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Abstract

We introduce a neoclassical model of a two-sector production economy featuring a venture cap-

ital firm that can transform and create capital. Our model extends the two-trees framework

from Cochrane, Longstaff, and Santa-Clara (2008) by adding a gardener (the venture capital

firm) that nurtures and prunes the trees. The model highlights a fundamental feature of capital

investments: they change the economy’s capital mix (e.g., office buildings versus factories, or

plows versus tractors), which has several implications. A factor constructed from real capital

flows captures risks associated with sector capital imbalance, prices the cross-section of stock

returns, and generates positive CAPM alpha, consistent with the empirical success of the in-

vestment factor. In contrast to most existing q-theory models, the stochastic discount factor

and fluctuations of risk premia and investments are all endogenous. We find empirical support

for these predictions.

Keywords: Capital allocation, general equilibrium, factor-based asset pricing, investments.
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The investment factor has become an essential pricing factor in widely used asset pricing models,

such as “FF5” (Fama and French, 2015) and “Q4” (Hou et al., 2015). The empirical success of this

factor, which takes a long position in stocks with low corporate investment and a short position in

stocks with high corporate investment, raises important questions. Does the high average return of

stocks with low corporate investment represent compensation for some type of aggregate investment

risk? Or is it attributed to behavioral biases that cause stock prices to depart from their intrinsic

value?

Our understanding of the investment factor primarily comes from a growing collection of q-

theory models of the firm (see Carlson et al. (2004), Zhang (2009), Li et al. (2009), Novy-Marx

(2013), Hou et al. (2015) Hou et al. (2018), among others). These models successfully relate a stock’s

risk premium to several of the firm’s characteristics, including its level of investment. However, the

models have limitations. Because they focus on individual firms and specify exogenous dynamics

for the stochastic discount factor, they have little to say about the origins of the investment factor.

What is more, because the specified stochastic discount factor generally has only one factor, which

captures the returns of the market portfolio, a conditional capital asset pricing model (CAPM)

holds. These models therefore do not explain why the investment factor empirically generates

CAPM alpha.

Building on these theoretical advances, our paper develops a theory of the investment factor that

is consistent with both standard q-theory models of the firm and risk-based models of investors. Our

theory highlights a fundamental feature of capital investments: they change the economy’s capital

mix (e.g., office buildings versus factories, or plows versus tractors). Because the process of capital

transformation requires effort to implement, investors require compensation for risk associated

with the cost of sector capital imbalance. We show that a factor constructed from real capital flows

captures this risk, prices the cross-section of stock returns, and generates positive CAPM alpha in

the public equity market. These predictions are consistent with the empirical performance of the

investment factor.

Our framework is parsimonious and delivers quasi-closed-form solutions. In contrast to most

existing q-theory models, the stochastic discount factor is endogenous in our model, as are fluctua-

tions of risk premia and investments. We build on the two-tree dynamic framework from Cochrane

et al. (2008) where the two sectors (the “two trees”) produce a risky amount of consumption good

every period. The innovation relative to Cochrane et al. (2008) is that our economy features a
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venture capital firm (the “gardener”) that can create and transform capital across sectors. The

transformation of capital is costly because it involves potentially re-training workers or re-deploying

capital equipment. Because of this friction, the gardener re-allocates capital across sectors slowly

and predictably.

We obtain four key insights from the model. First, “sector capital imbalance” is a state variable

that jointly drives capital flows and asset prices. At all times, the gardener seeks to maintain a

balanced portfolio of the two sectors based on their riskiness and growth potential. So, when a

sector incurs a negative shock and its capital level falls below its optimal capital share, its remaining

capital stock becomes increasingly valued. The gardener is keen to supply more capital to that

sector and bring it back to balance.

Second, sector capital imbalance is hard to measure empirically but can be directly recovered

from capital flows. Measuring the direction and degree of sector capital imbalance is challenging

because it requires knowing what is the optimal level of capital allocation to each sector. This

in turn requires knowing what are the underlying risk and return parameters for each sector -

parameters that are not directly observable by the econometrician. However, because the gardener

systematically moves capital away from the sector where the capital share is too high and towards

the sector where the capital share is too low, the econometrician can recover from capital flows

information about the direction and the level of the sector capital imbalance.

Third, a portfolio constructed from real capital flows can be used as a priced risk factor. In our

setting, households derive positive utility from aggregate consumption of the good and negative

utility from the effort spent to transform capital. A two-factor pricing model arises where the

first factor is captured by aggregate consumption, as in standard consumption-based asset pricing

models, and the second factor is captured by the degree of sector capital imbalance. This second

factor can be recovered from a portfolio that is long capital outflows and short capital inflows.

Fourth, this factor constructed from capital flows generates both a high average return when

capital flows are large and a positive alpha with respect to a publicly traded market portfolio. In

our model, even though a conditional CAPM holds with respect to the aggregate equity portfolio, it

does not hold with respect to the publicly traded market benchmark when some of the newly created

firms do not immediately become publicly listed. More specifically, when high-valuation firms go

public fast and low-valuation firms stay private longer, consistent with the empirical evidence in

the IPO literature, then the publicly traded market portfolio systematically over-weights the sector
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with capital inflows and under-weights the sector with capital outflows. Consequently, we show

that firms in the sector with capital inflows have negative CAPM alphas whereas firms in the sector

with capital outflows have positive CAPM alphas.

Altogether, the model produces a rich set of equilibrium outcomes linking real capital flows to

asset prices. Capital flows endogenously and positively respond to asset prices. A portfolio that

takes a long position in the sector with capital outflows and a short position in the sector with

capital inflows serves as a wind vane that indicates the direction and the degree of sector capital

imbalance. This portfolio generates a high average return, positive CAPM alpha, and can be used

as a risk factor to explain the cross-section of risk premia in conjunction with the publicly traded

market factor. Our general-equilibrium (GE) framework of real capital flows is therefore not only

consistent with q-theory under adjustment costs but also provides a risk-based explanation of the

investment factor centered on sector capital imbalance.

We emphasize that our results only arise in a production-GE setting with multiple sectors and

finite adjustment costs. In the extreme case when capital adjustment costs are infinite, the model

converges to the “two trees” endowment economy of Cochrane et al. (2008). Prices adjust to clear

capital markets but capital flows do not respond to asset prices. At the extreme other end of the

spectrum, when capital adjustment costs tend to zero the model converges to a Cox et al. (1985)

economy (see also Merton (1971)) where capital flows immediately adjust to ensure the portfolio

of sectors remains optimally balanced. Because capital shocks are fully “absorbed” by the ensuing

capital flows, asset prices are unaffected. And because sectors always remain at their optimal

capital share, the risk premium for bearing sector capital imbalance risk is zero in this case.

We next turn to the data and find empirical support for the model’s key predictions. Using

accounting data from Compustat on a sample of over 2,000 U.S. firms every year between 1976

and 2023, we propose a simple but efficient methodology to measure aggregate real capital flows.

Starting at the firm level, we calculate the annual change in a firm’s book value net of operating

assets, i.e. net of cash holdings and other short-term financial assets. We categorize a positive

change in a firm’s book value as “in-capital,” a negative change as “out-capital,” and refer to the

firm’s book value from the previous year as “previous-capital.” We then add up these capital values

across firms and construct every year the aggregate portfolios of previous-, in-, and out-capital.

Together, the three portfolios make up the total capital across listed firms. This decomposition of

capital is consistent with the model, has clean addition properties, and allows us to bypass standard
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industry classifications which may not fully capture how the U.S. economy has transformed over

the past 50 years (Bergsman et al., 1975; Fort and Klimek, 2016; Keil, 2017).

We uncover several empirical findings. First, capital flows are slow-moving and persistent.

Focusing on the in-capital portfolio, we find that, conditional on investing in new capital in a

given quarter, a firm has an above-average probability of investing in more capital in the following

quarters. Over time, this probability converges to the unconditional average. The portfolio of

out-capital exhibits similar persistency. These facts are consistent with the prediction from the

model that capital re-allocation is predictable and takes time to implement.

Second, capital flows positively respond to asset prices. Every year, we compare the market-

to-book ratio of the in-, out-, and previous-capital portfolios. We find the market-to-book ratio is

always highest for the in-capital portfolio and always lowest for the out-capital portfolio, with the

market-to-book ratio of the previous-capital portfolio always in between. These facts are consistent

with the prediction from the model that capital flows away from where it is valued the least and

towards where it is valued the most.

Third, capital flows negatively predict a stock’s expected return. Using daily stock return data

from CRSP, we examine the daily returns of each portfolio over one year after the portfolio is

formed. We find that the out-capital portfolio systematically outperforms the in-capital portfolio.

This fact is consistent with the model’s prediction.

Fourth, capital flows negatively predict CAPM alpha. A zero-cost portfolio that is long the

out-capital portfolio and short the in-capital portfolio has a CAPM-alpha of approximately 8% per

year. This alpha is economically large, strongly statistically significant with a t-value of 3.9, and

driven both by the long and short legs. Additionally, the return of this “out-minus-in” portfolio

is highly correlated with the investment factor in Fama and French (2015) and Hou et al. (2015).

These facts are consistent with the prediction from the model that a portfolio constructed from

real capital flows can be used as a pricing factor in conjunction with the publicly traded market

portfolio.

Our paper contributes to the general equilibrium literature with multiple production (Garleanu

et al., 2012; Gomes et al., 2003; Kogan et al., 2020; Papanikolaou, 2011; Parlour and Walden, 2011;

Betermier et al., 2023). Our model provides a link between real capital flows and the cross-section

of equity premia in the presence of capital adjustment costs, and also provides a micro-foundation

for the investment factor that is consistent with both q-theory models of the firm and consumption-
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based models of investors. A key difference from the q-theory literature is that in our model, the

cost friction is associated with the transformation of capital from one sector to another, and not

with the scaling up or down of aggregate capital investments.

Our study also contributes to the existing body of research on capital flows, which have been

used extensively across the different finance research streams to reveal information about risk and

return. In the mutual fund literature, investor flows reveal information about the underlying risk

factors that investors care about (Barber et al., 2016; Berk and van Binsbergen, 2016). The capital

flows of the mutual funds themselves are informative about fire-sale risk (Aragon and Kim, 2023). In

the microstructure literature, order flow is a powerful predictor of exchange-rate dynamics (Evans

and Lyons, 2002). In the macro-finance literature, studies have repeatedly shown how “flights” of

capital towards safety and liquidity can help to explain large variations in the prices of real estate,

gold, currencies, sovereign debt, international equities, and other assets (Beber et al., 2009; Baele

et al., 2020). Our paper shows that real capital flows can be used to determine the cross-section of

stock returns.

The rest of the paper is structured as follows. Section 1 introduces the model and highlights how

capital flows reveal information about sector capital imbalance. Section 2 derives the main asset

pricing results. Section 3 presents the data analysis and the empirical results. Section 4 concludes.

An Internet Appendix provides the proofs and additional theoretical and empirical results.

1 Setup

We consider an economy with three types of agents: (i) firms, (ii) a venture capitalist firm, and

(iii) households. Firms belong to one of two industries, they own industry-specific capital, and

rent labor from households. The venture capitalist reallocates capital across sectors, which is the

distinguishing feature of our model. Households receive equity as compensation for the effort they

exert on behalf of the venture capitalist. Time is continuous and indexed by t ∈ [0,+∞), and there

exists a unique consumption good.

