000-2007 2008-2015 2016-2022

(1) (2) (3) (4) (5)
M<2.5% 3.58∗∗∗ 4.36∗∗∗ 4.06∗∗∗ 2.65∗∗∗ 3.30∗∗∗

(0.07) (0.13) (0.15) (0.10) (0.14)
M[2.5%,5%) 2.55∗∗∗ 2.98∗∗∗ 2.58∗∗∗ 2.23∗∗∗ 2.44∗∗∗

(0.05) (0.08) (0.10) (0.07) (0.10)
M≥5% 1.03∗∗∗ 1.43∗∗∗ 0.97∗∗∗ 0.97∗∗∗ 0.78∗∗∗

(0.03) (0.07) (0.05) (0.07) (0.05)

Controls Y Y Y Y Y
Obs 529,619 152,457 153,473 127,066 96,623
R2 0.140 0.151 0.157 0.120 0.132

Panel B: Coefficient differences
(1) (2) (3) (4) (5)

M[2.5%,5%) −M<2.5% −1.03∗∗∗ −1.38∗∗∗ −1.48∗∗∗ −0.42∗∗∗ −0.86∗∗∗

(0.05) (0.06) (0.08) (0.05) (0.11)
M≥5% −M[2.5%,5%) −1.51∗∗∗ −1.55∗∗∗ −1.61∗∗∗ −1.27∗∗∗ −1.66∗∗∗

(0.03) (0.04) (0.06) (0.07) (0.08)
M≥5% −M<2.5% −2.54∗∗∗ −2.93∗∗∗ −3.09∗∗∗ −1.68∗∗∗ −2.52∗∗∗

(0.06) (0.08) (0.12) (0.08) (0.14)

Table 3. Price multiplier by demand shock sizes

In panel A, we report Fama-MacBeth regressions which estimate (using quarterly data):

ri,t =
∑
r

Mr,t · I|di,t|∈r · di,t + c
′

txi,t−1 + τt + ϵi,t (10)

where ri,t is stock return and di,t is the demand shock measured by order flow imbalance (OFI).
The controls {xi,k,t} represent commonly used stock characteristics and Fama-French 12 industry indicators.
OFI range r takes values in [0, 2.5%), [2.5%, 5%), and [5%,∞). Column (1) reports results based on the
full sample, while columns (2) through (5) report results based on sub-samples. Panel B reports pairwise
differences in price multipliers and the standard errors are computed using the Delta method. Levels of
significance are presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

4.3.1 Alternative Interpretation: Larger Shocks are More Common in Times

with Smaller Multipliers

One potential concern is that larger shocks are more common in time periods when price

multipliers are generally smaller. Formally, if multipliers vary with an aggregate variable Xt:

ri,t = b · di,t + c ·Xt · di,t + c
′

txi,t−1 + τt + ϵi,t (11)
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any correlation between Xt and shock size |di,t| could falsely suggest multipliers shrink with

shock size.

Our baseline specification (7) addresses this concern. Since we estimate (7) in each cross

section, time-series correlation between Xt and shock size |di,t| does not bias our b2 estimates.

Formally, the time-specific slope b1,t in (7) absorbs the c ·Xt term in (11) (b1,t = b+ c ·Xt)

and prevents it from biasing the b2 estimates.

Thus, time-series correlations between aggregate variables and demand shock size do not

explain the result that price multipliers decrease with shock size.

4.3.2 Alternative Interpretation: Larger Shocks are More Common for Stocks

with Smaller Multipliers

Another potential concern is that larger shocks are more common for stocks that generally

have smaller price multipliers. Formally, if multipliers vary with a stock-specific characteristic

Xi,t:

ri,t = b · di,t + c · di,t ·Xi,t + c
′

txi,t−1 + τt + ϵi,t (12)

any cross-sectional correlation between Xi,t and shock size |di,t| could falsely suggest multi-

pliers shrink with shock size.

To address this concern, we augment our baseline specification (7) with interactions of the

demand shock with common stock characteristics:

∀t : ri,t = b1,t · di,t + b2,t · di,t × |di,t|+ b
′

3,t · di,t × xi,t−1 + c
′

txi,t−1 + τt + ϵi,t. (13)

The characteristic interaction terms b
′

3,t · di,t × xi,t−1 should absorb the c · di,t · Xi,t term

in (12) and so remove the potential omitted variable bias. As in Section 4.1, we estimate
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regression (13) in each cross section and report the average coefficients (in the style of Fama

and MacBeth (1973)).

We include a variety of stock characteristics as controls: accruals, asset growth, beta, book-

to-market, gross profitability, industry momentum, intermediate momentum, 1 year issuance,

5 year issuance, momentum, seasonal momentum, net operational assets, realized volatility,

short-term reversal, and size.9 The model in Section 2 implies that the other determinant

of price multupliers besides the cost function C(Q,P ) is risk (i.e. return variance). These

characteristics are often interpreted by the cross-sectional asset pricing literature as proxies

for systematic risk, and so they may create cross-sectional variation in multipliers. We also

control for indicators for the Fama-French 12 industries.

Figure 3 displays the estimated b1 and b2 coefficients from these regressions with interactions

between the demand shock and stock characteristics. Each point represents the coefficient

estimate from regression (13) when adding an additional characteristic (i.e. the right-most

points represent coefficient estimates from the regression including all stock characteristics

and industry indicators). We find evidence that price multipliers decrease with shock size

across all specifications for all three demand shocks: b2 < 0 for all specifications. Moreover,

the coefficient estimates are quantitatively stable across specifications. Panel (a) demon-

strates that for the BMI shock, b1 ranges from 1.78 to 2.04 percent, while b2 ranges from

−60 to −25 basis points (increasing as characteristics are added). Panel (b) demonstrates

that for the FIT shock, b1 ranges from 3.08 to 3.38 percent, while b2 ranges from −84 to

−44 basis points (decreasing as characteristics are added). Panel (c) demonstrates that for

the OFI shock, b1 ranges from 2.97 to 3.01 percent, while b2 ranges from −14 to −19 basis

points (decreasing as characteristics are added).

Thus, cross-sectional correlations between stock characteristics and demand shock size does

9As discussed in Section 3, we transform each characteristic into uniform distributions over [-0.5, 0.5] in
each cross-section.
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not appear to explain the result that price multipliers decrease with shock size.

4.3.3 Alternative Interpretation: Correlation with News Releases

It is widely accepted that stock returns are often driven by news releases, which leads to the

concern that perhaps our demand shocks per se do not impact prices, but rather are just

correlate with news releases. Specifically, if demand is positively correlated with news-driven

returns, and if the magnitude of demand happens to scale sublinearly with the magnitude of

news-driven returns, then this can explain our finding. This concern proves less salient for

BMI and FIT which exploit variation in trading by specific investors in specific circumstances

that are plausibly unrelated to cash flow news. However, this proves potentially more relevant

for OFI, which captures trading behavior by many investors over a whole quarter.

To assess this concern, we examine whether we observe concave price impact on days with

little news. We use three measures of news releases at the daily frequency. The first is

whether there is an earnings release. The second is the number of analyst updates from

IBES, and the third is the number of media reports in Ravenpack. For the latter two, we

convert them into quintile indicators after sorting within each quarter-stock to account for

the fact that larger stocks and later periods tend to have more updates. This conversion

makes the news measures more comparable across stocks and over time.

