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Abstract

El Niño cycle is a slow-moving global climate shock that hits multiple countries over

time in relatively predictable patterns, affecting economic growth and international

trade patterns across countries. Examining over different El Niño cycles, we discover

a striking pattern of cross-sectional predictability in foreign exchange spot and excess

returns. Currencies that appreciated (depreciated) under previous El Niño cycles tend

to appreciate (depreciate) when a new El Niño cycle hits. This cross-sectional predictive

information arises from the heterogeneous effects of El Niño on countries’ business cycle

conditions, resulting in heterogeneous exposures of currencies to El Niño cycles.
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1 Introduction

The El Niño-Southern Oscillation (ENSO) cycle is a major climate phenomenon that has

widespread effect on global weather patterns, ecosystems, agriculture and economies. It is a

natural climate pattern that involves the warming of the Central and Eastern Pacific Ocean.

The warming of the overlying air leads to rising air that sets up atmospheric circulation, with

warm moisture on one side of the ocean and cool dry air on another, leading to a cascade of

global weather effects over time. The ENSO cycle is associated with droughts and floods that

impact agriculture, fisheries, and tourism, and has been found to impact economic growth

and inflation heterogeneously in different countries (e.g. Cashin et al., 2017).

Given the widespread impact of the ENSO cycle on countries’ future economic funda-

mentals, and given that theories of exchange rate determination postulate a link between

exchange rates and economic fundamentals, it is surprising that there is no research on the

predictive link between the ENSO cycle and foreign exchange returns. This paper fills this

gap. Examining different ENSO cycles in an out-of-sample setting from 2000 to 2023, we

discover a strong pattern of predictability in the foreign exchange market. We sort currencies

into those that have performed best (in the top quintile) versus those that have performed

worst (in the bottom quintile) under previous El Niño cycles. We find that the top quintile

currencies tend to appreciate when new El Niño cycles hit and generate high average excess

returns, while the bottom quintile currencies tend to depreciate when new El Niño cycles

hit and generate low average excess returns. These results are robust to using either con-

tinuous sea surface temperature (SST) anomalies or discrete ENSO indicators as alternative

definitions of El Niño. Moreover, by decomposing currency excess returns into spot returns

and forward premia (or interest rate differentials), we find that a large part of the currency

excess returns stem from spot returns rather than forward premia, implying that El Niño

cycles predicts the cross-sectional variation in spot currency returns.

We further assess how the abnormal returns from the El Niño cycle differ from existing

factors in the literature. To that end, we compare different existing FX risk factors as defined
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by Nucera et al. (2024) with the currency excess returns of an ENSO strategy that buys the

currencies with high exposure and sells the currencies with low exposure to ENSO cycles.

These FX risk factors include carry (e.g. Lustig et al., 2011; Menkhoff et al., 2012a), short-

term and long-term momentum (e.g. Asness et al., 2013; Menkhoff et al., 2012b), currency

value (e.g. Kroencke et al., 2014; Menkhoff et al., 2017), net foreign assets and liabilities

in domestic currencies (Della Corte et al., 2016), term spread (Bekaert et al., 2007; Lustig

et al., 2019), long-term yields (Ang and Chen, 2010), and output gap (Colacito et al., 2020).

We refer to these strategies as Carry, ST and LT Mom, Value, NFA, LDC, Term, LYld, and

GAP. We find that the ENSO portfolio shows a negative correlation with the value factor

(-0.53), but it is not significantly correlated with any of the other factors.

Climate scientists typically classify climate regimes into El Niño cycle (usually considered

more unfavorable), La Niña cycle (usually considered more favorable), and neutral state. As

placebo tests, we compare the foreign exchange predictability results under El Niño vs.

results under La Niña cycle as well as neutral states. We find that predictability only occurs

during El Niño states. Also, we evaluate the average excess returns of other currency factors

under El Niño, La Niña and neutral regime. We find that several factor returns, including

carry, momentum, LDC, Term and ENSO are stronger during El Niño cycles, compared to

other time periods.

We further explore the investment implications of our findings from the perspective of

a currency investor that employs a broad set of trading strategies. Thus, we construct

the optimal tangency portfolio incorporating ENSO-based FX strategies and analyze its

risk-return characteristics. Our results indicate that including ENSO-related information

improves the Sharpe ratio of a currency portfolio, suggesting that investors could enhance

investment performance by integrating ENSO-based signals into their trading strategies.

This result suggests that the systematic effects of ENSO cycles on different economies create

an exploitable investment strategy whose returns are largely uncorrelated with canonical

investment strategies in foreign exchange.
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Additionally, we evaluate how an ENSO factor – constructed as the excess return from the

proposed ENSO strategy – fares in explaining FX factor returns. We examine the pricing

errors from time series regressions of each of the FX factor returns on dollar, carry, and

ENSO. We find that including ENSO a factor helps to reduce pricing errors in almost all

portfolios. We conduct a similar exercise with cross sectional regressions. We again find that

including ENSO helps to reduce pricing errors. A test based on Kan et al. (2013) further

confirms that the ENSO factor enhances the cross-sectional R2.

To further test the robustness of these findings, we implement several additional checks.

First, instead of currency returns, we examine the ENSO effect on international stock returns

using MSCI international stock market indices. Investigating a theta-sorted portfolio of

international stock returns, we find highly significant results for El Niño cycle, but only if

we use “USD returns,” suggesting a strong “currency-ENSO” effect. Second, we find that

the El Niño effect is present in both pre- and post-2000 periods, though stronger in recent

years. Third, we repeat the analysis using GBP instead of USD as the base currency and

find similar results, indicating that our findings are not driven by a specific currency base.

Fourth, we repeat the analysis based on developed market currencies only, and find the

results to be robust, alleviating concerns that small emerging market currencies drive our

results. Fifth, we find that the results are not driven by a small set of currencies that are

perpetually in the long or short portfolios. Instead, currencies appear in different portfolios

over time. Sixth, we find that portfolio turnover of the ENSO strategy is lower than that of

carry or momentum strategies, thus alleviating concerns that transaction costs might erode

its performance. Lastly, we use different currency data sample filters and find our results to

be robust.

A natural question that arises from the findings is the underlying macroeconomic mech-

anism driving these results. Colacito et al. (2020) show that macroeconomic conditions can

be captured by output gap, which is defined as the difference between a country’s actual and

potential level of output, using industrial production data. Their study finds that currencies
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associated with high output gap—indicating stronger economies—tend to outperform those

with low output gap, which correspond to weaker economies.

Building on their approach, we use the output gap to assess economic conditions across

our set of countries. Our analysis reveals that the long positions in ENSO portfolios tend

to have higher output gaps in the future, while the short positions are associated with lower

output gaps. This provides an intuitive economic mechanism for our finding. We take long

positions in currencies that have performed well in previous El Niño cycles, and it turns out

that these tend to come from countries with improving or stronger economic fundamentals.

Conversely, we short currencies that have underperformed in previous El Niño cycles, which

turn out to be countries with weaker economic prospects going forward. This suggests that

the ENSO portfolios naturally align with differences in future macroeconomic strength in

the cross section of countries, establishing a link between currency predictability and future

economic conditions.

Related literature. Overall, our findings contribute to the growing literature on cli-

mate finance and asset returns. To the best of this knowledge, this is the first study to

establish a link between global climate cycles and foreign exchange returns. Given climate

scientists’ predictions that future El Niño cycles will become more frequent and severe, our

research highlights the growing importance of climate-based financial risk management. Fu-

ture research could explore whether ENSO cycles also affect other asset classes, such as

global equity markets, fixed income securities, or even cryptocurrency markets.

Our study contributes to the growing literature on the economic impact of the ENSO

cycle. Prior research has documented the macroeconomic effects of El Niño, particularly its

influence on output growth. As El Niño increases flood risks and affects public health (Ward

et al., 2014; Kovats et al., 2003), it generally reduces productivity and hampers economic

growth. Smith and Ubilava (2017) quantifies these losses, attributing $4.1 trillion and $5.7

trillion in global income reductions to the 1982–83 and 1997–98 El Niño events, respectively.

Callahan and Mankin (2023) further point out that the negative economic effect of ENSO
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shocks is nonlinear, and while La Niña can bring some beneficial effect, they are generally

weaker and less significant than the negative impact of El Niño. The economic consequences

of El Niño also vary by region. In larger, more diversified economies, the positive and

negative effects tend to offset each other, whereas smaller and less diversified developing

countries are more vulnerable (Laosuthi and Selover, 2007; Cashin et al., 2017). However,

despite the predominant negative impact, Cashin et al. (2017) note that some countries may

experience a net positive effect on real output growth from El Niño cycle.

Another focus of the existing literature is how El Niño events affect commodity markets.

Brunner (2002) finds that El Niño increases commodity price volatility, typically driving

prices higher due to supply disruptions. Ubilava (2018) confirms the link between sea sur-

face temperature anomalies caused by ENSO shocks and agricultural commodity prices.

Furthermore, incorporating ENSO factors into predictive models can improve commodity

return forecasts, as suggested by Kitsios et al. (2022). Building on these insights into the

economic and trade related consequences of El Niño, our study examines its impact on for-

eign exchange returns. This area remains unexplored, and our findings provide valuable

insights for market participants in assessing climate-related risks in the currency market.

Our research adds to the vast literature on foreign exchange predictability. This literature

emphasize the roles of carry (e.g. Lustig et al., 2011; Menkhoff et al., 2012a), short-term

and long-term momentum (e.g. Asness et al., 2013; Menkhoff et al., 2012b, Zhang (2022)),

currency value (e.g. Asness et al., 2013; Kroencke et al., 2014; Menkhoff et al., 2017), net

foreign assets and liabilities in domestic currencies (Della Corte et al., 2016), term spread

(Bekaert et al., 2007; Lustig et al., 2019), long-term yields (Ang and Chen, 2010), and

output gap (Colacito et al., 2020).1 Notably, the foreign exchange literature has not taken

into account the pervasive impact of climate cycle. Our paper is the first to bring the most

1Our paper also complements recent evidence that real-side quantities forecast currency risk premia. Ma
and Zhang (2023), for example, show that the U.S. residential-to-nonresidential investment share predicts
dollar (and bilateral) excess returns via a nontradables-price channel. We instead exploit an exogenous,
forecastable climate cycle (El Niño) to form country-specific exposures that sort currencies by expected spot
appreciation in El Niño states.

5



important global climate cycle into the foreign currency literature.

Previous research has shown that climate risks are priced into the equity markets. For in-

stance, Engle et al. (2020) develop a climate risk hedge portfolio using climate change news,

suggesting that climate risk can be an asset pricing factor. Similarly, rising temperature and

increased drought risks have also reflected in the stock prices (Ravi Bansal and Ochoa, 2019;

Hong et al., 2019). More recently, Lemoine and Kapnick (2024) find that improved fore-

casting of El Niño reduces firms’ exposure to the climate shock in the equity market. Given

these findings, it is natural to see if climate risk factors would influence foreign exchange

market as well, though this remains underexplored. We fill in this gap and provide the first

evidence that climate cycle has important impact on foreign exchange markets.

The remainder of the paper is as follows. Section 2 describes the data, the construction

of currency excess returns, and the empirical methodology for identifying ENSO cycles and

estimating their effects. Section 3 presents the main results on ENSO portfolio performance,

decomposition of returns, and robustness to various risk factors. Section 4 explores the eco-

nomic mechanism linking ENSO exposure to future macroeconomic fundamentals. Section

5 concludes.

2 Data and Methodology

2.1 Currency Excess Returns

Our data sample covers the period from January 1990 to December 2023. We obtain both

spot rates and 1-month forward rates relative to the U.S. dollar (USD) from Datastream.

We use data from the first 10 years (1990 to 1999) for in-sample analysis and the initial

estimation of currency exposures to El Niño cycles. We then use data from 2000 to 2023 for

out-of-sample analysis.

Adopting the perspective of a U.S. investor, the exchange rate is defined as the number

of USD per unit of foreign currency (FCU), expressed as USD/FCU. Consequently, a rise
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in the exchange rate indicates an appreciation of the foreign currency. We rely on monthly

data, using end-of-month FX rates spanning from January 1990 to December 2023. The

dataset includes 49 currencies,2 with 15 classified as belonging to developed economies based

on established definitions in previous research (e.g., Lustig et al., 2011; Menkhoff et al.,

2012a). The remaining currencies are classified as belonging to emerging markets. However,

the currency universe is not constant over time, as data for some currencies are unavailable

from the start of the sample and some currencies exit the sample in 1999 after the launch of

the euro, resulting in an unbalanced panel of currencies.

We use s and f to denote the log of the spot and forward nominal exchange rate. Following

Lustig and Verdelhan (2007), we define the log excess return of currency c at time t + 1 as

RXc,t+1 = ∆sc,t+1+ic,t−ius,t ≈ sc,t+1−fc,t where ic,t and ius,t denote the foreign and domestic

nominal interest rates over a one-period horizon. This is the return for buying foreign

currency (fc) in the forward market at time t and then selling it in the spot market at time

t+1. Under the covered interest parity (CIP) condition, fc,t = log(1+ius,t)−log(1+ic,t)+sc,t,

implying that the forward discount is equal to the interest rate differential (sc,t − fc,t ≈

ic,t − ius,t). We compute FX excess returns using forward rates rather than interest rate

differentials for two main reasons. First, marginal investors (such as, e.g., hedge funds and

large banks) that are responsible for the determination of exchange rates trade mostly using

forward contracts (e.g., Koijen et al. 2018). Second, for many countries, forward rates

are available for much longer time periods than short-term interest rates. It is reasonable,

however, to exclude data points when CIP is strongly violated, and we do so.3 We report

the summary statistics in Table A1 in the Internet Appendix.

2The countries include Australia, Austria, Belgium, Brazil, Bulgaria, Canada, Croatia, Cyprus, Czech
Republic, Denmark, Egypt, euro area, Finland, France, Germany, Greece, Hong Kong, Hungary, Iceland,
India, Indonesia, Ireland, Israel, Italy, Japan, Kuwait, Malaysia, Mexico, Netherlands, New Zealand, Norway,
Philippines, Poland, Portugal, Russia, Saudi Arabia, Singapore, Slovakia, Slovenia, South Africa, South
Korea, Spain, Sweden, Switzerland, Taiwan, Thailand, Ukraine, the United Kingdom, and Turkey.

3Specifically, we apply the same data filters as in Nucera et al. (2024). The filters include countries with
the following periods: Egypt (01/01/2011 – 30/08/2013; 03/10/2016 - 28/02/2017; 1/1/2023 – 31/12/2023);
Indonesia (01/12/1997 – 31/07/1998; 01/02/2001 – 31/05/2005); Malaysia (01/05/1998 – 30/06/2005);
Russia (01/12/2008 – 30/01/2009; 03/11/2014 – 27/02/2015); South Africa (01/08/1985 – 30/08/1985;
01/01/2002 – 31/05/2005); Turkey (01/11/2000 – 30/11/2001); and Ukraine (03/11/2014 – 31/12/2023).
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2.2 Definition of ENSO Cycle

We determine ENSO cycles using sea surface temperature (SST) anomalies. Traditionally,

scientists have categorized the strength of El Niño by identifying SST anomalies that surpass

a predetermined threshold in a specific part of the equatorial Pacific. The Niño 3.4 region

is the most frequently analyzed area, with the standard threshold being an SST anomaly

of +0.5°C or higher. Since this region includes the western portion of the equatorial cold

tongue, it effectively captures significant SST variations and gradients that influence deep

tropical convection and atmospheric circulation patterns. A commonly applied criterion for

defining an El Niño event is that the 3-month running average SST anomalies, also known

as the Oceanic Niño Index (ONI), must exceed this threshold level.4

Therefore, we identify the onset of El Niño cycles based on SST anomalies, defined as

the difference between observed SST and the long-term average SST for the same month

over the past 30 years. According to the official NOAA description, “Warm and cold phases

are defined as a minimum of five consecutive 3-month running averages of SST anomalies

(ERSST.v5) in the Niño 3.4 region surpassing a threshold of +/- 0.5°C.” However, we relax

the requirement of five consecutive observations to allow for more timely detection of ENSO

phases. Since the El Niño cycle is global in nature, rather than country-specific, we apply

its onset uniformly across all countries.