1.1 Firms

There are two production sectors and a continuum of identical firms in each sector. We denote by

Kn
t ≥ 0 the amount of capital used in sector n ∈ {1, 2} at time t. The firms in the sector own
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the n-capital, Kn
t , and each type of capital is distinct. We use the term “sector” but there are

several possible interpretations for what the different types of capital represent. They could, for

example, denote assets in place in two industries, one representing farming equipment and the other

computer hardware. They could also represent tangible versus intangible capital in the economy,

different types of human capital, etc. We are agnostic about the exact interpretation. The total

capital stock is Kt = K1
t +K2

t .

Capital generates a flow of the consumption good,

Y n
t = κKn

t . (1)

The coefficient κ is assumed to be the same in both industries. Consequently, the aggregate

consumption good flow, Yt = Y 1
t +Y 2

t , is also proportional to the aggregate capital stock: Yt = κKt.

Consumption good flows are paid as dividends to shareholders. The dividend flow paid by n-firms

is Dn
t . In aggregate, the dividend flow is equal to the consumption flow:

D1
t +D2

t = Y 1
t + Y 2

t .

In the absence of capital production, capital and consumption flows naturally grow at the

stochastic rate
dKn

t

Kn
t

=
dY n

t

Y n
t

= µndt+ σndzn,t, (2)

where z1 and z2 are Wiener processes with cov(dz1,t, dz2,t) = ρ dt, and ρ ∈ (−1, 1), µn, and σn are

constants, n ∈ {1, 2}. We impose the following parameter constraints.

Assumption 1 (Non-degeneracy conditions) The firms satisfy κ > δ, µ1 > µ2 − σ2
2 + ρσ1σ2,

µ2 > µ1 − σ2
1 + ρσ1σ2, σ1 − ρσ2 > 0, and σ2 − ρσ1 > 0 .

These conditions will guarantee that, in equilibrium, both types of capital are in positive supply

and it is optimal to invest in each sector.

We denote the total value of each firm by Pn
t , and define their price-to-capital and dividend-

to-capital ratios as follows:

pnt =
Pn
t

Kn
t

, dnt =
Dn

t

Kn
t

, (3)
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where n ∈ {1, 2}. The total value of the firms is Pt = P 1
t + P 2

t . Let

st =
K1

t

Kt
(4)

be the ratio of sector 1 capital to the total amount of capital in the economy, which we denote the

capital share. The aggregate price-to-capital ratio is

pt =
Pt

Kt
=

P 1
t + P 2

t

K1
t +K2

t

= stp
1
t + (1− st)p

2
t . (5)

In the absence of arbitrage, there exists a stochastic discount factor process (SDF), {Mt}t≥0, such

that the market value of a contingent claim with payoff XT at time T is given by

Vt = Et

(
MT

Mt
XT

)
(6)

at every t ≤ T. Under complete markets, the firm makes decisions that maximize its market value,

as defined by Equation (6).

1.2 Investment Technologies

A competitive venture capitalist (VC) firm, which we describe in the next section, can create new

capital. The VC has access to a continuum of technologies, indexed by w ∈ R, that require effort

and capital as inputs, and creates new capital as output.

Definition 1 (w-technology) For every w ∈ R, the w-technology, Tw, transforms one unit of

effort, s a φ(w, s) units of 1-capital, and (1 − s) aφ(w, s) units 2-capital into w units of 1-capital

output and 1 − w units of 2-capital output, where a > 0 and φ(w, s) = (w − s)2 for every w ∈ R

and s ∈ [0, 1].

Under this definition, the capital input of a w-technology, aφ(w, s), is split in proportion to

the capital share, so that s a φ(w, s) units of 1-capital and (1 − s) aφ(w, s) units of 2-capital are

used as inputs. We interpret the total capital input in this investment technology, aφ(w, s), as a

cost of capital transformation that is convex in the difference between the share of capital output,

w, and the current capital share, s. The specific functional form φ(w, s) = a(w − s)2 allows for a

tractable analysis with a representing the severity of the transformation friction and (w−s)2 being
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the simplest convex function in the difference between current capital share and the capital share

of output capital. We allow w to be outside the unit interval [0, 1].1

The VC may only use a single technology at any given time t ≥ 0, denoted by wt,. Let It

represent the total investment level at t. The laws of motion for 1-capital and 2-capital are then

given by:

dK1
t = µ1K

1
t dt+ σ1K

1
t dz

1 + It
[
wt − ast(wt − st)

2
]
dt,

dK2
t = µ2K

2
t dt+ σ2K

2
t dz

2 + It
[
1− wt − a(1− st)(wt − st)

2
]
dt. (7)

The more different the chosen investment technology is from the current capital share, the higher

the capital transformation cost. This specification captures the fact that the resources needed for

new investments are especially high when these investments differ significantly from the economy’s

current production type.

Consider, for example, an economy where K represents the total amount of physical capital

used to grow crops, such as land and machinery. The shares s and 1−s could represent the fractions

of these productive resources used to grow two types of crops. The shares could also represent the

fractions of time the land and machines are used for alternating between two types of crops on the

same land, rather than the fractions of land used for each crop. In these examples, it is natural that

output will not be as high when the new technology is further away from the economy’s existing

mix. For example, if investments are used to increase the agricultural land area, machines that

were used for existing land may need to be redeployed to cultivate the new land area. The more

different the new technology is from the existing one in use, i.e., the larger is the difference between

s and w, the higher is the cost in terms of forfeited growth of existing capital.

1.3 Venture Capitalist

The VC is a publicly traded firm in charge of capital transformation in the economy. In the context

of the two-tree analogy, the VC firm is the gardener. It owns the patents to the linear short-term

investment technologies Tw, where w ∈ R. The VC therefore owns all the economy’s growth options.

At each point in time, the VC determines the policies It and wt that maximize instantaneous

1When w < 0, we may interpret this as the capital input of 1-capital being (−w)+as(w−s)2 and the capital output
being zero. Similarly, when w > 1, we may interpret this as the capital input of 2-capital being (w−1)+a(1−s)(w−s)2

and the capital output being zero.
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value creation. It purchases astIt(wt− st)
2 units of 1-capital from 1-firms, and a(1− st)It(wt− st)

2

units of 2-capital from 2-firms as production inputs, and hires households in the competitive labor

market to exert the effort level It. The venture capitalist transforms the capital and creates a new

1-firm that holds wtIt − astIt(wt − st)
2 units of 1-capital, and a new 2-firm that holds (1−wt)It −

a(1 − st)It(wt − st)
2 units of 2-capital. It gives the fraction 1 − ηt of the newly created firms to

the household as compensation that matches the household’s effort, and then sells the remaining ηt

fraction of the firms in the market, generating a profit that is immediately paid out as a dividend

to its owners.

The value of the VC firm at t = 0 is therefore equal to the future dividends it creates, V V C
0 =

V 1
0 + V 2

0 , where

V 1
0 = E0

(∫ ∞

0

Mt

M0
ηtIt

{
p1t
[
wt − a st (wt − st)

2
]}

dt

)
, (8)

V 2
0 = E0

(∫ ∞

0

Mt

M0
ηtIt

{
p2t [1− wt − a (1− st) (wt − st)

2]
}
dt

)
. (9)

We will show that, in equilibrium, ηt = 0 at all points in time, leading to the market value of the

VC firm V V C
t ≡ 0.

1.4 Financial Markets

As previously mentioned, the market value of a representative publicly traded firm in each sector

is Pn
t . The firm’s market value represents the intrinsic value it creates via capital growth and

dividends. There is also a short-term bond in zero net supply with price dynamics

dBt = rft Btdt,

where rft is the risk-free rate process.

1.5 Households

The household sector consists of a continuum of households of unit mass. Each household is

infinitely-lived and has expected log utility:

U = E0

[∫ +∞

0
e−δt ln(Ĉt − Ft)dt

]
, (10)
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where Ĉt denotes consumption and Ft denotes the effort provided to the VC firm. We define

effective consumption as consumption net of effort, Ct = Ĉt − Ft.

Consider a household with wealth Wt that invests the amounts Xn
t , n ∈ {1, 2}, in 1-firms and

2-firms, is hired to exert effort Ft = It for which it earns the compensation It in stock, and consumes

at the rate Ĉt. The household’s instantaneous budget constraint is

dWt = X1
t

(
d1t
p1t

dt+
dP 1

t

P 1
t

)
+X2

t

(
d2t
p2t

dt+
dP 2

t

P 2
t

)
+

(
Wt −X1

t −X2
t

)
rfdt+ Itdt− Ĉtdt. (11)

We note that the VC firm does not affect the budget constraint, since V V C
t ≡ 0.

2 General Equilibrium

2.1 Definition

Aggregate effective consumption is given by Ct = Y 1
t + Y 2

t − Ft or, equivalently,

Ct = Yt − It = (κ− it)Kt, (12)

where it = It/Kt is the investment rate.

Under the investment process {It}t and the investment share process {wt}t, the dynamics of

the aggregate capital are given by:

dKt

Kt
=

{
stµ1 + (1− st)µ2 + it

[
1− a(wt − st)

2
]}

dt+ σ1stdz
1
t + σ2(1− st)dz

2
t ,

def
= µK(st)dt+ σK(st)dzK,t, (13)

where

σK(st) =
[
σ2
1s

2
t + σ2

2(1− st)
2 + 2st(1− st)ρ σ1 σ2

]1/2
. (14)

The capital share satisfies:

dst = [it(wt − st)− q1(st)]dt+ st(1− st)
(
σ1dz

1
t − σ2dz

2
t

)
,

def
= µs(st)dt+ σs(st)dzs,t, (15)
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where

q1(s) = s(1− s)
[
µ2 − µ1 + sσ2

1 + (1− 2s)ρσ1σ2 − (1− s)σ2
2

]
for every t ∈ [0,+∞) and s ∈ [0, 1]. General equilibrium is defined as follows:

Definition 2 (General equilibrium) The price of the 1-sector, {P 1
t }t, the price of the 2-sector,

{P 2
t }t, the aggregate investment, {It}t, and the investment share, {wt}t, define a general equilibrium

if:

• the representative household maximizes the expected utility defined in Equation (10), resulting

in asset demands X1
t ≡ P 1

t , X2
t ≡ P 2

t , effort Ft ≡ It, and consumption Ĉt ≡ Y 1
t + Y 2

t , for all

t;

• the VC firm chooses the investment level process {It}t and the investment share process {wt}t

that maximize shareholder value, V V C
0 .

In the next sections, we derive general equilibrium in quasi-closed form.

2.2 Equilibrium Value Function, Pricing, and Investment

For notational convenience, we define the functions:

A(t) =
1− e−δt

δ
,

q0(s) = κ+ sµ1 + (1− s)µ2 −
1

2
σ2
K(s),

q2(s) =
1

2
s2(1− s)2

(
σ2
1 − 2ρσ1σ2 + σ2

2

)
,

for every t ∈ [0,+∞) and s ∈ [0, 1]. The following theorem characterizes the value function of the

representative agent in general equilibrium.

Theorem 1 (Equilibrium value function) The value function of the representative agent in

equilibrium is separable in the aggregate capital stock and the capital share:

Ut =
ln(Kt)

δ
+ V (st).
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The normalized utility, V (st), satisfies

V (s) = lim
T→∞

W (T, s),

for every s ∈ [0, 1], where W : R+ × [0, 1] −→ R solves the PDE

∂W

∂t
= q2(s)

∂2W

∂s2
− q1(s)

∂W

∂s
− δW

− ln

[
A(t) +

1

4aA(t)

(
∂W

∂s

)2
]
+

κ

4aA(t)

(
∂W

∂s

)2

+A(t)q0(s)− 1, (16)

with initial condition W (0, s) = 0, s ∈ [0, 1].

The value function of our infinite-horizon economy is obtained by taking the limit of the equi-

librium value function of the economy with finite horizon T. From the value function, we obtain

the stochastic discount factor, investment rate, and the aggregate price-to-capital ratio in general

equilibrium.