We first verify that these measures do capture price-relevant news. In Table 4, we regress

the absolute value of daily stock returns on news indicators. As a refernece point, the

dependent variable’s average value is 2.2%. In the last column of Table 4 which contains all

news indicators, we find that earnings days are associated with 0.92% higher return absolute

values. For the other two news measures, days on which they are higher — and mostly in

the top quintile — are also associated with higher return variation. On days when IBES

and Ravenpack are in the top quintile of releases, absolute returns are higher by 0.46% and

0.51%, respectively.
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(a) BMI (b) FIT

(c) OFI

Figure 3. Panels (a), (b), and (c) plot the results of regression (13) for the BMI, FIT, and
OFI demand shocks, respectively. The coefficient on the demand shock is plotted in red,
while the coefficient on the demand shock interacted with its magnitude is plotted in blue.
The left-most points represent the coefficient estimates when no interactions between the
demand shock and any stock characteristics are included. Each subsequent point represents
the estimates from regression (13) when adding the interaction with characteristic labelled
on the x-axis (i.e. the right-most points represent coefficient esimtates from the regression
including all stock characteristics and industry indicators). Both coefficients are expressed
in terms of percentage points (i.e. b2 has been divided by 100 to convert it from basis points
to percentage points, so its units match those of b1).
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Dependent variable: |ri,t|(in%)
(1) (2) (3) (4)

Earnings 1.46∗∗∗ 0.92∗∗∗

(0.04) (0.04)
IBES bin 2 −0.00 −0.00

(0.00) (0.00)
IBES bin 3 −0.00∗∗ −0.00∗∗

(0.00) (0.00)
IBES bin 4 0.01∗∗∗ 0.01∗∗∗

(0.00) (0.00)
IBES bin 5 0.46∗∗∗ 0.36∗∗∗

(0.01) (0.01)
Ravenpack bin 2 0.00 0.00

(0.00) (0.00)
Ravenpack bin 3 0.01∗∗ 0.01∗∗

(0.00) (0.00)
Ravenpack bin 4 0.04∗∗∗ 0.04∗∗∗

(0.01) (0.01)
Ravenpack bin 5 0.63∗∗∗ 0.51∗∗∗

(0.02) (0.02)

Controls Y Y Y Y
Time-stock FE Y Y Y Y

Obs 16,155,699 16,155,699 16,155,699 16,155,699
Within R2 0.005 0.005 0.009 0.014

Table 4. Information measures and return variability

We use daily panel regressions to estimate the relationship between the absolute value of stock returns and
indicators of news releases. All regressions control for quarter-stock fixed effects, as well as the list of controls
in Table 2. Standard errors are clustered by quarter and stock. Levels of significance are presented as follows:
∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

We now re-estimate the results for FIT and OFI in Table 2 but remove days with more news

from our computation of quarterly returns. The results are reported in Table 5. Columns

(1) and (5) report results for FIT and OFI, respectively, when no filters are applied, and the

results indicate that price impacts are concave.10 In columns (2) and (6), we use quarterly

returns computed only during days without earnings. In columns (3) and (7), we further re-

move days where IBES or Ravenpack news measures are above 80% percentiles, and columns

(4) and (8) further remove days where either news measure is above 60% percentiles. Overall,

the coefficient estimates are quantitatively similar across specifications, thereby indicating

that removing days with news releases does not impact our conclusion that price multipliers

10The results differ slightly from Table 2 because we merge our sample with news measures, which results
in a smaller dataset.
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decrease in demand shock size.

Dependent variable: stock return ri,t
di,t = FIT di,t = OFI

Filters: none No earnings news ≤ 80% news ≤ 60% none No earnings news ≤ 80% news ≤ 60%

(1) (2) (3) (4) (5) (6) (7) (8)

di,t 3.34∗∗∗ 3.41∗∗∗ 4.10∗∗∗ 3.70∗∗∗ 2.23∗∗∗ 2.27∗∗∗ 2.28∗∗∗ 2.25∗∗∗

(0.38) (0.38) (0.48) (0.61) (0.09) (0.09) (0.11) (0.12)
di,t × |di,t| −65.39∗∗∗ −65.87∗∗∗ −66.29∗ −69.81 −9.83∗∗∗ −9.99∗∗∗ −8.79∗∗∗ −9.42∗∗∗

(23.15) (22.52) (38.92) (48.37) (0.72) (0.72) (0.94) (1.06)

Controls Y Y Y Y Y Y Y Y
Obs 228,379 228,379 228,379 228,379 229,427 229,427 229,427 229,427

R2 0.129 0.129 0.093 0.055 0.160 0.159 0.111 0.064
Marg R2(di,t) 0.006 0.006 0.004 0.002 0.036 0.035 0.021 0.011

Table 5. Interacted price impact regressions in periods with less news
We re-estimate the Fama-MacBeth regressions in Table 2 for FIT and OFI, but only use returns on days
with less news. Columns (1) through (4) study FIT while columns (5) through (8) study OFI. Columns
(1) and (5) do not apply filters. Columns (2) and (6) filter out earnings days when computing quarterly
returns. Columns (3) and (7) further filter out days where IBES or Ravenpack news indicators are above
the 80% percentile; columns (4) and (8) further filter out those above the 60% percentile. As explain in the
text, regression coefficients and standard errors are adjusted to be comparable. Levels of significance are
presented as follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

It is worth explaining that, as we remove some days in computing quarterly returns, this

leads to a mechanical downward bias in the estimated coefficients. The reported coefficients

and standard errors in Table 5 have adjusted for this bias.11

5 A Nonlinear Asset Demand System

In this section we propose a nonlinear asset demand system with endogenous price elasticities

of demand to study the quantitative implications of the concave price impact we document.

11To see this, suppose the true relationship at the daily frequency is ri,t = M · di,t + ϵi,t where ri,t is
the daily log return, di,t is the demand shock, M is the price muliptlier, and ϵi,t is a residual term. For

simplicity, assume all components are i.i.d. Let Di =
∑T

t=1 di,t be the quarterly demand and Ri =
∑

t∈T ri,t
be the quarterly log return when only using a subset of days, T ⊂ {1, ..., T}. Then, the regression coefficient
at the quarterly frequency is:

Cov(Di, Ri)

V ar(Di)
=

|T |
T

·M

which is downward biased by an adjustment factor of |T |
T . To fix this, we multiply the raw regression

coefficients and standard errors by T
T | before reporting them in Table 5.
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5.1 Model

To derive a tractable asset demand system, we extend the model from Section 2 to feature

multiple assets and choose a specific form for the cost function C(Q,P ).

Agents and Prefferences There are i = 1, . . . , I investors and n = 1, . . . , N assets. Each

investor i chooses a vector of quantities for each asset Qi to solve

max
Qi

Q
′

iEi [D−P]− γi
2
Q

′

iVi [D−P]Qi − πi ∥Qi −Bi∥αi

αi
(14)

where D and P are the vectors of dividends and prices for each asset. The i subscript

indicates the expectation and variance are taken under investor i’s subjective beliefs.

The cost function is the scaled Lα norm of the deviation of the chosen quantities Qi from

some refference portfolio Bi:

C(Qi,P) = πi ∥Qi −Bi∥αi

αi
=
∑
n

|Qi,n −Bi,n|αi . (15)

In general, the refference portfolio can be any benchmark or anchor the investor does not

want to deviate from. Empirically, we use the investors’ portfolio from the previous quarter

as the refference portfolio, which gives C(Qi,P) the interpretation of an adjustment cost.