[Insert Figure 1 Here]

This figure shows the ONI over time, tracking the average SST anomalies in the Niño 3.4

region over three months. While El Niño occurs when the SST anomalies are consistently

above +0.5°C for consecutive 3-month periods, La Niña happens when the SST anomalies

are consistently below -0.5°C for the same duration. The ONI helps identify these warm (El

4See, https://www.ncei.noaa.gov/access/monitoring/enso/sst. A necessary condition for the development
and persistence of deep convection (enhanced cloudiness and precipitation) in the Tropics is that the local
SST be 28°C or greater. Once the pattern of deep convection has been altered due to anomalous SSTs, the
tropical and subtropical atmospheric circulation adjusts to the new pattern of tropical heating, resulting in
anomalous patterns of precipitation and temperature that extend well beyond the region of the equatorial
Pacific.
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Niño) and cold (La Niña) phases based on these temperature thresholds. As we can see from

the figure, the El Niño cycle occurs every 2 to 7 years on average, but not according to a

regular schedule. An El Niño cycle typically lasts 9 to 12 months, but can last up to several

years.

2.3 Empirical Methodology

The ENSO cycle exerts heterogeneous macroeconomic effects across countries, influencing

productivity, terms of trade (via exports and imports), and overall growth prospects. These

asymmetries, in principle, should be reflected in the valuation of currencies.5 This paper ex-

amines whether predictable fluctuations in the ENSO cycle translate into systematic patterns

in currency excess returns. If markets fully internalized the implications of the ENSO cy-

cle—whose dynamics are well-studied and forecastable by climate scientists—then exchange

rate movements should already reflect this information, and no excess return predictability

would arise. However, our results suggest otherwise: currency returns display cross-sectional

predictability based on prior exposures to ENSO, indicating that markets may not fully

incorporate climate-related information into currency pricing.

To demonstrate this, we rank 49 currencies based on their return sensitivity to the ENSO

cycle, estimating this sensitivity as follows:

RXct = αc + θENSO
c ENSOt + ect (2.1)

where ENSOt is an indicator variable derived from the three-month moving averages of

SST anomalies in the Niño 3.4 region, with a threshold of +/− 0.5°C. Specifically, we define

ENSOt = 1 when the three-month running SST anomalies exceeds +0.5°C and ENSOt =

−1 when it falls below −0.5°C; otherwise ENSOt = 0. For each month τ and currency c,

θENSO
c is estimated using 10 years of rolling sample (τ − 120 ≤ t < τ). Currencies are then

5See, e.g., Colacito et al. (2020), Della Corte et al. (2016), Lustig et al. (2019), and Menkhoff et al. (2017).
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sorted into 5 portfolios based on θENSO
c , and we compute the summary statistics of currency

excess returns in the subsequent month.

In addition to the baseline specification (2.1) we explore different model variations as

in (2.2) to (2.4) to assess the robustness of theta estimates under alternative controls. The

regressions are:

RXct = αc + βCarry
c Carryt + θENSO

c ENSOt + ect (2.2)

RXct = αc + βCarry
c Carryt + βMomST

c MOMSTt + θENSO
c ENSOt + ect (2.3)

RXct = αc + βCarry
c Carryt + βMomLT

c MOMLTt + θENSO
c ENSOt + ect (2.4)

where RXct is the excess return of currency c at time t, Carryt is the currency carry fac-

tor, ENSOt is an indicator variable derived from anomalous sea surface temperature, and

MOMSTt and MOMLTt correspond to the short-term and the long-term currency momen-

tum factors, respectively.

3 Results on ENSO Portfolio Performance

Having established our empirical framework for estimating currencies’ exposures to the

ENSO cycle, we now examine how these exposures relate to future currency performance.

Specifically, we form portfolios based on currencies’ estimated sensitivities to ENSO and

analyze their subsequent excess returns. This section presents the main empirical findings

on portfolio performance, investigates the sources of return predictability, and evaluates the

robustness of the ENSO effect across different climate regimes and control variables.

3.1 ENSO Portfolio Performance

We begin our analysis by examining the returns of portfolios formed on currencies’ estimated

sensitivities to the ENSO cycle. Panel A of Table 2 reports results relying on the baseline
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specification (2.1), which includes only the ENSO indicator as a predictor of currency excess

returns. We report results considering El Niño, La Niña and Neutral states, separately and

jointly (the “All” column). The high-minus-low (HML) portfolio—constructed as the re-

turn spread between currencies in the top and bottom quintiles of ENSO exposure (θENSO
c )

—earns an average excess return of approximately 3.75% per year across all three climate

regimes. However, the bulk of this return is concentrated during El Niño episodes, where

the average excess return rises to 7.16% per year, and is statistically significant. In contrast,

returns during La Niña and neutral periods are markedly lower and not statistically distin-

guishable from zero at the 5% significance level. This pattern indicates that currencies that

have historically performed well during prior El Niño cycles tend to do so again when a new

El Niño cycle occurs, even though these climate events are to some extent forecastable.

Next, Panels B through D of Table 2 examine whether the ENSO return predictability

persists after controlling for other well-known currency factors. Specifically, Panel B in-

corporates the currency carry factor (specification 2.2), and Panels C and D further adds

short-term momentum and long-term momentum, respectively (specification 2.3 and 2.4).

Across all three panels, we find that the ENSO-based HML portfolio continues to generate

economically meaningful and statistically significant excess returns during El Niño phases.

Adding these additional controls does not change the results qualitatively, reinforcing the

view that the ENSO cycle contains predictive information for the cross-section of currency

excess returns that is not fully captured by conventional risk factors such as carry and

momentum.

[Insert Table 1 Here]

Thus far, in Table 1, we present various estimates of ENSO sensitivity using θENSO
c ,

which is derived from regressions based on the discrete ENSO indicator. This specification

relies on a threshold-based definition of the El Niño cycle, where ENSOt is constructed

from the three-month moving average of sea surface temperature (SST) anomalies in the
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Niño 3.4 region.6 To examine the robustness of our results to alternative ENSO definitions,

we consider a continuous measure of anomalous SST and re-estimate currency sensitivities

using the following regression specification:

RXct = αc + θSSTc SSTt + ect (3.1)

Table 2 shows that the results are highly consistent with those in Table 1, confirming that

our main findings are robust to the use of a continuous SST-based ENSO measure. Figure

2 further illustrates this by plotting the cumulative returns of high-minus-low θENSO/SST

portfolios constructed from both ENSOt and SSTt exposures. The figure shows that the

majority of cumulative returns for both θENSO- and θSST -sorted portfolios are realized dur-

ing El Niño phases, and the return patterns remain stable over time. This supports the

conclusion that the observed return predictability is closely tied to ENSO-related climate

variation, regardless of whether ENSO is defined using discrete thresholds or continuous SST

anomalies.

[Insert Table 2 and Figure 2 Here]

Next, we analyze the sources of currency return predictability by examining whether it

arises from the forward discount or spot returns. This distinction is important as it helps us

pinpoint the fundamental drivers behind currency return predictability. Specifically, it allows

us to determine whether the predictability is primarily driven by interest rate differentials

or by predictable shifts in spot exchange rates.

Table 3 presents the decomposition of currency excess returns into their two compo-

nents—forward discounts (Panel A) and spot returns (Panel B)—based on the same θENSO

sorting used in our baseline portfolio construction. Focusing on the El Niño phase, we find

that the high-minus-low (HML) average spread in forward discounts accounts for only 1.99%

per annum, whereas the HML average spread in spot returns is much larger, at 8.49% per

6Further details on the definitions of SST and ENSO are provided in the Internet Appendix.
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annum. These results indicate that the majority of the observed return differentials during

El Niño periods stem from movements in spot exchange rates rather than from interest rate

differentials, highlighting how ENSO-related patterns are predictive of the cross-section of

spot exchange rate returns.

[Insert Table 3 Here]

To further illustrate the dynamics over time, Figure 3 plots the average cumulative returns

of ENSO-sorted portfolios around the onset of ENSO phases, focusing on a 24-month event

window from 12 months before to 12 months after the start of a cycle (event time = 0). The

decomposition is shown separately for (i) El Niño and (ii) La Niña periods, and includes

cumulative excess returns, forward discounts, and spot returns. During El Niño episodes,

the cumulative return pattern is clearly driven by spot exchange rate movements, while

forward discounts contribute only marginally. In contrast, no comparable return patterns

are observed during La Niña periods. In essence, these results reinforce the conclusion

that ENSO-related currency return predictability is closely tied to spot market movements,

especially during El Niño phases.

[Insert Figure 3 Here]

3.2 ENSO Portfolio and Risk Factor Correlations

The strong performance of the ENSO-based HML portfolio documented in Section 3.1 raises

the question of whether this return pattern reflects a novel risk exposure or is simply a

manifestation of known currency return premia. To address this question, we assess the

relationship between the ENSO portfolio and a comprehensive set of established FX risk

factors drawn from the literature. These currency risk factors are derived from nine widely

studied investment strategies: Carry (e.g., Lustig et al., 2011; Menkhoff et al., 2012a); Short-

term and long-term momentum (e.g., Asness et al., 2013; Menkhoff et al., 2012b; Currency

value (e.g., Asness et al., 2013; Kroencke et al., 2014; Menkhoff et al., 2017); Net foreign
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assets and liabilities in domestic currencies (Della Corte et al., 2016); Term spread (Bekaert

et al., 2007; Lustig et al., 2019); Long-term yields (Ang and Chen, 2010); Output gap

(Colacito et al., 2020). We refer to these strategies as Carry, ST and LT Mom, Value, NFA,

LDC, Term, LYld, and GAP, respectively. These FX risk factors are also utilized in Nucera

et al. (2024).7

As a first step, we examine the correlations between the θENSO-sorted HML portfolio

returns (ENSO portfolio) and the nine established FX risk factors described above. This

analysis provides a preliminary assessment of whether the ENSO portfolio loads on known

sources of currency return premia or captures a distinct return dimension. Table 4 reports the

pairwise correlations. While some of the traditional factors are themselves highly correlated,

we find that the ENSO portfolio exhibits low and statistically insignificant correlations with

most of them. The only notable exception is the Value factor, with which the ENSO portfolio

shows a negative correlation of −0.53. This suggests that the ENSO portfolio is not simply

a proxy for existing FX risk factors, but may reflect a new source of return variation.

[Insert Table 4 Here]

3.3 Risk Factor Pricing and ENSO Portfolio

While Section 3.2 documents low correlations between the ENSO portfolio and most existing

strategies, correlation alone does not reveal whether the return patterns attributed to ENSO

can be spanned by known factors. Thus, we conduct a series of spanning regressions, in the

spirit of Barillas and Shanken (2017), where the alpha from regressing one tradable factor

on another serves as a measure of independent pricing information. This analysis helps

determine whether ENSO exposures offer explanatory power beyond traditional sources of

currency risk premia.

We begin by reporting the average excess returns of each factor, including the ENSO

portfolio, in Panel A of Table 5. Consistent with earlier results, several factors — including

7For this analysis, the sample data is available only through December 2017.
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Carry, short- and long-term Momentum, LDC, and ENSO — exhibit stronger performance

during El Niño phases compared to other periods, suggesting that climate-driven dynamics

may interact with multiple return drivers.

[Insert Table 5 Here]

We then present the abnormal returns (alphas) and exposure to ENSO portfolio returns

(betas) for FX risk factors. In particular, each risk factor is regressed on ENSO portfolio

returns using the static regression Ft = α + β · ENSOt + ϵt, for every factor Ft considered.

Panel B of Table 5 shows the results for the alphas, while Panel C reports the results for

betas. Panel B reveals that the returns of both short- and long-term momentum factors are

subsumed by the ENSO portfolio returns, whereas the risk premia of other factors remain

largely unaffected. Panel C reveals that several factors exhibit significant loadings on ENSO,

with short- and long-term momentum factors in particular displaying a positive association

with ENSO portfolio returns. These loadings increase significantly during the El Niño phase,

rendering the alphas for both momentum factors insignificant. Overall, Panels B and C of

Table 5 suggest that while existing factors are related to ENSO portfolios, on balance these

factors are distinct from ENSO portfolios.

Next, we reverse the roles of the dependent and independent variables from the previous

regression. Thus, ENSO portfolio excess returns are regressed upon each risk factor using

the equation ENSOt = α + β · Ft + ϵt. Panels D and E of Table 5 present these regression

results, showing that ENSO portfolio returns are not subsumed by any risk factors over

the full sample period. However, during El Niño phases, a significant portion of the ENSO

factor’s abnormal performance appears to be driven by its exposure to both short- and long-

term momentum. During these periods, the factor’s sensitivity to momentum increases, while

its negative exposure to the value risk factor becomes more pronounced. Overall, none of

the currency risk factors considered subsumes the information in the ENSO portfolio excess

returns.
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3.4 Optimal Allocation of ENSO Portfolio in Tangency Portfolios

The economic relevance of the ENSO portfolio extends beyond return predictability and

raises important questions about its role in optimal currency portfolio construction. If the

ENSO strategy reflects a distinct and robust source of return variation, then incorporating

it into investment decisions should improve the overall risk-return tradeoff faced by currency

investors. Therefore, we construct optimal tangency portfolios that include the ENSO port-

folio alongside a broad set of standard FX factors. This exercise allows us to quantify the

marginal contribution of ENSO exposures to portfolio efficiency and assess whether investors

benefit from allocating capital to climate-sensitive currency strategies, as motivated by the

broader implications discussed in the introduction.

Table 6 presents the tangency portfolio weights, returns, and the maximum ex post

Sharpe ratios achievable by combining various factors to construct the tangency portfolio.

This analysis demonstrates that incorporating the ENSO long-short portfolio information

meaningfully improves the Sharpe ratio of a currency portfolio allocation, with the marginal

increase in Sharpe ratio ranging from 0.038 to 0.115. We find that the optimal weight

assigned to the ENSO factor is substantial. For example, in a portfolio that includes all the

FX factors, the optimal weight on the ENSO portfolio is 20%, well above the average weight

across strategies and smaller only than the Carry weight.

These findings indicate that the ENSO HML portfolio captures a fundamental aspect of

currency markets that is not fully reflected in conventional trading strategies. By incorpo-

rating the ENSO portfolio, investors can attain a superior risk-return tradeoff. Furthermore,

based on the optimal weights of the tangency portfolio, investors would consistently allocate

positive weights to the ENSO strategy across different combinations of factor-based strate-

gies, with varying degrees of marginal increase in Sharpe ratio. Hence, the positive impact

of the ENSO portfolio on performance appears to be pervasive, reinforcing its relevance for

currency investment decisions.

[Insert Table 6 Here]
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3.5 Model Performance in Explaining FX Portfolio Excess Re-

turns

Having established that the ENSO portfolio delivers strong returns and exhibits low correla-

tion with traditional FX factors, a natural question is whether the inclusion of a ENSO factor

enhances the performance of standard asset pricing models. To address this, we examine

whether incorporating the ENSO factor helps reduce pricing errors in models of FX portfolio

excess returns. Specifically, we evaluate whether models that include ENSO alongside con-

ventional FX factors such as the Dollar and Carry generate lower average alphas, improved

explanatory power, and better overall model fit. This analysis directly addresses whether

climate-linked exposures, such as those arising from the ENSO cycle, contain systematic

information relevant for explaining the cross-section and time-series variation in currency

returns.