Theorem 2 (Equilibrium pricing and investment) In equilibrium, the stochastic discount fac-

tor satisfies

Mt =
e−δt

δKt
Q(st), (17)

where

Q(s) = 1 +
δ2

4a
[V ′(s)]2. (18)

The investment rate is given by

it =
4a(κ− δ) + δ2κV ′(st)

2

4a+ δ2V ′(st)2
, (19)

the investment technology by

wt = st +
δ

2a
V ′(st), (20)
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and the aggregate price-to-capital ratio by

pt =
1

1 + a(wt − st)2
=

1

Qt
. (21)

Moreover, the sectors’ price-to-capital ratios satisfy the relationship:

p1t − p2t = 2a(wt − st)pt. (22)

Each firm pays the dividend-to-capital ratio

dnt = κ+ it(1− a(wt − st)
2)(pnt − pt), n ∈ {1, 2}. (23)

The VC firm breaks even at each point in time and has market value V V C
t ≡ 0.

As shown in the proof, equilibrium is constructed by solving the social planner’s problem that

maximizes Equation (10) under the following constraints: Ft = It, Ct = κKt−It, and Equations (13)

and (15). This determines the processes for the investment rate and share, {it}t and {wt}t, in turn

defining the SDF, {Mt}t, which is shown to be of the form given by Equation (17). We then verify

that, under the SDF, the VC firm chooses the investment share and investment rate policies in

accordance with the solution to the planner’s problem. The VC firm ultimately breaks even so that

V V C
0 = 0.

From Equation (5) and (22) it follows that p1t = [1 + 2a(wt − st)(1 − st)] pt and p2t = [1 −

2a(wt − st)st] pt, which in turns implies that std
1
t + (1− st)d

2
t = κ. So, total dividends equal total

consumption good flow D1
t +D2

t = κKt = Y 1
t + Y 2

t .

We note that Theorem 2 implies that:

Mt = e−δt 1

Ct
=

e−δt

[κ− i(st)]Kt
, (24)

and that

Qt =
δ

κ− it
, pt =

κ− it
δ

.

Limit Cases. Before we study the general case where 0 < a < ∞, it is useful to understand how

the equilibrium behaves in the limit cases where capital transformation is either costless (a → 0)
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or infinitely costly (a → ∞).

The following proposition characterizes equilibrium when the reallocation of capital becomes

costless.

Proposition 1 (Economy with costless reallocation of capital) As a → 0, equilibrium con-

verges to what is effectively a one-sector economy. The capital share is constant,

st ≡ s0 =
µ1 − µ2 + σ2

2 − ρσ1σ2
σ2
1 + σ2

2 − 2ρσ1σ2
.

The capital growth rate µ = sµ1 + (1 − s)µ2 and volatility, σ = σK(s0), are also constant and we

obtain:
dKt

Kt
= µdt+ σdzK .

The equilibrium investment rate is constant, it = i0 = κ− δ, and therefore the SDF is:

M0
t =

e−δt

δKt
. (25)

The value function is also constant, V (s) = [µ+ κ− σ2/2 + δ ln(δ)− δ]/δ2.

Because it is costless to transform capital, the VC firm instantaneously adjusts capital to main-

tain the same equilibrium that trades-off the riskiness and growth potential of each sector. The

optimal capital share, s0, lies on the mean-variance efficient frontier.

We next turn to the other limit case, where capital transformation is infinitely costly.

Proposition 2 (Economy without transformation of capital) As a → ∞, the economy con-

verges to what is effectively a two-tree economy. The investment share is in the limit identical to

the capital share at all times, wt = st. The investment rate is constant, it = i∞ = κ − δ, and the

SDF is given by Equation (25).

Since the equilibrium investment rate is constant and the investment share is equal to the capital

share, equilibrium consumption and price dynamics are qualitatively the same as in Cochrane et al.

(2008). However, because the investment rate, i∞ = κ− δ, is strictly positive as per Assumption 1,

the economy without capital transformation is not completely identical to the two-tree pure ex-

change economy described by Equation (2). In particular, the growth rate is higher than in the
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pure exchange economy:
dY n

t

Y n
t

= (µn + κ− δ)dt+ σndzn,t. (26)

The rest of the economy then behaves like a two-tree exchange economy with the growth rate given

by Equation (26).

The General Case. We now study the general interior case where capital transformation costs

are positive and finite: 0 < a < ∞. From Equations (17) and (25), the SDF can be written as

Mt = Q(st)M
0
t .

The function Q(st) represents the adjustment to the SDF from the limit cases where a = 0 or

a = ∞.2 Because of Q(s), the capital share st is a state variable that drives the SDF Mt and

consequently the cross-section of asset prices.

In Figure 1, we study the equilibrium for different interior values of a ∈ {0.1, 1, 10} and the limit

cases a = 0 and a = ∞. The parameters are chosen so that 2-capital has lower growth and higher

risk than 1-capital. Despite being an inferior investment opportunity, 2-capital is still demanded in

positive amounts in equilibrium because of its diversification benefits (i.e., because Assumption 1

is satisfied).

The first panel of Figure 1 displays the value function as a function of the capital share st.

The vertical line shows the value of the instantaneous mean-variance efficient capital share, s0,

corresponding to a = 0. Capital allocation is tilted toward 1-capital (i.e., the capital share s0 is

above 0.5) because of the sector’s superior risk-return properties.

As the capital transformation friction a increases, the value function decreases and peaks further

to the right, i.e. for higher values of the capital share st. We denote the optimal value of the capital

share by s∗. The fact that s∗ is greater than s0 means the representative agent wishes to own less of

2-capital than in the frictionless case. The reason for this outcome is that, when a is high, it becomes

costlier to adjust capital in a scenario where random events push st to be very low. The lack of

capital redeployment is seen in the middle panel of Figure 1, which shows that for high values of a,

the investment share wt stays close to st. The low-st scenario is painful to the representative agent

because at that point the economy is dominated by the low-growth and high-volatility 2-capital.
2Note that we are here using the SDF of the economy without transformation costs, using the capital in the

a-economy. Of course, in general, the actual capital in the a-economy and the economy without frictions would differ.
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Therefore, owning more of 1-capital becomes increasingly valuable.

When the capital share is at s∗, the economy is well-balanced. The invested capital is in the

same proportion as the current capital share (i.e. wt = st), so the VC firm does not reallocate real

capital from one sector to another. The SDF is equal to M0
t and each sector has a price-to-capital

ratio equal to one. However, when the capital share differs from s∗, the economy faces sector

capital imbalance. Consider, for example, that sector 1 incurs a negative shock and its capital level

falls below its optimal capital share. Its remaining capital stock becomes increasingly valued (i.e.,

p1t > p2t ). The VC is keen to supply more capital to that sector and bring it back to balance. This

can be seen in Equation (20), which shows that wt − st = δV ′(st) has the same sign as V ′(st).

The right panel of Figure 1 shows that the investment rate increases away from s∗. The high

level of investment represents the increase in value of bringing the economy back toward the optimal

share. The planner is thus willing to impose higher friction-costs when st is far away from s∗, both

by increasing wt − st, and by increasing the total level of investment It.

2.3 Capital Flows

We denote by ft = wt − st the (signed) capital flow from sector 2 to sector 1 at time t. From

Equation (20), the capital flow is given by:

f(st) = wt − st =
δ

2a
V ′(st). (27)

Figure 2 shows the capital flow as a function of the state, st, for different values of a. Several

insights arise from the figure. First, there is a one-to-one mapping between the state variable s

and the capital flow f . Capital flows are therefore informative about the level and degree of sector

capital imbalance. For example, sector 1’s capital flow is positive when its capital share is below

its optimum value, s∗, zero when the capital share is at s∗, and negative when the capital share

exceeds s∗.

Another insight from Equation (27) is that capital flows are persistent. Figure 2 shows that,

the higher is the value of the friction a, the lower is the absolute value of the flow, |f |. It will

typically take a while to return to the optimal capital share, s∗, especially when a is nonnegligible.

We obtain the following empirical prediction.

17



0 0.5 1

15

20

25

30

35

40

45

50

55
Value Function, V

0 0.5 1

0

0.5

1

1.5

2

2.5
Investment share, w

0 0.5 1

0.25

0.252

0.254

0.256

0.258

0.26

0.262

0.264

0.266
Investment rate, i

Figure 1: Value function, investment share, and investment rate, for different values of a.
Parameters: δ = 0.05, µ1 = 0.1, µ2 = 0.09, ρ = 0, σ1 = 0.4, σ2 = 0.6, κ = 0.3, a ∈ {0, 0.1, 1, 10,∞} (Bblue,
green, black, and red). The investment rates in the limit cases are i0 = i∞ = κ − ρ = 0.25, and the Q

functions are Q ≡ 1.

Prediction 1 In the interior case where capital transformation costs are positive and finite: 0 <

a < ∞, the capital flow f is predictable and persistent.

A third insight is that, because capital flows are informative about the sign and degree of the

sector imbalance, they are also informative about asset prices, through the SDF. All equilibrium

18



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

s

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

f

a=1

a=10

a=500

Figure 2: Capital flow, f , for different values of the capital share, s. Parameters: δ = 0.05, µ1 = 0.1,
µ2 = 0.05, ρ = 0, σ1 = 0.5, σ2 = 0.6, κ = 0.3, a ∈ {1, 10, 500}.

quantities and prices can actually be re-expressed in terms of capital flows:

it = κ− δ

1 + af2
t

,

Mt =
e−δt

δKt
(1 + af2

t ),

Q(st) = 1 + af2
t , (28)

p(st) =
1

1 + af2
t

, (29)

p1t = [1 + 2aft(1− st)] pt =
1 + 2aft(1− st)

1 + af2
t

, (30)

p2t = (1− 2astft)pt =
1− 2aftst
1 + af2

t

, (31)

d1t = κ+ 2aitft(1− st)
1− af2

t

1 + af2
t

, (32)

d2t = κ− 2aitftst
1− af2

t

1 + af2
t

. (33)

Equations (29), (30), and (31) imply a direct relation between the capital flow and the difference
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between the sectors’ price-to-capital ratio.

p1t − p2t
pt

= 2aft. (34)

This relation leads to the following prediction:

Prediction 2 The sector with a high price-to-capital ratio has a positive capital flow, while the

sector with a low price-to-capital ratio has a negative capital flow.

An appealing property of equilibrium when the gardener is present (0 < a < 0) is that there

exists a unique stationary share distribution. This is because the gardener transforms capital

so that the share reverts back toward the interior when it gets close to the boundaries s = 0

and s = 1. The capital flows thus make the capital share mean-revert toward the interior, in

contrast to the original two-trees economy, in which one tree always dominates in the long run.

Our model therefore provides a microfoundation for the mean-reverting share processes that have

been introduced elsewhere for multi-sector exchange economies, see, e.g., Santos and Veronesi

(2006). We have:

Theorem 3 In the interior case where costs are positive and finite: 0 < a < ∞, there exists a

unique stationary equilibrium capital share distribution.

Consequently, all other important ratios, e.g., dividend shares and price-to-capital shares, also have

unique stationary distributions.

2.4 Tobin’s q

Consistent with q-theory under adjustment costs, our model links investment to a sector’s price-to-

book ratio, as the previous section explains. A distinct feature of our model is that the adjustment

costs are associated with the transformation of capital between sectors, rather than with aggregate

investments. Therefore, because new capital is created as a (w, 1 − w) mix of 1- and 2-capital,

marginal q needs to be measured with respect to this new capital mix.