πi ≥ 0 controls the strength of this penalty. α determines if the marginal cost curve is

convex (for αi > 2) or concave (for αi < 2) in |Qi −Bi|. Thus, αi determines if this investor

becomes less (for αi > 2) or more (for αi < 2) elastic for larger deviations from the refference

portfolio |Qi −Bi| (as dicussed in Section 2.2). We assume α > 1 so that marginal cost is

increasing and demand slopes downward.
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Beliefs Following Koijen et al. (2024), we assume each investor i’s beliefs about future

cash flows follow a factor structure

D = µi + ρiF + η (16)

where the exepcted cash flow µi and factor loading ρi are linear in stock characteristics xn:

µi,n = Φ
′

µ,ixn + ϕµ
i,n

ρi,n = Φ
′

ρ,ixn + ϕρ
i,n.

η is an idiosyncratic shock (uncorrelated with F ) with mean zero and covariance matrix σ2
i I.

Optimal Portfolio Choice Taking the first-order condition of (14) yields the following

characteristics-based demand function for investor i (derived in Appendix D.1):

Qi,n = β0,i︸︷︷︸
≡− 1

γσ2

Pn + β
′

1,i︸︷︷︸
≡

Φ
′
µ,i

−γρ
′
QiΦ

′
ρ,i

γσ2

xn − λi︸︷︷︸
≡ πα

γσ2

|Qi,n −Bi,n|(αi−1) sign(Qi,n −Bi,n) + ϵi,n︸︷︷︸
≡

ϕ
′
µ,i

−γρ
′
Qiϕρ,i

γσ2

.

(17)

To illustrate how the price elasticity of demand depends on α, Figure 4 plots the derivative

of quantity with respect to price (expressed as a positive number)

−dQi,n

dPn

= − β0,i

1 + λi(αi − 1) |Qi,n −Bi,n|(αi−2)
(18)

as a function of the deviaton from the refference portfolio |Qi,n −Bi,n|. For αi > 2, demand

becomes less elastic for larger deviations from Bi,n (consistent with convex price impact).

For α < 2, demand becomes more elastic for larger deviations (consistent with concave price

impact). For α = 2, elasticity is constant (consistent with linear price impact).
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Figure 4. Plot of sensitivity of demand to price (18) for λi = 1, β0,i = −1, and different
values of αi.

5.2 Empirical Specification

Based on (17), we model the portfolio weight of investor i for stock n = 1, . . . , N in quarter

t as follows to match the lognormal distribution of weights in institutional holdings data (as

in Koijen and Yogo (2019); Koijen et al. (2024))

wi,n,t =
δi,n,t

1 +
∑N

m δi,m,t

, (19)

where

δi,n,t = exp
[
β0,i,tmen,t + β

′

1,i,txn,t − |Ki,t +∆ log δi,n,t −∆men,t|αi,t−1 + Ci,t

]
ϵi,n,t. (20)

There is also an outside asset (consisting of stocks that are foreign, real estate investment

trusts, or have missing characteristics or returns, as in Koijen and Yogo (2019)), with weight

wi,0,t = 1−
∑N

n=1wi,n,t so that portfolio weights sum to one.

men,t is log market equity and xn,t contains the stock characteristics used in Koijen and

Yogo (2019): log book equity, profitability, investment, market beta, and the dividend-to-
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book equity ratio.

We model the penalty term as an adjustment cost from this investor’s portfolio in the previous

quarter. In particular, we assume it costly to change the number of shares an investor holds:

Qi,n,t = AUMi,twi,n,t/Pi,n,t

↔ ∆ logQi,n,t = ∆ logAUMi,t +∆ logwi,n,t −∆ logPn,t

= Ki,t︸︷︷︸
≡∆logAUMi,t−∆log(1+

∑N
m δi,m,t)

+∆ log δi,n,t −∆men,t︸ ︷︷ ︸
≡∆Pn,t

. (21)

AUMi,t is assets under management in dollars. The second line follows from (19) and noting

that ∆ logPn,t = ∆men,t (after adjusting for stock splits). Thus, we assume there is no cost

to passive weight changes driven by price fluctuations that are not accompanied by changes

in number of shares held.

Identification The stock characteristics xn,t are assumed exogenous to latent demand

ϵi,n,t. However, market equity is endogenous to latent demand through market clearing.

Thus, we use the market equity instrument of Koijen and Yogo (2019):

m̂ei,n,t = log

(∑
j ̸=i

AUMj,t−1
1j,n,t

1 +
∑N

m=1 1j,m,t

)
,

where 1j,n,t is an indicator for if stock n is the investment universe of investor j and AUMj,t−1

is the (lagged one quarter) assets under management of investor j. One can interpret this

instrument as the counterfactual market equity of stock n if all investors held an equal-

weighted portfolio of the stocks in their investment universe. This instrument exploits only

the (lagged) wealth distribution and the investment universes of other investors, both of

which we take as exogenous. This assumption proves reasonable because investment uni-
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verses are defined by investment mandates, which are predetermined rules that don’t change

in response to current latent demand shocks. Thus, if stock n exogenously falls into the

investment universe of more or larger investors, it will face greater demand and will have

greater market equity. Following Koijen and Yogo (2019), we measure the investment uni-

verse of investor i as the set of all stocks this investor currently holds or has ever held in the

previous eleven quarters.

Estimation We estimate (20) in the cross section of each investor i’s holdings in each

quarter t using generalized method of moments (GMM). For K stock characteristics, there

are K + 3 parameters to estimate: Ci,t, αi,t, β0,i,t,β1,i,t ∈ RK . 12 Thus, we use the following

K + 3 moment conditions:

E
[
ϵi,n,t | 1̂,mei,n,t, m̂ei,n,t−1,xn,t

]
= 1.

We use the lagged market equity instrument m̂ei,n,t−1 because lagged market equity appears

in (20) via the adjustment cost term.

Following Koijen and Yogo (2019), we estimate (20) separately for each investor with at

least 1,000 strictly positive holdings in the current quarter t. We pool investors with fewer

than 1,000 holdings into groups based on quantiles of assets under management conditional

on investor type (banks, insurance companies, investment advisors, mutual funds, pension

funds, other 13F institutions, or the residual household sector). The number of groups at

12We measure Ki,t directly as in (21). In particular, we use the Davis and Haltiwanger (1992) method to
calculate approximate log changes for Ki,t and ∆ log δi,n,t:

Ki,t ≡ ∆ logAUMi,t −∆ log

(
1 +

N∑
m

δi,m,t

)
≈

AUMi,t/
(
1 +

∑N
m δi,m,t

)
−AUMi,t−1/

(
1 +

∑N
m δi,m,t−t

)
1
2

(
AUMi,t

(
1 +

∑N
m δi,m,t

)
+AUMi,t−1

(
1 +

∑N
m δi,m,t−t

))
∆ log δi,n,t =

δi,n,t − δi,n,t−1
1
2 (δi,n,t + δi,n,t−1)

.

The Davis and Haltiwanger (1992) method is the first-order approximation to the log difference and allows
a uniform treatment of both cases where δi,n,t−1 ̸= 0 and where δi,n,t−1 = 0.
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each date is set to target an average of 2,000 holdings per group.

5.3 Estimation Results

Figure 5 displays the pooled results from estimating the nonlinear asset demand system (20)

across all investors and quarters. Note that αi,t < 2 for the vast majority of investors and

quarters, which is consistent with investors becoming more price-elastic when making larger

adjsutments. Thus, this result is consistent with the concave price impact we document in

reduced-form in Section 4.

5.4 Quantifying the Importance of Concave Price Impact

To quantify the importance of the concave price impact we document, we use the estimated

demand system to conduct a simple counterfactual analysis.