3.5.A Time-series alphas

To operationalize this test, we estimate time-series regressions of strategy-level excess returns

on various combinations of risk factors and assess the resulting pricing errors. In particular,

we compare models that include only the Dollar factor, the combination of Dollar and Carry,

and an extended specification that incorporates the ENSO portfolio. If the ENSO factor

captures a distinct source of return variation, its inclusion should systematically reduce

pricing errors, especially during El Niño periods.

Table 7 compares the models on several measures: dispersion of alpha (αHL = max α

– min α), average absolute alpha (αABS), the Gibbons, Ross, and Shanken (1989) GRS

p-values, which test the null hypothesis that all alphas are jointly zero (pGRS), and the

average time-series R-squared (R2). For the test assets, we analyze a total of 51 currency

portfolios, based on widely studied investment strategies in the foreign exchange market.

These include 5 Carry, 5 Short-Term and 5 Long-Term Momentum (ST Mom and LT Mom),

5 Currency Value (Value), 5 Net Foreign Assets (NFA), 6 Liabilities in Domestic Currencies
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(LDC), 5 Term Spread (Term), 5 Long-Term Yields (LYld), 5 Output Gap (GAP) portfolios,

and 5 ENSO portfolios.

[Insert Table 7 Here]

The results in Table 7 indicate that incorporating ENSO in the model consistently re-

duces pricing errors across nearly all portfolios during the El Niño phase, suggesting that

ENSO adds meaningful explanatory power beyond traditional risk factors. However, when

considering the entire sample period, the inclusion of ENSO alongside the Dollar and Carry

factors does not lead to a significant drop in average absolute alpha (αABS) or an econom-

ically meaningful increase in the average time-series R-squared (R2). In essence, the most

notable improvements occur specifically during the El Niño phase.

Examining the El Niño period separately, we observe a substantial decrease in average

absolute alpha (αABS) and a marginal increase in the model’s explanatory power, as reflected

by a higher R-squared (R2). The most pronounced reductions in pricing errors occur within

the Short-Term and Long-Term Momentum (MomST and MomLT), Value, Term Spread,

and ENSO portfolios. When tested across all 51 portfolios, the inclusion of ENSO leads to

a 40% reduction in the average alpha compared to the benchmark model that includes only

the Dollar factor. Similarly, relative to the model incorporating both the Dollar and Carry

factors, adding ENSO results in a 30% reduction in average alpha.8

3.5.B Cross-sectional alphas

While the time-series analysis in Section 3.5.A evaluates whether the ENSO factor improves

the model’s fit over time, a complementary test involves examining how well the factor ex-

plains average returns across portfolios. Cross-sectional asset pricing tests provide a natural

framework for this evaluation. In this section, we examine the marginal contribution of the

8In contrast, during the La Niña phase, the ENSO factor does not provide any economically meaningful
reduction in mispricing. This asymmetry between the El Niño and La Niña periods highlights the unique role
of ENSO in shaping currency market risk and return dynamics, particularly in the presence of El Niño-driven
economic conditions.
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ENSO factor to explaining the cross-section of FX portfolio excess returns, using standard

two-pass cross-sectional regressions. This framework enables us to assess whether currencies

with higher ENSO exposure earn systematically different returns, and whether such variation

can be priced by models that include ENSO alongside traditional FX factors.

Many asset pricing studies have employed the sample cross-sectional regression (CSR)

R2 as a measure of model performance. Kan et al. (2013) derive the asymptotic distribution

of this statistic and propose model comparison tests that account for sampling variation and

potential misspecification. Following their framework, we use CSR-based R2 statistics and

hypothesis tests to evaluate the explanatory power of models with and without the ENSO

factor. The formal specification is as follows:

E(RXc) = λ · COV (RXc, F ) (3.2)

where RXc = excess return, λ = Price of covariance risk, F = Factor. We report the details

of the estimation methodology of these statistics in Section B of the Appendix.

The models considered in our analysis include (i) Dollar factor alone, (ii) Dollar and

ENSO factors, (iii) Dollar and Carry factors, and (iv) Dollar, Carry, and ENSO factors. In

total, we examine 51 FX portfolios, sorted based on currencies’ exposure to Carry, MomST,

MomLT, Value, NFA, LDC, Term, LYld, GAP, and ENSO factors. For the two-pass cross-

sectional regression (CSR) tests, we employ the following key metrics: (i) R2: R2 from the

cross-sectional regression, (ii) pval1: H0 : R2 = 1: p-value of testing R2 = 1, and (iii) pval2:

H0 : R2 = 0: p-value of testing R2 = 0, both of which serve as model specification tests.

[Insert Table 8 Here]

Table 8 presents the results on the cross-sectional regressions. We again find that in-

cluding ENSO helps to reduce pricing errors, particularly during the El Niño phase. In the

first panel, we conduct a joint cross-sectional test across all currency portfolios, while in the

subsequent panels, we estimate the CSR model separately for each subgroup of currency
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portfolios.

When tested on all 51 currency portfolios, we find that the explanatory power of ENSO

jointly with Dollar and Carry is substantial, with an at R2 of 48% over the full sample period

and 64% during the El Niño phase. These R2s are statistically significant different from zero,

as indicated by the pval2 test statistics in Table 8. The p-values of the test confirms that

the model has statistically significant explanatory power for the cross-section of expected

returns in all portfolios under the null hypothesis of the misspecified model (H0 : R2 = 0).

To assess the incremental contribution of ENSO, we compare the two-factor model (Dollar

and Carry) and the extended three-factor model augmented with ENSO. By doing so, we

explore whether the explanatory power of two nested models are different from each other

and ask what the relative importance of ENSO is. Table 8 shows that augmenting the model

with ENSO HML portfolio returns significantly improves the joint cross-sectional fits across

various currency portfolios. Differences in R2 are 8.4% and 34.4% during full sample period

and El Niño phases respectively.

More specifically, during the El Niño phase, the inclusion of ENSO leads to improvements

in R2s of 8.4%, 62.8%, 68.4%, 65.9%, 8.3%, 5.8%, 4.3%, 3.3%, 6.5%, and 23.5% for the Carry,

MomST, MomLT, Value, NFA, LDC, Term, LYld, GAP, and ENSO portfolios, respectively.

These results highlight that the ENSO factor plays a particularly important role in explaining

momentum, value, and term spread portfolios during El Niño episodes.

For an additional statistical assessment of the ENSO factor’s pricing ability, we test

whether the covariance risk (λ) of the additional factor is statistically different from zero

with misspecification robust errors. If the price of covariance risk is significantly different

from zero, the R2 values of the two nested models are also statistically distinct. The results

of this test are reported in Table A9 in the Internet Appendix.9

9Although we only show the case for the price of covariance risk, similar results can be obtained from the
tests of the price of beta risk.
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3.6 Additional Results and Robustness Checks

To further test the robustness of our findings, we implement several additional checks.

3.6.A Using Only Developed Countries’ sample

There might be a concern that our results are largely driven by emerging market currencies.

This could potentially skew our findings and raise questions about their generality. To

address this issue, we conduct our main regression analysis again, but this time using data

exclusively from developed countries.

The results of this analysis are presented in Internet Appendix Table A2, and they show

similar outcomes to our original findings. This consistency suggests that the observed effects

are not solely driven by the performance of emerging market currencies. Instead, it indicates

that the patterns we identify are robust and applicable across different sets of countries.

3.6.B Currency composition

Another potential concern is that our results might be driven by the performance of a small

set of currencies that consistently appear in the long and short portfolios. To investigate

this possibility, we examined the frequency of currency appearances across different portfolio

ranks. Table A3 in the Internet Appendix reports the number of times individual currencies

appear in each portfolio rank based on their theta values. The analysis reveals that currencies

frequently shift between different portfolios over time, rather than remaining fixed in the

same portfolio.

This dynamic movement of currencies across portfolios alleviates concerns that our results

are driven by a static set of currencies.

3.6.C A different base currency

We repeat the analysis using GBP instead of USD as the base currency. These results are

shown in the Appendix Table A4. We find similar results as in our core results, indicating
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that our findings are not driven by using the USD as the currency base.

3.6.D Using ENSO based on Bayesian Hidden Markov Model

We repeat the analysis using ENSO phases classified by a Bayesian Hidden Markov Model

(ENSOHMM), rather than the threshold-based definition (±0.5°C SST anomalies) used in

the main analysis. The HMM provides a probabilistic, data-driven alternative that ac-

counts for regime persistence and parameter uncertainty. Despite methodological differences,

ENSOHMM and the threshold-based classification agree in 94% of monthly observations. As

shown in Table A5 in the Internet Appendix, the empirical results using ENSOHMM remain

statistically and economically consistent with our baseline findings. This confirms that the

results are robust to the method of ENSO classification and are not driven by arbitrary

cutoff rules.

3.6.E Fama-MacBeth Regression

To further assess the robustness of our main findings, we conduct a Fama-MacBeth cross-

sectional regression using θENSO, the estimated return sensitivity to the ENSO cycle, as

a predictor of next-month currency excess returns. In each month, we regress returns on

θENSO along with a set of control variables capturing individual country characteristics,

including interest rate differentials, short- and long-term momentums, currency values, net

foreign assets, liabilities in domestic currencies, term spreads, short- and long-term yields,

and output gaps. Table A6 reports the results for the full sample (Panel A), as well as

separately for El Niño (Panel B), La Niña (Panel C), and Neutral periods (Panel D). We find

that θENSO remains a statistically and economically significant predictor of cross-sectional

currency excess returns during El Niño periods. These findings suggest that the predictive

power of ENSO exposure holds even after accounting for a broad set of macro-financial

characteristics across countries.

22



3.6.F Portfolio Turnover

One might wonder if the El Niño HML portfolio strategy involves a substantial amount of

turnover, in which case transaction costs could substantially reduce the profitability. In

Table A7 in the Internet Appendix, we compare the turnover of the El Niño HML port-

folio to turnover in other strategies like momentum and carry. We find that the El Niño

HML portfolio has a lower turnover than both carry and momentum strategy, implying that

transaction costs are unlikely to erode much of the excess returns of the ENSO strategy.

3.6.G International Stock Returns

Instead of currency returns, we examine the role of the ENSO effect on international stock

returns using MSCI international stock market indices. Investigating a theta-sorted portfolio

of international stock returns,10 we find highly significant results for El Niño cycle, but only

if we use “USD returns”, underscoring a strong “currency-ENSO” effect. These results are

shown in Table A8 in the Internet Appendix. We also conduct the analysis using pre- and

post-2000 time periods and find that the El Niño effect is present in both samples.

4 Economic Mechanism

A key question that follows from our findings is the macroeconomic mechanism underlying

these results. Colacito et al. (2020) provide theory and empirical evidence on the link between

currency excess returns and macroeconomic conditions, captured by the output gap. The

output gap is defined as the difference between a country’s actual and potential level of

output, using industrial production data. Their study finds that currencies associated with

high output gaps—representing stronger economies—tend to appreciate, while those with

10We use the following specifications to measure the ENSO-sensitivity of those stock market indices:
(i) RXct = αc + θENSO

c ENSOt + ect, (ii) RXct = αc + βMKT
c MKTt + θENSO

c ENSOt + ect, and (iii)
RXct = αc + βMKT

c MKTt + βSize
c Sizet + βV alue

c V aluet + θENSO
c ENSOt + ect. where RXct is the excess

return of stock market indices of country c at time t, ENSOt is the indicator variable for ENSO (ENSOt = 1
for El Niño, ENSOt = 0 for neutral, and ENSOt = −1 for La Niña), and MKTt, Sizet, and V aluet is the
market, size and value factors, respectively.
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low output gaps —reflecting weaker economies—tend to depreciate. This suggests that

macroeconomic strength as proxied by output gaps plays a fundamental role in driving

currency returns. Building on their framework, we analyze the relationship between ENSO

portfolios and future output gaps across our sample of countries.

The output gap is measured as the difference between the (log) industrial production

and its (log) trend. To extract the trend component from monthly industrial production

data, we employ two statistical techniques (also used by Colacito et al. (2020), among other

methods): (i) the Hodrick-Prescott (HP) filter, used in Panel A, and (ii) the Baxter-King

(BK) filter, used in Panel B. The HP filter is widely applied in macroeconomic analysis

to separate trends from cyclical fluctuations by penalizing excessive variations in the trend

component. In contrast, the BK filter is a band-pass filter designed to eliminate both high-

and low-frequency fluctuations, thereby capturing the business cycle more effectively.

Figure 4 illustrates the cumulative output gap before and after the onset of an El Niño

event. To mitigate distortions caused by extreme outliers in output gaps, we exclude the

El Niño cycle closest to the COVID-19 period (December 31, 2019 – February 29, 2020).11

Portfolio 5 shows the cumulative returns of FX portfolio that have the highest quintile of

performance during past El Niño cycles, while portfolio 1 shows the returns of FX portfolio

that with the lowest quintile of performance during past El Niño cycles. The HML portfolio

tracks the cumulative returns of a high-minus-low (HML) strategy since the onset of each El

Niño cycle, calculated as the difference between Portfolio 5 and Portfolio 1 returns.

[Insert Figure 4 Here]

To formally assess this relationship, Table 9 presents the averages and t-statistics of the

differences in average cumulative output gaps between high- and low-theta currencies across

various horizons (12-, 6-, 3-, and 1-month leads and lags). For each month and theta group,

11The equivalent figure for the full sample period is provided in Appendix Figure A1. While the HP filter
exhibits distortions in output gaps due to the COVID-19 period, the BK filter produces a more stable output
gap estimate. This robustness arises from the BK filter’s lower sensitivity to low-frequency trends that could
otherwise distort the output gap measurement.
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we compute the average cumulative output gap over the specified horizons for the currencies

belonging to that group. A positive difference between the averages of high- and low-theta

currencies indicates that cumulative output gaps over the horizon were larger for high-theta

currencies than for low-theta currencies. The results indicate that long positions in El

Niño portfolios are generally associated with higher output gaps, whereas short positions

correspond to lower output gaps. This pattern emerges as early as 12 months before the

onset of El Niño cycles and persists for up to 12 months afterward.

[Insert Table 9 Here]

This result aligns with the idea that currencies that have performed well in previous El

Niño cycles tend to come from countries with improving or stronger economic fundamentals,

while those that have underperformed in previous El Niño cycles tend to be from countries

with weaker economic outlooks. In other words, the return patterns captured by El Niño

portfolios naturally reflect cross-country differences in macroeconomic strength. This finding

reinforces the notion that economic fundamentals play a crucial role in shaping FX factor

dynamics and highlights the importance of considering macroeconomic conditions when an-

alyzing currency market strategies.

Importantly, as our previous results indicate, the El Niño portfolios are important in

predicting future FX returns above and beyond using current economic conditions (out-

put gaps). This suggests that El Niño portfolios are more predictive of subsequent foreign

exchange returns and economic conditions above and beyond the current output gaps. Intu-

itively, we long currencies that have done well in previous El Niño cycles, and these countries

tend to have stronger economies going forward. We short currencies that have done poorly

in previous El Niño cycles, and these countries tend to have weaker economies going forward.