At the capital share s, the VC firm creates w−as(w−s)2 units of 1-capital and (1−w)−a(1−

s)(w− s)2 units of 2-capital net, which amounts to 1− a(w− s)2 units of new capital in total. One

verifies that the price-to-capital ratio of the new capital generated by a unit of investment at the
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equilibrium w-mix is equal to one:

p1[w − as(w − s)2] + p2[1− w − a(1− s)(w − s)2] = 1.

The value of one unit of w-capital mix is

2− 1

1 + a(w − s)2
> 1, s 6= s∗.

This is the marginal q before adjustment costs. Marginal q therefore increases when s is far from

s∗, at which point the absolute flow |f | = |w − s| is high.

Average q before adjustment costs is the q of the s-mix rather than the w-mix. It can be written

as
1

1 + a(w − s)2
< 1, s 6= s∗.

In contrast to marginal q, average q decreases when the capital share is far away from s∗.

The wedge between marginal q and average q in our model is generated by capital transformation

costs rather than by convex costs of aggregate investments. In our model, the adjustment costs

are zero if and only if the capital mix is the same as the current capital share, w = s, in which

case marginal q and average q are both equal to one. The wedge is thus not driven by the size of

aggregate investments, but rather by the magnitude of the flow of capital transformation.

3 Asset Pricing Implications

We investigate the model’s main asset pricing implications.
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3.1 Sources of Risk and Return

Given Equation (17), the dynamics of the stochastic discount factor are given by:

dMt

Mt
= −δdt− p′

p
(ds− σsKdt)− dK

K
− σ2

Kdt

(
1

2

p′′

p
−
(
p′

p

)2
)
σ2
sdt

= −

(
δ +

p′

p
(µs − σsK) + µK − σ2

K +

(
1

2

p′′

p
−
(
p′

p

)2
)
σ2
s

)
︸ ︷︷ ︸

rf

dt− σKdzK − p′

p
σsdzs

= −rfdt− σKdzK − p′

p︸︷︷︸
λs

σsdzs

= −rfdt− σKdzK − λsσsdzs, (35)

where an expression for σsKdt = 〈ds, dKK 〉 is provided in the Appendix.

The first two terms on the right-hand-side of Equation (35) are familiar from standard consumption-

based asset pricing models. The coefficient σK is the market price of a unit of consumption risk,

keeping the capital share constant. The coefficient takes this form because Ĉt = κKt and the

household’s coefficient of relative risk aversion is equal to one.

The third term on the right-hand-side, λsσsdzs, represents a second pricing factor regarding risk

associated with sector capital imbalance. When there is a “capital share shock” so that the economy

becomes more imbalanced, more effort is exerted to move back toward a balanced outcome, which

in turn increases marginal utility. The coefficient λs is the risk premium associated with one unit

of this risk, keeping aggregate capital constant.

The dynamics of the stochastic discount factor in Equation (35) imply a two-factor pricing

model. If we consider an asset with instantaneous returns

dV

V
= µdt+ ϕ1dzK + ϕ2dzs + ϕ3dẑ, (36)

where ẑ is uncorrelated with zK and zs, then the following conditional two-factor expected return

relation holds:

µ = rf + ϕ1σK

(
1 + λsσsK

σ2
K

)
+ ϕ2σs

(
λs + σsK

σ2
s

)
. (37)

The first factor provides compensation for exposure to consumption risk, while the second factor
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provides compensation for exposure to sector capital imbalance risk.

3.2 Capital Flows and the Cross-Section of Stock Returns

We next investigate the relation between capital flows and the cross-section of stock returns. Con-

sider a portfolio that is long one dollar of 1-firms and short one dollar of 2-firms, i.e., the portfolio

w = (X1, X2) = (1,−1). By definition, the expected payoff of this long-short portfolio is

redt = E

[(
d1

p1
dt+

dP 1

P 1

)
−
(
d2

p2
dt+

dP 2

P 2

)]
. (38)

The following proposition characterizes the expected payoff of w.3

Proposition 3 The expected payoff of the long-short portfolio w, re, is

redt = λ̂s

(
σsK +

ps
p
σ2
s

)
dt, where (39)

λ̂s =
d

ds

[
ln

(
sp1(s)

(1− s)p2(s)

)]
, (40)

and has the following properties:

1. re < 0 for small s, with limit value −(σ2
2 − ρσ1σ2) when s → 0.

2. re > 0 for large s, with limit value σ2
1 − ρσ1σ2 when s→ 1.

3. re is increasing in s outside some interval around s∗, i.e., when s /∈ [s, s̄], where 0 < s < s∗ <

s̄ < 1.

The proposition shows that, when the economy is sufficiently out of balance (i.e. outside some

interval around s∗), there is a monotonically increasing relation between the average return of the

long-short portfolio and the capital share s. This has clear implications for the cross-section of stock

returns. When sector 1 is below its optimal capital share, the long-short portfolio has a negative

average payoff, meaning that 1-firms have lower expected returns than 2-firms. Conversely, when

sector 1 is above its optimal capital share, the long-short portfolio has a positive expected payoff,

meaning that 1-firms have higher expected returns than 2-firms.

3Since this is a long-short portfolio that has a zero cost, we refer to the expected payoff instead of the expected
return.
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Why do 1-firms generate a lower average return than 2-firms when sector 1 is below its optimal

capital share? Two effects are at play. First, 1-firms represent a small proportion of the aggregate

economy and therefore are less systematic than 2-firms. Second, investing in 1-firms is valuable

because they provide a hedge against the sector capital imbalance risk factor. More specifically,

as we explained in Section 2.2, if sector 1 continues to incur negative shocks, the economy will

become even more out of balance and the price-to-capital ratio of 1-firms will go up further, while

the price-to-capital ratio of 2-firms will go down. By investing in 1-firms, investors are therefore

hedging against this high-marginal-utility state.

By the same logic, when sector 1 is above its optimal capital share, the risk profile of 1- and

2-firms flips. The 2-firms now have higher expected returns than 1-firms because they are less

systematic and also provide a hedge against the sector capital imbalance risk factor.

Altogether, these results allow us to characterize the properties of a long-short portfolio that

is conditioned on the sign of the capital flow, wf = sign(ft)(−1, 1). Unlike the portfolio w that is

always long 1-firms and short 2-firms, the portfolio wf is long the capital-outflow sector and short

the capital-inflow sector. As a consequence of Proposition 3 and the fact that capital flows are

high when the economy is far from s∗, the long-short portfolio wf has a high expected payoff when

unsigned capital flows are high. We obtain the following prediction.

Prediction 3 The expected payoff of the long-short portfolio wf , i.e., the portfolio that holds a

long position in the sector with negative capital flow and a short position in the sector with positive

capital flow, is high when unsigned capital flows, |ft|, are large.

3.3 Aggregate Equity Pricing and Risk

We obtain a pricing relation with respect to the aggregate (equity) portfolio, which holds the

fraction xt =
p1tK

1
t

ptKt
=

P 1
t

Pt
in 1-firms and the fraction 1 − xt =

p2tK
2
t

ptKt
=

P 2
t

Pt
in 2-firms at date t. In

other words, the aggregate portfolio is mt = (xt, 1− xt). We refer to xt as the financial share.

From Equations (28) and (29), it follows that the stochastic discount factor can be re-written

as Mt =
e−δt

δPt
. The corresponding SDF dynamics are:

dMt

Mt
= −δdt+

(
dPt

Pt

)2

− dPt

Pt
. (41)

Because the return on the aggregate portfolio, dPt
Pt

, perfectly captures the stochastic component of
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the SDF, a conditional CAPM holds with respect to the aggregate portfolio.

Specifically, consider an asset with return dynamics given by Equation (36). The expected

return on this asset can be written as:

µdt = rfdt+

(
dV

V

)(
dP

P

)
= rfdt+ σV,Pdt. (42)

Because the instantaneous total return on the aggregate portfolio is equal to

dVm

Vm
=

dP

P
+

κ− i

p
dt = µmdt+ σmdzm,

where σ2
m = (λs)2 p2σ2

s + σ2
K − 2σs,Kλsp, we obtain from Equation (42) that the aggregate risk

premium is equal to σ2
m,

µm = rf + σ2
m,

which is consistent with equilibrium under log-utility investor preferences. In addition, we obtain

the conditional CAPM pricing relation for an arbitrary asset with total value process V :

µ = rf + β(µm − rf ). (43)

where β = σV,P /σ
2
m. This result is again consistent with the fact that log-utility investors hold

instantaneously mean-variance efficient portfolios.

The instantaneous variance of the aggregate portfolio is

σ2
mdt =

〈
dP

P
,
dP

P

〉
=

(
p′

p

)2

σ2
Sdt+ 2

p′

p
σSKdt+ σ2

Kdt.

The first term is nonnegative and minimized at s∗, whereas the middle term is negative between ŝ

and s∗, and positive outside of that interval. Both terms tend to zero as s approaches the boundaries

(s = 0 and s = 1). By contrast, the third term is strictly convex in s with its minimum at ŝ. As a

consequence, we obtain the following prediction.

Prediction 4 Aggregate volatility, σm, is minimized between ŝ and s∗, and is high when unsigned

capital flows, |ft|, are large.
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Intuitively, when the capital share is far from s∗, the economy is out of balance and less diver-

sified. The aggregate volatility therefore increases when capital flows are large.

3.4 IPOs and Public Equity Pricing

We next obtain a pricing relation with respect to the publicly traded portfolio, i.e., the market

portfolio. As is well known from Roll (1977), when the market portfolio differs from the aggregate

portfolio, an asset can have non-zero CAPM alpha with respect to the market portfolio of publicly

listed firms, even though the conditional CAPM holds with respect to the aggregate portfolio.

We consider a setting where newly created firms are held privately for a period before they

enter the market via initial public offerings (IPOs). Assuming that the n-capital owned by publicly

traded n-firms is K̂n
t , n = 1, 2, respectively, the publicly traded capital share is

ŝt =
K̂1

t

K̂1
t + K̂2

t

,

and the publicly traded financial share is

x̂t =
p1t K̂

1
t

p1t K̂
1
t + p2t K̂

2
t

.

The publicly traded portfolio is m̂t = (x̂t, 1 − x̂t) with market value P̂t. It follows that x̂t > xt if

and only if ŝt > st.

To obtain a pricing relation with respect to the publicly traded portfolio m̂, we proceed as

follows. The total return on the n-firm is

dV n

V n
=

d(pnKn)

pnKn
+

dn

pn
dt = µP

n dt+ σP
n dz

P
n . (44)

The instantaneous returns of the aggregate portfolio and the publicly traded portfolio can therefore

be written as

dVm,t

Vm,t
= x

dV 1
t

V 1
t

+ (1− x)
dV 2

t

V 2
t

= µmdt+ σmdzm. (45)

dVm̂,t

Vm̂,t
= x̂

dV 1
t

V 1
t

+ (1− x̂)
dV 2

t

V 2
t

= µm̂dt+ σm̂dzm̂. (46)
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Together, Equations (43) and (45) imply that the expected return of each firm is equal to:

µP
1 = rf + x(σP

1 )
2 + (1− x)σP

1,2,

µP
2 = rf + (1− x)(σP

2 )
2 + xσP

1,2,

where σP
1,2dt = 〈dV 1

V 1 ,
dV 2

V 2 〉 is the instantaneous covariance between returns on 1-firms and 2-firms.

The expected return of each firm is a function of (i) its share in the market portfolio, (ii) its

variance, and (iii) its covariance with the other firm.