We start with the equilibrium prices and holdings at the end of quarter t. Then, with stock

characteristics and prices held fixed, at the start of quarter t+1 we shock all investors’ latent

demand by an amount that would induce each investor to buy (or sell) X% of a particular

stock n (as a proportion of their end of quarter t holdings). We then calculate the new

equilibrium prices (for all stocks) that clear the market after this shock (using the algorithm

in Appendix D.2)13:

∀m : MEm,Post Shock =
∑
i

Ai,twi,m,Post Shock.

Given the counterfactual prices, we compute the price multiplier for this shock for stock n:

Mn,X =

MEn,Post Shock−MEn,Pre Shock

MEn,Pre Shock

X
,

where MEn,Pre Shock is the observed market equity at the end of quarter t.

13Following Koijen and Yogo (2019), we hold wealth fixed when computing counterfactual prices.
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Figure 5. Pooled estimation results across all investors and quarter for nonlinear asset
demand system (20). Ther vertical lines indicate AUM-weighted averages for each parameter
and investor type. These averages are calculated by first calcualting the AUM-weighted
average parameter value within each investor type and quarter, and then averaging across
all quarters.
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Figure 6. Price multipliers for different demand shock sizes calculated using the estimated
asset demand system. The solid black line displays the median multiplier across all stocks.
The shaded area represents the interquartile range for multipliers across shocks (i.e. the
lower and upper bounds are the 25th and 75th percentiles for multipliers across all stocks).

We compute Mn,X for all stocks n in the second quarter of 2015 and shock shocks X between

−10% and 10%.14

Figure 6 dispalys the median multiplier Mn,X across all stocks n for each shock size. Small

shock (X = −10 or 10 basis points) multipliers are roughly three times larger than large

shock (X = −10 or 10 percentage points) multipliers (M ≈ 10 and M ≈ 3, respectively).

6 Conclusion

In this paper, we document a new stylized fact about inelastic demand in financial markets:

larger uninformed demand shocks have smaller price multipliers. That is, we find the price

impact of uninformed demand shocks is concave in shock size.

14We are working optimize the numerical calculation of the coutnerfactual prices in order to extend this
analysis to all quarters.
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We provide evidence of this concavity using three cash flow-unrelated demand shocks from

previous work: index-reconstitution induced changes in benchmarking intensity, mutual fund

flow-induced trading, and order flow imbalance. While all three demand shocks display large

price impact, the per-unit price impact is smaller for shocks of larger magnitude.

Motivated by these findings, we propose a nonlinear asset demand system. We find the

concavity we document is quantitatively important for counterfactual analyses in financial

markets: extrapolating local price multiplier estimates may overstate the impact of large

quantity shifts on prices.

This concavity provides a new moment to discipline asset pricing and macro-finance models,

many of which rely on frictions that generate convex or linear price impact. We establish

general conditions under which concave price impact can arise. Two broad classes of mech-

anisms satisfy these conditions: those in which it is less costly to take larger positions than

smaller ones (e.g. fixed costs), and those in which investors can pay to expand their risk-

bearing capacity when presented with profitable opportunities (e.g. slow-moving capital or

costly information acquisition).

Overall, our findings illuminate an important dimension of endogenous variation in price

multipliers. Furthermore, we provide new empirical methods to study the price impact of

large demand shocks while accounting for this endogenous variation.
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APPENDIX

A Additional Theoretical Results

A.1 Example of ∂2

∂|Θ|∂ΘMC(Θ, P ) > 0: Convex Adjustment Costs

Consider the following cost function:

C(Q,P ) = λ(Q)2α,

for some constants λ > 0 and α > 1.

In this case, we have marginal cost

MC(Q,P ) ≡ ∂

∂Q
C(Q,P ) = 2αλ(Q)2α−1,

and so equilibrium price

P = E
[
D̃
]
−Θ · γV

[
D̃
]
− 2αλ(Θ)2α−1.

The price multiplier is thus:

M = − ∂

∂Θ
P = γV

[
D̃
]
+ 2α(α− 1)λ(Θ)2(α−1)

=
∂

∂Θ
P = γV

[
D̃
]
+ 2α(α− 1)λ|Θ|2(α−1).

Hence, M is increasing in supply shock size |Θ|:

∂

∂|Θ|
M = 2α(α− 1)(2α− 2)λ|Θ|2α−3 > 0

because α > 1 by assumption.

Note that this cost function satisfies ∂2

∂|Θ|∂ΘMC(Θ, P ) > 0:

∂2

∂|Θ|∂Θ
MC(Θ, P ) = 2α(α− 1)(2α− 2)λ|Θ|2α−3 > 0.
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A.2 Example of ∂2

∂|Θ|∂PMC(Θ, P ) < 0: Leverage Constraints

Assume the representative investor is subject to a “leverage constraint” — a limit on dollar

position size:

max
Q

E
[
Q
(
D̃ − P

)]
− γ

2
V
[
Q
(
D̃ − P

)]
s.t.QP ≤ α

If the constraint does not bind (QP < α), the investor demands

Q =
E[D̃]− P

γV
[
D̃
] ,

and so

P = E
[
D̃
]
−ΘγV

[
D̃
]
.

If the constraint does bind (QP ≥ α), the investor demands

Q =
α

P
.

and so

P =
α

Θ
.

The unconstrained equilibrium prevails when (by market clearing Q = Θ)

α > ΘP

= ΘE
[
D̃
]
−Θ2γV

[
D̃
]

↔ Θ < Θ− or Θ > Θ+,

where

Θ−,Θ+ =
−E

[
D̃
]
±
√(

E
[
D̃
])2

− 4αγV
[
D̃
]

−2γV
[
D̃
] ,
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and 0 < Θ− < Θ+.

So the price multiplier is

M = − ∂

∂Θ
P =

γV
[
D̃
]

,Θ < Θ− or Θ > Θ+

α
Θ2 ,Θ ∈ [Θ−,Θ+]

Thus, for sufficiently large α

α > Θ2
−γV

[
D̃
]
,

M increases at the point where the constraint binds (Θ = Θ−) and so

∂

∂|Θ|
M > 0.

We can reexpress this setup in the cost function notation of Section 2 as

max
Q

E
[
Q
(
D̃ − P

)]
− γ

2
V
[
Q
(
D̃ − P

)]
− C(Q,P ),

where

C(Q,P ) = λ(Q,P ) (α−QP )

λ(Q,P ) =

0, Θ < Θ− or Θ > Θ+

E[D̃]− α
P
γV[D̃]

P
− 1, Θ ∈ [Θ−,Θ+]

λ(Q,P ) represents the shadow cost of relaxing the leverage constraint.

Hence, marginal cost is

MC(Q,P ) ≡ ∂

∂Q
C(Q,P ) =

0, Θ < Θ− or Θ > Θ+

E
[
D̃
]
− P + α

P
γV
[
D̃
]
− 2γV

[
D̃
]
Q, Θ ∈ [Θ−,Θ+] .

and so we have

∂

∂P
MC(Q,P ) =

0, Θ < Θ− or Θ > Θ+

−1− α
P 2γV

[
D̃
]
, Θ ∈ [Θ−,Θ+] .
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Thus, as Θ increases from below to Θ− and the constraint binds (note this means |Θ|
increases since Θ− > 0), ∂

∂P
MC(Q,P ) falls from 0 to less than 0. Therefore,

∂2

∂|Θ|∂P
MC(Θ, P ) < 0

at the point where the constraint binds.