In a nutshell, because El Niño cycles predict output gaps across countries, the heterogeneous

exposures of currency returns to El Niño cycles capture forward-looking information about

differentials in output gaps across countries which, in turn, are related to the cross-section

of currency excess returns.
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5 Conclusion

El Niño cycle is one of the most important global climate events, exerting a variety of

strong economic effects across the globe. While previous research has focused on differential

economic and social impacts of El Niño, we present the first evidence of El Niño on global

currency market. We document a strong pattern of predictability in foreign exchange returns.

Currencies that have done the best (worst) in past El Niño cycles continue to outperform

(underperform) in future cycles.

We find that such foreign exchange predictability is robust to carry, momentum, value

factors, and other standard controls. The predictability primarily comes from spot returns

rather than interest rate differentials, suggesting that market participants have not incorpo-

rated this information in the pricing of currencies. The predictability is robust to a variety

of robustness checks. We further document that a sizable weight is assigned to the El Niño

portfolio in an optimal currency investment strategy.

We provide evidence that the source of predictability operates through the output gap,

which serves as a strong indicator of overall economic performance. At the start of an

El Niño cycle, currencies that previously did well (poorly) tend to have stronger (weaker)

economic performance going forward, as captured by the output gap, in turn leading to

currency appreciation (depreciation). In essence, El Niño embeds predictive information for

the cross-section of currency (excess) returns by virtue of the fact that it acts as a leading

indicator of the output gap.
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Fig. 1: Oceanic Niño Index (ONI) Over Time

This figure shows the Oceanic Niño Index (ONI) over time, representing the 3-month running mean of Niño 3.4 sea surface
temperature (SST) anomalies. El Niño (La Niña) is a phenomenon in the equatorial Pacific Ocean characterized by 3-month
running mean of sea surface temperature (SST) anomalies in the Niño 3.4 region that is above (below) the threshold of +0.5°C
(-0.5°C). This standard of measure is known as the Oceanic Niño Index (ONI) and WARM and COLD phases are defined as
3-month running averages of SST anomalies (ERSST.v5) in the Niño 3.4 region surpassing a threshold of +/- 0.5°C.
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Fig. 2: Cumulative returns of ENSO and SST sorted HML portfolios

This figure illustrates the cumulative returns of a high θ minus low θ portfolio. The solid
line represents the cumulative returns from HML portfolios sorted based on θENSO

c,τ , while
the dotted line corresponds to portfolios sorted on θSSTc,τ . For each currency c and month
τ , θENSO

c,τ is estimated using a 10-year rolling window prior to month τ from the following
regression: RXct = αc + βCarry

c Carryt + θENSO
c ENSOt + ect. Here, ENSOt is a signed

indicator variable representing the ENSO phase, where ENSOt = 1 for El Niño, ENSOt = 0
for neutral conditions, and ENSOt = −1 for La Niña. θSSTc,τ is estimated similarly. SSTt

denotes the anomalous sea surface temperature.
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Panel A. El Niño period

Panel B. La Niña period

Fig. 3: Decomposition of Currency Excess Returns

This figure presents the average cumulative returns (in percentage) of portfolios formed at
the beginning of an ENSO cycle (El Niño for Panel A and La Niña for Panel B), plotted
over a 12-month event window.
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Fig. 4: Cumulative Output Gap Before and After El Niño

This figure illustrates the cumulative output gap 12 months before and after the onset of El Niño (t = 0). For each onset of

an El Niño cycle, output gaps are averaged within the low- and high-theta groups over a 24-month window. These gaps are

then cumulated across the window, normalized to zero at the onset, and subsequently averaged across all El Niño cycles. We

estimate output gaps using two statistical techniques to extract a cyclical component from monthly industrial production data:

(i) Hodrick-Prescott Filter for Panel A, (ii) Baxter-King Filter for Panel B. We excluded one El Niño cycle closest to COVID19,

which is from 2019-12 to 2020-02 (31DEC2019 - 29FEB2020).
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Table 1: ENSO Sensitivity Based on the ENSO indicator

This table presents the average returns and t-statistics of theta-sorted portfolios, where

theta is estimated using the ENSO indicator variable. We examine model variations with

alternative controls to assess the robustness of the portfolio results. The regression equations

are: (1) RXct = αc+θENSO
c ENSOt+ect, (2) RXct = αc+βCarry

c Carryt+θENSO
c ENSOt+ect,

(3) RXct = αc + βCarry
c Carryt + βMom

c MOMSTt + θENSO
c ENSOt + ect and RXct = αc +

βCarry
c Carryt + βMom

c MOMLTt + θENSO
c ENSOt + ect, where RXct is the excess return of

currency c at time t, Carryt is the currency carry factor, ENSOt is the indicator variable for

ENSO (ENSOt = 1 for El Niño, ENSOt = 0 for neutral, and ENSOt = −1 for La Niña),

and MOMSTt and MOMLTt are short-term and long-term currency momentum factors,

respectively.

Panel A. Without Controls Panel B. With Carry

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean -3.64% 0.53% 1.96% 0.11% -2.76% 0.33% -1.38% -0.90%
tval (-1.00) (0.22) (0.61) (0.06) (-0.76) (0.12) (-0.36) (-0.47)

Port2 mean -1.74% 1.63% -3.23% -0.72% -2.86% 2.22% -1.07% 0.03%
tval (-0.59) (0.80) (-0.98) (-0.46) (-1.05) (1.22) (-0.38) (0.02)

Port3 mean -1.21% 1.01% -0.24% 0.11% -0.33% 1.74% 0.35% 0.83%
tval (-0.45) (0.50) (-0.09) (0.08) (-0.12) (0.89) (0.12) (0.58)

Port4 mean 2.87% 1.53% 2.60% 2.18% 0.88% 0.73% 2.93% 1.50%
tval (0.98) (0.74) (0.87) (1.45) (0.30) (0.39) (1.05) (1.06)

Port5 mean 3.52% 4.36% 3.39% 3.86% ** 5.06% * 3.73% 3.31% 3.88% **
tval (1.09) (1.62) (0.99) (2.14) (1.65) (1.39) (0.95) (2.15)

PortHML mean 7.16% ** 3.83% * 1.44% 3.75% ** 7.83% ** 3.40% 4.69% 4.78% ***
tval (2.23) (1.75) (0.52) (2.48) (2.48) (1.37) (1.46) (2.84)

Panel C. With Carry and ST Momentum Panel D. With Carry and LT Momentum

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean -3.03% 0.33% -0.57% -0.69% -3.17% 0.34% -1.82% -1.14%
tval (-0.82) (0.12) (-0.15) (-0.35) (-0.86) (0.12) (-0.47) (-0.58)

Port2 mean -3.18% 2.42% -1.42% -0.07% -3.06% 2.79% -0.74% 0.35%
tval (-1.16) (1.36) (-0.51) (-0.05) (-1.09) (1.58) (-0.28) (0.26)

Port3 mean -0.14% 0.95% 0.70% 0.63% 0.97% 0.84% 1.93% 1.23%
tval (-0.05) (0.48) (0.25) (0.45) (0.38) (0.44) (0.71) (0.91)

Port4 mean 1.89% 0.95% 1.93% 1.48% 1.38% 0.58% 0.64% 0.77%
tval (0.62) (0.51) (0.72) (1.07) (0.48) (0.30) (0.22) (0.53)

Port5 mean 4.33% 4.19% 3.56% 4.01% ** 3.58% 4.35% 4.00% 4.07% **
tval (1.43) (1.56) (1.02) (2.23) (1.08) (1.60) (1.13) (2.21)

PortHML mean 7.36% ** 3.86% 4.14% 4.71% *** 6.76% ** 4.01% 5.82% * 5.21% ***
tval (2.36) (1.51) (1.26) (2.73) (2.28) (1.62) (1.83) (3.13)
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Table 2: ENSO Sensitivity Based on Anomalous Sea Surface Temperature (SST)

This table presents the average returns and t-statistics of theta-sorted portfolios, where

theta is estimated using SST (anomalous sea surface temperature). We examine model

variations with alternative controls to assess the robustness of the portfolio results. The

regression equations are: (1) RXct = αc + θSSTc SSTt + ect, (2) RXct = αc + βCarry
c Carryt +

θSSTc SSTt + ect, (3) RXct = αc + βCarry
c Carryt + βMom

c MOMSTt + θSSTc SSTt + ect and

RXct = αc + βCarry
c Carryt + βMom

c MOMLTt + θSSTc SSTt + ect, where RXct is the excess

return of currency c at time t, Carryt is the currency carry factor, SSTt is the sea surface

temperature anomalies, andMOMSTt andMOMLTt are short-term and long-term currency

momentum factors, respectively.

Panel A. Without Controls Panel B. With Carry

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean -2.92% 1.86% 0.30% 0.31% -3.73% 1.22% -1.37% -0.71%
tval (-0.83) (0.88) (0.09) (0.19) (-1.01) (0.49) (-0.37) (-0.38)

Port2 mean -1.79% 1.13% -1.49% -0.37% -0.54% 2.10% 0.68% 1.06%
tval (-0.59) (0.54) (-0.51) (-0.25) (-0.19) (1.05) (0.23) (0.73)

Port3 mean -1.35% 1.30% 0.41% 0.43% -1.66% 1.47% 0.29% 0.40%
tval (-0.51) (0.71) (0.15) (0.32) (-0.63) (0.83) (0.11) (0.30)

Port4 mean 1.50% 0.50% 1.83% 1.16% 0.80% 0.36% 1.56% 0.86%
tval (0.47) (0.22) (0.60) (0.73) (0.25) (0.17) (0.53) (0.55)

Port5 mean 4.74% 4.49% * 3.47% 4.20% ** 5.07% * 3.71% 2.47% 3.59% **
tval (1.55) (1.67) (0.98) (2.32) (1.70) (1.43) (0.72) (2.06)

PortHML mean 7.66% ** 2.62% 3.17% 3.89% ** 8.79% *** 2.49% 3.84% 4.30% **
tval (2.30) (1.14) (1.19) (2.52) (2.60) (0.97) (1.32) (2.56)

Panel C. With Carry and ST Momentum Panel D. With Carry and LT Momentum

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean -3.72% 1.68% -0.42% -0.19% -3.62% 1.25% -0.27% -0.30%
tval (-1.00) (0.67) (-0.11) (-0.10) (-0.98) (0.51) (-0.07) (-0.17)

Port2 mean -0.18% 2.17% 0.32% 1.04% -0.44% 2.40% -0.25% 0.90%
tval (-0.06) (1.10) (0.11) (0.73) (-0.15) (1.15) (-0.09) (0.61)

Port3 mean -1.59% 0.92% 0.59% 0.27% -1.34% 1.50% 1.66% 0.94%
tval (-0.66) (0.54) (0.21) (0.21) (-0.57) (0.90) (0.61) (0.74)

Port4 mean 1.32% 0.55% 1.08% 0.89% 0.64% -0.35% -0.29% -0.12%
tval (0.43) (0.26) (0.38) (0.60) (0.21) (-0.16) (-0.10) (-0.07)

Port5 mean 3.96% 3.68% 2.24% 3.26% * 4.56% 4.12% 3.08% 3.87% **
tval (1.29) (1.38) (0.64) (1.82) (1.44) (1.57) (0.92) (2.20)

PortHML mean 7.68% ** 2.01% 2.66% 3.45% ** 8.18% *** 2.86% 3.35% 4.17% **
tval (2.41) (0.80) (0.89) (2.09) (2.59) (1.15) (1.13) (2.53)
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Table 3: Decomposition of Currency Excess Returns

This table presents the decomposition of the excess currency returns of our portfolios, sorted

by θENSO, into forward discounts and spot returns. The regression equation used to estimate

θENSO is RXct = αc + βCarry
c Carryt + θENSO

c ENSOt + ect.

Panel A. Forward Discount Panel B. Spot Return

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean 1.56% *** 1.34% *** 2.64% *** 1.79% *** -6.17% -0.79% 0.46% -1.67%
tval (4.67) (3.40) (6.12) (7.47) (-1.61) (-0.30) (0.11) (-0.85)

Port2 mean 1.09% *** 1.33% *** 0.86% *** 1.13% *** -4.44% 1.86% -1.74% -0.71%
tval (5.05) (9.12) (4.61) (11.10) (-1.44) (0.93) (-0.53) (-0.46)

Port3 mean 0.69% *** 0.98% *** 0.89% *** 0.88% *** -1.91% -1.22% 1.95% -0.42%
tval (3.93) (8.60) (5.93) (10.95) (-0.72) (-0.60) (0.66) (-0.29)

Port4 mean 1.55% *** 1.34% *** 1.39% *** 1.40% *** -0.27% -0.17% 1.22% 0.23%
tval (5.12) (7.50) (2.85) (7.68) (-0.09) (-0.08) (0.34) (0.14)

Port5 mean 3.55% *** 3.14% *** 3.37% *** 3.31% *** 2.32% 0.04% 1.97% 1.16%
tval (7.87) (11.31) (7.60) (15.50) (0.80) (0.01) (0.60) (0.67)

PortHML mean 1.99% *** 1.80% *** 0.73% 1.52% *** 8.49% ** 0.82% 1.51% 2.83% *
tval (3.68) (3.81) (1.36) (5.06) (2.40) (0.35) (0.48) (1.69)
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Table 4: Correlation Analysis of ENSO Portfolio and FX Risk Factors

This table examines the correlation between the theta-sorted HML portfolio returns (ENSO

portfolio) and established traded FX risk factors as defined by Nucera, Sarno, and Zinna

(2024). These FX risk factors include carry (Carry), short-term and long-term momentum

(ST and LT Mom), currency value (Value), net foreign assets (NFA), liabilities in domestic

currencies (LDC), term spread (Term), long-term yields (LYld), and output gap (GAP). The

analysis focuses on the El Niño cycle and utilizes sample data available through December

2017.

Carry MomST MomLT Value NFA LDC Term LYld GAP ENSO

Carry
MomST -0.23
MomLT 0.16 0.31
Value -0.12 -0.12 -0.45
NFA 0.37 -0.22 -0.08 -0.16
LDC 0.49 -0.33 -0.06 -0.17 0.63
Term 0.49 -0.29 0.07 -0.27 0.32 0.41
LYld 0.77 -0.28 -0.02 -0.02 0.38 0.38 0.43
GAP -0.17 0.17 -0.09 0.18 -0.18 -0.11 -0.18 -0.09
ENSO 0.02 0.11 0.32 -0.53 -0.06 -0.01 0.28 -0.07 0.00
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Table 5: Spanning Tests

This table presents results from mean-variance spanning tests. Panel A reports the average
excess returns (in percentage) of FX risk factors, including the ENSO portfolio, during the
sample period from 2002 to 2017. Panel B and C report the abnormal returns (alphas) and
exposure to ENSO portfolio returns (betas) for FX risk factors, respectively. Each risk factor
is regressed on ENSO portfolio returns using the equation F = α+β ·ENSOHML, and results
are reported for each ENSO cycle. Panel D and E report the abnormal returns (alphas) and
exposure to FX risk factors (betas) for the ENSO portfolio, respectively. The ENSO portfolio
returns are regressed on the other factor returns using the equation ENSOHML = α+β ·F ,
and the results are reported.