When the market return is (incorrectly) used to price assets using the CAPM model given by

Equation (43), the CAPM alpha of the n-firm, αn, arises from the difference between the true

expected returns and incorrect required rates

αn =(µn − rf )− βn,m̂ (µm̂ − rf )

where

β1,m̂ =
1

σ2
m̂

[
x̂
(
σP
1

)2
+ (1− x̂)σP

1,2

]
,

β2,m̂ =
1

σ2
m̂

[
x̂σP

1,2 + (1− x̂)
(
σP
2

)2]
,

σ2
m̂ =x̂2

(
σP
1

)2
+ 2x̂ (1− x̂)σP

1,2 + (1− x̂)2
(
σP
2

)2
,

µm̂ − rf =x̂
(
x
(
σP
1

)2
+ (1− x)σP

1,2

)
,

+ (1− x̂)
(
xσP

1,2 + (1− x)
(
σP
2

)2)
.

Expanding these terms, we obtain a simple formula for the CAPM alpha for each firm.

Proposition 4 When the publicly traded portfolio m̂ = (x̂, 1 − x̂) is used to price assets rather

than the aggregate portfolio m = (x, 1− x), the observed alphas of 1- and 2-firms are

α1 = µP
1 − µ̂P

1 =
(σP

1 σ
P
2 )

2 − σ2
12

σ2
m̂

(x− x̂)(1− x̂),

α2 = µP
2 − µ̂P

2 =
(σP

1 σ
P
2 )

2 − σ2
12

σ2
m̂

(x̂− x)x̂.
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As a consequence of this Proposition, the sector that is over-represented in the publicly traded

portfolio has a negative CAPM alpha, whereas the sector that is under-represented in the publicly

traded portfolio has a positive alpha.

A well-known stylized fact in the IPO literature is that firms with high valuation ratios are

pushed more aggressively toward IPOs than firms with low valuation ratios (Helwege and Liang,

2004; Lerner, 1994; Lowry, 2003; Pagano et al., 1998)). In our setting, p1 and p2 represent the

valuation ratios of firms in the two sectors. From Equations (30) and (31), it follows that 1-firms

have high valuation ratios when the capital share is low (st < s∗) and, conversely, 2-firms have high

valuation ratios when the capital share is high (st > s∗).

For simplicity, we assume that high-valuation firms are introduced to the market immediately,

whereas low valuation firms are kept private indefinitely. It then follows that x̂ > x when s < s∗,

and x̂ < x when s > s∗. In other words, the publicly traded portfolio overweights 1-firms when

the capital share is low and overweights 2-firms when the capital share is high. Altogether, these

points lead to the following prediction:

Prediction 5 Firms in sectors with capital inflows have negative CAPM alphas whereas firms in

sectors with capital outflows have positive CAPM alphas.

In addition to this relation between capital flows and CAPM alphas, we obtain a two-factor

pricing model that includes both the market factor and the sector capital imbalance factor. From

Equations (41), (45), and (46), we rewrite the stochastic discount factor as

dMt

Mt
= = −rfdt− σmdzm, (47)

= −rfdt− σm̂dzm̂ − (x− x̂)

(
d

ds

[
ln

(
sp1(s)

(1− s)p2(s)

)])
︸ ︷︷ ︸

λ̂s

σsdzs. (48)

The second term on the right-hand-side of Equation (48) is a publicly observed market factor.

The third term, (x − x̂)λ̂sσsdzs, corresponds to an additional risk premium that arises when

the model is based on the publicly traded portfolio rather than the aggregate portfolio. This term

depends on the coefficient λ̂s because the aggregate portfolio can be viewed as the combination

of the publicly traded portfolio and the long-short portfolio introduced in Section 3.2. When the

publicly traded portfolio is equal to the aggregate portfolio, x̂ = x, this risk premium is zero.
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4 Empirical Findings

We now turn to the data and empirically test the predictions of the model.

4.1 Data

We use data on daily stock market returns on listed US firms from CRSP, which is available at

the Wharton WRDS library. The sample covers the period from January 1976 to December 2023.

We focus on the returns of ordinary common stock shares and exclude firms in utility and financial

sectors, as in Fama and French (1993) and many others.4 Daily data on asset pricing factor returns

are obtained from Ken French’s data library and Hou-Xue-Zhang’s q-factors data library.5

Firm-level accounting data come from Compustat, which is also available at the Wharton WRDS

library. We collect the data at the quarterly frequency but construct variables at the annual end-

of-year frequency to avoid seasonality issues. For stock variables such as a firm’s book value, we

use the last available observation for each calendar year. For flow variables such as income expense,

we add up the variable’s values from the four most recent quarters to obtain the total flow over

the past calendar year. Because firms sometimes change their fiscal years, we require that, in any

given year, the firm has been using the same fiscal year end for at least 5 consecutive quarters.

This removes duplicate observations that result from changes in the fiscal year end.

For every firm and every year, we merge the CRSP daily stock return data in that year with

the Compustat accounting data corresponding to the end of the previous year. For example, the

book value of firm n on June 1st, 2021 corresponds to the firm’s book value reported in Compustat

at the end of 2020.

Figure 3 shows the number of firms in our sample between 1976 and 2023. The sample includes

at least 2,000 stocks every year. The decline over the past two decades corresponds to the delisting

trend that is well-known in the literature (Dodge et al., 2017).

4Ordinary common shares are identified as shrcd 10 or 11, and we use the link flags LC, LU, or LS to link CRSP
with Compustat. Shares are aggregated at the firm-date level. We attribute to each firm (i) the total market equity
across all ordinary share classes and (ii) the return of the largest share class by market capitalization.

5These data libraries can be accessed online at https://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
data_library.html and https://global-q.org.
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Figure 3: Number of US listed stocks, 1976-2023. The data is obtained from a sample of US
firms in the combined CRSP-Compustat database, excluding firms in utility and financial sectors.

4.2 Real Capital Flows

We present a simple methodology to measure real capital flows from the data. For every firm n,

we denote by BEn,t and by MEn,t the book and market values of the firm’s equity at time t.6 We

also denote by BAn,t and by MAn,t the book and market values of the firm’s net operating assets,

which include all assets except for cash holdings and other short-term financial assets.7 We focus

on a firm’s net operating assets as our measure of real capital. This measure is most appropriate

to calculate real capital flows because an increase in net operating assets over time corresponds to

an increase in real assets and not to a build up of cash reserves.
6The book value is calculated as follows: (i) Shareholder equity (seqq) less preferred equity (pstkrq or pstkq), (ii)

Common equity (ceqq), or (iii) Asset less liability less preferred equity, adjusted by deferred tax credit (txditcq) if
applicable.

7The book value of net operating assets is calculated as the difference between total assets (atq) and cash holdings
and short-term financial assets (cheq). We refer to BAn,t as real capital. The market value of real capital, MAn,t,
is calculated as the sum of the market value of equity, MEn,t, and the difference between a firm’s book value of net
operating assets, BAn,t and its book value net of equity, BEn,t.
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Aggregate Capital Flows For every firm n, we denote by BAp
n,t the one-year lagged book

value of the firm’s net operating assets and refer to it as previous-capital.8 We categorize a positive

difference between current capital and previous-capital as in-capital:

BAi
n,t =

[
BAn,t −BAp

n,t

]
+
,

and a negative difference as out-capital:

BAo
n,t =

∣∣∣[BAn,t −BAp
n,t

]
−

∣∣∣ .
The firm’s capital at time t can thus be broken down as previous-capital plus in-capital minus

out-capital:

BAn,t = BAp
n,t +BAi

n,t −BAo
n,t. (49)

We denote by BAt =
∑

nBAn,t the total capital in our sample of of publicly traded firms at time

t. Similarly, we denote by BAj
t =

∑
nBAj

n,t, j ∈ {p, i, o}, the total values of previous-, in-, and

out-capital. The terms BAi
t and BAo

t represent the total values of real capital flows at time t.

Our methodology for calculating real capital flows has several desirable properties. It calculates

capital flows from firm-level information and reduces dimensionality by summarizing capital flows

in and out of multiple sectors into (i) one portfolio regrouping all capital inflows, and (ii) one

portfolio regrouping all capital outflows. Both portfolios are well-behaved and, together with

the previous-capital portfolio, add up to the total capital in our sample of publicly traded firms.

Additionally, the method is data-driven and agnostic on whether capital flows take place within or

across standard industry classifications. The method therefore allows us to bypass such standard

industry classifications which may not fully capture how the U.S. economy has transformed over

the past 50 years (see Bergsman et al. (1975), Fort and Klimek (2016), and Keil (2017)).

Market Value of Assets For each firm n, we take the book value of each type of capital (in-,

out-, previous-) and scale it up by the firm’s market-to-book ratio. We obtain the market value

8The lagged value corresponds to the firm’s book value of real capital from 4 fiscal quarters ago
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MAj
n,t:

MAj
n,t =BAj

n,t

MAn,t

BAn,t
, j ∈ {p, i, o} . (50)

The market value of the in-, out-, and previous-capital portfolios is MAj
t =

∑
nMAj

n,t. Similarly,

the market value of all firms in our sample is MAt =
∑

nMAn,t.

Market Value of Equity To obtain the market value of a firm’s equity invested in each type

of capital, we take the market value of each type of capital, MAj
n,t, and multiply it by the firm’s

equity-to-asset ratio:

MEj
n,t =MAj

n,t

MEn,t

MAn,t
, j ∈ {p, i, o} . (51)

We then sum up these market values across all firms to obtain the market value of equity invested

in each portfolio: MEj
t =

∑
nMEj

n,t. Similarly, the market value of all firms in our sample is

MEt =
∑

nMEn,t. This group of firms weighted by their equity market capitalization proxies for

the publicly traded portfolio defined in Section 3. We hereafter refer to it as the market portfolio.

Equity Returns The daily rate of equity return of the market portfolio is the weighted average

of the daily rate of equity return of each firm inside the market portfolio:

rm,t =
1

MEt−1

∑
n

[MEn,t−1 · rn,t] . (52)

Similarly, the rate of equity return of the previous-, in-, and out-capital portfolios is defined as:

rj,t =
1

MEj
t−1

∑
n

[
MEj

n,t−1 · rn,t
]
, j ∈ {p, i, o} . (53)
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Combining Equations (52) and (53), we obtain that the rate of equity return of the market portfolio

is equal to the weighted average of the rate of return on the previous-, in-, and out-capital portfolios:

rm,t =
1

MEt−1

∑
n

[(
BAp

n,t−1

BAt−1
+

BAi
n,t−1

BAt−1
−

BAo
n,t−1

BAt−1

)
MEn,t−1 · rn,t

]
(54)

=
MEp

t−1

MEt−1
· rp,t +

MEi
t−1

MEt−1
· ri,t −

MEo
t−1

MEt−1
· ro,t. (55)

4.3 Empirical Results

We present several results about real capital flows that are consistent with the model’s key predic-

tions.

Predictability of real capital flows. The model predicts that it is optimal to transform the

capital over several periods in order to minimize the transformation costs (Prediction 1). As a

result, capital flows should be predictable and persistent.

Each quarter, we study whether a firm that previously was in the in-capital portfolio stays in

the in-capital portfolio or switches to the out-capital portfolio. Conversely, we study whether a

firm that was previously in the out-capital portfolio stays in the out-capital portfolio or switches to

the in-capital portfolio. Figure 4 plots the sample probabilities one, two, three, and more quarters

ahead (“lead”). Because some firms exit the sample over time, the probabilities we estimate are

conditional on staying in the sample.
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Figure 4: Predictability of capital flows. This Figure displays Markov probabilities of firms
joining the in- and out-capital portfolios. Green lines depict the probabilities for a firm in the
in-capital portfolio to stay in the in-capital portfolio (solid) or switch to the out-capital portfolio
(dotted). Red lines depict the probabilities for a firm in the out-capital portfolio to stay in the
out-capital portfolio (solid) or switch to the in-capital portfolio (dotted). Blue lines depict the
unconditional average probabilities.