A.3 Example of ∂2

∂|Θ|∂ΘMC(Θ, P ) = ∂2

∂|Θ|∂PMC(Θ, P ) = 0: Benchmark-

ing

Let the investor’s compensation be linear combination of his absolute return and his return

relative to a benchmark (as in Pavlova and Sikorskaya (2023))

c(Q) = aQ
(
D̃ − P

)
︸ ︷︷ ︸
Absolute Return

+ b
[
Q
(
D̃ − P

)
− Q̄

(
D̃ − P

)]
︸ ︷︷ ︸

Return Relative to Benchmark

,

where Q̄ represents the benchmark holding.

Assume the investor maximizes mean-variance utility over compensation

max
Q

E [c(Q)]− γ

2
V [c(Q)] .

One can show the optimal quantity demanded is

Q =
E
[
D̃
]
− P

γV
[
D̃
]
· (a+ b)

+
b

a+ b
Q̄,

and so the equilibrium price is

P = E
[
D̃
]
−
(
Θ− b

a+ b
Q̄

)
γV
[
D̃
]
(a+ b).

The price multiplier is thus:

M = − ∂

∂Θ
P = γV

[
D̃
]
(a+ b).
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Note that the multiplier does not vary with shock size:

∂

∂|Θ|
M = 0.

Reformulating this setup in the notation of Section 2, we can write the cost function as

C(Q,P ) = E
[
Q
(
D̃ − P

)]
− E [c(Q)] +

γ

2

[
V [c(Q)]− V

[
Q
(
D̃ − P

)]]
= (1− a− b)E

[
Q
(
D̃ − P

)]
− bE

[
Q̄
(
D̃ − P

)]
+

γ

2
V
[
D̃
] [(

(a+ b)2 − 1
)
Q2 − 2(a+ b)bQQ̄

]
Marginal cost is

MC(Q,P ) ≡ ∂

∂Q
C(Q,P )

=
(
E
[
D̃
]
− P

)
(1− a− b) +

γ

2
V
[
D̃
] [

2
(
(a+ b)2 − 1

)
Q− 2(a+ b)bQ̄

]
Thus, we have

∂

∂Θ
MC(Θ, P ) =

γ

2
V
[
D̃
] [

2
(
(a+ b)2 − 1

)]
,

which is constant, so

∂2

∂|Θ|∂Θ
MC(Θ, P ) = 0.

Similarly, we have

∂

∂P
MC(Θ, P ) = −(1− a− b)

which is constant, so

∂2

∂|Θ|∂P
MC(Θ, P ) = 0.
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A.4 Example of ∂2

∂|Θ|∂ΘMC(Θ, P ) < 0: Fixed Costs

Consider the following cost function:

C(Q,P ) =

C ,Q ̸= 0

0 , Q = 0

which captures the idea of a fixed entry or adjustment (assuming the initial position is zero)

cost.

One can show that the investor’s quantity demanded is

Q =


E[D̃]−P

γV[D̃]
,
(
E
[
D̃
]
− P

)2
> 2CγV

[
D̃
]

0 ,
(
E
[
D̃
]
− P

)2
≤ 2CγV

[
D̃
]

So the equilibrium price is

P =


E
[
D̃
]
−ΘγV

[
D̃
]

, |Θ| >
√

2C

γV[D̃][
−2CγV

[
D̃
]
, 2CγV

[
D̃
]]

, |Θ| ≤
√

2C

γV[D̃]

where the price is indeterminate in the range
[
−2CγV

[
D̃
]
, 2CγV

[
D̃
]]

when 0 < |Θ| ≤√
2C

γV[D̃]
.

Thus, because there are discontinuities in price, the price multiplier M = − ∂
∂Θ

is effectively

infinite for small |Θ| (|Θ| ≤
√

2C

γV[D̃]
), but then decreases to M = γV

[
D̃
]
for large |Θ|

(|Θ| >
√

2C

γV[D̃]
). Thus,

∂

∂|Θ|
M < 0.

In the notation of Section 2, marginal cost is increasing in θ from ∞ to ∞ (−∞ to −∞ )

for 0 < Θ <
√

2C

γV[D̃]
(−
√

2C

γV[D̃]
< 0 < Θ). But when Θ becomes large (small) enough and

hits Θ =
√

2C

γV[D̃]
(Θ = −

√
2C

γV[D̃]
), marginal cost switches from increasing to decreasing (i.e.
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it decreases from infinty to 0 at |Θ| =
√

2C

γV[D̃]
). Thus,

∂2

∂|Θ|∂Θ
MC(Θ, P ) < 0

at |Θ| =
√

2C

γV[D̃]
.

A.5 Example of ∂2

∂|Θ|∂PMC(Θ, P ) > 0: Costly Information Acquisi-

tion

A.5.1 Setup

There are two periods: t = 1, 2. Period t = 1 has two subperiods: t = 1− and t = 1+. In

t = 1− information choice occurs. In t = 1+ portfolio choice occurs and the asset market

clears. In t = 2 asset payoffs are realized.

Asset: There is one asset that pays a risky dividend in period t = 2:

D̃ = D̄ + η + ϵ, ϵ ∼ N
(
0, σ2

ϵ

)
, η ∼ N

(
0, σ2

η

)
.

The asset has exogenous, stochastic supply

Θ ∼ N(0, σ2
Θ),

which should be interpreted as the residual supply the representative investor faces: the

total fixed, positive net supply minus the exogenous demand shocks of some noise traders.

The exogenous risk-free rate is normalized to zero.

Agents and Preferences: There is a representative investor who chooses his portfolio at

t = 1+ to maximize mean-variance utility over t = 2 (i.e. terminal) wealth

max
Q

E+

[
Q
(
D̃ − P

)]
− γ

2
V+

[
Q
(
D̃ − P

)]
(A.1)

Information: At t = 1−, the investor knows the supply Θ he will face at t = 1+, as well

as the asset pricing parameters D̄, σ2
ϵ , and σ2

Θ.
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However, he does not know η. He has the objectively correct prior and believes

η ∼ N
(
0, σ2

η

)
. (A.2)

The investor can pay a cost C(G) to acquire signal a noisy signal s for η at t = 1+1:

s = η + u, u ∼ N
(
0, σ2

u

)
(A.3)

G =
σ−2
u

σ−2
u + σ−2

η

.

G denotes the Bayesian gain of signal s. We assume the cost function C(G) satisfies

C
′
(G) > 0 (A.4)

C
′′
(G) > 0 (A.5)

Thus, the marginal cost of reducing uncertainty is positive (C
′
(G) > 0) and increasing

(C
′′
(G) > 0).

With signal s, the investor’s posterior distribution is

η ∼ N

(
G · s, 1

σ−2
η

(1−G)

)
. (A.6)

Since the investor does not know at t = 1− what signal s he will observe at t = 1+ , the

investor chooses G to maximize expected utility at t = 1− (which integrates over all possible

realizations of s):

max
G

E−

[
E+

[
Q
(
D̃ − P

)]
− γ

2
V+

[
Q
(
D̃ − P

)]]
− C (G) (A.7)

The investor’s beliefs are rational: his t = 1− beliefs about future prices and quantities are

consistent with the true equilibrium distributions.

Equilibrium Definition: An equilibrium is defined as a set of portfolio choices (Q), in-

formation choices (G), and asset prices (P ) such that:

1. The information choice G maximizes (A.7) given his prior beliefs about η and his

knowledge of the supply Θ.

1As in e.g. Grossman and Stiglitz (1980); Kyle (1989); Van Nieuwerburgh and Veldkamp (2009, 2010);
Kacperczyk et al. (2016); Han (2018)
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2. The portfolio choice Q maximizes (A.1) given the investor’s t = 1+ information set.