Period Test Factor: Carry MomST MomLT Value NFA LDC Term LYld GAP

Panel A. Average Excess Returns

All Times Avg. Ret 8.45 *** 4.44 ** 4.08 ** 1.21 4.06 ** 4.48 ** 1.50 3.35 4.35 **
t-stat (4.10) (2.31) (1.97) (0.69) (2.08) (2.14) (0.68) (1.57) (2.50)

El Niño Avg. Ret 13.55 *** 7.73 ** 10.45 *** -2.66 3.13 9.97 *** 8.51 *** 5.81 * 3.12
t-stat (4.01) (2.06) (2.78) (-0.86) (0.86) (2.77) (3.08) (1.82) (0.93)

Ni Nina Avg. Ret 5.67 -1.26 -1.29 -0.39 3.23 2.94 -3.33 3.62 5.70
t-stat (1.46) (-0.33) (-0.31) (-0.12) (0.79) (1.44) (-0.67) (0.76) (1.18)

Panel B. Alphas FX factors (F = α + β · ENSOHML)

All Times mean 8.36 *** 3.87 * 2.23 3.71 ** 4.38 ** 4.54 ** 0.08 3.75 * 4.34 **
t-stat (3.92) (1.85) (1.26) (2.42) (2.04) (2.07) (0.03) (1.65) (2.40)

El Niño mean 14.51 *** 3.70 4.06 2.23 5.02 ** 11.24 *** 7.39 ** 9.23 *** 3.39
t-stat (3.82) (1.25) (1.40) (0.86) (2.09) (3.80) (2.44) (3.04) (0.98)

Ni Nina mean 5.37 -1.01 -2.77 1.42 4.12 3.51 * -4.36 3.31 5.57
t-stat (1.39) (-0.26) (-0.66) (0.47) (0.98) (1.76) (-0.88) (0.70) (1.17)

Panel C. Betas FX factors (F = α + β · ENSOHML)

All Times mean 0.02 0.10 0.33 *** -0.45 *** -0.06 -0.01 0.25 *** -0.07 0.00
t-stat (0.24) (1.03) (2.77) (-6.19) (-0.45) (-0.13) (3.62) (-0.74) (0.02)

El Niño mean -0.10 0.42 *** 0.67 *** -0.51 *** -0.20 -0.13 0.12 -0.36 *** -0.03
t-stat (-1.18) (5.58) (5.40) (-5.98) (-1.04) (-0.85) (1.23) (-5.82) (-0.19)

Ni Nina mean 0.06 -0.05 0.31 * -0.38 *** -0.19 -0.12 0.21 * 0.07 0.03
t-stat (0.44) (-0.40) (1.88) (-3.97) (-1.03) (-1.02) (1.75) (0.40) (0.25)

Panel D. Alphas ENSO factor (ENSOHML = α + β · F )

All Times mean 5.43 *** 5.09 *** 4.35 ** 6.36 *** 5.89 *** 5.66 *** 5.11 *** 5.84 *** 5.59 ***
t-stat (2.72) (2.76) (2.29) (3.83) (3.15) (3.00) (3.13) (3.18) (3.13)

El Niño mean 11.41 *** 5.14 1.90 7.37 ** 10.56 *** 11.53 *** 7.22 * 12.39 *** 9.67 ***
t-stat (2.67) (1.37) (0.59) (2.55) (3.05) (2.58) (1.93) (3.33) (2.58)

Ni Nina mean 4.40 4.73 5.16 4.55 5.47 5.85 5.60 4.59 4.66
t-stat (1.07) (1.17) (1.31) (1.22) (1.34) (1.49) (1.44) (1.15) (1.20)

E. Betas ENSO factor (ENSOHML = α + β · F )

All Times mean 0.02 0.11 0.30 *** -0.63 *** -0.07 -0.02 0.32 *** -0.07 0.00
t-stat (0.24) (0.98) (2.59) (-6.91) (-0.44) (-0.12) (5.63) (-0.70) (0.02)

El Niño mean -0.14 0.57 *** 0.73 *** -0.82 *** -0.32 -0.20 0.28 -0.49 ** -0.03
t-stat (-1.25) (3.46) (5.96) (-5.49) (-1.12) (-1.01) (1.32) (-2.37) (-0.19)

Ni Nina mean 0.07 -0.06 0.28 * -0.64 *** -0.21 -0.35 0.24 ** 0.06 0.03
t-stat (0.45) (-0.41) (1.79) (-4.84) (-0.96) (-1.09) (2.14) (0.41) (0.24)
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Table 6: Optimal Weights in Tangency Portfolio

This table presents the optimal weights of the ENSO portfolio in the Tangency portfolio.

Panel A. Optimal Weights in Tangency Portfolio Panel B. Summary Statistics

Dollar Carry MomST MomLT Value NFA LDC Term LYld GAP ENSO Mean STDEV SR Diff in SR

Model 1 15% 85% 0.641 1.860 0.345
14% 54% 32% 0.571 1.425 0.400 0.056

Model 2 13% 66% 21% 0.521 1.451 0.359
11% 30% 29% 30% 0.410 0.865 0.474 0.115

Model 3 13% 40% 30% 17% 0.450 0.975 0.461
12% 25% 18% 24% 21% 0.399 0.721 0.554 0.093

Model 4 14% 50% 36% 0% 0.525 1.201 0.437
14% 42% 30% -6% 20% 0.521 1.096 0.475 0.038

Model 5 34% -13% 30% -1% 12% 39% 0.335 1.115 0.300
28% -10% 24% -15% 15% 27% 31% 0.401 1.039 0.385 0.085

Model 6 12% 49% 18% 6% 15% 2% 7% -2% -23% 18% 0.506 0.918 0.551
10% 35% 13% 3% 22% 2% 7% -8% -14% 11% 20% 0.471 0.753 0.625 0.074
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Table 7: Pricing Errors from Time-Series Regression

This table compares the models based on their ability to explain FX anomalies using time-
series alphas. Measures include the dispersion of alpha (alphaHL : max–minα), average
absolute alpha (αABS), the Gibbons, Ross, and Shanken (1989) GRS test for whether all
alphas are zero (pGRS), and the average time-series R2. The analysis is conducted on all 51
FX portfolios (ALL) portfolio, and also on subsets of portfolios sorted on specific factors,
including Carry, MomST, MomLT, Value, NFA, LDC, Term, LYld, GAP, and ENSO port-
folios. The models evaluated include (i) Dollar factor alone, (ii) Dollar + ENSO factors, (iii)
Dollar + Carry factors, and (iv) Dollar + Carry + ENSO factors. The analysis is performed
separately for three distinct cycles: the full sample period (All Time), El Niño cycles, and
La Niña cycles.

All times El Niño La Niña

Portfolio Factor αHL αABS pGRS R2 αHL αABS pGRS R2 αHL αABS pGRS R2

ALL Dollar 811 139 0.00 0.80 1516 266 0.00 0.77 935 168 0.00 0.82
Dollar + ENSO 808 133 0.00 0.82 1663 221 0.00 0.80 853 156 0.00 0.83
Dollar + Carry 695 114 0.00 0.82 1339 228 0.00 0.79 995 163 0.00 0.85
Dollar + Carry + ENSO 698 114 0.00 0.84 1182 161 0.00 0.83 933 154 0.00 0.86

Carry Dollar 750 187 0.00 0.82 1315 341 0.00 0.78 630 171 0.00 0.83
Dollar + ENSO 727 187 0.00 0.82 1398 362 0.00 0.78 462 136 0.00 0.83
Dollar + Carry 174 43 0.00 0.91 347 143 0.00 0.89 323 142 0.00 0.93
Dollar + Carry + ENSO 188 47 0.00 0.91 372 163 0.00 0.89 276 118 0.00 0.93

MomST Dollar 525 174 0.00 0.78 822 195 0.00 0.76 213 71 0.00 0.80
Dollar + ENSO 476 159 0.00 0.78 406 125 0.00 0.77 207 67 0.00 0.80
Dollar + Carry 669 220 0.00 0.79 1071 267 0.00 0.76 206 57 0.00 0.81
Dollar + Carry + ENSO 618 206 0.00 0.79 618 189 0.00 0.78 185 54 0.00 0.81

MomLT Dollar 468 126 0.00 0.78 1048 322 0.00 0.74 352 107 0.00 0.81
Dollar + ENSO 392 111 0.00 0.79 685 183 0.00 0.82 451 104 0.00 0.81
Dollar + Carry 268 103 0.00 0.79 1032 291 0.00 0.74 394 135 0.00 0.83
Dollar + Carry + ENSO 302 87 0.00 0.80 518 158 0.00 0.82 450 128 0.00 0.83

Value Dollar 356 111 0.00 0.81 654 232 0.00 0.78 726 234 0.00 0.84
Dollar + ENSO 436 153 0.00 0.84 553 183 0.00 0.82 695 214 0.00 0.86
Dollar + Carry 391 96 0.00 0.81 756 236 0.00 0.79 674 213 0.00 0.84
Dollar + Carry + ENSO 483 141 0.00 0.84 435 179 0.00 0.83 659 200 0.00 0.86

NFA Dollar 449 106 0.00 0.85 990 248 0.00 0.82 487 129 0.00 0.88
Dollar + ENSO 406 94 0.00 0.85 920 219 0.00 0.83 492 143 0.00 0.88
Dollar + Carry 158 49 0.00 0.88 478 145 0.00 0.85 396 124 0.00 0.91
Dollar + Carry + ENSO 179 55 0.00 0.89 338 110 0.00 0.85 429 138 0.00 0.91

LDC Dollar 372 118 0.00 0.79 914 318 0.00 0.77 368 137 0.00 0.85
Dollar + ENSO 375 104 0.00 0.80 1022 292 0.00 0.77 367 119 0.00 0.85
Dollar + Carry 114 39 0.00 0.82 611 224 0.00 0.78 394 108 0.00 0.87
Dollar + Carry + ENSO 175 63 0.00 0.82 684 188 0.00 0.78 375 104 0.00 0.87

Term Dollar 291 102 0.00 0.82 863 290 0.00 0.81 587 194 0.00 0.81
Dollar + ENSO 248 111 0.00 0.83 747 251 0.00 0.82 742 232 0.00 0.82
Dollar + Carry 274 96 0.00 0.84 539 157 0.00 0.83 685 206 0.00 0.83
Dollar + Carry + ENSO 415 132 0.00 0.84 460 97 0.00 0.83 802 238 0.00 0.84

Lyld Dollar 317 116 0.00 0.82 821 225 0.00 0.79 429 147 0.00 0.82
Dollar + ENSO 334 135 0.00 0.82 1055 332 0.00 0.80 567 172 0.00 0.82
Dollar + Carry 410 129 0.00 0.87 554 156 0.00 0.84 530 161 0.00 0.88
Dollar + Carry + ENSO 388 123 0.00 0.87 443 144 0.00 0.85 630 184 0.00 0.88

GAP Dollar 572 195 0.00 0.78 424 150 0.00 0.74 800 216 0.00 0.79
Dollar + ENSO 550 196 0.00 0.78 591 196 0.00 0.74 853 229 0.00 0.78
Dollar + Carry 618 227 0.00 0.78 765 238 0.00 0.74 915 236 0.00 0.79
Dollar + Carry + ENSO 628 227 0.00 0.78 893 307 0.00 0.74 933 240 0.00 0.79

ENSO Dollar 490 144 0.00 0.75 1059 331 0.00 0.74 657 144 0.00 0.77
Dollar + ENSO 117 44 0.00 0.86 121 37 1.00 0.88 401 121 0.00 0.85
Dollar + Carry 558 155 0.00 0.75 1212 421 0.00 0.72 823 264 0.00 0.78
Dollar + Carry + ENSO 226 73 0.00 0.86 205 65 0.00 0.89 455 145 1.00 0.88
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Table 8: R2 from Cross-sectional Regression

This table reports the R2 values from cross-sectional regressions (CSR) conducted on 51
FX portfolios, referred to as the “ALL” portfolio, and also on subsets of portfolios sorted on
specific factors, including 5 Carry, 5 Short-Term and 5 Long-Term Momentum (ST Mom and
LT Mom), 5 Currency Value (Value), 5 Net Foreign Assets (NFA), 6 Liabilities in Domestic
Currencies (LDC), 5 Term Spread (Term), 5 Long-Term Yields (LYld), 5 Output Gap (GAP)
portfolios, and 5 ENSO portfolios. The models evaluated include (i) Dollar factor alone, (ii)
Dollar + ENSO factors, (iii) Dollar + Carry factors, and (iv) Dollar + Carry + ENSO
factors.The analysis is performed separately for three distinct cycles: the full sample period
(All Time), El Niño cycles, and La Niña cycles.

All time El Niño La Niña

CSR pval1 pval2 CSR pval1 pval2 CSR pval1 pval2 [t]
Portfolio Factor R2 H0 : R2 = 1 H0 : R2 = 0 R2 H0 : R2 = 1 H0 : R2 = 0 R2 H0 : R2 = 1 H0 : R2 = 0

ALL Dollar 0.06 0.00 0.21 0.00 0.00 0.84 0.05 0.37 0.60
Dollar + ENSO 0.19 0.00 0.06 0.27 0.00 0.06 0.19 0.41 0.56
Dollar + Carry 0.39 0.00 0.01 0.30 0.02 0.11 0.11 0.27 0.75
Dollar + Carry + ENSO 0.48 0.00 0.01 0.64 0.16 0.00 0.21 0.23 0.74

Carry Dollar 0.41 0.00 0.00 0.08 0.00 0.47 0.08 0.17 0.59
Dollar + ENSO 0.64 0.46 0.27 0.88 0.90 0.09 0.91 0.61 0.18
Dollar + Carry 0.96 0.18 0.00 0.91 0.15 0.00 0.76 0.22 0.26
Dollar + Carry + ENSO 1.00 0.76 0.00 1.00 0.84 0.00 0.99 0.86 0.19

MomST Dollar 0.73 0.42 0.06 0.12 0.13 0.54 0.88 1.00 0.58
Dollar + ENSO 0.91 0.71 0.05 0.93 0.83 0.06 0.90 0.99 0.81
Dollar + Carry 0.75 0.42 0.15 0.32 0.19 0.60 0.93 0.99 0.84
Dollar + Carry + ENSO 0.96 0.73 0.06 0.95 0.57 0.09 1.00 0.98 0.91

MomLT Dollar 0.00 0.03 0.95 0.04 0.00 0.78 0.13 0.39 0.74
Dollar + ENSO 0.44 0.01 0.26 0.80 0.08 0.01 0.44 0.52 0.76
Dollar + Carry 0.91 0.71 0.01 0.28 0.16 0.70 0.24 0.14 0.86
Dollar + Carry + ENSO 0.94 0.32 0.04 0.97 0.53 0.00 1.00 1.00 0.62

Value Dollar 0.76 0.84 0.04 0.24 0.29 0.41 0.10 0.18 0.48
Dollar + ENSO 0.80 0.65 0.13 0.70 0.23 0.17 0.22 0.07 0.61
Dollar + Carry 0.78 0.69 0.11 0.33 0.26 0.57 0.94 0.90 0.02
Dollar + Carry + ENSO 0.80 0.37 0.22 0.99 0.79 0.11 0.94 0.60 0.12

NFA Dollar 0.46 0.00 0.02 0.08 0.00 0.37 0.35 0.30 0.46
Dollar + ENSO 0.64 0.02 0.01 0.72 0.24 0.01 0.42 0.23 0.69
Dollar + Carry 0.91 0.22 0.00 0.92 0.56 0.00 0.71 0.26 0.47
Dollar + Carry + ENSO 0.93 0.12 0.00 1.00 0.87 0.00 0.87 0.39 0.50

LDC Dollar 0.35 0.03 0.07 0.19 0.01 0.20 0.23 0.66 0.67
Dollar + ENSO 0.36 0.02 0.17 0.24 0.01 0.39 0.58 0.74 0.70
Dollar + Carry 0.95 0.81 0.01 0.81 0.51 0.01 0.79 0.85 0.60
Dollar + Carry + ENSO 0.95 0.64 0.01 0.87 0.60 0.01 0.84 0.79 0.73