The green lines depict the probabilities for a firm in the in-capital portfolio in quarter t to either

stay in the in-capital portfolio (solid) or switch to the out-capital portfolio (dotted) in the quarters

that follow. By construction, the probabilities of the green lines add up to one for every lead.

Similarly, the red lines depict the probabilities for a firm in the out-capital portfolio in quarter t

to either stay in this portfolio (solid) or switch to the in-capital portfolio (dotted). The blue lines

depict the sample average probabilities of a firm being in either in the in- or out-capital portfolio.

A firm has a 62.5% probability of being in the in-capital portfolio at time t and a 37.5% probability

of being in the out-capital portfolio.

After one year, a firm in the in-capital portfolio has a significantly higher probability of staying

in the in-capital portfolio (75%) than switching over to the out-capital portfolio (25%). Similarly,
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a firm in the out-capital portfolio has a significantly higher probability of staying in the out-

capital portfolio (55%) than switching to the in-capital portfolio (45%). Over time, however, the

probabilities of remaining in the same portfolio drop and converge to the unconditional probabilities.

These findings altogether show evidence that capital flows are persistent, in line with the model’s

predictions.

Price-to-Capital Ratios The model predicts that capital flows towards where it is most valued

(Prediction 2). Therefore, the sector with positive capital flows should have a higher price-to-capital

ratio pt than the sector with negative capital flows.

We compare each year the price-to-capital ratios of the previous-, in- and out-capital portfolios.

Figure 5 plots the ratio MAj
t/BAj

t for each type of portfolio j ∈ {p, i, o}. In almost every year, the

market-to-book ratio of the in-capital portfolio (green) is significantly higher than that of previous-

capital (orange), which is itself higher than that of the out-capital portfolio (red). Capital therefore

flows toward high market-to-book ratio firms and away from low market-to-book ratio firms.
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Figure 5: Market-to-book ratios of previous-, in-, and out-capital. This Figure displays the
market-to-book ratio of the aggregate portfolio and the previous-, in-, and out-capital portfolios
every year between 1976 and 2023.

The blue and orange lines depicts the price-to-capital ratios of the aggregate-capital and previous-

capital portfolios. Not surprisingly, the market portfolio has a slightly higher price-to-capital ratio

than the previous-capital portfolio because it is long the in-capital portfolio, which has a high

price-to-capital ratio, and short the out-capital portfolio, which has a low price-to-capital ratio.

These facts are altogether consistent with the prediction from the model that capital flows away

from where it is valued the least and towards where it is valued the most.

Capital Flows and Stock Returns The model predicts that a portfolio that is long the out-

capital portfolio and short the in-capital portfolio has a high expected return (Prediction 3).

In Figure 6, we plot the cumulative performance of the in-capital, out-capital, previous-capital,

and market portfolios. The out-capital portfolio (red) significantly and consistently outperforms

the previous-capital portfolio (orange), which itself outperforms the in-capital portfolio (green). A
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dollar invested at the end 1976 in the out-capital portfolio (red) generates $825.56 at the end of

2023. By contrast, the same dollar invested in the previous-capital and in-capital portfolios only

generates $215.75 and $59.38 at the end of 2023 respectively.

A portfolio constructed by buying one dollar of the out-capital portfolio, financed by selling one

dollar of the in-capital portfolio can be viewed as a proxy for the long-short portfolio introduced

in the previous section, constructed so that the position is long in the sector with high expected

returns and short in the sector with low expected returns. The portfolio has an annualized yield

of 7.15%, which is significantly higher than zero (t=3.54). The portfolio has a slightly negative

market beta of -0.1, so a market model would predict the yield to be negative.
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Figure 6: Cumulative performance of previous-, in-, and out-capital portfolios. This
Figure displays the dollar value of a dollar invested in 1976 in each of the previous-, in-, and out-
capital portfolios every year from 1976 to 2023.

Altogether, capital flows negatively predict future returns. This fact is consistent with the

prediction from the model that sectors with capital outflows generate higher average returns than

sectors with capital inflows.
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CAPM Alpha In the model, a two-factor pricing model arises where the first factor is captured

by the return of the publicly-traded market portfolio and the second factor reflects exposure to

sector capital imbalance risk. This second factor can be directly recovered by constructing a

portfolio that is long capital outflows and short capital inflows. Because this second factor has a

risk premium not captured by the publicly traded portfolio, it should generate a positive CAPM

alpha (Prediction 5).

In Table 1 we run CAPM time-series regressions of daily returns of the different portfolios

against the daily returns of the market factor that we obtain from Ken French’s data library.

Column 1 shows the alpha of the market portfolio constructed from our dataset on the market

factor. Not surprisingly, the alpha is close to zero and the R-square coefficient is close to 100%.

The market portfolio of US firms in our sample is therefore representative of the market portfolio

commonly used in asset pricing tests.

Columns 2 and 3 report the alpha of the out-capital and in-capital portfolios. Consistent with

the model’s prediction, the out-capital portfolio has positive alpha (t-stat of 2.9) and the in-capital

portfolio portfolio has negative alpha (t-stat of 3.2). Moreover, the alpha of the long-short out-

minus-in capital portfolio (Column 4) is large and amounts to 0.079 per year. Its t-value of 3.9

exceeds the threshold of 3 recommended by Harvey et al. (2015). This result is consistent with

the prediction from the model that a portfolio constructed from real capital flows can be used as a

pricing factor.

In Table 2, we regress the return of each portfolio on the market, value (HML), size (SMB),

profitability (RMW), and investment (CMA) factors introduced in Fama and French (2015). The

alpha of the out-minus-in factor loses statistical significance at the 5% level and has near unit (0.88)

exposure to the investment factor. This finding suggests a strong linkage between the out-minus-in

factor and the widely used investment factor, which is consistent with the prediction from the

model that a long-short portfolio constructed from real capital flows can be used as a pricing factor

in conjunction with the market factor.

5 Conclusion

Corporate investments transform capital and changes the economy’s capital mix. We develop a

parsimonious general-equilibrium model that builds on Cochrane et al. (2008)’s two-tree framework
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Table 1: CAPM Regressions This table reports time-series regressions of daily returns of multiple
stock portfolios on the daily returns of the market (MKT) factor. Stock portfolios include the
aggregate-capital portfolio, the out-capital portfolio, the in-capital portfolio, the out-minus-in long-
short portfolio, and the previous-capital portfolio. For each regression, we report the value of the
intercept (alpha), its t-value, and the adjusted R2 coefficient.

Dependent variable:

aggregate-capital out-capital in-capital out-minus-in previous-capital

(1) (2) (3) (4) (5)

alpha 0.0005 0.054∗∗∗ −0.025∗∗∗ 0.079∗∗∗ 0.007∗∗
0.161 2.939 −3.198 3.917 2.247

mkt_excess 1.010∗∗∗ 0.991∗∗∗ 1.093∗∗∗ −0.102∗∗∗ 0.991∗∗∗
949.303 146.394 386.759 −13.827 865.290

Observations 12,712 12,712 12,712 12,712 12,712
R2 0.986 0.628 0.922 0.016 0.983
Adjusted R2 0.986 0.628 0.922 0.016 0.983

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

and introduces a venture capital firm — the gardener — that creates and transforms capital. Our

model leads to a rich set of equilibrium properties, linking capital flows to asset prices, and providing

a micro-foundation for the empirically successful investment factor.

Our framework is consistent with both q-theory models of the firm and consumption-based

models of investors. Consistent with q-theory, corporate investments are positively related to a

firm’s price-to-capital ratio. Consistent with consumption-based asset pricing theory, a long-short

factor constructed from capital flows proxies for risks associated with sector capital imbalance and

prices the cross-section of equity returns, in addition to the standard consumption risk factor, in

a two-factor representation. Because the risk premium of this factor is not fully captured by the

publicly traded market portfolio, the capital flow factor generates CAPM alpha, suggesting an

explanation for the empirical success of the investment factor.
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Table 2: FF5 Regressions This table reports time-series regressions of daily returns of multiple
stock portfolios on the daily returns of the market (MKT), value (HML), size (SMB), profitability
(RMW), and investment (CMA) factors obtained from Ken French’s data library. Stock portfolios
include the market portfolio constructed from our data, the out-capital portfolio, the in-capital
portfolio, the out-minus-in long-short portfolio, and the previous-capital portfolio. For each regres-
sion, we report the value of the intercept (alpha), its t-value, and the adjusted R2 coefficient.

Dependent variable:

aggregate-capital out-capital in-capital out-minus-in previous-capital

(1) (2) (3) (4) (5)

alpha 0.004∗ 0.045∗∗ 0.012∗∗ 0.034∗ 0.003
1.746 2.576 2.463 1.833 1.046

mkt_excess 1.006∗∗∗ 1.027∗∗∗ 1.016∗∗∗ 0.011 1.005∗∗∗
1,137.951 144.992 537.672 1.430 987.595

hml −0.153∗∗∗ −0.170∗∗∗ −0.262∗∗∗ 0.092∗∗∗ −0.132∗∗∗
−88.236 −12.260 −70.765 6.331 −66.450

smb −0.013∗∗∗ 0.220∗∗∗ 0.089∗∗∗ 0.131∗∗∗ −0.025∗∗∗
−7.953 16.772 25.433 9.541 −13.385

rmw 0.027∗∗∗ −0.295∗∗∗ −0.195∗∗∗ −0.100∗∗∗ 0.080∗∗∗
11.742 −16.267 −40.360 −5.251 30.541

cma 0.064∗∗∗ 0.536∗∗∗ −0.344∗∗∗ 0.880∗∗∗ 0.160∗∗∗
21.975 23.115 −55.593 36.265 48.171

Observations 12,712 12,712 12,712 12,712 12,712
R2 0.992 0.661 0.971 0.175 0.989
Adjusted R2 0.992 0.661 0.971 0.174 0.989

Note: ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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A Proofs

Proof of Theorems 1 and 2 :
We solve the social planner’s problem, max Ut, where Ut is the representative agent’s expected utility at

t, to characterize the efficient allocation of investments and transformation. We then verify that the solution
defines equilibrium, which is effectively an application of the second welfare theorem in our environment.

It is convenient study the finite horizon economy, T < ∞, and then take the limit as T → ∞, since
existence and uniqueness is straightforward for the finite horizon economy. By proceeding this way, we avoid
potential issues with bubble solutions and transversality conditions. The planner’s problem, taking into
account that Ft = It for all t, is

V̂ (t,K, s) = max
{wt}t,{it}t

E

[∫ T

0

e−δt
(
ln(Kt) + ln(κ− it)

)
dt

]
, (56)

where capital and the capital shares evolves according to (13, 15), and sector-capital according to (7). Note
that the consumption flow ln(Kt(κ − it)) is taken net of effort, corresponding to the itKt term, which
represents the agent’s disutility of effort under the constraint Ft = It. As is well-known, because of the
separability of the logarithmic utility function, the solution is on the form

V̂ (t,K, s) = A(T − t) ln(K) + V (t, s),

where
A(z)

def
=

1− e−δz

δ
.

Itô calculus gives us
ds2 = s2(1− s)2(σ2

1 + σ2
2 − 2σ1σ2ρ)dt

def
= σ2

sdt,(
dK

K

)2

= (σ2
1s

2 + σ2
2(1− s)2 + 2σ1σ2ρs(1− s))dt

def
= σ2

Kdt,

and 〈
ds ,

dK

K

〉
= s(1− s)(sσ2

1 − (1− s)σ2
2 + (1− 2s)σ1σ2ρ)dt

def
= σsKdt.