3. The asset market clears:

Q = Θ. (A.8)

A.5.2 Solving the Model

We solve the model backwards. We first fix the investor’s t = 1+ information set I+ = (s,G)

and solve for the optimal quantity Q(I+) that maximizes (A.1). We then impose market

clearing (A.8) to solve for the equilibrium price. Finally, we solve for the investor’s ex-ante

optimal gain G at t = 1− that maximizes (A.7) given the equilibrium t = 1+ quantity and

price.

Portfolio Choice at t = 1+: Let Ḡ denote the equilibrium gain chosen in t = 1−. Then

the t = 1+ information set is I+ =
(
s, Ḡ

)
, where s is the random realization of (A.3). Given

I+, the investor solves

max
Q

E+

[
Q
(
D̃ − P

)]
− γ

2
V+

[
Q
(
D̃ − P

)]
→ Q (I+) =

D̄ + Ḡ · s− P

γ
(
σ2
ϵ +

1
σ−2
η

(
1− Ḡ

)) . (A.9)

Market Clearing at t = 1+: From market clearing (A.8) we have

P = D̄ + Ḡ · s−Θγ

(
σ2
ϵ +

1

σ−2
η

(
1− Ḡ

))
. (A.10)

That is, if supply equals its mean (Θ = 0), then price equals expected terminal dividend

(D̄ + Ḡ · s). Exogenous supply shocks distort price away from this fundamental value.

Information Choice at t = 1−: At t = 1− the investor knows what supply Θ he will

face in t = 1+. He also knows the equilibrium distributions of quantity Q (I+) and price P ,

which he takes as given.

Given the equilibrium quantity (A.9), the ex-ante information choice problem (A.7) becomes

max
G

E−

1
2

(
E+

[
D̃
]
− P

)2
γV+

[
D̃
]

− C(G).
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Appendix A.5.4 shows the equilibrium first-order condition for the optimal G is:

γ

2
σ2
ηΘ

2 = C
′
(G). (A.11)

A.5.3 Model Implications

More information acquisition for larger supply shocks. The following proposition,

proven in Appendix A.5.5, establishes that the investor will choose a larger optimal gain

when faced with supply shocks of larger magnitudes.

PROPOSITION 1 (More Information Acquisition for Larger Supply Shocks). Under the

conditions (A.4) and (A.5) on C(G), the optimal gain G∗(Θ) chosen to solve the investor’s

ex-ante information choice problem (A.7) is increasing in the size of the supply shock |Θ|:

∂G∗ (Θ)

∂|Θ|
> 0. (A.12)

Intuitively, supply shocks that are larger in absolute magnitude distort price further away

from fundamental value and thus yield larger expected returns in magnitude, which then

raise the incentive to acquire information. More information acquisition at t = 1− means

the investor can more aggressively exploit the expected return in t = 1+ without exposing

himself to a lot of subjective risk, which includes both volatility V+[ϵ] and uncertainty V+[η].

Concave price impact Plugging in the equilibrium G∗(Θ) into the equilibrium price (

PROPOSITION 2 (Concave Price Impact). Under the conditions (A.4) and (A.5), the

per-unit price impact of the supply shock M (Θ) is decreasing in the magnitude of the shock

|Θ|:

M (Θ) = γ

(
σ2
ϵ +

1

σ−2
η

(1−G∗ (Θ))

)
(A.13)

∂M (Θ)

∂|Θ|
< 0. (A.14)

The intuition is that when faced with larger supply shocks that create larger expected returns,

the investor will acquire more information, thereby reducing his uncertainty and making his

demand more elastic. Since the investor more elastically absorbs the supply shock, the shock

has less price impact.
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Mapping to Section 2 Thus, in the notation of Section 2, we can write the cost function

as

C(Q,P ) = V+

[
Q
(
D̃
)]

− V
[
Q
(
D̃
)]

= Q2
(
σ2
ϵ + σ2

η(1−G(P ))
)
−Q2

(
σ2
ϵ

)
= Q2σ2

η(1−G(P ))

where V represents the variance taken under the objective measure, which only includes

volatility (V[ϵ]) and not uncertainty about the expected dividend. Note that the equilibrium

G(P ) depends on price P through the endogenous information choice (A.7).

So we have

MC(Q,P ) ≡ ∂

∂Q
C(Q,P ) = 2Qσ2

η(1−G(P ))

∂

∂|Q|
MC(Q,P ) =

−2σ2
η(1−G(P )) , Q < 0

2σ2
η(1−G(P )) , Q > 0

∂2

∂|Q|∂P
MC(Q,P ) =

∂2

∂P∂|Q|
MC(Q,P ) =

2σ2
η

∂
∂P

G(P ) , Q < 0

−2σ2
η

∂
∂P

G(P ) , Q > 0

> 0

The last line follows from Proposition 1 below, which establishes that G increases in |Θ| and
so (since Q = Θ by market clearing)

∂

∂P
G(P ) =

> 0 , Q < 0

< 0 , Q > 0

A.5.4 Proof of (A.11)

Proof. At t = 1− the investor knows the supply Θ he will face in t = 1+. He also knows the

equilibrium distributions of quantity Q (I+) and price P , which he takes as given.

Plugging in the equilibrium quantity (A.9) to the ex-ante information choice problem (A.7)

yields

max
G

E−

1
2

(
E+

[
D̃
]
− P

)2
γV+

[
D̃
]

 .
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Plugging in the posterior distribution for η at t = 1+ (A.6) and the equilibrium price (A.10)

yields

max
G

1

2γ

1[
σ2
ϵ +

1
σ−2
η

(1−G)2
]2
[(

G− Ḡ
)2

Ḡσ−2
η

+Θ2γ2

[
σ2
ϵ +

1

σ−2
η

(
1− Ḡ

)2]2]− C (G) .

Taking the first-order condition with respect to G and then imposing that in equilibrium

G = Ḡ yields
γ

2
σ2
ηΘ

2 = C
′
(G). (A.15)

A.5.5 Proof of Proposition 1

Proof of Proposition 1. Recall the equilibrium first-order condition for the investor’s ex-ante

information choice problem is
γ

2
σ2
ηΘ

2 = C
′
(G). (A.16)

Since C
′′
(G) > 0 by condition (A.4), C

′
(G) is one-to-one and, hence, invertible. Thus, the

optimal gain is

G∗(Θ) = (C
′
)−1
(γ
2
σ2
ηΘ

2
)

= (C
′
)−1
(γ
2
σ2
η |Θ|2

)
Since C

′′
(G) > 0 and C(G) is twice continuously differentiable, (C

′
)−1 is continuous and

increasing (i.e. ∂(C
′
)−1(x)
∂x

> 0. Thus,

∂G∗(Θ)

∂ |Θ|
=

∂(C−1)−1(x)

∂ |Θ|

∣∣∣∣
x= γ

2
σ2
η |Θ|2

· γσ2
η |Θ| > 0.

A.5.6 Proof of Proposition 2

Proof of Proposition 2. The multiplier is defined as

M (Θ) = γ

(
σ2
ϵ +

1

σ−2
η

(1−G∗ (Θ))

)
.

57



Taking the derivative with respect to the magnitude of the supply shock |Θ| yields:

∂M (Θ)

∂|Θ|
= −γσ2

η

∂G∗ (Θ)

∂|Θ|
< 0,

since by Proposition 1

∂G∗ (Θ)

∂|Θ|
> 0.

B Supplemental Results for Demand Measurement

B.1 Description of Russell Banding Methodology Starting in 2007

Prior to 2007, firms with market capitalizations on the May rank date that fell between ranks

1 and 1000 were assigned to the Russell 1000, and those with market caps ranked between

1001 and 3000 were assigned to the Russell 2000.