Term Dollar 0.02 0.30 0.79 0.14 0.10 0.47 0.23 0.42 0.39
Dollar + ENSO 0.87 0.75 0.26 0.59 0.10 0.10 0.55 0.41 0.46
Dollar + Carry 0.75 0.59 0.31 0.83 0.55 0.03 0.36 0.27 0.64
Dollar + Carry + ENSO 0.89 0.55 0.41 0.87 0.36 0.04 0.75 0.50 0.51

Lyld Dollar 0.89 0.82 0.01 0.00 0.04 0.93 0.05 0.64 0.80
Dollar + ENSO 0.96 0.87 0.01 0.75 0.35 0.10 0.06 0.45 0.98
Dollar + Carry 0.91 0.60 0.04 0.96 0.89 0.05 0.23 0.33 0.89
Dollar + Carry + ENSO 0.96 0.56 0.05 1.00 0.91 0.05 0.27 0.20 0.97

GAP Dollar 0.62 0.30 0.04 0.22 0.62 0.58 0.05 0.17 0.72
Dollar + ENSO 0.63 0.22 0.14 0.44 0.55 0.72 0.10 0.10 0.94
Dollar + Carry 0.71 0.37 0.24 0.93 0.97 0.40 0.65 0.53 0.41
Dollar + Carry + ENSO 0.79 0.50 0.40 0.99 0.93 0.57 0.65 0.25 0.63

ENSO Dollar 0.01 0.01 0.79 0.42 0.17 0.10 0.01 0.10 0.89
Dollar + ENSO 0.92 0.36 0.01 0.99 0.67 0.00 0.76 0.54 0.18
Dollar + Carry 0.11 0.10 0.83 0.76 0.59 0.08 0.11 0.11 0.84
Dollar + Carry + ENSO 0.87 0.13 0.04 0.99 0.60 0.02 0.72 0.05 0.25

41



Table 9: ENSO cycle and Output Gaps

This table presents the time-series averages and associated t-statistics of the differences in

average cumulative output gaps between high- and low-theta currencies across various hori-

zons. For each month and theta group, we compute the average cumulative output gap over

the specified horizons for the currencies belonging to that group. A positive difference be-

tween the averages of high- and low-theta currencies indicates that cumulative output gaps

over the horizon were larger for high-theta currencies than for low-theta currencies. The

output gap is estimated as (log) industrial production minus the (log) trend in industrial

production. The trend is estimated using the Hodrick-Prescott filter and the Baxter-King fil-

ter in Panel A and B, respectively. The COVID-19 period was excluded due to its abnormally

large output gaps.

Panel A. Hodrick-Prescott filter Panel B. Baxter-King filter

Horizon Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

-12 to 0 month mean 8.51% *** -1.92% -3.81% * -0.33% 11.11% *** 0.03% -3.22% 1.29%
tval (3.65) (-1.33) (-1.83) (-0.30) (4.80) (0.02) (-1.38) (1.05)

-6 to 0 month mean 4.45% *** -1.84% * -0.44% -0.01% 5.40% *** -0.12% -1.12% 0.72%
tval (3.65) (-1.74) (-0.43) (-0.02) (3.89) (-0.12) (-0.95) (1.05)

-3 to 0 month mean 2.29% *** -1.04% -0.39% -0.10% 2.64% *** -0.08% -0.36% 0.41%
tval (3.55) (-1.63) (-0.59) (-0.26) (3.69) (-0.15) (-0.61) (1.16)

-1 to 0 month mean 0.77% *** -0.34% -0.19% -0.05% 0.86% *** -0.02% -0.08% 0.15%
tval (3.02) (-1.50) (-0.67) (-0.34) (3.62) (-0.11) (-0.39) (1.26)

0 to +1 month mean 0.50% * -0.28% -0.16% -0.07% 0.83% *** 0.00% -0.05% 0.16%
tval (1.65) (-1.31) (-0.57) (-0.49) (3.65) (0.00) (-0.23) (1.37)

0 to +3 month mean 1.60% ** -0.67% -0.43% -0.10% 2.34% *** 0.09% -0.07% 0.52%
tval (2.11) (-1.21) (-0.57) (-0.26) (3.71) (0.17) (-0.11) (1.47)

0 to +6 month mean 2.81% ** 0.04% -1.32% 0.17% 3.71% *** 0.65% 0.05% 1.10%
tval (2.50) (0.04) (-0.98) (0.24) (3.45) (0.62) (0.04) (1.59)

0 to +12 month mean 1.67% 1.97% -0.83% 0.94% 0.61% 2.99% 1.99% 2.16% *
tval (0.97) (1.17) (-0.37) (0.82) (0.32) (1.60) (0.79) (1.70)
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A. SST and ENSO definition

Equatorial Pacific Sea Surface Temperatures (SST)

El Niño (La Niña) is a phenomenon in the equatorial Pacific Ocean characterized by a five

consecutive 3-month running mean of sea surface temperature (SST) anomalies in the Niño

3.4 region that is above (below) the threshold of +0.5°C (-0.5°C). This standard of measure

is known as the Oceanic Niño Index (ONI).

Historically, scientists have classified the intensity of El Niño based on SST anomalies

exceeding a pre-selected threshold in a certain region of the equatorial Pacific. The most

commonly used region is the Niño 3.4 region, and the most commonly used threshold is

a positive SST departure from normal greater than or equal to +0.5°C. Since this region

encompasses the western half of the equatorial cold tongue region, it provides a good measure

of important changes in SST and SST gradients that result in changes in the pattern of deep

tropical convection and atmospheric circulation. The criteria, that is often used to classify

El Niño episodes, is that five consecutive 3-month running mean SST anomalies exceed the

threshold.

SST values in the Niño 3.4 region may not be the only, or even necessarily the best,

choice for determining La Niña episodes but, for consistency, the index has been defined by

negative anomalies in this area. Another choice might be the Niño 4 region, since that region
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normally has SSTs at or above the threshold for deep convection throughout the year. An

SST anomaly of -0.5°C in that region would be sufficient to bring water temperatures below

the 28°C threshold, which would result in a significant westward shift in the pattern of deep

convection in the tropical Pacific.

Sea surface temperature anomalies were calculated using the Extended Reconstructed Sea

Surface Temperature version 5 (ERSST.v5).
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B. ENSO based on Bayesian Hidden Markov Model

(HMM) Estimation

In the main analysis, ENSO phases are classified using a discrete indicator variable (ENSO)

based on SST anomalies exceeding the threshold of ±0.5 ◦C in the Niño 3.4 region, following

Oceanic Niño Index (ONI) employed by NOAA. This threshold-based approach is well-

established in the climate science literature and provides a transparent and interpretable

benchmark for identifying El Niño and La Niña episodes. Nevertheless, to test the robustness

of our findings and to explore whether a more data-driven approach might yield similar

insights, we also estimate ENSO regimes using a Bayesian Hidden Markov Model (HMM).

The resulting classification, denoted as ENSOHMM , offers a probabilistic alternative that

does not rely on fixed thresholds.

The primary motivation for this exercise is to evaluate whether our empirical results

are sensitive to the way ENSO states are defined. While the ±0.5°C cutoff is consistent

with NOAA’s operational definition, threshold-based methods are inherently sensitive to

values near the boundary. Moreover, the threshold rule does not incorporate temporal

persistence, despite the well-documented tendency of ENSO phases to evolve gradually over

time. To address these limitations and validate the robustness of our classification scheme,

we implement a Bayesian HMM that infers latent ENSO regimes directly from the data,

accounting for both observation likelihood and state dynamics.

The Bayesian HMM is specified as a three-state model corresponding to La Niña, Neu-

tral, and El Niño regimes. Observed SST anomalies are modeled as emissions from latent

states, where each regime is characterized by a Gaussian distribution with distinct mean and

standard deviation. The model also includes a Markovian transition structure, where the

probability of transitioning between states is governed by a data-driven transition matrix.

Crucially, we adopt a Bayesian framework, assigning informative priors to both the emission

parameters (with means anchored at -1.0, 0.0, and +1.0) and the transition probabilities

(reflecting the tendency of regimes to persist). Parameter estimation is conducted using

Markov Chain Monte Carlo (MCMC), specifically the No-U-Turn Sampler (NUTS), which

efficiently samples from the posterior distribution over all model parameters.
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This estimation procedure updates beliefs about state-dependent means, variances, and

transitions based on the observed SST anomalies. Unlike classical (frequentist) HMMs es-

timated via the Baum-Welch algorithm, the Bayesian approach yields full posterior distri-

butions rather than point estimates. This allows for quantifying parameter uncertainty and

naturally incorporates prior knowledge. Moreover, the Bayesian model produces a posterior

distribution over the latent state sequence, enabling us to compute both the most likely

regime at each point in time and the uncertainty (entropy) associated with each assign-

ment. These features distinguish the Bayesian HMM from both hard thresholding rules and

standard likelihood-based HMMs.

To assess the comparability of the threshold-based ENSO series and the model-inferred

ENSOHMM , we examine their joint distribution and rate of agreement. Approximately 94%

of monthly observations are assigned to the same regime under both definitions. Discrep-

ancies primarily occur near the cutoff boundary, where the HMM may reclassify borderline

observations based on temporal context and overall regime coherence. For instance, months

with SST anomalies close to -0.5°C may be classified as Neutral by the threshold rule but

as La Niña by the HMM if surrounding observations exhibit strong persistence. Similarly,

some near-threshold El Niño months are assigned to the Neutral regime by the HMM due

to low transition likelihoods or emission uncertainty.

These differences, while modest, highlight the value of using a Bayesian HMM to smooth

transitions and incorporate information from the full time series. At the same time, the high

overall agreement lends support to the robustness of the ±0.5°C cutoff rule, reinforcing the

credibility of the ENSO classification used in the main specification. Importantly, when we

replicate our main empirical regressions using ENSOHMM in place of the threshold-based

ENSO variable, the results remain statistically and economically similar. This confirms

that our core findings are not driven by arbitrary classification decisions, but rather reflect

systematic linkages between ENSO phases and international asset returns.

In summary, the Bayesian HMM serves both as a robustness check and as a theoretically

grounded alternative to fixed-threshold classification. By incorporating probabilistic reason-

ing, regime persistence, and posterior uncertainty, it offers a comprehensive lens through

which to understand ENSO dynamics. The consistency between t at the observed return
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patterns are closely tied to the evolution of ENSO cycles.
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C. Cross-sectional asset pricing model

Let f be a K-vector of factors, R be a vector of returns on N test assets with mean µR

and covariance matrix VR, and β be the N ×K matrix of multiple regression betas of the

N assets with respect to the K factors. Let Yt = [f
′
t , R

′
t]

′
be an N +K vector. Denote the

mean and variance of Yt as

µ = E[Yt] =

 µf

µR


V = V ar[Yt] =

 Vf VfR

VRf VR


If the K factor asset pricing model holds, the expected returns of the N assets are given by

µR = Xγ, where X = [1N , β] and γ = [γ0, γ
′
1]

′
is a vector consisting of the zero-beta rate and

risk premia on the K factors. In a constant beta case, the two-pass cross-sectional regression

(CSR) method first obtains estimates β̂ by running the following multivariate regression:

Rt = α + βft + ϵt, t = 1, · · · , T

β̂ = V̂Rf V̂
−1
f

γW = argminγ(µR −Xγ)
′
W (µR −Xγ) = (X

′
WX)−1X

′
WµR

γ̂ = (X̂
′
WX̂)−1X̂

′
Wµ̂R

where W = IN under OLS CSR and W = Σ−1 = (VR − VRfV
−1
f VfR)

−1 under GLS CSR (or

equivalently use W = V −1
R ).

A normalized goodness-of-fit measure of the model (cross-sectional R2) can be defined as

ρ2W = 1 − Q
Q0

, where Q = e′WWeW , Q0 = e′0We0, eW = [IN − X(X
′
WX)−1X

′
W ]µR, and

e0 = [IN − 1N(1
′
NW1N)

−11
′
NW ]µR.

Shanken (1992) provides asymptotic distribution of γ adjusted for the errors-in-variables

problem accounting for the estimation errors in β. For OLS CSR, and GLS CSR,

√
T (γ̌ − γ)

A∼ N(0K+1, (1 + γ
′
V −1
f γ)(X

′
X)−1(X

′
ΣX)(X

′
X)−1 +

 0 0
′
K

0K Vf


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√
T (γ̌ − γ)

A∼ N(0K+1, (1 + γ
′
V −1
f γ)(X

′
ΣX)−1 +

 0 0
′
K

0K Vf


Kan et al. (2013) further investigate the asymptotic distribution of γ̂ under potentially

misspecified models as well as under the case when the factors and returns are i.i.d. multi-

variate elliptical distribution. The distribution is given by

√
T (γ̌ − γ)

A∼ N(0K+1, V (γ̂))

V (γ̂) =
∞∑

j=−∞

E[hth
′

t+j]ber (C..1)

ht = (γt − γ)− (θt − θ)wt +Hzt

where θt = [γ0t, (γ1t − ft)
′
]
′
, θ = [γ0, (γ1 − µf )

′
]
′
, ut = e′W (Rt − µR), wt = γ

′
1V

−1
f (ft − µf ),

and zt = [0, ut(ft − µf )
′
V −1
f ]

′
. Note that the term ht is now specified with three terms

which are the asymptotic variance of γ when the true β is used, the errors-in-variables (EIV)

adjustment term, and the misspecification adjustment term. Please see Kan et al. (2013)

for details of the estimation.

An alternative specification is in terms of the N ×K matrix VRf of covariances between

returns and the factors.

µR = Xγ = Cλ

λ̂ = (Ĉ
′
WĈ)−1Ĉ

′
Wµ̂R

where C = [1N , VRF ] and λW = [λW,0, λ
′
W,1]

′
.

Although the pricing errors from this alternative CSR are the same as those in the

one using β above (thus the cross-sectional R2 will also be the same), they emphasize the

differences in the economic interpretation of the pricing coefficients. In fact, according to

Kan et al. (2013), what matters is whether the price of covariance risk associated additional

factors is nonzero if we want to answer whether the extra factors improve the cross-sectional

R2. Therefore, we apply tests based on λ in the empirical testing. The methodologies about

how to use the asymptotic distribution of the sample R2 (ρ̂) in the second-pass CSR as the

basis for a specification test are also presented.
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Fig. A1: Cumulative Output Gap Before and After El Niño (Full Sample)

This figure illustrates the cumulative output gap 12 months before and after the onset of El Niño (t = 0). We estimate output

gaps using two statistical techniques to extract a cyclical component from monthly industrial production data: (i) Hodrick-

Prescott Filter for Panel A, (ii) Baxter-King Filter for Panel B. We use full sample periods including the El Niño cycle closest

to COVID19.
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Table A1: Summary Statistics

The table presents summary statistics for currencies included in our sample after 2000, the
year from which we construct currency portfolios. The variable RX represents the excess
return in percentage terms and is calculated as 100 × (fk

t−1 − skt ), where: s
k
t is the log spot

rate (foreign currency units per USD) for currency k, and fk
t−1 is the log one-month forward

rate (foreign currency units per USD). The variable FD represents the forward discount in
percentage terms and is calculated as 100× (fk

t − skt ), where f
k
t and skt are defined as above.

The forward discount is not annualized.