Defining µk and µs as the drift terms of dK
K and ds, we can write

dK

K
= µkdt+ σkdzK ,

ds = µsdt+ σsdzs.
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The Bellman equation associated with V is then:

0 = max
w,i

Vt, dt+ ln(κ− i)dt− δV dt+ V ′E[ds]

+
1

2
V ′′(ds)2 +A(T − t)E

[
dK

K

]
− A(T − t)

2

(
dK

K

)2

,

with the first-order conditions (using the notation A = A(T − t)):

w(t, s) = s+
1

2aA
Vs(t, s),

i(t, s) =
4aκA2 − 4aA+ κVs(t, s)

2

4aA2 + Vs(t, s)2
,

which, when plugged into the PDE, leads to

0 = Vt + q2(s)Vss − q1(s)Vs − δV

− ln

(
A+

1

4aA
V̂ 2
s

)
+

κ

4aA
V 2
s +Aq0(t, s)− 1, (57)

q0(s) = κ+ sµ1 + (1− s)µ2 −
1

2

(
s2σ2

1 + (1− s)2σ2
2 + 2s(1− s)ρσ1σ2

)
= κ+ sµ1 + (1− s)µ2 −

1

2
σ2
K

q1(s) = s(1− s)
(
µ2 − µ1 + sσ2

1 + (1− 2s)ρσ1σ2 − (1− s)σ2
2

)
= s(1− s)(µ2 − µ1) + σsK

q2(s) =
1

2

(
σ2
1 − 2ρσ1σ2 + σ2

2

)
s2(1− s)2

=
σ2
s

2
. (58)

The terminal condition for V are

V (s, T ) ≡ 0. (59)

One also verifies that the Hessian of the optimization over w and i is negative definite when the first order
conditions are satisfied, with eigenvalues λ1 = − 1

(κ−i)2 , λ2 = − 2a
δ . The solution of the social planner’s

problem is thus on the form stated in the theorem (16). The SDF defined by the representative agent’s
marginal utility is therefore

Mt = e−δtu′(Ct) = e−δt 1

(κ− it)Kt
= e−δt 1

(κ− it)Kt
= Mt =

e−δt

δKt
Q(s), (60)

where Qt =
δ

κ−it
. This is the candidate SDF for equilibrium.
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We let T → ∞, to get A ≡ 1
δ , V (s) = limt→∞ V (t, s), and

V̂ (t,K, s) ≡ ln(K)

δ
+ V (s).

This in turn leads to the time-independent optimal policies

wt = w(st) = st +
δ

2a
V ′(st), (61)

it = i(st) =
4a(κ− δ) + δ2κV ′(st)

2

4a+ δ2V ′(st)2
. (62)

It follows that
V ′(st) =

2a

δ
(wt − st),

and also that
Qt =

δ

κ− it
= 1 + a(wt − st)

2.

We use (60) to define the following candidate sector price functions

Pn
t = Et

[∫ ∞

t

Mq

Mt
(κ− iq)K

n
q dq

]
,

and the corresponding capital market price function Pt = P 1
t + P 2

t . These prices thus represent the values
of the dividends net investments, paid out by the two types of capital, under the candidate SDF and the
optimal investment rate and share policies. It follows that

Pt = Et

[∫ ∞

t

Mq

Mt
(κ− iq)Kqdq

]
=

κ− it
δ

Kt =
1

1 + a(wt − st)2
Kt. (63)

So, the candidate market price-to-capital ratio is

pt =
1

1 + a(wt − st)2
.

We next focus on the candidate sector price functions, defined net of dilution. Recall that V̂ (K, s) solves
the social planner’s problem, and K = K1 +K1. We have

dV̂

dK1
=

∂V̂

∂K
+ V ′ ds

dK1

=
1

δK
+ V ′ 1− s

K
,

dV̂

dK2
=

∂V̂

∂K
+ V ′ ds

dK2

=
1

δK
− V ′ s

K
.
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The candidate SDF determines the price of the nth sector as the contribution to marginal utility of the
representative investor from a marginal unit of n-capital, i.e.,

M0p
1 = M0

1

M0
E0

[∫ ∞

0

Mt
dCt

dK1
dt

]
=

dV̂

dK1
=

1

δK0
+ V ′ 1− s0

K0
,

M0p
2 = M0

1

M0
E0

[∫ ∞

0

Mt
dCt

dK2
dt

]
=

1

δK0
− V ′ s0

K0
.

Noting that M0 = 1
(κ−i0)K0

= 1
δK0p

, and that the formula holds for arbitrary t because of time invariance,
this leads to:

p1t = pt(1 + (1− st)δV
′(st)),

p2t = pt(1− stδV
′(st)).

It then follows that

p1t − p2t
pt

= δV ′(st).

Note also that since

p10K
1
0 =

1

M0
E0

[∫ ∞

0

Mt(κ− it)stKtdt

]
= δp0K0E0

[∫ ∞

0

e−δtstdt

]
,

and
p10K

1
0 = p0s0K0(1 + (1− s0)δV

′(s0)),

and s0
δ =

∫∞
0

e−δts0dt, it follows that

E0

[∫ ∞

0

e−δt(st − s0)dt

]
= s0(1− s0)V

′(s0), (64)

which is a result we will use. Equivalently, from integration by parts,

E0

[∫ ∞

0

e−δtdst

]
= δs0(1− s0)V

′(s0). (65)

To derive the expressions for the dividends, dn, we define the dividends net capital flows, Zn = dn − κ.
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The SDF formula for the price-to-capital ratio, p1 at time 0, is then such that

p1 = κdt+ Z1dt+ E

[
Mdt

M0
(p1 + dp1)

(
1 +

dK̂1

K̂1

)]
. (66)

Here, K̂ follows the dynamics
dK̂1

K̂1
= µ1dt+ σ1dz

1,

i.e., it is the organic growth of the firms, not taking into account the growth generated by the VC firm’s
capital transformation. Using Ito’s lemma, this leads to the following expression for Z1:

0 = −
(
δ + (1− s)(µ2 − µ1) + i(1− af2) +

σsK

s
+

ps
p

(
µs +

σ2
s

s

))
p1

+
1

2

(
p1ss −

p1

p
pss

)
σ2
s

+

(
µs +

σ2
s

s

)
p1s

− ps
p

(
p1s −

ps
p
p1
)
σ2
s

+ κ+ Z1

We note that
p1s −

ps
p
p1 = 2a((1− s)f ′ − f)p,

allowing us to write

0 = −
(
δ + (1− s)(µ2 − µ1) + i(1− af2) +

σsK

s

)
p1

+
1

2

(
p1ss −

p1

p
pss

)
σ2
s

+ 2a((1− s)f ′ − f)p

(
µs +

σ2
s

s

)
− 2a((1− s)f ′ − f)psσ

2
s

+ κ+ Z1

We also have
p1ss −

p1

p
pss = 4a((1− s)f ′ − f)ps − 4af ′p+ 2a(1− s)f ′′p,
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implying

0 = −
(
δ + (1− s)(µ2 − µ1) + i(1− af2) +

σsK

s

)
(1 + 2af(1− s))p

+ a ((1− s)f ′′ − 2f ′) pσ2
s

+ 2a((1− s)f ′ − f)p

(
µs +

σ2
s

s

)
+ κ+ Z1

We arrive at

κ+ Z1

p
=

(
δ + (1− s)(µ2 − µ1) + i(1− af2) +

σsK

s

)
(1 + 2af(1− s))

− a ((1− s)f ′′ − 2f ′)σ2
s

− 2a((1− s)f ′ − f)

(
µs +

σ2
s

s

)
.

A similar argument for p2 gives us

0 = −
(
δ − s(µ2 − µ1) + i(1− af2)− σsK

1− s
+

ps
p

(
µs −

σ2
s

1− s

))
p2

+
1

2

(
p2ss −

p2

p
pss

)
σ2
s

+

(
µs −

σ2
s

1− s

)
p2s

− ps
p

(
p2s −

ps
p
p2
)
σ2
s

+ κ+ Z2

which together with

p2s −
ps
p
p2 = −2a(sf ′ + f)p,

p2ss−
p2

p
pss = −4a(sf ′ + f)p− 4af ′p− 2asf ′′,

leads to

κ+ Z2

p
=

(
δ − s(µ2 − µ1) + i(1− af2)− σsK

1− s

)
(1− 2afs)

− a (sf ′′ + 2f ′)σ2
s

− 2a(sf ′ + f)

(
µs −

σ2
s

1− s

)
.
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Note that
sZ1 + (1− s)Z2 ≡ 0, (67)

so aggregate dividends net consumption flow is at all point in time equal to zero. The sector-level deviation
of dividends from the sector-level comsumption flow accoutns for the externality associated with having
unblananced sectors. The too small sector (compared with the balanced outcome, s∗) is subsidized by
the too large sector, so that the present value of discounted n-dividends is equal to the marginal value of
n-capital, pn.

It follows that

Z1 = (1− s)(Z1 − Z2),

Z2 = −s(Z1 − Z2),

so Z1 and Z2 immediately follow from the difference Z1 − Z2, which can be written as

−Z1 − Z2

p
= (µ1 − µ2)(1 + 2a(1− 2s)f)− σsK

s(1− s)
(1 + 2a(1− 2s)f)

− 2af(δ + i(1− af2)) + af ′′σ2
s + 2a

(
f ′µs − f

σ2
s

s(1− s)
+ (1− 2s)f ′ σ2

s

s(1− s)

)
. (68)

We can now derive the following result

Proposition A.1
Z1 − Z2 = 2aif(1− af2)p (69)

Proof : The result follows from the following lemma:

Lemma 1 The following condition holds:

σ2
sf

′′ + 2(q′2 − q1)f
′ − 2q′1f − 2δf − 2δ

1 + af2
f ′f + 2κf ′f +

q′0
a

= 0. (70)

Proof : Differentiate the ODE for V (s) = W (∞, s), defined by (16), and use the fact that V ′ = 2a
δ f.

By differentiation, one now derives the following formulas:

q′0(s) = µ1 − µ2 −
σsK

s(1− s)

q′1(s) = (1− 2s) (µ2 − µ1 + σsKs(1− s)) +
σ2
s

s(1− s)

q′2(s) =
1− 2s

s(1− s)
σ2
s ,
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which together with µs = i(s)f(s)− q1(s) can be plugged into (70) to get

−af ′′σ2
s = +2a

(
1− 2s

s(1− s)
σ2
s + µs − if

)
f ′

− 2af

(
(1− 2s) (µ2 − µ1 + σsKs(1− s)) +

σ2
s

s(1− s)
+ δ

)
− 2δ

1 + af2
f ′f + 2κf ′f + µ1 − µ2 −

σsK

s(1− s)
.

Replacing af ′′σ2
s in (70) with (minus) the RHS above yields

−Z1 − Z2

p
= 2af

(
−i(1− af2) +

(
i− κ+

δ

1 + af2

)
ff ′
)
.

Finally, using that p = 1
1+af2 , and κ− i = δp, we arrive at

Z1 − Z2 = 2aif
(
1− af2

)
p,

Z1 = 2aif(1− s)
(
1− af2

)
p,

Z2 = −2aifs
(
1− af2

)
p.

Thus, Proposition A.1 holds. Note that we can write

Z1 = i(1− af2)(p1 − p),

Z2 = i(1− af2)(p2 − p).