To reduce turnover, since 2007 FTSE Russell has used a “banding policy” under which there

are two separate cutoffs for stocks in the Russell 1000 and 2000 in the previous year, both

of which are based on a mechanical function of the firm size distribution in the year. Under

this policy:

• Stocks in the Russell 2000 in the previous year are assigned to the Russell 1000 if

they’re rank date market cap ranks fall between 1 and 1000− c1.

• Stocks in the Russell 1000 in the previous year are assigned to the Russell 2000 if

they’re rank date market cap ranks fall between 1000 + c2 and 3000.

To calculate c1 and c2 Russell first computes the cumulative market cap of the largest 1000

stocks (i.e. those with ranks 1 through 1000). Let C(N) represent the cumulative market

cap of the largest N stocks. c1 is calculated such that C(1000 − c1) = 0.95 · C(1000). c2

is calculated such that C(1000 + c2) = 1.05 · C(1000). That is, the band of stocks between

ranks 1000− c1 and 1000 + c2 constitutes a 5% band around the cumulative market cap of

the largest 1000 stocks.

Thus, even after the introduction of the banding policy, assignment to the Russell 1000 or

2000 is still based on a mechanical rule. After the introduction of the banding policy, this
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mechanical rule changes each year with the distribution of firm sizes.

B.2 Robustness in FIT Measurement

This section describes how we compute cleaned versions of flow-induced trading (FIT) to help

alleviate measurement error concerns. Because our main result shows that price multipliers

are smaller when the absolute value of FIT is larger, we need to alleviate the concern of

overestimating large FIT values in the tails.

Where would mismeasurements come from? Under the simplest specification where we

assume trades respond one-to-one to flows, the FIT of fund n in stock i is given by

SharesHeldn,i,t−1 × fn,t.

From this perspective, there are two main mismeasurement concerns, and we tackle them in

turn.

1. Heterogeneous trading response to flows. Trades respond less than one-to-one

to flows, and this may be especially true when flows are large or when pre-existing

positions are large. When a fund faces large inflows, it may use a larger fraction of

the flows to buy new stocks, which reduces the need to purchase stocks in the existing

holdings (e.g. Pollet andWilson, 2008; Lou, 2012). Further, for diversification purposes,

it may reduce its purchase if a stock already occupies a large part of the portfolio (Chen,

2024). Both of these considerations may lead us to over-estimate large FIT values.

We address this by explicitly estimating heterogeneous trade-to-flow responses. We

estimate a panel regression of trades on dummy variables:

Traden,i,t =
∑
b

∑
f

βb,f · Iwn,i,t−1 bin b × Ifn,t bin f + ϵm,i,t (B.1)

where Traden,i,t =
SharesHeldn,i,t

SharesHeldn,i,t−1
− 1 and wn,i,t−1 is the lagged portfolio weight of stock

i for fund n. To study heterogeneous responses, we sort the sample by fund flows into

f = −20, ..., 0, ..., 20 bins, with the first (last) 20 bins covering the flows below -1%

(above 1%) realizations, and bin 0 is defined by flowj,t ∈ [−1%, 1%]. Panel (a) of

Figure B.1 plots the average flow by bins and show that they cover a large range from

approximately -30% to +100%. Similarly, for each fund in each period, we sort its
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stock holdings by the existing portfolio weight into b = 1, ..., 20 bins. To reduce the

impact of outliers due to “dividing by a small number” in the dependent variable, we

estimate a weighted regression with weights equal to wn,i,t−1.
2

Panel (b) of Figure B.1 plots the point estimates of βb,f for bins b = 1, 10, and 20. The

results is consistent with the idea that, when facing large in flows, funds tend to trade

less than one-to-one in stocks that they already have large holdings in. This effect is

less pronunced for out flows, a finding that is consistent with Lou (2012).

To account for the heterogeneity of trade-to-flow responses, we compute FIT as:

FITi,t =
∑
fund n

SharesHeldn,i,t−1

Share Outstandingi,t−1

· β(wn,i,t−1, fn,t)︸ ︷︷ ︸
trade response

where the heterogeneous responses β(wn,i,t−1, fn,t) are based on the estimates in re-

gression (B.1). Specifically, we first sort holdings into 20 bins by wn,i,t−1 for each

fund-quarter, and then apply a third-order polynomial-estimated curve based on the

regression estimates.

2. Winsorize fund flows. Another possible concern is that the extreme fund flows

may be misestimated. To alleviate this concern, we recompute FIT after winsorizing

1%, 5%, or 10% of fund flows, with equal fraction of winsorization on each side. The

winsorization thresholds are illustrated in Panel (c) of Figure B.1. The black line plots

the density of fund flows, and the colored vertical dashed lines represent the cutoffs.

By removing extreme values of fund flows, we ensure that our FIT meaures are not

subject to mismeasured large flow values.

Panel (d) of Figure B.1 shows the effect of applying these cleaning and winsorization steps.

We sort the sample into 100 bins by “raw FIT,” which does not winsorize flows and assumes

a one-to-one trade-to-flow response, and we plot it on the horizontal axis. On the vertical

axis, the red line plots the average FIT after taking into account heterogeneous trade-to-flow

responses. The remaining lines plot the results after further applying fund flow winsorization.

The plot suggests that applying these cleaning steps serves to gradually dampen the large

values of FIT.

2To control for the fact that, even without flows, portfolio weights tend to mean-revert — that is, the
largest (smallest) positions tend to be reduced (increased) subsequently — we estimate a first-stage regression
where we regress the dependent variable on indicators of existing portfolio weight bin b. We use the resulting
residuals as the dependent variable in regression (B.1).
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(a) Fund flow by bin (b) Trade response to flow

(c) Fund flow winsorization (d) Comparing FIT measures

Figure B.1. Cleaning the flow-induced trading (FIT) measure

Panel (a) plots fund flows by bins. Panel (b) plots the average fund trade as a function of fund flows by the
size of the pre-existing portfolio weights, and the dashed diagonal line is the 45 degree line. Panel (c) plots
the kernel denstiy of fund flows, and the vertical dashed lines represent the various winsorization cutoffs.
Panel (d) plots the cleaned versions of FIT against the “raw FIT” which does not winsorize fund flows and
assumes that trades respond one-to-one to flows.
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B.3 Cleaning the OFI Measure

This section describes how we refine the order flow imbalance (OFI) measure. We remove

days with more information arrival based on three measures.

The first information measure is earnings announcement. We obtain quarterly earnings

annoucement days from IBES and Compustat (variable “rdq”), and follow DellaVigna and

Pollet (2009) to use the earlier of the two in case of disagreements. To gauge the amount

and duration of information releases, Panel (a) of Figure B.2 plots the average absolute

value of stock returns for days around earnings. The results are consistent with substantial

information revelation on and also for up to two days around the earnings days.

The next two information measures are the number of analysts issuing updates in IBES and

the number of news articles from Ravenpack. These two measures also have incremental

power in explaining return variation. To see this, we sort days in each stock-quarter into

quintiles based on these two measures, and plot the average absolute value of daily returns

in Panels (b) and (c) of Figure B.2. The results suggest there is also information releases

when these measures are in their top quintiles. It is worth explaining that both information

measures are quite sparse, and especially for small firms, so much of the bottom four quintiles

have zero updates based on both measures.