Description ISO start end rxmean rxstd fdmean fdstd fdmin fdmax

Australia AUD 1996-12 2023-12 0.07 3.50 0.12 0.16 -0.15 0.44
Brazil BRL 2004-03 2023-12 0.44 4.45 0.65 0.32 0.00 1.46
Bulgaria BGN 2004-03 2023-12 -0.08 2.68 -0.03 0.15 -0.27 0.44
Canada CAD 1977-02 2023-12 0.00 2.02 0.05 0.13 -0.46 0.48
Croatia HRK 2004-03 2022-12 -0.02 2.80 0.04 0.24 -0.40 1.31
Cyprus CYP 2004-03 2007-12 0.40 2.02 0.01 0.17 -0.19 0.43
Czech Repulbic CZK 1996-12 2023-12 0.12 3.41 0.06 0.31 -0.56 3.34
Denmark DKK 1977-02 2023-12 0.04 3.04 0.06 0.29 -1.03 1.67
Egypt EGP 2004-03 2022-12 0.86 2.50 1.21 1.80 -2.47 14.35
Euro erea EUR 1996-12 2023-12 -0.14 2.71 -0.09 0.25 -1.64 1.46
Hong Kong HKD 1996-12 2023-12 -0.02 0.17 -0.02 0.10 -0.18 1.17
Hungary HUF 1997-10 2023-12 0.18 3.83 0.37 0.36 -0.32 1.38
Iceland ISK 2004-03 2023-12 0.12 3.94 0.39 0.22 0.04 1.35
India INR 1997-10 2023-12 0.11 1.97 0.37 0.21 -0.18 1.18
Indonesia IDR 1996-12 2023-12 0.29 4.54 0.50 0.66 -0.01 5.01
Israel ILS 2004-03 2023-12 0.08 2.40 -0.01 0.11 -0.27 0.27
Japan JPY 1978-06 2023-12 -0.17 3.24 -0.24 0.22 -1.15 0.36
Kuwait KWD 1996-12 2023-12 0.03 0.63 0.04 0.10 -0.25 0.73
Malaysia MYR 1996-12 2023-12 -0.15 2.59 0.09 0.15 -0.32 0.76
Mexico MXN 1996-12 2023-12 0.33 3.14 0.57 0.44 0.14 2.81
New Zealand NZD 1996-12 2023-12 0.13 3.69 0.16 0.15 -0.18 0.55
Norway NOK 1977-02 2023-12 0.02 3.20 0.13 0.28 -1.10 1.94
Philippines PHP 1996-12 2023-12 0.05 2.23 0.28 0.29 -0.18 1.99
Poland PLN 2002-02 2023-12 0.20 3.88 0.17 0.19 -0.12 0.80
Russia RUB 2004-03 2023-12 0.43 5.33 0.67 0.94 -0.24 6.11
Saudi Arabia SAR 1996-12 2023-12 0.01 0.10 0.01 0.05 -0.27 0.24
Singapore SGD 1996-12 2023-12 -0.04 1.69 -0.05 0.11 -0.37 0.70
Slovakia SKK 2002-02 2008-12 1.11 3.36 0.14 0.24 -0.19 0.60
Slovenia SIT 2004-03 2006-12 0.22 2.17 0.02 0.15 -0.17 0.33
South Africa ZAR 1996-12 2023-12 -0.17 4.37 0.51 0.21 0.18 1.54
South Korea KRW 2002-02 2023-12 0.06 3.10 0.05 0.15 -0.89 0.31
Sweden SEK 1977-02 2023-12 -0.06 3.14 0.09 0.32 -0.53 3.63
Switzerland CHF 1977-02 2023-12 -0.03 3.36 -0.22 0.25 -1.28 0.48
Taiwan TWD 1996-12 2023-12 -0.12 1.55 -0.09 0.24 -1.23 1.28
Thailand THB 1996-12 2023-12 0.04 3.00 0.12 0.39 -0.36 4.51
Ukraine UAH 2004-03 2014-01 0.31 3.30 0.71 0.70 -0.33 4.80
UK GBP 1996-12 2023-12 -0.06 2.48 0.03 0.11 -0.27 0.29
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Table A2: Developed Market Currency Returns using ENSO and SST

This table presents various estimates of theta using the ENSO indicator variable (ONIt)

as the ENSO sensitivity measure. We explore different model variations to assess the ro-

bustness of theta under alternative controls. The regression equations are: (1) RXct =

αc + βCarry
c Carryt + θENSO

c ENSOt + ect, (2) RXct = αc + βCarry
c Carryt + θSSTc SSTt + ect,

where RXct is the excess return of currency c at time t, Carryt is the currency carry factor,

ENSOt is the indicator variable for ENSO (ENSOt = 1 for El Niño, ENSOt = 0 for neu-

tral, and ENSOt = −1 for La Niña), and SSTt is the anomalous sea surface temperature.

Sample includes developed market currencies only, based on Menkhoff et al. (2012, JFE)

and Menkhoff et al. (2012, JF). Countries include Australia, Belgium, Canada, Denmark,

Euro area, France, Germany, Italy, Japan, Netherlands, New Zealand, Norway, Sweden,

Switzerland, and the United Kingdom. Limitation is caused by the introduction of the euro

in January 1999, the sample of developed countries covers only 10 currencies.

Panel A. Using ENSO Panel B. Using SST

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean -4.36% 2.38% -1.69% -0.43% -3.41% 2.97% -2.19% -0.12%
tval (-1.06) (0.86) (-0.43) (-0.21) (-0.84) (1.07) (-0.57) (-0.06)

Port2 mean -2.86% 1.18% -0.07% -0.11% -1.69% 2.90% 0.82% 1.22%
tval (-0.76) (0.46) (-0.02) (-0.06) (-0.47) (1.11) (0.23) (0.66)

Port3 mean 0.60% 1.64% 0.56% 1.05% -1.99% -0.04% 1.22% -0.04%
tval (0.17) (0.62) (0.15) (0.57) (-0.54) (-0.01) (0.34) (-0.02)

Port4 mean -2.09% 3.27% 1.00% 1.36% -1.48% 3.03% 0.67% 1.27%
tval (-0.52) (1.20) (0.28) (0.71) (-0.37) (1.05) (0.18) (0.65)

Port5 mean 2.13% -0.28% 0.69% 0.56% 1.98% -0.68% -0.22% 0.05%
tval (0.64) (-0.10) (0.17) (0.28) (0.53) (-0.25) (-0.06) (0.02)

PortHML mean 6.50% * -2.66% 2.38% 0.99% 5.39% * -3.65% 1.97% 0.17%
tval (1.85) (-0.89) (0.63) (0.50) (1.68) (-1.39) (0.56) (0.09)
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Table A3: Currency Appearance by Portfolio Rank

This table reports the number of appearances of individual currencies in each portfolio rank

based on their theta values. Portfolio Rank 1 corresponds to currencies with the lowest theta

values, while Portfolio Rank 5 corresponds to those with the highest theta values. The top

seven currencies for each rank are highlighted. For Portfolio Rank 1 (Low Theta), the most

frequently appearing currencies include PLN, MXN, ZAR, NOK, AUD, CZK, and JPY. In

contrast, Portfolio Rank 5 (High Theta) is dominated by currencies such as INR, JPY, SEK,

ISK, EGP, DKK, and IDR.

Currency Country Name Rank 1 Rank 2 Rank 3 Rank 4 Rank 5 Total Count

AUD Australia 103 61 65 35 0 264
BGN Bulgaria 67 68 33 9 0 177
BRL Brazil 49 52 36 25 15 177
CAD Canada 0 73 176 39 0 288
CHF Switzerland 25 105 53 95 10 288
CZK Czech Repulbic 103 23 41 21 76 264
DKK Denmark 17 103 45 26 97 288
EGP Egypt 0 2 16 10 101 129
EUR Euro erea 24 107 44 67 22 264
GBP United Kingdom 71 4 57 125 7 264
HKD Hong Kong 0 43 61 131 29 264
HRK Croatia 54 48 39 24 0 165
HUF Hungary 63 51 29 17 94 254
IDR Indonesia 34 12 19 43 96 204
ILS Israel 3 39 87 37 11 177
INR India 24 39 17 10 164 254
ISK Iceland 13 17 28 9 110 177
JPY Japan 100 9 8 47 124 288
KRW South Korea 20 28 33 36 85 202
KWD Kuwait 0 35 112 117 0 264
MXN Mexico 113 104 47 0 0 264
MYR Malaysia 0 18 21 103 20 162
NOK Norway 105 40 43 98 2 288
NZD New Zealand 8 44 43 62 63 264
PHP Philippines 70 22 27 66 79 264
PLN Poland 116 71 9 5 1 202
RUB Russia 26 35 39 61 12 173
SAR Saudi Arabia 0 64 40 65 95 264
SEK Sweden 28 62 43 44 111 288
SGD Singapore 0 19 182 63 0 264
SKK Slovakia 0 0 9 1 12 22
THB Thailand 8 67 40 114 35 264
TWD Taiwan 88 73 99 4 0 264
UAH Ukraine 11 7 4 36 0 58
ZAR South Africa 106 100 17 0 0 223
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Table A4: Portfolio Results with GBP as Base Currency

This table focuses on the estimation of theta after changing the base currency from USD

to GBP, highlighting the comparison between results with different base currencies and

specifications. The analysis includes:full sample (using ENSO and SST with Carry factor)

and subset of 10 Developed Market (DM) Currencies (using ENSO and SST with Carry

factor). The regression equations are: (1) RXct = αc + βCarry
c Carryt + θENSO

c ENSOt + ect,

(2) RXct = αc+βCarry
c Carryt+ θSSTc SSTt+ ect, where RXct is the excess return of currency

c at time t, Carryt is the currency carry factor, ENSOt is the indicator variable for ENSO

(ENSOt = 1 for El Niño, ENSOt = 0 for neutral, and ENSOt = −1 for La Niña), and

SSTt is the anomalous sea surface temperature.

Panel A. Using ENSO (All currencies) Panel B. Using SST (All currencies)

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean 1.87% -2.03% -0.63% -0.73% 1.12% -1.44% 1.27% 0.01%
tval (0.50) (-0.78) (-0.20) (-0.41) (0.29) (-0.58) (0.40) (0.01)

Port2 mean 2.89% 0.64% 0.49% 1.08% 5.36% 1.02% 0.85% 1.90%
tval (0.86) (0.27) (0.19) (0.69) (1.46) (0.42) (0.33) (1.19)

Port3 mean 4.78% 0.47% 0.79% 1.51% 3.46% 0.03% 1.88% 1.38%
tval (1.25) (0.22) (0.34) (1.01) (0.96) (0.01) (0.81) (0.96)

Port4 mean 7.95% ** -0.94% 5.19% * 3.02% * 6.59% * -1.50% 2.61% 1.61%
tval (2.28) (-0.40) (1.96) (1.90) (1.92) (-0.67) (0.97) (1.04)

Port5 mean 10.62% *** 1.48% 3.57% 4.14% ** 11.51% *** 1.50% 3.41% 4.29% **
tval (2.77) (0.57) (1.07) (2.27) (2.92) (0.56) (1.04) (2.33)

PortHML mean 8.75% *** 3.51% 4.20% 4.87% *** 10.39% *** 2.94% 2.13% 4.28% **
tval (2.79) (1.38) (1.28) (2.82) (3.12) (1.15) (0.70) (2.51)

Panel C. Using ENSO (DM currencies) Panel D. Using SST (DM currencies)

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean 0.09% -1.58% -0.84% -0.97% 2.49% 0.79% -1.08% 0.53%
tval (0.02) (-0.53) (-0.26) (-0.51) (0.61) (0.26) (-0.34) (0.28)

Port2 mean 2.34% 1.02% 1.02% 1.30% 2.68% 0.15% 1.30% 1.08%
tval (0.63) (0.43) (0.39) (0.82) (0.72) (0.07) (0.49) (0.69)

Port3 mean 4.73% -0.02% 0.52% 1.18% 2.43% 0.06% 2.72% 1.46%
tval (1.33) (-0.01) (0.20) (0.74) (0.68) (0.03) (1.06) (0.96)

Port4 mean 5.47% 0.53% 2.99% 2.41% 5.07% -0.48% 0.65% 1.09%
tval (1.32) (0.21) (1.05) (1.40) (1.18) (-0.17) (0.23) (0.60)

Port5 mean 10.56% ** -1.89% 1.41% 1.89% 10.51% ** -2.41% 1.80% 1.77%
tval (2.50) (-0.72) (0.41) (1.00) (2.45) (-0.92) (0.55) (0.95)

PortHML mean 10.47% *** -0.31% 2.25% 2.86% 8.02% ** -3.20% 2.87% 1.24%
tval (2.69) (-0.09) (0.56) (1.28) (2.23) (-1.01) (0.81) (0.61)
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Table A5: Portfolio Results with ENSO based on Bayesian HMM Estimation

This table presents the average returns and t-statistics of θ-sorted portfolios, where θ is

estimated using the ENSOHMM variable derived from a Bayesian Hidden Markov Model

(HMM). We examine model variations with alternative controls to assess the robustness of

the portfolio results to the method of ENSO classification. The regression equations are:

(1) RXct = αc + θENSO
c ENSOt + ect, (2) RXct = αc + βCarry

c Carryt + θENSO
c ENSOt + ect,

(3) RXct = αc + βCarry
c Carryt + βMom

c MOMSTt + θENSO
c ENSOt + ect and RXct = αc +

βCarry
c Carryt + βMom

c MOMLTt + θENSO
c ENSOt + ect, where RXct is the excess return of

currency c at time t, Carryt is the currency carry factor, ENSOt is the indicator variable for

ENSO (ENSOt = 1 for El Niño, ENSOt = 0 for neutral, and ENSOt = −1 for La Niña),

and MOMSTt and MOMLTt are short-term and long-term currency momentum factors,

respectively.

Panel A. Without Controls Panel B. With Carry

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean -1.24% 0.39% 0.13% -0.06% -1.58% -0.76% -1.70% -1.31%
tval (-0.35) (0.14) (0.04) (-0.03) (-0.43) (-0.25) (-0.50) (-0.67)

Port2 mean -2.01% 0.57% -2.22% -1.09% -1.21% 2.86% 0.19% 0.93%
tval (-0.66) (0.28) (-0.79) (-0.72) (-0.42) (1.43) (0.07) (0.64)

Port3 mean 0.30% 3.38% -0.40% 1.22% -0.17% 2.60% -1.01% 0.57%
tval (0.11) (1.56) (-0.15) (0.81) (-0.06) (1.23) (-0.36) (0.38)

Port4 mean 1.50% 2.52% 0.39% 1.46% 2.44% 1.90% 2.37% 2.20%
tval (0.47) (1.02) (0.14) (0.90) (0.75) (0.79) (0.87) (1.38)

Port5 mean 6.08% * 3.81% 3.95% 4.35% ** 5.36% * 3.84% 1.61% 3.27% *
tval (1.93) (1.22) (1.23) (2.30) (1.83) (1.29) (0.53) (1.83)

PortHML mean 7.32% ** 3.42% 3.82% 4.41% *** 6.93% ** 4.60% * 3.32% 4.58% ***
tval (2.33) (1.33) (1.47) (2.78) (2.12) (1.74) (1.21) (2.78)

Panel C. With Carry and ST Momentum Panel D. With Carry and LT Momentum

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean -2.00% -0.04% -1.27% -0.95% -1.85% -0.08% -1.49% -1.02%
tval (-0.54) (-0.01) (-0.36) (-0.47) (-0.51) (-0.03) (-0.42) (-0.51)

Port2 mean -1.70% 1.60% -0.07% 0.23% -0.57% 2.28% -1.36% 0.22%
tval (-0.60) (0.84) (-0.03) (0.16) (-0.20) (1.27) (-0.52) (0.16)

Port3 mean 0.53% 2.70% -1.05% 0.74% -0.27% 2.48% 0.37% 1.06%
tval (0.20) (1.23) (-0.38) (0.49) (-0.10) (1.13) (0.14) (0.71)

Port4 mean 2.15% 2.12% 1.24% 1.78% 2.65% 2.38% 1.70% 2.16%
tval (0.64) (0.90) (0.48) (1.14) (0.80) (1.00) (0.65) (1.39)

Port5 mean 5.82% ** 4.12% 2.63% 3.89% ** 4.88% 3.37% 2.37% 3.29% *
tval (2.10) (1.37) (0.84) (2.15) (1.64) (1.11) (0.74) (1.78)

PortHML mean 7.82% ** 4.16% 3.90% 4.83% *** 6.73% ** 3.45% 3.86% 4.31% ***
tval (2.41) (1.56) (1.38) (2.88) (2.16) (1.34) (1.34) (2.60)
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Table A6: Fama-MacBeth Regression

This table reports Fama-MacBeth regression results. The dependent variable is the currency
excess return (RXct). The main explanatory variable is θENSO, the return sensitivity of
each currency to the ENSO cycle, estimated from time-series regressions. The specification
is: RXct = αt + β θENSO

c + γ Controlsct + εct. The control variables include interest rate
differentials (Carry), short-term and long-term momentum (MomST and MomLT), currency
value (Value), net foreign assets (NFA), liabilities in domestic currencies (LDC), term spread
(Term), short-term and long-term yields (SYld and LYld), and the output gap (GAP). Panel
A includes all months, Panel B includes only El Niño periods, Panel C includes only La Niña
periods, and Panel D includes only Neutral periods. All regressions are run cross-sectionally
in each month, and the reported coefficients are the time-series averages of these estimates.