We next turn to the behavior of the VC firm under the candidate SDF and pricing functions. From
(8,9), it follows that the VC firm’s objective at time t is to maximize vV C

t dt, where

vV C
t =

(
p1t
[
wt − ast(wt − st)

2
]
+ p2t

[
1− wt − a(1− st)(wt − st)

2
]
− 1
)
It,

=
(
p1twt + (1− wt)p

2
t − apt(wt − st)

2 − 1
)
It

=
(
(p1t − p2t )(wt − st) + pt(1− a(wt − st)

2)− 1
)
It.

Here, we have used that pt = stp
1
t + (1− st)p

2
t . Given It > 0, the VC-firm optimal choice of wt satisfies

(wt − st) =
p2t − p1t
2apt

=
δ

2a
V ′(st),

consistent with (61). The instantaneous contribution to value is then

vV C
t = (pt(1 + a(wt − st)

2)− 1)It = 0,
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regardless of It ≥ 0, so the VC-firm is willing to choose It = itKt at all points in time, and since it never
generates any surplus, it must choose ζt ≡ 0, always using 100% of the newly created firms to compensate
the household for its effort. So the VC firms value is zero

V V C
0 = E0

[∫ ∞

0

Mt

M0
vV C
t dt

]
= 0.

One still need to show that the representative agent’s asset demand and consumption are consistent
with the candidate equilibrium SDF. First, because of the log-utility specification, the household with time-t
wealth Wt = Pt = ptKt =

κ−it
δ Kt will choose net consumption Ct = δWt = (κ − it)Kt = Y 1

t + Y 2
t − It, so

Ĉt = Y 1
t + Y 2

t , i.e., the consumption market clears under the candidate SDF.
Finally, the fact that the representative agent’s asset demand leads to market clearance in the capital

market follows from standard arguments (see, e.g., Lucas (1978)), since the candidate SDF defined by (60)
is the representative agent’s marginal utility of aggregate consumption at all points in time in all states.

Proof of Propositions 1 and 2:
Proposition 1: When a → 0, the social planner’s problem converges to one in a friction-free economy,

when capital can be costlessly transformed, so that the planner can effectively choose st at any time t, see
(7). This, in turn reduces the planner’s problem to a portfolio choice problem equivalent to that in Merton
(1969), with portfolio weights K1

K1+K2 and K2

K1+K2 , respectively, with the solution given in the proposition.
Proposition 2: When a → ∞, it becomes prohibitively expensive for the planner to choose any other

policy that wt = st for all t, so the only policy variable available for the planner is the choice of {It}t, leading
to capital dynamics

dK1
t = µ1K

1
t dt+ σ1K

1
t dz

1 + Itstdt,

dK2
t = µ2K

2
t dt+ σ2K

2
t dz

2 + It(1− st)dt,

or, equivalently,

dK1
t

K1
t

= (µ1 + it)dt+ σ1dz
1,

dK2
t

K2
t

= (µ2 + it)dt+ σ2dz
2.

and instantaneous net dividends ln((κ− it)Kt)dt.
With wt = st, investments no longer play a role in moving the capital share. Indeed, one verifies the

following dynamics:

dKt

Kt
= (stµ1 + (1− st)µ2 + it) dt+ σ1stdz

1 + σ2(1− st)dz
2,

dst = −q1(st)dt+ st(1− st)
(
σ1dz

1 − σ2dz
2
)
.
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Because of the utility specification, the Bellman equation is again on the form

V̂ (t,K, s) =
ln(K)

δ
+ V (s),

where V satisfies

0 = max
i

ln(κ− i)dt− δV dt+ V ′E[ds]

+
1

2
V ′′(ds)2 +

1

δ
E

[
dK

K

]
− 1

2δ

(
dK

K

)2

,

and since only ln(κ− i) and E
[
dK
K

]
depend on i, one derives the first-order condition

it ≡ κ− δ.

It follows immediately that this leads to a two-trees economy, with the growth rate implied by the chosen
constant investment share, i.

Proof of Theorem 3: Define the processes Rt =
K1t

K2t
= st

1−st
∈ R++ and rt = log(Rt) ∈ R. It follows that

st =
1

1+ 1
Rt

= 1
1+e−rt

.

Ito’s lemma gives us
drt =

(
µ∗ + f (st) e

rt
(
1 + e−rt

)2)
dt+ σ∗dz∗,

where µ∗ = µ1 − µ1 + σ2
1 − ρσ1σ2 +

σ2
∗
2 and σ2

∗ = σ2
1 + σ2

2 − 2ρσ1σ2. Define the scale function

v(r) = eξ(r), ξ(r)
def
= −2

∫ r

0

µ∗ + f
(

1
1+e−q

)
eq (1 + e−q)

2

σ2
∗

dq. (71)

The flow function, f , is decreasing, with f(s∗) = 0 for 0 < s∗ < 1, and f(0+) > 0, f(1−) < 0, from which it
follows that ξ(r) ∼ e|r| for large |r|. From the argument in Karlin and Taylor (1981), p. 221, it follows that
rt has a unique stationary distribution, as does consequently also the capital share, st.

Proof of Proposition 3: The SDF pricing formula for the two sectors can be written as

E

[
dPn

Pn

]
+

κ+ Zn

pn
dt = rfdt− E

[
dM

M

(
pns
pn

ds+
dK̂n

K̂n

)]
. (72)
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We have

E

[
dM

M

(
p1s
p1

ds+
dK̂1

K̂1

)]
= −

(
p1s
p1

σsK +
ps
p

p1s
p1

σ2
s

)
dt

−
(
σ2
1s+ ρσ1σ2(1− s) +

ps
p
s(1− s)(σ2

1 − ρσ1σ2)

)
dt,

E

[
dM

M

(
p2s
p2

ds+
dK̂2

K̂2

)]
= −

(
p2s
p2

σsK +
ps
p

p2s
p2

σ2
s

)
dt

−
(
σ2
2(1− s) + ρσ1σ2s+

ps
p
s(1− s)(ρσ1σ2 − σ2

2)

)
dt.

So,

E

[
dP 1

P 1

]
− E

[
dP 2

P 2

]
+

(
κ+ Z1

p1
− κ+ Z2

p2

)
dt =

(
p1s
p1

σsK +
ps
p

p1s
p1

σ2
s

)
dt

+

(
σ2
1s+ ρσ1σ2(1− s) +

ps
p
s(1− s)(σ2

1 − ρσ1σ2)

)
dt,

−
(
p2s
p2

σsK +
ps
p

p2s
p2

σ2
s

)
dt

−
(
σ2
2(1− s) + ρσ1σ2s+

ps
p
s(1− s)(ρσ1σ2 − σ2

2)

)
dt

=
σsK

s(1− s)
dt+

ps
p
σ2
s

1

s(1− s)
dt+

(
p1s
p1

− p2s
p2

)
σsKdt

+
ps
p
σ2
s

(
p1s
p1

− p2s
p2

)
dt,

and the total expected payoff generated of buying a dollar of 1-capital and funding it with shortselling a
dollar of 2-capital (the portfolio (X1, X2) = (1,−1)) is then:

redt =

(
E

[
dP 1

P 1

]
+

κ+ Z1

p1
dt

)
−
(
E

[
dP 2

P 2

]
+

κ+ Z2

p2
dt

)
=

σsK

s(1− s)
dt+

ps
p

σ2
s

s(1− s)
dt+

(
p1s
p1

− p2s
p2

)
σsKdt+

ps
p

(
p1s
p1

− p2s
p2

)
σ2
sdt,

= −λ̂s

(
σsK +

ps
p
σ2
s

)
dt, (73)
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where

λ̂s = −
(
p1s
p1

− p2s
p2

+
1

s(1− s)

)
= − d

ds

[
ln

(
sp1(s)

(1− s)p2(s)

)]
= −

(
f ′ + 2af2

1 + 2af(1− 2s)− 4a2f2s(1− s)
+

1

s(1− s)

)
,

The behavior of λ̂s can be inferred from the following lemma:

Lemma 2

• The function sp1(s)
p(s) is increasing in s, zero at s = 0, and one at s = 1.

• The function (1− s)p
2(s)
p(s) is decreasing in s, one at s = 0, and zero at s = 0.

The lemma immediately implies that λ̂s(s) > 0 when 0 < s < 1.
Proof of lemma: Note first that sp1(s)

p(s) + (1 − s)p
2(s)
p(s) ≡ 1, so the first part of the lemma immediately

implies the second. We have

s
p1(s)

p(s)
= s(1 + 2af(1− s)),

which immediately implies the function’s behavior at s = 0 and s = 1. To show that the function is
increasing, we note that f(s) = δ

2aV
′(s), see (20), so we have

s
p1(s)

p(s)
= s+ δs(1− s)V ′(s)

= s+ δE

[∫
e−δt(st − s)dt

∣∣∣∣ s0 = s

]
= s+ δE

[∫
e−δtstdt

∣∣∣∣ s0 = s

]
− sδE

[∫
e−δtdt

]
= δE

[∫
e−δtstdt

∣∣∣∣ s0 = s

]
. (74)

Here, we used the expectation result (64).
Now, since the diffusion process for s follows a time-invariant Markov structure, stochastic monotonicity

implies that E[st|s0] is increasing in s0. It follows that sp1(s)
p(s) is increasing in s, and thus the lemma holds.

The functional form of λ̂s also immediately implies that the function behaves like 1
s(1−s) close to bound-

aries. We study the remaining term, σsK + ps

p σ2
s . First, ps

p = − 2aff ′

1+af2 , which is a decreasing function with
unique root at s∗. Also,

σsK = s(1− s)
(
σ2
1s− σ2

2(1− s) + (1− 2s)ρσ1σ2

)︸ ︷︷ ︸
`(s)

,

where it is easy to verify that `(s) is linearly increasing in s, and zero at ŝ =
σ2
2−ρσ1σ2

σ2
1+σ2

2−2ρσ1σ2
.
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We can write:

σsK +
ps
p
σ2
s = s(1− s)

(
sσ2

∗ − σ2
2 + σ1σ2ρ+ s(1− s)

ps
p
σ2
∗

)
def
= s(1− s)G(s),

where σ2
∗ = σ2

1+σ2
2−2ρσ1σ2 > 0. It then follows immediately that G(0) < 0, G′(0) > 0, G(1) > 0, G′(1) < 0.

Altogether, re is therefore negative and decreasing close to the s = 0 boundary, and positive and increasing
close to the s = 1 boundary, with limit values re(0+) = −(σ2

2 − σ1σ2ρ), and re(1−) = σ2
1 − ρσ1σ2. The

properties of re as stated in the proposition are therefore satisfied.

Proof of Proposition 4:
Substituting, the expression for the firm-a alpha simplifies to

α1 · σ2
m̂ =

[
x ·
(
σP
1

)2
+ (1− x) · σP

1,2

]
· σ2

m̂ (75)

−
[
x̂ ·
(
σP
1

)2
+ (1− x̂) · σP

1,2

]
· (µm̂ − rf ) (76)

= [(1− x̂)x− x̂ (1− x)] (1− x̂)
(
σP
1

)2 (
σP
2

)2 (77)

[2x̂ (1− x)− (x̂ (1− x) + (1− x̂)x)] (1− x̂)
(
σP
1,2

)2 (78)

= [x− x̂] (1− x̂)
((

σP
1

)2 (
σP
2

)2 − (σP
1,2

)2) (79)

α1 =(x− x̂) (1− x̂)

(
σP
1

)2 (
σP
2

)2 − (σP
1,2

)2
σ2
m̂

. (80)

Since the market portfolio must have zero alpha, αm̂ = 0 = x̂α1 + (1− x̂)α2, we get

α2 =(x̂− x) x̂

(
σP
1

)2 (
σP
2

)2 − (σP
1,2

)2
σ2
m̂
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