Based on the discussions thus far, we remove days with more information releases before

computing quarterly OFI. Specifically, we remove all t−3, ..., t+3 days around each earnings

day t, as well as days in the top quintiles based on IBES or Ravenpack updates. All results

in the main paper use this refined OFI measure, but our results are robust to not doing this

refinement. As an illustration, Panel (d) of Figure B.2 plots the interquartile range of the

cleaned OFI measure against the raw OFI.
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(a) Volatility around earnings (b) Volatility by IBES

(c) Volatility by Ravenpack news (d) Before vs. after cleaning

Figure B.2. Cleaning the order flow imbalance (OFI) measure

Panels (a) to (c) plot the average absolute value of daily returns by information indicators. Panel (a) examines
the days around earnings events. In Panels (b) and (c), we sort days in each stock-quarter into quintiles
based on the number of IBES analyst updates and the number of Ravenpack news articles, respectively.
Panel (d) plots the interquartile range of the cleaned OFI where days with more information are removed
against the raw OFI without cleaning.
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C Additional empirical results

C.1 Supplements to Section 4

Dependent variable: stock return ri,t

d = BMI FIT OFI

(1) (2) (3)
di,t 2.17∗∗∗ 4.57∗∗∗ 3.28∗∗∗

(0.68) (0.61) (0.14)
di,t × |di,t| −68.13∗∗∗ −47.00∗ −14.42∗∗∗

(25.37) (25.70) (0.68)

Controls Y Y Y
Time FE Y Y Y

Obs 9,910 544,662 529,619
Adj R2 0.163 0.162 0.202
Marginal R2 of demand 0.005 0.004 0.048

Table C.1. Interacted price impact regressions
We estimate panel regressions of stock returns on demand and demand interacted with its absolute value.
The regressions control for commonly used stock characteristics and Fama-French 12 industry indicators as
described in Section 3. We also control for time fixed effects, and cluster standard errors by time and stock.
Column (1) reports results using the BMI measure of Pavlova and Sikorskaya (2023) and monthly returns.
Columns (2) reports results using quarterly returns, whereas the demand is based on the FIT measure of
Lou (2012) and the OFI measure in Li and Lin (2023), respectively. Levels of significance are presented as
follows: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01.

C.2 Price multipliers implied by event studies

To obtain estimates of price multipliers for large demand or supply shocks, we compute

the multipliers implied by existing event studies. Specifically, companies announce buy-

back/issuance plans, and these events create contemporaneous price impacts at the an-

nouncement time. In typical event studies, researchers focus on the price movements on the

day of the announcement, which helps isolate price movements induced by the announce-

ments.

These events are associated with demand shocks that are much larger than existing studies

for estimating price multipliers. For stock buybacks, we use estimates from Ikenberry et al.

(1995) where the average demand shock is +6.64%, and the resulting average price effect is

+3.54%, which implies a price multiplier of 3.54%/6.64% ≈ 0.53. For stock issuances, we use

estimates from Asquith and Mullins Jr (1986) where the average demand shock is -8.71% of

shares outstanding, but the average price impact is only -2.7%. The implied price multiplier

is 2.7%/8.71% = 0.31. Both of these are significantly smaller than that estimated from local

demand shocks (e.g. Shleifer, 1986; Koijen and Yogo, 2019). While these studies are from
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an earlier period, subsequent studies have found approximately similar results (e.g. Eckbo

et al., 2007). Overall, the event study-based results are also consistent with price multipliers

being smaller for larger demand/supply shocks.

D Supplements to Nonlinear Asset Demand System

D.1 Derivation of Characteristics-Based Demand Function

Starting with investor i’s optimization problem

max
Qi

Q
′

iEi [D−P]− γi
2
Q

′

iVi [D−P]Qi − πi ∥Qi −Bi∥αi

αi
,

taking the firt-order condition with respect to Qi yields

0 = Ei [D−P]− γiVi [D]Qi − πi(αi − 1) |Qi −Bi|αi−1 sign(Qi −Bi)

where |Qi −Bi|αi−1 = [|Qi,n −Bi,n|αi−1]n and sign(Qi −Bi) = [sign(Qi,n −Bi,n)]n.

Plugging in the factor structure in cash flow expectations (16) yields:

0 = µi −P− γi

(
ρiρ

′

i + σ2
i I
)
Qi − πi(αi − 1) |Qi −Bi|αi−1 sign(Qi −Bi)

= µi −P− γiρi ρ
′

iQi︸︷︷︸
≡ci

−γiσ
2Qi − πi(αi − 1) |Qi −Bi|αi−1 sign(Qi −Bi).

Plugging in the expressions for µ and ρ yields for each stock n:

0 = Φµ′

i xn + ϕµ
i − Pn − γ

(
Φρ′

i xn + ϕρ
i,n

)
ci − γiσ

2Qi,n − πi(αi − 1) |Qi,n −Bi,n|αi−1

Rearranging, for each stock n we have:

Qi,n = β0,i︸︷︷︸
≡− 1

γσ2

Pn + β
′

1,i︸︷︷︸
≡

Φ
′
µ,i

−γρ
′
QiΦ

′
ρ,i

γσ2

xn − λi︸︷︷︸
≡ πα

γσ2

|Qi,n −Bi,n|(αi−1) sign(Qi,n −Bi,n) + ϵi,n︸︷︷︸
≡

ϕ
′
µ,i

−γρ
′
Qiϕρ,i

γσ2

.

D.2 Calculating Counterfactual Prices

To calculate counterfactual prices, we adapt the algorithm from Koijen and Yogo (2019).
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We want to solve the fixed point problem

me = f(me) ≡ log

(∑
i

Aiwi(me)

)
(D.1)

where me is the vector of log market equity for each stock and wi(me) is the vector of

inside asset portfolio weights for investor i, which is a function of the log market equity of

all stocks.

We solve this fixed point problem with the following algorithm with two nested loops

1. Given a guess for the log market equity vector at iterature k (mek), solve (20) nu-

merically to find δi,n,k for each investor i and stock n and calculate the corresponding

portfolio weight vector for each investor i wi(mek).

2. Next, calculate the partial derivative of δi,n,k with respect to log market equity at the

current guess for the log market equity mek:

ζi,n,k ≡
∂δi,n,k
∂men,k

=
β0,i,t + (αi − 1)|Ki,t +∆ log δi,n,k −∆men,k|αi−1

1 + (αi − 1)|Ki,t +∆ log δi,n,k −∆men,k|αi−1
,

where β0,i,t, Ki,t, and αi,t are fixed parameters from the estimated demand system in

quarter t.

3. Now, holding ζi,n,k fixed, use Newton’s method to solve (D.1) iteratively:

δi,n,k,s = δi,n,k + ζi,n,k

 men,k,s︸ ︷︷ ︸
Inner loop guess

− men,k︸ ︷︷ ︸
Outer loop guess


wi,n,k,s =

δi,n,k,s

1 +
∑N

m δi,m,k,s

mek,s+1 = mek,s +

(
I− ∂f(mek,s)

∂me

)−1

(f(mek,s)−mek,s) (D.2)

where we approximate the Jacobian with only its diagonal elements as in Koijen and

Yogo (2019)

∂f(mek,s)

∂me
= diag

(
min

{∑l
i=1 ζi,n,kAiwi,n,k,s(1− wi,n,k,s)∑l

i=1Aiwi,n,k,s

, 0

})
.

The minimum bounds the Jacobian away from I and prevents the step in the Newton’s
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method (D.2) iteration from exploding. Iterate this step until convergence (usually

fewer than 100 iterations are required). Note that k indexes the outer loop (steps 1

and 2), while s indexes this inner loop (step 3).

4. Return to step 1.

This nested-loop procedure reduces the number of times the δi,n,t must be solved for numer-

ically, and so significantly reduces the computational cost. Usually fewer than 100 iterations

of the outer loop are required.
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