Panel A. All Time

Model Variable Intercept θENSO Carry MomST MomLT Value Term GAP NFA LDC SYld LYld

Model 1 coef 0.002 0.294 **
tstat (1.43) (2.33)

Model 2 coef 0.001 0.219 0.850 ***
tstat (0.50) (1.58) (4.74)

Model 3 coef 0.003 0.006 0.522 0.035 -0.004 -0.002
tstat (1.26) (0.02) (0.68) (0.49) (-0.23) (-0.25)

Model 4 coef -0.002 -1.007 2.332 -0.615 0.020 0.000
tstat (-0.75) (-0.80) (1.51) (-1.56) (0.29) (0.10)

Model 5 coef 0.000 0.225 0.521 * -0.042
tstat (0.10) (1.14) (1.80) (-1.17)

Model 6 coef 0.006 2.077 * -1.402 -0.025 0.090 0.000 -0.013
tstat (0.45) (1.80) (-0.64) (-0.19) (1.20) (1.04) (-0.47)

Model 7 coef 0.003 1.065 -0.061 -0.015 0.001 0.008
tstat (0.85) (1.15) (-0.04) (-0.60) (1.06) (0.45)

Model 8 coef -0.013 0.398 ** 0.007 * 0.009 0.000 0.002
tstat (-1.25) (1.98) (1.93) (0.48) (-0.08) (1.10)

Panel B. El Niño

Model Variable Intercept θENSO Carry MomST MomLT Value Term GAP NFA LDC SYld LYld

Model 1 coef 0.002 0.632 **
tstat (0.94) (2.46)

Model 2 coef 0.000 0.598 ** 0.999 ***
tstat (-0.05) (2.01) (3.41)

Model 3 coef -0.001 0.743 ** 1.122 *** -0.004 0.010 0.010 *
tstat (-0.55) (2.49) (2.70) (-0.06) (0.71) (1.68)

Model 4 coef -0.001 0.583 ** 0.258 -0.045 0.007 -0.001
tstat (-0.45) (2.01) (0.47) (-0.69) (0.46) (-1.22)

Model 5 coef 0.000 0.675 ** 0.207 -0.022
tstat (0.15) (2.04) (0.40) (-0.52)

Model 6 coef -0.002 0.423 * 1.449 *** 0.021 -0.015 0.001 0.006
tstat (-0.49) (1.79) (3.16) (0.31) (-0.71) (1.39) (0.91)

Model 7 coef 0.000 1.116 ** 0.724 0.012 0.000 -0.017
tstat (0.14) (2.27) (0.94) (1.52) (0.27) (-0.43)

Model 8 coef -0.001 1.295 *** 0.013 -0.014 0.000 0.000
tstat (-0.35) (2.62) (1.55) (-0.37) (0.29) (0.31)
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Panel C. La Niña

Model Variable Intercept θENSO Carry MomST MomLT Value Term GAP NFA LDC SYld LYld

Model 1 coef 0.001 0.161
tstat (0.53) (0.65)

Model 2 coef 0.000 0.042 1.113 ***
tstat (0.22) (0.16) (3.16)

Model 3 coef 0.004 0.501 -0.878 0.095 -0.022 -0.020
tstat (0.73) (0.57) (-0.41) (0.67) (-0.56) (-1.25)

Model 4 coef -0.013 -2.879 5.887 -1.931 * 0.085 0.001
tstat (-1.47) (-0.79) (1.29) (-1.66) (0.41) (1.18)

Model 5 coef 0.004 -0.084 0.990 ** -0.068
tstat (1.20) (-0.28) (1.98) (-1.04)

Model 6 coef 0.033 2.767 -6.095 -0.427 * 0.257 0.002 * -0.073
tstat (0.98) (1.14) (-0.92) (-1.66) (1.07) (1.67) (-1.05)

Model 7 coef 0.008 2.037 -1.660 -0.059 0.001 0.009
tstat (0.66) (0.75) (-0.39) (-0.76) (1.06) (0.49)

Model 8 coef -0.039 0.219 -0.001 0.017 -0.001 0.008
tstat (-1.28) (0.65) (-0.12) (0.88) (-0.65) (1.15)

Panel D. Neutral

Model Variable Intercept θENSO Carry MomST MomLT Value Term GAP NFA LDC SYld LYld

Model 1 coef 0.002 0.232
tstat (1.12) (1.34)

Model 2 coef 0.001 0.168 0.584 **
tstat (0.60) (0.89) (2.19)

Model 3 coef 0.004 -0.710 1.270 ** 0.009 0.003 0.006
tstat (1.33) (-1.58) (2.24) (0.08) (0.11) (0.66)

Model 4 coef 0.005 ** -0.382 0.696 0.086 -0.022 0.000
tstat (2.21) (-0.54) (1.58) (0.71) (-0.91) (-0.15)

Model 5 coef -0.002 0.239 0.324 -0.031
tstat (-0.91) (0.69) (0.70) (-0.53)

Model 6 coef -0.006 2.371 0.238 0.203 0.033 -0.001 0.015
tstat (-0.32) (1.29) (0.13) (0.95) (0.88) (-0.81) (0.40)

Model 7 coef 0.002 0.323 0.746 0.003 0.000 0.019
tstat (0.76) (0.88) (1.14) (0.54) (0.48) (0.61)

Model 8 coef 0.001 0.102 0.009 * 0.014 0.001 0.000
tstat (0.16) (0.36) (1.74) (0.42) (0.83) (-0.19)

16



Table A7: Turnover of Long-Short Portfolios Based on Theta ENSO or SST

This table presents the mean and standard deviation of monthly turnover for long-short

portfolios constructed based on theta values estimated using either ENSO or SST without

any control variables. The turnover is calculated as:

Tunover = 0.5 ·
∑

c in portfolio 1

|∆Weightfx|+ 0.5 ·
∑

fx in portfolio 5

|∆Weightfx|

PortName turnover mean turnover std

Carry 0.1139 0.0947
Momentum (1m) 0.7690 0.1521
Momentum (12m) 0.2378 0.1248
ENSOHML 0.0726 0.1191
ENSOHML (wCarry) 0.0734 0.1174
SSTHML 0.0713 0.1204
SSTHML (wCarry) 0.0667 0.1206
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Table A8: Theta-Sorted Portfolio Returns using MSCI stock market indices

This table presents regression results for Theta-sorted portfolios using MSCI international stock market indices. USD-

denominated stock market returns are used from Panel A to C and local currency-denominated stock market returns are

used from Panel D to F. We use the following specifications to measure the ENSO-sensitivity of those stock market in-

dices: (i) RXct = αc + θENSO
c ENSOt + ect, (ii) RXct = αc + βMKT

c MKTt + θENSO
c ENSOt + ect, and (iii) RXct =

αc + βMKT
c MKTt + βSize

c Sizet + βV alue
c V aluet + θENSO

c ENSOt + ect. where RXct is the excess return of stock market in-

dices of country c at time t, ENSOt is the indicator variable for ENSO (ENSOt = 1 for El Niño, ENSOt = 0 for neutral,

and ENSOt = −1 for La Niña), and MKTt, Sizet, and V aluet is the market, size and value factors, respectively.

Panel A - C: Using USD-denominated returns

Panel A. Wihtout Controls Panel B. Market Factor Panel C. FF3 Factors

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean -7.52% 11.52% ** 13.40% * 7.23% ** -7.58% 11.78% ** 13.98% * 7.50% ** -7.60% 12.76% *** 11.20% 7.12% **
tval (-1.13) (2.47) (1.82) (2.08) (-1.14) (2.51) (1.91) (2.16) (-1.05) (2.73) (1.55) (2.01)

Port2 mean 1.84% 12.80% *** 11.50% * 9.63% *** 2.49% 12.70% *** 10.25% * 9.38% *** 2.40% 11.62% *** 10.22% * 8.86% ***
tval (0.29) (2.97) (1.86) (3.10) (0.40) (2.91) (1.70) (3.03) (0.42) (2.66) (1.66) (2.90)

Port3 mean 4.73% 8.81% ** 8.14% 7.57% ** 5.16% 9.03% ** 8.28% 7.82% *** 4.76% 9.23% ** 10.71% * 8.53% ***
tval (0.78) (2.08) (1.43) (2.55) (0.85) (2.15) (1.42) (2.63) (0.78) (2.19) (1.84) (2.85)

Port4 mean 8.08% 9.06% ** 7.79% 8.44% *** 6.35% 8.08% * 8.60% 7.79% *** 6.50% 9.34% ** 8.16% 8.27% ***
tval (1.37) (2.15) (1.41) (2.90) (1.06) (1.93) (1.56) (2.67) (1.09) (2.25) (1.44) (2.83)

Port5 mean 4.67% 10.72% ** 8.54% 8.54% *** 5.59% 11.64% *** 8.46% 9.17% *** 6.03% 10.31% ** 9.15% 8.88% ***
tval (0.69) (2.46) (1.44) (2.72) (0.84) (2.66) (1.44) (2.95) (0.90) (2.35) (1.57) (2.85)

PortHML mean 12.19% ** -0.80% -4.86% 1.31% 13.17% ** -0.13% -5.52% 1.67% 13.63% *** -2.45% -2.05% 1.76%
tval (2.32) (-0.26) (-0.91) (0.52) (2.51) (-0.04) (-1.06) (0.67) (2.59) (-0.82) (-0.40) (0.72)

Panel D - F: Using local currency-denominated returns

Panel D. Wihtout Controls Panel E. Market Factor Panel F. FF3 Factors

PortName Type ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All ElNiño Neutral LaNiña All

Port1 mean -1.76% 11.61% *** 9.33% * 7.54% *** -1.77% 10.98% *** 9.09% * 7.18% ** -1.72% 12.35% *** 8.08% 7.52% ***
tval (-0.30) (2.82) (1.79) (2.66) (-0.30) (2.69) (1.73) (2.54) (-0.30) (2.90) (1.51) (2.60)

Port2 mean 1.04% 13.04% *** 12.93% ** 9.96% *** 0.46% 13.23% *** 13.63% ** 10.10% *** 1.91% 12.28% *** 11.16% ** 9.31% ***
tval (0.19) (3.50) (2.47) (3.69) (0.08) (3.55) (2.57) (3.68) (0.33) (3.36) (2.21) (3.49)

Port3 mean 3.29% 7.37% ** 9.52% ** 6.96% *** 2.60% 7.58% ** 8.74% ** 6.66% *** 1.25% 7.94% ** 10.27% ** 6.92% ***
tval (0.57) (2.05) (2.23) (2.77) (0.45) (2.02) (2.08) (2.61) (0.22) (2.14) (2.35) (2.71)

Port4 mean 2.22% 7.04% ** 8.19% * 6.15% ** 4.60% 7.41% ** 8.55% ** 7.03% *** 5.12% 6.94% ** 9.51% ** 7.23% ***
tval (0.40) (2.00) (1.94) (2.49) (0.88) (2.14) (2.02) (2.93) (0.96) (2.06) (2.28) (3.04)

Port5 mean 4.30% 10.22% *** 8.41% * 8.18% *** 3.23% 9.77% ** 8.42% * 7.71% *** 2.26% 9.73% ** 9.49% ** 7.76% ***
tval (0.71) (2.61) (1.86) (3.04) (0.51) (2.52) (1.89) (2.84) (0.36) (2.43) (2.11) (2.82)

PortHML mean 6.06% -1.39% -0.91% 0.65% 5.00% -1.21% -0.67% 0.53% 3.98% -2.62% 1.41% 0.24%
tval (1.56) (-0.50) (-0.25) (0.34) (1.27) (-0.43) (-0.18) (0.27) (1.02) (-0.96) (0.38) (0.13)
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Table A9: Price of Covariance Risk

This table evaluates the price of covariance risk (λ) for the two-factor model (Dollar and
Carry) and the extended three-factor model that includes ENSO. Metrics include the price
of covariance risk (λ), t-statistics of λ using Fama-MacBeth methodology (tstatFM), and the
Kan, Robotti, and Shanken (2013) misspecification-robust t-ratio (tstatKRS).

All Time El Niño La Niña

Panel A. Using 5 θENSO
c sorted portfolios for the two-factor model

Intercept Dollar ENSO Intercept Dollar ENSO Intercept Dollar ENSO

λ 0.00 10.25 8.20 0.00 8.36 18.05 -0.01 29.92 12.77
tstatFM -0.56 1.36 2.63 0.03 0.52 2.62 -1.46 1.85 1.80
tstatKRS -0.44 0.90 2.27 0.03 0.04 2.88 -1.02 1.28 0.71

Panel B. Using 5 θENSO
c sorted portfolios for the three-factor model

Intercept Dollar Carry ENSO Intercept Dollar Carry ENSO Intercept Dollar Carry ENSO

λ 0.00 -0.65 11.44 6.37 0.00 -0.58 27.53 17.20 0.00 4.23 2.86 5.94
tstatFM 2.64 -0.15 2.93 1.88 1.52 -0.06 3.49 2.52 1.66 0.56 0.40 1.00
tstatKRS 1.84 0.49 2.66 1.97 0.99 0.07 2.89 2.75 1.18 0.59 0.60 0.92

Panel C. Using all inclusive 51 FX portfolios for the two-factor model

Intercept Dollar ENSO Intercept Dollar ENSO Intercept Dollar ENSO

λ 0.00 4.72 7.45 0.00 5.75 16.22 0.00 6.36 7.32
tstatFM 1.64 1.14 2.14 1.14 0.60 2.31 1.83 0.86 1.11
tstatKRS 1.28 0.91 2.05 0.59 0.20 2.40 1.35 0.53 0.87

Panel D. Using all inclusive 51 FX portfolios for the three-factor model

Intercept Dollar Carry ENSO Intercept Dollar Carry ENSO Intercept Dollar Carry ENSO

λ 0.00 -0.65 11.44 6.37 0.00 -0.58 27.53 17.20 0.00 4.23 2.86 5.94
tstatFM 2.64 -0.15 2.93 1.88 1.52 -0.06 3.49 2.52 1.66 0.56 0.40 1.00
tstatKRS 1.84 0.49 2.66 1.97 0.99 0.07 2.89 2.75 1.18 0.59 0.60 0.92
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